HDF5 Reference Manual

Release 1.8.6
February 2011

|.u:

The HDF Group

http://www.HDFGroup.org

http://www.hdfgroup.org

Copyright Notice and License Terms for
HDF5 (Hierarchical Data Format 5) Software Library and Utilities

HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 2006-2011 by The HDF Group.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2006 by the Board of Trustees of the University of lllinois.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (including
commercial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following
disclaimer in the documentation and/or materials provided with the distribution.

3. In addition, redistributions of modified forms of the source or binary code must carry prominent notices stating that the
original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked, but not required, to
acknowledge that it was developed by The HDF Group and by the National Center for Supercomputing Applications at t
University of Illinois at Urbana-Champaign and credit the contributors.

5. Neither the name of The HDF Group, the name of the University, nor the name of any Contributor may be used to endor
or promote products derived from this software without specific prior written permission from The HDF Group, the
University, or the Contributor, respectively.

DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE HDF GROUP AND THE CONTRIBUTORS "AS IS" WITH NO
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall The HDF Group or the Contributors be
liable for any damages suffered by the users arising out of the use of this software, even if advised of the possibility of such dam:e

Contributors: National Center for Supercomputing Applications (NCSA) at the University of lllinois, Fortner Software, Unidata
Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip), and Digital Equipmen
Corporation (DEC).

Portions of HDF5 were developed with support from the Lawrence Berkeley National Laboratory (LBNL) and the United States
Department of Energy under Prime Contract No. DE-AC02-05CH11231.

Portions of HDF5 were developed with support from the University of California, Lawrence Livermore National Laboratory (UC
LLNL). The following statement applies to those portions of the product and must be retained in any redistribution of source code
binaries, documentation, and/or accompanying materials:

This work was partially produced at the University of California, Lawrence Livermore National Laboratory (UC LLNL)
under contract no. W-7405-ENG-48 (Contract 48) between the U.S. Department of Energy (DOE) and The Regents of tt
University of California (University) for the operation of UC LLNL.

DISCLAIMER: This work was prepared as an account of work sponsored by an agency of the United States Governmen
Neither the United States Government nor the University of California nor any of their employees, makes any warranty,
express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately- owned right
Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or the University of California, and shall not be used for advertising or
product endorsement purposes.

Table of Contents

Overview 1
Fortran90 and C++ APIs 2
H5: General Library Functions 3
H5A: Attribute Interface 15
H5D: Datasets Interface 63
H5E: Error Interface 99
H5F: File Interface 137
H5G: Group Interface 177
H5I: Identifier Interface 213
H5L: Link Interface 235
H50: Object Interface 281
H5P: Property List Interface 307
H5R: Reference Interface 545
H5S: Dataspace Interface 559
H5T: Datatype Interface 591
H5Z: Compression Interface 677
HDF5 Tools 687
h5dump 689
h5ls 695
h5diff and ph5diff 696
h5repack 700
h5repart 703
h5jam and j5unjam 704
h5copy 706
h5mkgrp 708
h5import 710
gif2h5 718
h52gif 719
Java-based tools (HDFview, etc.) *
H4toH5 Conversion Library *
h5toh4 720
h4toh5 722

* Links to descriptions of these tools appear on the HDF5 Tools page:
http://hdfgroup.org/HDF5/doc/RM/Tools.html

HDF5 Tools (continued)

h5stat 723
h5check 724
h5perf 726
h5perf_serial 731
h5redeploy 733
h5cc and h5pcc 734
h5fc and h5pfc 736
h5c++ 738
HDF5 Predefined Datatypes 741

HDF5 Fortran90 Flags, Datatypes, 745
and User’s Notes

API Compatibility Macros 749
in HDF5
Collective Calls in 757

Parallel HDF5 Applications
HDF5 Glossary 761

HDF5 Reference Manual

HDF5: API Specification
Reference Manual

The HDF5 library provides several interfaces, each of which provides the tools required to meet specific aspect:
of the HDF5 data-handling requirements.

Notes regarding Fortran90 and C++ APIs appear on the next page.

Main HDF5 Library, or Low-level APIs

The main HDF5 Library includes all of the low-level APls, providing user applications with fine-grain control
of HDF5 functionality.

Library Functions

Attribute Interface

Dataset Interface

Error Interface

File Interface

Group Interface

Identifier Interface

Link Interface

Object Interface

Property List Interface

Reference Interface

Dataspace Interface

Datatype Interface

Filters and
Compression Interface

Tools

Predefined Datatypes

HDF5 Fortran90 Flags,
Datatypes, User Notes

APl Compatibility
Macros

Collective Calling
Requirements

The general-purpose H5 functions.

The H5A API for attributes.

The H5D API for manipulating scientific datasets.

The H5E API for error handling.

The H5F API for accessing HDF5 files.

The H5G API for creating physical groups of objects on disk.
The H5I API for working with object identifiers.

The H5L API for working with links.

The H50 API for manipulating objects and reference counts.
The H5P API for manipulating object property lists.

The H5R API for references.

The H5S API for defining dataset dataspace.

The H5T API for defining dataset element information.

The H5Z API for inline data filters and data compression.

Interactive tools for the examination of existing HDF5 files.
Predefined datatypes in HDFb5.

Flags and datatypes used in the HDF5 Fortran interface.
User notes for the HDF5 Fortran interface.

API compatibility macros provided in HDF5.

Requirements for collective function calls and coordinated use
of properties in parallel HDF5 applications.

HDF5 Reference Manual

The Fortran90 and C++ APIs to HDF5

The HDF5 Library distribution includes FORTRAN90 and C++ APIs, which are described in the following
documents.

Fortran90 API
Fortran90 APIs in the HDF5 Reference Manual: The HDF5 Reference Manual includes descriptions of
the HDF5 Fortran90 APIs. Fortran subroutines exist in the H5, H5A, H5D, H5E, H5F, H5G, H5I, H5P,
H5R, H5S, H5T, and H5Z interfaces and are described on those pages. In general, each Fortran
subroutine performs exactly the same task as the corresponding C function, with which it is described.
HDF5 Fortran90 Flags, Datatypes and User’s Notes lists the flags employed in the Fortran90 interface,
contains a pointer to the HDF5 Fortran90 datatypes, and includes the document HDF5 Fortran90 User's
Notes.

HDF5 Fortran90 User’'s Notes provides important information for users regarding the Fortran90 source
code and the Fortran90 API.

C++ API

HDF5 C++ Reference Manual provides a complete reference for the HDF5 C++ interface.

HDF5 Reference Manual

H5: General Library Functions

These functions serve general-purpose needs of the HDF5 library and it users.

The C Interfaces:

« H50pen < H5get_libversion ¢ H5set free_list_limits
« H5close e« H5check version ¢ H5garbage collect
» H5dont_atexit

Alphabetical Listing

» H5check_version ¢ H5garbage_collect « H5set free_list_limits
» H5close » H5get_libversion
» H5dont_atexit * H50pen

The FORTRAN9O Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

e h5open_f e« h5get_libversion_f e h5set_free_list_limits_f
e h5close_f e« h5check_version_f < h5garbage_collect_f
* h5dont_atexit_f

HDF5 Reference Manual

HDF5 Reference Manual H5check version

Name: H5check_version
Signature:
herr_tH5check_version(unsigned majnum, unsignedninnum, unsignedelnum)
Purpose:
Verifies that HDF5 library versions are consistent.
Description:
H5check_version verifies that the version of the HDF5 library with which an application was
compiled, as indicated by the passed parameters, matches the version of the HDF5 library against whic
the application is currently linked.

majnum is the major version number of the HDF library with which the application was compiled,
minnum is the minor version number, and relnum is the release number. Consider the following
illustration:

An official HDF5 release is labelled as follows:
HDF5 Release <majnum>.<minnum>.<relnum>
For example, in HDF5 Release 1.8.5:

[1 is the major version number, majnum.

[8 is the minor version number, minnum.

[b is the release number, relnum.
As stated above, H5check_version first verifies that the version of the HDF5 library with which an
application was compiled matches the version of the HDFS5 library against which the application is
currently linked. If this check fails, H5check_version causes the application to abort (by means of a
standard C abort() call) and prints information that is usually useful for debugging. This precaution is
is taken to avoid the risks of data corruption or segmentation faults.

The most common cause of this failure is that an application was compiled with one version of HDF5 an
is dynamically linked with a different version different version.

If the above test passes, H5check _version proceeds to verify the consistency of additional library
version information. This is designed to catch source code inconsistencies that do not normally cause
failures; if this check reveals an inconsistency, an informational warning is printed but the application is
allowed to run.

Parameters:
unsignedmajnum IN: HDF5 library major version number.
unsigned minnum IN: HDF5 library minor version number.
unsignedelnum IN: HDFS5 library release number.
Returns:

Returns a non-negative value if successful. Upon failure, this function causes the application to abort.
Fortran90 Interface: h5check_version_f
SUBROUTINE h5check_version_f(majnum, minnum, relnum, hdferr)
IMPLICIT NONE
INTEGER, INTENT(IN) :: majnum ! The major version of the library
INTEGER, INTENT(IN) :: minnum ! The minor version of the library
INTEGER, INTENT(IN) ::relnum ! The release number
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5check_version_f

H5check _version HDF5 Reference Manual

History:
Release Fortran90
1.4.5 Function introduced in this release.

HDF5 Reference Manual H5close

Name: H5close

Signature:
herr_tH5close(void)

Purpose:
Flushes all data to disk, closes all open identifiers, and cleans up memory.

Description:
H5close flushes all data to disk, closes all open HDFS5 identifiers, and cleans up all memory used by the
HDFS5 library. This function is generally called when the application calls exit(), but may be called
earlier in the event of an emergency shutdown or out of a desire to free all resources used by the HDF5
library.

h5open_f and h5close_f are required calls in Fortran90 applications.
Parameters:

None.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5close_f
SUBROUTINE h5close_f(hdferr)
IMPLICIT NONE
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5close_f

H5dont_atexit HDF5 Reference Manual

Name: H5dont_atexit

Signature:
herr_tH5dont_atexit(void)

Purpose:
Instructs library not to install atexit cleanup routine.

Description:
H5dont_atexit indicates to the library that an atexit() cleanup routine should not be installed.
The major purpose for this is in situations where the library is dynamically linked into an application and
is un-linked from the application before exit() gets called. In those situations, a routine installed with
atexit() would jump to a routine which was no longer in memory, causing errors.

In order to be effective, this routine must be called before any other HDF function calls, and must be
called each time the library is loaded/linked into the application (the first time and after it's been
un-loaded).

Parameters:

None.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5dont_atexit_f
SUBROUTINE h5dont_atexit_f(hdferr)
IMPLICIT NONE
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5dont_atexit_f

History:
Release Fortran90
1.45 Function introduced in this release.

HDF5 Reference Manual H5garbage_collect

Name: H5garbage collect

Signature:

herr_tH5garbage_collect(void)
Purpose:

Garbage collects on all free-lists of all types.
Description:

H5garbage_collect walks through all the garbage collection routines of the library, freeing any
unused memory.

It is not required that H5garbage_collect be called at any particular time; it is only necessary in
certain situations where the application has performed actions that cause the library to allocate many
objects. The application should call H5garbage_collect if it eventually releases those objects and
wants to reduce the memory used by the library from the peak usage required.

The library automatically garbage collects all the free lists when the application ends.
Parameters:
None.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5garbage_collect f
SUBROUTINE h5garbage_collect_f(hdferr)
IMPLICIT NONE
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5garbage_collect_f

History:
Release Fortran90
1.45 Function introduced in this release.

H5get_libversion HDF5 Reference Manual

Name: H5get_libversion
Signature:
herr_tH5get_libversion(unsigned *majnum, unsigned *minnum, unsigned *relnum)
Purpose:
Returns the HDF library release number.
Description:
H5get_libversion retrieves the major, minor, and release humbers of the version of the HDF library
which is linked to the application.

Parameters:
unsigned *majnum OUT: The major version of the library.
unsigned *minnum OUT: The minor version of the library.
unsigned *relnum OUT: The release number of the library.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5get_libversion_f
SUBROUTINE h5get_libversion_f(majnum, minnum, relnum, hdferr)
IMPLICIT NONE
INTEGER, INTENT(OUT) :: majnum ! The major version of the library
INTEGER, INTENT(OUT) :: minnum ! The minor version of the library
INTEGER, INTENT(OUT) :: relnum ! The release number
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5get_libversion_f

History:
Release Fortran90
145 Function introduced in this release.

10

HDF5 Reference Manual H5open

Name: H50pen
Signature:

herr_tH5open(void)
Purpose:

Initializes the HDF5 library.
Description:

H5open initialize the library.

When the HDF5 Library is employed in a C application, this function is normally called automatically,
but if you find that an HDF5 library function is failing inexplicably, try calling this function first. If you
wish to elimnate this possibility, it is safe to routinely call H5open before an application starts working
with the library as there are no damaging side-effects in calling it more than once.

When the HDF5 Library is employed in a Fortran90 application, h5open_f initializes global variables
(e.g. predefined types) and performs other tasks required to initialize the library. h5open_f and
h5close_f are therefore required calls in Fortran90 applications.

Parameters:
None.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5open_f
SUBROUTINE h5open_f(hdferr)
IMPLICIT NONE
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5open_f

11

H5set_free_list_limits HDF5 Reference Manual

Name: H5set_free_list_limits

Signature:
herr_tH5set_free_list_limits(int reg_global_lim, int reg_list_lim, int
arr_global_Ilim, int arr_list_lim, int blk_global_lim, int blk_list_lim)
Purpose:
Sets free-list size limits.
Description:

H5set_free_list_limits sets size limits on all types of free lists. The HDF5 library uses free lists
internally to manage memory. The types of free lists used are as follows:

¢ Regular free lists manage memory for single internal data structures.

¢ Array free lists manage memory for arrays of internal data structures.

O Block free lists manage memory for arbitrarily-sized blocks of bytes.

¢ Factory free lists manage memory for fixed-size blocks of bytes.
The parameters specify global and per-list limits; for example, reg_global_limit and
reg_list_limit limit the accumulated size of all regular free lists and the size of each individual
regular free list, respectively. Therefore, if an application sets a 1Mb limit on each of the global lists, up
to 4Mb of total storage might be allocated, 1Mb for each of the regular, array, block, and factory type
lists.

The settings specified for block free lists are duplicated for factory free lists. Therefore, increasing the
global limit on block free lists by x bytes will increase the potential free list memory usage by 2x bytes.

Using a value of -1 for a limit means that no limit is set for the specified type of free list.
Parameters:

intreg_global_lim IN: The cumulative limit, in bytes, on memory used for all regular free
lists
(Default: 1MB)

int reg_list_lim IN: The limit, in bytes, on memory used for each regular free list
(Default: 64KB)

int arr_global_Ilim IN: The cumulative limit, in bytes, on memory used for all array free lists
(Default: 4MB)

intarr_list_lim IN: The limit, in bytes, on memory used for each array free list
(Default: 256KB)

int blk_global_lim IN: The cumulative limit, in bytes, on memory used for all block free lists

and, separately, for all factory free lists
(Default: 16MB)
int blk_list_lim IN: The limit, in bytes, on memory used for each block or factory free list
(Default: 1MB)
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.6.0 Function introduced in this release.
1.8.3 Function changed in this release to set factory free list memory limits.

12

HDF5 Reference Manual

13

14

HDF5 Reference Manual

HDF5 Reference Manual

H5A: Attribute Interface

Attribute API Functions

These functions create and manipulate attributes and information about attributes.

In the following lists, italic type indicates a configurable macro.

The C Interfaces:

» H5Acreate » H5Arename » H5Aget _info

* H5Acreatel * * H5Arename_by name ¢ H5Aget _info_by name
» H5Acreate2 » H5Awrite » H5Aget_info_by idx

» H5Acreate_by name ¢ H5Aread * H5Aget_num_attrs *

* H5A0pen » H5Aclose * H5Aget_name

* H5Aopen_by name < H5Aiterate » H5Aget create_plist

* H5A0open_name * » H5Aiteratel * * H5Aget_space

* H5A0pen_by idx » H5AIterate2 * H5Aget _type

* H5A0pen_idx * » H5Aiterate_by name ¢ H5Aget storage_size
» H5Aexists » H5Adelete » H5Aget_name_by idx

* H5Aexists by name ¢ H5Adelete_by name
* H5Adelete by _idx

* Use of these functions is deprecated in Release 1.8.0.

Alphabetical Listing

« H5Aclose » H5Aget_info « H5Aiterate?2

* H5Acreate » H5Aget_info_by idx * H5Aiterate_by name
« H5Acreatel * » H5Aget_info_by name < H5Ao0pen

* H5Acreate?2 * H5Aget_name * H5A0pen_by idx

« H5Acreate_by name ¢ H5Aget name_by idx < H5Aopen_by name
* H5Adelete * H5Aget_num_attrs * * H5A0pen_idx *

« H5Adelete_by name ¢ H5Aget_space * H5Aopen_name *

* H5Adelete_by_idx » H5Aget_storage_size * H5Aread

* H5Aexists * H5Aget_type * H5Arename

« H5Aexists_by name < H5Aiterate « H5Arename_by _name
« H5Aget_create_plist « H5Aiteratel * e H5Awrite

15

HDF5 Reference Manual

The FORTRAN9O Interfaces:
In general, each FORTRAN9O0 subroutine performs exactly the same task as the corresponding C function.

* h5aclose_f * hSaget_info_f » h5aopen_f

» h5acreate_f » hSaget_info_by idx_f + h5aopen_by_idx_f

» hbacreate_by name_f e« hbaget_info_by name_f h5aopen_by name_f
* hbadelete_f » hSaget_name_f » hSaopen_idx_f *

* h5adelete_by name_f < hb5aget _name_by idx_f ¢ h5aopen_name_f*
« h5adelete_by_idx_f » h5aget_ num_attrs_f* « hbaread_f

* H5Aexists_f » h5aget_space_f » h5arename_f
« H5Aexists_by name_f < hbaget storage_size f ¢ h5arename_by name_f
« h5aget_create_plist f « hbaget_type_f » h5awrite_f

* Use of these functions is deprecated in Release 1.8.0.
The Attribute interface, H5A, is primarily designed to easily allow small datasets to be attached to primary
datasets as metadata information. Additional goals for the H5A interface include keeping storage requirement for
each attribute to a minimum and easily sharing attributes among datasets.

Because attributes are intended to be small objects, large datasets intended as additional information for a primary
dataset should be stored as supplemental datasets in a group with the primary dataset. Attributes can then be
attached to the group containing everything to indicate a particular type of dataset with supplemental datasets is
located in the group. How small is "small” is not defined by the library and is up to the user’s interpretation.

See Attributes in the HDF5 User's Guide for further information.

16

HDF5 Reference Manual H5Aclose

Name: H5Aclose
Signature:
herr_tH5Aclose(hid_t attr_id)
Purpose:
Closes the specified attribute.
Description:
H5Aclose terminates access to the attribute specified by attr_id by releasing the identifier.

Further use of a released attribute identifier is illegal; a function using such an identifier will fail.
Parameters:

hid_tattr_id IN: Attribute to release access to.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5aclose_f
SUBROUTINE h5aclose_f(attr_id, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(OUT) :: attr_id ! Attribute identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:

! 0 on success and -1 on failure
END SUBROUTINE h5aclose_f

17

H5Acreate HDF5 Reference Manual

Name: H5Acreate
Signature:

hid_tH5Acreate(hid_t loc_id, const char *attr_name, [1]
hid_ttype_id, hid_t space_id, hid_t acpl_id)

hid_tH5Acreate(hid_t loc_id, const char *attr_name, [2]
hid_ttype_id, hid_t space_id, hid_t acpl_id, hid_t aapl_id)

Purpose:
Creates an attribute attached to a specified object.

Description:
H5Acreate is a macro that is mapped to either H5Acreatel or H5Acreate2, depending on the
needs of the application.

Such macros are provided to facilitate application compatibility. For example:

0 The H5Acreate macro will be mapped to H5Acreatel and will use the H5Acreatel
syntax (first signature above) if an application is coded for HDF5 Release 1.6.x.
¢ The H5Acreate macro mapped to H5Acreate2 and will use the H5Acreate2 syntax
(second signature above) if an application is coded for HDF5 Release 1.8.x.
Macro use and mappings are fully described in “API Compatibility Macros in HDF5”; we urge you to
read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Acreate is mapped to the most recent version of the function, currently H5Acreate2. If the
library and/or application is compiled for Release 1.6 emulation, H5Acreate will be mapped to
H5Acreatel. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Acreate mapping

Global settings

No compatibility flag H5Acreate2
Enable deprecated symbols H5Acreate2
Disable deprecated symbols H5Acreate2

Emulate Release 1.6 interface H5Acreatel

Function-level macros
H5Acreate_vers = 2 H5Acreate?2

H5Acreate_vers = 1 H5Acreatel

18

HDF5 Reference Manual H5Acreate

Interface history: Signature [1] above is the original H5Acreate interface and the only interface
available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now deprecate
but will remain directly callable as H5Acreatel.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Acreate?.

See “AP| Compatibility Macros in HDF5” for circumstances under which either of these functions might
not be available in an installed instance of the HDF5 Library.

Fortran90 Interface: hbacreate f
SUBROUTINE h5acreate_f(loc_id, name, type_id, space_id, attr_id, hdferr, &
acpl_id, aapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! Object identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Attribute name
INTEGER(HID_T), INTENT(IN) :: type_id ! Attribute datatype identifier
INTEGER(HID_T), INTENT(IN) :: space_id ! Attribute dataspace identifier
INTEGER(HID_T), INTENT(OUT) :: attr_id ! Attribute identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:
I 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: acpl_id
I Attribute creation property
I'list identifier
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: aapl_id
I Attribute access property
I list identifier
END SUBROUTINE h5acreate_f

History:
Release C
1.8.0 The function H5Acreate renamed to H5Acreatel and deprecated in this
release.
The macro H5Acreate and the functions H5Acreate2 and
H5Acreate_by name introduced in this release.

19

H5Acreatel HDF5 Reference Manual

Name: H5Acreatel
Signature:
hid_tH5Acreatel(hid_t loc_id, const char *attr_name, hid_t type_id, hid_t space_id,
hid_tacpl_id)
Purpose:
Creates a dataset as an attribute of another group, dataset, or named datatype.
Deprecated Function:
This function is deprecated in favor of the function H5Acreate?2.
Description:
H5Acreatel creates the attribute attr_name attached to the object specified with loc_id.

The attribute name specified in attr_name must be unique. Attempting to create an attribute with the
same name as an already existing attribute will fail, leaving the pre-existing attribute in place. To
overwrite an existing attribute with a new attribute of the same name, first call HSAdelete then recreate
the attribute with H5Acreatel.

The datatype and dataspace identifiers of the attribute, type_id and space_id, respectively, are
created with the H5T and H5S interfaces, respectively.

Currently only simple dataspaces are allowed for attribute dataspaces.

The attribute creation property list, acpl_id, is currently unused; it may be used in the future for
optional attribute properties. At this time, HSP_DEFAULT is the only accepted value.

The attribute identifier returned from this function must be released with H5Aclose or resource leaks

will develop.
Parameters:
hid_tloc_id IN: Identifier for the object to which the attribute is to be attached
May be any HDF5 object identifier (group, dataset, or committed
datatype) or an HDF5 file identifier; if loc_id is a file identifer, the
attribute will be attached to that file's root group.
const char *attr_name IN: Name of attribute to create
hid_ttype_id IN: Identifier of datatype for attribute
hid_tspace_id IN: Identifier of dataspace for attribute
hid_tacpl_id IN: Identifier of creation property list
(Currently not used; specify5P_DEFAULT.)
Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.
Fortran90 Interface:
See listing under H5Acreate.
History:
Release C
1.8.0 The function H5Acreate renamed to H5Acreatel and deprecated in this
release.

20

HDF5 Reference Manual H5Acreate?2

Name: H5Acreate?2

Signature:
hid_tH5Acreate2(hid_t loc_id, const char *attr_name, hid_t type_id, hid_t space_id,
hid_tacpl_id, hid_t aapl_id,)

Purpose:
Creates an attribute attached to a specified object.

Description:
H5Acreate2 creates an attribute, attr_name, which is attached to the object specified by the
identifier loc_id.

The attribute name, attr_name, must be unique for the object.

The attribute is created with the specified datatype and dataspace, type_id and space_id, which are
created with the H5T and H5S interfaces, respectively.

The attribute creation and access property lists are currently unused, but will be used in the future for
optional attribute creation and access properties. These property lists should currently be H5P_DEFAUL

The attribute identifier returned by this function must be released with H5Aclose or resource leaks will

develop.
Parameters:
hid_tloc_id IN: Location or object identifier
May be any HDF5 object identifier (group, dataset, or committed datatype)
or an HDF5 file identifier; if loc_id is a file identifer, the attribute will
be attached to that file's root group.
const char *attr_name IN: Attribute name
hid_ttype_id IN: Attribute datatype identifier
hid_tspace_id IN: Attribute dataspace identifier
hid_tacpl_id IN: Attribute creation property list identifier
(Currently not used; specifyf5P_DEFAULT.)
hid_taapl_id IN: Attribute access property list identifier
(Currently not used; specifg5P_DEFAULT.)
Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.
Fortran90 Interface:

See listing under H5Acreate.
History:

Release C

1.8.0 Function introduced in this release.

21

H5Acreate_by name HDF5 Reference Manual

Name: H5Acreate_by name

Signature:
hid_tH5Acreate_by name(hid_t loc_id, const char *obj_name, const char *attr_name,
hid_ttype_id, hid_t space_id, hid_t acpl_id, hid_t aapl_id, hid_t lapl_id)

Purpose:
Creates an attribute attached to a specified object.

Description:
H5Acreate_by name creates an attribute, attr_name, which is attached to the object specified by
loc_id and obj_name.

loc_id is a location identifier; obj_name is the object name relative to loc_id. If loc_id fully
specifies the object to which the attribute is to be attached, obj_name should be "' (a dot).

The attribute name, attr_name, must be unique for the object.

The attribute is created with the specified datatype and dataspace, type_id and space_id, which are
created with the H5T and H5S interfaces respectively.

The attribute creation and access property lists are currently unused, but will be used in the future for
optional attribute creation and access properties. These property lists should currently be H5P_DEFAULT.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

The attribute identifier returned by this function must be released with H5Aclose or resource leaks will

develop.
Parameters:
hid_tloc_id IN: Location or object identifier; may be dataset or group
const char *obj_name IN: Name, relative to loc_id, of object that attribute is to be attached to
const char *attr_name IN: Attribute name
hid_ttype_id IN: Attribute datatype identifier
hid_tspace_id IN: Attribute dataspace identifier
hid_tacpl_id IN: Attribute creation property list identifier
(Currently not used.)
hid_taapl_id IN: Attribute access property list identifier
(Currently not used.)
hid_tlapl_id IN: Link access property list
Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.

Fortran90 Interface: hSacreate_by_name_f
SUBROUTINE h5acreate_by name_f(loc_id, obj_name, attr_name, type_id, space_id, &
attr, hdferr, acpl_id, aapl_id, lapl_id)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: loc_id ! Object identifier

CHARACTER(LEN=%*), INTENT(IN) :: obj_name ! Name of object to which
I attribute is attached

CHARACTER(LEN=%*), INTENT(IN) :: attr_name ! Attribute name

INTEGER(HID_T), INTENT(IN) :: type_id ! Attribute datatype identifier

22

HDF5 Reference Manual

INTEGER(HID_T), INTENT(IN) :: space_id ! Attribute dataspace identifier
INTEGER(HID_T), INTENT(OUT) :: attr ! An attribute identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:

1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: acpl_id

I Attribute creation property list

I'identifier (Currently not used.)
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: aapl_id

I Attribute access property list

I'identifier (Currently not used.)
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id

I Link access property list

END SUBROUTINE h5acreate_by name_f

History:
Release C
1.8.0 Function introduced in this release.

H5Acreate_by name

23

H5Adelete HDF5 Reference Manual

Name: H5Adelete

Signature:

herr_tH5Adelete(hid_t loc_id, const char *attr_name)
Purpose:

Deletes an attribute from a specified location.
Description:

H5Adelete removes the attribute specified by its name, attr_name, from a dataset, group, or named
datatype. This function should not be used when attribute identifiers are open on loc_id as it may cause
the internal indexes of the attributes to change and future writes to the open attributes to produce incorrect

results.
Parameters:
hid_tloc_id IN: Identifier of the dataset, group, or named datatype to have the
attribute deleted from.
const char *attr_name IN: Name of the attribute to delete.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: hbadelete f
SUBROUTINE h5adelete_f(obj_id, name, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Attribute name
INTEGER, INTENT(OUT) :: hdferr I Error code:
I 0 on success and -1 on failure
END SUBROUTINE h5adelete_f

History:
Release C

24

HDF5 Reference Manual H5Adelete_by_idx

Name: H5Adelete by idx
Signature:
herr_tH5Adelete_by idx(hid_t loc_id, const char *obj_name, H5_index_t idx_type,
H5 iter_order_torder, hsize_t n, hid_tlapl_id)
Purpose:
Deletes an attribute from an object according to index order.
Description:
H5Adelete by idx removes an attribute, specified by its location in an index, from an object.

The object from which the attribute is to be removed is specified by a location identifier and name,
loc_id and obj_name, respectively. If loc_id fully specifies the object from which the attribute is
to be removed, obj_name should be ".' (a dot).

The attribute to be removed is specified by a position in an index, n. The type of index is specified by
idx_type and may be H5_INDEX_NAME, for an alpha-numeric index by name, or

H5 INDEX CRT_ORDER, for an index by creation order. The order in which the index is to be traverse

is specified by order and may be H5_ITER_INC (increment) for top-down iteration, H5_ITER_DEC
(decrement) for bottom-up iteration, or H5_ITER_NATIVE, in which case HDF5 will iterate in the
fastest-available order. For example, if idx_type, order, and n are set to H5_INDEX_NAME,

H5 ITER_INC, and 5, respectively, the fifth attribute by alpha-numeric order of attribute names will be

removed.

For a discussion of idx_type and order, the valid values of those parameters, and the use of n, see
the description of H5Aiterate2

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.
Parameters:

hid_tloc_id IN: Location or object identifier; may be dataset or group
const char *obj_name IN: Name of object, relative to location, from which attribute is to be
removed
H5_index_tdx_type IN: Type of index
H5 iter_order_torder IN: Order in which to iterate over index
hsize i IN: Offset within index
hid_tlapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5adelete_by idx_f
SUBROUTINE h5adelete_by _idx_f(loc_id, obj_name, idx_type, order, n, hdferr, &
lapl_id)
IMPLICIT NONE
INTEGER(HID_T),INTENT(IN) :: loc_id
I Identifer for object to which
I attribute is attached
CHARACTER(LEN=*),INTENT(IN) :: obj_name
I Name of object, relative to location,
I from which attribute is to be removed
INTEGER, INTENT(IN) :: idx_type
I Type of index; Possible values are:
I H5_INDEX_UNKNOWN_F - Unknown index type

25

H5Adelete_by_idx

I H5_INDEX_NAME_F - Index on nhames
I H5_INDEX_CRT_ORDER_F - Index on creation order
I H5_INDEX_N_F - Number of indices defined
INTEGER, INTENT(IN) :: order
I Order in which to iterate over index:
I H5 ITER_UNKNOWN_F - Unknown order
I H5_ITER_INC_F - Increasing order
I H5_ITER_DEC_F - Decreasing order
I H5_ITER_NATIVE_F - No particular order,
! whatever is fastest
I H5_ITER_N_F - Number of iteration orders
INTEGER(HSIZE_T), INTENT(IN) :: n
I Offset within index
INTEGER, INTENT(OUT) :: hdferr
I Error code:
I 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
I Link access property list
END SUBROUTINE h5adelete_by_idx_f

History:
Release C
1.8.0 Function introduced in this release.

26

HDF5 Reference Manual

HDF5 Reference Manual H5Adelete_by name

Name: H5Adelete_by name

Signature:
herr_tH5Adelete_by name(hid_t loc _id, const char *obj_name, const char *attr_name,
hid_tlapl_id)

Purpose:
Removes an attribute from a specified location.

Description:
H5Adelete_by name removes the attribute attr_name from an object specified by location and
name, loc_id and obj_name, respectively.

If loc_id fully specifies the object from which the attribute is to be removed, obj_name should be
"' (a dot).

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.
Parameters:

hid_tloc_id IN: Location or object identifier; may be dataset or group
const char *obj_name IN: Name of object, relative to location, from which attribute is to be
removed
const char *attr_name IN: Name of attribute to delete
hid_tlapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5adelete_by name f
SUBROUTINE h5adelete_by name_f(loc_id, obj_name, attr_name, hdferr, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! Identifer for object to which
| attribute is attached
CHARACTER(LEN=*), INTENT(IN) :: obj_name
I Name of object, relative to location,
! from which attribute is to be removed
CHARACTER(LEN=*), INTENT(IN) :: attr_name
! Name of attribute to delete
INTEGER, INTENT(OUT) :: hdferr I Error code:
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
I Link access property list
END SUBROUTINE h5adelete_by name_f

History:
Release C
1.8.0 Function introduced in this release.

27

H5Aexists HDF5 Reference Manual

Name: H5Aexists
Signature:
htri_t H5Aexists(hid_t obj_id, const char *attr_name)
Purpose:
Determines whether an attribute with a given name exists on an object.
Description:
H5Aexists determines whether the attribute attr_name exists on the object specified by obj_id.
Parameters:

hid_tobj_id, IN: Object identifier
const char *attr_name IN: Attribute name
Returns:
When successful, returns a positive value, for TRUE, or O (zero), for FALSE.
Otherwise returns a negative value.

Fortran90 Interface: h5aexists_f

SUBROUTINE h5aexists_f(obj_id, attr_name, attr_exists, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
CHARACTER(LEN=%*), INTENT(IN) :: attr_name ! Attribute name
LOGICAL, INTENT(OUT) :: attr_exists I .TRUE. if exists, .FALSE. otherwise
INTEGER, INTENT(OUT) :: hdferr I Error code:

1 0 on success and -1 on failure
END SUBROUTINE

History:
Release C
1.8.0 Function introduced in this release.

28

HDF5 Reference Manual H5Aexists_by name

Name: H5Aexists by name

Signature:
htri_t H5Aexists_by name(hid_t loc_id, const char *obj_name, const char *attr_name,
hid_tlapl_id)

Purpose:
Determines whether an attribute with a given name exists on an object.

Description:

H5Aexists_by name determines whether the attribute attr_name exists on an object. That object
is specified by its location and hame, loc_id and obj_name, respectively.

loc_id specifies a location in the file containing the object. obj_name is the name of the object to
which the attribute is attached and can be a relative name, relative to loc_id, or an absolute name,
based in the root group of the file. If loc_id fully specifies the object, obj_name should be '.' (a
dot).

The link access property list, lapl_id, may provide information regarding the properties of links
required to access obj_name. See “Link Access Properties” in the H5P APIs.
Parameters:

hid_tloc_id, IN: Location identifier
const char *obj_name IN: Object name
Either relative to loc_id, absolute from the file’s root group, or .’
(a dot)
const char *attr_name IN: Attribute name
hid_tlapl_id IN: Link access property list identifier
Returns:

When successful, returns a positive value, for TRUE, or 0 (zero), for FALSE.
Otherwise returns a negative value.

Fortran90 Interface: h5aexists_by name_f
SUBROUTINE h5aexists_by _name_f(loc_id, obj_name, attr_name, attr_exists, hdferr,&
lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! Location identifier
CHARACTER(LEN=*), INTENT(IN) :: obj_name
I Object name either relative to loc_id,
! absolute from the
! file's root group, or "'
CHARACTER(LEN=%), INTENT(IN) :: attr_name
! Attribute name
LOGICAL, INTENT(OUT) :: attr_exists ! .TRUE. if exists, .FALSE. otherwise
INTEGER, INTENT(OUT) :: hdferr ! Error code:
10 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
! Link access property list identifier
END SUBROUTINE h5aexists_by name_f

History:
Release C
1.8.0 Function introduced in this release.

29

H5Aget_create_plist HDF5 Reference Manual

Name: H5Aget_create_plist

Signature:

hid_tH5Aget_create_plist(hid_t attr_id)
Purpose:

Gets an attribute creation property list identifier.
Description:

H5Aget_create_plist returns an identifier for the attribute creation property list associated with the
attribute specified by attr_id.

The creation property list identifier should be released with H5Pclose.

Parameters:
hid_tattr_id IN: Identifier of the attribute.

Returns:
Returns an identifier for the attribute’s creation property list if successful. Otherwise returns a negative
value.

Fortran90 Interface: hbaget create_plist_f
SUBROUTINE h5aget_create_plist_f(attr_id, creation_prop_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id
I Identifier of the attribute
INTEGER(HID_T), INTENT(OUT) :: creation_prop_id
I [dentifier for the attribute’s creation property
INTEGER, INTENT(OUT) :: hdferr
I Error code:
I 0 on success and -1 on failure
END SUBROUTINE h5aget_create_plist_f

History:
Release C
1.8.0 Function introduced in this release.

30

HDF5 Reference Manual H5Aget_info

Name: H5Aget_info

Signature:

herr_tH5Aget info(hid_t attr_id, H5A_info_t *ainfo)
Purpose:

Retrieves attribute information, by attribute identifier.
Description:

H5Aget_info retrieves attribute information, locating the attribute with an attribute identifier,
attr_id, which is the identifier returned by H5Aopen or H5Aopen_by idx. The attribute
information is returned in the ainfo struct.

The ainfo struct is defined as follows:

typedef struct {
hbool_t corder_valid;
H50_msg_crt_idx_t corder;
H5T_cset_t cset;
hsize_t data_size;

} H5A info_t;

corder_valid indicates whether the creation order data is valid for this attribute. Note that if creation
order is not being tracked, no creation order data will be valid. Valid values are TRUE and FALSE.

corder is a positive integer containing the creation order of the attribute. This value is 0-based, so, for
example, the third attribute created will have a corder value of 2.

cset indicates the character set used for the attribute’s name; valid values are defined in
H5Tpublic.h and include the following:

H5T_CSET_ASCII US ASCII

H5T CSET_UTF8 UTF-8 Unicode encoding
This value is set with HS5Pset_char_encoding.

data_size indicates the size, in the number of characters, of the attribute.

Parameters:
hid_tattr_id IN: Attribute identifier
H5A_info_t *ainfo OUT: Attribute information struct
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: hbaget_info_f
SUBROUTINE h5aget_info_f(attr_id, f_corder_valid, corder, cset, data_size,hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
LOGICAL, INTENT(OUT) :: f_corder_valid ! Indicates whether the creation order
! data is valid for this attribute

INTEGER, INTENT(OUT) :: corder !'Is a positive integer containing the
! creation order of the attribute
INTEGER, INTENT(OUT) :: cset ! Indicates the character set used for

I the ! attribute’s name
INTEGER(HSIZE_T), INTENT(OUT) :: data_size

! Indicates the size, in the number

! of characters, of the attribute

31

H5Aget_info HDF5 Reference Manual

INTEGER, INTENT(OUT) :: hdferr I Error code:
1'0 on success and -1 on failure
END SUBROUTINE hb5aget_info_f

History:
Release C
1.8.0 Function introduced in this release.

32

HDF5 Reference Manual H5Aget_info_by idx

Name: H5Aget_info_by idx

Signature:
herr_tH5Aget_info_by idx(hid_t loc_id, const char *obj_name, H5 index_t idx_type,
H5 iter_order_torder, hsize_t n, H5A info_t *ainfo, hid_t lapl_id)

Purpose:
Retrieves attribute information, by attribute index position.

Description:
H5Aget_info_by idx retrieves information for an attribute that is attached to an object, which is
specified by its location and name, loc_id and obj_name, respectively. The attribute is located by its
index position and the attribute information is returned in the ainfo struct.

If loc_id fully specifies the object to which the attribute is attached, obj_name should be ".' (a dot).

The attribute is located by means of an index type, an index traversal order, and a position in the index,
idx_type, order and n, respectively. These parameters and their valid values are discussed in the
description of H5Aiterate2.

The ainfo struct, which will contain the returned attribute information, is described in H5Aget_info.

