HDF5 Reference Manual

Release 1.8.5
June 2010

The HDF Group
http://iwwww.hdfgroup.org/

(Date printed: June 2010)

Copyright Notice and License Terms for
HDF5 (Hierarchical Data Format 5) Software Library and Utilities

HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 2006-2010 by The HDF Group.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2006 by the Board of Trustees of the University of lllinois.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (including
commercial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following
disclaimer in the documentation and/or materials provided with the distribution.

3. In addition, redistributions of modified forms of the source or binary code must carry prominent notices stating that the
original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked, but not required, to
acknowledge that it was developed by The HDF Group and by the National Center for Supercomputing Applications at t
University of Illinois at Urbana-Champaign and credit the contributors.

5. Neither the name of The HDF Group, the name of the University, nor the name of any Contributor may be used to endor
or promote products derived from this software without specific prior written permission from The HDF Group, the
University, or the Contributor, respectively.

DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE HDF GROUP AND THE CONTRIBUTORS "AS IS" WITH NO
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall The HDF Group or the Contributors be
liable for any damages suffered by the users arising out of the use of this software, even if advised of the possibility of such dam:e

Contributors: National Center for Supercomputing Applications (NCSA) at the University of lllinois, Fortner Software, Unidata
Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip), and Digital Equipmen
Corporation (DEC).

Portions of HDF5 were developed with support from the Lawrence Berkeley National Laboratory (LBNL) and the United States
Department of Energy under Prime Contract No. DE-AC02-05CH11231.

Portions of HDF5 were developed with support from the University of California, Lawrence Livermore National Laboratory (UC
LLNL). The following statement applies to those portions of the product and must be retained in any redistribution of source code
binaries, documentation, and/or accompanying materials:

This work was partially produced at the University of California, Lawrence Livermore National Laboratory (UC LLNL)
under contract no. W-7405-ENG-48 (Contract 48) between the U.S. Department of Energy (DOE) and The Regents of tt
University of California (University) for the operation of UC LLNL.

DISCLAIMER: This work was prepared as an account of work sponsored by an agency of the United States Governmen
Neither the United States Government nor the University of California nor any of their employees, makes any warranty,
express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately- owned right
Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or the University of California, and shall not be used for advertising or
product endorsement purposes.

Table of Contents

Overview 1
Fortran90 and C++ APIs 2
H5: General Library Functions 3
H5A: Attribute Interface 13
H5D: Datasets Interface 61
H5E: Error Interface 97
H5F: File Interface 133
H5G: Group Interface 173
H5I: Identifier Interface 209
H5L: Link Interface 231
H50: Object Interface 277
H5P: Property List Interface 303
H5R: Reference Interface 539
H5S: Dataspace Interface 553
H5T: Datatype Interface 585
H5Z: Compression Interface 669
HDF5 Tools 681
h5dump 683
h5ls 689
h5diff and ph5diff 690
h5repack 693
h5repart 696
h5jam and jSunjam 697
h5copy 699
h5mkgrp 701
h5import 703
gif2h5 711
h52gif 712
Java-based tools (HDFview, etc.) *
H4toH5 Conversion Library *
h5toh4 713
h4toh5 715

* Links to descriptions of these tools appear on the HDF5 Tools page:
http://hdfgroup.org/HDF5/doc/RM/Tools.html

HDF5 Tools (continued)

h5stat 716
h5perf 717
h5perf_serial 722
h5redeploy 724
h5cc and h5pcc 725
h5fc and h5pfc 726
h5c++ 727
HDF5 Predefined Datatypes 729

HDF5 Fortran90 Flags, Datatypes, 733
and User’s Notes

API Compatibility Macros 737
in HDF5
Collective Calls in 745

Parallel HDF5 Applications
HDF5 Glossary 749

HDF5 Reference Manual

HDF5: API Specification
Reference Manual

The HDF5 library provides several interfaces, each of which provides the tools required to meet specific aspect:
of the HDF5 data-handling requirements.

Notes regarding Fortran90 and C++ APIs appear on the next page.

Main HDF5 Library, or Low-level APIs

The main HDF5 Library includes all of the low-level APls, providing user applications with fine-grain control
of HDF5 functionality.

Library Functions

Attribute Interface

Dataset Interface

Error Interface

File Interface

Group Interface

Identifier Interface

Link Interface

Object Interface

Property List Interface

Reference Interface

Dataspace Interface

Datatype Interface

Filters and
Compression Interface

Tools

Predefined Datatypes

HDF5 Fortran90 Flags,
Datatypes, User Notes

APl Compatibility
Macros

Collective Calling
Requirements

The general-purpose H5 functions.

The H5A API for attributes.

The H5D API for manipulating scientific datasets.

The H5E API for error handling.

The H5F API for accessing HDF5 files.

The H5G API for creating physical groups of objects on disk.
The H5I API for working with object identifiers.

The H5L API for working with links.

The H50 API for manipulating objects and reference counts.
The H5P API for manipulating object property lists.

The H5R API for references.

The H5S API for defining dataset dataspace.

The H5T API for defining dataset element information.

The H5Z API for inline data filters and data compression.

Interactive tools for the examination of existing HDF5 files.
Predefined datatypes in HDFb5.

Flags and datatypes used in the HDF5 Fortran interface.
User notes for the HDF5 Fortran interface.

API compatibility macros provided in HDF5.

Requirements for collective function calls and coordinated use
of properties in parallel HDF5 applications.

HDF5 Reference Manual

The Fortran90 and C++ APIs to HDF5

The HDF5 Library distribution includes FORTRAN90 and C++ APIs, which are described in the following
documents.

Fortran90 API
Fortran90 APIs in the HDF5 Reference Manual: The HDF5 Reference Manual includes descriptions of
the HDF5 Fortran90 APIs. Fortran subroutines exist in the H5, H5A, H5D, H5E, H5F, H5G, H5I, H5P,
H5R, H5S, H5T, and H5Z interfaces and are described on those pages. In general, each Fortran
subroutine performs exactly the same task as the corresponding C function, with which it is described.
HDF5 Fortran90 Flags, Datatypes and User’s Notes lists the flags employed in the Fortran90 interface,
contains a pointer to the HDF5 Fortran90 datatypes, and includes the document HDF5 Fortran90 User's
Notes.

HDF5 Fortran90 User’'s Notes provides important information for users regarding the Fortran90 source
code and the Fortran90 API.

C++ API

HDF5 C++ Reference Manual provides a complete reference for the HDF5 C++ interface.

HDF5 Reference Manual

H5: General Library Functions

These functions serve general-purpose needs of the HDF5 library and it users.

The C Interfaces:

« H50pen < H5get_libversion ¢ H5set free_list_limits
« H5close e« H5check version ¢ H5garbage collect
» H5dont_atexit

Alphabetical Listing

» H5check_version ¢ H5garbage_collect « H5set free_list_limits
» H5close » H5get_libversion
» H5dont_atexit * H50pen

The FORTRAN9O Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

e h5open_f e« h5get_libversion_f e h5set_free_list_limits_f
e h5close_f e« h5check_version_f < h5garbage_collect_f
* h5dont_atexit_f

HDF5 Reference Manual

HDF5 Reference Manual H5check version

Name: H5check_version

Signature:

herr_tH5check _version(unsigned majnum, unsignedminnum, unsignedelnum)
Purpose:

Verifies that library versions are consistent.
Description:

H5check_version verifies that the arguments provided with the function call match the version
numbers compiled into the library.

H5check_version serves two slightly differing purposes.

First, the function is intended to be called by the user to verify that the version of the header files
compiled into an application matches the version of the HDF5 library being used. One may look at the
H5check definition in the file H5public.h as an example.

Due to the risks of data corruption or segmentation faults, H5check_version causes the application to
abort if the version numbers do not match. The abort is achieved by means of a call to the standard C
function abort().

Note that H5check_version verifies only the major and minor version numbers and the release

number; it does not verify the sub-release value as that should be an empty string for any official release
This means that any two incompatible library versions must have different {major,minor,release}
numbers. (Notice the reverse is not necessarily true.)

Secondarily, H5check_version verifies that the library version identifiers H5_ VERS MAJOR,

H5 VERS_MINOR, H5_VERS_RELEASE, H5_VERS_SUBRELEASE, and H5_VERS_INFO are
consistent. This is designed to catch source code inconsistencies, but does not generate the fatal error
the first stage because this inconsistency does not cause errors in the data files. If this check reveals
inconsistencies, the library issues a warning but the function does not fail.

Parameters:
unsignedmajnum IN: The major version of the library.
unsigned minnum IN: The minor version of the library.
unsignedelnum IN: The release number of the library.
Returns:

Returns a non-negative value if successful. Upon failure, this function causes the application to abort.

Fortran90 Interface: h5check_version_f
SUBROUTINE h5check_version_f(majnum, minnum, relnum, hdferr)
IMPLICIT NONE
INTEGER, INTENT(IN) :: majnum ! The major version of the library
INTEGER, INTENT(IN) :: minnum ! The minor version of the library
INTEGER, INTENT(IN) ::relnum ! The release number
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5check_version_f

History:
Release Fortran90
1.4.5 Function introduced in this release.

H5close HDF5 Reference Manual

Name: H5close

Signature:
herr_tH5close(void)

Purpose:
Flushes all data to disk, closes file identifiers, and cleans up memory.

Description:
H5close flushes all data to disk, closes all file identifiers, and cleans up all memory used by the library.
This function is generally called when the application calls exit(), but may be called earlier in event of
an emergency shutdown or out of desire to free all resources used by the HDF5 library.

h5close_f and h5open_f are required calls in Fortran90 applications.
Parameters:
None.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5close_f
SUBROUTINE h5close_f(hdferr)
IMPLICIT NONE
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5close_f

HDF5 Reference Manual H5dont_atexit

Name: H5dont_atexit

Signature:
herr_tH5dont_atexit(void)

Purpose:
Instructs library not to install atexit cleanup routine.

Description:
H5dont_atexit indicates to the library that an atexit() cleanup routine should not be installed.
The major purpose for this is in situations where the library is dynamically linked into an application and
is un-linked from the application before exit() gets called. In those situations, a routine installed with
atexit() would jump to a routine which was no longer in memory, causing errors.

In order to be effective, this routine must be called before any other HDF function calls, and must be
called each time the library is loaded/linked into the application (the first time and after it's been
un-loaded).

Parameters:

None.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5dont_atexit_f
SUBROUTINE h5dont_atexit_f(hdferr)
IMPLICIT NONE
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5dont_atexit_f

History:
Release Fortran90
1.45 Function introduced in this release.

H5garbage_collect HDF5 Reference Manual

Name: H5garbage collect

Signature:

herr_tH5garbage_collect(void)
Purpose:

Garbage collects on all free-lists of all types.
Description:

H5garbage_collect walks through all the garbage collection routines of the library, freeing any
unused memory.

It is not required that H5garbage_collect be called at any particular time; it is only necessary in
certain situations where the application has performed actions that cause the library to allocate many
objects. The application should call H5garbage_collect if it eventually releases those objects and
wants to reduce the memory used by the library from the peak usage required.

The library automatically garbage collects all the free lists when the application ends.
Parameters:
None.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5garbage_collect f
SUBROUTINE h5garbage_collect_f(hdferr)
IMPLICIT NONE
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5garbage_collect_f

History:
Release Fortran90
1.45 Function introduced in this release.

HDF5 Reference Manual H5get_libversion

Name: H5get_libversion
Signature:
herr_tH5get_libversion(unsigned *majnum, unsigned *minnum, unsigned *relnum)
Purpose:
Returns the HDF library release number.
Description:
H5get_libversion retrieves the major, minor, and release humbers of the version of the HDF library
which is linked to the application.

Parameters:
unsigned *majnum OUT: The major version of the library.
unsigned *minnum OUT: The minor version of the library.
unsigned *relnum OUT: The release number of the library.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5get_libversion_f
SUBROUTINE h5get_libversion_f(majnum, minnum, relnum, hdferr)
IMPLICIT NONE
INTEGER, INTENT(OUT) :: majnum ! The major version of the library
INTEGER, INTENT(OUT) :: minnum ! The minor version of the library
INTEGER, INTENT(OUT) :: relnum ! The release number
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5get_libversion_f

History:
Release Fortran90
145 Function introduced in this release.

H5open HDF5 Reference Manual

Name: H50pen
Signature:

herr_tH5open(void)
Purpose:

Initializes the HDF5 library.
Description:

H5open initialize the library.

When the HDF5 Library is employed in a C application, this function is normally called automatically,
but if you find that an HDF5 library function is failing inexplicably, try calling this function first. If you
wish to elimnate this possibility, it is safe to routinely call H5open before an application starts working
with the library as there are no damaging side-effects in calling it more than once.

When the HDF5 Library is employed in a Fortran90 application, h5open_f initializes global variables
(e.g. predefined types) and performs other tasks required to initialize the library. h5open_f and
h5close_f are therefore required calls in Fortran90 applications.

Parameters:
None.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5open_f
SUBROUTINE h5open_f(hdferr)
IMPLICIT NONE
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5open_f

10

HDF5 Reference Manual H5set_free_list_limits

Name: H5set_free_list_limits

Signature:
herr_tH5set_free_list_limits(int reg_global_lim, int reg_list_lim, int
arr_global_Ilim, int arr_list_lim, int blk_global_lim, int blk_list_lim)
Purpose:
Sets free-list size limits.
Description:

H5set_free_list_limits sets size limits on all types of free lists. The HDF5 library uses free lists
internally to manage memory. The types of free lists used are as follows:

¢ Regular free lists manage memory for single internal data structures.

¢ Array free lists manage memory for arrays of internal data structures.

O Block free lists manage memory for arbitrarily-sized blocks of bytes.

¢ Factory free lists manage memory for fixed-size blocks of bytes.
The parameters specify global and per-list limits; for example, reg_global_limit and
reg_list_limit limit the accumulated size of all regular free lists and the size of each individual
regular free list, respectively. Therefore, if an application sets a 1Mb limit on each of the global lists, up
to 4Mb of total storage might be allocated, 1Mb for each of the regular, array, block, and factory type
lists.

The settings specified for block free lists are duplicated for factory free lists. Therefore, increasing the
global limit on block free lists by x bytes will increase the potential free list memory usage by 2x bytes.

Using a value of -1 for a limit means that no limit is set for the specified type of free list.
Parameters:

intreg_global_lim IN: The cumulative limit, in bytes, on memory used for all regular free
lists
(Default: 1MB)

int reg_list_lim IN: The limit, in bytes, on memory used for each regular free list
(Default: 64KB)

int arr_global_Ilim IN: The cumulative limit, in bytes, on memory used for all array free lists
(Default: 4MB)

intarr_list_lim IN: The limit, in bytes, on memory used for each array free list
(Default: 256KB)

int blk_global_lim IN: The cumulative limit, in bytes, on memory used for all block free lists

and, separately, for all factory free lists
(Default: 16MB)
int blk_list_lim IN: The limit, in bytes, on memory used for each block or factory free list
(Default: 1MB)
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.6.0 Function introduced in this release.
1.8.3 Function changed in this release to set factory free list memory limits.

11

12

HDF5 Reference Manual

HDF5 Reference Manual

H5A: Attribute Interface

Attribute API Functions

These functions create and manipulate attributes and information about attributes.

In the following lists, italic type indicates a configurable macro.

The C Interfaces:

» H5Acreate » H5Arename » H5Aget _info

* H5Acreatel * * H5Arename_by name ¢ H5Aget _info_by name
» H5Acreate2 » H5Awrite » H5Aget_info_by idx

» H5Acreate_by name ¢ H5Aread * H5Aget_num_attrs *

* H5A0pen » H5Aclose * H5Aget_name

* H5Aopen_by name < H5Aiterate » H5Aget create_plist

* H5A0open_name * » H5Aiteratel * * H5Aget_space

* H5A0pen_by idx » H5AIterate2 * H5Aget _type

* H5A0pen_idx * » H5Aiterate_by name ¢ H5Aget storage_size
» H5Aexists » H5Adelete » H5Aget_name_by idx

* H5Aexists by name ¢ H5Adelete_by name
* H5Adelete by _idx

* Use of these functions is deprecated in Release 1.8.0.

Alphabetical Listing

« H5Aclose » H5Aget_info « H5Aiterate?2

* H5Acreate » H5Aget_info_by idx * H5Aiterate_by name
« H5Acreatel * » H5Aget_info_by name < H5Ao0pen

* H5Acreate?2 * H5Aget_name * H5A0pen_by idx

« H5Acreate_by name ¢ H5Aget name_by idx < H5Aopen_by name
* H5Adelete * H5Aget_num_attrs * * H5A0pen_idx *

« H5Adelete_by name ¢ H5Aget_space * H5Aopen_name *

* H5Adelete_by_idx » H5Aget_storage_size * H5Aread

* H5Aexists * H5Aget_type * H5Arename

« H5Aexists_by name < H5Aiterate « H5Arename_by _name
« H5Aget_create_plist « H5Aiteratel * e H5Awrite

13

HDF5 Reference Manual

The FORTRAN9O Interfaces:
In general, each FORTRAN9O0 subroutine performs exactly the same task as the corresponding C function.

* h5aclose_f * hSaget_info_f » h5aopen_f

» h5acreate_f » hSaget_info_by idx_f + h5aopen_by_idx_f

» hbacreate_by name_f e« hbaget_info_by name_f h5aopen_by name_f
* hbadelete_f » hSaget_name_f » hSaopen_idx_f *

* h5adelete_by name_f < hb5aget _name_by idx_f ¢ h5aopen_name_f*
« h5adelete_by_idx_f » h5aget_ num_attrs_f* « hbaread_f

* H5Aexists_f » h5aget_space_f » h5arename_f
« H5Aexists_by name_f < hbaget storage_size f ¢ h5arename_by name_f
« h5aget_create_plist f « hbaget_type_f » h5awrite_f

* Use of these functions is deprecated in Release 1.8.0.
The Attribute interface, H5A, is primarily designed to easily allow small datasets to be attached to primary
datasets as metadata information. Additional goals for the H5A interface include keeping storage requirement for
each attribute to a minimum and easily sharing attributes among datasets.

Because attributes are intended to be small objects, large datasets intended as additional information for a primary
dataset should be stored as supplemental datasets in a group with the primary dataset. Attributes can then be
attached to the group containing everything to indicate a particular type of dataset with supplemental datasets is
located in the group. How small is "small” is not defined by the library and is up to the user’s interpretation.

See Attributes in the HDF5 User's Guide for further information.

14

HDF5 Reference Manual H5Aclose

Name: H5Aclose
Signature:
herr_tH5Aclose(hid_t attr_id)
Purpose:
Closes the specified attribute.
Description:
H5Aclose terminates access to the attribute specified by attr_id by releasing the identifier.

Further use of a released attribute identifier is illegal; a function using such an identifier will fail.
Parameters:

hid_tattr_id IN: Attribute to release access to.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5aclose_f
SUBROUTINE h5aclose_f(attr_id, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(OUT) :: attr_id ! Attribute identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:

! 0 on success and -1 on failure
END SUBROUTINE h5aclose_f

15

H5Acreate HDF5 Reference Manual

Name: H5Acreate
Signature:

hid_tH5Acreate(hid_t loc_id, const char *attr_name, [1]
hid_ttype_id, hid_t space_id, hid_t acpl_id)

hid_tH5Acreate(hid_t loc_id, const char *attr_name, [2]
hid_ttype_id, hid_t space_id, hid_t acpl_id, hid_t aapl_id)

Purpose:
Creates an attribute attached to a specified object.

Description:
H5Acreate is a macro that is mapped to either H5Acreatel or H5Acreate2, depending on the
needs of the application.

Such macros are provided to facilitate application compatibility. For example:

0 The H5Acreate macro will be mapped to H5Acreatel and will use the H5Acreatel
syntax (first signature above) if an application is coded for HDF5 Release 1.6.x.
¢ The H5Acreate macro mapped to H5Acreate2 and will use the H5Acreate2 syntax
(second signature above) if an application is coded for HDF5 Release 1.8.x.
Macro use and mappings are fully described in “API Compatibility Macros in HDF5”; we urge you to
read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Acreate is mapped to the most recent version of the function, currently H5Acreate2. If the
library and/or application is compiled for Release 1.6 emulation, H5Acreate will be mapped to
H5Acreatel. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Acreate mapping

Global settings

No compatibility flag H5Acreate2
Enable deprecated symbols H5Acreate2
Disable deprecated symbols H5Acreate2

Emulate Release 1.6 interface H5Acreatel

Function-level macros
H5Acreate_vers = 2 H5Acreate?2

H5Acreate_vers = 1 H5Acreatel

16

HDF5 Reference Manual H5Acreate

Interface history: Signature [1] above is the original H5Acreate interface and the only interface
available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now deprecate
but will remain directly callable as H5Acreatel.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Acreate?.

See “AP| Compatibility Macros in HDF5” for circumstances under which either of these functions might
not be available in an installed instance of the HDF5 Library.

Fortran90 Interface: hbacreate f
SUBROUTINE h5acreate_f(loc_id, name, type_id, space_id, attr_id, hdferr, &
acpl_id, aapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! Object identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Attribute name
INTEGER(HID_T), INTENT(IN) :: type_id ! Attribute datatype identifier
INTEGER(HID_T), INTENT(IN) :: space_id ! Attribute dataspace identifier
INTEGER(HID_T), INTENT(OUT) :: attr_id ! Attribute identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:
I 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: acpl_id
I Attribute creation property
I'list identifier
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: aapl_id
I Attribute access property
I list identifier
END SUBROUTINE h5acreate_f

History:
Release C
1.8.0 The function H5Acreate renamed to H5Acreatel and deprecated in this
release.
The macro H5Acreate and the functions H5Acreate2 and
H5Acreate_by name introduced in this release.

17

H5Acreatel HDF5 Reference Manual

Name: H5Acreatel
Signature:

hid_tH5Acreatel(hid_t loc_id, const char *attr_name, hid_t type_id, hid_t space_id,
hid_tacpl_id)

Purpose:

Creates a dataset as an attribute of another group, dataset, or named datatype.

Deprecated Function:

This function is deprecated in favor of the function HS5Acreate2.

Description:

H5Acreatel creates the attribute attr_name attached to the object specified with loc_id. loc_id
can be a group, dataset, or named datatype identifier.

The attribute name specified in attr_name must be unique. Attempting to create an attribute with the
same name as an already existing attribute will fail, leaving the pre-existing attribute in place. To
overwrite an existing attribute with a new attribute of the same name, first call HSAdelete then recreate
the attribute with H5Acreatel.

The datatype and dataspace identifiers of the attribute, type_id and space_id, respectively, are
created with the H5T and H5S interfaces, respectively.

Currently only simple dataspaces are allowed for attribute dataspaces.

The attribute creation property list, acpl_id, is currently unused; it may be used in the future for
optional attribute properties. At this time, HSP_DEFAULT is the only accepted value.

The attribute identifier returned from this function must be released with H5Aclose or resource leaks
will develop.

Parameters:

hid_tloc_id IN: Object (dataset, group, or named datatype) to be attached to.

const char *attr_name IN: Name of attribute to create.

hid_ttype_id IN: Identifier of datatype for attribute.

hid_tspace_id IN: Identifier of dataspace for attribute.

hid_tacpl_id IN: Identifier of creation property list.

(Currently unused; the only accepted value is H5P_DEFAULT.)

Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.

Fortran90 Interface: See listing under H5Acreate.

History:

18

Release C

1.8.0 The function H5Acreate renamed to H5Acreatel and deprecated in this
release.

HDF5 Reference Manual H5Acreate?2

Name: H5Acreate?2

Signature:
hid_tH5Acreate2(hid_t loc_id, const char *attr_name, hid_t type_id, hid_t space_id,
hid_tacpl_id, hid_t aapl_id,)

Purpose:
Creates an attribute attached to a specified object.

Description:
H5Acreate2 creates an attribute, attr_name, which is attached to the object specified by the
identifier loc_id.

The attribute name, attr_name, must be unique for the object.

The attribute is created with the specified datatype and dataspace, type_id and space_id, which are
created with the H5T and H5S interfaces respectively.

The attribute creation and access property lists are currently unused, but will be used in the future for
optional attribute creation and access properties. These property lists should currently be H5P_DEFAUL

The attribute identifier returned by this function must be released with H5Aclose or resource leaks will

develop.
Parameters:
hid_tloc_id IN: Location or object identifier; may be dataset or group
const char *attr_name IN: Attribute name
hid_ttype_id IN: Attribute datatype identifier
hid_tspace_id IN: Attribute dataspace identifier
hid_tacpl_id IN: Attribute creation property list identifier
(Currently not used.)
hid_taapl_id IN: Attribute access property list identifier
(Currently not used.)
Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Acreate.

History:
Release C
1.8.0 Function introduced in this release.

19

H5Acreate_by name HDF5 Reference Manual

Name: H5Acreate_by name

Signature:
hid_tH5Acreate_by name(hid_t loc_id, const char *obj_name, const char *attr_name,
hid_ttype_id, hid_t space_id, hid_t acpl_id, hid_t aapl_id, hid_t lapl_id)

Purpose:
Creates an attribute attached to a specified object.

Description:
H5Acreate_by name creates an attribute, attr_name, which is attached to the object specified by
loc_id and obj_name.

loc_id is a location identifier; obj_name is the object name relative to loc_id. If loc_id fully
specifies the object to which the attribute is to be attached, obj_name should be "' (a dot).

The attribute name, attr_name, must be unique for the object.

The attribute is created with the specified datatype and dataspace, type_id and space_id, which are
created with the H5T and H5S interfaces respectively.

The attribute creation and access property lists are currently unused, but will be used in the future for
optional attribute creation and access properties. These property lists should currently be H5P_DEFAULT.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

The attribute identifier returned by this function must be released with H5Aclose or resource leaks will

develop.
Parameters:
hid_tloc_id IN: Location or object identifier; may be dataset or group
const char *obj_name IN: Name, relative to loc_id, of object that attribute is to be attached to
const char *attr_name IN: Attribute name
hid_ttype_id IN: Attribute datatype identifier
hid_tspace_id IN: Attribute dataspace identifier
hid_tacpl_id IN: Attribute creation property list identifier
(Currently not used.)
hid_taapl_id IN: Attribute access property list identifier
(Currently not used.)
hid_tlapl_id IN: Link access property list
Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.

Fortran90 Interface: hSacreate_by_name_f
SUBROUTINE h5acreate_by name_f(loc_id, obj_name, attr_name, type_id, space_id, &
attr, hdferr, acpl_id, aapl_id, lapl_id)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: loc_id ! Object identifier

CHARACTER(LEN=%*), INTENT(IN) :: obj_name ! Name of object to which
I attribute is attached

CHARACTER(LEN=%*), INTENT(IN) :: attr_name ! Attribute name

INTEGER(HID_T), INTENT(IN) :: type_id ! Attribute datatype identifier

20

HDF5 Reference Manual

INTEGER(HID_T), INTENT(IN) :: space_id ! Attribute dataspace identifier
INTEGER(HID_T), INTENT(OUT) :: attr ! An attribute identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:

1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: acpl_id

I Attribute creation property list

I'identifier (Currently not used.)
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: aapl_id

I Attribute access property list

I'identifier (Currently not used.)
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id

I Link access property list

END SUBROUTINE h5acreate_by name_f

History:
Release C
1.8.0 Function introduced in this release.

H5Acreate_by name

21

H5Adelete HDF5 Reference Manual

Name: H5Adelete

Signature:

herr_tH5Adelete(hid_t loc_id, const char *attr_name)
Purpose:

Deletes an attribute from a specified location.
Description:

H5Adelete removes the attribute specified by its name, attr_name, from a dataset, group, or named
datatype. This function should not be used when attribute identifiers are open on loc_id as it may cause
the internal indexes of the attributes to change and future writes to the open attributes to produce incorrect

results.
Parameters:
hid_tloc_id IN: Identifier of the dataset, group, or named datatype to have the
attribute deleted from.
const char *attr_name IN: Name of the attribute to delete.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: hbadelete f
SUBROUTINE h5adelete_f(obj_id, name, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Attribute name
INTEGER, INTENT(OUT) :: hdferr I Error code:
I 0 on success and -1 on failure
END SUBROUTINE h5adelete_f

History:
Release C

22

HDF5 Reference Manual H5Adelete_by_idx

Name: H5Adelete by idx
Signature:
herr_tH5Adelete_by idx(hid_t loc_id, const char *obj_name, H5_index_t idx_type,
H5 iter_order_torder, hsize_t n, hid_tlapl_id)
Purpose:
Deletes an attribute from an object according to index order.
Description:
H5Adelete by idx removes an attribute, specified by its location in an index, from an object.

The object from which the attribute is to be removed is specified by a location identifier and name,
loc_id and obj_name, respectively. If loc_id fully specifies the object from which the attribute is
to be removed, obj_name should be ".' (a dot).

The attribute to be removed is specified by a position in an index, n. The type of index is specified by
idx_type and may be H5_INDEX_NAME, for an alpha-numeric index by name, or

H5 INDEX CRT_ORDER, for an index by creation order. The order in which the index is to be traverse

is specified by order and may be H5_ITER_INC (increment) for top-down iteration, H5_ITER_DEC
(decrement) for bottom-up iteration, or H5_ITER_NATIVE, in which case HDF5 will iterate in the
fastest-available order. For example, if idx_type, order, and n are set to H5_INDEX_NAME,

H5 ITER_INC, and 5, respectively, the fifth attribute by alpha-numeric order of attribute names will be

removed.

For a discussion of idx_type and order, the valid values of those parameters, and the use of n, see
the description of H5Aiterate2

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.
Parameters:

hid_tloc_id IN: Location or object identifier; may be dataset or group
const char *obj_name IN: Name of object, relative to location, from which attribute is to be
removed
H5_index_tdx_type IN: Type of index
H5 iter_order_torder IN: Order in which to iterate over index
hsize i IN: Offset within index
hid_tlapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5adelete_by idx_f
SUBROUTINE h5adelete_by _idx_f(loc_id, obj_name, idx_type, order, n, hdferr, &
lapl_id)
IMPLICIT NONE
INTEGER(HID_T),INTENT(IN) :: loc_id
I Identifer for object to which
I attribute is attached
CHARACTER(LEN=*),INTENT(IN) :: obj_name
I Name of object, relative to location,
I from which attribute is to be removed
INTEGER, INTENT(IN) :: idx_type
I Type of index; Possible values are:
I H5_INDEX_UNKNOWN_F - Unknown index type

23

H5Adelete_by_idx

I H5_INDEX_NAME_F - Index on nhames
I H5_INDEX_CRT_ORDER_F - Index on creation order
I H5_INDEX_N_F - Number of indices defined
INTEGER, INTENT(IN) :: order
I Order in which to iterate over index:
I H5 ITER_UNKNOWN_F - Unknown order
I H5_ITER_INC_F - Increasing order
I H5_ITER_DEC_F - Decreasing order
I H5_ITER_NATIVE_F - No particular order,
! whatever is fastest
I H5_ITER_N_F - Number of iteration orders
INTEGER(HSIZE_T), INTENT(IN) :: n
I Offset within index
INTEGER, INTENT(OUT) :: hdferr
I Error code:
I 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
I Link access property list
END SUBROUTINE h5adelete_by_idx_f

History:
Release C
1.8.0 Function introduced in this release.

24

HDF5 Reference Manual

HDF5 Reference Manual H5Adelete_by name

Name: H5Adelete_by name

Signature:
herr_tH5Adelete_by name(hid_t loc _id, const char *obj_name, const char *attr_name,
hid_tlapl_id)

Purpose:
Removes an attribute from a specified location.

Description:
H5Adelete_by name removes the attribute attr_name from an object specified by location and
name, loc_id and obj_name, respectively.

If loc_id fully specifies the object from which the attribute is to be removed, obj_name should be
"' (a dot).

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.
Parameters:

hid_tloc_id IN: Location or object identifier; may be dataset or group
const char *obj_name IN: Name of object, relative to location, from which attribute is to be
removed
const char *attr_name IN: Name of attribute to delete
hid_tlapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5adelete_by name f
SUBROUTINE h5adelete_by name_f(loc_id, obj_name, attr_name, hdferr, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! Identifer for object to which
| attribute is attached
CHARACTER(LEN=*), INTENT(IN) :: obj_name
I Name of object, relative to location,
! from which attribute is to be removed
CHARACTER(LEN=*), INTENT(IN) :: attr_name
! Name of attribute to delete
INTEGER, INTENT(OUT) :: hdferr I Error code:
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
I Link access property list
END SUBROUTINE h5adelete_by name_f

History:
Release C
1.8.0 Function introduced in this release.

25

H5Aexists HDF5 Reference Manual

Name: H5Aexists
Signature:
htri_t H5Aexists(hid_t obj_id, const char *attr_name)
Purpose:
Determines whether an attribute with a given name exists on an object.
Description:
H5Aexists determines whether the attribute attr_name exists on the object specified by obj_id.
Parameters:

hid_tobj_id, IN: Object identifier
const char *attr_name IN: Attribute name
Returns:
When successful, returns a positive value, for TRUE, or O (zero), for FALSE.
Otherwise returns a negative value.

Fortran90 Interface: h5aexists_f

SUBROUTINE h5aexists_f(obj_id, attr_name, attr_exists, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
CHARACTER(LEN=%*), INTENT(IN) :: attr_name ! Attribute name
LOGICAL, INTENT(OUT) :: attr_exists I .TRUE. if exists, .FALSE. otherwise
INTEGER, INTENT(OUT) :: hdferr I Error code:

1 0 on success and -1 on failure
END SUBROUTINE

History:
Release C
1.8.0 Function introduced in this release.

26

HDF5 Reference Manual H5Aexists_by name

Name: H5Aexists by name

Signature:
htri_t H5Aexists_by name(hid_t loc_id, const char *obj_name, const char *attr_name,
hid_tlapl_id)

Purpose:
Determines whether an attribute with a given name exists on an object.

Description:

H5Aexists_by name determines whether the attribute attr_name exists on an object. That object
is specified by its location and hame, loc_id and obj_name, respectively.

loc_id specifies a location in the file containing the object. obj_name is the name of the object to
which the attribute is attached and can be a relative name, relative to loc_id, or an absolute name,
based in the root group of the file. If loc_id fully specifies the object, obj_name should be '.' (a
dot).

The link access property list, lapl_id, may provide information regarding the properties of links
required to access obj_name. See “Link Access Properties” in the H5P APIs.
Parameters:

hid_tloc_id, IN: Location identifier
const char *obj_name IN: Object name
Either relative to loc_id, absolute from the file’s root group, or .’
(a dot)
const char *attr_name IN: Attribute name
hid_tlapl_id IN: Link access property list identifier
Returns:

When successful, returns a positive value, for TRUE, or 0 (zero), for FALSE.
Otherwise returns a negative value.

Fortran90 Interface: h5aexists_by name_f
SUBROUTINE h5aexists_by _name_f(loc_id, obj_name, attr_name, attr_exists, hdferr,&
lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! Location identifier
CHARACTER(LEN=*), INTENT(IN) :: obj_name
I Object name either relative to loc_id,
! absolute from the
! file's root group, or "'
CHARACTER(LEN=%), INTENT(IN) :: attr_name
! Attribute name
LOGICAL, INTENT(OUT) :: attr_exists ! .TRUE. if exists, .FALSE. otherwise
INTEGER, INTENT(OUT) :: hdferr ! Error code:
10 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
! Link access property list identifier
END SUBROUTINE h5aexists_by name_f

History:
Release C
1.8.0 Function introduced in this release.

27

H5Aget_create_plist HDF5 Reference Manual

Name: H5Aget_create_plist

Signature:

hid_tH5Aget_create_plist(hid_t attr_id)
Purpose:

Gets an attribute creation property list identifier.
Description:

H5Aget_create_plist returns an identifier for the attribute creation property list associated with the
attribute specified by attr_id.

The creation property list identifier should be released with H5Pclose.

Parameters:
hid_tattr_id IN: Identifier of the attribute.

Returns:
Returns an identifier for the attribute’s creation property list if successful. Otherwise returns a negative
value.

Fortran90 Interface: hbaget create_plist_f
SUBROUTINE h5aget_create_plist_f(attr_id, creation_prop_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id
I Identifier of the attribute
INTEGER(HID_T), INTENT(OUT) :: creation_prop_id
I [dentifier for the attribute’s creation property
INTEGER, INTENT(OUT) :: hdferr
I Error code:
I 0 on success and -1 on failure
END SUBROUTINE h5aget_create_plist_f

History:
Release C
1.8.0 Function introduced in this release.

28

HDF5 Reference Manual H5Aget_info

Name: H5Aget_info

Signature:

herr_tH5Aget info(hid_t attr_id, H5A_info_t *ainfo)

Purpose:

Retrieves attribute information, by attribute identifier.

Description:

H5Aget_info retrieves attribute information, locating the attribute with an attribute identifier,
attr_id, which is the identifier returned by H5Aopen or H5Aopen_by idx. The attribute
information is returned in the ainfo struct.

The ainfo struct is defined as follows:

Parameters:

typedef struct {
hbool_t corder_valid;
H50_msg_crt_idx_t corder;
H5T_cset_t cset;
hsize_t data_size;

} H5A info_t;

corder_valid indicates whether the creation order data is valid for this attribute. Note that if
creation order is not being tracked, no creation order data will be valid. Valid values are TRUE
and FALSE.

corder is a positive integer containing the creation order of the attribute. This value is 0-based,
so, for example, the third attribute created will have a corder value of 2.

cset indicates the character set used for the attribute’s name; valid values are defined in
H5Tpublic.h and include the following:

H5T_CSET_ASCII US ASCII

H5T CSET_UTF8 UTF-8 Unicode encoding
This value is set with HS5Pset_char_encoding.

data_size indicates the size, in the number of characters, of the attribute.

hid_tattr_id IN: Attribute identifier
H5A_info_t *ainfo OUT: Attribute information struct

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: hbaget_info_f
SUBROUTINE h5aget_info_f(attr_id, f_corder_valid, corder, cset, data_size,hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
LOGICAL, INTENT(OUT) :: f_corder_valid ! Indicates whether the creation order

I data is valid for this attribute

INTEGER, INTENT(OUT) :: corder !'Is a positive integer containing the

I creation order of the attribute

INTEGER, INTENT(OUT) :: cset ! Indicates the character set used for

I the ! attribute’s name

INTEGER(HSIZE_T), INTENT(OUT) :: data_size

! Indicates the size, in the number

29

H5Aget_info HDF5 Reference Manual

! of characters, of the attribute
INTEGER, INTENT(OUT) :: hdferr I Error code:
1 0 on success and -1 on failure
END SUBROUTINE hbaget_info_f

History:
Release C
1.8.0 Function introduced in this release.

30

HDF5 Reference Manual H5Aget_info_by idx

Name: H5Aget_info_by idx

Signature:
herr_tH5Aget_info_by idx(hid_t loc_id, const char *obj_name, H5 index_t idx_type,
H5 iter_order_torder, hsize_t n, H5A info_t *ainfo, hid_t lapl_id)

Purpose:
Retrieves attribute information, by attribute index position.

Description:
H5Aget_info_by idx retrieves information for an attribute that is attached to an object, which is
specified by its location and name, loc_id and obj_name, respectively. The attribute is located by its
index position and the attribute information is returned in the ainfo struct.

If loc_id fully specifies the object to which the attribute is attached, obj_name should be ".' (a dot).

The attribute is located by means of an index type, an index traversal order, and a position in the index,
idx_type, order and n, respectively. These parameters and their valid values are discussed in the
description of H5Aiterate2.

The ainfo struct, which will contain the returned attribute information, is described in H5Aget_info.

The link access property list, lapl_id, may provide information regarding the properties of links

required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.
Parameters:

hid_tloc_id IN: Location of object to which attribute is attached
const char *obj_name IN: Name of object to which attribute is attached, relative to location
H5_index_tdx_type IN: Type of index
H5 iter_order_torder IN: Index traversal order
hsize_mn IN: Attribute’s position in index
H5A_info_t *ainfo OUT: Struct containing returned attribute information
hid_tlapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5aget_info_by idx_f
SUBROUTINE h5aget_info_by _idx_f(loc_id, obj_name, idx_type, order, n, &
f_corder_valid, corder, cset, data_size, hdferr, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id
! Object identifier
CHARACTER(LEN=¥), INTENT(IN) :: obj_name
! Name of object to which attribute is attached
INTEGER, INTENT(IN) :: idx_type
! Type of index; Possible values are:
I H5_INDEX_UNKNOWN_F - Unknown index type
I H5 INDEX _NAME_F - Index on names
I H5_INDEX_CRT_ORDER_F - Index on creation order
! H5_INDEX_N_F - Number of indices defined
INTEGER, INTENT(IN) :: order
! Order in which to iterate over index:
I H5_ITER_UNKNOWN_F - Unknown order
! H5_ITER_INC_F - Increasing order
! H5_ITER_DEC_F - Decreasing order
! H5_ITER_NATIVE_F - No particular order,

31

H5Aget_info_by_idx

! whatever is fastest
INTEGER(HSIZE_T), INTENT(IN) :: n

! Attribute’s position in index

LOGICAL, INTENT(OUT) :: f_corder_valid
! Indicates whether the creation order data is
I'valid for this attribute
INTEGER, INTENT(OUT) :: corder
I Is a positive integer containing the creation
lorder of the attribute
INTEGER, INTENT(OUT) :: cset
I Indicates the character set used for the
I attribute’s name
INTEGER(HSIZE_T), INTENT(OUT) :: data_size
I Indicates the size, in the number of characters,
! of the attribute
INTEGER, INTENT(OUT) :: hdferr
! Error code:
10 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) : lapl_id
! Link access property list
END SUBROUTINE hbaget_info_by_idx_f

History:
Release C
1.8.0 Function introduced in this release.

32

HDF5 Reference Manual

HDF5 Reference Manual H5Aget_info_by name

Name: H5Aget_info_by name

Signature:
herr_tH5Aget info_by name(hid_t loc_id, const char *obj_name, const char *attr_name,
H5A _info_t *ainfo, hid_t lapl_id)

Purpose:
Retrieves attribute information, by attribute name.

Description:
H5Aget_info_by name retrieves information for an attribute, attr_name, that is attached to an
object, specified by its location and hame, loc_id and obj_name, respectively. The attribute
information is returned in the ainfo struct.

If loc_id fully specifies the object to which the attribute is attached, obj_name should be ".' (a dot).
The ainfo struct is described in H5Aget_info.
The link access property list, lapl_id, may provide information regarding the properties of links

required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.
Parameters:

hid_tloc_id IN: Location of object to which attribute is attached
const char *obj_name IN: Name of object to which attribute is attached, relative to location
const char *attr_name IN: Attribute name
H5A_info_t *ainfo OUT: Struct containing returned attribute information
hid_tlapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hbaget_info_by name_f
SUBROUTINE h5aget_info_by name_f(loc_id, obj_name, attr_name, &
f_corder_valid, corder, cset, data_size, hdferr, lapl_id)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: loc_id ! Object identifier

CHARACTER(LEN=%*), INTENT(IN) :: obj_name ! Name of object to which attribute
lis attached

CHARACTER(LEN=%*), INTENT(IN) :: attr_name ! Attribute name

LOGICAL, INTENT(OUT) :: f_corder_valid ! Indicates whether the creation
I order data is valid for this

I attribute

INTEGER, INTENT(OUT) :: corder I'Is a positive integer containing
I the creation order of the
I attribute

INTEGER, INTENT(OUT) :: cset I Indicates the character set used

I for the attribute’s name

INTEGER(HSIZE_T), INTENT(OUT) :: data_size ! Indicates the size, in the number
I of characters, of the attribute

INTEGER, INTENT(OUT) :: hdferr ! Error code:
I'0 on success and -1 on failure

INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
I Link access property list

END SUBROUTINE h5aget_info_by name_f

33

H5Aget_info_by name HDF5 Reference Manual

History:
Release C
1.8.0 Function introduced in this release.

34

HDF5 Reference Manual H5Aget_name

Name: H5Aget_name

Signature:
ssize_ H5Aget_name(hid_t attr_id, size_t buf_size, char *buf)

Purpose:
Gets an attribute name.

Description:
H5Aget_name retrieves the name of an attribute specified by the identifier, attr_id. Up to
buf_size characters are stored in buf followed by a \0 string terminator. If the name of the attribute is
longer than (buf_size -1), the string terminator is stored in the last position of the buffer to properly
terminate the string.

If the user only wants to find out the size of this name, the values 0 and NULL can be passed in for the
parameters bufsize and buf.

Parameters:
hid_tattr_id IN: Identifier of the attribute.
size_tbhuf size IN: The size of the buffer to store the name in.
char *buf OUT: Buffer to store name in.

Returns:

Returns the length of the attribute's name, which may be longer than buf_size, if successful. Otherwise
returns a negative value.

Fortran90 Interface: h5aget_name_f
SUBROUTINE h5aget_name_f(attr_id, size, buf, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
INTEGER(SIZE_T), INTENT(IN) :: size | Buffer size

CHARACTER(LEN=*), INTENT(INOUT) :: buf
! Buffer to hold attribute name

INTEGER, INTENT(OUT) :: hdferr I Error code:
I name length is successful,
-1 if fail

END SUBROUTINE h5aget_name_f

35

H5Aget_name_by idx HDF5 Reference Manual

Name: H5Aget_name_by idx
Signature:

ssize_ H5Aget_name_by idx(hid_t loc_id, const char *obj_name, H5 index_t idx_type,
H5 iter_order_torder, hsize_t n, char *name, size_size, hid_t lapl_id)

Purpose:

Gets an attribute name, by attribute index position

Description:

H5Aget_name_by idx retrieves the name of an attribute that is attached to an object, which is
specified by its location and name, loc_id and obj_name, respectively. The attribute is located by its
index position, the size of the name is specified in size, and the attribute name is returned in name.

If loc_id fully specifies the object to which the attribute is attached, obj_name should be ".' (a dot).
The attribute is located by means of an index type, an index traversal order, and a position in the index,
idx_type, order and n, respectively. These parameters and their valid values are discussed in the

description of H5Aiterate2.

If the attribute name’s size is unknown, the values 0 and NULL can be passed in for the parameters size
and name. The function’s return value will provide the correct value for size.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

Parameters:
hid_tloc_id IN: Location of object to which attribute is attached
const char *obj_name IN: Name of object to which attribute is attached, relative to location
H5_index_tdx_type IN: Type of index
H5 iter_order_torder IN: Index traversal order
hsize_mn IN: Attribute’s position in index
char *name OUT: Attribute name
size_tsize IN: Size, in bytes, of attribute name
hid_tlapl_id IN: Link access property list
Returns:

Returns attribute name size, in bytes, if successful; otherwise returns a negative value.