The link access property list, lapl_id, may provide information regarding the properties of links

required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.
Parameters:

hid_tloc_id IN: Location of object to which attribute is attached
const char *obj_name IN: Name of object to which attribute is attached, relative to location
H5_index_tdx_type IN: Type of index
H5 iter_order_torder IN: Index traversal order
hsize_mn IN: Attribute’s position in index
H5A_info_t *ainfo OUT: Struct containing returned attribute information
hid_tlapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5aget_info_by idx_f
SUBROUTINE h5aget_info_by _idx_f(loc_id, obj_name, idx_type, order, n, &
f_corder_valid, corder, cset, data_size, hdferr, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id
! Object identifier
CHARACTER(LEN=¥), INTENT(IN) :: obj_name
! Name of object to which attribute is attached
INTEGER, INTENT(IN) :: idx_type
! Type of index; Possible values are:
I H5_INDEX_UNKNOWN_F - Unknown index type
I H5 INDEX _NAME_F - Index on names
I H5_INDEX_CRT_ORDER_F - Index on creation order
! H5_INDEX_N_F - Number of indices defined
INTEGER, INTENT(IN) :: order
! Order in which to iterate over index:
I H5_ITER_UNKNOWN_F - Unknown order
! H5_ITER_INC_F - Increasing order
! H5_ITER_DEC_F - Decreasing order
! H5_ITER_NATIVE_F - No particular order,

33

H5Aget_info_by_idx

! whatever is fastest
INTEGER(HSIZE_T), INTENT(IN) :: n

! Attribute’s position in index

LOGICAL, INTENT(OUT) :: f_corder_valid
! Indicates whether the creation order data is
I'valid for this attribute
INTEGER, INTENT(OUT) :: corder
I Is a positive integer containing the creation
lorder of the attribute
INTEGER, INTENT(OUT) :: cset
I Indicates the character set used for the
I attribute’s name
INTEGER(HSIZE_T), INTENT(OUT) :: data_size
I Indicates the size, in the number of characters,
! of the attribute
INTEGER, INTENT(OUT) :: hdferr
! Error code:
10 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) : lapl_id
! Link access property list
END SUBROUTINE hbaget_info_by_idx_f

History:
Release C
1.8.0 Function introduced in this release.

34

HDF5 Reference Manual

HDF5 Reference Manual H5Aget_info_by name

Name: H5Aget_info_by name

Signature:
herr_tH5Aget info_by name(hid_t loc_id, const char *obj_name, const char *attr_name,
H5A _info_t *ainfo, hid_t lapl_id)

Purpose:
Retrieves attribute information, by attribute name.

Description:
H5Aget_info_by name retrieves information for an attribute, attr_name, that is attached to an
object, specified by its location and hame, loc_id and obj_name, respectively. The attribute
information is returned in the ainfo struct.

If loc_id fully specifies the object to which the attribute is attached, obj_name should be ".' (a dot).
The ainfo struct is described in H5Aget_info.
The link access property list, lapl_id, may provide information regarding the properties of links

required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.
Parameters:

hid_tloc_id IN: Location of object to which attribute is attached
const char *obj_name IN: Name of object to which attribute is attached, relative to location
const char *attr_name IN: Attribute name
H5A_info_t *ainfo OUT: Struct containing returned attribute information
hid_tlapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hbaget_info_by name_f
SUBROUTINE h5aget_info_by name_f(loc_id, obj_name, attr_name, &
f_corder_valid, corder, cset, data_size, hdferr, lapl_id)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: loc_id ! Object identifier

CHARACTER(LEN=%*), INTENT(IN) :: obj_name ! Name of object to which attribute
lis attached

CHARACTER(LEN=%*), INTENT(IN) :: attr_name ! Attribute name

LOGICAL, INTENT(OUT) :: f_corder_valid ! Indicates whether the creation
I order data is valid for this

I attribute

INTEGER, INTENT(OUT) :: corder I'Is a positive integer containing
I the creation order of the
I attribute

INTEGER, INTENT(OUT) :: cset I Indicates the character set used

I for the attribute’s name

INTEGER(HSIZE_T), INTENT(OUT) :: data_size ! Indicates the size, in the number
I of characters, of the attribute

INTEGER, INTENT(OUT) :: hdferr ! Error code:
I'0 on success and -1 on failure

INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
I Link access property list

END SUBROUTINE h5aget_info_by name_f

35

H5Aget_info_by name HDF5 Reference Manual

History:
Release C
1.8.0 Function introduced in this release.

36

HDF5 Reference Manual H5Aget_name

Name: H5Aget_name

Signature:
ssize_ H5Aget_name(hid_t attr_id, size_t buf_size, char *buf)

Purpose:
Gets an attribute name.

Description:
H5Aget_name retrieves the name of an attribute specified by the identifier, attr_id. Up to
buf_size characters are stored in buf followed by a \0 string terminator. If the name of the attribute is
longer than (buf_size -1), the string terminator is stored in the last position of the buffer to properly
terminate the string.

If the user only wants to find out the size of this name, the values 0 and NULL can be passed in for the
parameters bufsize and buf.

Parameters:
hid_tattr_id IN: Identifier of the attribute.
size_tbhuf size IN: The size of the buffer to store the name in.
char *buf OUT: Buffer to store name in.

Returns:

Returns the length of the attribute's name, which may be longer than buf_size, if successful. Otherwise
returns a negative value.

Fortran90 Interface: h5aget_name_f
SUBROUTINE h5aget_name_f(attr_id, size, buf, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
INTEGER(SIZE_T), INTENT(IN) :: size | Buffer size

CHARACTER(LEN=*), INTENT(INOUT) :: buf
! Buffer to hold attribute name

INTEGER, INTENT(OUT) :: hdferr I Error code:
I name length is successful,
-1 if fail

END SUBROUTINE h5aget_name_f

37

H5Aget_name_by idx HDF5 Reference Manual

Name: H5Aget_name_by idx
Signature:

ssize_ H5Aget_name_by idx(hid_t loc_id, const char *obj_name, H5 index_t idx_type,
H5 iter_order_torder, hsize_t n, char *name, size_size, hid_t lapl_id)

Purpose:

Gets an attribute name, by attribute index position

Description:

H5Aget_name_by idx retrieves the name of an attribute that is attached to an object, which is
specified by its location and name, loc_id and obj_name, respectively. The attribute is located by its
index position, the size of the name is specified in size, and the attribute name is returned in name.

If loc_id fully specifies the object to which the attribute is attached, obj_name should be ".' (a dot).
The attribute is located by means of an index type, an index traversal order, and a position in the index,
idx_type, order and n, respectively. These parameters and their valid values are discussed in the

description of H5Aiterate2.

If the attribute name’s size is unknown, the values 0 and NULL can be passed in for the parameters size
and name. The function’s return value will provide the correct value for size.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

Parameters:
hid_tloc_id IN: Location of object to which attribute is attached
const char *obj_name IN: Name of object to which attribute is attached, relative to location
H5_index_tdx_type IN: Type of index
H5 iter_order_torder IN: Index traversal order
hsize_mn IN: Attribute’s position in index
char *name OUT: Attribute name
size_tsize IN: Size, in bytes, of attribute name
hid_tlapl_id IN: Link access property list
Returns:

Returns attribute name size, in bytes, if successful; otherwise returns a negative value.

Fortran90 Interface: h5aget_name_by idx_f

38

SUBROUTINE h5aget_name_by idx_f(loc_id, obj_name, idx_type, order, &
n, name, hdferr, size, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! Identifer for object to which
I attribute is attached
CHARACTER(LEN=%*), INTENT(IN) :: obj_name ! Name of object, relative to
! location,from which attribute is to
! be removed
INTEGER, INTENT(IN) :: idx_type
I Type of index; Possible values are:
I H5_INDEX_UNKNOWN_F - Unknown index type
I H5_INDEX_NAME_F - Index on nhames
I H5_INDEX_CRT_ORDER_F - Index on creation order
I H5_INDEX_N_F - Number indices defined

HDF5 Reference Manual H5Aget_name_by idx

INTEGER, INTENT(IN) :: order ! Order in which to iterate over index:
I H5_ITER_UNKNOWN_F - Unknown order
I H5_ITER_INC_F - Increasing order
I H5_ITER_DEC_F - Decreasing order
I H5_ITER_NATIVE_F - No particular order,
! whatever is fastest
I H5_ITER_N_F - Number of iteration orders

INTEGER(HSIZE_T), INTENT(IN) :: n
I Attribute’s position in index
CHARACTER(LEN=%*), INTENT(OUT) :: name
I Attribute name
INTEGER, INTENT(OUT) :: hdferr
I Error code:
I Returns attribute name size,
I -1 if fail
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
I Link access property list
INTEGER(SIZE_T), OPTIONAL, INTENT(OUT) :: size
I exact buffer size, in number of characters
END SUBROUTINE h5aget_name_by_idx_f

History:
Release C
1.8.0 Function introduced in this release.

39

H5Aget_num_attrs HDF5 Reference Manual

Name: H5Aget_num_attrs
Signature:
int HSAget_num_attrs(hid_t loc_id)
Purpose:
Determines the number of attributes attached to an object.
Deprecated Function:
This function is deprecated in favor of the functions H50get_info, H50get_info_by name, and
H50get_info_by _idx.
Description:
H5Aget_num_attrs returns the number of attributes attached to the object specified by its identifier,
loc_id. The object can be a group, dataset, or named datatype.
Parameters:
hid_tloc_id IN: Identifier of a group, dataset, or named datatype.
Returns:
Returns the number of attributes if successful; otherwise returns a negative value.
Fortran90 Interface: haget_num_attrs_f
SUBROUTINE h5aget_num_attrs_f(obj_id, attr_num, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
INTEGER, INTENT(OUT) :: attr_num ! Number of attributes of the object
INTEGER, INTENT(OUT) :: hdferr ! Error code:

10 on success and -1 on failure
END SUBROUTINE h5aget_num_attrs_f

40

HDF5 Reference Manual H5Aget_space

Name: H5Aget_space
Signature:
hid_tH5Aget_space(hid t attr_id)
Purpose:
Gets a copy of the dataspace for an attribute.
Description:
H5Aget_space retrieves a copy of the dataspace for an attribute. The dataspace identifier returned
from this function must be released with H5Sclose or resource leaks will develop.
Parameters:
hid_tattr_id IN: Identifier of an attribute.
Returns:
Returns attribute dataspace identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5aget_space_f

SUBROUTINE h5aget_space_f(attr_id, space_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
INTEGER(HID_T), INTENT(OUT) :: space_id ! Attribute dataspace identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:

I 0 on success and -1 on failure
END SUBROUTINE h5aget_space_f

41

H5Aget_storage_size HDF5 Reference Manual

Name: H5Aget_storage_size
Signature:
hsize tH5Aget_storage_size(hid_t attr_id)
Purpose:
Returns the amount of storage required for an attribute.
Description:
H5Aget_storage_size returns the amount of storage that is required for the specified attribute,
attr_id.
Parameters:
hid_tattr_id IN: Identifier of the attribute to query.
Returns:
Returns the amount of storage size allocated for the attribute; otherwise returns 0 (zero).

Fortran90 Interface: h5aget_storage_size f
SUBROUTINE h5aget_storage_size_f(attr_id, size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
INTEGER(HSIZE_T), INTENT(OUT) :: size ! Attribute storage requirement
INTEGER, INTENT(OUT) :: hdferr I Error code:
I 0 on success and -1 on failure
END SUBROUTINE h5aget_storage_size_f

42

HDF5 Reference Manual H5Aget _type

Name: H5Aget_type
Signature:
hid_tH5Aget_type(hid_t attr_id)
Purpose:
Gets an attribute datatype.
Description:
H5Aget_type retrieves a copy of the datatype for an attribute.

The datatype is reopened if it is a named type before returning it to the application. The datatypes
returned by this function are always read-only. If an error occurs when atomizing the return datatype, the
the datatype is closed.

The datatype identifier returned from this function must be released with H5Tclose or resource leaks
will develop.

Parameters:
hid_tattr_id IN: Identifier of an attribute.

Returns:
Returns a datatype identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5aget_type f

SUBROUTINE h5aget_type_f(attr_id, type_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
INTEGER(HID_T), INTENT(OUT) :: type_id ! Attribute datatype identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:

1 0 on success and -1 on failure
END SUBROUTINE h5aget_type_f

43

H5Aiterate HDF5 Reference Manual

Name: H5Aiterate

Signature:
herr_tH5Aiterate(hid_t loc_id, unsigned * idx, H5A operator_t op, [1]
void *op_data)

herr_tH5Aiterate(hid_t obj_id, H5_index_t idx_type, [2]
H5_iter_order_torder, hsize_t *n, H5A_operator2_top, void *op_data)

Purpose:
Calls a user’s function for each attribute on an object.

Description:
H5Aiterate is a macro that is mapped to either H5Aiteratel or H5Aiterate2, depending on the
needs of the application.

Such macros are provided to facilitate application compatibility. For example:

¢ The H5Aiterate macro will be mapped to H5Aiteratel and will use the H5Aiteratel
syntax (first signature above) if an application is coded for HDF5 Release 1.6.x.
¢ The H5AIterate macro mapped to H5Aiterate2 and will use the H5Aiterate2 syntax
(second signature above) if an application is coded for HDF5 Release 1.8.x.
Macro use and mappings are fully described in “API Compatibility Macros in HDF5”; we urge you to
read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Aiterate is mapped to the most recent version of the function, currently H5Aiterate2. If

the library and/or application is compiled for Release 1.6 emulation, H5Aiterate will be mapped to
H5Aiteratel. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Aiterate mapping

Global settings

No compatibility flag H5Aiterate2
Enable deprecated symbols H5Aiterate2
Disable deprecated symbols H5Aiterate2

Emulate Release 1.6 interface H5Aiteratel

Eunction-level macros
H5Aiterate_vers = 2 H5Aiterate2
H5Aiterate_vers =1 H5Aiteratel

44

HDF5 Reference Manual H5Aiterate

Interface history: Signature [1] above is the original H5Aiterate interface and the only interface
available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now deprecate
but will remain directly callable as H5Aiteratel.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Aiterate?2.

See “AP| Compatibility Macros in HDF5” for circumstances under which either of these functions might
not be available in an installed instance of the HDF5 Library.
Fortran90 Interface:

None.
History:
Release C
1.8.0 The function H5Aiterate renamed to H5Aiteratel and deprecated in this

release.
The macro H5Aiterate and the functions H5Aiterate2 and
H5Aiterate_by name introduced in this release.

45

H5Aiteratel HDF5 Reference Manual

Name: H5Aiteratel

Signature:
herr_tH5Aiteratel(hid_t loc_id, unsigned * idx, H5A_operatorl_top, void *op_data)
Purpose:
Calls a user’s function for each attribute on an object.
Notice:
This function is deprecated in favor of the function H5Aiterate?2.
Description:

H5Aiteratel iterates over the attributes of the object specified by its identifier, loc_id. The object

can be a group, dataset, or named datatype. For each attribute of the object, the op_data and some
additional information specified below are passed to the operator function op. The iteration begins with
the attribute specified by its index, idx; the index for the next attribute to be processed by the operator,
op, is returned in idx. If idx is the null pointer, then all attributes are processed.

The prototype for HSA _operator _t is:
typedef herr_t (*H5A_operatorl_t)(hid_t loc_id, const char *attr_name,
void *operator_data);

The operation receives the identifier for the group, dataset or named datatype being iterated over,
loc_id, the name of the current attribute about the object, attr_name, and the pointer to the operator
data passed in to H5Aiteratel, op_data. The return values from an operator are:

O Zero causes the iterator to continue, returning zero when all attributes have been processed.

O Positive causes the iterator to immediately return that positive value, indicating short-circuit
success. The iterator can be restarted at the next attribute.

O Negative causes the iterator to immediately return that value, indicating failure. The iterator can
be restarted at the next attribute.

Parameters:
hid_tloc_id IN: Identifier of a group, dataset or named datatype.
unsigned *dx IN/OUT: Starting (IN) and ending (OUT) attribute index.
H5A_operatorl_bp IN: User's function to pass each attribute to
void *op_data IN/OUT: User's data to pass through to iterator operator function
Returns:

If successful, returns the return value of the last operator if it was non-zero, or zero if all attributes were
processed. Otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 The function H5Aiterate renamed to H5Aiteratel and deprecated in this

release.

46

HDF5 Reference Manual H5Aiterate?2

Name: H5Aiterate2

Signature:
herr_tH5Aiterate2(hid_t obj_id, H5 index _t idx_type, H5 iter_order_t order, hsize_t*n,
H5A_operator2_bp, void *op_data,)

Purpose:
Calls user-defined function for each attribute on an object.

Description:
H5Aiterate2 iterates over the attributes attached to a dataset, named datatype, or group, as specified
by obj_id. For each attribute, user-provided data, op_data, with additional information as defined
below, is passed to a user-defined function, op, which operates on that attribute.

The order of the iteration and the attributes iterated over are specified by three parameters: the index ty,
idx_type; the order in which the index is to be traversed, order; and the attribute’s position in the
index, n.

The type of index specified by idx_type can be one of the following:

H5 INDEX_NAME An alpha-numeric index by attribute name

H5_INDEX_CRT_ORDER Anindex by creation order
The order in which the index is to be traversed, as specified by order, can be one of the following:

H5_ITER_INC Iteration is from beginning to end, i.e., a top-down iteration incrementing
the index position at each step.
H5 ITER_DEC Iteration starts at the end of the index, i.e., a bottom-up iteration

decrementing the index position at each step.

H5_ITER_NATIVE HDFS5 iterates in the fastest-available order. No information is provided as
to the order, but HDF5 ensures that each element in the index will be
visited if the iteration completes successfully.

The next attribute to be operated on is specified by n, a position in the index.

For example, if idx_type, order, and n are set to H5_INDEX_NAME, H5_ITER_INC, and 5,
respectively, the attribute in question is the fifth attribute from the beginning of the alpha-numeric index
of attribute names. If order were set to H5 ITER_DEC, it would be the fifth attribute from the end of
the index.

The parameter n is passed in on an H5Aiterate2 call with one value and may be returned with another
value. The value passed in identifies the parameter to be operated on first; the value returned identifies
parameter to be operated on in the next step of the iteration.

The H5A_operator2_t prototype for the op parameter is as follows:

typedef herr_t (*H5A_operator2_t)(hid_t location_id/*in*/, const char
*attr_name/*in*/, const H5A_info_t *ainfo/*in*/, void *op_data/*in,out*/)

The operation receives the location identifier for the group or dataset being iterated over,

location_id; the name of the current object attribute, attr_name; the attribute’s info struct,
ainfo; and a pointer to the operator data passed into H5Aiterate2, op_data.

47

H5Aiterate?2 HDF5 Reference Manual

Valid return values from an operator and the resulting H5Aiterate2 and op behavior are as follows:

¢ Zero causes the iterator to continue, returning zero when all attributes have been processed.

O A positive value causes the iterator to immediately return that positive value, indicating
short-circuit success. The iterator can be restarted at the next attribute, as indicated by the return
value of n.

¢ A negative value causes the iterator to immediately return that value, indicating failure. The
iterator can be restarted at the next attribute, as indicated by the return value of n.

Parameters:
hid_tobj_id IN: Identifier for object to which attributes are attached; may be group,
dataset, or named datatype.
H5 index_tdx_type IN: Type of index
H5_iter_order_torder IN: Order in which to iterate over index
hsize_t*n IN/OUT: Initial and returned offset within index
H5A_operator2_bp IN: User-defined function to pass each attribute to
void *op_data IN/OUT: User data to pass through to and to be returned by iterator operator
function
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Further note that this function returns the return value of the last operator if it was non-zero, which can be
a negative value, zero if all attributes were processed, or a positive value indicating short-circuit success
(see above).

Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

48

HDF5 Reference Manual H5Aiterate_by name

Name: H5Aiterate_by name

Signature:
herr_tH5Aiterate_by name(hid_t loc_id, const char *obj_name, H5_index_t idx_type,
H5 iter_order_torder, hsize t *n, H5A operator2_top, void *op_data, hid_t lapd_id)

Purpose:
Calls user-defined function for each attribute on an object.

Description:
H5Aiterate_by name iterates over the attributes attached to the dataset or group specified with
loc_id and obj_name. For each attribute, user-provided data, op_data, with additional information
as defined below, is passed to a user-defined function, op, which operates on that attribute.

If loc_id fully specifies the object to which these attributes are attached, obj_name should be "' (a
dot).

The order of the iteration and the attributes iterated over are specified by three parameters: the index ty,
idx_type; the order in which the index is to be traversed, order; and the attribute’s position in the
index, n.

The type of index specified by idx_type can be one of the following:

H5 INDEX_NAME An alpha-numeric index by attribute name

H5_INDEX_CRT_ORDER Anindex by creation order
The order in which the index is to be traversed, as specified by order, can be one of the following:

H5_ITER_INC Iteration is from beginning to end, i.e., a top-down iteration incrementing
the index position at each step.
H5 ITER_DEC Iteration starts at the end of the index, i.e., a bottom-up iteration

decrementing the index position at each step.

H5_ITER_NATIVE HDFS5 iterates in the fastest-available order. No information is provided as
to the order, but HDF5 ensures that each element in the index will be
visited if the iteration completes successfully.

The next attribute to be operated on is specified by n, a position in the index.

For example, if idx_type, order, and n are set to H5_INDEX_NAME, H5_ITER_INC, and 5,
respectively, the attribute in question is the fifth attribute from the beginning of the alpha-numeric index
of attribute names. If order were set to H5 ITER_DEC, it would be the fifth attribute from the end of
the index.

The parameter n is passed in on an H5Aiterate_by_name call with one value and may be returned
with another value. The value passed in identifies the parameter to be operated on first; the value return
identifies the parameter to be operated on in the next step of the iteration.

The H5A_operator2_t prototype for the op parameter is as follows:

typedef herr_t (*H5A_operator2_t)(hid_t location_id/*in*/, const char
*attr_name/*in*/, const H5A_info_t *ainfo/*in*/, void *op_data/*in,out*/)

49

H5Aiterate_by name HDF5 Reference Manual

The operation receives the location identifier for the group or dataset being iterated over,
location_id; the name of the current object attribute, attr_name; the attribute’s info struct,
ainfo; and a pointer to the operator data passed into H5Aiterate_by name, op_data.

Valid return values from an operator and the resulting H5Aiterate_by name and op behavior are as
follows:

¢ Zero causes the iterator to continue, returning zero when all attributes have been processed.
O A positive value causes the iterator to immediately return that positive value, indicating
short-circuit success. The iterator can be restarted at the next attribute, as indicated by the return
value of n.
¢ A negative value causes the iterator to immediately return that value, indicating failure. The
iterator can be restarted at the next attribute, as indicated by the return value of n.
The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.
Parameters:

hid_tloc_id IN: Location or object identifier; may be dataset or group
const char *obj_name IN: Name of object, relative to location
H5_index_idx_type IN: Type of index
H5_iter_order_torder IN: Order in which to iterate over index
hsize _t*n IN/OUT: Initial and returned offset within index
H5A_operator2_bp IN: User-defined function to pass each attribute to
void *op_data IN/OUT: User data to pass through to and to be returned by iterator operator
function
hid_tlapd_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Further note that this function returns the return value of the last operator if it was non-zero, which can be
a negative value, zero if all attributes were processed, or a positive value indicating short-circuit success
(see above).

Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

50

HDF5 Reference Manual H5Aopen

Name: H5Aopen

Signature:

hid_tH5Aopen(hid_tobj_id, const char *attr_name, hid_t aapl_id)
Purpose:

Opens an attribute for an object specified by object identifier and attribute name.
Description:

H5Aopen opens an existing attribute, attr_name, that is attached to an object specified an object
identifier, object_id.

The attribute access property list, aapl_id, is currently unused and should currently be
H5P_DEFAULT.

This function, H5Aopen_by_idx, or HSAopen_by name must be called before an attribute can be
accessed for any further purpose, including reading, writing, or any modification.

The attribute identifier returned by this function must be released with H5Aclose or resource leaks will

develop.
Parameters:
hid_tobj_id IN: Identifer for object to which attribute is attached
const char *attr_name IN: Name of attribute to open
hid_taapl_id IN: Attribute access property list
Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5aopen_f
SUBROUTINE h5aopen_f(obj_id, attr_name, attr_id, hdferr, aapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
CHARACTER(LEN=*), INTENT(IN) :: attr_name ! Attribute name
INTEGER(HID_T), INTENT(OUT) :: attr_id ! Attribute identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: aapl_id
I Attribute access property list
END SUBROUTINE h5aopen_f

History:
Release C
1.8.0 Function introduced in this release.

51

H5Aopen_bhy idx HDF5 Reference Manual

Name: H5Aopen_by_idx
Signature:

hid_tH5Aopen_by idx(hid_t loc_id, const char *obj_name, H5_index_t idx_type,
H5_iter_order_torder, hsize_t n, hid_taapl_id, hid_t lapl_id)

Purpose:
Description:

H5Aopen_by_idx opens an existing attribute that is attached to an object specified by location and
name, loc_id and obj_name, respectively. If loc_id fully specifies the object to which the attribute
is attached, obj_name should be "' (a dot).

The attribute is identified by an index type, an index traversal order, and a position in the index,
idx_type, order and n, respectively. These parameters and their valid values are discussed in the
description of H5Aiterate?2.

The attribute access property list, aapl_id, is currently unused and should currently be
H5P_DEFAULT.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

This function, H5Aopen, or H5Aopen_by name must be called before an attribute can be accessed for
any further purpose, including reading, writing, or any modification.

The attribute identifier returned by this function must be released with H5Aclose or resource leaks will
develop.

Parameters:
hid_tloc_id IN: Location of object to which attribute is attached
const char *obj_name IN: Name of object to which attribute is attached, relative to location
H5_index_idx_type IN: Type of index
H5_ iter_order_torder IN: Index traversal order
hsize_in IN: Attribute’s position in index
hid_taapl_id IN: Attribute access property list
hid_tlapl_id IN: Link access property list
Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5aopen_by idx f

52

SUBROUTINE h5aopen_by _idx_f(loc_id, obj_name, idx_type, order, n, attr_id, &
hdferr, aapl_id, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id
! Object identifier
CHARACTER(LEN=*), INTENT(IN) :: obj_name
I Name of object to which attribute is attached

HDF5 Reference Manual H5Aopen_by idx

INTEGER, INTENT(IN) :: idx_type

I Type of index; Possible values are:

I H5_INDEX_UNKNOWN_F - Unknown index type

! H5_INDEX_NAME_F - Index on names

I H5_INDEX_CRT_ORDER_F - Index on creation order

I H5 INDEX_N_F - Number of indices defined
INTEGER, INTENT(IN) :: order

I Order in which to iterate over index:

I H5_ITER_UNKNOWN_F - Unknown order

I H5_ITER_INC_F - Increasing order

I H5_ITER_DEC_F - Decreasing order

I H5_ITER_NATIVE_F - No particular order,

! whatever is fastest

INTEGER(HSIZE_T), INTENT(IN) :: n
I Attribute’s position in index
INTEGER(HID_T), INTENT(OUT) :: attr_id
I Attribute identifier
INTEGER, INTENT(OUT) :: hdferr
I Error code:
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: aapl_id
I Attribute access property list
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
I Link access property list
END SUBROUTINE h5aopen_by_idx_f

History:
Release C
1.8.0 Function introduced in this release.

53

H5Aopen_by name HDF5 Reference Manual

Name: H5Aopen_by name
Signature:

hid_tH5Aopen_by name(hid_t loc_id, const char *obj_name, const char *attr_name, hid_t
aapl_id, hid_t lapl_id)

Purpose:

Opens an attribute for an object by object name and attribute name.

Description:

H5Ao0pen_by_name opens an existing attribute, attr_name, that is attached to an object specified by
location and name, loc_id and obj_name, respectively.

loc_id specifies a location from which the target object can be located and obj_name is an object
name relative to loc_id. If loc_id fully specifies the object to which the attribute is attached,
obj_name should be "' (a dot).

The attribute access property list, aapl_id, is currently unused and should currently be
H5P_DEFAULT.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

This function, H5Aopen, or H5Aopen_by_idx must be called before an attribute can be accessed for
any further purpose, including reading, writing, or any modification.

The attribute identifier returned by this function must be released with H5Aclose or resource leaks will
develop.

Parameters:
hid_tloc_id IN: Location from which to find object to which attribute is attached
const char *obj_name IN: Name of object to which attribute is attached, relative to loc_id
const char *attr_name IN: Name of attribute to open
hid_taapl_id IN: Attribute access property list

(Currently unused; should be passed in as H5P_DEFAULT.)

hid_tlapl_id IN: Link access property list

Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.

Fortran90 Interface:

54

SUBROUTINE h5aopen_by name_f(loc_id, obj_name, attr_name, attr_id, hdferr, &
aapl_id, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id
! Location identifier
CHARACTER(LEN=*), INTENT(IN) :: obj_name
I Object name either relative to loc_id,
! absolute from file’s root group, or "'
CHARACTER(LEN=*), INTENT(IN) :: attr_name
! Attribute name
INTEGER(HID_T), INTENT(OUT) :: attr_id
I Attribute identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code:
10 on success and -1 on failure

HDF5 Reference Manual H5Aopen_by name

INTEGER(HID_T), OPTIONAL, INTENT(IN) :: aapl_id
! Attribute access property list
! (Currently unused; set to HSP_DEFAULT_F)
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
! Link access property list identifier
END SUBROUTINE

History:
Release C
1.8.0 Function introduced in this release.

55

H5Aopen_idx HDF5 Reference Manual

Name: H5Aopen_idx

Signature:
hid_tH5Aopen_idx(hid_t loc_id, unsigned int idx)

Purpose:
Opens the attribute specified by its index.

Deprecated Function:
This function is deprecated in favor of the function H5Aopen_by_idx.

Description:
H5Aopen_idx opens an attribute which is attached to the object specified with loc_id. The location
object may be either a group, dataset, or named datatype, all of which may have any sort of attribute. The
attribute specified by the index, idx, indicates the attribute to access. The value of idx is a 0-based,
non-negative integer. The attribute identifier returned from this function must be released with
H5Aclose or resource leaks will develop.

Parameters:
hid_tloc_id IN: Identifier of the group, dataset, or named datatype attribute to be attached to.
unsigned intdx IN: Index of the attribute to open.

Returns:

Returns attribute identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5aopen_idx_f
SUBROUTINE h5aopen_idx_f(obj_id, index, attr_id, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
INTEGER, INTENT(IN) :: index I Attribute index
INTEGER(HID_T), INTENT(OUT) :: attr_id ! Attribute identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:

1 0 on success and -1 on failure
END SUBROUTINE h5aopen_idx_f

56

HDF5 Reference Manual H5Aopen_name

Name: H5Aopen_name

Signature:
hid_tH5Aopen_name(hid_tloc_id, const char *name)

Purpose:
Opens an attribute specified by name.

Deprecated Function:
This function is deprecated in favor of the function H5Aopen_by_name.

Description:
H5Aopen_name opens an attribute specified by its hame, hame, which is attached to the object
specified with loc_id. The location object may be either a group, dataset, or named datatype, which
may have any sort of attribute. The attribute identifier returned from this function must be released with
H5Aclose or resource leaks will develop.

Parameters:
hid_tloc_id IN: Identifier of a group, dataset, or named datatype that attribute is attached to.
const char *name IN: Attribute name.

Returns:

Returns attribute identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5aopen_name_f

SUBROUTINE h5aopen_name_f(obj_id, name, attr_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Attribute name
INTEGER(HID_T), INTENT(OUT) :: attr_id ! Attribute identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:

I 0 on success and -1 on failure
END SUBROUTINE h5aopen_name_f

57

H5Aread HDF5 Reference Manual

Name: H5Aread
Signature:
herr_tH5Aread(hid_t attr_id, hid t mem_type_id, void *buf)
Purpose:
Reads an attribute.
Description:
H5Aread reads an attribute, specified with attr_id. The attribute's memory datatype is specified with
mem_type_id. The entire attribute is read into buf from the file.

Datatype conversion takes place at the time of a read or write and is automatic. See the Data Conversion
section of The Data Type Interface (H5T) in the HDF5 User's Guide for a discussion of data conversion,
including the range of conversions currently supported by the HDF5 libraries.

Parameters:
hid_tattr_id IN: Identifier of an attribute to read.
hid_tmem_type_id IN: Identifier of the attribute datatype (in memory).
void *buf OUT: Buffer for data to be read.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5aread_f
SUBROUTINE h5aread_f(attr_id, memtype_id, buf, dims, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
INTEGER(HID_T), INTENT(IN) :: memtype_id ! Attribute datatype
!identifier (in memory)
TYPE, INTENT(INOUT) :: buf | Data buffer; may be a scalar or
l'an array
DIMENSION(*), INTEGER(HSIZE_T), INTENT(IN) :: dims
! Array to hold corresponding
! dimension sizes of data buffer buf;
I dim(k) has value of the
! k-th dimension of buffer buf;
! values are ignored if buf is a
! scalar
INTEGER, INTENT(OUT) :: hdferr ! Error code:
10 on success and -1 on failure
END SUBROUTINE h5aread_f

History:
Release Fortran90
142 The dims parameter was added in this release.

58

HDF5 Reference Manual H5Arename

Name: H5Arename
Signature:
herr_tH5Arename(hid_tloc_id, char *old_attr_name, char *new_attr_name)
Purpose:
Renames an attribute.
Description:
H5Arename changes the name of the attribute located at loc_id.

The old name, old_attr_name, is changed to the new name, new_attr _name.
Parameters:

hid_tloc_id IN: Location of the attribute.
char *old_attr_name IN: Name of the attribute to be changed.
char *new_attr_name IN: New name for the attribute.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hbarename_f

SUBROUTINE h5arename_f(loc_id, old_attr_name, new_attr_name, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id I Object identifier
CHARACTER(LEN=¥*), INTENT(IN) :: old_attr_name ! Prior attribute name
CHARACTER(LEN=*), INTENT(IN) :: new_attr_name ! New attribute name
INTEGER, INTENT(OUT) :: hdferr I Error code:

I 0 on success, -1 on failure
END SUBROUTINE h5arename_f

59

H5Arename_by name HDF5 Reference Manual

Name: H5Arename_by name
Signature:
herr_tH5Arename_by name(hid_t loc_id, const char *obj_name, const char
*old_attr_name, const char *new_attr_name, hid_t lapl_id)
Purpose:
Renames an attribute.
Description:
H5Arename_by name changes the name of attribute that is attached to the object specified by
loc_id and obj_name. The attribute named old_attr_name is renamed new_attr_name.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.
Parameters:

hid_tloc_id IN: Location or object identifier; may be dataset or group
const char *obj_name IN: Name of object, relative to location, whose attribute is to be
renamed
const char *old_attr_name IN: Prior attribute name
const char *new_attr_name IN: New attribute name
hid_tlapl_id IN: Link access property list identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hbarename_by name_f
SUBROUTINE h5arename_by name_f(loc_id, obj_name, old_attr _name, new_attr _name, &
hdferr, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! Object identifier
CHARACTER(LEN=%), INTENT(IN) :: obj_name
I Name of object, relative to location,
I whose attribute is to be renamed
CHARACTER(LEN=*), INTENT(IN) :: old_attr_name
! Prior attribute name
CHARACTER(LEN=%*), INTENT(IN) :: new_attr_name
I New attribute name
INTEGER, INTENT(OUT) :: hdferr ! Error code:
10 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
! Link access property list identifier
END SUBROUTINE h5arename_by _name_f

History:
Release C
1.8.0 Function introduced in this release.

60

HDF5 Reference Manual H5Awrite

Name: H5Awrite
Signature:
herr_tH5Awrite(hid_t attr_id, hid_t mem_type_id, const void *buf)
Purpose:
Writes data to an attribute.
Description:
H5Awrite writes an attribute, specified with attr_id. The attribute's memory datatype is specified
with mem_type_id. The entire attribute is written from buf to the file.

Datatype conversion takes place at the time of a read or write and is automatic. See the Data Conversio
section of The Data Type Interface (H5T) in the HDF5 User's Guide for a discussion of data conversion,
including the range of conversions currently supported by the HDF5 libraries.

Parameters:
hid_tattr_id IN: Identifier of an attribute to write.
hid_tmem_type_id IN: Identifier of the attribute datatype (in memory).
const void *buf IN: Data to be written.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hbawrite f
SUBROUTINE h5awrite_f(attr_id, memtype_id, buf, dims, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
INTEGER(HID_T), INTENT(IN) :: memtype_id ! Attribute datatype
!identifier (in memory)
TYPE, INTENT(IN) :: buf | Data buffer; may be a scalar or
l'an array
DIMENSION(*), INTEGER(HSIZE_T), INTENT(IN) :: dims
! Array to hold corresponding
! dimension sizes of data buffer buf;
1 dim(k) has value of the k-th
I dimension of buffer buf;
! values are ignored if buf is
! a scalar
INTEGER, INTENT(OUT) :: hdferr ! Error code:
10 on success and -1 on failure
END SUBROUTINE h5awrite_f

History:
Release Fortran90
142 The dims parameter was added in this release.

61

62

HDF5 Reference Manual

HDF5 Reference Manual

H5D: Datasets Interface

Dataset Object API Functions
These functions create and manipulate dataset objects, and set and retrieve their constant or persistent propert

The C Interfaces:

» H5Dcreate » H5Dget_space » H5Dvlen_get buf _size
» H5Dcreatel * » H5Dget_space_status ¢« H5Dvlen_reclaim

* H5Dcreate2 * H5Dget_type » H5Dread

« H5Dcreate_anon e« H5Dget create_plist ¢ H5Dwrite

* H5Dopen » H5Dget_access_plist ¢ H5Diterate

« H5Dopenl * » H5Dget_offset » H5Dextend *

* H5Dopen2 » H5Dget_storage_size ¢ H5Dset_extent

» H5Dclose H5Dfill

* Use of these functions is deprecated in Release 1.8.0.

Alphabetical Listing

« H5Dclose » H5Dget_access_plist ¢« H5Dopen
« H5Dcreate » H5Dget_create_plist ¢ H5Dopenl *
* H5Dcreatel * » H5Dget_offset * H5Dopen2
¢ H5Dcreate2 * H5Dget_space » H5Dread
* H5Dcreate_anon < H5Dget_space_status « H5Dset_extent
« H5Dextend * » H5Dget_storage_size ¢ H5Dvlen_get_buf_size
» H5Dfill » H5Dget_type » H5Dvlen_reclaim
» H5Diterate » H5Dwrite

The FORTRANO9O Interfaces:
In general, each FORTRAN9O subroutine performs exactly the same task as the corresponding C function.

» h5dclose f » h5dget_type f » h5dread_f

» h5dcreate_f » h5dget_create _plist f « h5dread_vl_f
* h5dcreate_anon_f » h5dget_offset_f e h5dwrite_f

» h5dopen_f » h5dget_storage_size f ¢ h5dwrite_vl_f
» h5dget_space_f « h5dvlen_get_max_len_f ¢ hbdextend_f
» h5dget_space_status_f h5dfill_f

63

64

HDF5 Reference Manual

HDF5 Reference Manual H5Dclose

Name: H5Dclose
Signature:
herr_tH5Dclose(hid_t dataset_id)
Purpose:
Closes the specified dataset.
Description:
H5Dclose ends access to a dataset specified by dataset_id and releases resources used by it. Further
use of the dataset identifier is illegal in calls to the dataset API.
Parameters:
hid_tdataset_id IN: Identifier of the dataset to close access to.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5dclose_f
SUBROUTINE h5dclose_f(dset_id, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code

10 on success and -1 on failure
END SUBROUTINE h5dclose_f

65

H5Dcreate HDF5 Reference Manual

Name: H5Dcreate

Signature:
hid_tH5Dcreate(hid_t loc_id, const char *name, hid_t type_id, hid_t space_id, hid_t
depl_id)

hid_tH5Dcreate(hid_t loc_id, const char *name, hid_t dtype_id, hid_t space_id, hid_t
Icpl_id, hid_t dcpl_id, hid_t dapl_id)

Purpose:
Creates a new dataset and links it to a location in the file.

Description:
H5Dcreate is a macro that is mapped to either H5Dcreatel or H5Dcreate2, depending on the
needs of the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5"; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Dcreate is mapped to the most recent version of the function, currently H5Dcreate?2. If the
library and/or application is compiled for Release 1.6 emulation, H5Dcreate will be mapped to
H5Dcreatel. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Dcreate mapping

Global settings

No compatibility flag H5Dcreate2
Enable deprecated symbols H5Dcreate2
Disable deprecated symbols H5Dcreate2

Emulate Release 1.6 interface H5Dcreatel

Function-level macros
H5Dcreate vers =2 H5Dcreate?2

H5Dcreate vers =1 H5Dcreatel

Fortran90 Interface: hbdcreate f
SUBROUTINE h5dcreate_f(loc_id, name, type_id, space_id, dset_id, &
hdferr, dcpl_id, Icpl_id, dapl_id)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of the dataset
INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
INTEGER(HID_T), INTENT(OUT) :: dset_id ! Dataset identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code

66

HDF5 Reference Manual

1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: dcpl_id

! Dataset creation property list
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: Icpl_id

I Link creation property list
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: dapl_id

! Dataset access property list

END SUBROUTINE h5dcreate_f

History:
Release C
1.8.0 The function H5Dcreate renamed to H5Dcreatel and deprecated in this
release.
The macro H5Dcreate and the function H5Dcreate2 introduced in this
release.