Fortran90 Interface: h5aget_name_by idx_f

36

SUBROUTINE h5aget_name_by idx_f(loc_id, obj_name, idx_type, order, &
n, name, hdferr, size, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! Identifer for object to which
I attribute is attached
CHARACTER(LEN=%*), INTENT(IN) :: obj_name ! Name of object, relative to
! location,from which attribute is to
! be removed
INTEGER, INTENT(IN) :: idx_type
I Type of index; Possible values are:
I H5_INDEX_UNKNOWN_F - Unknown index type
I H5_INDEX_NAME_F - Index on nhames
I H5_INDEX_CRT_ORDER_F - Index on creation order
I H5_INDEX_N_F - Number indices defined

HDF5 Reference Manual H5Aget_name_by idx

INTEGER, INTENT(IN) :: order ! Order in which to iterate over index:
I H5_ITER_UNKNOWN_F - Unknown order
I H5_ITER_INC_F - Increasing order
I H5_ITER_DEC_F - Decreasing order
I H5_ITER_NATIVE_F - No particular order,
! whatever is fastest
I H5_ITER_N_F - Number of iteration orders

INTEGER(HSIZE_T), INTENT(IN) :: n
I Attribute’s position in index
CHARACTER(LEN=%*), INTENT(OUT) :: name
I Attribute name
INTEGER, INTENT(OUT) :: hdferr
I Error code:
I Returns attribute name size,
I -1 if fail
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
I Link access property list
INTEGER(SIZE_T), OPTIONAL, INTENT(OUT) :: size
I exact buffer size, in number of characters
END SUBROUTINE h5aget_name_by_idx_f

History:
Release C
1.8.0 Function introduced in this release.

37

H5Aget_num_attrs HDF5 Reference Manual

Name: H5Aget_num_attrs
Signature:
int HSAget_num_attrs(hid_t loc_id)
Purpose:
Determines the number of attributes attached to an object.
Deprecated Function:
This function is deprecated in favor of the functions H50get_info, H50get_info_by name, and
H50get_info_by _idx.
Description:
H5Aget_num_attrs returns the number of attributes attached to the object specified by its identifier,
loc_id. The object can be a group, dataset, or named datatype.
Parameters:
hid_tloc_id IN: Identifier of a group, dataset, or named datatype.
Returns:
Returns the number of attributes if successful; otherwise returns a negative value.
Fortran90 Interface: haget_num_attrs_f
SUBROUTINE h5aget_num_attrs_f(obj_id, attr_num, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
INTEGER, INTENT(OUT) :: attr_num ! Number of attributes of the object
INTEGER, INTENT(OUT) :: hdferr ! Error code:

10 on success and -1 on failure
END SUBROUTINE h5aget_num_attrs_f

38

HDF5 Reference Manual H5Aget_space

Name: H5Aget_space
Signature:
hid_tH5Aget_space(hid t attr_id)
Purpose:
Gets a copy of the dataspace for an attribute.
Description:
H5Aget_space retrieves a copy of the dataspace for an attribute. The dataspace identifier returned
from this function must be released with H5Sclose or resource leaks will develop.
Parameters:
hid_tattr_id IN: Identifier of an attribute.
Returns:
Returns attribute dataspace identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5aget_space_f

SUBROUTINE h5aget_space_f(attr_id, space_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
INTEGER(HID_T), INTENT(OUT) :: space_id ! Attribute dataspace identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:

I 0 on success and -1 on failure
END SUBROUTINE h5aget_space_f

39

H5Aget_storage_size HDF5 Reference Manual

Name: H5Aget_storage_size
Signature:
hsize tH5Aget_storage_size(hid_t attr_id)
Purpose:
Returns the amount of storage required for an attribute.
Description:
H5Aget_storage_size returns the amount of storage that is required for the specified attribute,
attr_id.
Parameters:
hid_tattr_id IN: Identifier of the attribute to query.
Returns:
Returns the amount of storage size allocated for the attribute; otherwise returns 0 (zero).

Fortran90 Interface: h5aget_storage_size f
SUBROUTINE h5aget_storage_size_f(attr_id, size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
INTEGER(HSIZE_T), INTENT(OUT) :: size ! Attribute storage requirement
INTEGER, INTENT(OUT) :: hdferr I Error code:
I 0 on success and -1 on failure
END SUBROUTINE h5aget_storage_size_f

40

HDF5 Reference Manual H5Aget _type

Name: H5Aget_type
Signature:
hid_tH5Aget_type(hid_t attr_id)
Purpose:
Gets an attribute datatype.
Description:
H5Aget_type retrieves a copy of the datatype for an attribute.

The datatype is reopened if it is a named type before returning it to the application. The datatypes
returned by this function are always read-only. If an error occurs when atomizing the return datatype, the
the datatype is closed.

The datatype identifier returned from this function must be released with H5Tclose or resource leaks
will develop.

Parameters:
hid_tattr_id IN: Identifier of an attribute.

Returns:
Returns a datatype identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5aget_type f

SUBROUTINE h5aget_type_f(attr_id, type_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
INTEGER(HID_T), INTENT(OUT) :: type_id ! Attribute datatype identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:

1 0 on success and -1 on failure
END SUBROUTINE h5aget_type_f

41

H5Aiterate HDF5 Reference Manual

Name: H5Aiterate

Signature:
herr_tH5Aiterate(hid_t loc_id, unsigned * idx, H5A operator_t op, [1]
void *op_data)

herr_tH5Aiterate(hid_t obj_id, H5_index_t idx_type, [2]
H5_iter_order_torder, hsize_t *n, H5A_operator2_top, void *op_data)

Purpose:
Calls a user’s function for each attribute on an object.

Description:
H5Aiterate is a macro that is mapped to either H5Aiteratel or H5Aiterate2, depending on the
needs of the application.

Such macros are provided to facilitate application compatibility. For example:

¢ The H5Aiterate macro will be mapped to H5Aiteratel and will use the H5Aiteratel
syntax (first signature above) if an application is coded for HDF5 Release 1.6.x.
¢ The H5AIterate macro mapped to H5Aiterate2 and will use the H5Aiterate2 syntax
(second signature above) if an application is coded for HDF5 Release 1.8.x.
Macro use and mappings are fully described in “API Compatibility Macros in HDF5”; we urge you to
read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Aiterate is mapped to the most recent version of the function, currently H5Aiterate2. If

the library and/or application is compiled for Release 1.6 emulation, H5Aiterate will be mapped to
H5Aiteratel. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Aiterate mapping

Global settings

No compatibility flag H5Aiterate2
Enable deprecated symbols H5Aiterate2
Disable deprecated symbols H5Aiterate2

Emulate Release 1.6 interface H5Aiteratel

Eunction-level macros
H5Aiterate_vers = 2 H5Aiterate2
H5Aiterate_vers =1 H5Aiteratel

42

HDF5 Reference Manual H5Aiterate

Interface history: Signature [1] above is the original H5Aiterate interface and the only interface
available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now deprecate
but will remain directly callable as H5Aiteratel.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Aiterate?2.

See “AP| Compatibility Macros in HDF5” for circumstances under which either of these functions might
not be available in an installed instance of the HDF5 Library.
Fortran90 Interface:

None.
History:
Release C
1.8.0 The function H5Aiterate renamed to H5Aiteratel and deprecated in this

release.
The macro H5Aiterate and the functions H5Aiterate2 and
H5Aiterate_by name introduced in this release.

43

H5Aiteratel HDF5 Reference Manual

Name: H5Aiteratel

Signature:
herr_tH5Aiteratel(hid_t loc_id, unsigned * idx, H5A_operatorl_top, void *op_data)
Purpose:
Calls a user’s function for each attribute on an object.
Notice:
This function is deprecated in favor of the function H5Aiterate?2.
Description:

H5Aiteratel iterates over the attributes of the object specified by its identifier, loc_id. The object

can be a group, dataset, or named datatype. For each attribute of the object, the op_data and some
additional information specified below are passed to the operator function op. The iteration begins with
the attribute specified by its index, idx; the index for the next attribute to be processed by the operator,
op, is returned in idx. If idx is the null pointer, then all attributes are processed.

The prototype for HSA _operator _t is:
typedef herr_t (*H5A_operatorl_t)(hid_t loc_id, const char *attr_name,
void *operator_data);

The operation receives the identifier for the group, dataset or named datatype being iterated over,
loc_id, the name of the current attribute about the object, attr_name, and the pointer to the operator
data passed in to H5Aiteratel, op_data. The return values from an operator are:

O Zero causes the iterator to continue, returning zero when all attributes have been processed.

O Positive causes the iterator to immediately return that positive value, indicating short-circuit
success. The iterator can be restarted at the next attribute.

O Negative causes the iterator to immediately return that value, indicating failure. The iterator can
be restarted at the next attribute.

Parameters:
hid_tloc_id IN: Identifier of a group, dataset or named datatype.
unsigned *dx IN/OUT: Starting (IN) and ending (OUT) attribute index.
H5A_operatorl_bp IN: User's function to pass each attribute to
void *op_data IN/OUT: User's data to pass through to iterator operator function
Returns:

If successful, returns the return value of the last operator if it was non-zero, or zero if all attributes were
processed. Otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 The function H5Aiterate renamed to H5Aiteratel and deprecated in this

release.

44

HDF5 Reference Manual H5Aiterate?2

Name: H5Aiterate2

Signature:
herr_tH5Aiterate2(hid_t obj_id, H5 index _t idx_type, H5 iter_order_t order, hsize_t*n,
H5A_operator2_bp, void *op_data,)

Purpose:
Calls user-defined function for each attribute on an object.

Description:
H5Aiterate2 iterates over the attributes attached to a dataset, named datatype, or group, as specified
by obj_id. For each attribute, user-provided data, op_data, with additional information as defined
below, is passed to a user-defined function, op, which operates on that attribute.

The order of the iteration and the attributes iterated over are specified by three parameters: the index ty,
idx_type; the order in which the index is to be traversed, order; and the attribute’s position in the
index, n.

The type of index specified by idx_type can be one of the following:

H5 INDEX_NAME An alpha-numeric index by attribute name

H5_INDEX_CRT_ORDER Anindex by creation order
The order in which the index is to be traversed, as specified by order, can be one of the following:

H5_ITER_INC Iteration is from beginning to end, i.e., a top-down iteration incrementing
the index position at each step.
H5 ITER_DEC Iteration starts at the end of the index, i.e., a bottom-up iteration

decrementing the index position at each step.

H5_ITER_NATIVE HDFS5 iterates in the fastest-available order. No information is provided as
to the order, but HDF5 ensures that each element in the index will be
visited if the iteration completes successfully.

The next attribute to be operated on is specified by n, a position in the index.

For example, if idx_type, order, and n are set to H5_INDEX_NAME, H5_ITER_INC, and 5,
respectively, the attribute in question is the fifth attribute from the beginning of the alpha-numeric index
of attribute names. If order were set to H5 ITER_DEC, it would be the fifth attribute from the end of
the index.

The parameter n is passed in on an H5Aiterate2 call with one value and may be returned with another
value. The value passed in identifies the parameter to be operated on first; the value returned identifies
parameter to be operated on in the next step of the iteration.

The H5A_operator2_t prototype for the op parameter is as follows:

typedef herr_t (*H5A_operator2_t)(hid_t location_id/*in*/, const char
*attr_name/*in*/, const H5A_info_t *ainfo/*in*/, void *op_data/*in,out*/)

The operation receives the location identifier for the group or dataset being iterated over,

location_id; the name of the current object attribute, attr_name; the attribute’s info struct,
ainfo; and a pointer to the operator data passed into H5Aiterate2, op_data.

45

H5Aiterate?2 HDF5 Reference Manual

Valid return values from an operator and the resulting H5Aiterate2 and op behavior are as follows:

¢ Zero causes the iterator to continue, returning zero when all attributes have been processed.

O A positive value causes the iterator to immediately return that positive value, indicating
short-circuit success. The iterator can be restarted at the next attribute, as indicated by the return
value of n.

¢ A negative value causes the iterator to immediately return that value, indicating failure. The
iterator can be restarted at the next attribute, as indicated by the return value of n.

Parameters:
hid_tobj_id IN: Identifier for object to which attributes are attached; may be group,
dataset, or named datatype.
H5 index_tdx_type IN: Type of index
H5_iter_order_torder IN: Order in which to iterate over index
hsize_t*n IN/OUT: Initial and returned offset within index
H5A_operator2_bp IN: User-defined function to pass each attribute to
void *op_data IN/OUT: User data to pass through to and to be returned by iterator operator
function
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Further note that this function returns the return value of the last operator if it was non-zero, which can be
a negative value, zero if all attributes were processed, or a positive value indicating short-circuit success
(see above).

Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

46

HDF5 Reference Manual H5Aiterate_by name

Name: H5Aiterate_by name

Signature:
herr_tH5Aiterate_by name(hid_t loc_id, const char *obj_name, H5_index_t idx_type,
H5 iter_order_torder, hsize t *n, H5A operator2_top, void *op_data, hid_t lapd_id)

Purpose:
Calls user-defined function for each attribute on an object.

Description:
H5Aiterate_by name iterates over the attributes attached to the dataset or group specified with
loc_id and obj_name. For each attribute, user-provided data, op_data, with additional information
as defined below, is passed to a user-defined function, op, which operates on that attribute.

If loc_id fully specifies the object to which these attributes are attached, obj_name should be "' (a
dot).

The order of the iteration and the attributes iterated over are specified by three parameters: the index ty,
idx_type; the order in which the index is to be traversed, order; and the attribute’s position in the
index, n.

The type of index specified by idx_type can be one of the following:

H5 INDEX_NAME An alpha-numeric index by attribute name

H5_INDEX_CRT_ORDER Anindex by creation order
The order in which the index is to be traversed, as specified by order, can be one of the following:

H5_ITER_INC Iteration is from beginning to end, i.e., a top-down iteration incrementing
the index position at each step.
H5 ITER_DEC Iteration starts at the end of the index, i.e., a bottom-up iteration

decrementing the index position at each step.

H5_ITER_NATIVE HDFS5 iterates in the fastest-available order. No information is provided as
to the order, but HDF5 ensures that each element in the index will be
visited if the iteration completes successfully.

The next attribute to be operated on is specified by n, a position in the index.

For example, if idx_type, order, and n are set to H5_INDEX_NAME, H5_ITER_INC, and 5,
respectively, the attribute in question is the fifth attribute from the beginning of the alpha-numeric index
of attribute names. If order were set to H5 ITER_DEC, it would be the fifth attribute from the end of
the index.

The parameter n is passed in on an H5Aiterate_by_name call with one value and may be returned
with another value. The value passed in identifies the parameter to be operated on first; the value return
identifies the parameter to be operated on in the next step of the iteration.

The H5A_operator2_t prototype for the op parameter is as follows:

typedef herr_t (*H5A_operator2_t)(hid_t location_id/*in*/, const char
*attr_name/*in*/, const H5A_info_t *ainfo/*in*/, void *op_data/*in,out*/)

47

H5Aiterate_by name HDF5 Reference Manual

The operation receives the location identifier for the group or dataset being iterated over,
location_id; the name of the current object attribute, attr_name; the attribute’s info struct,
ainfo; and a pointer to the operator data passed into H5Aiterate_by name, op_data.

Valid return values from an operator and the resulting H5Aiterate_by name and op behavior are as
follows:

¢ Zero causes the iterator to continue, returning zero when all attributes have been processed.
O A positive value causes the iterator to immediately return that positive value, indicating
short-circuit success. The iterator can be restarted at the next attribute, as indicated by the return
value of n.
¢ A negative value causes the iterator to immediately return that value, indicating failure. The
iterator can be restarted at the next attribute, as indicated by the return value of n.
The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.
Parameters:

hid_tloc_id IN: Location or object identifier; may be dataset or group
const char *obj_name IN: Name of object, relative to location
H5_index_idx_type IN: Type of index
H5_iter_order_torder IN: Order in which to iterate over index
hsize _t*n IN/OUT: Initial and returned offset within index
H5A_operator2_bp IN: User-defined function to pass each attribute to
void *op_data IN/OUT: User data to pass through to and to be returned by iterator operator
function
hid_tlapd_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Further note that this function returns the return value of the last operator if it was non-zero, which can be
a negative value, zero if all attributes were processed, or a positive value indicating short-circuit success
(see above).

Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

48

HDF5 Reference Manual H5Aopen

Name: H5Aopen

Signature:

hid_tH5Aopen(hid_tobj_id, const char *attr_name, hid_t aapl_id)
Purpose:

Opens an attribute for an object specified by object identifier and attribute name.
Description:

H5Aopen opens an existing attribute, attr_name, that is attached to an object specified an object
identifier, object_id.

The attribute access property list, aapl_id, is currently unused and should currently be
H5P_DEFAULT.

This function, H5Aopen_by_idx, or HSAopen_by name must be called before an attribute can be
accessed for any further purpose, including reading, writing, or any modification.

The attribute identifier returned by this function must be released with H5Aclose or resource leaks will

develop.
Parameters:
hid_tobj_id IN: Identifer for object to which attribute is attached
const char *attr_name IN: Name of attribute to open
hid_taapl_id IN: Attribute access property list
Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5aopen_f
SUBROUTINE h5aopen_f(obj_id, attr_name, attr_id, hdferr, aapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
CHARACTER(LEN=*), INTENT(IN) :: attr_name ! Attribute name
INTEGER(HID_T), INTENT(OUT) :: attr_id ! Attribute identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: aapl_id
I Attribute access property list
END SUBROUTINE h5aopen_f

History:
Release C
1.8.0 Function introduced in this release.

49

H5Aopen_bhy idx HDF5 Reference Manual

Name: H5Aopen_by_idx
Signature:

hid_tH5Aopen_by idx(hid_t loc_id, const char *obj_name, H5_index_t idx_type,
H5_iter_order_torder, hsize_t n, hid_taapl_id, hid_t lapl_id)

Purpose:
Description:

H5Aopen_by_idx opens an existing attribute that is attached to an object specified by location and
name, loc_id and obj_name, respectively. If loc_id fully specifies the object to which the attribute
is attached, obj_name should be "' (a dot).

The attribute is identified by an index type, an index traversal order, and a position in the index,
idx_type, order and n, respectively. These parameters and their valid values are discussed in the
description of H5Aiterate?2.

The attribute access property list, aapl_id, is currently unused and should currently be
H5P_DEFAULT.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

This function, H5Aopen, or H5Aopen_by name must be called before an attribute can be accessed for
any further purpose, including reading, writing, or any modification.

The attribute identifier returned by this function must be released with H5Aclose or resource leaks will
develop.

Parameters:
hid_tloc_id IN: Location of object to which attribute is attached
const char *obj_name IN: Name of object to which attribute is attached, relative to location
H5_index_idx_type IN: Type of index
H5_ iter_order_torder IN: Index traversal order
hsize_in IN: Attribute’s position in index
hid_taapl_id IN: Attribute access property list
hid_tlapl_id IN: Link access property list
Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5aopen_by idx f

50

SUBROUTINE h5aopen_by _idx_f(loc_id, obj_name, idx_type, order, n, attr_id, &
hdferr, aapl_id, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id
! Object identifier
CHARACTER(LEN=*), INTENT(IN) :: obj_name
I Name of object to which attribute is attached

HDF5 Reference Manual H5Aopen_by idx

INTEGER, INTENT(IN) :: idx_type

I Type of index; Possible values are:

I H5_INDEX_UNKNOWN_F - Unknown index type

! H5_INDEX_NAME_F - Index on names

I H5_INDEX_CRT_ORDER_F - Index on creation order

I H5 INDEX_N_F - Number of indices defined
INTEGER, INTENT(IN) :: order

I Order in which to iterate over index:

I H5_ITER_UNKNOWN_F - Unknown order

I H5_ITER_INC_F - Increasing order

I H5_ITER_DEC_F - Decreasing order

I H5_ITER_NATIVE_F - No particular order,

! whatever is fastest

INTEGER(HSIZE_T), INTENT(IN) :: n
I Attribute’s position in index
INTEGER(HID_T), INTENT(OUT) :: attr_id
I Attribute identifier
INTEGER, INTENT(OUT) :: hdferr
I Error code:
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: aapl_id
I Attribute access property list
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
I Link access property list
END SUBROUTINE h5aopen_by_idx_f

History:
Release C
1.8.0 Function introduced in this release.

51

H5Aopen_by name HDF5 Reference Manual

Name: H5Aopen_by name
Signature:

hid_tH5Aopen_by name(hid_t loc_id, const char *obj_name, const char *attr_name, hid_t
aapl_id, hid_t lapl_id)

Purpose:

Opens an attribute for an object by object name and attribute name.

Description:

H5Ao0pen_by_name opens an existing attribute, attr_name, that is attached to an object specified by
location and name, loc_id and obj_name, respectively.

loc_id specifies a location from which the target object can be located and obj_name is an object
name relative to loc_id. If loc_id fully specifies the object to which the attribute is attached,
obj_name should be "' (a dot).

The attribute access property list, aapl_id, is currently unused and should currently be
H5P_DEFAULT.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

This function, H5Aopen, or H5Aopen_by_idx must be called before an attribute can be accessed for
any further purpose, including reading, writing, or any modification.

The attribute identifier returned by this function must be released with H5Aclose or resource leaks will
develop.

Parameters:
hid_tloc_id IN: Location from which to find object to which attribute is attached
const char *obj_name IN: Name of object to which attribute is attached, relative to loc_id
const char *attr_name IN: Name of attribute to open
hid_taapl_id IN: Attribute access property list

(Currently unused; should be passed in as H5P_DEFAULT.)

hid_tlapl_id IN: Link access property list

Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.

Fortran90 Interface:

52

SUBROUTINE h5aopen_by name_f(loc_id, obj_name, attr_name, attr_id, hdferr, &
aapl_id, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id
! Location identifier
CHARACTER(LEN=*), INTENT(IN) :: obj_name
I Object name either relative to loc_id,
! absolute from file’s root group, or "'
CHARACTER(LEN=*), INTENT(IN) :: attr_name
! Attribute name
INTEGER(HID_T), INTENT(OUT) :: attr_id
I Attribute identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code:
10 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: aapl_id

HDF5 Reference Manual H5Aopen_by name

I Attribute access property list
! (Currently unused; set to H5P_DEFAULT_F)
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
! Link access property list identifier
END SUBROUTINE

History:
Release C
1.8.0 Function introduced in this release.

53

H5Aopen_idx HDF5 Reference Manual

Name: H5Aopen_idx

Signature:
hid_tH5Aopen_idx(hid_t loc_id, unsigned int idx)

Purpose:
Opens the attribute specified by its index.

Deprecated Function:
This function is deprecated in favor of the function H5Aopen_by_idx.

Description:
H5Aopen_idx opens an attribute which is attached to the object specified with loc_id. The location
object may be either a group, dataset, or named datatype, all of which may have any sort of attribute. The
attribute specified by the index, idx, indicates the attribute to access. The value of idx is a 0-based,
non-negative integer. The attribute identifier returned from this function must be released with
H5Aclose or resource leaks will develop.

Parameters:
hid_tloc_id IN: Identifier of the group, dataset, or named datatype attribute to be attached to.
unsigned intdx IN: Index of the attribute to open.

Returns:

Returns attribute identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5aopen_idx_f
SUBROUTINE h5aopen_idx_f(obj_id, index, attr_id, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
INTEGER, INTENT(IN) :: index I Attribute index
INTEGER(HID_T), INTENT(OUT) :: attr_id ! Attribute identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:

1 0 on success and -1 on failure
END SUBROUTINE h5aopen_idx_f

54

HDF5 Reference Manual H5Aopen_name

Name: H5Aopen_name

Signature:
hid_tH5Aopen_name(hid_tloc_id, const char *name)

Purpose:
Opens an attribute specified by name.

Deprecated Function:
This function is deprecated in favor of the function H5Aopen_by_name.

Description:
H5Aopen_name opens an attribute specified by its hame, hame, which is attached to the object
specified with loc_id. The location object may be either a group, dataset, or named datatype, which
may have any sort of attribute. The attribute identifier returned from this function must be released with
H5Aclose or resource leaks will develop.

Parameters:
hid_tloc_id IN: Identifier of a group, dataset, or named datatype that attribute is attached to.
const char *name IN: Attribute name.

Returns:

Returns attribute identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5aopen_name_f

SUBROUTINE h5aopen_name_f(obj_id, name, attr_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Attribute name
INTEGER(HID_T), INTENT(OUT) :: attr_id ! Attribute identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:

I 0 on success and -1 on failure
END SUBROUTINE h5aopen_name_f

55

H5Aread HDF5 Reference Manual

Name: H5Aread
Signature:
herr_tH5Aread(hid_t attr_id, hid t mem_type_id, void *buf)
Purpose:
Reads an attribute.
Description:
H5Aread reads an attribute, specified with attr_id. The attribute's memory datatype is specified with
mem_type_id. The entire attribute is read into buf from the file.

Datatype conversion takes place at the time of a read or write and is automatic. See the Data Conversion
section of The Data Type Interface (H5T) in the HDF5 User's Guide for a discussion of data conversion,
including the range of conversions currently supported by the HDF5 libraries.

Parameters:
hid_tattr_id IN: Identifier of an attribute to read.
hid_tmem_type_id IN: Identifier of the attribute datatype (in memory).
void *buf OUT: Buffer for data to be read.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5aread_f
SUBROUTINE h5aread_f(attr_id, memtype_id, buf, dims, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
INTEGER(HID_T), INTENT(IN) :: memtype_id ! Attribute datatype
!identifier (in memory)
TYPE, INTENT(INOUT) :: buf | Data buffer; may be a scalar or
l'an array
DIMENSION(*), INTEGER(HSIZE_T), INTENT(IN) :: dims
! Array to hold corresponding
! dimension sizes of data buffer buf;
I dim(k) has value of the
! k-th dimension of buffer buf;
! values are ignored if buf is a
! scalar
INTEGER, INTENT(OUT) :: hdferr ! Error code:
10 on success and -1 on failure
END SUBROUTINE h5aread_f

History:
Release Fortran90
142 The dims parameter was added in this release.

56

HDF5 Reference Manual H5Arename

Name: H5Arename
Signature:
herr_tH5Arename(hid_tloc_id, char *old_attr_name, char *new_attr_name)
Purpose:
Renames an attribute.
Description:
H5Arename changes the name of the attribute located at loc_id.

The old name, old_attr_name, is changed to the new name, new_attr _name.
Parameters:

hid_tloc_id IN: Location of the attribute.
char *old_attr_name IN: Name of the attribute to be changed.
char *new_attr_name IN: New name for the attribute.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hbarename_f

SUBROUTINE h5arename_f(loc_id, old_attr_name, new_attr_name, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id I Object identifier
CHARACTER(LEN=¥*), INTENT(IN) :: old_attr_name ! Prior attribute name
CHARACTER(LEN=*), INTENT(IN) :: new_attr_name ! New attribute name
INTEGER, INTENT(OUT) :: hdferr I Error code:

I 0 on success, -1 on failure
END SUBROUTINE h5arename_f

57

H5Arename_by name HDF5 Reference Manual

Name: H5Arename_by name
Signature:
herr_tH5Arename_by name(hid_t loc_id, const char *obj_name, const char
*old_attr_name, const char *new_attr_name, hid_t lapl_id)
Purpose:
Renames an attribute.
Description:
H5Arename_by name changes the name of attribute that is attached to the object specified by
loc_id and obj_name. The attribute named old_attr_name is renamed new_attr_name.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.
Parameters:

hid_tloc_id IN: Location or object identifier; may be dataset or group
const char *obj_name IN: Name of object, relative to location, whose attribute is to be
renamed
const char *old_attr_name IN: Prior attribute name
const char *new_attr_name IN: New attribute name
hid_tlapl_id IN: Link access property list identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hbarename_by name_f
SUBROUTINE h5arename_by name_f(loc_id, obj_name, old_attr _name, new_attr _name, &
hdferr, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! Object identifier
CHARACTER(LEN=%), INTENT(IN) :: obj_name
I Name of object, relative to location,
I whose attribute is to be renamed
CHARACTER(LEN=*), INTENT(IN) :: old_attr_name
! Prior attribute name
CHARACTER(LEN=%*), INTENT(IN) :: new_attr_name
I New attribute name
INTEGER, INTENT(OUT) :: hdferr ! Error code:
10 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
! Link access property list identifier
END SUBROUTINE h5arename_by _name_f

History:
Release C
1.8.0 Function introduced in this release.

58

HDF5 Reference Manual H5Awrite

Name: H5Awrite
Signature:
herr_tH5Awrite(hid_t attr_id, hid_t mem_type_id, const void *buf)
Purpose:
Writes data to an attribute.
Description:
H5Awrite writes an attribute, specified with attr_id. The attribute's memory datatype is specified
with mem_type_id. The entire attribute is written from buf to the file.

Datatype conversion takes place at the time of a read or write and is automatic. See the Data Conversio
section of The Data Type Interface (H5T) in the HDF5 User's Guide for a discussion of data conversion,
including the range of conversions currently supported by the HDF5 libraries.

Parameters:
hid_tattr_id IN: Identifier of an attribute to write.
hid_tmem_type_id IN: Identifier of the attribute datatype (in memory).
const void *buf IN: Data to be written.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hbawrite f
SUBROUTINE h5awrite_f(attr_id, memtype_id, buf, dims, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
INTEGER(HID_T), INTENT(IN) :: memtype_id ! Attribute datatype
!identifier (in memory)
TYPE, INTENT(IN) :: buf | Data buffer; may be a scalar or
l'an array
DIMENSION(*), INTEGER(HSIZE_T), INTENT(IN) :: dims
! Array to hold corresponding
! dimension sizes of data buffer buf;
1 dim(k) has value of the k-th
I dimension of buffer buf;
! values are ignored if buf is
! a scalar
INTEGER, INTENT(OUT) :: hdferr ! Error code:
10 on success and -1 on failure
END SUBROUTINE h5awrite_f

History:
Release Fortran90
142 The dims parameter was added in this release.

59

60

HDF5 Reference Manual

HDF5 Reference Manual

H5D: Datasets Interface

Dataset Object API Functions
These functions create and manipulate dataset objects, and set and retrieve their constant or persistent propert

The C Interfaces:

» H5Dcreate » H5Dget_space » H5Dvlen_get buf _size
» H5Dcreatel * » H5Dget_space_status ¢« H5Dvlen_reclaim

* H5Dcreate2 * H5Dget_type » H5Dread

« H5Dcreate_anon e« H5Dget create_plist ¢ H5Dwrite

* H5Dopen » H5Dget_access_plist ¢ H5Diterate

« H5Dopenl * » H5Dget_offset » H5Dextend *

* H5Dopen2 » H5Dget_storage_size ¢ H5Dset_extent

» H5Dclose H5Dfill

* Use of these functions is deprecated in Release 1.8.0.

Alphabetical Listing

« H5Dclose » H5Dget_access_plist ¢« H5Dopen
« H5Dcreate » H5Dget_create_plist ¢ H5Dopenl *
* H5Dcreatel * » H5Dget_offset * H5Dopen2
¢ H5Dcreate2 * H5Dget_space » H5Dread
* H5Dcreate_anon < H5Dget_space_status « H5Dset_extent
« H5Dextend * » H5Dget_storage_size ¢ H5Dvlen_get_buf_size
» H5Dfill » H5Dget_type » H5Dvlen_reclaim
» H5Diterate » H5Dwrite

The FORTRANO9O Interfaces:
In general, each FORTRAN9O subroutine performs exactly the same task as the corresponding C function.

» h5dclose f » h5dget_type f » h5dread_f

» h5dcreate_f » h5dget_create _plist f « h5dread_vl_f
* h5dcreate_anon_f » h5dget_offset_f e h5dwrite_f

» h5dopen_f » h5dget_storage_size f ¢ h5dwrite_vl_f
» h5dget_space_f « h5dvlen_get_max_len_f ¢ hbdextend_f
» h5dget_space_status_f h5dfill_f

61

62

HDF5 Reference Manual

HDF5 Reference Manual H5Dclose

Name: H5Dclose
Signature:
herr_tH5Dclose(hid_t dataset_id)
Purpose:
Closes the specified dataset.
Description:
H5Dclose ends access to a dataset specified by dataset_id and releases resources used by it. Further
use of the dataset identifier is illegal in calls to the dataset API.
Parameters:
hid_tdataset_id IN: Identifier of the dataset to close access to.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5dclose_f
SUBROUTINE h5dclose_f(dset_id, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code

10 on success and -1 on failure
END SUBROUTINE h5dclose_f

63

H5Dcreate HDF5 Reference Manual

Name: H5Dcreate

Signature:
hid_tH5Dcreate(hid_t loc_id, const char *name, hid_t type_id, hid_t space_id, hid_t
depl_id)

hid_tH5Dcreate(hid_t loc_id, const char *name, hid_t dtype_id, hid_t space_id, hid_t
Icpl_id, hid_t dcpl_id, hid_t dapl_id)

Purpose:
Creates a new dataset and links it to a location in the file.

Description:
H5Dcreate is a macro that is mapped to either H5Dcreatel or H5Dcreate2, depending on the
needs of the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5"; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Dcreate is mapped to the most recent version of the function, currently H5Dcreate?2. If the
library and/or application is compiled for Release 1.6 emulation, H5Dcreate will be mapped to
H5Dcreatel. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Dcreate mapping

Global settings

No compatibility flag H5Dcreate2
Enable deprecated symbols H5Dcreate2
Disable deprecated symbols H5Dcreate2

Emulate Release 1.6 interface H5Dcreatel

Function-level macros
H5Dcreate vers =2 H5Dcreate?2

H5Dcreate vers =1 H5Dcreatel

Fortran90 Interface: hbdcreate f
SUBROUTINE h5dcreate_f(loc_id, name, type_id, space_id, dset_id, &
hdferr, dcpl_id, Icpl_id, dapl_id)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of the dataset
INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
INTEGER(HID_T), INTENT(OUT) :: dset_id ! Dataset identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code

64

HDF5 Reference Manual

1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: dcpl_id

! Dataset creation property list
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: Icpl_id

I Link creation property list
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: dapl_id

! Dataset access property list

END SUBROUTINE h5dcreate_f

History:
Release C
1.8.0 The function H5Dcreate renamed to H5Dcreatel and deprecated in this
release.
The macro H5Dcreate and the function H5Dcreate2 introduced in this
release.

H5Dcreate

65

H5Dcreatel HDF5 Reference Manual

Name: H5Dcreatel
Signature:
hid_tH5Dcreatel(hid_t loc_id, const char *name, hid_t type_id, hid_t space_id, hid_t
depl_id)
Purpose:
Creates a dataset at the specified location.
Notice:
This function is deprecated in favor of the function H5Dcreate2 or the macro H5Dcreate.
Description:
H5Dcreatel creates a data set with a name, name, in the file or in the group specified by the identifier
loc_id.

name can be a relative path based at loc_id or an absolute path from the root of the file. Use of this
function requires that any intermediate groups specified in the path already exist.

The dataset’s datatype and dataspace are specified by type_id and space_id, respectively. These are
the datatype and dataspace of the dataset as it will exist in the file, which may differ from the datatype
and dataspace in application memory.

Names within a group are unique: H5Dcreatel will return an error if a link with the name specified in
name already exists at the location specified in loc_id.

As is the case for any object in a group, the length of a dataset name is not limited.

dcpl_id is an H5P_DATASET_CREATE property list created with H5Pcreatel and initialized with
various property list functions described in “H5P: Property List Interface.”

H5Dcreate and H5Dcreate_anon return an error if the dataset’s datatype includes a variable-length

(VL) datatype and the fill value is undefined, i.e., set to NULL in the dataset creation property list. Such a
VL datatype may be directly included, indirectly included as part of a compound or array datatype, or
indirectly included as part of a nested compound or array datatype.

H5Dcreate and H5Dcreate_anon return a dataset identifier for success or a negative value for
failure. The dataset identifier should eventually be closed by calling H5Dclose to release resources it
uses.

See H5Dcreate_anon for discussion of the differences between H5Dcreate and
H5Dcreate_anon.

Fill values and space allocation:

The HDFS5 library provides flexible means of specifying a fill value, of specifying when space will be
allocated for a dataset, and of specifying when fill values will be written to a dataset. For further
information on these topics, see the document Fill Value and Dataset Storage Allocation Issues in HDF5
and the descriptions of the following HDF5 functions in this HDF5 Reference Manual:

H5Dfill H5Pset_fill_time
H5Pset_fill_value H5Pget fill_time
H5Pget fill_value H5Pset_alloc_time

66

http://hdfgroup.org/HDF5/doc_resource/H5Fill_Values.html

HDF5 Reference Manual H5Dcreatel

H5Pfill_value_defined H5Pget_alloc_time

This information is also included in the “HDF5 Datasets” chapter of the new HDF5 User's Guide, which
is being prepared for release.

Note:
H5Dcreate and H5Dcreate_anon can fail if there has been an error in setting up an element of the
dataset creation property list. In such cases, each item in the property list must be examined to ensure t
the setup satisfies all required conditions. This problem is most likely to occur with the use of filters.

For example, either function will fail without a meaningful explanation if the following conditions exist
simultaneously:

O SZIP compression is being used on the dataset.
O The SZIP parameter pixels_per_block is set to an inappropriate value.
In such a case, one would refer to the description of H5Pset_szip, looking for any conditions or
requirements that might affect the local computing environment.
Parameters:

hid_tloc_id IN: Identifier of the file or group within which to create the dataset.
const char *name IN: The name of the dataset to create.

hid_ttype_id IN: Identifier of the datatype to use when creating the dataset.
hid_tspace_id IN: Identifier of the dataspace to use when creating the dataset.

hid_tdcpl_id IN: Dataset creation property list identifier.
Returns:
Returns a dataset identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Dcreate.
History:
Release C
1.8.0 Function H5Dcreate renamed to H5Dcreatel and deprecated in this release.

67

H5Dcreate2 HDF5 Reference Manual

Name: H5Dcreate2

Signature:
hid_tH5Dcreate2(hid_t loc_id, const char *name, hid_t dtype_id, hid_t space_id, hid_t
Icpl_id, hid_t dcpl_id, hid_t dapl_id)

Purpose:
Creates a new dataset and links it into the file.

Description:
H5Dcreate?2 creates a new dataset named name at the location specified by loc_id, and associates
constant and initial persistent properties with that dataset, including dtype_id, the datatype of each data
element as stored in the file; space_id, the dataspace of the dataset; and other initial properties as
defined in the dataset creation property and access property lists, dcpl_id and dapl_id, respectively.
Once created, the dataset is opened for access.

loc_id may be a file identifier, or a group identifier within that file. name may be either an absolute
path in the file or a relative path from loc_id naming the dataset.

The link creation property list, Icpl_id, governs creation of the link(s) by which the new dataset is
accessed and the creation of any intermediate groups that may be missing.

The datatype and dataspace properties and the dataset creation and access property lists are attached to the
dataset, so the caller may derive new datatypes, dataspaces, and creation and access properties from the
old ones and reuse them in calls to create additional datasets.

Once created, the dataset is ready to receive raw data. Immediately attempting to read raw data from the
dataset will probably return the fill value.

To conserve and release resources, the dataset should be closed when access is no longer required.
Parameters:

hid_tloc_id IN: Location identifier

const char *name IN: Dataset name

hid_tdtype_id IN: Datatype identifier

hid_tspace_id IN: Dataspace identifier

hid_tlcpl_id IN: Link creation property list

hid_tdcpl_id IN: Dataset creation property list

hid_tdapl_id IN: Dataset access property list
Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Dcreate.
History:

Release C

1.8.0 Function introduced in this release.

68

HDF5 Reference Manual H5Dcreate_anon

Name: H5Dcreate_anon
Signature:
hid_tH5Dcreate_anon(hid_t loc_id, hid_t type_id, hid_t space_id, hid_t dcpl_id, hid_t
dapl_id)
Purpose:
Creates a dataset in a file without linking it into the file structure.
Description:
H5Dcreate_anon creates a dataset in the file specified by loc_id.

loc_id may be a file identifier or a group identifier within that file.

The dataset’s datatype and dataspace are specified by type_id and space_id, respectively. These are
the datatype and dataspace of the dataset as it will exist in the file, which may differ from the datatype

and dataspace in application memory.

Dataset creation properties are specified in the dataset creation property list dcpl_id. Dataset access

properties are specified in the dataset access property list dapl_id.

H5Dcreate_anon returns a new dataset identifier. Using this identifier, the new dataset must be linked

into the HDFS5 file structure with H5Lcreate _hard or it will be deleted from the file when the file is
closed.

See H5Dcreate for further details and considerations on the use of H5Dcreate and
H5Dcreate_anon.

The differences between this function and H5Dcreate are as follows:

O H5Dcreate_anon explicitly includes a dataset access property list. H5Dcreate always uses
default dataset access properties.

O H5Dcreate_anon neither provides the new dataset’s name nor links it into the HDF5 file
structure; those actions must be performed separately through a call to H5Lcreate_hard,
which offers greater control over linking.

Parameters:
hid_tloc_id IN: Identifier of the file or group within which to create the dataset.
hid_ttype id IN: Identifier of the datatype to use when creating the dataset.
hid_tspace_id IN: Identifier of the dataspace to use when creating the dataset.
hid_tdcpl_id IN: Dataset creation property list identifier.
hid_tdapl_id IN: Dataset access property list identifier.

Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.

Fortran90 Interface:
SUBROUTINE h5dcreate_anon_f(loc_id, type_id, space_id, dset_id, hdferr, &
dcpl_id, dapl_id)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) ::loc_id ! File or group identifier.
INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier.
INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier.
INTEGER(HID_T), INTENT(OUT) :: dset_id ! Dataset identifier.

69

H5Dcreate_anon HDF5 Reference Manual

INTEGER, INTENT(OUT) :: hdferr I Error code.
I 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: dcpl_id
I Dataset creation property list
I identifier.
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: dapl_id
I Dataset access property list
I identifier.
END SUBROUTINE h5dcreate_anon_f

70

HDF5 Reference Manual H5Dextend

Name: H5Dextend
Signature:
herr_tH5Dextend(hid_t dataset_id, const hsize_t size[])
Purpose:
Extends a dataset.
Notice:
This function is deprecated in favor of the function H5Dset_extent.
Description:
H5Dextend verifies that the dataset is at least of size size, extending it if necessary. The
dimensionality of size is the same as that of the dataspace of the dataset being changed.

This function can be applied to the following datasets:

¢ Any dataset with unlimited dimensions
O A dataset with fixed dimensions if the current dimension sizes are less than the maximum sizes
set with maxdims (see H5Screate_simple)
Space on disk is immediately allocated for the new dataset extent if the dataset’s space allocation time i
setto H5D_ALLOC_TIME_EARLY. Fill values will be written to the dataset if the dataset’s fill time is set
to H5D_FILL_TIME_IFSET or H5D_FILL_TIME_ALLOC. (See H5Pset_fill_time and
H5Pset_alloc_time.)

This function ensures that the dataset dimensions are of at least the sizes specified in size. The functior
H5Dset_extent must be used if the dataset dimension sizes are are to be reduced.
Parameters:

hid_tdataset_id IN: Identifier of the dataset.

const hsize_size[] IN: Array containing the new magnitude of each dimension.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hbdextend_f
SUBROUTINE h5dextend_f(dataset_id, size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dataset_id ! Dataset identifier
INTEGER(HSIZE_T), DIMENSION(*), INTENT(IN) :: size
I Array containing
I dimensions' sizes
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5dextend_f

History:
Release C
1.8.0 Function deprecated in this release.
1.8.0 Parameter size syntax changed to ‘const hsizsize[]' in this release.

71

H5Dfill

HDF5 Reference Manual

Name: H5Dfill
Signature:

herr_tH5Dfill(const void *fill, hid_t fill_type_id, void *buf, hid_t buf_type_id, hid_t
space_id)

Purpose:

Fills dataspace elements with a fill value in a memory buffer.

Description:

Note:

H5Dfill explicitly fills the dataspace selection in memory, space_id, with the fill value specified in
fill. If fill is NULL, a fill value of O (zero) is used.

fill_type_id specifies the datatype of the fill value.
buf specifies the buffer in which the dataspace elements will be written.
buf_type_id specifies the datatype of those data elements.

Note that if the fill value datatype differs from the memory buffer datatype, the fill value will be
converted to the memory buffer datatype before filling the selection.

Applications sometimes write data only to portions of an allocated dataset. It is often useful in such cases
to fill the unused space with a known fill value. See H5Pset fill_value for further discussion. Other
related functions include H5Pget fill_value, H5Pfill_value defined, H5Pset _fill_time, H5Pget_fill_time,
H5Dcreate, and H5Dcreate_anon.

Parameters:
const void *fill IN: Pointer to the fill value to be used.
hid_t fill_type_id IN: Fill value datatype identifier.
void *buf IN/OUT: Pointer to the memory buffer containing the selection to be
filled.
hid_tbuf type id IN: Datatype of dataspace elements to be filled.
hid_tspace_id IN: Dataspace describing memory buffer and containing the selection to
be filled.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hsdfill_f

72

SUBROUTINE h5dfill_f(fill_value, space_id, buf, hdferr)

IMPLICIT NONE
TYPE, INTENET(IN) :: fill_value I Fill value; may be have one of the
! following types:
I INTEGER, REAL, DOUBLE PRECISION,
I CHARACTER
INTEGER(HID_T), INTENT(IN) :: space_id ! Memory dataspace selection identifier
TYPE, DIMENSION(*) :: buf I Memory buffer to fill in; must have
I the same datatype as fill value
INTEGER, INTENT(OUT) :: hdferr ! Error code

1 0 on success and -1 on failure
END SUBROUTINE h5dfill_f

HDF5 Reference Manual H5Dget_access_plist

Name: H5Dget_access_plist

Signature:

hid_tH5Dget_access_plist(hid_t dataset_id)
Purpose:

Returns the dataset access property list associated with a dataset.
Description:

H5Dget_access_plist returns a copy of the dataset access property list used to open the specified
dataset. Modifications to the returned property list will have no effect on the dataset it was retrieved fron

The chunk cache parameters in the returned property lists will be those used by the dataset. If the
properties in the file access property list were used to determine the dataset's chunk cache configuratior
then those properties will be present in the returned dataset access property list. If the dataset does not
a chunked layout, then the chunk cache properties will be set to the default. The chunk cache properties
the returned list are considered to be “set”, and any use of this list will override the corresponding
properties in the filed’ s file access property list.