H5Dcreate

67

H5Dcreatel HDF5 Reference Manual

Name: H5Dcreatel
Signature:
hid_tH5Dcreatel(hid_t loc_id, const char *name, hid_t type_id, hid_t space_id, hid_t
depl_id)
Purpose:
Creates a dataset at the specified location.
Notice:
This function is deprecated in favor of the function H5Dcreate2 or the macro H5Dcreate.
Description:
H5Dcreatel creates a data set with a name, name, in the file or in the group specified by the identifier
loc_id.

name can be a relative path based at loc_id or an absolute path from the root of the file. Use of this
function requires that any intermediate groups specified in the path already exist.

The dataset’s datatype and dataspace are specified by type_id and space_id, respectively. These are
the datatype and dataspace of the dataset as it will exist in the file, which may differ from the datatype
and dataspace in application memory.

Names within a group are unique: H5Dcreatel will return an error if a link with the name specified in
name already exists at the location specified in loc_id.

As is the case for any object in a group, the length of a dataset name is not limited.

dcpl_id is an H5P_DATASET_CREATE property list created with H5Pcreatel and initialized with
various property list functions described in “H5P: Property List Interface.”

H5Dcreate and H5Dcreate_anon return an error if the dataset’s datatype includes a variable-length

(VL) datatype and the fill value is undefined, i.e., set to NULL in the dataset creation property list. Such a
VL datatype may be directly included, indirectly included as part of a compound or array datatype, or
indirectly included as part of a nested compound or array datatype.

H5Dcreate and H5Dcreate_anon return a dataset identifier for success or a negative value for
failure. The dataset identifier should eventually be closed by calling H5Dclose to release resources it
uses.

See H5Dcreate_anon for discussion of the differences between H5Dcreate and
H5Dcreate_anon.

Fill values and space allocation:

The HDFS5 library provides flexible means of specifying a fill value, of specifying when space will be
allocated for a dataset, and of specifying when fill values will be written to a dataset. For further
information on these topics, see the document Fill Value and Dataset Storage Allocation Issues in HDF5
and the descriptions of the following HDF5 functions in this HDF5 Reference Manual:

H5Dfill H5Pset_fill_time
H5Pset_fill_value H5Pget fill_time
H5Pget fill_value H5Pset_alloc_time

68

http://hdfgroup.org/HDF5/doc_resource/H5Fill_Values.html

HDF5 Reference Manual H5Dcreatel

H5Pfill_value_defined H5Pget_alloc_time

This information is also included in the “HDF5 Datasets” chapter of the new HDF5 User's Guide, which
is being prepared for release.

Note:
H5Dcreate and H5Dcreate_anon can fail if there has been an error in setting up an element of the
dataset creation property list. In such cases, each item in the property list must be examined to ensure t
the setup satisfies all required conditions. This problem is most likely to occur with the use of filters.

For example, either function will fail without a meaningful explanation if the following conditions exist
simultaneously:

O SZIP compression is being used on the dataset.
O The SZIP parameter pixels_per_block is set to an inappropriate value.
In such a case, one would refer to the description of H5Pset_szip, looking for any conditions or
requirements that might affect the local computing environment.
Parameters:

hid_tloc_id IN: Identifier of the file or group within which to create the dataset.
const char *name IN: The name of the dataset to create.

hid_ttype_id IN: Identifier of the datatype to use when creating the dataset.
hid_tspace_id IN: Identifier of the dataspace to use when creating the dataset.

hid_tdcpl_id IN: Dataset creation property list identifier.
Returns:
Returns a dataset identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Dcreate.
History:
Release C
1.8.0 Function H5Dcreate renamed to H5Dcreatel and deprecated in this release.

69

H5Dcreate2 HDF5 Reference Manual

Name: H5Dcreate2

Signature:
hid_tH5Dcreate2(hid_t loc_id, const char *name, hid_t dtype_id, hid_t space_id, hid_t
Icpl_id, hid_t dcpl_id, hid_t dapl_id)

Purpose:
Creates a new dataset and links it into the file.

Description:
H5Dcreate?2 creates a new dataset named name at the location specified by loc_id, and associates
constant and initial persistent properties with that dataset, including dtype_id, the datatype of each data
element as stored in the file; space_id, the dataspace of the dataset; and other initial properties as
defined in the dataset creation property and access property lists, dcpl_id and dapl_id, respectively.
Once created, the dataset is opened for access.

loc_id may be a file identifier, or a group identifier within that file. name may be either an absolute
path in the file or a relative path from loc_id naming the dataset.

The link creation property list, Icpl_id, governs creation of the link(s) by which the new dataset is
accessed and the creation of any intermediate groups that may be missing.

The datatype and dataspace properties and the dataset creation and access property lists are attached to the
dataset, so the caller may derive new datatypes, dataspaces, and creation and access properties from the
old ones and reuse them in calls to create additional datasets.

Once created, the dataset is ready to receive raw data. Immediately attempting to read raw data from the
dataset will probably return the fill value.

To conserve and release resources, the dataset should be closed when access is no longer required.
Parameters:

hid_tloc_id IN: Location identifier

const char *name IN: Dataset name

hid_tdtype_id IN: Datatype identifier

hid_tspace_id IN: Dataspace identifier

hid_tlcpl_id IN: Link creation property list

hid_tdcpl_id IN: Dataset creation property list

hid_tdapl_id IN: Dataset access property list
Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Dcreate.
History:

Release C

1.8.0 Function introduced in this release.

70

HDF5 Reference Manual H5Dcreate_anon

Name: H5Dcreate_anon
Signature:
hid_tH5Dcreate_anon(hid_t loc_id, hid_t type_id, hid_t space_id, hid_t dcpl_id, hid_t
dapl_id)
Purpose:
Creates a dataset in a file without linking it into the file structure.
Description:
H5Dcreate_anon creates a dataset in the file specified by loc_id.

loc_id may be a file identifier or a group identifier within that file.

The dataset’s datatype and dataspace are specified by type_id and space_id, respectively. These are
the datatype and dataspace of the dataset as it will exist in the file, which may differ from the datatype

and dataspace in application memory.

Dataset creation properties are specified in the dataset creation property list dcpl_id. Dataset access

properties are specified in the dataset access property list dapl_id.

H5Dcreate_anon returns a new dataset identifier. Using this identifier, the new dataset must be linked

into the HDFS5 file structure with H5Lcreate _hard or it will be deleted from the file when the file is
closed.

See H5Dcreate for further details and considerations on the use of H5Dcreate and
H5Dcreate_anon.

The differences between this function and H5Dcreate are as follows:

O H5Dcreate_anon explicitly includes a dataset access property list. H5Dcreate always uses
default dataset access properties.

O H5Dcreate_anon neither provides the new dataset’s name nor links it into the HDF5 file
structure; those actions must be performed separately through a call to H5Lcreate_hard,
which offers greater control over linking.

Parameters:
hid_tloc_id IN: Identifier of the file or group within which to create the dataset.
hid_ttype id IN: Identifier of the datatype to use when creating the dataset.
hid_tspace_id IN: Identifier of the dataspace to use when creating the dataset.
hid_tdcpl_id IN: Dataset creation property list identifier.
hid_tdapl_id IN: Dataset access property list identifier.

Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.

Fortran90 Interface:
SUBROUTINE h5dcreate_anon_f(loc_id, type_id, space_id, dset_id, hdferr, &
dcpl_id, dapl_id)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) ::loc_id ! File or group identifier.
INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier.
INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier.
INTEGER(HID_T), INTENT(OUT) :: dset_id ! Dataset identifier.

71

H5Dcreate_anon HDF5 Reference Manual

INTEGER, INTENT(OUT) :: hdferr I Error code.
I 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: dcpl_id
I Dataset creation property list
I identifier.
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: dapl_id
I Dataset access property list
I identifier.
END SUBROUTINE h5dcreate_anon_f

72

HDF5 Reference Manual H5Dextend

Name: H5Dextend
Signature:
herr_tH5Dextend(hid_t dataset_id, const hsize_t size[])
Purpose:
Extends a dataset.
Notice:
This function is deprecated in favor of the function H5Dset_extent.
Description:
H5Dextend verifies that the dataset is at least of size size, extending it if necessary. The
dimensionality of size is the same as that of the dataspace of the dataset being changed.

This function can be applied to the following datasets:

¢ Any dataset with unlimited dimensions
O A dataset with fixed dimensions if the current dimension sizes are less than the maximum sizes
set with maxdims (see H5Screate_simple)
Space on disk is immediately allocated for the new dataset extent if the dataset’s space allocation time i
setto H5D_ALLOC_TIME_EARLY. Fill values will be written to the dataset if the dataset’s fill time is set
to H5D_FILL_TIME_IFSET or H5D_FILL_TIME_ALLOC. (See H5Pset_fill_time and
H5Pset_alloc_time.)

This function ensures that the dataset dimensions are of at least the sizes specified in size. The functior
H5Dset_extent must be used if the dataset dimension sizes are are to be reduced.
Parameters:

hid_tdataset_id IN: Identifier of the dataset.

const hsize_size[] IN: Array containing the new magnitude of each dimension.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hbdextend_f
SUBROUTINE h5dextend_f(dataset_id, size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dataset_id ! Dataset identifier
INTEGER(HSIZE_T), DIMENSION(*), INTENT(IN) :: size
I Array containing
I dimensions' sizes
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5dextend_f

History:
Release C
1.8.0 Function deprecated in this release.
1.8.0 Parameter size syntax changed to ‘const hsizsize[]' in this release.

73

H5Dfill

HDF5 Reference Manual

Name: H5Dfill
Signature:

herr_tH5Dfill(const void *fill, hid_t fill_type_id, void *buf, hid_t buf_type_id, hid_t
space_id)

Purpose:

Fills dataspace elements with a fill value in a memory buffer.

Description:

Note:

H5Dfill explicitly fills the dataspace selection in memory, space_id, with the fill value specified in
fill. If fill is NULL, a fill value of O (zero) is used.

fill_type_id specifies the datatype of the fill value.
buf specifies the buffer in which the dataspace elements will be written.
buf_type_id specifies the datatype of those data elements.

Note that if the fill value datatype differs from the memory buffer datatype, the fill value will be
converted to the memory buffer datatype before filling the selection.

Applications sometimes write data only to portions of an allocated dataset. It is often useful in such cases
to fill the unused space with a known fill value. See H5Pset fill_value for further discussion. Other
related functions include H5Pget fill_value, H5Pfill_value defined, H5Pset _fill_time, H5Pget_fill_time,
H5Dcreate, and H5Dcreate_anon.

Parameters:
const void *fill IN: Pointer to the fill value to be used.
hid_t fill_type_id IN: Fill value datatype identifier.
void *buf IN/OUT: Pointer to the memory buffer containing the selection to be
filled.
hid_tbuf type id IN: Datatype of dataspace elements to be filled.
hid_tspace_id IN: Dataspace describing memory buffer and containing the selection to
be filled.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hsdfill_f

74

SUBROUTINE h5dfill_f(fill_value, space_id, buf, hdferr)

IMPLICIT NONE
TYPE, INTENET(IN) :: fill_value I Fill value; may be have one of the
! following types:
I INTEGER, REAL, DOUBLE PRECISION,
I CHARACTER
INTEGER(HID_T), INTENT(IN) :: space_id ! Memory dataspace selection identifier
TYPE, DIMENSION(*) :: buf I Memory buffer to fill in; must have
I the same datatype as fill value
INTEGER, INTENT(OUT) :: hdferr ! Error code

1 0 on success and -1 on failure
END SUBROUTINE h5dfill_f

HDF5 Reference Manual H5Dget_access_plist

Name: H5Dget_access_plist

Signature:

hid_tH5Dget_access_plist(hid_t dataset_id)
Purpose:

Returns the dataset access property list associated with a dataset.
Description:

H5Dget_access_plist returns a copy of the dataset access property list used to open the specified
dataset. Modifications to the returned property list will have no effect on the dataset it was retrieved fron

The chunk cache parameters in the returned property lists will be those used by the dataset. If the
properties in the file access property list were used to determine the dataset's chunk cache configuratior
then those properties will be present in the returned dataset access property list. If the dataset does not
a chunked layout, then the chunk cache properties will be set to the default. The chunk cache properties
the returned list are considered to be “set”, and any use of this list will override the corresponding
properties in the filed’ s file access property list.

All link access properties in the returned list will be set to the default values.
Parameters:
hid_tdataset_id IN: Identifier of the dataset to get access property list of.
Returns:
Returns a dataset access property list identifier if successful; otherwise returns a negative value.

Example Usage:

The following code retrieves the dataset access property list used to open the dataset dataset id into

dapl_id:

dapl_id = H5Dget_access_plist(dataset_id);

See Also:

“Dataset Access Properties” in the “H5P: Property List Interface” chapter of the HDF5 Reference Manua
History:

Release Change

1.8.3 C function introduced in this release.

75

H5Dget_create_plist HDF5 Reference Manual

Name: H5Dget_create_plist
Signature:
hid_tH5Dget_create_plist(hid_t dataset_id)
Purpose:
Returns an identifier for a copy of the dataset creation property list for a dataset.
Description:
H5Dget_create_plist returns an identifier for a copy of the dataset creation property list associated
with the dataset specified by dataset id.

The creation property list identifier should be released with H5Pclose.
Parameters:
hid_tdataset_id IN: Identifier of the dataset to query.
Returns:
Returns a dataset creation property list identifier if successful; otherwise returns a negative value.
Fortran90 Interface: hbdget create_plist_f
SUBROUTINE h5dget_create_plist_f(dataset_id, creation_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dataset_id ! Dataset identifier
INTEGER(HID_T), INTENT(OUT) :: creation_id ! Dataset creation
! property list identifier
INTEGER, INTENT(OUT) :: hdferr | Error code

10 on success and -1 on failure
END SUBROUTINE h5dget_create_plist_f

76

HDF5 Reference Manual H5Dget_offset

Name: H5Dget_offset
Signature:
haddr_tH5Dget_offset(hid_t dset_id)
Purpose:
Returns dataset address in file.
Description:
H5Dget_offset returns the address in the file of the dataset dset_id. That address is expressed as
the offset in bytes from the beginning of the file.
Parameters:
hid_t dset _id IN: Dataset identifier.
Returns:
Returns the offset in bytes; otherwise returns HADDR_UNDEF, a negative value.
Fortran90 Interface:

None.
History:
Release C
1.6.0 Function introduced in this release.

77

H5Dget_space HDF5 Reference Manual

Name: H5Dget_space
Signature:
hid_tH5Dget_space(hid_t dataset id)
Purpose:
Returns an identifier for a copy of the dataspace for a dataset.
Description:
H5Dget_space returns an identifier for a copy of the dataspace for a dataset. The dataspace identifier
should be released with the H5Sclose function.
Parameters:
hid_tdataset_id IN: Identifier of the dataset to query.
Returns:
Returns a dataspace identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5dget_space_f
SUBROUTINE h5dget_space_f(dataset_id, dataspace_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dataset_id ! Dataset identifier
INTEGER(HID_T), INTENT(OUT) :: dataspace_id ! Dataspace identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code
I 0 on success and -1 on failure
END SUBROUTINE h5dget_space_f

78

HDF5 Reference Manual H5Dget_space_status

Name: H5Dget_space_status
Signature:
herr_tH5Dget_space_status(hid t dset _id, H5D space_status_t *status)
Purpose:
Determines whether space has been allocated for a dataset.
Description:
H5Dget_space_status determines whether space has been allocated for the dataset dset_id.

Space allocation status is returned in status, which will have one of the following values:

H5D_SPACE_STATUS NOT_ALLOCATED Space has not been allocated for this dataset.
H5D_SPACE_STATUS_ALLOCATED Space has been allocated for this dataset.

H5D_SPACE_STATUS_PART_ALLOCATEDSpace has been partially allocated for this dataset.
(Used only for datasets with chunked storage.)

Parameters:
hid_tdset_id IN: Identifier of the dataset to query.
H5D_space_status_t *status OUT: Space allocation status.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hbdget_space_status_f
SUBROUTINE h5dget_space_status_f(dset_id, flag, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
INTEGER, INTENET(OUT) :flag ! Status flag ; possible values:
| HSD_SPACE_STS_ERROR_F
I H5D_SPACE_STS_NOT_ALLOCATED_F
I H5D_SPACE_STS_PART_ALLOCATED_F
I H5D_SPACE_STS_ALLOCATED_F
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5dget_space_status_f

History:
Release C
1.6.0 Function introduced in this release.

79

H5Dget_storage_size HDF5 Reference Manual

Name: H5Dget_storage_size

Signature:

hsize_tH5Dget_storage_size(hid_t dataset_id)
Purpose:

Returns the amount of storage required for a dataset.
Description:

H5Dget_storage_size returns the amount of storage that is required for the specified dataset,
dataset_id. For chunked datasets, this is the number of allocated chunks times the chunk size. The
return value may be zero if no data has been stored.

Parameters:
hid_tdataset_id IN: Identifier of the dataset to query.

Returns:
Returns the amount of storage space allocated for the dataset, not counting meta data; otherwise returns 0
(zero).

Fortran90 Interface: h5dget_storage_size f
SUBROUTINE h5dget_storage_size_f(dset_id, size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
INTEGER(HSIZE_T), INTENT(OUT) :: size ! Amount of storage required
! for dataset
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5dget_storage_size_f

History:
Release Fortran90
1.45 Function introduced in this release.

80

HDF5 Reference Manual H5Dget_type

Name: H5Dget_type

Signature:

hid_tH5Dget_type(hid_t dataset_id)
Purpose:

Returns an identifier for a copy of the datatype for a dataset.
Description:

H5Dget _type returns an identifier for a copy of the datatype for a dataset. The datatype should be
released with the H5Tclose function.

If a dataset has a named datatype, then an identifier to the opened datatype is returned. Otherwise, the
returned datatype is read-only. If atomization of the datatype fails, then the datatype is closed.
Parameters:
hid_tdataset_id IN: Identifier of the dataset to query.
Returns:
Returns a datatype identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5dget_type f
SUBROUTINE h5dget_type_f(dataset_id, datatype_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dataset_id ! Dataset identifier
INTEGER(HID_T), INTENT(OUT) :: datatype_id ! Datatype identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5dget_type_f

81

H5Diterate HDF5 Reference Manual

Name: H5Diterate

Signature:
herr_tH5Diterate(void *buf, hid_t type_id, hid_t space_id, H5D operator_t operator,
void *operator_data)

Purpose:
Iterates over all selected elements in a dataspace.

Description:
H5Diterate iterates over all the data elements in the memory buffer buf, executing the callback
function operator once for each such data element.

The protoype of the callback function operator is as follows (as defined in the source code file
H5L public.h):

herr_t (*H5D_operator_t)(void elem, hid_t type_id, unsigned ndim,
const hsize _t *point, void *operator_data)

The parameters of this callback function have the following values or meanings:

void *elem IN/OUT: Pointer to the memory buffer containing the current
data element

hid_t type_id IN: Datatype identifier for the elements stored in elem

unsigned ndim IN: Number of dimensions for the point array

const hsize t IN: Array containing the location of the element within the

*point original dataspace

void *operator_data IN/OUT: Pointer to any user-defined data associated with the
operation

The possible return values from the callback function, and the effect of each, are as follows:

¢ Zero causes the iterator to continue, returning zero when all data elements have been processed.
¢ A positive value causes the iterator to immediately return that positive value, indicating
short-circuit success.

O A negative value causes the iterator to immediately return that value, indicating failure.
The H5Diterate operator_data parameter is a user-defined pointer to the data required to process
dataset elements in the course of the iteration. If operator needs to pass data back to the application,
such data can be returned in this same buffer. This pointer is passed back to each step of the iteration in
the operator callback function’s operator_data parameter.

Unlike other HDF5 iterators, this iteration operation cannot be restarted at the point of exit; a second
H5Diterate call will always restart at the beginning.

82

HDF5 Reference Manual H5Diterate

Parameters:
void *buf IN/OUT: Pointer to the buffer in memory containing the elements to
iterate over
hid_ttype_id IN: Datatype identifier for the elements stored in buf
hid_tspace_id IN: Dataspace identifier for buf
H5D_operator_t operator IN: Function pointer to the routine to be called for each element in
buf iterated over
void *operator_data IN/OUT: Pointer to any user-defined data associated with the
operation
Returns:

Returns the return value of the last operator if it was non-zero, or zero if all elements have been
processed. Otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.6.4 The following changes occured in the H5D_operator_t function in this

release:
ndim parameter type was changed to unsigned
point parameter type was changed to const hsize t

83

H5Dopen HDF5 Reference Manual

Name: H5Dopen
Signature:
hid_tH5Dopen(hid_tloc_id, const char *name)
hid_tH5Dopen(hid_tloc_id, const char *name, hid_t dapl_id)
Purpose:
Opens an existing dataset.
Description:
H5Dopen is a macro that is mapped to either H5Dopenl or H5Dopen2, depending on the needs of the
application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5"; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Dopen is mapped to the most recent version of the function, currently H5Dopen?2. If the library
and/or application is compiled for Release 1.6 emulation, H5Dopen will be mapped to H5Dopenl.
Function-specific flags are available to override these settings on a function-by-function basis when the
application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Dopen mapping

Global settings

No compatibility flag H5Dopen2
Enable deprecated symbols H5Dopen2
Disable deprecated symbols H5Dopen2

Emulate Release 1.6 interface H5Dopenl

Function-level macros
H5Dopen_vers =2 H5Dopen2

H5Dopen_vers =1 H5Dopenl

Fortran90 Interface: h5dopen_f
SUBROUTINE h5dopen_f(loc_id, name, dset_id, hdferr, dapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of the dataset
INTEGER(HID_T), INTENT(OUT) :: dset_id ! Dataset identifier
INTEGER, INTENT(OUT) :: hdferr I Error code:
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: dapl_id
! Dataset access property list
END SUBROUTINE h5dopen_f

84

HDF5 Reference Manual H5Dopen

History:
Release C

1.8.0 The function H5Dopen renamed to H5Dopenl and deprecated in this release.
The macro H5Dopen and the function H5Dopen2 introduced in this release.

85

H5Dopenl HDF5 Reference Manual

Name: H5Dopenl
Signature:
hid_tH5Dopenl(hid_tloc_id, const char *name)
Purpose:
Opens an existing dataset.
Notice:
This function is deprecated in favor of the function H5Dopen2 or the macro H5Dopen.
Description:
H5Dopenl opens an existing dataset for access in the file or group specified in loc_id. name is a
dataset name and is used to identify the dataset in the file.

Parameters:
hid_tloc_id IN: Identifier of the file or group within which the dataset to be accessed will
be found.
const char *name IN: The name of the dataset to access.
Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Dopen.
History:

Release C

1.8.0 Function H5Dopen renamed to H5Dopenl and deprecated in this release.

86

HDF5 Reference Manual H5Dopen2

Name: H5Dopen2
Signature:
hid_tH5Dopen2(hid_tloc_id, const char *name, hid_t dapl_id)
Purpose:
Opens an existing dataset.
Description:
H5Dopen2 opens the existing dataset specified by a location identifier and name, loc_id and name,
respectively.

The dataset access property list, dapl_id, provides information regarding access to the dataset.

To conserve and release resources, the dataset should be closed when access is no longer required.
Parameters:

hid_tloc_id IN: Location identifier

const char *name IN: Dataset name

hid_tdapl_id IN: Dataset access property list
Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Dopen.

History:
Release C
1.8.0 Function introduced in this release.

87

H5Dread HDF5 Reference Manual

Name: H5Dread

Signature:
herr_tH5Dread(hid_t dataset_id, hid_ t mem_type_id, hid_t mem_space_id, hid_t
file_space_id, hid_t xfer_plist_id, void * buf)

Purpose:
Reads raw data from a dataset into a buffer.

Description:
H5Dread reads a (partial) dataset, specified by its identifier dataset _id, from the file into an
application memory buffer buf. Data transfer properties are defined by the argument xfer_plist_id.
The memory datatype of the (partial) dataset is identified by the identifier mem_type_id. The part of
the dataset to read is defined by mem_space_id and file_space_id.

file_space_id is used to specify only the selection within the file dataset's dataspace. Any dataspace
specified in file_space_id is ignored by the library and the dataset's dataspace is always used.
file_space_id can be the constant H5S_ALL. which indicates that the entire file dataspace, as
defined by the current dimensions of the dataset, is to be selected.

mem_space_id is used to specify both the memory dataspace and the selection within that dataspace.
mem_space_id can be the constant H5S_ALL, in which case the file dataspace is used for the memory
dataspace and the selection defined with file_space_id is used for the selection within that

dataspace.

If raw data storage space has not been allocated for the dataset and a fill value has been defined, the
returned buffer buf is filled with the fill value.

The behavior of the library for the various combinations of valid dataspace identifiers and H5S_ALL for
the mem_space_id and the file_space_id parameters is described below:

mem_space_id file_space_id Behavior
valid dataspace valid dataspace mem_space_id specifies the memory dataspace and
identifier identifier the selection within it. file_space_id specifies the
selection within the file dataset's dataspace.
H5S_ALL valid dataspace The file dataset's dataspace is used for the memory
identifier dataspace and the selection specified with

file_space_id specifies the selection within it. The
combination of the file dataset's dataspace and the
selection from file_space_id is used for memory

also.
valid dataspace H5S_ALL mem_space_id specifies the memory dataspace and
identifier the selection within it. The selection within the file
dataset's dataspace is set to the "all" selection.
H5S_ALL H5S_ALL The file dataset's dataspace is used for the memory

dataspace and the selection within the memory dataspace
is set to the "all" selection. The selection within the file
dataset's dataspace is set to the "all" selection.
Setting an H5S_ALL selection indicates that the entire dataspace, as defined by the current dimensions of
a dataspace, will be selected. The number of elements selected in the memory dataspace must match the

88

HDF5 Reference Manual H5Dread

number of elements selected in the file dataspace.

xfer_plist_id can be the constant H5P_DEFAULT. in which case the default data transfer properties
are used.

Data is automatically converted from the file datatype and dataspace to the memory datatype and
dataspace at the time of the read. See the Data Conversion section of The Data Type Interface (H5T) in
the HDF5 User's Guide for a discussion of data conversion, including the range of conversions currently
supported by the HDF5 libraries.

Parameters:
hid_tdataset_id IN: Identifier of the dataset read from.
hid_tmem_type id IN: Identifier of the memory datatype.
hid_tmem_space_id IN: Identifier of the memory dataspace.
hid_tfile_space_id IN: Identifier of the dataset's dataspace in the file.
hid_txfer_plist_id IN: Identifier of a transfer property list for this I/O operation.
void * buf OUT: Buffer to receive data read from file.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5dread_f, h5dread_vl_f
There is no direct FORTRAN couterpart for the C function H5Dread. Instead, that functionality is
provided by two FORTRAN functions:

h5dread_f Purpose: Reads data other than variable-length data.
h5dread_vl_f Purpose: Reads variable-length data.

SUBROUTINE h5dread_f(dset_id, mem_type_id, buf, dims, hdferr, &
mem_space_id, file_space_id, xfer_prp)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
INTEGER(HID_T), INTENT(IN) :: mem_type_id ! Memory datatype identifier
TYPE, INTENT(INOUT) :: buf I Data buffer; may be a scalar

! or an array
DIMENSION(*), INTEGER(HSIZE_T), INTENT(IN) :: dims

! Array to hold corresponding

I dimension sizes of data

! buffer buf

I dim(k) has value of the k-th

I dimension of buffer buf

! Values are ignored if buf is

! a scalar
INTEGER, INTENT(OUT) :: hdferr I Error code

1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: mem_space_id

I Memory dataspace identfier

| Default value is H5S_ALL_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: file_space_id

| File dataspace identfier

! Default value is H5S_ALL_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: xfer_prp

! Transfer property list identifier

! Default value is H5P_DEFAULT_F

END SUBROUTINE h5dread_f

89

H5Dread

SUBROUTINE h5dread_vl_f(dset_id, mem_type_id, buf, dims, len, hdferr, &

mem_space_id, file_space_id, xfer_prp)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier

INTEGER(HID_T), INTENT(IN) :: mem_type_id ! Memory datatype identifier
TYPE, INTENT(INOUT), & DIMENSION(dims(1),dims(2)) :: buf

! Data buffer; may be a scalar

! or an array

I TYPE must be one of the following
I INTEGER

I REAL

I CHARACTER

INTEGER(HSIZE_T), INTENT(IN), DIMENSION(2) :: dims
! Array to hold corresponding
I dimension sizes of data
I buffer buf
I dim(k) has value of the k-th
I dimension of buffer buf
! Values are ignored if buf is
! a scalar
INTEGER(SIZE_T), INTENT(INOUT), DIMENSION(*) ::len
! Array to store length of
I each element
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: mem_space_id
I Memory dataspace identfier
! Default value is H5S_ALL_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: file_space_id
! File dataspace identfier
! Default value is H5S_ALL_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: xfer_prp
I Transfer property list identifier
! Default value is H5P_DEFAULT _F
END SUBROUTINE h5dread_vl_f

History:

90

Release Fortran90

1.4.2 The dims parameter was added in this release.

HDF5 Reference Manual

HDF5 Reference Manual H5Dset_extent

Name: H5Dset_extent
Signature:

herr_tH5Dset_extent(hid_t dset_id, const hsize_t size[])

Purpose:

Changes the sizes of a dataset’s dimensions.

Description:

Note:

H5Dset_extent sets the current dimensions of the chunked dataset dset_id to the sizes specified in
size.

size is a 1-dimensional array with n elements, where n is the rank of the dataset’s current dataspace.
This function can be applied to the following datasets:

O A chunked dataset with unlimited dimensions

O A chunked dataset with fixed dimensions if the new dimension sizes are less than the maximum
sizes set with maxdims (see H5Screate_simple)

O An external dataset with unlimited dimensions

¢ An external dataset with fixed dimensions if the new dimension sizes are less than the maximum
sizes set with maxdims

Note that external datasets are always contiguous and can be extended only along the first
dimension.
Space on disk is immediately allocated for the new dataset extent if the dataset’s space allocation time i
set to H5D_ALLOC_TIME_EARLY.

Fill values will be written to the dataset in either of the following situations, but not otherwise:

O If the dataset’s fill time is set to H5D_FILL_TIME_IFSET and a fill value is defined (see
H5Pset_fill_time and H5Pset_fill_value)
O If the dataset’s fill time is set to H5D_FILL_TIME_ALLOC (see H5Pset_alloc_time)

If the sizes specified in size are smaller than the dataset’s current dimension sizes, H5Dset_extent
will reduce the dataset’s dimension sizes to the specified values. It is the user application’s responsibility
to ensure that valuable data is not lost as H5Dset_extent does not check.

Except for external datasets, H5Dset_extent is for use with chunked datasets only, not contiguous
datasets.

Parameters:

hid_tdset_id IN: Dataset identifier

const hsize_t size[] IN: Array containing the new magnitude of each dimension of the dataset.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

91

H5Dset_extent

Fortran90 Interface: H5Dset_extent
SUBROUTINE h5dset_extent_f(dataset_id, size, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dataset_id ! Dataset identifier
INTEGER(HSIZE_T), DIMENSION(*), INTENT(IN) :: size

I Array containing

I dimensions’ sizes

INTEGER, INTENT(OUT) :: hdferr ! Error code:
I 0 on success and -1 on failure

END SUBROUTINE h5dset_extent_f

See Also:
H5Pset_alloc_time
H5Pset_fill_time
H5Pset_fill_value
H5Screate_simple

History:

Release Change

1.6.0 Function implemented but not supported in this release.

1.8.0 Function supported in this release.

92

HDF5 Reference Manual

HDF5 Reference Manual H5Dvlen_get_buf size

Name: H5Dvlen_get_buf size

Signature:
herr_tH5Dvlen_get buf size(hid_t dataset id, hid_t type_id, hid_t space_id, hsize t
*size)

Purpose:
Determines the number of bytes required to store VL data.

Description:
H5Dvlen_get_buf size determines the number of bytes required to store the VL data from the
dataset, using the space_id for the selection in the dataset on disk and the type_id for the memory
representation of the VL data in memory.

*size is returned with the number of bytes required to store the VL data in memory.
Parameters:

hid_tdataset_id IN: Identifier of the dataset to query.

hid_ttype_id IN: Datatype identifier.

hid_tspace_id IN: Dataspace identifier.

hsize t *size OUT: The size in bytes of the memory buffer required to store the VL data.
Returns:

Returns non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5dvlen_get max_len_f
There is no direct FORTRAN couterpart for the C function H5Dvlen_get buf_size; corresponding
functionality is provided by the FORTRAN function h5dvlen_get_max_len_f.

SUBROUTINE h5dvlen_get_max_len_f(dset_id, size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier

INTEGER(SIZE_T), INTENT(OUT) :: elem_len ! Maximum length of the element
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5dvlen_get_max_len_f

History:
Release C Fortran90
1.45 Function introduced in this release.
1.4.0 Function introduced in this release.

93

H5Dvlen_reclaim HDF5 Reference Manual

Name: H5Dvlen_reclaim
Signature:
herr_tH5Dvlen_reclaim(hid_t type_id, hid_t space_id, hid_t plist_id, void *buf)
Purpose:
Reclaims VL datatype memory buffers.
Description:
H5Dvlen_reclaim reclaims memory buffers created to store VL datatypes.

The type_id must be the datatype stored in the buffer. The space_id describes the selection for the
memory buffer to free the VL datatypes within. The plist_id is the dataset transfer property list which
was used for the I/O transfer to create the buffer. And buf is the pointer to the buffer to be reclaimed.

The VL structures (hvl_t) in the user's buffer are modified to zero out the VL information after the
memory has been reclaimed.

If nested VL datatypes were used to create the buffer, this routine frees them from the bottom up,
releasing all the memory without creating memory leaks.

Parameters:
hid_ttype_id IN: Identifier of the datatype.
hid_tspace_id IN: Identifier of the dataspace.
hid_tplist_id IN: Identifier of the property list used to create the buffer.
void *buf IN: Pointer to the buffer to be reclaimed.
Returns:

Returns non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:
None.

94

HDF5 Reference Manual H5Dwrite

Name: H5Dwrite
Signature:

herr_tH5Dwrite(hid_t dataset _id, hid t mem_type id, hid_t mem_space_id, hid_t

file_space_id, hid_t xfer_plist_id, const void * buf)
Purpose:

Writes raw data from a buffer to a dataset.
Description:

H5Dwrite writes a (partial) dataset, specified by its identifier dataset_id, from the application
memory buffer buf into the file. Data transfer properties are defined by the argument
xfer_plist_id. The memory datatype of the (partial) dataset is identified by the identifier
mem_type_id. The part of the dataset to write is defined by mem_space_id and file_space_id.

file_space_id is used to specify only the selection within the file dataset's dataspace. Any dataspace
specified in file_space_id is ignored by the library and the dataset's dataspace is always used.
file_space_id can be the constant H5S_ALL. which indicates that the entire file dataspace, as
defined by the current dimensions of the dataset, is to be selected.

mem_space_id is used to specify both the memory dataspace and the selection within that dataspace.
mem_space_id can be the constant H5S_ALL, in which case the file dataspace is used for the memory
dataspace and the selection defined with file_space_id is used for the selection within that

dataspace.

The behavior of the library for the various combinations of valid dataspace IDs and H5S_ALL for the
mem_space_id and the file_space_id parameters is described below:

mem_space_id
valid dataspace
identifier

H5S_ALL

valid dataspace
identifier

H5S_ALL

file_space_id
valid dataspace
identifier

valid dataspace
identifier

H5S_ALL

H5S_ALL

Behavior

mem_space_id specifies the memory dataspace and
the selection within it. file_space_id specifies the
selection within the file dataset's dataspace.

The file dataset's dataspace is used for the memory
dataspace and the selection specified with
file_space_id specifies the selection within it. The
combination of the file dataset's dataspace and the
selection from file_space_id is used for memory
also.

mem_space_id specifies the memory dataspace and
the selection within it. The selection within the file
dataset's dataspace is set to the "all" selection.

The file dataset's dataspace is used for the memory
dataspace and the selection within the memory dataspace
is set to the "all" selection. The selection within the file
dataset's dataspace is set to the "all" selection.

Setting an "all" selection indicates that the entire dataspace, as defined by the current dimensions of a
dataspace, will be selected. The number of elements selected in the memory dataspace must match the
number of elements selected in the file dataspace.

95

H5Dwrite HDF5 Reference Manual

xfer_plist_id can be the constant H5SP_DEFAULT. in which case the default data transfer properties
are used.

Writing to an dataset will fail if the HDF5 file was not opened with write access permissions.

Data is automatically converted from the memory datatype and dataspace to the file datatype and
dataspace at the time of the write. See the Data Conversion section of The Data Type Interface (H5T) in
the HDF5 User's Guide for a discussion of data conversion, including the range of conversions currently
supported by the HDF5 libraries.

If the dataset's space allocation time is set to H5D_ALLOC_TIME_LATE or H5D_ALLOC_TIME_INCR
and the space for the dataset has not yet been allocated, that space is allocated when the first raw data is
written to the dataset. Unused space in the dataset will be written with fill values at the same time if the
dataset's fill time is set to H5D_FILL_TIME_IFSET or H5D_FILL_TIME_ALLOC. (Also see
H5Pset_fill_time and H5Pset_alloc_time.)

If a dataset's storage layout is ‘compact’, care must be taken when writing data to the dataset in parallel. A
compact dataset's raw data is cached in memory and may be flushed to the file from any of the parallel
processes, so parallel applications should always attempt to write identical data to the dataset from all
processes.

Parameters:
hid_tdataset_id IN: Identifier of the dataset to write to.
hid_tmem_type _id IN: Identifier of the memory datatype.
hid_tmem_space_id IN: Identifier of the memory dataspace.
hid_tfile_space_id IN: Identifier of the dataset's dataspace in the file.
hid_txfer_plist_id IN: Identifier of a transfer property list for this I/O operation.
const void *buf IN: Buffer with data to be written to the file.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5dwrite_f, h5dwrite_vl_f

96

There is no direct FORTRAN couterpart for the C function H5Dwrite. Instead, that functionality is
provided by two FORTRAN functions:

h5dwrite_f Purpose: Writes data other than variable-length data.
h5dwrite_vl_f Purpose: Writes variable-length data.

SUBROUTINE h5dwrite_f(dset_id, mem_type_id, buf, dims, hdferr, &
mem_space_id, file_space_id, xfer_prp)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
INTEGER(HID_T), INTENT(IN) :: mem_type_id ! Memory datatype identifier
TYPE, INTENT(IN) :: buf ! Data buffer; may be a scalar
I or an array
DIMENSION(*), INTEGER(HSIZE_T), INTENT(IN) :: dims
I Array to hold corresponding
I dimension sizes of data
I buffer buf; dim(k) has value
I of the k-th dimension of
I buffer buf; values are
lignored if buf is a scalar
INTEGER, INTENT(OUT) :: hdferr ! Error code

HDF5 Reference Manual H5Dwrite

I 0 on success and -1 on failure

INTEGER(HID_T), OPTIONAL, INTENT(IN) :: mem_space_id
I Memory dataspace identfier
| Default value is H5S_ALL_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: file_space_id
I File dataspace identfier
| Default value is H5S_ALL_F

INTEGER(HID_T), OPTIONAL, INTENT(IN) :: xfer_prp
I Transfer property list
I identifier; default value
lis H5P_DEFAULT_F
END SUBROUTINE h5dwrite_f

SUBROUTINE h5dwrite_vl_f(dset_id, mem_type_id, buf, dims, len, hdferr, &
mem_space_id, file_space_id, xfer_prp)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
INTEGER(HID_T), INTENT(IN) :: mem_type_id ! Memory datatype identifier
TYPE, INTENT(IN), & DIMENSION(dims(1),dims(2)) :: buf

| Data buffer; may be a scalar

' or an array

I TYPE must be one of the following

I INTEGER

! REAL

I CHARACTER
INTEGER(HSIZE_T), INTENT(IN), DIMENSION(2) :: dims

! Array to hold corresponding

I dimension sizes of data

! buffer buf

I dim(k) has value of the k-th

I dimension of buffer buf

! Values are ignored if buf is

I a scalar
INTEGER(SIZE_T), INTENT(IN), DIMENSION(*) ::len

! Array to store length of

I each element
INTEGER, INTENT(OUT) :: hdferr I Error code

1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: mem_space_id

I Memory dataspace identfier

! Default value is H5S_ALL_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: file_space_id

! File dataspace identfier

| Default value is H5S_ALL_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: xfer_prp

I Transfer property list identifier

! Default value is H5P_DEFAULT_F

END SUBROUTINE h5dwrite_vl_f

History:
Release Fortran90
142 A dims parameter has been added.

97

98

HDF5 Reference Manual

HDF5 Reference Manual

H5E: Error Interface

Error APl Functions

These functions provide error handling capabilities in the HDF5 environment.
In the following lists, italic type indicates a configurable macro.

The C Interfaces:

» H5Eclear » H5Epop » H5Eset_auto

» H5Eclearl * * H5Eget_num * H5Eset_autol *

» H5Eclear2 » H5Eget_major * » H5Eset_auto2

» H5Ecreate_stack H5Eget_minor * » H5Eget_auto

» H5Eclose_stack < H5Eget _msg » H5Eget_autol *

« H5Eprint * H5Ecreate_msg * H5Eget_auto2

« H5Eprintl * » H5Eclose_msg » H5Ewalk

» H5Eprint2 » H5Eregister_class « H5Ewalkl *

* H5Epush » H5Eunregister_class « H5Ewalk2

* H5Epushl * » H5Eget_class_name < H5Eget current_stack
* H5Epush2 » H5Eauto_is_v2 » H5Eset_current_stack

* Use of these functions is deprecated in Release 1.8.0.
Alphabetical Listing

e H5Eauto_is_v2 < H5Eget class _name < H5Epushl *

« H5Eclear » H5Eget_current_stack ¢ H5Epush2

« H5Eclearl * » H5Eget_major * « H5Eregister_class

» H5Eclear2 » H5Eget_minor * » H5Eset_auto

« H5Eclose_msg « H5Eget_msg * H5Eset_autol *

« H5Eclose_stack < H5Eget_num * H5Eset_auto2

* H5Ecreate_msg <« H5Epop » H5Eset_current_stack
« H5Ecreate_stack < H5Eprint « H5Eunregister_class
¢ H5Eget_auto » H5Eprintl * « H5Ewalk

* H5Eget_autol * < H5Eprint2 * H5Ewalk1 *

¢ H5Eget_auto2 » H5Epush « H5Ewalk2

* Use of these functions is deprecated in Release 1.8.0.

The FORTRAN9O Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

* h5eclear_f < hbeset_auto_f < h5eget_major_f

* h5eprint_f » h5eget_minor_f
The Error interface provides error handling in the form of a stack. The FUNC_ENTER() macro clears the error
stack whenever an interface function is entered. When an error is detected, an entry is pushed onto the stack. /
the functions unwind, additional entries are pushed onto the stack. The API function will return some indication
that an error occurred and the application can print the error stack.

99

HDF5 Reference Manual

Certain API functions in the H5E package, such as H5Eprintl, do not clear the error stack. Otherwise, any
function which does not have an underscore immediately after the package name will clear the error stack. For
instance, H5Fopen clears the error stack while H5F_open does not.

An error stack has a fixed maximum size. If this size is exceeded then the stack will be truncated and only the
inner-most functions will have entries on the stack. This is expected to be a rare condition.

Each thread has its own error stack, but since multi-threading has not been added to the library yet, this package

maintains a single error stack. The error stack is statically allocated to reduce the complexity of handling errors
within the H5E package.

100

HDF5 Reference Manual H5Eauto_is_v2

Name: H5Eauto_is_v2
Signature:
herr_tH5Eauto_is_v2(hid_t estack_id, unsigned *is_stack)
Purpose:
Determines type of error stack.
Description:
H5Eauto_is_v2 determines whether the error auto reporting function for an error stack conforms to
the H5E_auto2_t typedef or the H5E_autol_t typedef.

The is_stack parameter is set to 1 if the error stack conforms to HSE_auto2_t and 0 if it conforms
to H5E_autol_t.

Parameters:
hid_testack_id IN: The error stack identifier
unsigned *is_stack OUT: A flag indicating which error stack typedef the specified error stack
conforms to.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

101

H5Eclear HDF5 Reference Manual

Name: H5Eclear
Signature:
herr_tH5Eclearl1(void)
herr_tH5Eclear2(hid_t estack _id)
Purpose:
Clears an error stack.
Description:
H5Eclear is a macro that is mapped to either H5Eclearl or H5Eclear2, depending on the needs of
the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Eclear is mapped to the most recent version of the function, currently H5Eclear2. If the
library and/or application is compiled for Release 1.6 emulation, H5Eclear will be mapped to
H5Eclearl. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Eclear mapping

Global settings

No compatibility flag H5Eclear2
Enable deprecated symbols H5Eclear2
Disable deprecated symbols H5Eclear2

Emulate Release 1.6 interface H5Eclearl

Function-level macros
H5Eclear_vers =2 H5Eclear2

H5Eclear_vers =1 H5Eclearl

Fortran90 Interface: h5eclear_f
SUBROUTINE h5eclear_f(hdferr)
IMPLICIT NONE
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5eclear_f

History:
Release C

1.8.0 The function H5Eclear renamed to H5Eclearl and deprecated in this release.
The macro H5Eclear and the function H5Eclear2 introduced in this release.

102

HDF5 Reference Manual H5Eclearl

Name: H5Eclearl
Signature:
herr_tH5Eclearl(void)
Purpose:
Clears the error stack for the current thread.
Notice:
This function is deprecated in favor of the function H5Eclear2 or the macro H5Eclear.
Description:
H5Eclearl clears the error stack for the current thread.

The stack is also cleared whenever an API function is called, with certain exceptions (for instance,
H5Eprintl).
Parameters:
None
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5eclear_f
See H5ECclear.
History:
Release C
1.8.0 Function H5Eclear renamed to H5Eclearl and deprecated in this release.

103

H5Eclear2 HDF5 Reference Manual

Name: H5Eclear2

Signature:
herr_tH5Eclear2(hid_t estack _id)
Purpose:
Clears the specified error stack or the error stack for the current thread.
Description:
H5Eclear2 clears the error stack specified by estack_id, or, if estack _id is set to
H5E_DEFAULT, the error stack for the current thread.

estack_id is an error stack identifier, such as that returned by H5Eget_current_stack.

The current error stack is also cleared whenever an API function is called, with certain exceptions (for
instance, H5Eprintl or H5Eprint2).
Parameters:
hid_testack_id IN: Error stack identifier.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:
See H5ECclear.
History:
Release C
1.8.0 Function introduced in this release.

104

HDF5 Reference Manual H5Eclose_msg

Name: H5Eclose_msg
Signature:
herr_tH5Eclose_msg(hid_t mesg_id)
Purpose:
Closes an error message identifier.
Description:
H5Eclose_msg closes an error message identifier., which can be either a major or minor message.
Parameters:
hid_tmesg_id IN: Error message identifier.
Returns:
Returns a non-negative value on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

105

H5Eclose_stack HDF5 Reference Manual

Name: H5Eclose_stack

Signature:

herr_tH5Eclose_stack(hid_t estack_id)
Purpose:

Closes object handle for error stack.
Description:

H5Eclose_stack closes the object handle for an error stack and releases its resources.
H5E_DEFAULT cannot be closed.
Parameters:
hid_testack_id IN: Error stack identifier.
Returns:
Returns a non-negative value on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

106

HDF5 Reference Manual H5Ecreate_msg

Name: H5Ecreate_msg
Signature:
hid_tH5Ecreate_msg(hid_t class, H5E_type t msg_type, const char* mesg)
Purpose:
Add major error message to an error class.
Description:
H5Ecreate_msg adds an error message to an error class defined by client library or application
program. The error message can be either major or minor which is indicated by parameter msg_type.
Parameters:

hid_tclass IN: Error class identifier.
H5E_type_imsg_type IN: The type of the error message.
Valid values are H5E_MAJOR and H5E_MINOR.
const char* mesg IN: Major error message.
Returns:

Returns a message identifier on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

107

H5Ecreate_stack HDF5 Reference Manual

Name: H5Ecreate_stack
Signature:
hid_tH5Ecreate_stack(void)
Purpose:
Creates a new empty error stack.
Description:
H5Ecreate_stack creates a new empty error stack and returns the new stack’s identifier.
Parameters:
None.
Returns:
Returns an error stack identifier on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

108

HDF5 Reference Manual H5Eget_auto

Name: H5Eget_auto
Signature:
herr_tH5Eget_auto(H5E_auto_t * func, void **client_data)
herr_tH5Eget_auto(hid_t estack _id, HS5E_auto_t* func, void **client_data)
Purpose:
Returns settings for automatic error stack traversal function and its data.
Description:
H5Eget_auto is a macro that is mapped to either H5Eget_autol or HSEget_auto2, depending on
the needs of the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Eget_auto is mapped to the most recent version of the function, currently HSEget_auto2.

If the library and/or application is compiled for Release 1.6 emulation, H5Eget_auto will be mapped to
H5Eget_autol. Function-specific flags are available to override these settings on a
function-by-function basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Eget_auto mapping

Global settings

No compatibility flag H5Eget_auto2
Enable deprecated symbols H5Eget_auto2
Disable deprecated symbols H5Eget_auto2

Emulate Release 1.6 interface H5Eget_autol

Function-level macros

H5Eget _auto_vers =2 H5Eget _auto?
H5Eget_auto_vers=1 H5Eget_autol
Fortran90 Interface: h5eget_auto_f
None.
History:
Release C
1.8.0 The function HS5Eget_auto renamed to H5Eget_autol and deprecated in
this release.
The macro H5Eget_auto and the function H5Eget_auto?2 introduced in this
release.

109

H5Eget_autol HDF5 Reference Manual

Name: H5Eget_autol
Signature:
herr_tH5Eget autol(H5E_autol t* func, void **client_data)
Purpose:
Returns the current settings for the automatic error stack traversal function and its data.
Notice:
This function is deprecated in favor of the function H5Eget_auto2 or the macro H5Eget_auto.
Description:
H5Eget_autol returns the current settings for the automatic error stack traversal function, func, and
its data, client_data. Either or both arguments may be null, in which case the value is not returned.
Parameters:

H5E_autol t *func OUT: Current setting for the function to be called upon an error condition.

void **client_data OUT: Current setting for the data passed to the error function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function H5Eget_auto renamed to H5Eget_autol and deprecated in this

release.

110

HDF5 Reference Manual H5Eget_auto2

Name: H5Eget auto2
Signature:
herr_tH5Eget auto2(hid_t estack id, H5E_auto2_t* func, void **client_data)
Purpose:
Returns the settings for the automatic error stack traversal function and its data.
Description:
H5Eget_auto2 returns the settings for the automatic error stack traversal function, func, and its data,
client_data, that are associated with the error stack specified by estack_id.

Either or both of the func and client_data arguments may be null, in which case the value is not

returned.

Parameters:
hid_testack_id IN: Error stack identifier. HSE_ DEFAULT indicates the current stack.
H5E_auto2_t *func OUT: The function currently set to be called upon an error condition.
void **client_data OUT: Data currently set to be passed to the error function.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

111

H5Eget class_name HDF5 Reference Manual

Name: H5Eget class_name

Signature:
ssize_H5Eget_class _name(hid_t class_id, char* name, size_t size)

Purpose:
Retrieves error class name.

Description:
H5Eget_class_name retrieves the name of the error class specified by the class identifier. If
non-NULL pointer is passed in for name and size is greater than zero, the class name of size long is
returned. The length of the error class name is also returned. If NULL is passed in as hame, only the
length of class name is returned. If zero is returned, it means no name. User is responsible for allocated
enough buffer for the name.

Parameters:

hid_tclass_id IN: Error class identifier.

char* name OUT: The name of the class to be queried.

size_tsize IN: The length of class name to be returned by this function.
Returns:

Returns non-negative value as on success; otherwise returns negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

112

HDF5 Reference Manual H5Eget_current_stack

Name: H5Eget_current_stack
Signature:
hid_tH5Eget_current_stack(void)
Purpose:
Returns copy of current error stack.
Description:
H5Eget_current_stack copies the current error stack and returns an error stack identifier for the
new copy.
Parameters:
None.
Returns:
Returns an error stack identifier on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

113

H5Eget_major HDF5 Reference Manual

Name: H5Eget_major
Signature:
const char *H5Eget_major(H5E_major_t n)
Purpose:
Returns a character string describing an error specified by a major error number.
Notice:
This function has been deprecated.
Description:
Given a major error number, HSEget _major returns a constant character string that describes the error.
Parameters:

H5E_major_mn IN: Major error number.

Returns:
Returns a character string describing the error if successful. Otherwise returns "Invalid major error
number.”

Fortran90 Interface: h5eget_major_f
SUBROUTINE h5eget_major_f(error_no, name, hdferr)

INTEGER, INTENT(IN) :: error_no IMajor error number
CHARACTER(LEN=*), INTENT(OUT) :: name ! File name
INTEGER, INTENT(OUT) :: hdferr I Error code

END SUBROUTINE h5eget_major_f

History:
Release C
1.8.0 Function deprecated in this release.

114

HDF5 Reference Manual H5Eget_minor

Name: H5Eget_minor
Signature:
char * H5Eget_minor(H5E_minor_t n)
Purpose:
Returns a character string describing an error specified by a minor error number.
Notice:
This function has been deprecated.
Description:
Given a minor error number, HSEget_minor returns a constant character string that describes the error.
Note:
In the Release 1.8.x series, HSEget_minor returns a string of dynamic allocated char array. An
application calling this function from an HDF5 library of Release 1.8.0 or later must free the memory
associated with the return value to prevent a memory leak. This is a change from the 1.6.x release serie
Parameters:

H5E_minor_m IN: Minor error number.

Returns:
Returns a character string describing the error if successful. Otherwise returns "Invalid minor error
number."

Fortran90 Interface: h5eget_minor_f
SUBROUTINE h5eget_minor_f(error_no, name, hdferr)

INTEGER, INTENT(IN) :: error_no IMajor error number
CHARACTER(LEN=%*), INTENT(OUT) :: name ! File name
INTEGER, INTENT(OUT) :: hdferr I Error code

END SUBROUTINE h5eget_minor_f

History:
Release Change
1.8.0 Function deprecated and return type changed in this release.

115

H5Eget_msg HDF5 Reference Manual

Name: H5Eget_msg

Signature:
ssize_ H5Eget_msg(hid_t mesg_id, H5E_type t* mesg_type, char* mesg, size_t size)

Purpose:
Retrieves an error message.

Description:
H5Eget_msg retrieves the error message including its length and type. The error message is specified
by mesg_id. User is responsible for passing in enough buffer for the message. If mesg is not NULL and
size is greater than zero, the error message of size long is returned. The length of the message is also
returned. If NULL is passed in as mesg, only the length and type of the message is returned. If the return
value is zero, it means no message.

Parameters:

hid_tmesg_id IN: Idenfier for error message to be queried.

H5E_type t* mesg_type OUT: The type of the error message.
Valid values are H5E_MAJOR and H5E_MINOR.

char* mesg OUT: Error message buffer.
size_tsize IN: The length of error message to be returned by this function.
Returns:

Returns the size of the error message in bytes on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

116

HDF5 Reference Manual H5Eget_num

Name: H5Eget_num
Signature:
ssize_ H5Eget_num(hid_t estack_id)
Purpose:
Retrieves the number of error messages in an error stack.
Description:
H5Eget_num retrieves the number of error records in the error stack specified by estack_id
(including major, minor messages and description).
Parameters:
hid_testack_id IN: Error stack identifier.
Returns:
Returns a non-negative value on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

117

H5Epop HDF5 Reference Manual

Name: H5Epop

Signature:
herr_tH5Epop(hid_testack_id, size_t count)

Purpose:
Deletes specified number of error messages from the error stack.

Description:
H5Epop deletes the number of error records specified in count from the top of the error stack specified
by estack_id (including major, minor messages and description). The number of error messages to be
deleted is specified by count.

Parameters:

hid_testack_id IN: Error stack identifier.

size_tcount IN: The number of error messages to be deleted from the top of error stack.
Returns:

Returns a non-negative value on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

118

HDF5 Reference Manual H5Eprint

Name: H5Eprint
Signature:
herr_tHS5Eprintl(FILE* stream)
herr_tH5Eprint2(hid_t estack_id, FILE* stream))
Purpose:
Prints an error stack in a default manner.
Description:
H5Eprint is a macro that is mapped to either H5Eprintl or H5Eprint2, depending on the needs of
the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Eprint is mapped to the most recent version of the function, currently H5SEprint2. If the
library and/or application is compiled for Release 1.6 emulation, H5Eprint will be mapped to
H5Eprintl. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Eprint mapping

Global settings

No compatibility flag H5Eprint2
Enable deprecated symbols H5Eprint2
Disable deprecated symbols H5Eprint2

Emulate Release 1.6 interface H5Eprintl

Function-level macros
H5Eprint_vers = 2 H5Eprint2

H5Eprint_vers =1 H5Eprintl

Fortran90 Interface: h5eprint_f
SUBROUTINE h5eprint_f(hdferr, name)
CHARACTER(LEN=%*), OPTIONAL, INTENT(IN) :: name ! File name
INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5eprint_f

History:
Release C

1.8.0 The function H5Eprint renamed to H5Eprintl and deprecated in this release.
The macro H5Eprint and the function H5Eprint2 introduced in this release.

119

H5Eprintl HDF5 Reference Manual

Name: H5Eprintl

Signature:

herr_tHS5Eprintl(FILE * stream)
Purpose:

Prints the current error stack in a default manner.
Notice:

This function is deprecated in favor of the function H5Eprint2 or the macro H5Eprint.
Description:
H5Eprintl prints the error stack for the current thread on the specified stream, stream. Even if the
error stack is empty, a one-line message will be printed:
HDF5-DIAG: Error detected in thread 0.

H5Eprintl is a convenience function for HSEwalk1 with a function that prints error messages. Users
are encouraged to write their own more specific error handlers.
Parameters:
FILE * stream IN: File pointer, or stderr if NULL.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5eprint_f
See H5Eprint.
History:
Release C
1.8.0 Function H5Eprint renamed to H5Eprintl and deprecated in this release.

120

HDF5 Reference Manual H5Eprint2

Name: H5Eprint2

Signature:

herr_tH5Eprint2(hid_t estack_id, FILE* stream)
Purpose:

Prints the specified error stack in a default manner.
Description:

H5Eprint2 prints the error stack specified by estack_id on the specified stream, stream. Even if
the error stack is empty, a one-line message of the following form will be printed:
HDF5-DIAG: Error detected in HDFS5 library version: 1.5.62 thread 0.

A similar line will appear before the error messages of each error class stating the library name, library
version number, and thread identifier.

If estack_id is HSE_DEFAULT, the current error stack will be printed.

H5Eprint2 is a convenience function for HSEwalk2 with a function that prints error messages. Users
are encouraged to write their own more specific error handlers.

Parameters:
hid_testack_id IN: Identifier of the error stack to be printed. If the identifier is HSE_ DEFAULT,
the current error stack will be printed.
FILE * stream IN: File pointer, or stderr if NULL.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

See H5Eprint.
History:
Release C
1.8.0 Function introduced in this release.

121

H5Epush HDF5 Reference Manual

Name: H5Epush

Signature:
herr_tH5Epush(const char *file, const char *func, unsigned line, HSE_major_t maj_num,
H5E_minor_tmin_num, const char *str)

herr_tH5Epush(hid_t estack_id, const char *file, const char *func, unsigned line, hid_t
class_id, hid_t major_id, hid_t minor_id, const char *msg, ...)
Purpose:
Pushes a new error message onto an error stack.
Description:
H5Epush is a macro that is mapped to either H5SEpushl or H5Epush2, depending on the needs of the
application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Epush is mapped to the most recent version of the function, currently HSEpush2. If the library
and/or application is compiled for Release 1.6 emulation, HSEpush will be mapped to H5Epushl.
Function-specific flags are available to override these settings on a function-by-function basis when the
application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Epush mapping

Global settings

No compatibility flag H5Epush2
Enable deprecated symbols H5Epush2
Disable deprecated symbols H5Epush2

Emulate Release 1.6 interface H5Epushl

Function-level macros

H5Epush_vers =2 H5Epush2
H5Epush_vers =1 H5Epushl
Fortran90 Interface:
None.
History:
Release C
1.8.0 The function H5SEpush renamed to H5Epushl and deprecated in this release.

The macro H5Epush and the function H5Epush?2 introduced in this release.

122

HDF5 Reference Manual H5Epushl

Name: H5Epushl
Signature:
herr_tH5Epushl(const char *file, const char *func, unsigned line, HSE_major_t maj_num,
H5E_minor_tmin_num, const char *str)
Purpose:
Pushes new error record onto error stack.
Notice:
This function is deprecated in favor of the function H5Epush2 or the macro H5Epush.
Description:
H5Epushl pushes a new error record onto the error stack for the current thread.

The error has major and minor numbers maj_num and min_num, the function func where the error
was detected, the name of the file file where the error was detected, the line line within that file, and
an error description string str.

The function name, filename, and error description strings must be statically allocated.
Parameters:

const char *file IN: Name of the file in which the error was detected.
const char *func IN: Name of the function in which the error was detected.
unsignedine IN: Line within the file at which the error was detected.
H5E_major_tmaj_num IN: Major error number.
H5E_minor_tmin_num IN: Minor error number.
const char *str IN: Error description string.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.4.0 Function introduced in this release.
1.8.0 Function H5Epush renamed to H5Epushl and deprecated in this release.

123

H5Epush2 HDF5 Reference Manual

Name: H5Epush2

Signature:
herr_tH5Epush2(hid_t estack_id, const char *file, const char *func, unsigned line, hid_t
class_id, hid_t major_id, hid_t minor_id, const char *msg, ...)

Purpose:
Pushes new error record onto error stack.

Description:

H5Epush2 pushes a new error record onto the error stack specified by estack _id.

The error record contains the error class identifier class_id, the major and minor message identifiers
major_id and minor_id, the function name func where the error was detected, the filename file

and line number line within that file where the error was detected, and an error description msg.
The major and minor errors must be in the same error class.

The function name, filename, and error description strings must be statically allocated.

msg can be a format control string with additional arguments. This design of appending additional
arguments is similar to the system and C functions printf and fprintf.

Parameters:
hid_testack_id IN: Identifier of the error stack to which the error record is to be pushed. If the
identifier is HSE_DEFAULT, the error record will be pushed to the current
stack.
const char *file IN: Name of the file in which the error was detected.
const char *func IN: Name of the function in which the error was detected.
unsignedine IN: Line number within the file at which the error was detected.
hid_tclass_id IN: Error class identifier.
hid_tmajor_id IN: Major error identifier.
hid_tminor_id IN: Minor error identifier.
const char *msg IN: Error description string.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

124

HDF5 Reference Manual H5Eregister_class

Name: H5Eregister_class

Signature:
hid_tH5Eregister_class(const char* cls_name, const char* lib_name, const char*
version)

Purpose:
Registers a client library or application program to the HDF5 error API.

Description:
H5Eregister_class registers a client library or application program to the HDF5 error API so that
the client library or application program can report errors together with HDF5 library. It receives an
identifier for this error class for further error operations. The library name and version number will be
printed out in the error message as preamble.

Parameters:
const char* cls_name IN: Name of the error class.
const char* lib_name IN: Name of the client library or application to which the error class belongs.
const char* version IN: Version of the client library or application to which the error class
belongs. A NULL can be passed in.
Returns:

Returns a class identifier on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

125

H5Eset_auto HDF5 Reference Manual

Name: H5Eset_auto
Signature:
herr_tH5Eset_auto(H5E_auto_t func, void *client_data)
herr_tH5Eset_auto(hid_t estack _id, HS5E_auto_t func, void *client_data)
Purpose:
Returns settings for automatic error stack traversal function and its data.
Description:
H5Eset_auto is a macro that is mapped to either HS5Eset_autol or H5Eset_auto2, depending on
the needs of the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Eset_auto is mapped to the most recent version of the function, currently HSEset_auto2.

If the library and/or application is compiled for Release 1.6 emulation, H5Eset_auto will be mapped to
H5Eset_autol. Function-specific flags are available to override these settings on a
function-by-function basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Eset_auto mapping

Global settings

No compatibility flag H5Eset_auto2
Enable deprecated symbols H5Eset_auto2
Disable deprecated symbols H5Eset_auto2

Emulate Release 1.6 interface H5Eset_autol

Function-level macros
H5Eset_auto_vers =2 H5Eset_auto2

H5Eset_auto_vers =1 H5Eset_autol

Fortran90 Interface: h5eset_auto_f
SUBROUTINE h5eset_auto_f(printflag, hdferr)

INTEGER, INTENT(IN) :: printflag !flag to turn automatic error
Iprinting on or off
Ipossible values are:
Iprinton (1)
Iprintoff(0)

INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE hbeset_auto_f

126

HDF5 Reference Manual H5Eset_auto

History:
Release C
1.8.0 The function H5Eset_auto renamed to H5Eset_autol and deprecated in
this release.
The macro H5Eset_auto and the function H5Eset_auto?2 introduced in this
release.

127

H5Eset_autol HDF5 Reference Manual

Name: H5Eset_autol

Signature:
herr_tH5Eset_autol(H5E_autol t func, void *client_data)

Purpose:
Turns automatic error printing on or off.

Description:
H5Eset_autol turns on or off automatic printing of errors. When turned on (non-null func pointer),
any API function which returns an error indication will first call func, passing it client_data as an
argument.

When the library is first initialized the auto printing function is set to H5Eprintl (cast appropriately)
and client_data is the standard error stream pointer, stderr.

Automatic stack traversal is always in the HSE_WALK_DOWNWARD direction.
Parameters:

H5E_autol func IN: Function to be called upon an error condition.

void *client_data IN: Data passed to the error function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5eset_auto_f

See H5Eset_auto.
History:

Release C

1.8.0 Function H5Eset_auto renamed to H5Eset _autol and deprecated in this

release.

128

HDF5 Reference Manual H5Eset_auto2

Name: H5Eset_auto2
Signature:
herr_tH5Eset_auto2(hid_t estack_id, H5E_auto2_t func, void *client_data)
Purpose:
Turns automatic error printing on or off.
Description:
H5Eset_auto2 turns on or off automatic printing of errors for the error stack specified with
estack _id. An estack_id value of HSE_DEFAULT indicates the current stack.

When automatic printing is turned on, by the use of a non-null func pointer, any API function which
returns an error indication will first call func, passing it client_data as an argument.

When the library is first initialized, the auto printing function is set to H5Eprint2 (cast appropriately)
and client_data is the standard error stream pointer, stderr.

Automatic stack traversal is always in the HSE_WALK_DOWNWARD direction.

Automatic error printing is turned off with a H5Eset_auto2 call with a NULL func pointer.
Parameters:

hid_testack_id IN: Error stack identifier.
H5E_auto2_func IN: Function to be called upon an error condition.
void *client_data IN: Data passed to the error function.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: hSeset_auto_f

See H5Eset_auto.
History:

Release C

1.8.0 Function introduced in this release.

129

H5Eset_current_stack HDF5 Reference Manual

Name: H5Eset_current_stack
Signature:
herr_tH5Eset_current_stack(hid_t estack_id)
Purpose:
Replaces the current error stack.
Description:
H5Eset_current_stack replaces the content of the current error stack with a copy of the content of
the error stack specified by estack _id, and it closes the error stack specified by estack_id.
Parameters:
hid_testack_id IN: Error stack identifier.
Returns:
Returns a non-negative value on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

130

HDF5 Reference Manual H5Eunregister_class

Name: H5Eunregister_class
Signature:
herr_tH5Eunregister_class(hid_t class_id)
Purpose:
Removes an error class.
Description:
H5Eunregister_class removes the error class specified by class_id. All the major and minor
errors in this class will also be closed.
Parameters:
hid_tclass_id IN: Error class identifier.
Returns:
Returns a non-negative value on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

131

H5Ewalk HDF5 Reference Manual

Name: H5Ewalk

Signature:
herr_tH5Ewalk(H5E_direction_tdirection, HSE_walk_t func, void * client_data)
herr_tH5Ewalk(hid_t estack_id, H5E_direction_t direction, HSE_walk_t func, void *
client_data)

Purpose:
Walks an error stack, calling a specified function.

Description:
H5Ewalk is a macro that is mapped to either H5Ewalkl or H5SEwalk2, depending on the needs of the
application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Ewalk is mapped to the most recent version of the function, currently HSEwalk2. If the library
and/or application is compiled for Release 1.6 emulation, H5Ewalk will be mapped to H5SEwalk1.
Function-specific flags are available to override these settings on a function-by-function basis when the
application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Ewalk mapping

Global settings

No compatibility flag H5Ewalk2
Enable deprecated symbols H5Ewalk2
Disable deprecated symbols H5Ewalk2

Emulate Release 1.6 interface H5Ewalk1

Function-level macros

H5Ewalk_vers = 2 H5Ewalk2
H5Ewalk vers =1 H5Ewalkl
Fortran90 Interface:
None.
History:
Release C
1.8.0 The function H5Ewalk renamed to H5Ewalk1 and deprecated in this release.

The macro H5Ewalk and the function H5Ewalk2 introduced in this release.

132

HDF5 Reference Manual H5Ewalkl

Name: H5Ewalk1
Signature:
herr_tH5Ewalk1(H5E_direction_tdirection, HSE _walkl t func, void * client_data)
Purpose:
Walks the error stack for the current thread, calling a specified function.
Notice:
This function is deprecated in favor of the function H5Ewalk2 or the macro H5Ewalk.
Description:
H5Ewalkl1 walks the error stack for the current thread and calls the specified function for each error
along the way.

direction determines whether the stack is walked from the inside out or the outside in. A value of
H5E_WALK_ UPWARD means begin with the most specific error and end at the API; a value of

H5E_WALK _DOWNWARD means to start at the APl and end at the inner-most function where the error
first detected.

func will be called for each error in the error stack. Its arguments will include an index number
(beginning at zero regardless of stack traversal direction), an error stack entry, and the client_data
pointer passed to H5E_print. The H5E_walk1 _t prototype is as follows:

typedef herr_t (*H5E_walkl t)(int n, H5E_errorl_t *err_desc, void
*client_data)

where the parameters have the following meanings:

int n
Indexed position of the error in the stack.

H5E_errorl t *err_desc
Pointer to a data structure describing the error. (This structure is currently described only
in the source code filledf5/src/H5Epublic.h. That file also contains the definitive
list of major and minor error codes. That information will eventually be presented as an
appendix to this Reference Manual.)

void *client_data
Pointer to client data in the format expected by the user-defined function.

Parameters:
H5E_direction_tdirection IN: Direction in which the error stack is to be walked.
H5E_walkl_func IN: Function to be called for each error encountered.
void * client_data IN: Data to be passed with func.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function H5Ewalk renamed to H5Ewalkl and deprecated in this release.

133

H5Ewalk2 HDF5 Reference Manual

Name: H5Ewalk?2

Signature:
herr_tH5Ewalk2(hid_t estack_id, H5E_direction_t direction, H5E_walk2_t func, void *
client_data)

Purpose:
Walks the specified error stack, calling the specified function.

Description:

H5Ewalk2 walks the error stack specified by estack_id for the current thread and calls the function
specified in func for each error along the way.

If the value of estack_id is HSE_DEFAULT, then H5Ewalk2 walks the current error stack.

direction specifies whether the stack is walked from the inside out or the outside in. A value of

H5E_WALK_ UPWARD means to begin with the most specific error and end at the API; a value of
H5E_WALK _DOWNWARD means to start at the APl and end at the innermost function where the error was
first detected.

func, a function compliant with the H5E_walk?2_t prototype, will be called for each error in the error
stack. Its arguments will include an index number n (beginning at zero regardless of stack traversal
direction), an error stack entry err_desc, and the client_data pointer passed to H5E_print. The
H5E_walk2_t prototype is as follows:

typedef herr_t (*H5E_walk2_t)(unsigned n, const H5E_error2_t *err_desc, void
*client_data)

where the parameters have the following meanings:

unsignedch
Indexed position of the error in the stack.

const H5E_error2_t *err_desc
Pointer to a data structure describing the error. (This structure is currently described only
in the source code file hdf5/src/H5Epublic.h. That file also contains the definitive
list of major and minor error codes; that information will eventually be presented as an
appendix to this HDF5 Reference Manual.)

void *client_data
Pointer to client data in the format expected by the user-defined function.

Parameters:
hid_testack_id IN: Error stack identifier.
H5E_direction_tdirection IN: Direction in which the error stack is to be walked.
H5E_walk2_tfunc IN: Function to be called for each error encountered.
void * client_data IN: Data to be passed with func.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

134

HDF5 Reference Manual

135

HDF5 Reference Manual

136

HDF5 Reference Manual

H5F: File Interface

File APl Functions

These functions are designed to provide file-level access to HDF5 files. Further manipulation of objects inside a
file is performed through one of APIs documented below.

The C Interfaces:

» H5Fcreate » H5Fget_vfd_handle < H5Fget obj_ids

» H5Fopen » H5Fget _filesize » H5Fget_freespace

» H5Freopen » H5Fget_create plist < H5Fget_mdc_config
» H5Fclose » H5Fget_access_plist « H5Fget_mdc_hit_rate

» H5Fflush » H5Fget_info » H5Fget_mdc_size
e H5Fis_hdf5 ¢ H5Fget_intent » H5Freset_mdc_hit_rate_stats
e H5Fmount » H5Fget_name » H5Fset_mdc_config

e H5Funmount « H5Fget_obj_count

Alphabetical Listing

e H5Fclose » H5Fget_intent » H5Fis_hdf5

« H5Fcreate * H5Fget_mdc_config + H5Fmount

e H5Fflush » H5Fget_mdc_hit_rate ¢ H5Fopen

* H5Fget_access_plist « H5Fget_mdc_size » H5Freopen

* H5Fget_create_plist « H5Fget_name » H5Freset_mdc_hit_rate_stats
« H5Fget filesize » H5Fget_obj_count » H5Fset_mdc_config

* H5Fget_freespace H5Fget_obj_ids * H5Funmount

« H5Fget_info » H5Fget_vfd_handle

The FORTRAN9O Interfaces:
In general, each FORTRAN9O0 subroutine performs exactly the same task as the corresponding C function.

* h5fcreate f < h5fmount f » h5fget_create_plist_f
 h5fopen_f * h5funmount_f » h5fget_access_plist_f
* h5freopen_f ¢ h5fget_vfd_handle_f < h5fget name_f

« h5fclose f * h5fget_filesize_f h5fget_obj_count_f
 h5fflush_f » h5fget_freespace f < hbfget obj_ids _f

* h5fis_hdf5_f

137

HDF5 Reference Manual

138

HDF5 Reference Manual H5Fclose

Name: H5Fclose

Signature:

herr_tH5Fclose(hid_t file_id)
Purpose:

Terminates access to an HDF5 file.
Description:

H5Fclose terminates access to an HDF5 file by flushing all data to storage and terminating access to the
file through file_id.

If this is the last file identifier open for the file and no other access identifier is open (e.g., a dataset
identifier, group identifier, or shared datatype identifier), the file will be fully closed and access will end.

Delayed close:

Note the following deviation from the above-described behavior. If H5Fclose is called for a file but one
or more objects within the file remain open, those objects will remain accessible until they are
individually closed. Thus, if the dataset data_sample is open when H5Fclose is called for the file
containing it, data_sample will remain open and accessible (including writable) until it is explicitely
closed. The file will be automatically closed once all objects in the file have been closed.

Be warned, however, that there are circumstances where it is not possible to delay closing a file. For
example, an MPI-IO file close is a collective call; all of the processes that opened the file must close it
collectively. The file cannot be closed at some time in the future by each process in an independent
fashion. Another example is that an application using an AFS token-based file access privilage may
destroy its AFS token after H5Fclose has returned successfully. This would make any future access to
the file, or any object within it, illegal.

In such situations, applications must close all open objects in a file before calling H5Fclose. It is
generally recommended to do so in all cases.

Parameters:
hid_tfile_id IN: Identifier of a file to terminate access to.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5fclose_f
SUBROUTINE h5fclose_f(file_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: file_id ! File identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5fclose_f

139

H5Fcreate HDF5 Reference Manual

Name: H5Fcreate
Signature:

hid_tH5Fcreate(const char *name, unsignedflags, hid_t fcpl_id, hid_t fapl_id)

Purpose:

Creates an HDFH5 file.

Description:

140

H5Fcreate is the primary function for creating HDF5 files; it creates a new HDF5 file with the
specified name and property lists and specifies whether an existing file of same name should be
overwritten.

The name parameter specifies the name of the new file.

The flags parameter specifies whether an existing file is to be overwritten. It should be set to either
H5F_ACC_TRUNC to overwrite an existing file or HSF_ACC_EXCL, instructing the function to fail if the
file already exists.

New files are always created in read-write mode, so the read-write and read-only flags, H5F_ ACC_RDWR
and H5F_ACC_RDONLY, respectively, are not relevant in this function. Further note that a specification
of H5F_ACC_RDONLY will be ignored; the file will be created in read-write mode, regardless.

More complex behaviors of file creation and access are controlled through the file creation and file access
property lists, fcpl_id and fapl_id, respectively. The value of H5P_DEFAULT for any property list
value indicates that the library should use the default values for that appropriate property list.

The return value is a file identifier for the newly-created file; this file identifier should be closed by
calling H5Fclose when it is no longer needed.

Special case -- File creation in the case of an already-open file:

If a file being created is already opened, by either a previous H5Fopen or H5Fcreate call, the HDF5
library may or may not detect that the open file and the new file are the same physical file. (See
H5Fopen regarding the limitations in detecting the re-opening of an already-open file.)

If the library detects that the file is already opened, H5Fcreate will return a failure, regardless of the
use of H5F_ACC_TRUNC.

If the library does not detect that the file is already opened and H5F_ACC_TRUNC is not used,
H5Fcreate will return a failure because the file already exists. Note that this is correct behavior.

But if the library does not detect that the file is already opened and H5F_ACC_TRUNC is used,
H5Fcreate will truncate the existing file and return a valid file identifier. Such a truncation of a
currently-opened file will almost certainly result in errors. While unlikely, the HDF5 library may not be
able to detect, and thus report, such errors.

Applications should avoid calling H5Fcreate with an already opened file.

HDF5 Reference Manual

Parameters:
const char *name

uintnflags

hid_tfepl_id

hid_tfapl_id

Returns:

¢

¢

H5Fcreate

IN: Name of the file to access.

IN: File access flags. Allowable values are:
H5F _ACC_TRUNC
Truncate file, if it already exists, erasing all data previously
stored in the file.
H5F ACC_EXCL
Fall if file already exists.
H5F ACC_TRUNC and H5F_ACC_EXCL are mutually exclusive; use exactly
one.
An additional flag, H5SF_ ACC_DEBUG, prints debug information. This flag can
be combined with one of the above values using the bit-wise OR operator (|,
but it is used only by HDF5 Library developers; it is neither tested nor
supported for use in applications.

IN: File creation property list identifier, used when modifying default file
meta-data. Use HSP_DEFAULT to specify default file creation properties.

IN: File access property list identifier. If parallel file access is desired, this is a
collective call according to the communicator stored in the fapl_id. Use
H5P_DEFAULT for default file access properties.

Returns a file identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5fcreate_f
SUBROUTINE h5fcreate_f(name, access_flags, file_id, hdferr, &
creation_prp, access_prp)

IMPLICIT NONE

CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the file
INTEGER, INTENT(IN) :: access_flag ! File access flags
! Possible values are:

H5F_ACC_RDWR_F
H5F_ACC_RDONLY_F
H5F_ACC_TRUNC_F
H5F_ACC_EXCL_F
H5F_ACC_DEBUG_F

INTEGER(HID_T), INTENT(OUT) :: file_id ! File identifier
INTEGER, INTENT(OUT) :: hdferr I Error code

1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: creation_prp
! File creation propertly

I list identifier, if not

I specified its value is

| HSP_DEFAULT_F
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: access_prp
! File access property list

I identifier, if not

I specified its value is

| H5P_DEFAULT_F

END SUBROUTINE h5fcreate_f

141

H5Fflush HDF5 Reference Manual

Name: H5Fflush
Signature:
herr_tH5Fflush(hid_t object id, H5F scope t scope)
Purpose:
Flushes all buffers associated with a file to disk.
Description:
H5Fflush causes all buffers associated with a file to be immediately flushed to disk without removing
the data from the cache.

object_id can be any object associated with the file, including the file itself, a dataset, a group, an
attribute, or a named data type.

scope specifies whether the scope of the flushing action is global or local. Valid values are

H5F SCOPE_GLOBAL Flushes the entire virtual file.
H5F_SCOPE_LOCAL Flushes only the specified file.

Note:
HDF5 does not possess full control over buffering. H5Fflush flushes the internal HDF5 buffers then
asks the operating system (the OS) to flush the system buffers for the open files. After that, the OS is
responsible for ensuring that the data is actually flushed to disk.

Parameters:
hid_tobject_id IN: Identifier of object used to identify the file.
H5F scope_scope IN: Specifies the scope of the flushing action.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5fflush_f
SUBROUTINE h5fflush_f(obj_id, scope, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
INTEGER, INTENT(IN) :: scope ! Flag with two possible values:

I H5F _SCOPE_GLOBAL_F
I H5F_SCOPE_LOCAL_F
INTEGER, INTENT(OUT) : hdferr ! Error code
I 0 on success and -1 on failure
END SUBROUTINE h5fflush_f

142

HDF5 Reference Manual H5Fget_access_plist

Name: H5Fget_access_plist

Signature:

hid_tH5Fget_access_plist(hid_t file_id)
Purpose:

Returns a file access property list identifier.
Description:

H5Fget_access_plist returns the file access property list identifier of the specified file.