All link access properties in the returned list will be set to the default values.
Parameters:
hid_tdataset_id IN: Identifier of the dataset to get access property list of.
Returns:
Returns a dataset access property list identifier if successful; otherwise returns a negative value.

Example Usage:

The following code retrieves the dataset access property list used to open the dataset dataset id into

dapl_id:

dapl_id = H5Dget_access_plist(dataset_id);

See Also:

“Dataset Access Properties” in the “H5P: Property List Interface” chapter of the HDF5 Reference Manua
History:

Release Change

1.8.3 C function introduced in this release.

73

H5Dget_create_plist HDF5 Reference Manual

Name: H5Dget_create_plist
Signature:
hid_tH5Dget_create_plist(hid_t dataset_id)
Purpose:
Returns an identifier for a copy of the dataset creation property list for a dataset.
Description:
H5Dget_create_plist returns an identifier for a copy of the dataset creation property list associated
with the dataset specified by dataset id.

The creation property list identifier should be released with H5Pclose.
Parameters:
hid_tdataset_id IN: Identifier of the dataset to query.
Returns:
Returns a dataset creation property list identifier if successful; otherwise returns a negative value.
Fortran90 Interface: hbdget create_plist_f
SUBROUTINE h5dget_create_plist_f(dataset_id, creation_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dataset_id ! Dataset identifier
INTEGER(HID_T), INTENT(OUT) :: creation_id ! Dataset creation
! property list identifier
INTEGER, INTENT(OUT) :: hdferr | Error code

10 on success and -1 on failure
END SUBROUTINE h5dget_create_plist_f

74

HDF5 Reference Manual H5Dget_offset

Name: H5Dget_offset

Signature:

haddr_tH5Dget_offset(hid_t dset_id)
Purpose:

Returns dataset address in file.
Description:

H5Dget_offset returns the address in the file of the dataset dset_id. That address is expressed as
the offset in bytes from the beginning of the file.
Parameters:
hid_t dset _id Dataset identifier.
Returns:
Returns the offset in bytes; otherwise returns HADDR_UNDEF, a negative value.
Fortran90 Interface:

None.
History:
Release C
1.6.0 Function introduced in this release.

75

H5Dget_space HDF5 Reference Manual

Name: H5Dget_space
Signature:
hid_tH5Dget_space(hid_t dataset id)
Purpose:
Returns an identifier for a copy of the dataspace for a dataset.
Description:
H5Dget_space returns an identifier for a copy of the dataspace for a dataset. The dataspace identifier
should be released with the H5Sclose function.
Parameters:
hid_tdataset_id IN: Identifier of the dataset to query.
Returns:
Returns a dataspace identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5dget_space_f
SUBROUTINE h5dget_space_f(dataset_id, dataspace_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dataset_id ! Dataset identifier
INTEGER(HID_T), INTENT(OUT) :: dataspace_id ! Dataspace identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code
I 0 on success and -1 on failure
END SUBROUTINE h5dget_space_f

76

HDF5 Reference Manual H5Dget_space_status

Name: H5Dget_space_status
Signature:
herr_tH5Dget_space_status(hid t dset _id, H5D space_status_t *status)
Purpose:
Determines whether space has been allocated for a dataset.
Description:
H5Dget_space_status determines whether space has been allocated for the dataset dset_id.

Space allocation status is returned in status, which will have one of the following values:

H5D_SPACE_STATUS NOT_ALLOCATED Space has not been allocated for this dataset.
H5D_SPACE_STATUS_ALLOCATED Space has been allocated for this dataset.

H5D_SPACE_STATUS_PART_ALLOCATEDSpace has been partially allocated for this dataset.
(Used only for datasets with chunked storage.)

Parameters:
hid_tdset_id IN: Identifier of the dataset to query.
H5D_space_status_t *status OUT: Space allocation status.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hbdget_space_status_f
SUBROUTINE h5dget_space_status_f(dset_id, flag, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
INTEGER, INTENET(OUT) :flag ! Status flag ; possible values:
| HSD_SPACE_STS_ERROR_F
I H5D_SPACE_STS_NOT_ALLOCATED_F
I H5D_SPACE_STS_PART_ALLOCATED_F
I H5D_SPACE_STS_ALLOCATED_F
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5dget_space_status_f

History:
Release C
1.6.0 Function introduced in this release.

77

H5Dget_storage_size HDF5 Reference Manual

Name: H5Dget_storage_size

Signature:

hsize_tH5Dget_storage_size(hid_t dataset_id)
Purpose:

Returns the amount of storage required for a dataset.
Description:

H5Dget_storage_size returns the amount of storage that is required for the specified dataset,
dataset_id. For chunked datasets, this is the number of allocated chunks times the chunk size. The
return value may be zero if no data has been stored.

Parameters:
hid_tdataset_id IN: Identifier of the dataset to query.

Returns:
Returns the amount of storage space allocated for the dataset, not counting meta data; otherwise returns 0
(zero).

Fortran90 Interface: h5dget_storage_size f
SUBROUTINE h5dget_storage_size_f(dset_id, size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
INTEGER(HSIZE_T), INTENT(OUT) :: size ! Amount of storage required
! for dataset
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5dget_storage_size_f

History:
Release Fortran90
1.45 Function introduced in this release.

78

HDF5 Reference Manual H5Dget_type

Name: H5Dget_type

Signature:

hid_tH5Dget_type(hid_t dataset_id)
Purpose:

Returns an identifier for a copy of the datatype for a dataset.
Description:

H5Dget _type returns an identifier for a copy of the datatype for a dataset. The datatype should be
released with the H5Tclose function.

If a dataset has a named datatype, then an identifier to the opened datatype is returned. Otherwise, the
returned datatype is read-only. If atomization of the datatype fails, then the datatype is closed.
Parameters:
hid_tdataset_id IN: Identifier of the dataset to query.
Returns:
Returns a datatype identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5dget_type f
SUBROUTINE h5dget_type_f(dataset_id, datatype_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dataset_id ! Dataset identifier
INTEGER(HID_T), INTENT(OUT) :: datatype_id ! Datatype identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5dget_type_f

79

H5Diterate HDF5 Reference Manual

Name: H5Diterate

Signature:
herr_tH5Diterate(void *buf, hid_t type_id, hid_t space_id, H5D operator_t operator,
void *operator_data)

Purpose:
Iterates over all selected elements in a dataspace.

Description:
H5Diterate iterates over all the data elements in the memory buffer buf, executing the callback
function operator once for each such data element.

The protoype of the callback function operator is as follows (as defined in the source code file
H5L public.h):

herr_t (*H5D_operator_t)(void elem, hid_t type_id, unsigned ndim,
const hsize _t *point, void *operator_data)

The parameters of this callback function have the following values or meanings:

void *elem IN/OUT: Pointer to the memory buffer containing the current
data element

hid_t type_id IN: Datatype identifier for the elements stored in elem

unsigned ndim IN: Number of dimensions for the point array

const hsize t IN: Array containing the location of the element within the

*point original dataspace

void *operator_data IN/OUT: Pointer to any user-defined data associated with the
operation

The possible return values from the callback function, and the effect of each, are as follows:

¢ Zero causes the iterator to continue, returning zero when all data elements have been processed.
¢ A positive value causes the iterator to immediately return that positive value, indicating
short-circuit success.

O A negative value causes the iterator to immediately return that value, indicating failure.
The H5Diterate operator_data parameter is a user-defined pointer to the data required to process
dataset elements in the course of the iteration. If operator needs to pass data back to the application,
such data can be returned in this same buffer. This pointer is passed back to each step of the iteration in
the operator callback function’s operator_data parameter.

Unlike other HDF5 iterators, this iteration operation cannot be restarted at the point of exit; a second
H5Diterate call will always restart at the beginning.

80

HDF5 Reference Manual H5Diterate

Parameters:
void *buf IN/OUT: Pointer to the buffer in memory containing the elements to
iterate over
hid_ttype_id IN: Datatype identifier for the elements stored in buf
hid_tspace_id IN: Dataspace identifier for buf
H5D_operator_t operator IN: Function pointer to the routine to be called for each element in
buf iterated over
void *operator_data IN/OUT: Pointer to any user-defined data associated with the
operation
Returns:

Returns the return value of the last operator if it was non-zero, or zero if all elements have been
processed. Otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.6.4 The following changes occured in the H5D_operator_t function in this

release:
ndim parameter type was changed to unsigned
point parameter type was changed to const hsize t

81

H5Dopen HDF5 Reference Manual

Name: H5Dopen
Signature:
hid_tH5Dopen(hid_tloc_id, const char *name)
hid_tH5Dopen(hid_tloc_id, const char *name, hid_t dapl_id)
Purpose:
Opens an existing dataset.
Description:
H5Dopen is a macro that is mapped to either H5Dopenl or H5Dopen2, depending on the needs of the
application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5"; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Dopen is mapped to the most recent version of the function, currently H5Dopen?2. If the library
and/or application is compiled for Release 1.6 emulation, H5Dopen will be mapped to H5Dopenl.
Function-specific flags are available to override these settings on a function-by-function basis when the
application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Dopen mapping

Global settings

No compatibility flag H5Dopen2
Enable deprecated symbols H5Dopen2
Disable deprecated symbols H5Dopen2

Emulate Release 1.6 interface H5Dopenl

Function-level macros
H5Dopen_vers =2 H5Dopen2

H5Dopen_vers =1 H5Dopenl

Fortran90 Interface: h5dopen_f
SUBROUTINE h5dopen_f(loc_id, name, dset_id, hdferr, dapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of the dataset
INTEGER(HID_T), INTENT(OUT) :: dset_id ! Dataset identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: dapl_id
! Dataset access property list
END SUBROUTINE h5dopen_f

82

HDF5 Reference Manual H5Dopen

History:
Release C

1.8.0 The function H5Dopen renamed to H5Dopenl and deprecated in this release.
The macro H5Dopen and the function H5Dopen2 introduced in this release.

83

H5Dopenl HDF5 Reference Manual

Name: H5Dopenl
Signature:
hid_tH5Dopenl(hid_tloc_id, const char *name)
Purpose:
Opens an existing dataset.
Notice:
This function is deprecated in favor of the function H5Dopen2 or the macro H5Dopen.
Description:
H5Dopenl opens an existing dataset for access in the file or group specified in loc_id. name is a
dataset name and is used to identify the dataset in the file.

Parameters:
hid_tloc_id IN: Identifier of the file or group within which the dataset to be accessed will
be found.
const char *name IN: The name of the dataset to access.
Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Dopen.
History:

Release C

1.8.0 Function H5Dopen renamed to H5Dopenl and deprecated in this release.

84

HDF5 Reference Manual H5Dopen2

Name: H5Dopen2
Signature:
hid_tH5Dopen2(hid_tloc_id, const char *name, hid_t dapl_id)
Purpose:
Opens an existing dataset.
Description:
H5Dopen2 opens the existing dataset specified by a location identifier and name, loc_id and name,
respectively.

The dataset access property list, dapl_id, provides information regarding access to the dataset.

To conserve and release resources, the dataset should be closed when access is no longer required.
Parameters:

hid_tloc_id IN: Location identifier

const char *name IN: Dataset name

hid_tdapl_id IN: Dataset access property list
Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Dopen.

History:
Release C
1.8.0 Function introduced in this release.

85

H5Dread HDF5 Reference Manual

Name: H5Dread

Signature:
herr_tH5Dread(hid_t dataset_id, hid_ t mem_type_id, hid_t mem_space_id, hid_t
file_space_id, hid_t xfer_plist_id, void * buf)

Purpose:
Reads raw data from a dataset into a buffer.

Description:
H5Dread reads a (partial) dataset, specified by its identifier dataset _id, from the file into an
application memory buffer buf. Data transfer properties are defined by the argument xfer_plist_id.
The memory datatype of the (partial) dataset is identified by the identifier mem_type_id. The part of
the dataset to read is defined by mem_space_id and file_space_id.

file_space_id is used to specify only the selection within the file dataset's dataspace. Any dataspace
specified in file_space_id is ignored by the library and the dataset's dataspace is always used.
file_space_id can be the constant H5S_ALL. which indicates that the entire file dataspace, as
defined by the current dimensions of the dataset, is to be selected.

mem_space_id is used to specify both the memory dataspace and the selection within that dataspace.
mem_space_id can be the constant H5S_ALL, in which case the file dataspace is used for the memory
dataspace and the selection defined with file_space_id is used for the selection within that

dataspace.

If raw data storage space has not been allocated for the dataset and a fill value has been defined, the
returned buffer buf is filled with the fill value.

The behavior of the library for the various combinations of valid dataspace identifiers and H5S_ALL for
the mem_space_id and the file_space_id parameters is described below:

mem_space_id file_space_id Behavior
valid dataspace valid dataspace mem_space_id specifies the memory dataspace and
identifier identifier the selection within it. file_space_id specifies the
selection within the file dataset's dataspace.
H5S_ALL valid dataspace The file dataset's dataspace is used for the memory
identifier dataspace and the selection specified with

file_space_id specifies the selection within it. The
combination of the file dataset's dataspace and the
selection from file_space_id is used for memory

also.
valid dataspace H5S_ALL mem_space_id specifies the memory dataspace and
identifier the selection within it. The selection within the file
dataset's dataspace is set to the "all" selection.
H5S_ALL H5S_ALL The file dataset's dataspace is used for the memory

dataspace and the selection within the memory dataspace
is set to the "all" selection. The selection within the file
dataset's dataspace is set to the "all" selection.
Setting an H5S_ALL selection indicates that the entire dataspace, as defined by the current dimensions of
a dataspace, will be selected. The number of elements selected in the memory dataspace must match the

86

HDF5 Reference Manual H5Dread

number of elements selected in the file dataspace.

xfer_plist_id can be the constant H5P_DEFAULT. in which case the default data transfer properties
are used.

Data is automatically converted from the file datatype and dataspace to the memory datatype and
dataspace at the time of the read. See the Data Conversion section of The Data Type Interface (H5T) in
the HDF5 User's Guide for a discussion of data conversion, including the range of conversions currently
supported by the HDF5 libraries.

Parameters:
hid_tdataset_id IN: Identifier of the dataset read from.
hid_tmem_type id IN: Identifier of the memory datatype.
hid_tmem_space_id IN: Identifier of the memory dataspace.
hid_tfile_space_id IN: Identifier of the dataset's dataspace in the file.
hid_txfer_plist_id IN: Identifier of a transfer property list for this I/O operation.
void * buf OUT: Buffer to receive data read from file.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5dread_f, h5dread_vl_f
There is no direct FORTRAN couterpart for the C function H5Dread. Instead, that functionality is
provided by two FORTRAN functions:

h5dread_f Purpose: Reads data other than variable-length data.
h5dread_vl_f Purpose: Reads variable-length data.

SUBROUTINE h5dread_f(dset_id, mem_type_id, buf, dims, hdferr, &
mem_space_id, file_space_id, xfer_prp)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
INTEGER(HID_T), INTENT(IN) :: mem_type_id ! Memory datatype identifier
TYPE, INTENT(INOUT) :: buf I Data buffer; may be a scalar

! or an array
DIMENSION(*), INTEGER(HSIZE_T), INTENT(IN) :: dims

! Array to hold corresponding

I dimension sizes of data

! buffer buf

I dim(k) has value of the k-th

I dimension of buffer buf

! Values are ignored if buf is

! a scalar
INTEGER, INTENT(OUT) :: hdferr I Error code

1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: mem_space_id

I Memory dataspace identfier

| Default value is H5S_ALL_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: file_space_id

| File dataspace identfier

! Default value is H5S_ALL_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: xfer_prp

! Transfer property list identifier

! Default value is H5P_DEFAULT_F

END SUBROUTINE h5dread_f

87

H5Dread

SUBROUTINE h5dread_vl_f(dset_id, mem_type_id, buf, dims, len, hdferr, &

mem_space_id, file_space_id, xfer_prp)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier

INTEGER(HID_T), INTENT(IN) :: mem_type_id ! Memory datatype identifier
TYPE, INTENT(INOUT), & DIMENSION(dims(1),dims(2)) :: buf

! Data buffer; may be a scalar

! or an array

I TYPE must be one of the following
I INTEGER

I REAL

I CHARACTER

INTEGER(HSIZE_T), INTENT(IN), DIMENSION(2) :: dims
! Array to hold corresponding
I dimension sizes of data
I buffer buf
I dim(k) has value of the k-th
I dimension of buffer buf
! Values are ignored if buf is
! a scalar
INTEGER(SIZE_T), INTENT(INOUT), DIMENSION(*) ::len
! Array to store length of
I each element
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: mem_space_id
I Memory dataspace identfier
! Default value is H5S_ALL_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: file_space_id
! File dataspace identfier
! Default value is H5S_ALL_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: xfer_prp
I Transfer property list identifier
! Default value is H5P_DEFAULT _F
END SUBROUTINE h5dread_vl_f

History:

88

Release Fortran90

1.4.2 The dims parameter was added in this release.

HDF5 Reference Manual

HDF5 Reference Manual H5Dset_extent

Name: H5Dset_extent
Signature:

herr_tH5Dset_extent(hid_t dset_id, const hsize_t size[])

Purpose:

Changes the sizes of a dataset’s dimensions.

Description:

Note:

H5Dset_extent sets the current dimensions of the chunked dataset dset_id to the sizes specified in
size.

size is a 1-dimensional array with n elements, where n is the rank of the dataset’s current dataspace.
This function can be applied to the following datasets:

O A chunked dataset with unlimited dimensions

O A chunked dataset with fixed dimensions if the new dimension sizes are less than the maximum
sizes set with maxdims (see H5Screate_simple)

O An external dataset with unlimited dimensions

¢ An external dataset with fixed dimensions if the new dimension sizes are less than the maximum
sizes set with maxdims

Note that external datasets are always contiguous and can be extended only along the first
dimension.
Space on disk is immediately allocated for the new dataset extent if the dataset’s space allocation time i
setto H5D_ALLOC_TIME_EARLY. Fill values will be written to the dataset if the dataset’s fill time is set
to H5D_FILL_TIME_IFSET or H5D_FILL_TIME_ALLOC. (See H5Pset_fill_time and
H5Pset_alloc_time.)

If the sizes specified in size are smaller than the dataset’s current dimension sizes, H5Dset_extent
will reduce the dataset’s dimension sizes to the specified values. It is the user’s responsibility to ensure
that valuable data is not losi§5Dset_extent does not check.

If it is necessary to ensure that current dimension sizes are not reduced, the function H5Dextend can be
used.

Except for external datasets, H5Dset_extent is for use with chunked datasets only, not contiguous
datasets.

Parameters:

hid_tdset_id IN: Dataset identifier

const hsize_t size[] IN: Array containing the new magnitude of each dimension of the dataset.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: H5Dset_extent

SUBROUTINE h5dset_extent_f(dataset_id, size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dataset_id ! Dataset identifier
INTEGER(HSIZE_T), DIMENSION(*), INTENT(IN) :: size
I Array containing
I dimensions’ sizes
INTEGER, INTENT(OUT) :: hdferr ! Error code:

89

H5Dset_extent HDF5 Reference Manual

I 0 on success and -1 on failure
END SUBROUTINE h5dset_extent_f

History:
Release Change
1.6.0 Function implemented but not supported in this release.
1.8.0 Function supported in this release.

90

HDF5 Reference Manual H5Dvlen_get_buf size

Name: H5Dvlen_get_buf size

Signature:
herr_tH5Dvlen_get buf size(hid_t dataset id, hid_t type_id, hid_t space_id, hsize t
*size)

Purpose:
Determines the number of bytes required to store VL data.

Description:
H5Dvlen_get_buf size determines the number of bytes required to store the VL data from the
dataset, using the space_id for the selection in the dataset on disk and the type_id for the memory
representation of the VL data in memory.

*size is returned with the number of bytes required to store the VL data in memory.
Parameters:

hid_tdataset_id IN: Identifier of the dataset to query.

hid_ttype_id IN: Datatype identifier.

hid_tspace_id IN: Dataspace identifier.

hsize t *size OUT: The size in bytes of the memory buffer required to store the VL data.
Returns:

Returns non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5dvlen_get max_len_f
There is no direct FORTRAN couterpart for the C function H5Dvlen_get buf_size; corresponding
functionality is provided by the FORTRAN function h5dvlen_get_max_len_f.

SUBROUTINE h5dvlen_get_max_len_f(dset_id, size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier

INTEGER(SIZE_T), INTENT(OUT) :: elem_len ! Maximum length of the element
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5dvlen_get_max_len_f

History:
Release C Fortran90
1.45 Function introduced in this release.
1.4.0 Function introduced in this release.

91

H5Dvlen_reclaim HDF5 Reference Manual

Name: H5Dvlen_reclaim
Signature:
herr_tH5Dvlen_reclaim(hid_t type_id, hid_t space_id, hid_t plist_id, void *buf)
Purpose:
Reclaims VL datatype memory buffers.
Description:
H5Dvlen_reclaim reclaims memory buffers created to store VL datatypes.

The type_id must be the datatype stored in the buffer. The space_id describes the selection for the
memory buffer to free the VL datatypes within. The plist_id is the dataset transfer property list which
was used for the I/O transfer to create the buffer. And buf is the pointer to the buffer to be reclaimed.

The VL structures (hvl_t) in the user's buffer are modified to zero out the VL information after the
memory has been reclaimed.

If nested VL datatypes were used to create the buffer, this routine frees them from the bottom up,
releasing all the memory without creating memory leaks.

Parameters:
hid_ttype_id IN: Identifier of the datatype.
hid_tspace_id IN: Identifier of the dataspace.
hid_tplist_id IN: Identifier of the property list used to create the buffer.
void *buf IN: Pointer to the buffer to be reclaimed.
Returns:

Returns non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:
None.

92

HDF5 Reference Manual H5Dwrite

Name: H5Dwrite
Signature:

herr_tH5Dwrite(hid_t dataset _id, hid t mem_type id, hid_t mem_space_id, hid_t

file_space_id, hid_t xfer_plist_id, const void * buf)
Purpose:

Writes raw data from a buffer to a dataset.
Description:

H5Dwrite writes a (partial) dataset, specified by its identifier dataset_id, from the application
memory buffer buf into the file. Data transfer properties are defined by the argument
xfer_plist_id. The memory datatype of the (partial) dataset is identified by the identifier
mem_type_id. The part of the dataset to write is defined by mem_space_id and file_space_id.

file_space_id is used to specify only the selection within the file dataset's dataspace. Any dataspace
specified in file_space_id is ignored by the library and the dataset's dataspace is always used.
file_space_id can be the constant H5S_ALL. which indicates that the entire file dataspace, as
defined by the current dimensions of the dataset, is to be selected.

mem_space_id is used to specify both the memory dataspace and the selection within that dataspace.
mem_space_id can be the constant H5S_ALL, in which case the file dataspace is used for the memory
dataspace and the selection defined with file_space_id is used for the selection within that

dataspace.