See "File Access Properties" in H5P: Property List Interface in this reference manual and "File Access
Property Lists" in Files in the HDF5 User's Guide for additional information and related functions.
Parameters:

hid_tfile_id IN: Identifier of file to get access property list of
Returns:

Returns a file access property list identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5fget_access_plist_f
SUBROUTINE h5fget_access_plist_f(file_id, fcpl_id, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) ::file_id ! File identifier
INTEGER(HID_T), INTENT(OUT) :: fapl_id ! File access property list identifier
INTEGER, INTENT(OUT) > hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5fget_access_plist_f

143

H5Fget_create_plist HDF5 Reference Manual

Name: H5Fget_create_plist

Signature:

hid_tH5Fget_create plist(hid_t file_id)
Purpose:

Returns a file creation property list identifier.
Description:

H5Fget_create_plist returns a file creation property list identifier identifying the creation
properties used to create this file. This function is useful for duplicating properties when creating another
file.

See "File Creation Properties" in H5P: Property List Interface in this reference manual and "File Creation
Properties" in Files in the HDF5 User's Guide for additional information and related functions.

The creation property list identifier should be released with H5Pclose.
Parameters:
hid_tfile_id IN: File identifier
Returns:
Returns a file creation property list identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5fget_create_plist_f
SUBROUTINE h5fget_create_plist_f(file_id, fcpl_id, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: file_id ! File identifier
INTEGER(HID_T), INTENT(OUT) :: fcpl_id ! File creation property list
I identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code
I 0 on success and -1 on failure
END SUBROUTINE h5fget_create_plist_f

144

HDF5 Reference Manual H5Fget _filesize

Name: H5Fget_filesize
Signature:
herr_tH5Fget_filesize(hid_t file_id, hsize_t *size)
Purpose:
Returns the size of an HDF5 file.
Description:
H5Fget_filesize returns the size of the HDF5 file specified by file_id.

The returned size is that of the entire file, as opposed to only the HDF5 portion of the file. I.e., size
includes the user block, if any, the HDF5 portion of the file, and any data that may have been appended
beyond the data written through the HDF5 Library.

Parameters:

hid_tfile_id
IN: Identifier of a currently-open HDF5 file

hsize_t *size
OUT: Size of the file, in bytes.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5fget_filesize_f
SUBROUTINE h5fget_filesize_f(file_id, size, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: file_id ! file identifier
INTEGER(HSIZE_T), INTENT(OUT) :: size ! Size of the file
INTEGER, INTENT(OUT) :: hdferr ! Error code: 0 on success,
-1 if fail
END SUBROUTINE h5fget_filesize_f

History:
Release C

1.6.3 Function introduced in this release.
Fortran subroutine introduced in this release.

145

H5Fget_freespace HDF5 Reference Manual

Name: H5Fget freespace

Signature:

hssize H5Fget_freespace(hid_t file_id)
Purpose:

Returns the amount of free space in a file.
Description:

Given the identifier of an open file, file_id, H5Fget_freespace returns the amount of space that
is unused by any objects in the file.

Currently, the HDF5 library only tracks free space in a file from a file open or create until that file is
closed, so this routine will only report the free space that has been created during that interval.
Parameters:
hid_tfile_id IN: Identifier of a currently-open HDF5 file
Returns:
Returns the amount of free space in the file if successful; otherwise returns a negative value.

Fortran90 Interface: h5fget freespace_f
SUBROUTINE h5fget_freespace_f(file_id, free_space, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: file_id I File identifier
INTEGER(HSSIZE_T), INTENT(OUT) :: free_space ! Amount of free space in file
INTEGER, INTENT(OUT) .- hdferr I Error code
1 0 on success and -1 on failure
END SUBROUTINE h5fget_freespace_f

History:
Release C
1.6.1 Function introduced in this release.

146

HDF5 Reference Manual H5Fget_info

Name: H5Fget_info

Signature:

herr_tH5Fget _info(hid_t obj_id, H5F info_t *file_info)
Purpose:

Returns global information for a file.
Description:

H5Fget_info returns global information for the file associated with the object identifier obj_id in
the H5F _info_t struct named file_info.

obj_id is an identifier for any object in the file of interest.

An H5F _info_t struct is defined as follows (in H5Fpublic.h):

typedef struct H5F _info_t {
hsize t super_ext_size;
struct {
hsize_t hdr_size;
H5_ih_info_t msgs_info;
} sohm;
} H5F_info_t;

super_ext_size is the size of the superblock extension.

The sohm sub-struct contains shared object header message information: hdr_size is the size of shared
of object header messages. msgs_info is a H5_ih_info_t struct containing the cumulative shared

object header message index size and heap size; an H5_ih_info_t struct is defined as follows (in
H5public.h):

typedef struct H5_ih_info_t {
hsize_t index_size;
hsize_t heap_size;

} H5_ih_info_t;

index_size is the summed size of all of the shared of object header indexes. Each index might be
either a B-tree or a list. heap_size is the size of the heap.

Parameters:
hid_tobj_id, IN: Object identifier for any object in the file.
H5F info_t *file_info OUT: Struct containing global file information.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

147

H5Fget_intent HDF5 Reference Manual

Name: H5Fget_intent

Signature:

herr_tH5Fget_intent(hid_t file_id, unsigned *intent)
Purpose:

Determines the read/write or read-only status of a file.
Description:

Given the identifier of an open file, file_id, H5Fget_intent retrieves the “intended access mode”
flag passed with H5SFopen when the file was opened.

The value of the flag is returned in intent. Valid values are as follows:

H5F ACC_RDWR File was opened with read/write access.

H5F_ACC_RDONLY File was opened with read-only access.

The function will not return an error if intent is NULL; it will simply do nothing.
Parameters:

hid_tfile_id IN: File identifier for a currently-open HDFS5 file

unsigned *intent OUT: Intended access mode flag, as originally passed with HS5Fopen.
Returns:

Returns the amount of free space in the file if successful; otherwise returns a negative value.
Fortran90 Interface: None.
History:

Release C

1.8.0 Function introduced in this release.

148

HDF5 Reference Manual

H5Fget_mdc_config

Name: H5Fget_mdc_config

Signature:
herr_tH5Fget_mdc_config(hid_t

Purpose:

file_id, H5AC_cache_config_t *config_ptr)

Obtain current metadata cache configuration for target file.

Description:

H5Fget_mdc_config loads the current metadata cache configuration into the instance of
H5AC_cache_config_t pointed to by the config_ptr parameter.

Note that the version field of *config_ptr must be initialized --this allows the library to support old

versions of the H5AC_cache_config_t structure.

See the overview of the metadata cache in the special topics section of the user manual for details on
metadata cache configuration. If you haven't read and understood that documentation, the results of this

call will not make much sense.
Parameters:

hid_tfile_id
H5AC_cache_config_t *config_ptr

General configuration section:
int version

hbool_trpt_fcn_enabled

hbool_topen_trace_file

hbool_tclose trace_file

IN: Identifier of the target file

IN/OUT: Pointer to the instance of
H5AC_cache_config_t in which the current
metadata cache configuration is to be reportec
The fields of this structure are discussed belov

IN: Integer field indicating the the version of th
H5AC_cache_config_t in use. This field shoulc
be set to
H5AC__CURR_CACHE_CONFIG_VERSION
(defined in H5ACpublic.h).

OUT: Boolean flag indicating whether the
adaptive cache resize report function is enable
This field should almost always be set to
FALSE. Since resize algorithm activity is
reported via stdout, it MUST be set to FALSE
on Windows machines.

The report function is not supported code, and
can be expected to change between versions
the library. Use it at your own risk.

OUT: Boolean field indicating whether the
trace_file_name field should be used to
open a trace file for the cache. This field will
always be set to FALSE in this context.

OUT: Boolean field indicating whether the
current trace file (if any) should be closed. Thit
field will always be set to FALSE in this
context.

149

H5Fget_mdc_config

150

char *trace_file_name

hbool_tevictions_enabled

hbool_tset initial_size

size_tinitial_size

doublemin_clean_fraction

size_tmax_size

size_tmin_size

long intepoch_length

Increment configuration section:
enum H5C_cache_incr_mod&r_mode

doublelower_hr_threshold

HDF5 Reference Manual

OUT: Full path name of the trace file to be
opened if the open_trace_file field is

TRUE. This field will always be set to the empty
string in this context.

OUT: Boolean flag indicating whether metadata
cache entry evictions are enabled.

OUT: Boolean flag indicating whether the cache
should be created with a user specified initial
maximum size.

If the configuration is loaded from the cache,
this flag will always be FALSE.

OUT: Initial maximum size of the cache in
bytes, if applicable.

If the configuration is loaded from the cache,
this field will contain the cache maximum size
as of the time of the call.

OUT: Float value specifing the minimum
fraction of the cache that must be kept either
clean or empty when possible.

OUT: Upper bound (in bytes) on the range of
values that the adaptive cache resize code can
select as the maximum cache size.

OUT: Lower bound (in bytes) on the range of
values that the adaptive cache resize code can
select as the maximum cache size.

OUT: Number of cache accesses between runs
of the adaptive cache resize code.

OUT: Enumerated value indicating the
operational mode of the automatic cache size
increase code. At present, only the following
values are legal:

H5C incr__ off: Automatic cache size increase
is disabled.

H5C incr__threshold: Automatic cache size
increase is enabled using the hit rate threshold
algorithm.

OUT: Hit rate threshold used in the hit rate
threshold cache size increase algorithm.

HDF5 Reference Manual

doubleincrement

hbool_tapply_max_increment

size_tmax_increment

enum H5C_cache flash_incr_mditish_incr_mode

doubleflash_threshold

doubleflash_multiple

H5Fget_mdc_config

OUT: The factor by which the current maximur
cache size is multiplied to obtain an initial new
maximum cache size if a size increase is
triggered in the hit rate threshold cache size
increase algorithm.

OUT: Boolean flag indicating whether an uppe
limit will be applied to the size of cache size
increases.

OUT: The maximum number of bytes by whict
the maximum cache size can be increased in
single step -- if applicable.

OUT: Enumerated value indicating the
operational mode of the flash cache size incre.
code. At present, only the following values are
legal:

H5C_flash_incr__ off: Flash cache size increas
is disabled.

H5C_flash_incr__add_space: Flash cache siz
increase is enabled using the add space
algorithm.

OUT: The factor by which the current maximur
cache size is multiplied to obtain the minimum
size entry / entry size increase which may trigg
a flash cache size increase.

OUT: The factor by which the size of the
triggering entry / entry size increase is
multiplied to obtain the initial cache size
increment. This increment may be reduced to
reflect existing free space in the cache and the
max_size field above.

151

H5Fget_mdc_config

152

Decrement configuration section:
enum H5C_cache_decr_modecr_mode

doubleupper_hr_threshold

doubledecrement

hbool_tapply_max_decrement

size_tmax_decrement

int epochs_before_eviction

hbool_tapply_empty reserve

doubleempty_reserve

HDF5 Reference Manual

OUT: Enumerated value indicating the
operational mode of the automatic cache size
decrease code. At present, the following values
are legal:

H5C_decr__ off: Automatic cache size decrease
is disabled, and the remaining decrement fields
are ignored.

H5C_decr__threshold: Automatic cache size
decrease is enabled using the hit rate threshold
algorithm.

H5C _decr__age out: Automatic cache size
decrease is enabled using the ageout algorithm.

H5C _decr__age out with_threshold: Automatic
cache size decrease is enabled using the ageout
with hit rate threshold algorithm

OUT: Upper hit rate threshold. This value is
only used if the decr_mode is either
H5C_decr__threshold or
H5C_decr__age_out with_threshold.

OUT: Factor by which the current max cache
size is multiplied to obtain an initial value for

the new cache size when cache size reduction is
triggered in the hit rate threshold cache size
reduction algorithm.

OUT: Boolean flag indicating whether an upper
limit should be applied to the size of cache size
decreases.

OUT: The maximum number of bytes by which
cache size can be decreased if any single step, if
applicable.

OUT: The minimum number of epochs that an
entry must reside unaccessed in cache before
being evicted under either of the ageout cache
size reduction algorithms.

OUT: Boolean flag indicating whether an empty
reserve should be maintained under either of the
ageout cache size reduction algorithms.

OUT: Empty reserve for use with the ageout
cache size reduction algorithms, if applicable.

HDF5 Reference Manual H5Fget_mdc_config

Parallel configuration section:

int dirty_bytes_threshold OUT: Threshold number of bytes of dirty
metadata generation for triggering
synchronizations of the metadata caches servi
the target file in the parallel case.

Synchronization occurs whenever the number
bytes of dirty metadata created since the last
synchronization exceeds this limit.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

153

H5Fget_mdc_hit_rate HDF5 Reference Manual

Name: H5Fget_mdc_hit_rate

Signature:

herr_tH5Fget_mdc_hit_rate(hid_t file_id, double *hit_rate ptr)
Purpose:

Obtain target file's metadata cache hit rate.
Description:

H5Fget_mdc_hit_rate queries the metadata cache of the target file to obtain its hit rate (cache hits / (cache
hits + cache misses)) since the last time hit rate statistics were reset. If the cache has not been accessed
since the last time the hit rate stats were reset, the hit rate is defined to be 0.0.

The hit rate stats can be reset either manually (via H5Freset_mdc_hit_rate_stats()), or automatically. If
the cache's adaptive resize code is enabled, the hit rate stats will be reset once per epoch. If they are reset
manually as well, the cache may behave oddly.

See the overview of the metadata cache in the special topics section of the user manual for details on the
metadata cache and its adaptive resize algorithms.

Parameters:
hid_tfile_id IN: Identifier of the target file.
double *hit_rate_ptr OUT: Pointer to the double in which the hit rate is returned. Note that
*hit_rate_ptr is undefined if the API call fails.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

154

HDF5 Reference Manual H5Fget_mdc_size

Name: H5Fget_mdc_size

Signature:
herr_tH5Fget_mdc_size(hid_t file_id, size_t *max_size ptr, size_t
*min_clean_size ptr, size_t *cur_size_ptr, int *cur_num_entries_ptr)

Purpose:
Obtain current metadata cache size data for specified file.

Description:
H5Fget_mdc_size queries the metadata cache of the target file for the desired size information, and
returns this information in the locations indicated by the pointer parameters. If any pointer parameter is
NULL, the associated data is not returned.

If the API call fails, the values returned via the pointer parameters are undefined.

If adaptive cache resizing is enabled, the cache maximum size and minimum clean size may change at
end of each epoch. Current size and current number of entries can change on each cache access.

Current size can exceed maximum size under certain conditions. See the overview of the metadata cacl
in the special topics section of the user manual for a discussion of this.

Parameters:
hid_tfile_id IN: Identifier of the target file.
size_t *max_size_ptr OUT: Pointer to the location in which the current cache maximum
size is to be returned, or NULL if this datum is not desired.
size_t *min_clean_size_ptr OUT: Pointer to the location in which the current cache minimum
clean size is to be returned, or NULL if that datum is not desired.
size_t*cur_size_ptr OUT: Pointer to the location in which the current cache size is to
be returned, or NULL if that datum is not desired.
int *cur_num_entries_ptr OUT: Pointer to the location in which the current number of
entries in the cache is to be returned, or NULL if that datum is not
desired.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

155

H5Fget_name HDF5 Reference Manual

Name: H5Fget_name
Signature:

ssize_ H5Fget_name(hid_t obj_id, char *name, size_t size)

Purpose:

Retrieves name of file to which object belongs.

Description:

H5Fget_name retrieves the name of the file to which the object obj_id belongs. The object can be a
group, dataset, attribute, or named datatype.

Up to size characters of the filename are returned in name; additional characters, if any, are not
returned to the user application.

If the length of the name, which determines the required value of size, is unknown, a preliminary
H5Fget_name call can be made by setting name to NULL. The return value of this call will be the size

of the filename; that value plus one (1) can then be assigned to size for a second H5Fget_name call,
which will retrieve the actual name. (The value passed in with the parameter size must be one greater
than size in bytes of the actual name in order to accommodate the null terminator; if size is set to the
exact size of the name, the last byte passed back will contain the null terminator and the last character will
be missing from the name passed back to the calling application.)

If an error occurs, the buffer pointed to by name is unchanged and the function returns a negative value.

Parameters:

hid_tobj_id
IN: Identifier of the object for which the associated filename is sought. The object can be a group,
dataset, attribute, or named datatype.
char *name
OUT: Buffer to contain the returned filename.
size_tsize
IN: Size, in bytes, of the name buffer.

Returns:

Returns the length of the filename if successful; otherwise returns a negative value.

Fortran90 Interface: h5fget_name_f

SUBROUTINE h5fget_name_f(obj_id, buf, size, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
CHARACTER(LEN=¥), INTENT(INOUT) :: buf ! Buffer to hold filename
INTEGER(SIZE_T), INTENT(OUT) :: size ! Size of the filename
INTEGER, INTENT(OUT) :: hdferr ! Error code: 0 on success,
-1 if fail
END SUBROUTINE h5fget_name_f

History:

156

Release C

1.6.3 Function introduced in this release.
Fortran subroutine introduced in this release.

HDF5 Reference Manual

H5Fget_obj_count

Name: H5Fget_obj_count

Signature:

ssize_H5Fget_obj_count(hid_t file_id, unsigned int types)

Purpose:

Returns the number of open object identifiers for an open file.

Description:

Given the identifier of an open file, file_id, and the desired object types, types,
H5Fget_obj_count returns the number of open object identifiers for the file.

To retrieve a count of open identifiers for open objects in all HDF5 application files that are currently
open, pass the value H5F_OBJ_ALL in file_id.

The types of objects to be counted are specified in types as follows:

H5F_OBJ_FILE
H5F_OBJ_DATASET
H5F_OBJ_GROUP
H5F_OBJ_DATATYPE
H5F_OBJ_ATTR
H5F_OBJ_ALL

H5F_OBJ_LOCAL

Files only
Datasets only
Groups only
Named datatypes only
Attributes only
All of the above
(That is, H5F_OBJ_FILE| H5F_OBJ _DATASET
H5F_OBJ_GROUP H5F_OBJ_DATATYPHE
H5F_OBJ_ATTR)
Restrict search to objects opened through current file identifier.
Note: H5F_OBJ_LOCAL does not stand alone; it is effective
only when used in combination with one or more of the preceding
types. For example,

H5F_OBJ_DATASET | H5F_OBJ_GROUP
H5F_OBJ_LOCAL
would count all datasets and groups opened through the current
file identifier.

Multiple object types can be combined with the logical OR operator (]). For example, the expression
(H5F_OBJ_DATASET|H5F_OBJ_GROUP) would call for datasets and groups.

Parameters:
hid_tfile_id IN: Identifier of a currently-open HDFS5 file or H5F_OBJ_ALL for all
currently-open HDFS5 files.
unsigned intypes IN: Type of object for which identifiers are to be returned.
Returns:

Returns the number of open objects if successful; otherwise returns a negative value.

157

H5Fget_obj_count HDF5 Reference Manual

Fortran90 Interface: h5fget_obj_count_f
SUBROUTINE h5fget_obj_count_f(file_id, obj_type, obj_count, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: file_id ! File identifier
INTEGER, INTENT(IN) :: obj_type ! Object types, possible values are:

! H5F_OBJ_FILE_F
! H5F_OBJ_GROUP_F
I H5F_OBJ_DATASET_F
! H5F_OBJ_DATATYPE_F
| H5F_OBJ ALL _F
INTEGER(SIZE_T), INTENT(OUT) :: obj_count ! Number of opened objects
INTEGER, INTENT(OUT) . hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5fget_obj_count_f

History:
Release Change

1.6.5 H5F_OBJ_LOCAL has been added as a qualifier on the types of objects to be
counted. H5F_OBJ_LOCAL restricts the search to objects opened through
current file identifier.

1.6.8 and 1.8.2 C function return type changed to ssize t.

158

HDF5 Reference Manual H5Fget_obj_ids

Name: H5Fget_obj_ids

Signature:
ssize_H5Fget_obj_ids(hid_t file_id, unsigned int types, size_t max_objs, hid_t
*obj_id_list)

Purpose:
Returns a list of open object identifiers.

Description:

Given the file identifier file_id and the type of objects to be identified, types, H5Fget_obj_ids
returns the list of identifiers for all open HDF5 obijects fitting the specified criteria.

To retrieve identifiers for open objects in all HDF5 application files that are currently open, pass the valu
H5F_OBJ_ALL in file_id.

The types of object identifiers to be retrieved are specified in types using the codes listed for the same
parameter in H5Fget_obj_count

To retrieve identifiers for all open objects, pass a negative value for the max_objs.
Parameters:

hid_tfile_id IN: Identifier of a currently-open HDF5 file or H5SF_OBJ_ALL for all
currently-open HDF5 files.
unsigned intypes IN: Type of object for which identifiers are to be returned.
size_tmax_objs IN: Maximum number of object identifiers to place into obj_id_list.
hid_t *obj_id_list OUT: Pointer to the returned list of open object identifiers.
Returns:

Returns number of objects placed into obj_id_list if successful; otherwise returns a negative value.

Fortran90 Interface: h5fget_obj_ids_f
SUBROUTINE h5fget_obj_ids_f(file_id, obj_type, max_objs, obj_ids, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) ::file_id ! File identifier

INTEGER, INTENT(IN) ::obj_type ! Object types, possible values are:
! H5F_OBJ_FILE_F
H5F_OBJ_GROUP_F
H5F_OBJ_DATASET_F
H5F_OBJ_DATATYPE_F
H5F_OBJ_ALL_F
INTEGER, INTENT(IN) :» max_objs ! Maximum number of object
! identifiers to retrieve
INTEGER(HID_T), DIMENSION(*), INTENT(OUT) :: obj_ids
! Array of requested object
!identifiers
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5fget_obj_ids_f

History:
Release Change
1.6.0 C function introduced in this release.
1.6.8 & C function return type changed to ssize_t

1.8.2 and max_objs parameter datatype changed to size t.

159

H5Fget_vfd_handle HDF5 Reference Manual

Name: H5Fget_vfd_handle

Signature:

herr_tH5Fget _vfd_handle(hid_t file_id, hid_t fapl_id, void **file_handle)
Purpose:

Returns pointer to the file handle from the virtual file driver.
Description:

Given the file identifier file_id and the file access property list fapl_id, H5Fget_vfd_handle
returns a pointer to the file handle from the low-level file driver currently being used by the HDF5 library

for file 1/0.
Notes:
Users are not supposed to modify any file through this file handle.
This file handle is dynamic and is valid only while the file remains open; it will be invalid if the file is
closed and reopened or opened during a subsequent session.
Parameters:
hid_tfile_id IN: Identifier of the file to be queried.
hid_tfapl_id IN: File access property list identifier. For most drivers, the value will be
H5P_DEFAULT. For the FAMILY or MULTI drivers, this value should be
defined through the property list functions: H5Pset_family_offset
for the FAMILY driver and H5Pset_multi_type for the MULTI
driver.
void **file_handle OUT: Pointer to the file handle being used by the low-level virtual file
driver.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.6.0 Function introduced in this release.

160

HDF5 Reference Manual

H5Fis_hdfs

Name: H5Fis_hdf5

Signature:

htri_t H5Fis_hdf5(const char *name)
Purpose:

Determines whether a file is in the HDF5 format.
Description:

H5Fis_hdf5 determines whether a file is in the HDF5 format.
Parameters:

const char *name IN: File name to check format.
Returns:

When successful, returns a positive value, for TRUE, or 0 (zero), for FALSE.

On any error, including the case that the file does not exist, returns a negative value.

Fortran90 Interface: h5fis_hdf5 f
SUBROUTINE h5fis_hdf5_f(name, status, hdferr)
IMPLICIT NONE
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of the file
LOGICAL, INTENT(OUT) :: status I This parameter indicates
! whether file is an HDF5 file
I (TRUE or FALSE)
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
END SUBROUTINE h5fis_hdf5_f

161

H5Fmount HDF5 Reference Manual

Name: H5Fmount
Signature:
herr_tH5Fmount(hid_t loc_id, const char *name, hid_t child_id, hid_t plist_id)
Purpose:
Mounts a file.
Description:
H5Fmount mounts the file specified by child_id onto the group specified by loc_id and name
using the mount properties plist_id.

Note that loc_id is either a file or group identifier and name is relative to loc_id.
Parameters:

hid_tloc_id IN: Identifier for of file or group in which name is defined.
const char *name IN: Name of the group onto which the file specified by child_id is to be
mounted.
hid_tchild_id IN: Identifier of the file to be mounted.
hid_tplist_id IN: Identifier of the property list to be used.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5fmount_f
SUBROUTINE h5fmount_f(loc_id, name, child_id, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) ::loc_id ! File or group identifier
CHARACTER(LEN=%*), INTENT(IN):: name ! Group name at locationloc_id
INTEGER(HID_T), INTENT(IN) :: child_id ! File(to be mounted) identifier
INTEGER, INTENT(OUT) . hdferr ! Error code

I 0 on success and -1 on failure
END SUBROUTINE h5fmount_f

162

HDF5 Reference Manual H5Fopen

Name: H5Fopen
Signature:
hid_tH5Fopen(const char *name, unsignefiiags, hid_t fapl_id)
Purpose:
Opens an existing HDFS5 file.
Description:
H5Fopen is the primary function for accessing existing HDF5 files. This function opens the named file
in the specified access mode and with the specified access property list.

Note that HSFopen does not create a file if it does not already exist; see H5Fcreate.
The name parameter specifies the name of the file to be opened.

The fapl_id parameter specifies the file access property list. Use of H5SP_DEFAULT specifies that
default I/O access properties are to be used

The flags parameter specifies whether the file will be opened in read-write or read-only mode,
H5F_ACC_RDWR or H5F_ACC_RDONLY, respectively. More complex behaviors of file access are
controlled through the file-access property list.

The return value is a file identifier for the open file; this file identifier should be closed by calling
H5Fclose when it is no longer needed.

Special case -- Multiple opens:

A file can often be opened with a new H5Fopen call without closing an already-open identifier
established in a previous H5Fopen or H5Fcreate call. Each such H5Fopen call will return a unique
identifier and the file can be accessed through any of these identifiers as long as the identifier remains
valid. In such multiply-opened cases, all the open calls should use the same flags argument.

In some cases, such as files on a local Unix file system, the HDFS5 library can detect that a file is multiply
opened and will maintain coherent access among the file identifiers.

But in many other cases, such as parallel file systems or networked file systems, it is not always possibl
to detect multiple opens of the same physical file. In such cases, HDF5 will treat the file identifiers as
though they are accessing different files and will be unable to maintain coherent access. Errors are likel
to result in these cases. While unlikely, the HDF5 library may not be able to detect, and thus report, sucl
errors.

It is generally recommended that applications avoid multiple opens of the same file.
Parameters:
const char *name IN: Name of the file to be created.

unsignedlags IN: File access flags. Allowable values are:
H5F_ACC_RDWR
Allow read and write access to file.
H5F_ACC_RDONLY
Allow read-only access to file.
O H5F_ACC_RDWR and H5F _ACC_RDONLY are mutually exclusive; use
exactly one.

163

H5Fopen HDF5 Reference Manual

¢ An additional flag, H5SF_ACC_DEBUG, prints debug information. This
flag can be combined with one of the above values using the bit-wise
OR operator ('|'), but it is used only by HDF5 Library developers; it is
neither tested nor supported for use in applications.

hid_tfapl_id IN: Identifier for the file access properties list. If parallel file access is desired,
this is a collective call according to the communicator stored in the fapl_id.
Use H5P_DEFAULT for default file access properties.
Returns:
Returns a file identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5fopen_f
SUBROUTINE h5fopen_f(name, access_flags, file_id, hdferr, &
access_prp)
IMPLICIT NONE
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of the file
INTEGER, INTENT(IN) :: access_flag ! File access flags
! Possible values are:
! H5F_ACC_RDWR_F
| H5F_ACC_RDONLY_F
INTEGER(HID_T), INTENT(OUT) :: file_id ! File identifier
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: access_prp
! File access property list
! identifier
END SUBROUTINE h5fopen_f

164

HDF5 Reference Manual H5Freopen

Name: H5Freopen

Signature:
hid_tH5Freopen(hid_t file_id)

Purpose:
Returns a new identifier for a previously-opened HDF5 file.

Description:
H5Freopen returns a new file identifier for an already-open HDF5 file, as specified by file_id. Both
identifiers share caches and other information. The only difference between the identifiers is that the ne\
identifier is not mounted anywhere and no files are mounted on it.

Note that there is no circumstance under which H5Freopen can actually open a closed file; the file must
already be open and have an active file_id. E.g., one cannot close a file with
H5Fclose (file_id) then use H5Freopen (file_id) to reopen it.

The new file identifier should be closed by calling H5Fclose when it is no longer needed.
Parameters:
hid_tfile_id IN: Identifier of a file for which an additional identifier is required.

Returns:
Returns a new file identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5freopen_f

SUBROUTINE h5freopen_f(file_id, new_file_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: file_id ! File identifier
INTEGER(HID_T), INTENT(OUT) :: new_file_id ! New file identifier
INTEGER, INTENT(OUT) . hdferr 1 Error code

I 0 on success and -1 on failure
END SUBROUTINE h5freopen_f

165

H5Freset_mdc_hit_rate_stats HDF5 Reference Manual

Name: H5Freset_mdc_hit_rate_stats

Signature:

herr_tH5Freset_mdc_hit_rate_stats(hid_t file_id)
Purpose:

Reset hit rate statistics counters for the target file.
Description:

H5Freset_mdc_hit_rate_stats resets the hit rate statistics counters in the metadata cache associated with
the specified file.

If the adaptive cache resizing code is enabled, the hit rate statistics are reset at the beginning of each
epoch. This API call allows you to do the same thing from your program.

The adaptive cache resizing code may behave oddly if you use this call when adaptive cache resizing is
enabled. However, the call should be useful if you choose to control metadata cache size from your
program.

See the overview of the metadata cache in the special topics section of the user manual for details of the
metadata cache and the adaptive cache resizing algorithms. If you haven't read, understood, and thought
about the material covered in that documentation, you shouldn't be using this API call.

Parameters:
hid_tfile_id IN: Identifier of the target file.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

166

HDF5 Reference Manual H5Fset_mdc_config

Name: H5Fset_mdc_config
Signature:
herr_tH5Fset_mdc_config(hid_t file_id, HSAC_cache_config_t *config_ptr)
Purpose:
Attempt to configure metadata cache of target file.
Description:
H5Fset_mdc_config attempts to configure the file's metadata cache according configuration supplied in
*config_ptr.

See the overview of the metadata cache in the special topics section of the user manual for details on w
is being configured. If you haven't read and understood that documentation, you really shouldn't be usin

this API call.

Parameters:
hid_tfile_id IN: Identifier of the target file
H5AC _cache_config_t *config_ptr IN: Pointer to the instance of

H5AC_cache_config_t containing the desired
configuration. The fields of this structure are
discussed below:

General configuration section:

int version IN: Integer field indicating the the version of thi
H5AC _cache_config_t in use. This field shoulc
be set to
H5AC__ CURR_CACHE_CONFIG_VERSION
(defined in HSACpublic.h).

hbool_trpt_fcn_enabled IN: Boolean flag indicating whether the adapti\
cache resize report function is enabled. This
field should almost always be set to FALSE.
Since resize algorithm activity is reported via
stdout, it MUST be set to FALSE on Windows
machines.

The report function is not supported code, and
can be expected to change between versions
the library. Use it at your own risk.

hbool_topen_trace_File IN: Boolean field indicating whether the
trace_file_name field should be used to
open a trace file for the cache.

The trace file is a debuging feature that allows
the capture of top level metadata cache reque
for purposes of debugging and/or optimization
This field should normally be set to FALSE, as
trace file collection imposes considerable
overhead.

167

H5Fset_mdc_config

168

hbool_tclose_trace_file

chartrace_file_name(]

hbool_tevictions_enabled

HDF5 Reference Manual

This field should only be set to TRUE when the
trace_file_name contains the full path of

the desired trace file, and either there is no open
trace file on the cache, or the

close_trace_file field is also TRUE.

The trace file feature is unsupported unless used
at the direction of THG. It is intended to allow
THG to collect a trace of cache activity in cases
of occult failures and/or poor performance seen
in the field, so as to aid in reproduction in the
lab. If you use it absent the direction of THG,
you are on your own.

IN: Boolean field indicating whether the current
trace file (if any) should be closed.

See the above comments on the
open_trace_file field. This field should be

set to FALSE unless there is an open trace file
on the cache that you wish to close.

The trace file feature is unsupported unless used
at the direction of THG. It is intended to allow
THG to collect a trace of cache activity in cases
of occult failures and/or poor performance seen
in the field, so as to aid in reproduction in the
lab. If you use it absent the direction of THG,
you are on your own.

IN: Full path of the trace file to be opened if the
open_trace_file field is TRUE.

In the parallel case, an ascii representation of the
mpi rank of the process will be appended to the
file name to yield a unique trace file name for
each process.

The length of the path must not exceed
H5AC__MAX_TRACE_FILE_NAME_LEN
characters.

The trace file feature is unsupported unless used
at the direction of THG. It is intended to allow
THG to collect a trace of cache activity in cases
of occult failures and/or poor performance seen
in the field, so as to aid in reproduction in the
lab. If you use it absent the direction of THG,
you are on your own.

IN: A boolean flag indicating whether evictions
from the metadata cache are enabled. This flag
is initially set to TRUE.

HDF5 Reference Manual

hbool_tset initial_size

size_tinitial_size

doublemin_clean_fraction

size_tmax_size

size_tmin_size

long intepoch_length

H5Fset_mdc_config

In rare circumstances, the raw data throughpu
requirements may be so high that the user
wishes to postpone metadata writes so as to
reserve 1/O throughput for raw data. The
evictions_enabled field exists to allow

this. However, this is an extreme step, and yol
have no business doing it unless you have rea
the User Guide section on metadata caching, «
have considered all other options carefully.

The evictions_enabled field may not be

set to FALSE unless all adaptive cache resizin
code is disabled via the incr_mode,
flash_incr_mode, and decr_mode fields.

When this flag is set to FALSE, the metadata
cache will not attempt to evict entries to make
space for new entries, and thus will grow
without bound.

Evictions will be re-enabled when this field is
set back to TRUE. This should be done as soc
as possible.

IN: Boolean flag indicating whether the cache
should be forced to the user specified initial siz
IN: If set_initial_size is TRUE, initial_size must
contains the desired initial size in bytes. This
value must lie in the closed interval [min_size,
max_size]. (see below)

IN: This field specifies the minimum fraction of
the cache that must be kept either clean or
empty.

The value must lie in the interval [0.0, 1.0]. 0.0
is a good place to start in the serial case. In th
parallel case, a larger value is needed -- see tt
overview of the metadata cache in the “HDF5
Special Topics” section of the HDF5 User’s
Guide for details.

IN: Upper bound (in bytes) on the range of
values that the adaptive cache resize code cal
select as the maximum cache size.

IN: Lower bound (in bytes) on the range of
values that the adaptive cache resize code cal
select as the maximum cache size.

IN: Number of cache accesses between runs
the adaptive cache resize code. 50,000 is a gc
starting number.

169

H5Fset_mdc_config

Increment configuration section:
enum H5C_cache_incr_moder_mode

doublelower_hr_threshold

doubleincrement

hbool_tapply_max_increment

size_tmax_increment

enum H5C_cache_flash_incr_mditksh_incr_mode

170

HDF5 Reference Manual

IN: Enumerated value indicating the operational
mode of the automatic cache size increase code.
At present, only two values are legal:

H5C _incr__ off: Automatic cache size increase
is disabled, and the remaining increment fields
are ignored.

H5C incr__threshold: Automatic cache size
increase is enabled using the hit rate threshold
algorithm.

IN: Hit rate threshold used by the hit rate
threshold cache size increment algorithm.

When the hit rate over an epoch is below this
threshold and the cache is full, the maximum
size of the cache is multiplied by increment
(below), and then clipped as necessary to stay
within max_size, and possibly max_increment.

This field must lie in the interval [0.0, 1.0]. 0.8
or 0.9 is a good starting point.

IN: Factor by which the hit rate threshold cache
size increment algorithm multiplies the current
cache max size to obtain a tentative new cache
size.

The actual cache size increase will be clipped to
satisfy the max_size specified in the general
configuration, and possibly max_increment
below.

The parameter must be greater than or equal to
1.0 -- 2.0 is a reasonable value.

If you set it to 1.0, you will effectively disable
cache size increases.

IN: Boolean flag indicating whether an upper
limit should be applied to the size of cache size
increases.

IN: Maximum number of bytes by which cache
size can be increased in a single step -- if
applicable.

IN: Enumerated value indicating the operational
mode of the flash cache size increase code. At
present, only the following values are legal:

HDF5 Reference Manual

doubleflash_threshold

doubleflash_multiple

H5Fset_mdc_config

H5C _flash_incr__ off: Flash cache size increas
is disabled.

H5C _flash_incr__add_space: Flash cache siz
increase is enabled using the add space
algorithm.

IN: The factor by which the current maximum
cache size is multiplied to obtain the minimum
size entry / entry size increase which may trigg
a flash cache size increase.

At present, this value must lie in the range [0.1
1.0].

IN: The factor by which the size of the
triggering entry / entry size increase is
multiplied to obtain the initial cache size
increment. This increment may be reduced to
reflect existing free space in the cache and the
max_size field above.

At present, this field must lie in the range [0.1,
10.0].

171

H5Fset_mdc_config

172

Decrement configuration section:
enum H5C_cache_decr_modecr_mode

doubleupper_hr_threshold

doubledecrement

HDF5 Reference Manual

IN: Enumerated value indicating the operational
mode of the automatic cache size decrease code.
At present, the following values are legal:

H5C_decr__ off: Automatic cache size decrease
is disabled.

H5C_decr__threshold: Automatic cache size
decrease is enabled using the hit rate threshold
algorithm.

H5C _decr__age out: Automatic cache size
decrease is enabled using the ageout algorithm.

H5C _decr__age out with_threshold: Automatic
cache size decrease is enabled using the ageout
with hit rate threshold algorithm

IN: Hit rate threshold for the hit rate threshold
and ageout with hit rate threshold cache size
decrement algorithms.

When decr_mode is H5C decr__threshold, and
the hit rate over a given epoch exceeds the
supplied threshold, the current maximum cache
size is multiplied by decrement to obtain a
tentative new (and smaller) maximum cache
size.

When decr_mode is
H5C_decr__age_out_with_threshold, there is no
attempt to find and evict aged out entries unless
the hit rate in the previous epoch exceeded the
supplied threshold.

This field must lie in the interval [0.0, 1.0].

For H5C incr__threshold, .9995 or .99995 is a
good place to start.

For H5C decr__age_ out_with_threshold, .999
might be more useful.

IN: In the hit rate threshold cache size decrease
algorithm, this parameter contains the factor by
which the current max cache size is multiplied to
produce a tentative new cache size.

The actual cache size decrease will be clipped to
satisfy the min_size specified in the general

HDF5 Reference Manual

hbool_tapply_max_decrement

size_tmax_decrement

int epochs_before_eviction

hbool_tapply_empty reserve

doubleempty_reserve

H5Fset_mdc_config

configuration, and possibly max_decrement
below.

The parameter must be be in the interval [0.0,
1.0].

If you set it to 1.0, you will effectively disable
cache size decreases. 0.9 is a reasonable stai
point.

IN: Boolean flag indicating whether an upper
limit should be applied to the size of cache siz
decreases.

IN: Maximum number of bytes by which the
maximum cache size can be decreased in any
single step -- if applicable.

IN: In the ageout based cache size reduction
algorithms, this field contains the minimum
number of epochs an entry must remain
unaccessed in cache before the cache size
reduction algorithm tries to evict it. 3 is a
reasonable value.

IN: Boolean flag indicating whether the ageout
based decrement algorithms will maintain a
empty reserve when decreasing cache size.

IN: Empty reserve as a fraction of maximum
cache size if applicable.

When so directed, the ageout based algorithm
will not decrease the maximum cache size
unless the empty reserve can be met.

The parameter must lie in the interval [0.0, 1.0
0.1 or 0.05 is a good place to start.

173

H5Fset_mdc_config

Parallel configuration section:
int dirty_bytes_threshold

Returns:

HDF5 Reference Manual

IN: Threshold number of bytes of dirty metadata
generation for triggering synchronizations of the
metadata caches serving the target file in the
parallel case.

Synchronization occurs whenever the number of
bytes of dirty metadata created since the last
synchronization exceeds this limit.

This field only applies to the parallel case.
While it is ignored elsewhere, it can still draw a
value out of bounds error.

It must be consistant across all caches on any
given file.

By default, this field is set to 256 KB. It
shouldn't be more than half the current max
cache size times the min clean fraction.

Returns a non-negative value if successful; otherwise returns a negative value.

174

HDF5 Reference Manual H5Funmount

Name: H5Funmount
Signature:
herr_tH5Funmount(hid_t loc_id, const char *name)
Purpose:
Unmounts a file.
Description:
Given a mount point, HSFunmount dissassociates the mount point's file from the file mounted there.
This function does not close either file.

The mount point can be either the group in the parent or the root group of the mounted file (both groups
have the same name). If the mount point was opened before the mount then it is the group in the parent
it was opened after the mount then it is the root group of the child.

Note that loc_id is either a file or group identifier and name is relative to loc_id.

Parameters:
hid_tloc_id IN: File or group identifier for the location at which the specified file is to be
unmounted.
const char *name IN: Name of the mount point.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5funmount_f
SUBROUTINE h5funmount_f(loc_id, name, child_id, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) ::loc_id ! File or group identifier
CHARACTER(LEN=%*), INTENT(IN):: name ! Group name at location loc_id
INTEGER, INTENT(OUT) . hdferr ! Error code

! 0 on success and -1 on failure
END SUBROUTINE h5funmount_f

175

HDF5 Reference Manual

176

HDF5 Reference Manual

H5G: Group Interface

Group Object API Functions

The Group interface functions create and manipulate groups of objects in an HDF5 file.
In the following lists, italic type indicates a configurable macro.

The C Interfaces:

» H5Gcreate * H5Gmove * » H5Gget_objinfo *

* H5Gcreatel * * H5Gmove2 * * H5Gget_num_objs *

* H5Gcreate2 » H5GIink * » H5Gget create plist

* H5Gcreate_anon e« H5GIink2 * » H5Gget linkval *

* H5Gopen * H5Gunlink * » H5Giterate *

» H5Gopenl * » H5Gset_comment * * H5Gget _info_by idx

» H5Gopen2 » H5Gget_comment * » H5Gget_objname_by idx *
» H5Gclose » H5Gget _info » H5Gget_objtype_by idx *

» H5Gget _info_by name
* Use of these functions is deprecated in Release 1.8.0.
Alphabetical Listing

* H5Gclose » H5Gget _info » H5GIink2 *

* H5Gcreate » H5Gget _info_by_idx H5Gmove *
e H5Gcreatel * » H5Gget_info_by name * H5Gmove2 *
* H5Gcreate?2 » H5Gget_num_objs * » H5Gopen

* H5Gcreate_anon » H5Gget_objinfo * » H5Gopen1 *

*« H5Gget_comment * ¢ H5Gget_objname_by _idx * « H5Gopen2
« H5Gget_create_plist « H5Gget_objtype by idx* ¢ H5Gset_comment *
* H5Gget_linkval * » H5Giterate * * H5Gunlink *

» H5Glink *

The FORTRANO9O Interfaces:
In general, each FORTRAN9O subroutine performs exactly the same task as the corresponding C function.

» h5gclose_f » h5gget_info_f » h5glink2_f*

» h5gcreate_f » h5gget_info_by idx f « h5gmove f*

* h5gcreate_anon_f » h5gget_info_by name_f « h5gmove2 f*

» h5gget comment f* e hbgiterate f* » h5gopen_f

» h5gget_create_plist f ¢ h5glink _f* » h5gset_comment_f*
» h5gget_linkval f* * h5gunlink_f *

* Use of these functions is deprecated in Release 1.8.0.

177

HDF5 Reference Manual

Groups in HDF5:

A group associates names with objects and provides a mechanism for mapping a name to an object. Since all
objects appear in at least one group (with the possible exception of the root object) and since objects can have
names in more than one group, the set of all objects in an HDF5 file is a directed graph. The internal nodes (nodes
with out-degree greater than zero) must be groups while the leaf nodes (nodes with out-degree zero) are either
empty groups or objects of some other type. Exactly one object in every non-empty file is the root object. The

root object always has a positive in-degree because it is pointed to by the file super block.

Group implementations in HDF5:

The original HDF5 group implementation provided a single indexed structure for link storage. A new group
implementation, in HDF5 Release 1.8.0, enables more efficient compact storage for very small groups, improved
link indexing for large groups, and other advanced features.

» The original indexed format remains the default. Links are stored in a B-tree in the group’s local heap.

» Groups created in the new compact-or-indexed format, the implementation introduced with Release 1.8.0,
can be tuned for performance, switching between the compact and indexed formats at thresholds set in the
user application.

¢ The compact format will conserve file space and processing overhead when working with small
groups and is particularly valuable when a group contains no links. Links are stored as a list of
messages in the group’s header.

¢ The indexed format will yield improved performance when working with large groups, e.g.,
groups containing thousands to millions of members. Links are stored in a fractal heap and
indexed with an improved B-tree.

* The new implementation also enables the use of link names consisting of non-ASCII character sets (see
H5Pset_char_encoding) and is required for all link types other than hard or soft links, e.g., external
and user-defined links (see the H5L APIs).

The original group structure and the newer structures are not directly interoperable. By default, a group will be
created in the original indexed format. An existing group can be changed to a compact-or-indexed format if the
need arises; there is no capability to change back. As stated above, once in the compact-or-indexed format, a
group can switch between compact and indexed as needed.

Groups will be initially created in the compact-or-indexed format only when one or more of the following
conditions is met:

» The low version bound value of the library version bounds property has been set to Release 1.8.0 or later
in the file access property list (see H5Pset_libver_bounds). Currently, that would require an
H5Pset_libver_bounds call with the low parameter set to H5F_LIBVER_LATEST.

When this property is set for an HDF5 file, all objects in the file will be created using the latest available
format; no effort will be made to create a file that can be read by older libraries.

» The creation order tracking property, HSP_CRT_ORDER_TRACKED, has been set in the group creation
property list (see H5Pset_link_creation_order).

An existing group, currently in the original indexed format, will be converted to the compact-or-indexed format
upon the occurrence of any of the following events:

» An external or user-defined link is inserted into the group.
* A link named with a string composed of non-ASCII characters is inserted into the group.

178

HDF5 Reference Manual

The compact-or-indexed format offers performance improvements that will be most notable at the extremes, i.e
in groups with zero members and in groups with tens of thousands of members. But measurable differences me
sometimes appear at a threshold as low as eight group members. Since these performance thresholds and crite
differ from application to application, tunable settings are provided to govern the switch between the compact al
indexed formats (see H5Pset_link_phase_change). Optimal thresholds will depend on the application and

the operating environment.

Future versions of HDF5 will retain the ability to create, read, write, and manipulate all groups stored in either tt
original indexed format or the compact-or-indexed format.

Locating objects in the HDF5 file hierarchy:

An object name consists of one or more components separated from one another by slashes. An absolute nam
begins with a slash and the object is located by looking for the first component in the root object, then looking fc
the second component in the first object, etc., until the entire name is traversed. A relative name does not begir
with a slash and the traversal begins at the location specified by the create or access function.

179

HDF5 Reference Manual

180

HDF5 Reference Manual H5Gclose

Name: H5Gclose
Signature:
herr_tH5Gclose(hid_t group_id)
Purpose:
Closes the specified group.
Description:
H5Gclose releases resources used by a group which was opened by H5Gcreate* or H5SGopen*.
After closing a group, the group_id cannot be used again.

Failure to release a group with this call will result in resource leaks.
Parameters:

hid_tgroup_id IN: Group identifier to release.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5gclose_f
SUBROUTINE h5gclose_f(gr_id, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: gr_id ! Group identifier
INTEGER, INTENT(OUT) :: hdferr I Error code

! 0 on success and -1 on failure
END SUBROUTINE h5gclose_f

181

H5Gcreate HDF5 Reference Manual

Name: H5Gcreate

Signatures:
hid_tH5Gcreate(hid_t loc_id, const char *name, size_t size_hint) [1]
hid_tH5Gcreate(hid_t loc_id, const char *name, hid_t Icpl_id, [2]
hid_tgcpl id, hid_t gapl_id)

Purpose:
Creates a new empty group and links it to a location in the file.

Description:

H5Gcreate is a macro that is mapped to either H5Gcreatel or H5Gcreate2, depending on the
HDFS5 Library configuration and application compile-time compatibility macro mapping options.

This macro is provided to facilitate application compatibility. For example:

0 The H5Gcreate macro will be mapped to H5Gcreatel and will use the H5Gcreatel
syntax (first signature above) if the application is coded for HDF5 Release 1.6.x.
¢ The H5Gcreate macro will be mapped to H5Gcreate2 and will use the H5Gcreate?2
syntax (second signature above) if the application is coded for HDF5 Release 1.8.x.
Macro use and compatibility macro mapping options are fully described in “APl Compatibility Macros in
HDF5.”

When both the HDF5 Library and the application are built without specific compatibility macro mapping
options, the default behavior occurs and H5Gcreate is mapped to the most recent version of the
function, currently H5Gcreate2. If the library and/or application is compiled for Release 1.6 emulation,
H5Gcreate will be mapped to H5Gcreatel.

Function mapping flags can be used to override these settings on a function-by-function basis when the
application is compiled. The H5Gcreate function mapping flags are shown:

h5cc flag macro maps to
-DH5Acreate_vers=1 H5Acreatel
-DH5Acreate_vers=2 H5Acreate?2

Interface history: Signature [1] above is the original H5Gcreate interface and the only interface
available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now deprecated
but will remain directly callable as H5Gcreatel.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Gcreate?2.

Deprecated functions may not be available in all installations of the HDF5 libary. See “API Compatibility
Macros in HDF5” for details.

182

HDF5 Reference Manual H5Gcreate

Fortran90 Interface: h5gcreate_f
SUBROUTINE h5gcreate_f(loc_id, name, grp_id, hdferr, &
size_hint, Icpl_id, gcpl_id, gapl_id)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of the group
INTEGER(HID_T), INTENT(OUT) :: grp_id ! Group identifier
INTEGER, INTENT(OUT) :: hdferr I Error code

1 0 on success and -1 on failure
INTEGER(SIZE_T), OPTIONAL, INTENT(IN) :: size_hint

! Parameter indicating the number of

! bytes to reserve for the names that

I will appear in the group.

! Note, set to OBJECT_NAMELEN_DEFAULT_F

I'if using any of the optional

I parameters Icpl_id, gcpl_id,

! 'and/or gapl_id when not

I using keywords in specifying the

| optional parameters.
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: Icpl_id

! Property list for link creation
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: gcpl_id

! Property list for group creation
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: gapl_id

! Property list for group access

END SUBROUTINE h5gcreate_f

History:
Release C
1.8.0 The function H5Gcreate renamed to H5Gcreatel and deprecated in this
release.
The macro H5Gcreate and the function H5Gcreate?2 introduced in this
release.

183

H5Gcreatel HDF5 Reference Manual

Name: H5Gcreatel

Signature:

hid_tH5Gcreatel(hid_t loc_id, const char *name, size_t size_hint)
Purpose:

Creates a new empty group and links it to a location in the file.
Notice:

This function is renamed from H5Gcreate and deprecated in favor of the functions H5Gcreate2 and
H5Gcreate_anon, or the new macro H5Gcreate.

Description:
H5Gcreatel creates a new group with the specified name at the specified location, loc_id. The
location is identified by a file or group identifier. The name, name, must not already be taken by some
other object and all parent groups must already exist.

name can be a relative path based at loc_id or an absolute path from the root of the file. Use of this
function requires that any intermediate groups specified in the path already exist.

The length of a group name, or of the name of any object within a group, is not limited.

size_hint is a hint for the number of bytes to reserve to store the names which will be eventually
added to the new group. Passing a value of zero for size_hint is usually adequate since the library is
able to dynamically resize the name heap, but a correct hint may result in better performance. If a
non-positive value is supplied for size_hint, then a default size is chosen.

The return value is a group identifier for the open group. This group identifier should be closed by calling
H5Gclose when it is no longer needed.

See H5Gcreate_anon for a discussion of the differences between H5Gcreatel and
H5Gcreate_anon.

Parameters:
hid_tloc_id IN: File or group identifier.
const char *name IN: Absolute or relative name of the o new group.
size_tsize_hint IN: Optional parameter indicating the number of bytes to reserve for the
names that will appear in the group. A conservative estimate could result in
multiple system-level I/O requests to read the group name heap; a liberal
estimate could result in a single large I/O request even when the group has
just a few names. HDF5 stores each name with a null terminator.
Returns:

Returns a valid group identifier for the open group if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Gcreate.
History:

Release C

1.8.0 Function H5Gcreate renamed to H5Gcreatel and deprecated in this release.

184

HDF5 Reference Manual H5Gcreate2

Name: H5Gcreate?2

Signature:
hid_tH5Gcreate2(hid_t loc_id, const char *name, hid_t Icpl_id, hid_t gcpl_id, hid_t
gapl_id)

Purpose:
Creates a new empty group and links it into the file.

Description:
H5Gcreate2 creates a new group hamed name at the location specified by loc_id with the group
creation and access properties spceified in gcpl_id and gapl_id, respectively.

loc_id may be a file identifier, or a group identifier within that file. name may be either an absolute
path in the file or a relative path from loc_id naming the dataset.

The link creation property list, Icpl_id, governs creation of the link(s) by which the new dataset is
accessed and the creation of any intermediate groups that may be missing.

To conserve and release resources, the group should be closed when access is no longer required.
Parameters:

hid_tloc_id IN: File or group identifier

const char *name IN: Absolute or relative name of the new group
hid_tlcpl_id IN: Property list for link creation

hid_tgcpl_id IN: Property list for group creation
hid_tgapl_id IN: Property list for group access

(No group access properties have been implemented at this time; use
H5P_DEFAULT.)

Returns:

Returns a group identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Gcreate.
History:

Release C

1.8.0 Function introduced in this release.

185

H5Gcreate_anon HDF5 Reference Manual

Name: H5Gcreate_anon

Signature:

hid_tH5Gcreate_anon(hid_t loc_id, hid_t gcpl_id, hid_t gapl_id)
Purpose:

Creates a new empty group without linking it into the file structure.
Description:

H5Gcreate_anon creates a new empty group in the file specified by loc_id. With default settings,
H5Gcreate_anon provides similar functionality to that provided by H5Gcreate, with the differences
described below.

The new group’s creation and access properties are specified in gcpl_id and gapl_id, respectively.

H5Gcreate_anon returns a new group identifier. This identifier must be linked into the HDF5 file
structure with H5Lcreate_hard or it will be deleted from the file when the file is closed.

The differences between this function and H5Gcreatel are as follows:

O H5Gcreatel does not provide for the use of custom property lists; H5Gcreatel always uses
default properties.

¢ H5Gcreate_anon neither provides the new group’s name nor links it into the HDF5 file
structure; those actions must be performed separately through a call to H5Lcreate_hard,
which offers greater control over linking.

¢ H5Gcreate_anon does not directly provide a hint mechanism for the group’s heap size.
Comparable information can be included in the group creation property list gcpl_id through a
H5Pset_local_heap_size_hint call.

Parameters:
hid_tloc_id IN: File or group identifier specifying the file in which the new group is to be
created
hid_tgcpl_id IN: Group creation property list identifier
(H5P_DEFAULT for the default property list)
hid_tgapl_id IN: Group access property list identifier
(No group access properties have been implemented at this time; use
H5P_DEFAULT.)
Returns:

Returns a new group identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5gcreate_anon_f
SUBROUTINE h5gcreate_anon_f(loc_id, grp_id, hdferr, gcpl_id, gapl_id)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
INTEGER(HID_T), INTENT(OUT) :: grp_id ! Group identifier
INTEGER, INTENT(OUT) :: hdferr I Error code

1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: gcpl_id

! Property list for group creation
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: gapl_id

! Property list for group access

END SUBROUTINE hb5gcreate_anon_f

186

HDF5 Reference Manual H5Gcreate_anon

History:
Release C
1.8.0 Function introduced in this release.

187

H5Gget_comment HDF5 Reference Manual

Name: H5Gget_comment
Signature:
int H5Gget_comment(hid_t loc_id, const char *name, size_t bufsize, char *comment)
Purpose:
Retrieves comment for specified object.
Notice:
This function is deprecated in favor of the function H5Oget_comment.
Description:
H5Gget_comment retrieves the comment for the the object specified by loc_id and name. The
comment is returned in the buffer comment.

loc_id can specify any object in the file. name can be one of the following:
— The name of the object relative to loc_id
— An absolute name of the object, starting from /, the file’s root group
— A dot (), if loc_id fully specifies the object

At most bufsize characters, including a null terminator, are returned in comment. The returned value
is not null terminated if the comment is longer than the supplied buffer. If the size of the comment is
unknown, a preliminary H5Gget_comment call will return the size of the comment, including space for
the null terminator.

If an object does not have a comment, the empty string is returned in comment.
Parameters:
hid_tloc_id IN: Identifier of the file, group, dataset, or named datatype.
const char *name IN: Name of the object in loc_id whose comment is to be retrieved.
name must be ".' (dot) if loc_id fully specifies the object for which the
associated comment is to be retrieved.

size_tbufsize IN: Anticipated required size of the comment buffer.
char *comment OUT: The comment.
Returns:

Returns the number of characters in the comment, counting the null terminator, if successful; the value
returned may be larger than bufsize. Otherwise returns a negative value.

Fortran90 Interface: h5gget_ comment_f
SUBROUTINE h5gget_comment_f(loc_id, name, size, buffer, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id | File, group, dataset, or
I named datatype identifier
CHARACTER(LEN=%*), INTENT(IN) :: name I Name of the object link
CHARACTER(LEN=size), INTENT(OUT) :: buffer ! Buffer to hold the comment
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
END SUBROUTINE h5gget_comment_f

History:
Release C
1.8.0 Function deprecated in this release.

188

HDF5 Reference Manual H5Gget_create_plist

Name: H5Gget_create_plist

Signature:

hid_tH5Gget_create_plist(hid_t group_id)
Purpose:

Gets a group creation property list identifier.
Description:

H5Gget_create_plist returns an identifier for the group creation property list associated with the
group specified by group_id.

The creation property list identifier should be released with H5Pclose.

Parameters:
hid_tgroup_id IN: Identifier of the group.

Returns:
Returns an identifier for the group’s creation property list if successful. Otherwise returns a negative
value.

Fortran90 Interface: h5gget create_plist_f
SUBROUTINE h5gget_create_plist_f(grp_id, gcpl_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: grp_id ! Group identifier
INTEGER(HID_T), INTENT(OUT) :: gcpl_id ! Property list for group creation
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5gget_create_plist_f
History:
Release C

1.8.0 Function introduced in this release.

189

H5Gget _info HDF5 Reference Manual

Name: H5Gget_info

Signature:

herr_tH5Gget_info(hid_t group_id, H5G_info_t *group_info)
Purpose:

Retrieves information about a group.
Description:

H5Gget _info retrieves information about the group specified by group_id. The information is
returned in the group_info struct.

group_info is an H5G_info_t struct and is defined (in H5Gpublic.h) as follows:

H5G_storage_type_t storage type Type of storage for links in group
H5G_STORAGE_TYPE_COMPACT: Compact storage
H5G_STORAGE_TYPE_DENSE: Indexed storage
H5G_STORAGE_TYPE_SYMBOL_TABLE:
Symbol tables, the original HDF5 structure

hsize_inlinks Number of links in group
int64_tmax_corder Current maximum creation order value for group
hbool_tmounted Whether the group has a file mounted on it
Parameters:
hid_tgroup_id IN: Group identifier
H5G_info_t *group_info OUT: Struct in which group information is returned

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hbgget_info_f
SUBROUTINE h5gget_info_f(group_id, storage_type, nlinks, max_corder, hdferr, &
mounted)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: group_id
I Group identifier
INTEGER, INTENT(OUT) :: storage_type
I Type of storage for links in group:
I H5G_STORAGE_TYPE_COMPACT_F: Compact storage
I H5G_STORAGE_TYPE_DENSE_F: Indexed storage
| H5G_STORAGE_TYPE_SYMBOL_TABLE_F: Symbol tables
INTEGER, INTENT(OUT) :: nlinks
I Number of links in group
INTEGER, INTENT(OUT) :: max_corder
I Current maximum creation order value for group
INTEGER, INTENT(OUT) :: hdferr
I Error code:
I 0 on success and -1 on failure
LOGICAL, INTENT(OUT), OPTIONAL :: mounted
I Whether group has a file mounted on it
END SUBROUTINE h5gget_info_f

History:
Release C
1.8.2 Added 'mounted field.
1.8.0 Function introduced in this release.

190

HDF5 Reference Manual H5Gget_info_by idx

Name: H5Gget_info_by idx
Signature:
herr_tH5Gget_info_by_idx(hid_t loc_id, const char *group_name, H5_index _t
index_type, H5 iter_order_t order, hsize t n, H5G_info_t *group_info, hid_t lapl_id)
Purpose:
Retrieves information about a group, according to the group’s position within an index.
Description:
H5Gget_info_by idx retrieves the same imformation about a group as retrieved by the function
H5Gget_info, immediately above, but the means of identifying the group differs; the group is
identified by position in an index rather than by name.

loc_id and group_name specify the group containing the group for which information is sought. The
groups in group_name are indexed by index_type; the group for which information is retrieved is
identified in that index by index order, order, and index position, n.

If loc_id specifies the group containing the group for which information is queried, group_name can
be a dot (.).

Valid values for index_type are as follows:

H5 INDEX_NAME An alpha-numeric index by group name

H5_INDEX_CRT_ORDER Anindex by creation order
The order in which the index is to be examined, as specified by order, can be one of the following:

H5_ITER_INC The count is from beginning of the index, i.e., top-down.
H5 ITER_DEC The count is from the end of the index, i.e., bottom-up.

H5_ITER_NATIVE HDF5 counts through the index in the fastest-available order. No
information is provided as to the order, but HDF5 ensures that no element
in the index will be overlooked.

Parameters:
hid_tloc_id IN: File or group identifier
const char *group_name IN: Name of group containing group for which information is to be
retrieved
H5_index_tndex_type IN: Index type
H5 iter_order_torder IN: Order of the count in the index
hsize_in IN: Position in the index of the group for which information is retrieved
H5G_info_t *group_info OUT: Struct in which group information is returned
hid_tlapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

191

H5Gget_info_by idx

Fortran90 Interface: h5gget_info_by idx_f
SUBROUTINE h5gget_info_by _idx_f(loc_id, group_name, index_type, order, n, &
storage_type, nlinks, max_corder, hdferr, lapl_id, mounted)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id
I File or group identifier
CHARACTER(LEN=%*), INTENT(IN) :: group_name
I Name of group containing group for which
Iinformation is to be retrieved
INTEGER, INTENT(IN) :: index_type
I Index type
INTEGER, INTENT(IN) :: order
I Order of the count in the index
INTEGER(HSIZE_T), INTENT(IN) :: n
I Position in the index of the group for which
Iinformation is retrieved
INTEGER, INTENT(OUT) :: storage_type
I Type of storage for links in group:
I H5G_STORAGE_TYPE_COMPACT_F: Compact storage
I H5G_STORAGE_TYPE_DENSE_F: Indexed storage
| H5G_STORAGE_TYPE_SYMBOL_TABLE_F: Symbol tables
INTEGER, INTENT(OUT) :: nlinks
I Number of links in group
INTEGER, INTENT(OUT) :: max_corder
I Current maximum creation order value for group
INTEGER, INTENT(OUT) :: hdferr
I Error code:
I 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
I Link access property list
LOGICAL, INTENT(OUT), OPTIONAL :: mounted
I Whether group has a file mounted on it
END SUBROUTINE h5gget_info_by_idx_f

History:
Release C
1.8.0 Function introduced in this release.

192

HDF5 Reference Manual

HDF5 Reference Manual H5Gget_info_by name

Name: H5Gget_info_by name

Signature:
herr_tH5Gget_info_by name(hid_t loc_id, const char *group_name, H5G_info_t
*group_info, hid_t lapl_id)

Purpose:
Retrieves information about a group.

Description:
H5Gget_info_by name retrieves information about the group group_name located in the file or
group specified by loc_id. The information is returned in the group_info struct.

If loc_id specifies the group for which information is queried, group_name can be a dot (.).

group_info is an H5G_info_t struct and is defined (in H5Gpublic.h) as follows:

H5G_storage_type gdtorage_type Type of storage for links in group
H5G_STORAGE_TYPE_COMPACT: Compact storage
H5G_STORAGE_TYPE_DENSE: Dense storage
H5G_STORAGE_TYPE_SYMBOL_TABLE:
Symbol tables, the original HDF5 structure

hsize_inlinks Number of links in group
int64_tmax_corder Current maximum creation order value for group
hbool_tmounted Whether the group has a file mounted on it
Parameters:
hid_tloc_id IN: File or group identifier
const char *group_name IN: Name of group for which information is to be retrieved
H5G _info_t *group_info OUT: Struct in which group information is returned
hid_tlapl_id IN: Link access property list

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5gget_info_by name_f
SUBROUTINE h5gget_info_by name_f(loc_id, group_name, &
storage_type, nlinks, max_corder, hdferr, lapl_id, mounted)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id
! File or group identifier
CHARACTER(LEN=%*), INTENT(IN) :: group_name
I Name of group containing group for which
linformation is to be retrieved
INTEGER, INTENT(OUT) :: storage_type
! Type of storage for links in group:
I H5G_STORAGE_TYPE_COMPACT_F: Compact storage
! H5G_STORAGE_TYPE_DENSE_F: Indexed storage
I H5G_STORAGE_TYPE_SYMBOL_TABLE_F: Symbol tables
INTEGER, INTENT(OUT) :: nlinks
! Number of links in group
INTEGER, INTENT(OUT) :: max_corder
! Current maximum creation order value for group

193

H5Gget_info_by name

INTEGER, INTENT(OUT) :: hdferr

! Error code:

1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id

! Link access property list
LOGICAL, INTENT(OUT), OPTIONAL :: mounted

I Whether group has a file mounted on it
END SUBROUTINE h5gget_info_by_name_f

History:
Release C
1.8.2 Added 'mounted field.
1.8.0 Function introduced in this release.

194

HDF5 Reference Manual

HDF5 Reference Manual H5Gget _linkval

Name: H5Gget_linkval

Signature:
herr_tH5Gget_linkval(hid_t loc_id, const char *name, size_t size, char *value)
Purpose:
Returns the name of the object that the symbolic link points to.
Notice:
This function is deprecated in favor of the function H5Lget val.
Description:
H5Gget_linkval returns size characters of the name of the object that the symbolic link name
points to.

The parameter loc_id is a file or group identifier.

The parameter name must be a symbolic link pointing to the desired object and must be defined relative

to loc_id.

If size is smaller than the size of the returned object name, then the name stored in the buffer value
will not be null terminated.

This function fails if name is not a symbolic link. The presence of a symbolic link can be tested by
passing zero for size and NULL for value.

This function should be used only after H5Lget_info (or the deprecated function
H5Gget_objinfo) has been called to verify that name is a symbolic link.

Parameters:
hid_tloc_id IN: Identifier of the file or group.
const char *name IN: Symbolic link to the object whose name is to be returned.
size_tsize IN: Maximum number of characters of value to be returned.
char *value OUT: A buffer to hold the name of the object being sought.
Returns:

Returns a non-negative value, with the link value in value, if successful. Otherwise returns a negative

value.

Fortran90 Interface: h5gget_linkval _f
SUBROUTINE h5gget_linkval_f(loc_id, name, size, buffer, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id I File or group identifier
CHARACTER(LEN=%*), INTENT(IN) :: name I Name of the symbolic link

CHARACTER(LEN=size), INTENT(OUT) :: buffer ! Buffer to hold a
I name of the object
I symbolic link points to
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
END SUBROUTINE h5gget_linkval_f

History:
Release C
1.8.0 Function deprecated in this release.

195

H5Gget_num_objs HDF5 Reference Manual

Name: H5Gget_num_objs

Signature:

herr_tH5Gget_num_objs(hid_t loc_id, hsize t* num_obj)
Purpose:

Returns number of objects in the group specified by its identifier
Notice:

This function is deprecated in favor of the function H5Gget_info.
Description:

H5Gget_num_objs returns number of objects in a group. Group is specified by its identifier loc_id.
If a file identifier is passed in, then the number of objects in the root group is returned.
Parameters:

hid_tloc_id IN: Identifier of the group or the file
hsize_t *num_obj OUT: Number of objects in the group.
Returns:

Returns positive value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.6.0 Function introduced in this release.
1.8.0 Function deprecated in this release.

196

HDF5 Reference Manual H5Gget_obijinfo

Name: H5Gget_objinfo
Signature:
herr_tH5Gget_objinfo(hid_t loc_id, const char *name, hbool_t follow_link, H5G_stat t
*statbuf)
Purpose:
Returns information about an object.
Notice:
This function is deprecated in favor of the function H50get _info and H5Lget_info.
Description:
H5Gget_objinfo returns information about the specified object through the statbuf argument.

A file or group identifier, loc_id, and an object name, name, relative to loc_id, are commonly used
to specify the object. However, if the object identifier is already known to the application, an alternative
approach is to use that identifier, obj_id, in place of loc_id, and a dot (.) in place of name. Thus,
the alternative versions of the first portion of an H5Gget_objinfo call would be as follows:
H5Gget_objinfo (loc_id name ...)
H5Gget_objinfo (obj_id . ..)

If the object is a symbolic link and follow_link is zero (0), then the information returned describes

the link itself; otherwise the link is followed and the information returned describes the object to which
the link points. If follow_link is non-zero but the final symbolic link is dangling (does not point to
anything), then an error is returned. The statbuf fields are undefined for an error. The existence of an
object can be tested by calling this function with a null statbuf.

H5Gget_objinfo fills in the following data structure (defined in H5Gpublic.h):

typedef struct H5G_stat_t {
unsigned long fileno[2];
haddr_t objno[2];
unsigned nlink;
H5G_obj_t type;
time_t mtime;
size_t linklen;
H50 _stat t ohdr;

} H5G_stat_t

where H50 _stat t (defined in H5Opublic.h) is:

typedef struct H50_stat_t {
hsize_t size;
hsize_t free;
unsigned nmesgs;
unsigned nchunks;

} H50_stat_t

The fileno and objno fields contain four values which uniquely identify an object among those HDF5
files which are open: if all four values are the same between two objects, then the two objects are the
same (provided both files are still open).

O Note that if a file is closed and re-opened, the value in fileno will change.

197

H5Gget_obijinfo HDF5 Reference Manual

O If a VFL driver either does not or cannot detect that two H5Fopen calls referencing the same file
actually open the same file, each will get a different fileno.
The nlink field is the number of hard links to the object or zero when information is being returned
about a symbolic link (symbolic links do not have hard links but all other objects always have at least
one).

The type field contains the type of the object, one of H5G_GROUP, H5G_DATASET, H5G_LINK, or
H5G_TYPE.

The mtime field contains the modification time.

If information is being returned about a symbolic link then linklen will be the length of the link value
(the name of the pointed-to object with the null terminator); otherwise linklen will be zero.

The fields in the H50_stat_t struct contain information about the object header for the object queried:

size The total size of all the object header information in the file (for all
chunks).

free The size of unused space in the object header.

nmesgs The number of object header messages.

nchunks The number of chunks the object header is broken up into.

Other fields may be added to this structure in the future.

Note:
Some systems will be able to record the time accurately but unable to retrieve the correct time; such
systems (e.g., Irix64) will report an mtime value of 0 (zero).

Parameters:
hid_tloc_id IN: File or group identifier.
Alternative: An object identifier, obj_id
const charname IN: Name of the object for which status is being sought.
Alternative: If the preceding parameter is the object’s direct identifier,
i.e., the obj_id, this parameter should be a dot (.).
hbool_tfollow_link IN: Link flag.
H5G_stat_t'statbuf OUT: Buffer in which to return information about the object.
Returns:

Returns a non-negative value if successful, with the fields of statbuf (if non-null) initialized.
Otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.6.1 Two new fields were added to the H5G_stat _t struct in this release.
1.8.0 Function deprecated in this release.

198

HDF5 Reference Manual H5Gget _objname_by idx

Name: H5Gget_objname_by _idx

Signature:
ssize_ H5Gget_objname_by idx(hid_t loc_id, hsize_t idx, char *name, size_tsize)
Purpose:
Returns a name of an object specified by an index.
Notice:
This function is deprecated in favor of the function H5Lget name_by idx.
Description:
H5Gget_objname_by idx returns a name of the object specified by the index idx in the group
loc_id.

The group is specified by a group identifier loc_id. If preferred, a file identifier may be passed in
loc_id; that file's root group will be assumed.

idx is the transient index used to iterate through the objects in the group. The value of idx is any

nonnegative number less than the total number of objects in the group, which is returned by the function
H5Gget_num_objs. Note that this is a transient index; an object may have a different index each time

a group is opened.

The object name is returned in the user-specified buffer name.

If the size of the provided buffer name is less or equal the actual object name length, the object name is

truncated to max_size - 1 characters.

Note that if the size of the object's name is unkown, a preliminary call to H5Gget_objname_by_idx
with name set to NULL will return the length of the object's name. A second call to
H5Gget_objname_by idx can then be used to retrieve the actual name.

Parameters:
hid_tloc_id IN: Group or file identifier.
hsize_tdx IN: Transient index identifying object.
char *name IN/OUT: Pointer to user-provided buffer the object name.
size tsize IN: Name length.
Returns:

Returns the size of the object name if successful, or 0 if no name is associated with the group identifier.

Otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.6.0 Function introduced in this release.
1.8.0 Function deprecated in this release.

199

H5Gget_objtype_by idx HDF5 Reference Manual

Name: H5Gget_objtype_ by idx

Signature:
int H5Gget_objtype by idx(hid_t loc_id, hsize t idx)
Purpose:
Returns the type of an object specified by an index.
Notice:
This function is deprecated in favor of the function H50Oget_info.
Description:
H5Gget_objtype by idx returns the type of the object specified by the index idx in the group
loc_id.

The group is specified by a group identifier loc_id. If preferred, a file identifier may be passed in
loc_id; that file's root group will be assumed.

idx is the transient index used to iterate through the objects in the group. This parameter is described in
more detail in the discussion of H5Gget_objname_by _idx.

The object type is returned as the function return value:

H5G_LINK 0 Objectis a symbolic link.
H5G_GROUP 1 Objectis a group.
H5G_DATASET 2 Objectis a dataset.

H5G_TYPE 3 Object is a named datatype.
Parameters:
hid_tloc_id IN: Group or file identifier.
hsize_fdx IN: Transient index identifying object.

Returns:
Returns the type of the object if successful. Otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.6.0 Function introduced in this release.
1.6.0 The function return type changed from int to the enumerated type H5G_obj_t.
1.8.0 Function deprecated in this release.

200

HDF5 Reference Manual H5Giterate

Name: H5Giterate

Signature:
int H5Giterate(hid_t loc_id, const char *name, int *idx, H5G _iterate_t operator, void
*operator_data)

Purpose:
Iterates an operation over the entries of a group.

Notice:
This function is deprecated in favor of the function H5Literate.

Description:
H5Giterate iterates over the members of name in the file or group specified with loc_id. For each
object in the group, the operator_data and some additional information, specified below, are passed
to the operator function. The iteration begins with the idx object in the group and the next element to
be processed by the operator is returned in idx. If idx is NULL, then the iterator starts at the first group
member; since no stopping point is returned in this case, the iterator cannot be restarted if one of the ca
to its operator returns non-zero. H5Giterate does not recursively follow links into subgroups of the
specified group.

The prototype for H5G _iterate_tis:

typedef herr_t (*H5G _iterate_t) (hid_t group_id, const char * member_name, void
*operator_data);
The operation receives the group identifier for the group being iterated over, group_id, the name of the
current object within the group, member_name, and the pointer to the operator data passed in to
H5Giterate, operator_data.

The return values from an operator are:

¢ Zero causes the iterator to continue, returning zero when all group members have been process:
¢ Positive causes the iterator to immediately return that positive value, indicating short-circuit
success. The iterator can be restarted at the next group member.
¢ Negative causes the iterator to immediately return that value, indicating failure. The iterator can
be restarted at the next group member.
H5Giterate assumes that the membership of the group identified by name remains unchanged through
the iteration. If the membership changes during the iteration, the function's behavior is undefined.

H5Giterate is not recursive. In particular, if a member of name is found to be a group, call it
subgroup_a, H5Giterate does not examine the members of subgroup_a. When recursive
iteration is required, the application must handle the recursion, explicitly calling H5Giterate on
discovered subgroups.

Parameters:
hid_tloc_id IN: File or group identifier.
const charname IN: Group over which the iteration is performed.
int *idx IN/OUT: Location at which to begin the iteration.
H5G_iterate_toperator IN: Operation to be performed on an object at each step of the
iteration.
void *operator_data IN/OUT: Data associated with the operation.

201

H5Giterate

Returns:

HDF5 Reference Manual

Returns the return value of the last operator if it was non-zero, or zero if all group members were
processed. Otherwise returns a negative value.

Fortran90 Interface:

There is no direct FORTRAN couterpart for the C function H5Giterate. Instead, that functionality is

provided by two FORTRAN

h5gn_members_f

functions:

Purpose: Returns the number of group
members.

h5gget_obj_info_idx_f Purpose: Returns name and type of the group

member identified by its index.

SUBROUTINE h5gn_members_f(loc_id, name, nmembers, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: loc_id I File or group identifier
CHARACTER(LEN=%*), INTENT(IN) :: name I Name of the group

INTEGER, INTENT(OUT) :: nmembers I Number of members in the group
INTEGER, INTENT(OUT) :: hdferr ! Error code

10 on success and -1 on failure
END SUBROUTINE h5gn_members_f

SUBROUTINE h5gget_obj_info_

idx_f(loc_id, name, idx, &

obj_name, obj_type, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id I File or group identifier
CHARACTER(LEN=%*), INTENT(IN) :: name I Name of the group

INTEGER, INTENT(IN) :: idx

I Index of member object

CHARACTER(LEN=%*), INTENT(OUT) :: obj_name ! Name of the object
INTEGER, INTENT(OUT) :: obj_type I Object type :

H5G_LINK_F
H5G_GROUP_F
H5G_DATASET_F
H5G_TYPE_F

INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5gget_obj_info_idx_f

History:
Release C

1.8.0 Function deprecated in this release.

202

HDF5 Reference Manual H5Glink

Name: H5GIlink
Signature:
herr_tH5GIlink(hid_t loc_id, H5G_link_t link_type, const char *current_name, const char
*new_name)
Purpose:
Creates a link of the specified type from new_name to current_name.
Notice:
This function is deprecated in favor of the functions H5Lcreate_hard and H5Lcreate_soft.
Description:
H5GIink creates a new name for an object that has some current name, possibly one of many names it
currently has.

If link_type is H5G_LINK_HARD, then current_name must specify the name of an existing
object and both names are interpreted relative to loc_id, which is either a file identifier or a group
identifier.

If link_type is H5G_LINK_SOFT, then current_name can be anything and is interpreted at

lookup time relative to the group which contains the final component of new_name. For instance, if
current_name is ./foo, new_name is ./x/y/bar, and a request is made for ./x/y/bar, then

the actual object looked up is ./x/yl./foo.

Parameters:
hid_tloc_id IN: File or group identifier.
H5G_link_tlink_type IN: Link type. Possible values are H5G_LINK_HARD and
H5G_LINK_SOFT.
const char *current_name IN: Name of the existing object if link is a hard link. Can be
anything for the soft link.
const char *new_name IN: New name for the object.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5glink_f
SUBROUTINE h5glink_f(loc_id, link_type, current_name, new_name, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group location identifier
INTEGER, INTENT(IN) :link_type !Link type, possible values are:

I H5G_LINK_HARD_F

I H5G_LINK_SOFT_F
CHARACTER(LEN=*), INTENT(IN) :: current_name

I Current object name relative

'toloc_id
CHARACTER(LEN=%*), INTENT(IN) :: new_name ! New object name
INTEGER, INTENT(OUT) :: hdferr I Error code

1 0 on success and -1 on failure

END SUBROUTINE h5glink_f

History:
Release C
1.8.0 Function deprecated in this release.

203

H5Glink2 HDF5 Reference Manual

Name: H5Glink2

Signature:
herr_tH5GIlink2(hid_t curr_loc_id, const char *current_name, H5G_link t link_type,
hid_tnew_loc_id, const char *new_name)
Notice:
This function is deprecated in favor of the functions H5Lcreate_hard and H5Lcreate_soft.
Purpose:
Creates a link of the specified type from current_name to new_name.
Description:

H5GIink2 creates a new name for an object that has some current name, possibly one of many names it
currently has.

If link_type is H5G_LINK_HARD, then current_name must specify the name of an existing
object. In this case, current_name and new_name are interpreted relative to curr_loc_id and
new_loc_id, respectively, which are either file or group identifiers.

If link_type is H5G_LINK_SOFT, then current_name can be anything and is interpreted at

lookup time relative to the group which contains the final component of new_name. For instance, if
current_name is ./foo, new_name is ./x/y/bar, and a request is made for ./x/y/bar, then

the actual object looked up is ./x/yl./foo.