The behavior of the library for the various combinations of valid dataspace IDs and H5S_ALL for the
mem_space_id and the file_space_id parameters is described below:

mem_space_id
valid dataspace
identifier

H5S_ALL

valid dataspace
identifier

H5S_ALL

file_space_id
valid dataspace
identifier

valid dataspace
identifier

H5S_ALL

H5S_ALL

Behavior

mem_space_id specifies the memory dataspace and
the selection within it. file_space_id specifies the
selection within the file dataset's dataspace.

The file dataset's dataspace is used for the memory
dataspace and the selection specified with
file_space_id specifies the selection within it. The
combination of the file dataset's dataspace and the
selection from file_space_id is used for memory
also.

mem_space_id specifies the memory dataspace and
the selection within it. The selection within the file
dataset's dataspace is set to the "all" selection.

The file dataset's dataspace is used for the memory
dataspace and the selection within the memory dataspace
is set to the "all" selection. The selection within the file
dataset's dataspace is set to the "all" selection.

Setting an "all" selection indicates that the entire dataspace, as defined by the current dimensions of a
dataspace, will be selected. The number of elements selected in the memory dataspace must match the
number of elements selected in the file dataspace.

93

H5Dwrite HDF5 Reference Manual

xfer_plist_id can be the constant H5SP_DEFAULT. in which case the default data transfer properties
are used.

Writing to an dataset will fail if the HDF5 file was not opened with write access permissions.

Data is automatically converted from the memory datatype and dataspace to the file datatype and
dataspace at the time of the write. See the Data Conversion section of The Data Type Interface (H5T) in
the HDF5 User's Guide for a discussion of data conversion, including the range of conversions currently
supported by the HDF5 libraries.

If the dataset's space allocation time is set to H5D_ALLOC_TIME_LATE or H5D_ALLOC_TIME_INCR
and the space for the dataset has not yet been allocated, that space is allocated when the first raw data is
written to the dataset. Unused space in the dataset will be written with fill values at the same time if the
dataset's fill time is set to H5D_FILL_TIME_IFSET or H5D_FILL_TIME_ALLOC. (Also see
H5Pset_fill_time and H5Pset_alloc_time.)

If a dataset's storage layout is ‘compact’, care must be taken when writing data to the dataset in parallel. A
compact dataset's raw data is cached in memory and may be flushed to the file from any of the parallel
processes, so parallel applications should always attempt to write identical data to the dataset from all
processes.

Parameters:
hid_tdataset_id IN: Identifier of the dataset to write to.
hid_tmem_type _id IN: Identifier of the memory datatype.
hid_tmem_space_id IN: Identifier of the memory dataspace.
hid_tfile_space_id IN: Identifier of the dataset's dataspace in the file.
hid_txfer_plist_id IN: Identifier of a transfer property list for this I/O operation.
const void *buf IN: Buffer with data to be written to the file.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5dwrite_f, h5dwrite_vl_f

94

There is no direct FORTRAN couterpart for the C function H5Dwrite. Instead, that functionality is
provided by two FORTRAN functions:

h5dwrite_f Purpose: Writes data other than variable-length data.
h5dwrite_vl_f Purpose: Writes variable-length data.

SUBROUTINE h5dwrite_f(dset_id, mem_type_id, buf, dims, hdferr, &
mem_space_id, file_space_id, xfer_prp)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
INTEGER(HID_T), INTENT(IN) :: mem_type_id ! Memory datatype identifier
TYPE, INTENT(IN) :: buf ! Data buffer; may be a scalar
I or an array
DIMENSION(*), INTEGER(HSIZE_T), INTENT(IN) :: dims
I Array to hold corresponding
I dimension sizes of data
I buffer buf; dim(k) has value
I of the k-th dimension of
I buffer buf; values are
lignored if buf is a scalar
INTEGER, INTENT(OUT) :: hdferr ! Error code

HDF5 Reference Manual H5Dwrite

I 0 on success and -1 on failure

INTEGER(HID_T), OPTIONAL, INTENT(IN) :: mem_space_id
I Memory dataspace identfier
| Default value is H5S_ALL_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: file_space_id
I File dataspace identfier
| Default value is H5S_ALL_F

INTEGER(HID_T), OPTIONAL, INTENT(IN) :: xfer_prp
I Transfer property list
I identifier; default value
lis H5P_DEFAULT_F
END SUBROUTINE h5dwrite_f

SUBROUTINE h5dwrite_vl_f(dset_id, mem_type_id, buf, dims, len, hdferr, &
mem_space_id, file_space_id, xfer_prp)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
INTEGER(HID_T), INTENT(IN) :: mem_type_id ! Memory datatype identifier
TYPE, INTENT(IN), & DIMENSION(dims(1),dims(2)) :: buf

| Data buffer; may be a scalar

' or an array

I TYPE must be one of the following

I INTEGER

! REAL

I CHARACTER
INTEGER(HSIZE_T), INTENT(IN), DIMENSION(2) :: dims

! Array to hold corresponding

I dimension sizes of data

! buffer buf

I dim(k) has value of the k-th

I dimension of buffer buf

! Values are ignored if buf is

I a scalar
INTEGER(SIZE_T), INTENT(IN), DIMENSION(*) ::len

! Array to store length of

I each element
INTEGER, INTENT(OUT) :: hdferr I Error code

1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: mem_space_id

I Memory dataspace identfier

! Default value is H5S_ALL_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: file_space_id

! File dataspace identfier

| Default value is H5S_ALL_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: xfer_prp

I Transfer property list identifier

! Default value is H5P_DEFAULT_F

END SUBROUTINE h5dwrite_vl_f

History:
Release Fortran90
142 A dims parameter has been added.

95

96

HDF5 Reference Manual

HDF5 Reference Manual

H5E: Error Interface

Error APl Functions

These functions provide error handling capabilities in the HDF5 environment.
In the following lists, italic type indicates a configurable macro.

The C Interfaces:

» H5Eclear » H5Epop » H5Eset_auto

» H5Eclearl * * H5Eget_num * H5Eset_autol *

» H5Eclear2 » H5Eget_major * » H5Eset_auto2

» H5Ecreate_stack H5Eget_minor * » H5Eget_auto

» H5Eclose_stack < H5Eget _msg » H5Eget_autol *

« H5Eprint * H5Ecreate_msg * H5Eget_auto2

« H5Eprintl * » H5Eclose_msg » H5Ewalk

» H5Eprint2 » H5Eregister_class « H5Ewalkl *

* H5Epush » H5Eunregister_class « H5Ewalk2

* H5Epushl * » H5Eget_class_name < H5Eget current_stack
* H5Epush2 » H5Eauto_is_v2 » H5Eset_current_stack

* Use of these functions is deprecated in Release 1.8.0.
Alphabetical Listing

e H5Eauto_is_v2 < H5Eget class _name < H5Epushl *

« H5Eclear » H5Eget_current_stack ¢ H5Epush2

« H5Eclearl * » H5Eget_major * « H5Eregister_class

» H5Eclear2 » H5Eget_minor * » H5Eset_auto

« H5Eclose_msg « H5Eget_msg * H5Eset_autol *

« H5Eclose_stack < H5Eget_num * H5Eset_auto2

* H5Ecreate_msg <« H5Epop » H5Eset_current_stack
« H5Ecreate_stack < H5Eprint « H5Eunregister_class
¢ H5Eget_auto » H5Eprintl * « H5Ewalk

* H5Eget_autol * < H5Eprint2 * H5Ewalk1 *

¢ H5Eget_auto2 » H5Epush « H5Ewalk2

* Use of these functions is deprecated in Release 1.8.0.

The FORTRAN9O Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

* h5eclear_f < hbeset_auto_f < h5eget_major_f

* h5eprint_f » h5eget_minor_f
The Error interface provides error handling in the form of a stack. The FUNC_ENTER() macro clears the error
stack whenever an interface function is entered. When an error is detected, an entry is pushed onto the stack. /
the functions unwind, additional entries are pushed onto the stack. The API function will return some indication
that an error occurred and the application can print the error stack.

97

HDF5 Reference Manual

Certain API functions in the H5E package, such as H5Eprintl, do not clear the error stack. Otherwise, any
function which does not have an underscore immediately after the package name will clear the error stack. For
instance, H5Fopen clears the error stack while H5F_open does not.

An error stack has a fixed maximum size. If this size is exceeded then the stack will be truncated and only the
inner-most functions will have entries on the stack. This is expected to be a rare condition.

Each thread has its own error stack, but since multi-threading has not been added to the library yet, this package

maintains a single error stack. The error stack is statically allocated to reduce the complexity of handling errors
within the H5E package.

98

HDF5 Reference Manual H5Eauto_is_v2

Name: H5Eauto_is_v2

Signature:

herr_tH5Eauto_is_v2(hid_t estack id, unsigned *is_stack)
Purpose:

Determines type of error stack.
Description:

H5Eauto_is_v2 determines whether the error auto reporting function for an error stack conforms to
the H5E_auto2_t typedef or the H5E_autol_t typedef.

The is_stack parameter is set to 1 if the error stack conforms to HS5E_auto2_t and 0 if it conforms
to H5E_autol _t.

Parameters:
hid_testack_id The error stack identifier
unsigned* is_stack A flag indicating which error stack typedef the specified error stack conforms
to.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

99

H5Eclear HDF5 Reference Manual

Name: H5Eclear
Signature:
herr_tH5Eclearl1(void)
herr_tH5Eclear2(hid_t estack _id)
Purpose:
Clears an error stack.
Description:
H5Eclear is a macro that is mapped to either H5Eclearl or H5Eclear2, depending on the needs of
the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Eclear is mapped to the most recent version of the function, currently H5Eclear2. If the
library and/or application is compiled for Release 1.6 emulation, H5Eclear will be mapped to
H5Eclearl. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Eclear mapping

Global settings

No compatibility flag H5Eclear2
Enable deprecated symbols H5Eclear2
Disable deprecated symbols H5Eclear2

Emulate Release 1.6 interface H5Eclearl

Function-level macros
H5Eclear_vers =2 H5Eclear2

H5Eclear_vers =1 H5Eclearl

Fortran90 Interface: h5eclear_f
SUBROUTINE h5eclear_f(hdferr)
IMPLICIT NONE
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5eclear_f

History:
Release C

1.8.0 The function H5Eclear renamed to H5Eclearl and deprecated in this release.
The macro H5Eclear and the function H5Eclear2 introduced in this release.

100

HDF5 Reference Manual H5Eclearl

Name: H5Eclearl
Signature:
herr_tH5Eclearl(void)
Purpose:
Clears the error stack for the current thread.
Notice:
This function is deprecated in favor of the function H5Eclear2 or the macro H5Eclear.
Description:
H5Eclearl clears the error stack for the current thread.

The stack is also cleared whenever an API function is called, with certain exceptions (for instance,
H5Eprintl).
Parameters:
None
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5eclear_f
See H5ECclear.
History:
Release C
1.8.0 Function H5Eclear renamed to H5Eclearl and deprecated in this release.

101

H5Eclear2 HDF5 Reference Manual

Name: H5Eclear2

Signature:
herr_tH5Eclear2(hid_t estack _id)
Purpose:
Clears the specified error stack or the error stack for the current thread.
Description:
H5Eclear2 clears the error stack specified by estack_id, or, if estack _id is set to
H5E_DEFAULT, the error stack for the current thread.

estack_id is an error stack identifier, such as that returned by H5Eget_current_stack.

The current error stack is also cleared whenever an API function is called, with certain exceptions (for
instance, H5Eprintl or H5Eprint2).
Parameters:
hid_testack_id IN: Error stack identifier.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:
See H5ECclear.
History:
Release C
1.8.0 Function introduced in this release.

102

HDF5 Reference Manual H5Eclose_msg

Name: H5Eclose_msg
Signature:
herr_tH5Eclose_msg(hid_t mesg_id)
Purpose:
Closes an error message identifier.
Description:
H5Eclose_msg closes an error message identifier., which can be either a major or minor message.
Parameters:
hid_tmesg_id IN: Error message identifier.
Returns:
Returns a non-negative value on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

103

H5Eclose_stack HDF5 Reference Manual

Name: H5Eclose_stack

Signature:

herr_tH5Eclose_stack(hid_t estack_id)
Purpose:

Closes object handle for error stack.
Description:

H5Eclose_stack closes the object handle for an error stack and releases its resources.
H5E_DEFAULT cannot be closed.
Parameters:
hid_testack_id IN: Error stack identifier.
Returns:
Returns a non-negative value on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

104

HDF5 Reference Manual H5Ecreate_msg

Name: H5Ecreate_msg
Signature:
hid_tH5Ecreate_msg(hid_t class, H5E_type t msg_type, const char* mesg)
Purpose:
Add major error message to an error class.
Description:
H5Ecreate_msg adds an error message to an error class defined by client library or application
program. The error message can be either major or minor which is indicated by parameter msg_type.
Parameters:

hid_tclass IN: Error class identifier.
H5E_type_imsg_type IN: The type of the error message.
Valid values are H5E_MAJOR and H5E_MINOR.
const char* mesg IN: Major error message.
Returns:

Returns a message identifier on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

105

H5Ecreate_stack HDF5 Reference Manual

Name: H5Ecreate_stack
Signature:
hid_tH5Ecreate_stack(void)
Purpose:
Creates a new empty error stack.
Description:
H5Ecreate_stack creates a new empty error stack and returns the new stack’s identifier.
Parameters:
None.
Returns:
Returns an error stack identifier on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

106

HDF5 Reference Manual H5Eget_auto

Name: H5Eget_auto
Signature:
herr_tH5Eget_auto(H5E_auto_t * func, void **client_data)
herr_tH5Eget_auto(hid_t estack _id, HS5E_auto_t* func, void **client_data)
Purpose:
Returns settings for automatic error stack traversal function and its data.
Description:
H5Eget_auto is a macro that is mapped to either H5Eget_autol or HSEget_auto2, depending on
the needs of the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Eget_auto is mapped to the most recent version of the function, currently HSEget_auto2.

If the library and/or application is compiled for Release 1.6 emulation, H5Eget_auto will be mapped to
H5Eget_autol. Function-specific flags are available to override these settings on a
function-by-function basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Eget_auto mapping

Global settings

No compatibility flag H5Eget_auto2
Enable deprecated symbols H5Eget_auto2
Disable deprecated symbols H5Eget_auto2

Emulate Release 1.6 interface H5Eget_autol

Function-level macros

H5Eget _auto_vers =2 H5Eget _auto?
H5Eget_auto_vers=1 H5Eget_autol
Fortran90 Interface: h5eget_auto_f
None.
History:
Release C
1.8.0 The function HS5Eget_auto renamed to H5Eget_autol and deprecated in
this release.
The macro H5Eget_auto and the function H5Eget_auto?2 introduced in this
release.

107

H5Eget_autol HDF5 Reference Manual

Name: H5Eget_autol
Signature:
herr_tH5Eget autol(H5E_autol t* func, void **client_data)
Purpose:
Returns the current settings for the automatic error stack traversal function and its data.
Notice:
This function is deprecated in favor of the function H5Eget_auto2 or the macro H5Eget_auto.
Description:
H5Eget_autol returns the current settings for the automatic error stack traversal function, func, and
its data, client_data. Either or both arguments may be null, in which case the value is not returned.
Parameters:

H5E_autol t *func OUT: Current setting for the function to be called upon an error condition.

void **client_data OUT: Current setting for the data passed to the error function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function H5Eget_auto renamed to H5Eget_autol and deprecated in this

release.

108

HDF5 Reference Manual H5Eget_auto2

Name: H5Eget auto2
Signature:
herr_tH5Eget auto2(hid_t estack id, H5E_auto2_t* func, void **client_data)
Purpose:
Returns the settings for the automatic error stack traversal function and its data.
Description:
H5Eget_auto2 returns the settings for the automatic error stack traversal function, func, and its data,
client_data, that are associated with the error stack specified by estack_id.

Either or both of the func and client_data arguments may be null, in which case the value is not

returned.

Parameters:
hid_testack_id IN: Error stack identifier. HSE_ DEFAULT indicates the current stack.
H5E_auto2_t *func OUT: The function currently set to be called upon an error condition.
void **client_data OUT: Data currently set to be passed to the error function.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

109

H5Eget class_name HDF5 Reference Manual

Name: H5Eget class_name

Signature:
ssize_H5Eget_class _name(hid_t class_id, char* name, size_t size)

Purpose:
Retrieves error class name.

Description:
H5Eget_class_name retrieves the name of the error class specified by the class identifier. If
non-NULL pointer is passed in for name and size is greater than zero, the class name of size long is
returned. The length of the error class name is also returned. If NULL is passed in as hame, only the
length of class name is returned. If zero is returned, it means no name. User is responsible for allocated
enough buffer for the name.

Parameters:

hid_tclass_id IN: Error class identifier.

char* name OUT: The name of the class to be queried.

size_tsize IN: The length of class name to be returned by this function.
Returns:

Returns non-negative value as on success; otherwise returns negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

110

HDF5 Reference Manual H5Eget_current_stack

Name: H5Eget_current_stack
Signature:
hid_tH5Eget_current_stack(void)
Purpose:
Returns copy of current error stack.
Description:
H5Eget_current_stack copies the current error stack and returns an error stack identifier for the
new copy.
Parameters:
None.
Returns:
Returns an error stack identifier on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

111

H5Eget_major HDF5 Reference Manual

Name: H5Eget_major
Signature:
const char *H5Eget_major(H5E_major_t n)
Purpose:
Returns a character string describing an error specified by a major error number.
Notice:
This function has been deprecated.
Description:
Given a major error number, HSEget _major returns a constant character string that describes the error.
Parameters:

H5E_major_mn IN: Major error number.

Returns:
Returns a character string describing the error if successful. Otherwise returns "Invalid major error
number.”

Fortran90 Interface: h5eget_major_f
SUBROUTINE h5eget_major_f(error_no, name, hdferr)

INTEGER, INTENT(IN) :: error_no IMajor error number
CHARACTER(LEN=*), INTENT(OUT) :: name ! File name
INTEGER, INTENT(OUT) :: hdferr I Error code

END SUBROUTINE h5eget_major_f

History:
Release C
1.8.0 Function deprecated in this release.

112

HDF5 Reference Manual H5Eget_minor

Name: H5Eget_minor
Signature:
char * H5Eget_minor(H5E_minor_t n)
Purpose:
Returns a character string describing an error specified by a minor error number.
Notice:
This function has been deprecated.
Description:
Given a minor error number, HSEget_minor returns a constant character string that describes the error.
Note:
In the Release 1.8.x series, HSEget_minor returns a string of dynamic allocated char array. An
application calling this function from an HDF5 library of Release 1.8.0 or later must free the memory
associated with the return value to prevent a memory leak. This is a change from the 1.6.x release serie
Parameters:

H5E_minor_m IN: Minor error number.

Returns:
Returns a character string describing the error if successful. Otherwise returns "Invalid minor error
number."

Fortran90 Interface: h5eget_minor_f
SUBROUTINE h5eget_minor_f(error_no, name, hdferr)

INTEGER, INTENT(IN) :: error_no IMajor error number
CHARACTER(LEN=%*), INTENT(OUT) :: name ! File name
INTEGER, INTENT(OUT) :: hdferr I Error code

END SUBROUTINE h5eget_minor_f

History:
Release Change
1.8.0 Function deprecated and return type changed in this release.

113

H5Eget_msg HDF5 Reference Manual

Name: H5Eget_msg

Signature:
ssize_ H5Eget_msg(hid_t mesg_id, H5E_type t* mesg_type, char* mesg, size_t size)

Purpose:
Retrieves an error message.

Description:
H5Eget_msg retrieves the error message including its length and type. The error message is specified
by mesg_id. User is responsible for passing in enough buffer for the message. If mesg is not NULL and
size is greater than zero, the error message of size long is returned. The length of the message is also
returned. If NULL is passed in as mesg, only the length and type of the message is returned. If the return
value is zero, it means no message.

Parameters:

hid_tmesg_id IN: Idenfier for error message to be queried.

H5E_type t* mesg_type OUT: The type of the error message.
Valid values are H5E_MAJOR and H5E_MINOR.

char* mesg OUT: Error message buffer.
size_tsize IN: The length of error message to be returned by this function.
Returns:

Returns the size of the error message in bytes on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

114

HDF5 Reference Manual H5Eget_num

Name: H5Eget_num
Signature:
ssize_ H5Eget_num(hid_t estack_id)
Purpose:
Retrieves the number of error messages in an error stack.
Description:
H5Eget_num retrieves the number of error records in the error stack specified by estack_id
(including major, minor messages and description).
Parameters:
hid_testack_id IN: Error stack identifier.
Returns:
Returns a non-negative value on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

115

H5Epop HDF5 Reference Manual

Name: H5Epop

Signature:
herr_tH5Epop(hid_testack_id, size_t count)

Purpose:
Deletes specified number of error messages from the error stack.

Description:
H5Epop deletes the number of error records specified in count from the top of the error stack specified
by estack_id (including major, minor messages and description). The number of error messages to be
deleted is specified by count.

Parameters:

hid_testack_id IN: Error stack identifier.

size_tcount IN: The number of error messages to be deleted from the top of error stack.
Returns:

Returns a non-negative value on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

116

HDF5 Reference Manual H5Eprint

Name: H5Eprint
Signature:
herr_tHS5Eprintl(FILE* stream)
herr_tH5Eprint2(hid_t estack_id, FILE* stream))
Purpose:
Prints an error stack in a default manner.
Description:
H5Eprint is a macro that is mapped to either H5Eprintl or H5Eprint2, depending on the needs of
the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Eprint is mapped to the most recent version of the function, currently H5SEprint2. If the
library and/or application is compiled for Release 1.6 emulation, H5Eprint will be mapped to
H5Eprintl. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Eprint mapping

Global settings

No compatibility flag H5Eprint2
Enable deprecated symbols H5Eprint2
Disable deprecated symbols H5Eprint2

Emulate Release 1.6 interface H5Eprintl

Function-level macros
H5Eprint_vers = 2 H5Eprint2

H5Eprint_vers =1 H5Eprintl

Fortran90 Interface: h5eprint_f
SUBROUTINE h5eprint_f(hdferr, name)
CHARACTER(LEN=%*), OPTIONAL, INTENT(IN) :: name ! File name
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5eprint_f

History:
Release C

1.8.0 The function H5Eprint renamed to H5Eprintl and deprecated in this release.
The macro H5Eprint and the function H5Eprint2 introduced in this release.

117

H5Eprintl HDF5 Reference Manual

Name: H5Eprintl

Signature:

herr_tHS5Eprintl(FILE * stream)
Purpose:

Prints the current error stack in a default manner.
Notice:

This function is deprecated in favor of the function H5Eprint2 or the macro H5Eprint.
Description:
H5Eprintl prints the error stack for the current thread on the specified stream, stream. Even if the
error stack is empty, a one-line message will be printed:
HDF5-DIAG: Error detected in thread 0.

H5Eprintl is a convenience function for HSEwalk1 with a function that prints error messages. Users
are encouraged to write their own more specific error handlers.
Parameters:
FILE * stream IN: File pointer, or stderr if NULL.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5eprint_f
See H5Eprint.
History:
Release C
1.8.0 Function H5Eprint renamed to H5Eprintl and deprecated in this release.

118

HDF5 Reference Manual H5Eprint2

Name: H5Eprint2

Signature:

herr_tH5Eprint2(hid_t estack_id, FILE* stream)
Purpose:

Prints the specified error stack in a default manner.
Description:

H5Eprint2 prints the error stack specified by estack_id on the specified stream, stream. Even if
the error stack is empty, a one-line message of the following form will be printed:
HDF5-DIAG: Error detected in HDFS5 library version: 1.5.62 thread 0.