Parameters:
hid_tcurr_loc_id IN: The file or group identifier for the original object.
const char *current_name IN: Name of the existing object if link is a hard link. Can be
anything for the soft link.
H5G_link_tlink_type IN: Link type. Possible values are H5G_LINK_HARD and
H5G_LINK_SOFT.
hid_tnew_loc id IN: The file or group identifier for the new link.
const char *new_name IN: New name for the object.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5glink2_f
SUBROUTINE h5glink2_f(cur_loc_id, cur_name, link_type, new_loc_id, new_name, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: cur_loc_id ! File or group location identifier
CHARACTER(LEN=*), INTENT(IN) :: cur_name ! Name of the existing object
lis relative to cur_loc_id
! Can be anything for the soft link
INTEGER, INTENT(IN) :: link_type ! Link type, possible values are:
! H5G_LINK_HARD_F
| H5G_LINK_SOFT_F
INTEGER(HID_T), INTENT(IN) :: new_loc_id ! New location identifier
CHARACTER(LEN=%*), INTENT(IN) :: new_name ! New object name
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure

END SUBROUTINE h5glink2_f

History:
Release C
1.8.0 Function deprecated in this release.

204

HDF5 Reference Manual H5Gmove

Name: H5Gmove

Signature:
herr_tH5Gmove(hid_foc_id, const char *src_name, const char *dst_name)
Purpose:
Renames an object within an HDF5 file.
Notice:
This function is deprecated in favor of the function H5Lmove.
Description:

H5Gmove renames an object within an HDF5 file. The original name, src_name, is unlinked from the
group graph and the new name, dst_name, is inserted as an atomic operation. Both names are
interpreted relative to loc_id, which is either a file or a group identifier.

Warning:
Exercise care in moving groups as it is possible to render data in a file inaccessible with H5Gmove. See
The Group Interface in the HDF5 User's Guide.

Parameters:
hid_tloc_id IN: File or group identifier.
const char'src_name IN: Object's original name.
const chardst_name IN: Object's new name.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5gmove_f

SUBROUTINE h5gmove_f(loc_id, name, new_name, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Original name of an object
CHARACTER(LEN=*), INTENT(IN) :: new_name ! New name of an object
INTEGER, INTENT(OUT) :: hdferr ! Error code

1 0 on success and -1 on failure
END SUBROUTINE h5gmove_f

History:
Release C
1.8.0 Function deprecated in this release.

205

H5Gmove2 HDF5 Reference Manual

Name: H5Gmove2

Signature:
herr_tH5Gmove2(hid_tsrc_loc_id, const char *src_name, hid_t dst loc_id, const char
*dst_name)

Purpose:
Renames an object within an HDF5 file.

Notice:
This function is deprecated in favor of the function H5Lmove.

Description:
H5Gmove2 renames an object within an HDF5 file. The original name, src_name, is unlinked from the
group graph and the new name, dst_name, is inserted as an atomic operation.

src_name and dst_name are interpreted relative to src_name and dst_name, respectively, which
are either file or group identifiers.
Warning:
Exercise care in moving groups as it is possible to render data in a file inaccessible with H5Gmove. See
The Group Interface in the HDF5 User's Guide.

Parameters:
hid_tsrc_loc_id IN: Original file or group identifier.
const char'src_name IN: Object's original name.
hid_tdst_loc_id IN: Destination file or group identifier.
const chardst_name IN: Object's new name.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5gmove2_f
SUBROUTINE h5gmove2_f(src_loc_id, src_name, dst_loc_id, dst_name, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: src_loc_id ! File or group identifier
CHARACTER(LEN=%*), INTENT(IN) :: src_name ! Original name of an object
I relative to src_loc_id
INTEGER(HID_T), INTENT(IN) :: dst_loc_id ! File or group identifier
CHARACTER(LEN=%*), INTENT(IN) :: dst_name ! New name of an object
I relative to dst_loc_id
INTEGER, INTENT(OUT) :: hdferr ! Error code
I 0 on success and -1 on failure
END SUBROUTINE h5gmove2_f

History:
Release C
1.8.0 Function deprecated in this release.

206

HDF5 Reference Manual H5Gopen

Name: H5Gopen
Signature:
hid_tH5Gopen(hid_tloc_id, const char *name)
hid_tH5Gopen(hid_tloc_id, const char * name, hid_tgapl_id)
Purpose:
Opens an existing group in a file.
Description:
H5Gopen is a macro that is mapped to either H5Gopenl or H5Gopen2, depending on the needs of the
application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5” we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Gopen is mapped to the most recent version of the function, currently H5Gopen2. If the library
and/or application is compiled for Release 1.6 emulation, H5Gopen will be mapped to H5Gopenl.
Function-specific flags are available to override these settings on a function-by-function basis when the
application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Gopen mapping

Global settings

No compatibility flag H5Gopen2
Enable deprecated symbols H5Gopen2
Disable deprecated symbols H5Gopen2

Emulate Release 1.6 interface H5Gopenl

Function-level macros
H5Gopen_vers = 2 H5Gopen2

H5Gopen_vers =1 H5Gopenl

Fortran90 Interface: h5gopen_f
SUBROUTINE h5gopen_f(loc_id, name, grp_id, hdferr, gapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of the group
INTEGER(HID_T), INTENT(OUT) :: grp_id ! File identifier
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: gapl_id
! Group access property list identifier
END SUBROUTINE h5gopen_f

207

H5Gopen HDF5 Reference Manual

History:
Release C

1.8.0 The function H5Gopen renamed to H5Gopenl and deprecated in this release.
The macro H5Gopen and the function H5Gopen2 introduced in this release.

208

HDF5 Reference Manual H5Gopenl

Name: H5Gopenl
Signature:

hid_tH5Gopenl(hid_tloc_id, const char *name)
Notice:

This function is deprecated in favor of the function H5GOpen2 or the macro H5GOpen.
Purpose:

Opens an existing group for modification and returns a group identifier for that group.
Description:

H5Gopenl opens an existing group with the specified name at the specified location, loc_id.

The location is identified by a file or group identifier

H5Gopenl returns a group identifier for the group that was opened. This group identifier should be
released by calling H5Gclose when it is no longer needed.

Parameters:
hid_tloc_id IN: File or group identifier within which group is to be open.
const char *name IN: Name of group to open.

Returns:

Returns a valid group identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Gopen.
History:

Release C

1.8.0 The function H5Gopen renamed to H5Gopenl and deprecated in this release.

209

H5Gopen2 HDF5 Reference Manual

Name: H5Gopen2
Signature:
hid_tH5Gopen2(hid_tloc_id, const char * name, hid_tgapl_id)
Purpose:
Opens an existing group with a group access property list.
Description:
H5Gopen2 opens an existing group, name, at the location specified by loc_id.

With default settings, H5Gopen2 provides similar functionality to that provided by H5Gopenl. The
only difference is that H5Gopen2 can provide a group access property list, gapl_id.

H5Gopen2 returns a group identifier for the group that was opened. This group identifier should be
released by calling H5Gclose when it is no longer needed.

Parameters:
hid_tloc_id IN: File or group identifier specifying the location of the group to be opened
const char *name IN: Name of the group to open
hid_tgapl_id IN: Group access property list identifier
(No group access properties have been implemented at this time; use
H5P_DEFAULT.)
Returns:

Returns a group identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Gopen.
History:

Release C

1.8.0 Function introduced in this release.

210

HDF5 Reference Manual H5Gset_comment

Name: H5Gset_comment

Signature:

herr_tH5Gset_comment(hid_t loc_id, const char *name, const char *comment)
Purpose:

Sets comment for specified object.
Notice:

This function is deprecated in favor of the function H5Oset_comment.
Description:

H5Gset_comment sets the comment for the object specified by loc_id and name to comment. Any
previously existing comment is overwritten.

loc_id can specify any object in the file. name can be one of the following:
— The name of the object relative to loc_id
— An absolute name of the object, starting from /, the file’s root group
— A dot (), if loc_id fully specifies the object
If comment is the empty string or a null pointer, the comment message is removed from the object.

Comments should be relatively short, null-terminated, ASCII strings.

Comments can be attached to any object that has an object header, e.g., datasets, groups, and named
datatypes, but not symbolic links.

Parameters:
hid_tloc_id IN: Identifier of the file, group, dataset, or named datatype.
const char *name IN: Name of the object whose comment is to be set or reset.
name must be "' (dot) if loc_id fully specifies the object for which the
comment is to be set.
const char *comment IN: The new comment.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5gset_comment_f
SUBROUTINE h5gset_comment_f(loc_id, name, comment, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! File, group, dataset, or
I named datatype identifier
CHARACTER(LEN=*), INTENT(IN) :: name ! Name of object
CHARACTER(LEN=%*), INTENT(IN) :: comment ! Comment for the object
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
END SUBROUTINE h5gset_comment_f

History:
Release C
1.8.0 Function deprecated in this release.

211

H5Gunlink HDF5 Reference Manual

Name: H5Gunlink

Signature:
herr_tH5Gunlink(hid_t loc_id, const char *name)
Purpose:
Removes the link to an object from a group.
Notice:
This function is deprecated in favor of the function H5Ldelete.
Description:

H5Gunlink removes the object specified by name from the group graph and decrements the link count
for the object to which name points. This action eliminates any association between name and the object
to which name pointed.

Object headers keep track of how many hard links refer to an object; when the link count reaches zero, the
object can be removed from the file. Objects which are open are not removed until all identifiers to the
object are closed.

If the link count reaches zero, all file space associated with the object will be released, i.e., identified in
memory as freespace. If any object identifier is open for the object, the space will not be released until
after the object identifier is closed.

Note that space identified as freespace is available for re-use only as long as the file remains open; once a
file has been closed, the HDF5 library loses track of freespace. See “Freespace Management” in the
HDF5 User's Guide for further details.

Warning:
Exercise care in unlinking groups as it is possible to render data in a file inaccessible with H5Gunlink.
See The Group Interface in the HDF5 User's Guide.

Parameters:
hid_tloc_id IN: Identifier of the file or group containing the object.
const char *name IN: Name of the object to unlink.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: hSgunlink_f
SUBROUTINE h5gunlink_f(loc_id, name, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of the object to unlink
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5gunlink_f

History:
Release C
1.8.0 Function deprecated in this release.

212

HDF5 Reference Manual

H5I: Identifier Interface

Identifier APl Functions
These functions provides tools for working with object identifiers and object names.

The C Interface:

» H5Iget _file_id » H5Iget_ref » H5Itype_exists

« H5Iget_name e H5linc_ref » H5Iget_type_ref
» H5Iget_type e H5Idec_ref » H5Idec_type_ref
» H5lobject verify ¢ H5Iregister » H5linc_type_ref
» H5Iremove_verify e« H5Iregister_type e« H5Iclear_type

» H5Isearch » H5Idestroy _type < H5Inmembers

» H5lis_valid

Alphabetical Listing

« H5Iclear_type » H5Iget_ref « H5lobject_verify
e H5Ildec_ref » H5Iget_type e H5Iregister

e H5Idec_type_ref < H5Iget_type_ref e« H5Iregister_type
* H5Idestroy_type < H5linc_ref « H5Iremove_verify
« H5Iget _file_id » H5linc_type_ref < H5Isearch

« H5lget_name » H5lis_valid * H5Itype_exists

* H5Inmembers

The FORTRAN9O Interfaces:
In general, each FORTRAN9O0 subroutine performs exactly the same task as the corresponding C function.

* h5iget_name_f < hbiget ref f « h5idec_ref f
* hbiget_type_f ¢ h5iinc_ref f < H5iis_valid_f

213

HDF5 Reference Manual

214

HDF5 Reference Manual Hb5Iclear_type

Name: H5Iclear_type

Signature:

herr_tH5Iclear_type(H5I type t type, hbool t force)
Purpose:

Deletes all IDs of the given type
Description:

Hb5Iclear_type deletes all IDs of the type identified by the argument type.

The typeA s free function is first called on all of these IDs to free their memory, then they are removed
from the type.

If the force flag is set to false, only those IDs whose reference counts are equal to 1 will be deleted, and

all other IDs will be entirely unchanged. If the force flag is true, all IDs of this type will be deleted.
Parameters:

H5I_type_ttype IN: Identifier of ID type which is to be cleared of IDs

hbool_tforce IN: Whether or not to force deletion of all IDs

Returns:

Returns non-negative on success, negative on failure.
Fortran90 Interface:

This function is not supported in FORTRAN 90.

215

H5Idec_ref HDF5 Reference Manual

Name: H5Idec_ref

Signature:

int H5Idec_ref(hid_t obj_id)
Purpose:

Decrements the reference count for an object.
Description:

H5Idec_ref decrements the reference count of the object identified by obj_id.

The reference count for an object ID is attached to the information about an object in memory and has no
relation to the number of links to an object on disk.

The reference count for a newly created object will be 1. Reference counts for objects may be explicitly
modified with this function or with H5linc_ref. When an object ID's reference count reaches zero, the
object will be closed. Calling an object ID's 'close’ function decrements the reference count for the 1D
which normally closes the object, but if the reference count for the ID has been incremented with
H5linc_ref, the object will only be closed when the reference count reaches zero with further calls to
this function or the object ID's 'close' function.

If the object ID was created by a collective parallel call (such as H5Dcreate, H5Gopen, etc.), the
reference count should be modified by all the processes which have copies of the ID. Generally this
means that group, dataset, attribute, file and named datatype IDs should be modified by all the processes
and that all other types of IDs are safe to modify by individual processes.

This function is of particular value when an application is maintaining multiple copies of an object ID.
The object ID can be incremented when a copy is made. Each copy of the ID can then be safely closed or
decremented and the HDF5 object will be closed when the reference count for that that object drops to
zero.

Parameters:
hid_tobj_id IN: Object identifier whose reference count will be modified.

Returns:
Returns a non-negative reference count of the object ID after decrementing it, if successful; otherwise a
negative value is returned.

Fortran90 Interface: hbidec_ref f

SUBROUTINE h5idec_ref_f(obj_id, ref_count, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id !Object identifier
INTEGER, INTENT(OUT) :: ref_count !Reference count of object ID
INTEGER, INTENT(OUT) :: hdferr ! Error code

10 on success, and -1 on failure
END SUBROUTINE hsidec_ref_f

History:
Release C

1.6.2 Function introduced in this release.
Fortran subroutine introduced in this release.

216

HDF5 Reference Manual H5Ildec_type_ref

Name: H5Idec_type_ref

Signature:

int H5Idec_type_ref(H5I type t type)
Purpose:

Decrements the reference count on an ID type.
Description:

H5Idec_type_ref decrements the reference count on an ID type. The reference count is used by the
library to indicate when an ID type can be destroyed. If the reference count reaches zero, this function
will destroy it.

The type parameter is the identifier for the ID type whose reference count is to be decremented. This
identifier must have been created by a call to H5Iregister_type.
Parameters:
H5I_type_ttype IN: The identifier of the type whose reference count is to be decremented
Returns:
Returns the current reference count on success, negative on failure.
Fortran90 Interface:
This function is not supported in FORTRAN 90.

217

H5Idestroy_type HDF5 Reference Manual

Name: H5Idestroy_type

Signature:

herr_tH5Ildestroy_type(H5I type t type)
Purpose:

Removes the type type and all IDs within that type.
Description:

H5Idestroy_type deletes an entire ID type. All IDs of this type are destroyed and no new IDs of this
type can be registered.

The typeA s free function is called on all of the IDs which are deleted by this function, freeing their
memory. In addition, all memory used by this typeA s hash table is freed.

Since the H5I_type_t values of destroyed ID types are reused when new types are registered, it is a good
idea to set the variable holding the value of the destroyed type to H5I_UNINIT.
Parameters:
H5I_type_ttype IN: Identifier of ID type which is to be destroyed
Returns:
Returns non-negative on success, negative on failure.
Fortran90 Interface:
This function is not supported in FORTRAN 90.

218

HDF5 Reference Manual Hb5Iget file_id

Name: H5Iget _file_id

Signature:

hid_tH5Iget_file_id(hid_t obj_id)
Purpose:

Retrieves an identifier for the file containing the specified object.
Description:

H5Iget file_id returns the identifier of the file associated with the object referenced by obj_id.
obj_id can be a file, group, dataset, named datatype, or attribute identifier.

Note that the HDF5 Library permits an application to close a file while objects within the file remain
open. If the file containing the object obj_id is still open, H5Iget_file_id will retrieve the existing
file identifier. If there is no existing file identifier for the file, i.e., the file has been closed,
H5Iget file_id will reopen the file and return a new file identifier. In either case, the file identifier
must eventually be released using H5Fclose.
Parameters:
hid_tobj_id IN: Identifier of the object whose associated file identifier will be returned.
Returns:
Returns a file identifier on success, negative on failure.

Fortran90 Interface:
SUBROUTINE h5iget_file_id_f(obj_id, file_id, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) ::obj_id ! Object identifier
INTEGER(HID_T), INTENT(OUT) : file_id ! File identifier
INTEGER, INTENT(OUT) :: hdferr I Error code

END SUBROUTINE hsiget_file_id_f

History:
Release C

1.6.3 Function introduced in this release.
Fortran subroutine introduced in this release.

219

H5Iget_name HDF5 Reference Manual

Name: H5Iget_name
Signature:

ssize_Hb5Iget_name(hid_t obj_id, char *name, size t size)

Purpose:

Retrieves a name of an object based on the object identifier.

Description:

H5Iget_name retrieves a name for the object identified by obj_id.

Up to size characters of the name are returned in name; additional characters, if any, are not returned to
the user application.

If the length of the name, which determines the required value of size, is unknown, a preliminary
H5Iget_name call can be made. The return value of this call will be the size in bytes of the object
name. That value, plus 1 for a nuLL terminator, is then assigned to size for a second H5Iget _name
call, which will retrieve the actual name.

If the object identified by obj_id is an attribute, as determined via H5Iget_type, H5Iget name
retrieves the name of the object to which that attribute is attached. To retrieve the name of the attribute
itself, use H5Aget_name.

If there is no name associated with the object identifier or if the name is NULL, H5lget_name returns O
(zero).

Note that an object in an HDF5 file may have multiple paths if there are multiple links pointing to it. This
function may return any one of these paths. When possible, H5lget_name returns the path with which
the object was opened.

Parameters:
hid_tobj_id IN: Identifier of the object. This identifier can refer to a group, dataset, or named
datatype.
char *name OUT: A name associated with the identifier.
size_tsize IN: The size of the name buffer; must be the size of the name in bytes plus 1 for a
NULL terminator.
Returns:

Returns the length of the name if successful, returning 0 (zero) if no name is associated with the
identifier. Otherwise returns a negative value.

Fortran90 Interface: hbiget_name_f

History:

220

SUBROUTINE h5iget_name_f(obj_id, buf, buf_size, name_size, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) ::obj_id ! Object identifier
CHARACTER(LEN=%*), INTENT(OUT) :: buf I Buffer to hold object name

INTEGER(SIZE_T), INTENT(IN) :: buf_size ! Buffer size
INTEGER(SIZE_T), INTENT(OUT) :: name_size ! Name size
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success, and -1 on failure
END SUBROUTINE hb5iget_name_f

Release C
1.6.0 Function introduced in this release.

HDF5 Reference Manual Hb5Iget_ref

Name: H5Iget_ref

Signature:

int H5Iget_ref(hid_t obj_id)
Purpose:

Retrieves the reference count for an object.
Description:

H5Iget_ref retrieves the reference count of the object identified by obj_id.

The reference count for an object identifier is attached to the information about an object in memory and
has no relation to the number of links to an object on disk.

The function H5lis_valid is used to determine whether a specific object identifier is valid.
Parameters:
hid_tobj_id IN: Object identifier whose reference count will be retrieved.
Returns:
Returns a non-negative current reference count of the object identifier if successful; otherwise a negativi
value is returned.
See Also:
¢ H5lis_valid
¢ H5Iget_type
Fortran90 Interface: hbiget_ref f
SUBROUTINE hb5iget_ref_f(obj_id, ref_count, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id !Object identifier
INTEGER, INTENT(OUT) :: ref_count !Reference count of object ID
INTEGER, INTENT(OUT) :: hdferr ! Error code

10 on success, and -1 on failure
END SUBROUTINE h5iget_ref_f

History:
Release C

1.6.2 Function introduced in this release.
Fortran subroutine introduced in this release.

221

Hb5Iget_type HDF5 Reference Manual

Name: H5Iget_type
Signature:
H5I_type_tH5Iget_type(hid_t obj_id)
Purpose:
Retrieves the type of an object.
Description:
H5Iget_type retrieves the type of the object identified by obj_id.

Valid types returned by the function are

H5I1_FILE File

H51_GROUP Group

H5I_DATATYPE Datatype

H51_DATASPACE Dataspace

H51_DATASET Dataset

H51_ATTR Attribute

If no valid type can be determined or the identifier submitted is invalid, the function returns

Invalid

H51_BADID identifier

This function is of particular value in determining the type of object closing function (H5Dclose,
H5Gclose, etc.) to call after a call to HSRdereference.

Note that this function returns only the type of object that obj_id would identify if it were valid; it does
not determine whether obj_id is valid identifier. Validity can be determined with a call to

H5lis_valid.
Parameters:
hid_tobj_id IN: Object identifier whose type is to be determined.
Returns:
Returns the object type if successful; otherwise H51_BADID.
See Also:
¢ H5lis_valid

Fortran90 Interface: h5iget_type_f
SUBROUTINE hbiget_type_f(obj_id, type, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id !Object identifier
INTEGER, INTENT(OUT) :: type Itype of an object.
Ipossible values are:
IH5I_FILE_F
IH5]_GROUP_F
IH51_DATATYPE_F
IH5I_DATASPACE_F
IH5]_DATASET_F
IH5I_ATTR_F
IH5I_BADID_F
INTEGER, INTENT(OUT) :: hdferr ' E rror code
10 on success, and -1 on failure
END SUBROUTINE h5iget_type_f

222

HDF5 Reference Manual Hb5Iget_type_ref

Name: H5Iget_type_ref

Signature:

int H5Iget_type_ref(H5I1 type t type)
Purpose:

Retrieves the reference count on an ID type.
Description:

H5Iget_type_ref retrieves the reference count on an ID type. The reference count is used by the
library to indicate when an ID type can be destroyed.

The type parameter is the identifier for the ID type whose reference count is to be retrieved. This
identifier must have been created by a call to H5Iregister_type.
Parameters:
H5I_type_ttype IN: The identifier of the type whose reference count is to be retrieved
Returns:
Returns the current reference count on success, negative on failure.
Fortran90 Interface:
This function is not supported in FORTRAN 90.

223

H5linc_ref HDF5 Reference Manual

Name: H5linc_ref

Signature:

int H5linc_ref(hid_t obj_id)
Purpose:

Increments the reference count for an object.
Description:

H5linc_ref increments the reference count of the object identified by obj_id.

The reference count for an object ID is attached to the information about an object in memory and has no
relation to the number of links to an object on disk.

The reference count for a newly created object will be 1. Reference counts for objects may be explicitly
modified with this function or with H5Idec_ref. When an object ID's reference count reaches zero, the
object will be closed. Calling an object ID's 'close’ function decrements the reference count for the 1D
which normally closes the object, but if the reference count for the ID has been incremented with this
function, the object will only be closed when the reference count reaches zero with further calls to
H5Idec_ref or the object ID's 'close' function.

If the object ID was created by a collective parallel call (such as H5Dcreate, H5Gopen, etc.), the
reference count should be modified by all the processes which have copies of the ID. Generally this
means that group, dataset, attribute, file and named datatype IDs should be modified by all the processes
and that all other types of IDs are safe to modify by individual processes.

This function is of particular value when an application is maintaining multiple copies of an object ID.
The object ID can be incremented when a copy is made. Each copy of the ID can then be safely closed or
decremented and the HDF5 object will be closed when the reference count for that that object drops to
zero.

Parameters:
hid_tobj_id IN: Object identifier whose reference count will be modified.

Returns:
Returns a non-negative reference count of the object ID after incrementing it if successful; otherwise a
negative value is returned.

Fortran90 Interface: h5iinc_ref f

SUBROUTINE h5iinc_ref_f(obj_id, ref_count, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_id !Object identifier
INTEGER, INTENT(OUT) :: ref_count !Reference count of object ID
INTEGER, INTENT(OUT) :: hdferr ! Error code

10 on success, and -1 on failure
END SUBROUTINE h5iinc_ref_f

History:
Release C

1.6.2 Function introduced in this release.
Fortran subroutine introduced in this release.

224

HDF5 Reference Manual H5linc_type_ref

Name: H5linc_type_ref

Signature:

int H5linc_type_ref(H5I type t type)
Purpose:

Increments the reference count on an ID type.
Description:

H5linc_type_ref increments the reference count on an ID type. The reference count is used by the
library to indicate when an ID type can be destroyed.

The type parameter is the identifier for the ID type whose reference count is to be incremented. This
identifier must have been created by a call to H5Iregister_type.
Parameters:
H5I_type_ttype IN: The identifier of the type whose reference count is to be incremented
Returns:
Returns the current reference count on success, negative on failure.
Fortran90 Interface:
This function is not supported in FORTRAN 90.

225

H5lis_valid HDF5 Reference Manual

Name: H5lis_valid

Signature:

htri_t H5lis_valid(hid_t obj_id)
Purpose:

Determines whether an identifier is valid.
Description:

H5lis_valid determines whether the identifier obj_id is valid.

Valid identifiers are those that have been obtained by an application and can still be used to access the
original target. Examples of invalid identifiers include:

¢ Out of range values: negative, for example
¢ Previously-valid identifiers that have been released: for example, a dataset identifier for which the
dataset has been closed
H5lis_valid can be used with any type of identifier: object identifier, property list identifier, attribute
identifier, error message identifier, etc. When necessary, a call to H5Iget_type can determine the type
of the object that obj_id identifies.
Parameters:
hid_tobj_id IN: Identifier to validate
Returns:
Returns TRUE if obj_id is valid and FALSE if invalid. Otherwise returns a negative value.
See Also:
¢ H5Iget_type
Fortran90 Interface:
SUBROUTINE h5iis_valid_f(id, valid, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) ::id ! Identifier
LOGICAL, INTENT(OUT) :: valid ! Status of id as
I'valid (.true.) or invalid (.false.)

INTEGER, INTENT(OUT) :: hdferr ! Error code: 0 on success, and -1 on failure
END SUBROUTINE h5iis_valid_f

History:
Release Change
1.8.3 C function introduced in this release.

226

HDF5 Reference Manual H5Inmembers

Name: H5Inmembers
Signature:
herr_tH5Inmembers(H5I_type_ttype, hsize_t *num_members)
Purpose:
Returns the number of identifiers in a given identifier type.
Description:
H5Inmembers returns the number of identifiers of the identifier type specified in type.

The number of identifiers is returned in num_members. If no identifiers of this type have been
registered, the type does not exist, or it has been destroyed, num_members is returned with the value 0
Parameters:

H5I_type_ttype IN: Identifier for the identifier type whose member count will be
retrieved
hsize_t *num_members OUT: Number of identifiers of the specified identifier type.
Returns:

Returns a non-negative value on success; otherwise returns negative value.
Fortran90 Interface:
This function is not supported in FORTRAN 90.

227

H5lobject_verify HDF5 Reference Manual

Name: H5lobject_verify

Signature:

void * H5lobject_verify(hid_t id, H5I type tid_type)
Purpose:

Returns the object referenced by id.
Description:

H5lobject_verify returns a pointer to the memory referenced by id after verifying that id is of
type id_type. This function is analogous to dereferencing a pointer in C with type checking.

Hb5Iregister(H51_type t type, void *object) takes an H5I_type t and a void pointer to an object,
returning an hid_t of that type. This hid_t can then be passed to H5lobject_verify along with its
type to retrieve the object.

H5lobject_verify does not change the ID it is called onAin any way (as opposed to
H5Iremove_verify, which removes the ID from its typeA s hash table).

Parameters:
hid_tid IN: ID to be dereferenced
H5I_type_ttype IN: ID type to which id should belong
Returns:

Pointer to the object referenced by id on success, NULL on failure.
Fortran90 Interface:
This function is not supported in FORTRAN 90.

228

HDF5 Reference Manual Hb5Iregister

Name: H5Iregister

Signature:

hid_tH5Iregister(H51 type t type, void *object)
Purpose:

Creates and returns a new ID.
Description:

H5Iregister allocates space for a new ID and returns an identifier for it.

The type parameter is the identifier for the ID type to which this new ID will belong. This identifier
must have been created by a call to H5Iregister_type.

The object parameter is a pointer to the memory which the new ID will be a reference to. This pointer
will be stored by the library and returned to you via a call to H5lobject_verify.

Parameters:
H5I_type_ttype IN: The identifier of the type to which the new ID will belong

void *object IN: Pointer to memory for the library to store

Returns:

Returns the new ID on success, negative on failure.
Fortran90 Interface:

This function is not supported in FORTRAN 90.

229

Hb5Iregister_type HDF5 Reference Manual

Name: H5Iregister_type
Signature:
H5I_type_tH5Iregister_type(size_t hash_size, unsigned reserved, H5I free t
free_func)
Purpose:
Creates and returns a new ID type.
Description:
H5Iregister_type allocates space for a new ID type and returns an identifier for it.

The hash_size parameter indicates the minimum size of the hash table used to store IDs in the new
type.

The reserved parameter indicates the number of IDs in this new type to be reserved. Reserved IDs are
valid IDs which are not associated with any storage within the library.

The free_func parameter is a function pointer to a function which returns an herr_t and accepts a void
*, The purpose of this function is to deallocate memory for a single ID. It will be called by
Hb5Iclear_type and H5Idestroy _type on each ID. This function is NOT called by

H5Iremove_verify. The void * will be the same pointer which was passed in to the H5Iregister
function. The free_func function should return 0 on success and -1 on failure.

Parameters:
size_thash_size IN: Size of the hash table (in entries) used to store IDs for the new type
unsignedeserved IN: Number of reserved IDs for the new type
H5I_free_tfree func IN: Function used to deallocate space for a single ID

Returns:

Returns the type identifier on success, negative on failure.
Fortran90 Interface:
This function is not supported in FORTRAN 90.

230

HDF5 Reference Manual H5Iremove_verify

Name: H5Iremove_verify

Signature:

void *H5Iremove_verify(hid_t id, H5I_type tid_type)
Purpose:

Removes an ID from internal storage.
Description:

H5Iremove_verify first ensures that id belongs to id_type. If so, it removes id from internal
storage and returns the pointer to the memory it referred to. This pointer is the same pointer that was
placed in storage by H5Iregister. If id does not belong to id_type, then NULL is returned.

The id parameter is the ID which is to be removed from internal storage. Note: this function does NOT
deallocate the memory that id refers to. The pointer returned by H5Iregister must be deallocated by
the user to avoid memory leaks.

The type parameter is the identifier for the ID type which id is supposed to belong to. This identifier
must have been created by a call to H5Iregister_type.

Parameters:

hid_tid IN: The ID to be removed from internal storage

H5I_type_ttype IN: The identifier of the type whose reference count is to be retrieved
Returns:

Returns a pointer to the memory referred to by id on success, NULL on failure.

Fortran90 Interface:
This function is not supported in FORTRAN 90.

231

H5Isearch HDF5 Reference Manual

Name: H5Isearch
Signature:

void *H5Isearch(H5I_type_t type, H51 search_func_tfunc, void *key)

Purpose:

Finds the memory referred to by an ID within the given ID type such that some criterion is satisfied.

Description:

H5Isearch searches through a give ID type to find an object that satisfies the criteria defined by func.

If such an object is found, the pointer to the memory containing this object is returned. Otherwise, NULL
is returned. To do this, func is called on every member of type. The first member to satisfy func is
returned.

The type parameter is the identifier for the ID type which is to be searched. This identifier must have
been created by a call to H5Iregister_type.

The parameter func is a function pointer to a function which takes three parameters. The first parameter
is a void *. It will be a pointer the object to be tested. This is the same object that was placed in storage
using H5Iregister. The second parameter is a hid_t. It is the ID of the object to be tested. The last
parameter is a void *. This is the key parameter and can be used however the user finds helpful. Or it can
simply be ignored if it is not needed. func returns 0 if the object it is testing does not pass its criteria. A
non-zero value should be returned if the object does pass its criteria.

The key parameter will be passed to the search function as a parameter. It can be used to further define
the search at run-time.

Parameters:
H5I_type_ttype IN: The identifier of the type to be searched
H5I1_search_func _func IN: The function defining the search criteria
void *key IN: A key for the search function

Returns:

Returns a pointer to the object which satisfies the search function on success, NULL on failure.

Fortran90 Interface:

232

This function is not supported in FORTRAN 90.

HDF5 Reference Manual H5Itype_exists

Name: H5Itype_exists

Signature:

htri_t H5Itype_exists(H5I_type t type)
Purpose:

Determines whether an identifier type is registered.
Description:

H5Itype_exists determines whether the given identifier type, type, is registered with the library.
Parameters:

H5I_type_ttype IN: Identifier type.
Returns:

Returns 1 if the type is registered and 0 if not. Returns a negative value on failure.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

233

HDF5 Reference Manual

234

HDF5 Reference Manual

H5L: Link Interface

Link API Functions

The Link interface, H5L, functions create and manipulate links in an HDF5 group. This interface includes
functions that enable the creation and use of user-defined link classes.

The C Interfaces:

e H5Lcreate_hard » H5Lget info » H5Literate
» H5Lcreate_soft e H5Lget val » H5Literate_by name
» H5Lcreate_external ¢ H5Lunpack elink_val < H5Lvisit
» H5Lexists » H5Lvisit_by name
* H5Lmove e H5Lcreate_ud » H5Lget_info_by idx
» H5Lcopy e H5Lregister * H5Lget_name_by_idx
» H5Ldelete » H5Lunregister » H5Lget val_by idx
» H5Lis_registered » H5Ldelete by idx

Alphabetical Listing

* H5Lcopy « H5Lget _info e H5Lmove
e H5Lcreate_external « H5Lget info_by idx < H5Lregister
e H5Lcreate_hard * H5Lget_name_by_idx < H5Lunpack_elink_val

e H5Lcreate_soft e H5Lget val e H5Lunregister

e H5Lcreate_ud e H5Lget val by idx e H5Lvisit

e H5Ldelete « H5Lis_registered e H5Lvisit_ by name
e H5Ldelete by idx e« H5Literate

e H5Lexists e H5Literate_by name

The FORTRAN9O Interfaces:
In general, each FORTRAN9O0 subroutine performs exactly the same task as the corresponding C function.

* h5lcopy_f h5ldelete f * h5lget_info_by_idx_f

« h5lcreate_external_f < h5ldelete_by _idx_f < hblget name_by idx_f
e hbicreate_hard _f h5lexists_f * h5lis_registered_f

* hbicreate soft f * h5lget_info_f * h5lmove_f

235

HDF5 Reference Manual

236

HDF5 Reference Manual H5L_elink_traverse_t

Name: H5L_elink_traverse_t
Signature:
typedef herr_t (*H5L_elink_traverse_t)(const char *parent_file_name, const char
*parent_group_nhame, const char *child_file_name, const char *child_object_name,
unsigned *acc_flags, hid_t fapl_id, void *op_data)
Purpose:
Sets the access flags and file access property list used to open the specified external link target.
Motivation:
H5L_elink_traverse_t defines the prototype for a user-defined callback function to be called when
traversing an external link. This callback will be executed by the HDF5 Library immediately before
opening the target file and provides a mechanism to set specific access permissions, modify the file acc
property list, modify the parent or target file, or take any other user-defined action. This callback functior
is used in situations where the HDF5 Library's default behavior is not suitable.
Description:
H5L_elink_traverse_t defines a callback function which may adjust the file access property list
and file access flag to use when opening a file through an external link.

The callback is set with H5Pset_elink_cb but will be executed by the HDF5 Library immediately
before opening the target file via an external link.

The callback function should return O if there are no issues and a negative value in case of an error. If tF
callback function returns a negative value, the external link will not be traversed and an error will be

returned.
Parameters:
const char *parent_file_name IN: Name of the file containing the external link.
const char *parent_group_name IN: Name of the group containing the exernal link.
const char *child_file_name IN: Name of the external link target file
const char *child_object_name IN: Name of the external link target object
unsigned *acc_flags IN/OUT: File access flags used to open the target file. This

should be set to either H5F_ ACC_RDWR or

H5F ACC_RDONLY. The initial value of this field will be the
flags that would otherwise be used to open the target file as
inherited from the parent file or as overridden with
H5Pset_elink_acc_flags. After making the callback,

the flags returned in this parameter will always be used to open
the target file.

hid_tfapl_id IN/OUT: Identifier of the file access property list used to open
the target file. This will initially be a copy of the property list
that would otherwise be used to open the target file, as
inherited from the parent file or as overridden with
H5Pset_elink_fapl. After making the callback, this
property list, including any changes made by the callback
function, will always be used to open the target file.

void *op_data IN/OUT: Pointer to user-defined input data. This is a
pass-through of the data that was passed to
H5Pset_elink_cb.

237

H5L_elink_traverse_t HDF5 Reference Manual

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Failure Modes:
H5L_elink_traverse_t failure modes are dependent on the implementation of the callback
function.
Example Usage:
This example defines a callback function that prints the name of the target file every time an external link

is followed.
herr_t elink_callback(const char *parent_file_name, const char
*parent_group_name, const char *child_file_name, const char
*child_object_name, unsigned *acc_flags, hid_t fapl_id, void *op_data) {
puts(child_file_name);
return O;

}
See Also:

H5Pset_elink_cb, H5Pget_elink_cb

H5Pset_elink_fapl, H5Pset_elink_acc_flags, Hb5Lcreate_external

H5Fopen for discussion of H5F_ACC_RDWR and H5F_ACC_RDONLY file access flags
History:

Release Change
1.8.3 C function type introduced in this release.

238

HDF5 Reference Manual H5Lcopy

Name: H5Lcopy

Signature:
herr_tH5Lcopy(hid_t src_loc_id, const char *src_name, hid_t dest_loc_id, const char
*dest_name, hid_t Icpl_id hid_t lapl_id)

Purpose:
Copies a link from one location to another.

Description:
H5Lcopy copies the link specified by src_name from the file or group specified by src_loc_id to
the file or group specified by dest_loc_id. The new copy of the link is created with the name
dest_name.

If dest_loc_id is a file identifier, dest_name will be interpreted relative to that file's root group.

The new link is created with the creation and access property lists specified by Icpl_id and lapl_id.
The interpretation of Icpl_id is limited in the manner described in the next paragraph.

H5Lcopy retains the creation time and the target of the original link. However, since the link may be
renamed, the character encoding is that specified in Icpl_id rather than that of the original link. Other
link creation properties are ignored.

If the link is a soft link, also known as a symbolic link, its target is interpreted relative to the location of
the copy.

Several properties are available to govern the behavior of H5Lcopy. These properties are set in the link
creation and access property lists, Icpl_id and lapl_id, respectively. The property controlling

creation of missing intermediate groups is set in the link creation property list with
H5Pset_create_intermediate_group; this function ignores any other properties in the link

creation property list. Properties controlling character encoding, link traversals, and external link prefixes
are set in the link access property list with H5Pset_char_encoding, H5Pset_nlinks, and
H5Pset_elink_prefix.

H5Lcopy does not affect the object that the link points to.

H5Lcopy cannot copy hard links across files as a hard link is not valid without a target object; to copy
objects from one file to another, see H5Ocopy.

Parameters:
hid_tsrc_loc_id IN: Location identifier of the source link
const char *src_name IN: Name of the link to be copied
hid_tdest_loc_id IN: Location identifier specifying the destination of the copy
const char *dest_name IN: Name to be assigned to the new copy
hid_tlcpl_id IN: Link creation property list identifier
hid_tlapl_id IN: Link access property list identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

239

H5Lcopy

Fortran90 Interface: h5Icopy_f
SUBROUTINE h5Icopy_f(src_loc_id, src_name, dest_loc_id, dest_name, hdferr, &
Icpl_id, lapl_id)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: src_loc_id

! Location identifier of the source link
CHARACTER(LEN=%*), INTENT(IN) :: src_name

I Name of the link to be copied
INTEGER(HID_T), INTENT(IN) :: dest_loc_id

! Location identifier specifying the

! destination of the copy
CHARACTER(LEN=*), INTENT(IN) :: dest_name

I Name to be assigned to the new copy
INTEGER, INTENT(OUT) :: hdferr ! Error code:

1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: Icpl_id

! Link creation property list identifier
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id

! Link access property list identifier

END SUBROUTINE h5Icopy_f

History:
Release C
1.8.0 Function introduced in this release.

240

HDF5 Reference Manual

HDF5 Reference Manual H5Lcreate_external

Name: H5Lcreate_external

Signature:
herr_tH5Lcreate_external(const char *target_file_name, const char
*target_obj_name, hid_t link_loc_id, const char *link_name, hid_t Icpl_id, hid_t
lapl_id)

Purpose:
Creates an external link, a soft link to an object in a different file.

Description:
H5Lcreate_external creates a new external link. An external link is a soft link to an object in a
different HDF5 file from the location of the link, i.e., to an external object.

target_file_name identifies the target file containing the target object; target_obj_name
specifies the path of the target object within that file. target_obj_name must be an absolute
pathname in target_file_name, i.e., it must start at the target file’s root group, but it is not
interpreted until an application attempts to traverse it.

link_loc_id and link_name specify the location and name, respectively, of the new link.
link_name is interpreted relative to link_loc_id

Icpl_id is the link creation property list used in creating the new link.

lapl_id is the link access property list used in traversing the new link.