A similar line will appear before the error messages of each error class stating the library name, library
version number, and thread identifier.

If estack_id is HSE_DEFAULT, the current error stack will be printed.

H5Eprint2 is a convenience function for HSEwalk2 with a function that prints error messages. Users
are encouraged to write their own more specific error handlers.

Parameters:
hid_testack_id IN: Identifier of the error stack to be printed. If the identifier is HSE_ DEFAULT,
the current error stack will be printed.
FILE * stream IN: File pointer, or stderr if NULL.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

See H5Eprint.
History:
Release C
1.8.0 Function introduced in this release.

119

H5Epush HDF5 Reference Manual

Name: H5Epush

Signature:
herr_tH5Epush(const char *file, const char *func, unsigned line, HSE_major_t maj_num,
H5E_minor_tmin_num, const char *str)

herr_tH5Epush(hid_t estack_id, const char *file, const char *func, unsigned line, hid_t
class_id, hid_t major_id, hid_t minor_id, const char *msg, ...)
Purpose:
Pushes a new error message onto an error stack.
Description:
H5Epush is a macro that is mapped to either H5SEpushl or H5Epush2, depending on the needs of the
application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Epush is mapped to the most recent version of the function, currently HSEpush2. If the library
and/or application is compiled for Release 1.6 emulation, HSEpush will be mapped to H5Epushl.
Function-specific flags are available to override these settings on a function-by-function basis when the
application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Epush mapping

Global settings

No compatibility flag H5Epush2
Enable deprecated symbols H5Epush2
Disable deprecated symbols H5Epush2

Emulate Release 1.6 interface H5Epushl

Function-level macros

H5Epush_vers =2 H5Epush2
H5Epush_vers =1 H5Epushl
Fortran90 Interface:
None.
History:
Release C
1.8.0 The function H5SEpush renamed to H5Epushl and deprecated in this release.

The macro H5Epush and the function H5Epush?2 introduced in this release.

120

HDF5 Reference Manual H5Epushl

Name: H5Epushl
Signature:
herr_tH5Epushl(const char *file, const char *func, unsigned line, HSE_major_t maj_num,
H5E_minor_tmin_num, const char *str)
Purpose:
Pushes new error record onto error stack.
Notice:
This function is deprecated in favor of the function H5Epush2 or the macro H5Epush.
Description:
H5Epushl pushes a new error record onto the error stack for the current thread.

The error has major and minor numbers maj_num and min_num, the function func where the error
was detected, the name of the file file where the error was detected, the line line within that file, and
an error description string str.

The function name, filename, and error description strings must be statically allocated.
Parameters:

const char *file IN: Name of the file in which the error was detected.
const char *func IN: Name of the function in which the error was detected.
unsignedine IN: Line within the file at which the error was detected.
H5E_major_tmaj_num IN: Major error number.
H5E_minor_tmin_num IN: Minor error number.
const char *str IN: Error description string.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.4.0 Function introduced in this release.
1.8.0 Function H5Epush renamed to H5Epushl and deprecated in this release.

121

H5Epush2 HDF5 Reference Manual

Name: H5Epush2

Signature:
herr_tH5Epush2(hid_t estack_id, const char *file, const char *func, unsigned line, hid_t
class_id, hid_t major_id, hid_t minor_id, const char *msg, ...)

Purpose:
Pushes new error record onto error stack.

Description:

H5Epush2 pushes a new error record onto the error stack specified by estack _id.

The error record contains the error class identifier class_id, the major and minor message identifiers
major_id and minor_id, the function name func where the error was detected, the filename file

and line number line within that file where the error was detected, and an error description msg.
The major and minor errors must be in the same error class.

The function name, filename, and error description strings must be statically allocated.

msg can be a format control string with additional arguments. This design of appending additional
arguments is similar to the system and C functions printf and fprintf.

Parameters:
hid_testack_id IN: Identifier of the error stack to which the error record is to be pushed. If the
identifier is HSE_DEFAULT, the error record will be pushed to the current
stack.
const char *file IN: Name of the file in which the error was detected.
const char *func IN: Name of the function in which the error was detected.
unsignedine IN: Line number within the file at which the error was detected.
hid_tclass_id IN: Error class identifier.
hid_tmajor_id IN: Major error identifier.
hid_tminor_id IN: Minor error identifier.
const char *msg IN: Error description string.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

122

HDF5 Reference Manual H5Eregister_class

Name: H5Eregister_class

Signature:
hid_tH5Eregister_class(const char* cls_name, const char* lib_name, const char*
version)

Purpose:
Registers a client library or application program to the HDF5 error API.

Description:
H5Eregister_class registers a client library or application program to the HDF5 error API so that
the client library or application program can report errors together with HDF5 library. It receives an
identifier for this error class for further error operations. The library name and version number will be
printed out in the error message as preamble.

Parameters:
const char* cls_name IN: Name of the error class.
const char* lib_name IN: Name of the client library or application to which the error class belongs.
const char* version IN: Version of the client library or application to which the error class
belongs. A NULL can be passed in.
Returns:

Returns a class identifier on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

123

H5Eset_auto HDF5 Reference Manual

Name: H5Eset_auto
Signature:
herr_tH5Eset_auto(H5E_auto_t func, void *client_data)
herr_tH5Eset_auto(hid_t estack _id, HS5E_auto_t func, void *client_data)
Purpose:
Returns settings for automatic error stack traversal function and its data.
Description:
H5Eget_auto is a macro that is mapped to either H5Eset_autol or H5Eset_auto2, depending on
the needs of the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Eset_auto is mapped to the most recent version of the function, currently HSEset_auto2.

If the library and/or application is compiled for Release 1.6 emulation, H5Eset_auto will be mapped to
H5Eset_autol. Function-specific flags are available to override these settings on a
function-by-function basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Eset_auto mapping

Global settings

No compatibility flag H5Eset_auto2
Enable deprecated symbols H5Eset_auto2
Disable deprecated symbols H5Eset_auto2

Emulate Release 1.6 interface H5Eset_autol

Function-level macros
H5Eset_auto_vers =2 H5Eset_auto2

H5Eset_auto_vers =1 H5Eset_autol

Fortran90 Interface: h5eset_auto_f
SUBROUTINE h5eset_auto_f(printflag, hdferr)

INTEGER, INTENT(IN) :: printflag !flag to turn automatic error
Iprinting on or off
Ipossible values are:
Iprinton (1)
Iprintoff(0)

INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE hbeset_auto_f

124

HDF5 Reference Manual H5Eset_auto

History:
Release C
1.8.0 The function H5Eset_auto renamed to H5Eset_autol and deprecated in
this release.
The macro H5Eset_auto and the function H5Eset_auto?2 introduced in this
release.

125

H5Eset_autol HDF5 Reference Manual

Name: H5Eset_autol

Signature:
herr_tH5Eset_autol(H5E_autol t func, void *client_data)

Purpose:
Turns automatic error printing on or off.

Description:
H5Eset_autol turns on or off automatic printing of errors. When turned on (non-null func pointer),
any API function which returns an error indication will first call func, passing it client_data as an
argument.

When the library is first initialized the auto printing function is set to H5Eprintl (cast appropriately)
and client_data is the standard error stream pointer, stderr.

Automatic stack traversal is always in the HSE_WALK_DOWNWARD direction.
Parameters:

H5E_autol func IN: Function to be called upon an error condition.

void *client_data IN: Data passed to the error function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5eset_auto_f

See H5Eset_auto.
History:

Release C

1.8.0 Function H5Eset_auto renamed to H5Eset _autol and deprecated in this

release.

126

HDF5 Reference Manual H5Eset_auto2

Name: H5Eset_auto2
Signature:
herr_tH5Eset_auto2(hid_t estack_id, H5E_auto2_t func, void *client_data)
Purpose:
Turns automatic error printing on or off.
Description:
H5Eset_auto2 turns on or off automatic printing of errors for the error stack specified with
estack _id. An estack_id value of HSE_DEFAULT indicates the current stack.

When automatic printing is turned on, by the use of a non-null func pointer, any API function which
returns an error indication will first call func, passing it client_data as an argument.

When the library is first initialized, the auto printing function is set to H5Eprint2 (cast appropriately)
and client_data is the standard error stream pointer, stderr.

Automatic stack traversal is always in the HSE_WALK_DOWNWARD direction.

Automatic error printing is turned off with a H5Eset_auto2 call with a NULL func pointer.
Parameters:

hid_testack_id IN: Error stack identifier.
H5E_auto2_func IN: Function to be called upon an error condition.
void *client_data IN: Data passed to the error function.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: hSeset_auto_f

See H5Eset_auto.
History:

Release C

1.8.0 Function introduced in this release.

127

H5Eset_current_stack HDF5 Reference Manual

Name: H5Eset_current_stack
Signature:
herr_tH5Eset_current_stack(hid_t estack_id)
Purpose:
Replaces the current error stack.
Description:
H5Eset_current_stack replaces the content of the current error stack with a copy of the content of
the error stack specified by estack_id.
Parameters:
hid_testack_id IN: Error stack identifier.
Returns:
Returns a non-negative value on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

128

HDF5 Reference Manual H5Eunregister_class

Name: H5Eunregister_class
Signature:
herr_tH5Eunregister_class(hid_t class_id)
Purpose:
Removes an error class.
Description:
H5Eunregister_class removes the error class specified by class_id. All the major and minor
errors in this class will also be closed.
Parameters:
hid_tclass_id IN: Error class identifier.
Returns:
Returns a non-negative value on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

129

H5Ewalk HDF5 Reference Manual

Name: H5Ewalk

Signature:
herr_tH5Ewalk(H5E_direction_tdirection, HSE_walk_t func, void * client_data)
herr_tH5Ewalk(hid_t estack_id, H5E_direction_t direction, HSE_walk_t func, void *
client_data)

Purpose:
Walks an error stack, calling a specified function.

Description:
H5Ewalk is a macro that is mapped to either H5Ewalkl or H5SEwalk2, depending on the needs of the
application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Ewalk is mapped to the most recent version of the function, currently HSEwalk2. If the library
and/or application is compiled for Release 1.6 emulation, H5Ewalk will be mapped to H5SEwalk1.
Function-specific flags are available to override these settings on a function-by-function basis when the
application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Ewalk mapping

Global settings

No compatibility flag H5Ewalk2
Enable deprecated symbols H5Ewalk2
Disable deprecated symbols H5Ewalk2

Emulate Release 1.6 interface H5Ewalk1

Function-level macros

H5Ewalk_vers = 2 H5Ewalk2
H5Ewalk vers =1 H5Ewalkl
Fortran90 Interface:
None.
History:
Release C
1.8.0 The function H5Ewalk renamed to H5Ewalk1 and deprecated in this release.

The macro H5Ewalk and the function H5Ewalk2 introduced in this release.

130

HDF5 Reference Manual H5Ewalkl

Name: H5Ewalk1
Signature:
herr_tH5Ewalk1(H5E_direction_tdirection, HSE _walkl t func, void * client_data)
Purpose:
Walks the error stack for the current thread, calling a specified function.
Notice:
This function is deprecated in favor of the function H5Ewalk2 or the macro H5Ewalk.
Description:
H5Ewalkl1 walks the error stack for the current thread and calls the specified function for each error
along the way.

direction determines whether the stack is walked from the inside out or the outside in. A value of
H5E_WALK_ UPWARD means begin with the most specific error and end at the API; a value of

H5E_WALK _DOWNWARD means to start at the APl and end at the inner-most function where the error
first detected.

func will be called for each error in the error stack. Its arguments will include an index number
(beginning at zero regardless of stack traversal direction), an error stack entry, and the client_data
pointer passed to H5E_print. The H5E_walk1 _t prototype is as follows:

typedef herr_t (*H5E_walkl t)(int n, H5E_errorl_t *err_desc, void
*client_data)

where the parameters have the following meanings:

int n
Indexed position of the error in the stack.

H5E_errorl t *err_desc
Pointer to a data structure describing the error. (This structure is currently described only
in the source code filledf5/src/H5Epublic.h. That file also contains the definitive
list of major and minor error codes. That information will eventually be presented as an
appendix to this Reference Manual.)

void *client_data
Pointer to client data in the format expected by the user-defined function.

Parameters:
H5E_direction_tdirection IN: Direction in which the error stack is to be walked.
H5E_walkl_func IN: Function to be called for each error encountered.
void * client_data IN: Data to be passed with func.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function H5Ewalk renamed to H5Ewalkl and deprecated in this release.

131

H5Ewalk2 HDF5 Reference Manual

Name: H5Ewalk?2

Signature:
herr_tH5Ewalk2(hid_t estack_id, H5E_direction_t direction, H5E_walk2_t func, void *
client_data)

Purpose:
Walks the specified error stack, calling the specified function.

Description:

H5Ewalk2 walks the error stack specified by estack_id for the current thread and calls the function
specified in func for each error along the way.

If the value of estack_id is HSE_DEFAULT, then H5Ewalk2 walks the current error stack.

direction specifies whether the stack is walked from the inside out or the outside in. A value of

H5E_WALK_ UPWARD means to begin with the most specific error and end at the API; a value of
H5E_WALK _DOWNWARD means to start at the APl and end at the innermost function where the error was
first detected.

func, a function compliant with the H5E_walk?2_t prototype, will be called for each error in the error
stack. Its arguments will include an index number n (beginning at zero regardless of stack traversal
direction), an error stack entry err_desc, and the client_data pointer passed to H5E_print. The
H5E_walk2_t prototype is as follows:

typedef herr_t (*H5E_walk2_t)(unsigned n, const H5E_error2_t *err_desc, void
*client_data)

where the parameters have the following meanings:

unsignedch
Indexed position of the error in the stack.

const H5E_error2_t *err_desc
Pointer to a data structure describing the error. (This structure is currently described only
in the source code file hdf5/src/H5Epublic.h. That file also contains the definitive
list of major and minor error codes; that information will eventually be presented as an
appendix to this HDF5 Reference Manual.)

void *client_data
Pointer to client data in the format expected by the user-defined function.

Parameters:
hid_testack_id IN: Error stack identifier.
H5E_direction_tdirection IN: Direction in which the error stack is to be walked.
H5E_walk2_tfunc IN: Function to be called for each error encountered.
void * client_data IN: Data to be passed with func.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

132

HDF5 Reference Manual

H5F: File Interface

File APl Functions

These functions are designed to provide file-level access to HDF5 files. Further manipulation of objects inside a
file is performed through one of APIs documented below.

The C Interfaces:

» H5Fcreate » H5Fget_vfd_handle < H5Fget obj_ids

» H5Fopen » H5Fget _filesize » H5Fget_freespace

» H5Freopen » H5Fget_create plist < H5Fget_mdc_config
» H5Fclose » H5Fget_access_plist « H5Fget_mdc_hit_rate

» H5Fflush » H5Fget_info » H5Fget_mdc_size
e H5Fis_hdf5 ¢ H5Fget_intent » H5Freset_mdc_hit_rate_stats
e H5Fmount » H5Fget_name » H5Fset_mdc_config

e H5Funmount « H5Fget_obj_count

Alphabetical Listing

e H5Fclose » H5Fget_intent » H5Fis_hdf5

« H5Fcreate * H5Fget_mdc_config + H5Fmount

e H5Fflush » H5Fget_mdc_hit_rate ¢ H5Fopen

* H5Fget_access_plist « H5Fget_mdc_size » H5Freopen

* H5Fget_create_plist « H5Fget_name » H5Freset_mdc_hit_rate_stats
« H5Fget filesize » H5Fget_obj_count » H5Fset_mdc_config

* H5Fget_freespace H5Fget_obj_ids * H5Funmount

« H5Fget_info » H5Fget_vfd_handle

The FORTRAN9O Interfaces:
In general, each FORTRAN9O0 subroutine performs exactly the same task as the corresponding C function.

* h5fcreate f < h5fmount f » h5fget_create_plist_f
 h5fopen_f * h5funmount_f » h5fget_access_plist_f
* h5freopen_f ¢ h5fget_vfd_handle_f < h5fget name_f

« h5fclose f * h5fget_filesize_f h5fget_obj_count_f
 h5fflush_f » h5fget_freespace f < hbfget obj_ids _f

* h5fis_hdf5_f

133

HDF5 Reference Manual

134

HDF5 Reference Manual H5Fclose

Name: H5Fclose

Signature:

herr_tH5Fclose(hid_t file_id)
Purpose:

Terminates access to an HDF5 file.
Description:

H5Fclose terminates access to an HDF5 file by flushing all data to storage and terminating access to the
file through file_id.

If this is the last file identifier open for the file and no other access identifier is open (e.g., a dataset
identifier, group identifier, or shared datatype identifier), the file will be fully closed and access will end.

Delayed close:

Note the following deviation from the above-described behavior. If H5Fclose is called for a file but one
or more objects within the file remain open, those objects will remain accessible until they are
individually closed. Thus, if the dataset data_sample is open when H5Fclose is called for the file
containing it, data_sample will remain open and accessible (including writable) until it is explicitely
closed. The file will be automatically closed once all objects in the file have been closed.

Be warned, however, that there are circumstances where it is not possible to delay closing a file. For
example, an MPI-IO file close is a collective call; all of the processes that opened the file must close it
collectively. The file cannot be closed at some time in the future by each process in an independent
fashion. Another example is that an application using an AFS token-based file access privilage may
destroy its AFS token after H5Fclose has returned successfully. This would make any future access to
the file, or any object within it, illegal.

In such situations, applications must close all open objects in a file before calling H5Fclose. It is
generally recommended to do so in all cases.

Parameters:
hid_tfile_id IN: Identifier of a file to terminate access to.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5fclose_f
SUBROUTINE h5fclose_f(file_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: file_id ! File identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5fclose_f

135

H5Fcreate HDF5 Reference Manual

Name: H5Fcreate
Signature:

hid_tH5Fcreate(const char *name, unsignedflags, hid_t fcpl_id, hid_t fapl_id)

Purpose:

Creates an HDFH5 file.

Description:

136

H5Fcreate is the primary function for creating HDF5 files; it creates a new HDF5 file with the
specified name and property lists and specifies whether an existing file of same name should be
overwritten.

The name parameter specifies the name of the new file.

The flags parameter specifies whether an existing file is to be overwritten. It should be set to either
H5F_ACC_TRUNC to overwrite an existing file or HSF_ACC_EXCL, instructing the function to fail if the
file already exists.

New files are always created in read-write mode, so the read-write and read-only flags, H5F_ ACC_RDWR
and H5F_ACC_RDONLY, respectively, are not relevant in this function. Further note that a specification
of H5F_ACC_RDONLY will be ignored; the file will be created in read-write mode, regardless.

More complex behaviors of file creation and access are controlled through the file creation and file access
property lists, fcpl_id and fapl_id, respectively. The value of H5P_DEFAULT for any property list
value indicates that the library should use the default values for that appropriate property list.

The return value is a file identifier for the newly-created file; this file identifier should be closed by
calling H5Fclose when it is no longer needed.

Special case -- File creation in the case of an already-open file:

If a file being created is already opened, by either a previous H5Fopen or H5Fcreate call, the HDF5
library may or may not detect that the open file and the new file are the same physical file. (See
H5Fopen regarding the limitations in detecting the re-opening of an already-open file.)

If the library detects that the file is already opened, H5Fcreate will return a failure, regardless of the
use of H5F_ACC_TRUNC.

If the library does not detect that the file is already opened and H5F_ACC_TRUNC is not used,
H5Fcreate will return a failure because the file already exists. Note that this is correct behavior.

But if the library does not detect that the file is already opened and H5F_ACC_TRUNC is used,
H5Fcreate will truncate the existing file and return a valid file identifier. Such a truncation of a
currently-opened file will almost certainly result in errors. While unlikely, the HDF5 library may not be
able to detect, and thus report, such errors.

Applications should avoid calling H5Fcreate with an already opened file.

HDF5 Reference Manual

Parameters:
const char *name

uintnflags

hid_tfepl_id

hid_tfapl_id

Returns:

¢

¢

H5Fcreate

IN: Name of the file to access.

IN: File access flags. Allowable values are:
H5F _ACC_TRUNC
Truncate file, if it already exists, erasing all data previously
stored in the file.
H5F ACC_EXCL
Fall if file already exists.
H5F ACC_TRUNC and H5F_ACC_EXCL are mutually exclusive; use exactly
one.
An additional flag, H5SF_ ACC_DEBUG, prints debug information. This flag can
be combined with one of the above values using the bit-wise OR operator (|,
but it is used only by HDF5 Library developers; it is neither tested nor
supported for use in applications.

IN: File creation property list identifier, used when modifying default file
meta-data. Use HSP_DEFAULT to specify default file creation properties.

IN: File access property list identifier. If parallel file access is desired, this is a
collective call according to the communicator stored in the fapl_id. Use
H5P_DEFAULT for default file access properties.

Returns a file identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5fcreate_f
SUBROUTINE h5fcreate_f(name, access_flags, file_id, hdferr, &
creation_prp, access_prp)

IMPLICIT NONE

CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the file
INTEGER, INTENT(IN) :: access_flag ! File access flags
! Possible values are:

H5F_ACC_RDWR_F
H5F_ACC_RDONLY_F
H5F_ACC_TRUNC_F
H5F_ACC_EXCL_F
H5F_ACC_DEBUG_F

INTEGER(HID_T), INTENT(OUT) :: file_id ! File identifier
INTEGER, INTENT(OUT) :: hdferr I Error code

1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: creation_prp
! File creation propertly

I list identifier, if not

I specified its value is

| HSP_DEFAULT_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: access_prp
! File access property list

I identifier, if not

I specified its value is

| H5P_DEFAULT_F

END SUBROUTINE h5fcreate_f

137

H5Fflush HDF5 Reference Manual

Name: H5Fflush
Signature:
herr_tH5Fflush(hid_t object id, H5F scope t scope)
Purpose:
Flushes all buffers associated with a file to disk.
Description:
H5Fflush causes all buffers associated with a file to be immediately flushed to disk without removing
the data from the cache.

object_id can be any object associated with the file, including the file itself, a dataset, a group, an
attribute, or a named data type.

scope specifies whether the scope of the flushing action is global or local. Valid values are

H5F SCOPE_GLOBAL Flushes the entire virtual file.
H5F_SCOPE_LOCAL Flushes only the specified file.

Note:
HDF5 does not possess full control over buffering. H5Fflush flushes the internal HDF5 buffers then
asks the operating system (the OS) to flush the system buffers for the open files. After that, the OS is
responsible for ensuring that the data is actually flushed to disk.

Parameters:
hid_tobject_id IN: Identifier of object used to identify the file.
H5F scope_scope IN: Specifies the scope of the flushing action.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5fflush_f
SUBROUTINE h5fflush_f(obj_id, scope, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
INTEGER, INTENT(IN) :: scope ! Flag with two possible values:

I H5F _SCOPE_GLOBAL_F
I H5F_SCOPE_LOCAL_F
INTEGER, INTENT(OUT) : hdferr ! Error code
I 0 on success and -1 on failure
END SUBROUTINE h5fflush_f

138

HDF5 Reference Manual H5Fget_access_plist

Name: H5Fget_access_plist

Signature:

hid_tH5Fget_access_plist(hid_t file_id)
Purpose:

Returns a file access property list identifier.
Description:

H5Fget_access_plist returns the file access property list identifier of the specified file.

See "File Access Properties" in H5P: Property List Interface in this reference manual and "File Access
Property Lists" in Files in the HDF5 User's Guide for additional information and related functions.
Parameters:

hid_tfile_id IN: Identifier of file to get access property list of
Returns:

Returns a file access property list identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5fget_access_plist_f
SUBROUTINE h5fget_access_plist_f(file_id, fcpl_id, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) ::file_id ! File identifier
INTEGER(HID_T), INTENT(OUT) :: fapl_id ! File access property list identifier
INTEGER, INTENT(OUT) > hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5fget_access_plist_f

139

H5Fget_create_plist HDF5 Reference Manual

Name: H5Fget_create_plist

Signature:

hid_tH5Fget_create plist(hid_t file_id)
Purpose:

Returns a file creation property list identifier.
Description:

H5Fget_create_plist returns a file creation property list identifier identifying the creation
properties used to create this file. This function is useful for duplicating properties when creating another
file.

See "File Creation Properties" in H5P: Property List Interface in this reference manual and "File Creation
Properties" in Files in the HDF5 User's Guide for additional information and related functions.

The creation property list identifier should be released with H5Pclose.
Parameters:
hid_tfile_id IN: File identifier
Returns:
Returns a file creation property list identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5fget_create_plist_f
SUBROUTINE h5fget_create_plist_f(file_id, fcpl_id, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: file_id ! File identifier
INTEGER(HID_T), INTENT(OUT) :: fcpl_id ! File creation property list
I identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code
I 0 on success and -1 on failure
END SUBROUTINE h5fget_create_plist_f

140

HDF5 Reference Manual H5Fget _filesize

Name: H5Fget _filesize
Signature:
herr_tH5Fget_filesize(hid_t file_id, hsize_t *size)
Purpose:
Returns the size of an HDF5 file.
Description:
H5Fget_filesize returns the size of the HDF5 file specified by file_id.

The returned size is that of the entire file, as opposed to only the HDF5 portion of the file. |.e., size
includes the user block, if any, the HDF5 portion of the file, and any data that may have been appended
beyond the data written through the HDF5 Library.

Parameters:

hid_tfile_id
IN: Identifier of a currently-open HDF5 file

hsize t *size
OUT: Size of the file, in bytes.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5fget_freespace_f
SUBROUTINE h5fget_filesize_f(file_id, size, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: file_id ! file identifier
INTEGER(HSIZE_T), INTENT(OUT) :: size ! Size of the file
INTEGER, INTENT(OUT) :: hdferr ! Error code: 0 on success,
-1 if fail
END SUBROUTINE h5fget_filesize_f

History:
Release C

1.6.3 Function introduced in this release.
Fortran subroutine introduced in this release.

141

H5Fget_freespace HDF5 Reference Manual

Name: H5Fget freespace

Signature:

hssize H5Fget_freespace(hid_t file_id)
Purpose:

Returns the amount of free space in a file.
Description:

Given the identifier of an open file, file_id, H5Fget_freespace returns the amount of space that
is unused by any objects in the file.

Currently, the HDF5 library only tracks free space in a file from a file open or create until that file is
closed, so this routine will only report the free space that has been created during that interval.
Parameters:
hid_tfile_id IN: Identifier of a currently-open HDF5 file
Returns:
Returns the amount of free space in the file if successful; otherwise returns a negative value.

Fortran90 Interface: h5fget freespace_f
SUBROUTINE h5fget_freespace_f(file_id, free_space, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: file_id I File identifier
INTEGER(HSSIZE_T), INTENT(OUT) :: free_space ! Amount of free space in file
INTEGER, INTENT(OUT) .- hdferr I Error code
1 0 on success and -1 on failure
END SUBROUTINE h5fget_freespace_f

History:
Release C
1.6.1 Function introduced in this release.

142

HDF5 Reference Manual H5Fget_info

Name: H5Fget_info

Signature:

herr_tH5Fget _info(hid_t obj_id, H5F info_t *file_info)
Purpose:

Returns global information for a file.
Description:

H5Fget_info returns global information for the file associated with the object identifier obj_id in
the H5F _info_t struct named file_info.

obj_id is an identifier for any object in the file of interest.

An H5F _info_t struct is defined as follows (in H5Fpublic.h):

typedef struct H5F _info_t {
hsize t super_ext_size;
struct {
hsize_t hdr_size;
H5_ih_info_t msgs_info;
} sohm;
} H5F_info_t;

super_ext_size is the size of the superblock extension.

The sohm sub-struct contains shared object header message information: hdr_size is the size of shared
of object header messages. msgs_info is a H5_ih_info_t struct containing the cumulative shared

object header message index size and heap size; an H5_ih_info_t struct is defined as follows (in
H5public.h):

typedef struct H5_ih_info_t {
hsize_t index_size;
hsize_t heap_size;

} H5_ih_info_t;

index_size is the summed size of all of the shared of object header indexes. Each index might be
either a B-tree or a list. heap_size is the size of the heap.

Parameters:
hid_tobj_id, IN: Object identifier for any object in the file.
H5F info_t *file_info OUT: Struct containing global file information.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

143

H5Fget_intent HDF5 Reference Manual

Name: H5Fget_intent

Signature:

herr_tH5Fget_intent(hid_t file_id, unsigned *intent)
Purpose:

Determines the read/write or read-only status of a file.
Description:

Given the identifier of an open file, file_id, H5Fget_intent retrieves the “intended access mode”
flag passed with H5SFopen when the file was opened.

The value of the flag is returned in intent. Valid values are as follows:

H5F ACC_RDWR File was opened with read/write access.

H5F_ACC_RDONLY File was opened with read-only access.

The function will not return an error if intent is NULL; it will simply do nothing.
Parameters:

hid_tfile_id IN: File identifier for a currently-open HDFS5 file

unsigned *intent OUT: Intended access mode flag, as originally passed with HS5Fopen.
Returns:

Returns the amount of free space in the file if successful; otherwise returns a negative value.
Fortran90 Interface: None.
History:

Release C

1.8.0 Function introduced in this release.

144

HDF5 Reference Manual

H5Fget_mdc_config

Name: H5Fget_mdc_config

Signature:
herr_tH5Fget_mdc_config(hid_t

Purpose:

file_id, H5AC_cache_config_t *config_ptr)

Obtain current metadata cache configuration for target file.

Description:

H5Fget_mdc_config loads the current metadata cache configuration into the instance of
H5AC_cache_config_t pointed to by the config_ptr parameter.

Note that the version field of *config_ptr must be initialized --this allows the library to support old

versions of the H5AC_cache_config_t structure.

See the overview of the metadata cache in the special topics section of the user manual for details on
metadata cache configuration. If you haven't read and understood that documentation, the results of this

call will not make much sense.
Parameters:

hid_tfile_id
H5AC_cache_config_t *config_ptr

General configuration section:
int version

hbool_trpt_fcn_enabled

hbool_topen_trace_file

hbool_tclose trace_file

IN: Identifier of the target file

IN/OUT: Pointer to the instance of
H5AC_cache_config_t in which the current
metadata cache configuration is to be reportec
The fields of this structure are discussed belov

IN: Integer field indicating the the version of th
H5AC_cache_config_t in use. This field shoulc
be set to
H5AC__CURR_CACHE_CONFIG_VERSION
(defined in H5ACpublic.h).

OUT: Boolean flag indicating whether the
adaptive cache resize report function is enable
This field should almost always be set to
FALSE. Since resize algorithm activity is
reported via stdout, it MUST be set to FALSE
on Windows machines.

The report function is not supported code, and
can be expected to change between versions
the library. Use it at your own risk.

OUT: Boolean field indicating whether the
trace_file_name field should be used to
open a trace file for the cache. This field will
always be set to FALSE in this context.

OUT: Boolean field indicating whether the
current trace file (if any) should be closed. Thit
field will always be set to FALSE in this
context.

145

H5Fget_mdc_config

146

char *trace_file_name

hbool_tevictions_enabled

hbool_tset initial_size

size_tinitial_size

doublemin_clean_fraction

size_tmax_size

size_tmin_size

long intepoch_length

Increment configuration section:
enum H5C_cache_incr_mod&r_mode

doublelower_hr_threshold

HDF5 Reference Manual

OUT: Full path name of the trace file to be
opened if the open_trace_file field is

TRUE. This field will always be set to the empty
string in this context.

OUT: Boolean flag indicating whether metadata
cache entry evictions are enabled.

OUT: Boolean flag indicating whether the cache
should be created with a user specified initial
maximum size.

If the configuration is loaded from the cache,
this flag will always be FALSE.

OUT: Initial maximum size of the cache in
bytes, if applicable.

If the configuration is loaded from the cache,
this field will contain the cache maximum size
as of the time of the call.

OUT: Float value specifing the minimum
fraction of the cache that must be kept either
clean or empty when possible.

OUT: Upper bound (in bytes) on the range of
values that the adaptive cache resize code can
select as the maximum cache size.

OUT: Lower bound (in bytes) on the range of
values that the adaptive cache resize code can
select as the maximum cache size.

OUT: Number of cache accesses between runs
of the adaptive cache resize code.

OUT: Enumerated value indicating the
operational mode of the automatic cache size
increase code. At present, only the following
values are legal:

H5C incr__ off: Automatic cache size increase
is disabled.

H5C incr__threshold: Automatic cache size
increase is enabled using the hit rate threshold
algorithm.

OUT: Hit rate threshold used in the hit rate
threshold cache size increase algorithm.

HDF5 Reference Manual

doubleincrement

hbool_tapply_max_increment

size_tmax_increment

enum H5C_cache flash_incr_mditish_incr_mode

doubleflash_threshold

doubleflash_multiple

H5Fget_mdc_config

OUT: The factor by which the current maximur
cache size is multiplied to obtain an initial new
maximum cache size if a size increase is
triggered in the hit rate threshold cache size
increase algorithm.

OUT: Boolean flag indicating whether an uppe
limit will be applied to the size of cache size
increases.

OUT: The maximum number of bytes by whict
the maximum cache size can be increased in
single step -- if applicable.

OUT: Enumerated value indicating the
operational mode of the flash cache size incre.
code. At present, only the following values are
legal:

H5C_flash_incr__ off: Flash cache size increas
is disabled.

H5C_flash_incr__add_space: Flash cache siz
increase is enabled using the add space
algorithm.

OUT: The factor by which the current maximur
cache size is multiplied to obtain the minimum
size entry / entry size increase which may trigg
a flash cache size increase.

OUT: The factor by which the size of the
triggering entry / entry size increase is
multiplied to obtain the initial cache size
increment. This increment may be reduced to
reflect existing free space in the cache and the
max_size field above.

147

H5Fget_mdc_config

148

Decrement configuration section:
enum H5C_cache_decr_modecr_mode

doubleupper_hr_threshold

doubledecrement

hbool_tapply_max_decrement

size_tmax_decrement

int epochs_before_eviction

hbool_tapply_empty reserve

doubleempty_reserve

HDF5 Reference Manual

OUT: Enumerated value indicating the
operational mode of the automatic cache size
decrease code. At present, the following values
are legal:

H5C_decr__ off: Automatic cache size decrease
is disabled, and the remaining decrement fields
are ignored.

H5C_decr__threshold: Automatic cache size
decrease is enabled using the hit rate threshold
algorithm.

H5C _decr__age out: Automatic cache size
decrease is enabled using the ageout algorithm.

H5C _decr__age out with_threshold: Automatic
cache size decrease is enabled using the ageout
with hit rate threshold algorithm

OUT: Upper hit rate threshold. This value is
only used if the decr_mode is either
H5C_decr__threshold or
H5C_decr__age_out with_threshold.

OUT: Factor by which the current max cache
size is multiplied to obtain an initial value for

the new cache size when cache size reduction is
triggered in the hit rate threshold cache size
reduction algorithm.

OUT: Boolean flag indicating whether an upper
limit should be applied to the size of cache size
decreases.

OUT: The maximum number of bytes by which
cache size can be decreased if any single step, if
applicable.

OUT: The minimum number of epochs that an
entry must reside unaccessed in cache before
being evicted under either of the ageout cache
size reduction algorithms.

OUT: Boolean flag indicating whether an empty
reserve should be maintained under either of the
ageout cache size reduction algorithms.

OUT: Empty reserve for use with the ageout
cache size reduction algorithms, if applicable.

HDF5 Reference Manual H5Fget_mdc_config

Parallel configuration section:

int dirty_bytes_threshold OUT: Threshold number of bytes of dirty
metadata generation for triggering
synchronizations of the metadata caches servi
the target file in the parallel case.

Synchronization occurs whenever the number
bytes of dirty metadata created since the last
synchronization exceeds this limit.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

149

H5Fget_mdc_hit_rate HDF5 Reference Manual

Name: H5Fget_mdc_hit_rate

Signature:

herr_tH5Fget_mdc_hit_rate(hid_t file_id, double *hit_rate ptr)
Purpose:

Obtain target file's metadata cache hit rate.
Description:

H5Fget_mdc_hit_rate queries the metadata cache of the target file to obtain its hit rate (cache hits / (cache
hits + cache misses)) since the last time hit rate statistics were reset. If the cache has not been accessed
since the last time the hit rate stats were reset, the hit rate is defined to be 0.0.

The hit rate stats can be reset either manually (via H5Freset_mdc_hit_rate_stats()), or automatically. If
the cache's adaptive resize code is enabled, the hit rate stats will be reset once per epoch. If they are reset
manually as well, the cache may behave oddly.

See the overview of the metadata cache in the special topics section of the user manual for details on the
metadata cache and its adaptive resize algorithms.

Parameters:
hid_tfile_id IN: Identifier of the target file.

double *hit_rate_ptr ~ OUT: Pointer to the double in which the hit rate is returned. Note that
*hit_rate_ptr is undefined if the API call fails.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

150

HDF5 Reference Manual H5Fget_mdc_size

Name: H5Fget_mdc_size

Signature:
herr_tH5Fget_mdc_size(hid_t file_id, size_t *max_size ptr, size_t
*min_clean_size ptr, size_t *cur_size_ptr, int *cur_num_entries_ptr)

Purpose:
Obtain current metadata cache size data for specified file.

Description:
H5Fget_mdc_size queries the metadata cache of the target file for the desired size information, and
returns this information in the locations indicated by the pointer parameters. If any pointer parameter is
NULL, the associated data is not returned.

If the API call fails, the values returned via the pointer parameters are undefined.

If adaptive cache resizing is enabled, the cache maximum size and minimum clean size may change at
end of each epoch. Current size and current number of entries can change on each cache access.

Current size can exceed maximum size under certain conditions. See the overview of the metadata cacl
in the special topics section of the user manual for a discussion of this.

Parameters:
hid_tfile_id IN: Identifier of the target file.
size_t *max_size_ptr OUT: Poainter to the location in which the current cache maximum size

is to be returned, or NULL if this datum is not desired.

size_t*min_clean_size_ptr OUT: Pointer to the location in which the current cache minimum clean
size is to be returned, or NULL if that datum is not desired.

size_t*cur_size_ptr OUT: Pointer to the location in which the current cache size is to be
returned, or NULL if that datum is not desired.
int *cur_num_entries_ptr OUT: Pointer to the location in which the current number of entries in

the cache is to be returned, or NULL if that datum is not desired.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

151

H5Fget_name HDF5 Reference Manual

Name: H5Fget_name
Signature:
ssize_ H5Fget_name(hid_t obj_id, char *name, size_t size)
Purpose:
Retrieves name of file to which object belongs.
Description:
H5Fget_name retrieves the name of the file to which the object obj_id belongs. The object can be a
group, dataset, attribute, or named datatype.

Up to size characters of the filename are returned in name; additional characters, if any, are not
returned to the user application.

If the length of the name, which determines the required value of size, is unknown, a preliminary
H5Fget_name call can be made by setting name to NULL. The return value of this call will be the size

of the filename; that value plus one (1) can then be assigned to size for a second H5Fget_name call,
which will retrieve the actual name. (The value passed in with the parameter size must be one greater
than size in bytes of the actual name in order to accommodate the null terminator; if size is set to the
exact size of the name, the last byte passed back will contain the null terminator and the last character will
be missing from the name passed back to the calling application.)

If an error occurs, the buffer pointed to by name is unchanged and the function returns a negative value.
Parameters:
hid_tobj_id
IN: Identifier of the object for which the associated filename is sought. The object can be a group, dataset,
attribute, or named datatype.
char *name
OUT: Buffer to contain the returned filename.
size_tsize
IN: Size, in bytes, of the name buffer.
Returns:
Returns the length of the filename if successful; otherwise returns a negative value.

Fortran90 Interface: h5fget_name_f
SUBROUTINE h5fget_name_f(obj_id, buf, size, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
CHARACTER(LEN=¥), INTENT(INOUT) :: buf ! Buffer to hold filename
INTEGER(SIZE_T), INTENT(OUT) :: size ! Size of the filename
INTEGER, INTENT(OUT) :: hdferr ! Error code: 0 on success,
-1 if fail
END SUBROUTINE h5fget_name_f

History:
Release C

1.6.3 Function introduced in this release.
Fortran subroutine introduced in this release.

152

HDF5 Reference Manual

H5Fget_obj_count

Name: H5Fget_obj_count

Signature:

ssize_H5Fget_obj_count(hid_t file_id, unsigned int types)

Purpose:

Returns the number of open object identifiers for an open file.

Description:

Given the identifier of an open file, file_id, and the desired object types, types,
H5Fget_obj_count returns the number of open object identifiers for the file.

To retrieve a count of open identifiers for open objects in all HDF5 application files that are currently
open, pass the value H5F_OBJ_ALL in file_id.

The types of objects to be counted are specified in types as follows:

H5F_OBJ_FILE
H5F_OBJ_DATASET
H5F_OBJ_GROUP
H5F_OBJ_DATATYPE
H5F_OBJ_ATTR
H5F_OBJ_ALL

H5F_OBJ_LOCAL

Files only
Datasets only
Groups only
Named datatypes only
Attributes only
All of the above
(That is, H5F_OBJ_FILE| H5F_OBJ _DATASET
H5F_OBJ_GROUP H5F_OBJ_DATATYPHE
H5F_OBJ_ATTR)
Restrict search to objects opened through current file identifier.
Note: H5F_OBJ_LOCAL does not stand alone; it is effective
only when used in combination with one or more of the preceding
types. For example,

H5F_OBJ_DATASET | H5F_OBJ_GROUP
H5F_OBJ_LOCAL
would count all datasets and groups opened through the current
file identifier.

Multiple object types can be combined with the logical OR operator (]). For example, the expression
(H5F_OBJ_DATASET|H5F_OBJ_GROUP) would call for datasets and groups.

Parameters:
hid_tfile_id IN: Identifier of a currently-open HDFS5 file or H5F_OBJ_ALL for all
currently-open HDFS5 files.
unsigned intypes IN: Type of object for which identifiers are to be returned.
Returns:

Returns the number of open objects if successful; otherwise returns a negative value.

153

H5Fget_obj_count HDF5 Reference Manual

Fortran90 Interface: h5fget_obj_count_f
SUBROUTINE h5fget_obj_count_f(file_id, obj_type, obj_count, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: file_id ! File identifier
INTEGER, INTENT(IN) :: obj_type ! Object types, possible values are:

! H5F_OBJ_FILE_F
! H5F_OBJ_GROUP_F
I H5F_OBJ_DATASET_F
! H5F_OBJ_DATATYPE_F
| H5F_OBJ ALL _F
INTEGER(SIZE_T), INTENT(OUT) :: obj_count ! Number of opened objects
INTEGER, INTENT(OUT) . hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5fget_obj_count_f

History:
Release Change

1.6.5 H5F_OBJ_LOCAL has been added as a qualifier on the types of objects to be
counted. H5F_OBJ_LOCAL restricts the search to objects opened through
current file identifier.

1.6.8 and 1.8.2 C function return type changed to ssize t.

154

HDF5 Reference Manual H5Fget_obj_ids

Name: H5Fget_obj_ids

Signature:
ssize_H5Fget_obj_ids(hid_t file_id, unsigned int types, size_t max_objs, hid_t
*obj_id_list)

Purpose:
Returns a list of open object identifiers.

Description:

Given the file identifier file_id and the type of objects to be identified, types, H5Fget_obj_ids
returns the list of identifiers for all open HDF5 obijects fitting the specified criteria.

To retrieve identifiers for open objects in all HDF5 application files that are currently open, pass the valu
H5F_OBJ_ALL in file_id.

The types of object identifiers to be retrieved are specified in types using the codes listed for the same
parameter in H5Fget_obj_count

To retrieve identifiers for all open objects, pass a negative value for the max_objs.
Parameters:

hid_tfile_id IN: Identifier of a currently-open HDF5 file or H5SF_OBJ_ALL for all
currently-open HDF5 files.
unsigned intypes IN: Type of object for which identifiers are to be returned.
size_tmax_objs IN: Maximum number of object identifiers to place into obj_id_list.
hid_t *obj_id_list OUT: Pointer to the returned list of open object identifiers.
Returns:

Returns number of objects placed into obj_id_list if successful; otherwise returns a negative value.

Fortran90 Interface: h5fget_obj_ids_f
SUBROUTINE h5fget_obj_ids_f(file_id, obj_type, max_objs, obj_ids, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) ::file_id ! File identifier

INTEGER, INTENT(IN) ::obj_type ! Object types, possible values are:
! H5F_OBJ_FILE_F
H5F_OBJ_GROUP_F
H5F_OBJ_DATASET_F
H5F_OBJ_DATATYPE_F
H5F_OBJ_ALL_F
INTEGER, INTENT(IN) :» max_objs ! Maximum number of object
! identifiers to retrieve
INTEGER(HID_T), DIMENSION(*), INTENT(OUT) :: obj_ids
! Array of requested object
!identifiers
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5fget_obj_ids_f

History:
Release Change
1.6.0 C function introduced in this release.
1.6.8 & C function return type changed to ssize_t

1.8.2 and max_objs parameter datatype changed to size t.

155

H5Fget_vfd_handle HDF5 Reference Manual

Name: H5Fget_vfd_handle

Signature:

herr_tH5Fget _vfd_handle(hid_t file_id, hid_t fapl_id, void **file_handle)
Purpose:

Returns pointer to the file handle from the virtual file driver.
Description:

Given the file identifier file_id and the file access property list fapl_id, H5Fget_vfd_handle
returns a pointer to the file handle from the low-level file driver currently being used by the HDF5 library

for file 1/0.
Notes:
Users are not supposed to modify any file through this file handle.
This file handle is dynamic and is valid only while the file remains open; it will be invalid if the file is
closed and reopened or opened during a subsequent session.
Parameters:
hid_tfile_id IN: Identifier of the file to be queried.
hid_tfapl_id IN: File access property list identifier. For most drivers, the value will be
H5P_DEFAULT. For the FAMILY or MULTI drivers, this value should be
defined through the property list functions: H5Pset_family_offset
for the FAMILY driver and H5Pset_multi_type for the MULTI
driver.
void **file_handle OUT: Pointer to the file handle being used by the low-level virtual file
driver.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.6.0 Function introduced in this release.

156

HDF5 Reference Manual

H5Fis_hdfs

Name: H5Fis_hdf5

Signature:

htri_t H5Fis_hdf5(const char