An external link behaves similarly to a soft link, and like a soft link in an HDF5 file, it may dangle: the

target file and object need not exist at the time that the external link is created.

When the external link link_name is accessed, the library will search for the target file
target_file_name as described below:

O If target_file_name is a relative pathname, the following steps are performed:

(The library will get the prefix(es) set in the environment variable HDF5_EXT_PREFIX

and will try to prepend each prefix to target_file_name to form a new
target_file_name.

[f the new target_file_name does not exist or if HDF5_EXT_PREFIX is not set,
the library will get the prefix set via H5Pset_elink_prefix and prepend it to
target_file_name to form a new target_file_name.

[If the new target_file_name does not exist or no prefix is being set by
H5Pset_elink_prefix, then the path of the file associated with link_loc_id is

obtained. This path can be the absolute path or the current working directory plus the
relative path of that file when it is created/opened. The library will prepend this path to

target_file_name to form a new target_file_name.
Of the new target_file_name does not exist, then the library will look for
target_file_name and will return failure/success accordingly.
O If target_file_name is an absolute pathname, the library will first try to find

target_file_name. If target_file_name does not exist, target_file_name is
stripped of directory paths to form a new target_file_name. The search for the new
target_file_name then follows the same steps as described above for a relative pathname.
See examples below illustrating how target_file_name is stripped to form a new

241

H5Lcreate_external HDF5 Reference Manual

target_file_name.
Note that target_file_name is considered to be an absolute pathname when the following condition
is true:

¢ For Unix, the first character of target_file_name is a slash (/).

For example, consider a target_file_name of /tmp/A.h5. If that target file does not exist,
the new target_file_name after stripping will be A.h5.
¢ For Windows, there are 6 cases:
1.target_file_name is an absolute drive with absolute pathname.

For example, consider a target_file_name of /tmp/A.h5. If that target file does
not exist, the new target_file_name after stripping will be A.h5.
2.target_file_name is an absolute pathname without specifying drive name.

For example, consider a target_file_name of /tmp/A.h5. If that target file does
not exist, the new target_file_name after stripping will be A.h5.
3.target_file_name is an absolute drive with relative pathname.

For example, consider a target_file_name of /tmp/A.h5. If that target file does
not exist, the new target_file_name after stripping will be tmp\A.h5.

4.target_file_name is in UNC (Uniform Naming Convention) format with server
name, share name, and pathname.

For example, consider a target_file_name of /tmp/A.h5. If that target file does
not exist, the new target_file_name after stripping will be A.h5.

5.target_file_name is in Long UNC (Uniform Naming Convention) format with
server name, share name, and pathname.

For example, consider a target_file_name of /tmp/A.h5. If that target file does
not exist, the new target_file_name after stripping will be A.h5

6. target_file_name is in Long UNC (Uniform Naming Convention) format with an
absolute drive and an absolute pathname.

For example, consider a target_file_name of /tmp/A.h5. If that target file does

not exist, the new target_file_name after stripping will be A.h5
The library opens target file target_file_name with the file access property list that is set via
H5Pset_elink_fapl when the external link link_name is accessed. If no such property list is set,
the library uses the file access property list associated with the file of link_loc_id to open the target
file.

If an application requires additional control over file access flags or the file access property list, see

H5Pset_elink _cb; this function enables the use of an external link callback function as described in
H5L_elink_traverse t.

242

HDF5 Reference Manual H5Lcreate_external

Parameters:
const char *arget_file_name IN: Name of the target file containing the target object
const char *target_obj_name IN: Path within the target file to the target object
hid_tlink_loc_id IN: File or group identifier where the new link is to be created
const char link_name IN: Name of the new link, relative to link_loc_id
hid_tlcpl_id IN: Link creation property list identifier
hid_tlapl_id IN: Link access property list identifier

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5Icreate_external_f
SUBROUTINE h5Icreate_external_f(file_name, obj_name, link_loc_id, link_name, &
hdferr, Icpl_id, lapl_id)
IMPLICIT NONE
CHARACTER(LEN=*), INTENT(IN) :: file_name
I Name of the file containing the target object. Neither
I the file nor the target object is required to exist.
I May be the file the link is being created in.
CHARACTER(LEN=¥), INTENT(IN) :: obj_name
I Name of the target object, which need not already exist.
INTEGER(HID_T), INTENT(IN) :: link_loc_id
! The file or group identifier for the new link.
CHARACTER(LEN=*), INTENT(IN) :: link_name
! The name of the new link.
INTEGER, INTENT(OUT) :: hdferr
! Error code:
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: Icpl_id
! Link creation property list identifier.
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
I Link access property list identifier.
END SUBROUTINE h5Icreate_external_f

See Also:
H5Pset_elink_fapl, H5Pset _elink_cb

H5L_elink_traverse_t
History:
Release C
1.8.0 Function introduced in this release.

243

H5Lcreate _hard HDF5 Reference Manual

Name: H5Lcreate_hard
Signature:

herr_tH5Lcreate_hard(hid_t obj_loc_id, const char *obj_name, hid_t link_loc_id, const
char *link_name, hid_t Icpl_id, hid_t lapl_id)

Purpose:

Creates a hard link to an object.

Description:

H5Lcreate_hard creates a new hard link to a pre-existing object in an HDF5 file. The new link may
be one of many that point to that object.

The target object must already exist in the file.

obj_loc_id and obj_name specify the location and hame, respectively, of the target object, i.e., the
object that the new hard link points to.

link_loc_id and link_name specify the location and name, respectively, of the new hard link.

obj_name and link_name are interpreted relative to obj_loc_id and link_loc _id,
respectively.

If obj_loc_id and link_loc_id are the same location, the HDF5 macro H5L_SAME_LOC can be
used for either parameter (but not both).

Icpl_id and lapl_id are the link creation and access property lists associated with the new link.

Hard and soft links are for use only if the target object is in the current file. If the desired target object is
in a different file from the new link, an external link may be created with H5Lcreate_external.

The HDF5 library keeps a count of all hard links pointing to an object; if the hard link count reaches zero
(0), the object will be deleted from the file. Creating new hard links to an object will prevent it from

being deleted if other links are removed. The library maintains no similar count for soft links and they can
dangle.

Parameters:
hid_tobj_loc_id IN: The file or group identifier for the target object.
const char *obj_name IN: Name of the target object, which must already exist.
hid_tlink_loc_id IN: The file or group identifier for the new link.
const char flink_name IN: The name of the new link.
hid_tlcpl_id IN: Link creation property list identifier.
hid_tlapl_id IN: Link access property list identifier.

Returns:

244

Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual

Fortran90 Interface: h5Icreate_hard_f

SUBROUTINE h5lcreate_hard_f(obj_loc_id, obj_name, link_loc_id, link_name, &

hdferr, Icpl_id, lapl_id)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: obj_loc_id

! The file or group identifier for the target object.
CHARACTER(LEN=%*), INTENT(IN) :: obj_name

I Name of the target object, which must already exist.
INTEGER(HID_T), INTENT(IN) :: link_loc_id

! The file or group identifier for the new link.
CHARACTER(LEN=%), INTENT(IN) :: link_name

! The name of the new link.
INTEGER, INTENT(OUT) :: hdferr

! Error code:

10 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: Icpl_id

! Link creation property list identifier.
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id

! Link access property list identifier.

END SUBROUTINE h5Icreate_hard_f

History:
Release C
1.8.0 Function introduced in this release.

H5Lcreate_hard

245

H5Lcreate_soft HDF5 Reference Manual

Name: H5Lcreate_soft

Signature:
herr_tH5Lcreate_soft(const char *target_path, hid_t link_loc_id, const char
*link_name, hid_t Icpl_id, hid_t lapl_id)

Purpose:
Creates a soft link to an object.

Description:

H5Lcreate_soft creates a new soft link to an object in an HDF5 file. The new link may be one of
many that point to that object.

target_path specifies the path to the target object, i.e., the object that the new soft link points to.
target_path can be anything and is interpreted at lookup time. This path may be absolute in the file
or relative to link_loc_id.

link_loc_id and link_name specify the location and name, respectively, of the new soft link.
link_name is interpreted relative to link_loc_id

Icpl_id and lapl_id are the link creation and access property lists associated with the new link.
For instance, if target_path is ./foo, link_loc_id specifies ./x/y/bar, and the name of the
new link is new_link, then a subsequent request for new_link will look up the object

Ixtly/bar/foo.

H5Lcreate_soft is for use only if the target object is in the current file. If the desired target object is
in a different file from the new link, use H5Lcreate_external to create an external link.

Soft links and external links are also known as symbolic links as they use a name to point to an object;
hard links employ an object’s address in the file.

Unlike hard links, a soft link in an HDF5 file is allowed to dangle, meaning that the target object need not
exist at the time that the link is created.

The HDF5 library does not keep a count of soft links as it does of hard links.

Parameters:
const char *target_path IN: Path to the target object, which is not required to exist.
hid_tlink_loc_id IN: The file or group identifier for the new link.
const char *link_name IN: The name of the new link.
hid_tlcpl_id IN: Link creation property list identifier.
hid_tlapl_id IN: Link access property list identifier.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

246

HDF5 Reference Manual H5Lcreate_soft

Fortran90 Interface: h5Icreate soft_f
SUBROUTINE h5lcreate_soft_f(target_path, link_loc_id, link_name, hdferr, &
Icpl_id, lapl_id)
IMPLICIT NONE
CHARACTER(LEN=%), INTENT(IN) :: target_path
I Path to the target object,
I which is not required to exist.
INTEGER(HID_T), INTENT(IN) :: link_loc_id
I The file or group identifier for the new link.
CHARACTER(LEN=*), INTENT(IN) :: link_name
! The name of the new link.
INTEGER, INTENT(OUT) :: hdferr ! Error code:
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lcpl_id
I Link creation property list identifier.
INTEGER(HID_T), OPTIONAL, INTENT(IN) : lapl_id
I Link access property list identifier.
END SUBROUTINE h5lcreate_soft_f

History:
Release C
1.8.0 Function introduced in this release.

247

H5Lcreate _ud HDF5 Reference Manual

Name: H5Lcreate_ud

Signature:
herr_tH5Lcreate_ud(hid_t link_loc_id, const char *link_name, H5L_type_t link_type,
const char *udata, size_tudata_size, hid_t Icpl_id, hid_t lapl_id)

Purpose:
Creates a link of a user-defined type.

Description:
H5Lcreate_ud creates a link of user-defined type link_type named link_name at the location
specified in link_loc_id with user-specified data udata.

link_name is interpreted relative to link_loc_id.

Valid values for the link class of the new link, link_type, include H5L_TYPE_EXTERNAL and any
user-defined link classes that have been registered with the library. See H5Lregister for further
information.

The format of the information pointed to by udata is defined by the user. udata_size specifies the
size of the udata buffer. udata may be nucL if udata_size is zero (0).

The property lists specified by Icpl_id and lapl_id specify properties used to create and access the
link.

Note:
The external link type, HS5L_TYPE_EXTERNAL, included in the HDF5 Library distribution, is
implemented as a user-defined link type. This was done, in part, to provide a model for the
implementation of other user-defined links.

Parameters:
hid_tlink_loc_id IN: Link location identifier
const char *link_name IN: Link name
H5L_type_tink_type IN: User-defined link class
const char *udata IN: User-supplied link information
size_tudata_size IN: Size of udata buffer
hid_tlcpl_id IN: Link creation property list identifier
hid_tlapl_id IN: Link access property list identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

248

HDF5 Reference Manual H5Ldelete

Name: H5Ldelete

Signature:

herr_tH5Ldelete(hid_t loc_id, const char *name, hid_t lapl_id)
Purpose:

Removes a link from a group.
Description:

H5Ldelete removes the link specified by name from the location loc_id.

If the link being removed is a hard ink, H5Ldelete also decrements the link count for the object to
which name points. Unless there is a duplicate hard link in that group, this action removes the object to
which name points from the group that previously contained it.

Object headers keep track of how many hard links refer to an object; when the hard link count, also
referred to as the reference count, reaches zero, the object can be removed from the file. The file space
associated will then be released, i.e., identified in memory as freespace. Objects which are open are no
removed until all identifiers to the object are closed.

Note that space identified as freespace is available for re-use only as long as the file remains open; onc
file has been closed, the HDF5 library loses track of freespace. See “Freespace Management” in
“Performace Analysis and Issues” for further details.

Warning:
Exercise caution in the use of H5Ldelete; if the link being removed is on the only path leading to an
HDF5 object, that object may become permanently inaccessible in the file.

Parameters:
hid_tloc_id IN: Identifier of the file or group containing the object.
const char *name IN: Name of the link to delete.
hid_tlapl_id IN: Link access property list identifier.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5ldelete_f
SUBROUTINE h5ldelete_f(loc_id, name, hdferr, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! Identifier of the file or group
! containing the object
CHARACTER(LEN=¥*), INTENT(IN) :: name ! Name of the link to delete
INTEGER, INTENT(OUT) :: hdferr ! Error code:
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
! Link access property list identifier
END SUBROUTINE h5Idelete_f

History:
Release C
1.8.0 Function introduced in this release.

249

H5Ldelete_by idx HDF5 Reference Manual

Name: H5Ldelete by idx
Signature:
herr_tH5Ldelete_by idx(hid_t loc_id, const char *group_name, H5_index_t
index_field, H5 iter_order_t order, hsize_t n, hid_tlapl_id)
Purpose:
Removes the nth link in a group.
Description:
H5Ldelete_by idx removes the nth link in a group according to the specified order, order, in the
specified index, index.

If loc_id specifies the group in which the link resides, group_name can be a dot (.).
Parameters:

hid_tloc_id IN: File or group identifier specifying location of subject group
const char *group_name IN: Name of subject group
H5_index_tindex_field IN: Index or field which determines the order
H5_ iter_order_torder IN: Order within field or index
hsize i IN: Link for which to retrieve information
hid_tlapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5ldelete by idx f
SUBROUTINE h5ldelete_by_idx_f(loc_id, group_name, index_field, order, n, &
hdferr, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id
I Identifer for object to which attribute is attached.
CHARACTER(LEN=*), INTENT(IN) :: group_name
I Name of object, relative to location,
I from which attribute is to be removed
INTEGER, INTENT(IN) :: index_field
! Type of index; Possible values are:
I H5_INDEX_UNKNOWN_F - Unknown index type
! H5_INDEX_NAME_F - Index on names
I H5_INDEX_CRT_ORDER_F - Index on creation order
I H5 INDEX_N_F - Number of indices defined
INTEGER, INTENT(IN) :: order
I Order in which to iterate over index;
I Possible values are:
I H5_ITER_UNKNOWN_F - Unknown order
I H5_ITER_INC_F - Increasing order
I H5_ITER_DEC_F - Decreasing order
I H5_ITER_NATIVE_F - No particular order,
! whatever is fastest
I H5_ITER_N_F - Number of iteration orders
INTEGER(HSIZE_T), INTENT(IN) :: n
I Offset within index
INTEGER, INTENT(OUT) :: hdferr
I Error code:
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) : lapl_id
I Link access property list
END SUBROUTINE h5ldelete_by_idx_f

250

HDF5 Reference Manual H5Ldelete_by idx

History:
Release C
1.8.0 Function introduced in this release.

251

H5Lexists HDF5 Reference Manual

Name: H5Lexists

Signature:

htri_t H5Lexists(hid_t loc_id, const char *name, hid_t lapl_id)
Purpose:

Determine whether a link with the specified hame exists in a group.
Description:

H5Lexists allows an application to determine whether the link name exists in the group or file
specified with loc_id. The link may be of any type; only the presence of a link with that name is
checked.

Note that H5Lexists verifies only that the target link exists. If name includes either a relative path or

an absloute path to the target link, intermediate steps along the path must be verified before the existence
of the target link can be safely checked. If the path is not verified and an intermediate element of the path
does not exist, H5Lexists will fail. The example in the next paragraph illustrates one step-by-step

method for verifying the existence of a link with a relative or absolute path.

Example: Use the following steps to verify the existence of the link datasetD in the group
groupl/group2/softlink_to_group3/, where groupl is a member of the group specified by
loc_id:

O First use H5Lexists to verify that groupl exists.

O If groupl exists, use H5Lexists again, this time with name set to groupl/group2, to
verify thatgroup2 exists.

O If group?2 exists, use H5Lexists with name set to
groupl/group2/softlink_to_group3 to verify that softlink_to_group3 exists.

¢ If softlink_to_group3 exists, you can now safely use H5Lexists with name set to
groupl/group2/softlink_to_group3/datasetD to verify that the target link,
datasetD, exists.

If the link to be verified is specified with an absolute path, the same approach should be used, but starting
with the first link in the file’s root group. For instance, if datasetD were in
/groupl/group2/softlink_to_group3, the first call to H5Lexists would have name set to

/groupl.

Note that this is an outline and does not include all necessary details. Depending on circumstances, for
example, you may need to verify that an intermediate link points to a group and that a soft link points to
an existing target.

Parameters:
hid_tloc_id IN: Identifier of the file or group to query.
const char *name IN: The name of the link to check.
hid_tlapl_id IN: Link access property list identifier.
Returns:

Returns TRUE or FALSE if successful; otherwise returns a negative value.

252

HDF5 Reference Manual H5Lexists

Failure Modes:
H5Lexists checks the existence of only the final element in a relative or absolute path; it does not
check any other path elements. The function will therefore fail when both of the following conditions
exist:
0 name is not local to the group specified by loc_id or, if loc_id is something other than a
group identifier, name is not local to the root group.
O Any element of the relative path or absolute path in name, except the target link, does not exist.

Fortran90 Interface: h5lexists_f
SUBROUTINE h5lexists_f(loc_id, nhame, link_exists, hdferr, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! Identifier of file or group to query.
CHARACTER(LEN=%*), INTENT(IN) :: name ! Link name to check.
LOGICAL, INTENT(OUT) :: link_exists ! .TRUE. if exists, .FALSE. otherwise
INTEGER, INTENT(OUT) :: hdferr I Error code:
I 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) : lapl_id
I Link access property list identifier.
END SUBROUTINE hblexists_f

History:
Release C
1.8.0 Function introduced in this release.

253

H5Lget_info HDF5 Reference Manual

Name: H5Lget_info
Signature:

herr_tH5Lget_info(hid_t link_loc_id, const char *link_name, H5L_info_t *link_buff,
hid_tlapl_id)

Purpose:

Returns information about a link.

Description:

254

H5Lget_info returns information about the specified link through the link_buff argument.

A file or group identifier, link_loc_id, specifies the location of the link. A link name, link_name,
interpreted relative to loc_id, specifies the link being queried.

lapl_id is the link access property list associated with the link link_name. In the general case, when
default link access properties are acceptable, this can be passed in as H5P_DEFAULT. An example of a
situation that requires a non-default link access property list is when the link is an external link; an
external link may require that a link prefix be set in a link access property list (see

H5Pset_elink_prefix).

H5Lget_info returns information about link_name in the data structure H5L_info_t, which is
described below and defined in H5Lpublic.h. This structure is returned in the buffer link_buff.

typedef struct {
H5L_type_t type;
hbool_t corder_valid;
int64_t corder;
H5T cset_t cset;
union {
haddr_t address;
size_t val_size;
JATk
} H5L_info_t;

In the above struct, type specifies the link class. Valid values include the following:

H5L_TYPE_HARD Hard link
H5L_TYPE_SOFT Soft link
H5L_TYPE_EXTERNAL External link
H5L_TYPE_ERROR Error

There will be additional valid values if user-defined links have been registered.

corder specifies the link’s creation order position while corder_valid indicates whether the value
in corder is valid.

If corder_valid is TRUE, the value in corder is known to be valid; if corder_valid is FALSE,
the value in corder is presumed to be invalid;

corder starts at zero (0) and is incremented by one (1) as new links are created. But higher-numbered
entries are not adjusted when a lower-numbered link is deleted; the deleted link’s creation order position

HDF5 Reference Manual H5Lget _info

is simply left vacant. In such situations, the value of corder for the last link created will be larger than
the number of links remaining in the group.

cset specifies the character set in which the link name is encoded. Valid values include the following:

H5T _CSET_ASCII US ASCII

H5T CSET_UTFS8 UTF-8 Unicode encoding
address and val_size are returned for hard and symbolic links, respectively. Symbolic links include

soft and external links and some user-defined links.

If the link is a hard link, address specifies the file address that the link points to.

If the link is a symbolic link, val_size will be the length of the link value, e.g., the length of the name
of the pointed-to object with a null terminator.

Parameters:
hid_tlink_loc_id IN: File or group identifier.
const charlink_name IN: Name of the link for which information is being sought.
H5L _info_t*link_buff OUT: Buffer in which link information is returned.
hid_tlapl_id IN: Link access property list identifier.

Returns:

Returns a non-negative value if successful, with the fields of link_buff (if non-null) initialized.
Otherwise returns a negative value.

Fortran90 Interface: hblget_info_f
SUBROUTINE h5lget_info_f(link_loc_id, link_name, &
cset, corder, f_corder_valid, link_type, address, val_size, &
hdferr, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: link_loc_id
! File or group identifier.
CHARACTER(LEN=%*), INTENT(IN) :: link_name
I Name of the link for which information is being sought.
INTEGER, INTENT(OUT) :: cset
I Indicates the character set used for the link’s name.
INTEGER, INTENT(OUT) :: corder
I Specifies the link’s creation order position.
LOGICAL, INTENT(OUT) :: f_corder_valid
I Indicates whether the value in corder is valid.
INTEGER, INTENT(OUT) :: link_type
I Specifies the link class:
! H5L_TYPE_HARD_F - Hard link
! H5L_TYPE_SOFT_F - Softlink
I H5L_TYPE_EXTERNAL_F - External link
! H5L_TYPE_ERROR_F - Error
INTEGER(HADDR_T), INTENT(OUT) :: address
I'If the link is a hard link, address specifies the file
I address that the link points to
INTEGER(SIZE_T), INTENT(OUT) :: val_size
I'If the link is a symbolic link, val_size will be the
I length of the link value, i.e. the length of the name
I of the pointed-to object with a null terminator.

255

H5Lget _info HDF5 Reference Manual

INTEGER, INTENT(OUT) :: hdferr
! Error code:
10 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
I Link access property list
END SUBROUTINE h5lget_info_f

History:
Release C
1.8.0 Function introduced in this release.
1.8.2 Fortran subroutine added in this release.
1.8.4 Fortran subroutine syntax changed in this release.

256

HDF5 Reference Manual H5Lget_info_by idx

Name: H5Lget_info_by idx
Signature:
herr_tH5Lget_info_by_idx(hid_t loc_id, const char *group_name, H5_index_t
index_field, H5_iter_order_t order, hsize_t n, H5L_info_t *link_val, hid_t lapl_id)
Purpose:
Retrieves metadata for a link in a group, according to the order within a field or index.
Description:
H5Lget_info_by idx returns the metadata for a link in a group according to a specified field or
index and a specified order.

The link for which information is to be returned is specified by index_field, order, and n as
follows:

¢ index_field specifies the field by which the links in group_name are ordered. The links
may be indexed on this field, in which case operations seeking specific links are likely to
complete more quickly.

¢ order specifies the order in which the links are to be referenced for the purposes of this
function.

¢ n specifies the position of the subject link. Note that this count is zero-based; 0 (zero) indicates
that the function will return the value of the first link; if n is 5, the function will return the value
of the sixth link; etc.
For example, assume that index_field, order, and n are H5_INDEX_NAME, H5_ITER_DEC, and
5, respectively. H5_INDEX_NAME indicates that the links are accessed in alpha-numeric order by their
names. H5_ITER_DEC specifies that the list be traversed in reverse order, or in decremented order. An
5 specifies that this call to the function will return the metadata for the 6th link (n + 1) from the end.

See HS5Literate for a list of valid values and further discussion regarding index_field and
order.

If loc_id specifies the group in which the link resides, group_name can be a dot (.).

Parameters:

hid_tloc_id IN: File or group identifier specifying location of subject group
const char *group_name IN: Name of subject group

H5_index_tindex_field IN: Index or field which determines the order

H5_ iter_order_torder IN: Order within field or index

hsize_in IN: Link for which to retrieve information

H5L_info_t *link_val OUT: Buffer in which link value is returned

hid_tlapl_id IN: Link access property list

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

257

H5Lget_info_by idx

Fortran90 Interface: h5Iget_info_by_idx_f
SUBROUTINE h5lget_info_by_idx_f(loc_id, group_name, index_field, order, n, &

link_type, f_corder_valid, corder, cset, address, val_size, &
hdferr, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id
! File or group identifier specifying
! location of subject group
CHARACTER(LEN=%*), INTENT(IN) :: group_name
! Name of subject group
INTEGER, INTENT(IN) :: index_field
! Index/field which determines the order
I H5_INDEX_UNKNOWN_F - Unknown index type
I H5_INDEX_NAME_F - Index on names
I H5_INDEX_CRT_ORDER_F - Index on creation order
I H5_INDEX_N_F - Number of indices defined
INTEGER, INTENT(IN) :: order
I Order in which to iterate over index;
! Possible values are:
I H5_ITER_UNKNOWN_F - Unknown order
I H5_ITER_INC_F - Increasing order
! H5_ITER_DEC_F - Decreasing order
I H5_ITER_NATIVE_F - No particular order,
! whatever is fastest
INTEGER(HSIZE_T), INTENT(IN) :: n
I Attribute’s position in index
INTEGER, INTENT(OUT) :: link_type
! Specifies the link class:
| H5L_TYPE_HARD_F - Hard link
! H5L_TYPE_SOFT_F - Softlink
! H5L_TYPE_EXTERNAL_F - External link
! H5L_TYPE_ERROR_F - Error
LOGICAL, INTENT(OUT) :: f_corder_valid
I Indicates whether the creation order data is
! valid for this attribute
INTEGER, INTENT(OUT) :: corder
! Is a positive integer containing the creation
! order of the attribute
INTEGER, INTENT(OUT) :: cset
! Indicates the character set used for the
| attribute’s name
INTEGER(HADDR_T), INTENT(OUT) :: address
!If the link is a hard link, address specifies the
! file address that the link points to
INTEGER(SIZE_T), INTENT(OUT) :: val_size
I'If the link is a symbolic link, val_size will be
! the length of the link value, i.e. the length of
! the name of the pointed-to object with a null
! terminator.
INTEGER, INTENT(OUT) :: hdferr
! Error code:
1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
! Link access property list
END SUBROUTINE h5lget_info_by_idx_f

HDF5 Reference Manual

HDF5 Reference Manual H5Lget_info_by idx

History:
Release C
1.8.0 Function introduced in this release.
1.8.2 Fortran subroutine added in this release.
1.8.4 Fortran subroutine syntax changed in this release.

259

H5Lget name_by_idx HDF5 Reference Manual

Name: H5Lget_name_by_idx
Signature:
ssize_H5Lget_name_by idx(hid_t loc_id, const char *group_name, H5 index_t
index_field, H5 iter_order_t order, hsize_t n, char *name, size_size, hid_t lapl_id)
Purpose:
Retrieves name of the nth link in a group, according to the order within a specified field or index.
Description:
H5Lget_name_by idx retrieves the name of the nth link in a group, according to the specified order,
order, within a specified field or index, index_field.

If loc_id specifies the group in which the link resides, group_name can be a dot (.).

The size in bytes of name is specified in size. If size is unknown, it can be determined via an initial
H5Lget _name_by_idx call with name set to NULL,; the function's return value will be the size of the

name.

Parameters:
hid_tloc_id IN: File or group identifier specifying location of subject group
const char *group_name IN: Name of subject group
H5_index_tindex_field IN: Index or field which determines the order
H5_ iter_order_torder IN: Order within field or index
hsize i IN: Link for which to retrieve information
char *name OUT: Buffer in which link value is returned
size_tsize IN: Size in bytes of name
hid_tlapl_id IN: Link access property list

Returns:

Returns the size of the link name if successful; otherwise returns a negative value.

Fortran90 Interface: h5Iget_name_by_idx_f
SUBROUTINE h5Iget_name_by_idx_f(loc_id, group_name, index_field, order, n, &
name, hdferr, lapl_id, size)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: loc_id
I File or group identifier specifying location of
I subject group

CHARACTER(LEN=%*), INTENT(IN) :: group_name
I Name of subject group

INTEGER, INTENT(IN) :: index_field
I Index or field which determines the order
I H5_INDEX_UNKNOWN_F - Unknown index type
I H5_INDEX_NAME_F - Index on nhames
I H5_INDEX_CRT_ORDER_F - Index on creation order
I H5_INDEX_N_F - Number of indices defined

INTEGER, INTENT(IN) :: order
I Order in which to iterate over index:
I H5_ITER_UNKNOWN_F - Unknown order
I H5_ITER_INC_F - Increasing order
I H5_ITER_DEC_F - Decreasing order
I H5_ITER_NATIVE_F - No particular order,
! whatever is fastest

260

HDF5 Reference Manual H5Lget name_by _idx

INTEGER(HSIZE_T), INTENT(IN) :: n
I Attribute’s position in index
CHARACTER(LEN=*), INTENT(OUT) :: name
I Buffer in which link value is returned
INTEGER, INTENT(OUT) :: hdferr ! Error code:
I 0 on success and -1 on failure
INTEGER(SIZE_T), OPTIONAL, INTENT(OUT) :: size
I Indicates the size, in the number of characters,
I of the link, returns exact size
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
I Link access property list
END SUBROUTINE h5lget_name_by_idx_f

History:
Release C
1.8.0 Function introduced in this release.

261

H5Lget val HDF5 Reference Manual

Name: H5Lget_val
Signature:

herr_tH5Lget_val(hid_t link_loc_id, const char *link_name, void *linkval_buff, size_t
size, hid_t lapl_id)

Purpose:

Returns the value of a symbolic link.

Description:

H5Lget_val returns the link value of the link link_name.
The parameter link_loc_id is a file or group identifier.

link_name identifies a symbolic link and is defined relative to link_loc_id. Symbolic links include
soft and external links and some user-defined links. This function is not for use with hard links.

The link value is returned in the buffer linkval_buff. For soft links, this is the path to which the link
points, including the null terminator; for external and user-defined links, it is the link buffer.

size is the size of linkval_buff and should be the size of the link value being returned. This size
value can be determined through a call to H5Lget_info; it is returned in the val_size field of the
H5L_info_t struct.

If size is smaller than the size of the returned value, then the string stored in linkval_buff will be
truncated to size bytes. For soft links, this means that the value will not be null terminated.

In the case of external links, the target file and object names are extracted from linkval_buff by
calling H5Lunpack_elink_val.

The link class of link_name can be determined with a call to H5Lget_info.

lapl_id specifies the link access property list associated with the link link_name. In the general

case, when default link access properties are acceptable, this can be passed in as H5P_DEFAULT. An
example of a situation that requires a non-default link access property list is when the link is an external
link; an external link may require that a link prefix be set in a link access property list (see
H5Pset_elink_prefix).

This function should be used only after H5Lget_info has been called to verify that link_name is a
symbolic link. This can be deteremined from the link_type field of the H5L_info_t struct.

Parameters:
hid_tlink_loc_id IN: File or group identifier.
const char *link_name IN: Link whose value is to be returned.
void *linkval_buff OUT: The buffer to hold the returned link value.
size_tsize IN: Maximum number of characters of link value to be returned.
hid_tlapl_id IN: List access property list identifier.

262

HDF5 Reference Manual H5Lget val

Returns:
Returns a non-negative value, with the link value in linkval_buff, if successful. Otherwise returns a
negative value.

Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

263

H5Lget val by idx HDF5 Reference Manual

Name: H5Lget_val_by_idx
Signature:
herr_tH5Lget_val_by idx(hid_t loc_id, const char *group_name, H5_index_t
index_type, H5_iter_order_t order, hsize_t n, void *link_val, size_t size, hid_t lapl_id)
Purpose:
Retrieves value of the nth link in a group, according to the order within an index.
Description:
H5Lget_val_by_idx retrieves the value of the nth link in a group, according to the specified order,
order, within an index, index.
O For soft links, the value is the path name of the object pointed to.
O For external links, this is a compound value containing file and path name information; to use this
external link information, it must first be decoded with H5Lunpack_elink_val
¢ For user-defined links, this value will be described in the definition of the user-defined link type.
¢ This function will fail if called on a hard link.
loc_id specifies the file or group in which the group specified by group_name is located.

group_name specifies the group in which the link exists. If loc_id already specifies the group in
which the link exists, group_name must be a dot (.).

The size in bytes of group_name is specified in size. If size is unknown, it can be determined via an
initial H5Lget_val_by_idx call with size set to NULL; size will be returned with the actual size
of group_name.

If the type of the link is unknown or uncertain, H5Lget_val_by _idx should be called only after the
type has been determined via a call to H5Lget_info_by_idx.

Parameters:
hid_tloc_id IN: File or group identifier specifying location of subject group
const char *group_name IN: Name of subject group
H5_index_tndex_type IN: Type of index; valid values include:

NAME Indexed by name
CORDER Indexed by creation order

H5_ iter_order_torder IN: Order within field or index; valid values include:
H5 ITER_INC Iterate in increasing order
H5 ITER_DEC lterate in decreasing order
H5 ITER_NATIVE Iterate in fastest order

hsize_in IN: Link for which to retrieve information
void *link_val OUT: Pointer to buffer in which link value is returned
size_tsize IN: Size in bytes of group_name
hid_tlapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

264

HDF5 Reference Manual H5Lis_registered

Name: H5Lis_registered

Signature:

htri_t H5Lis_registered(H5L type_t link_cls_id)
Purpose:

Determines whether a class of user-defined links is registered.
Description:

H5Lis_registered tests whether a user-defined link class is currently registered, either by the HDF5
Library or by the user through the use of H5Lregister.

A link class must be registered to create new links of that type or to traverse exisitng links of that type.
Parameters:
H5L type_tink cls_id IN: User-defined link class identifier
Returns:
Returns a positive value if the link class has been registered and zero if it is unregistered. Otherwise
returns a negative value; this may mean that the identifier is not a valid user-defined class identifier.

Fortran90 Interface: H5Lis_registered f
SUBROUTINE H5Lis_registered_f(link_cls_id, registered, hdferr)
IMPLICIT NONE
INTEGER, INTENT(IN) :: link_cls_id ! User-defined link class identifier
LOGICAL, INTENT(OUT) :: registered ! .TRUE. - if the link class is registered
I .FALSE. - if it is unregistered
INTEGER, INTENT(OUT) :: hdferr ! Error code:
1 0 on success and -1 on failure
END SUBROUTINE H5Lis_registered_f

History:
Release C
1.8.0 Function introduced in this release.

265

H5Literate HDF5 Reference Manual

Name: H5Literate

Signature:
herr_tH5Literate(hid_t group_id, H5 index_t index_type, H5 iter_order_t order, hsize_t
*idx, H5L _iterate_t op, void *op_data)

Purpose:
Iterates through links in a group.

Description:
Hb5Literate iterates through the links in a group, specified by group_id, in the order of the specified
index, index_type, using a user-defined callback routine op. H5Literate does not recursively
follow links into subgroups of the specified group.

Three parameters are used to manage progress of the iteration: index_type, order, and idx.

index_type specifies the index to be used. If the links have not been indexed by the index type, they
will first be sorted by that index then the iteration will begin; if the links have been so indexed, the sorting
step will be unnecesary, so the iteration may begin more quickly. Valid values include the following:

H5 INDEX NAME Alpha-numeric index on hame

H5 INDEX CRT_ORDER Index on creation order
order specifies the order in which objects are to be inspected along the index specified in
index_type. Valid values include the following:

H5 ITER_INC Increasing order
H5 ITER_DEC Decreasing order
H5 ITER_NATIVE Fastest available order

idx allows an interrupted iteration to be resumed; it is passed in by the application with a starting point
and returned by the library with the point at which the iteration stopped.

The op callback funtion, the related H5L_info_t struct, and the effect of the callback function’s return
value on the application are described in H5Lvisit.

op_data is a user-defined pointer to the data required to process links in the course of the iteration. This
pointer is passed back to each step of the iteration in the op callback function’s op_data parameter.

As mentioned above, H5Literate is not recursive. In particular, if a member of group_id is found to
be a group, call it subgroup_a, H5Literate does not examine the members of subgroup_a.
When recursive iteration is required, the application can do either of the following:

¢ Use one of the following recursive routines instead of H5L.iterate:
H5Lvisit
H5Lvisit_by _name
H50Vvisit
H50Vvisit_by_name
¢ Handle the recursion manually, explicitly calling H5Literate on discovered subgroups.

266

HDF5 Reference Manual H5Literate

Hb5Literate assumes that the membership of the group being iterated over remains unchanged through
the iteration; if any of the links in the group change during the iteration, the function’s behavior is
undefined. Note, however, that objects pointed to by the links can be modified.

Hb5Literate is the same as H5Giterate, except that H5Giterate always proceeds in
alphanumeric order.

Parameters:
hid_tgroup_id IN: Identifier specifying subject group
H5 index_tindex_type IN: Type of index which determines the order
H5_iter_order_torder IN: Order within index
hsize_t *idx IN: Iteration position at which to start
OUT: Position at which an interrupted iteration may be restarted
H5L iterate_top IN: Callback function passing data regarding the link to the calling
application
void *op_data IN: User-defined pointer to data required by the application for its
processing of the link
Returns:

On success, returns the return value of the first operator that returns a positive value, or zero if all
members were processed with no operator returning non-zero.

On failure, returns a negative value if something goes wrong within the library, or the first negative value
returned by an operator.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

267

H5Literate_by name HDF5 Reference Manual

Name: H5Literate_by name
Signature:
herr_tH5Literate_by name(hid_t loc_id, const char *group_name, H5_index_t
index_type, H5_iter_order_t order, hsize_t *idx, H5L _iterate_t op, void *op_data, hid_t
*lapl_id)
Purpose:
Iterates through links in a group.
Description:
H5Literate_by name iterates through the links in a group, specified by loc_id and
group_name, in the order of the specified index, index_type, using a user-defined callback routine
op. H5Literate_by_name does not recursively follow links into subgroups of the specified group.

index_type specifies the index to be used. If the links have not been indexed by the index type, they
will first be sorted by that index then the iteration will begin; if the links have been so indexed, the sorting
step will be unnecesary, so the iteration may begin more quickly. Valid values include the following:

H5 INDEX_ NAME Alpha-numeric index on hame
H5 INDEX CRT_ORDER Index on creation order

order specifies the order in which objects are to be inspected along the index specified in
index_type. Valid values include the following:

H5 ITER_INC Increasing order
H5 ITER_DEC Decreasing order
H5 ITER_NATIVE Fastest available order

idx allows an interrupted iteration to be resumed; it is passed in by the application with a starting point
and returned by the library with the point at which the iteration stopped.

H5Literate_by _name is not recursive. In particular, if a member of group_name is found to be a
group, call it subgroup_a, H5Literate_by name does not examine the members of

subgroup_a. When recursive iteration is required, the application must handle the recursion, explicitly
calling H5Literate_by_name on discovered subgroups.

HS5Literate_by name assumes that the membership of the group being iterated over remains
unchanged through the iteration; if any of the links in the group change during the iteration, the function’s
behavior is undefined. Note, however, that objects pointed to by the links can be modified.

HS5Literate_by name is the same as H5Giterate, except that H5Giterate always proceeds in
alphanumeric order.

Parameters:
hid_tloc_id IN: File or group identifier specifying location of subject group
const char *group_name IN: Name of subject group
H5_index_index_type IN: Type of index which determines the order
H5_iter_order_torder IN: Order within index
hsize t *idx IN: Iteration position at which to start

OUT: Position at which an interrupted iteration may be restarted

268

HDF5 Reference Manual H5Literate_by name

H5L_iterate_top IN: Callback function passing data regarding the link to the calling
application
void *op_data IN: User-defined pointer to data required by the application for its
processing of the link
hid_tlapl_id IN: Link access property list
Returns:

On success, returns the return value of the first operator that returns a positive value, or zero if all
members were processed with no operator returning non-zero.

On failure, returns a negative value if something goes wrong within the library, or the first negative value
returned by an operator.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

269

H5Lmove HDF5 Reference Manual

Name: H5Lmove

Signature:
herr_tH5Lmove(hid_tsrc_loc_id, const char *src_name, hid_t dest_loc_id, const char
*dest_name, hid_t Icpl, hid_t lapl)

Purpose:
Renames a link within an HDF5 file.

Description:
H5Lmove renames a link within an HDF5 file. The original link, src_name, is removed from the group
graph and the new link, dest_name, is inserted; this change is accomplished as an atomic operation.

src_loc_id and src_name identify the existing link. src_loc_id is either a file or group
identifier; src_name is the path to the link and is interpreted relative to src_loc _id.

dest_loc_id and dest_name identify the new link. dest_loc_id is either a file or group
identifier; dest_name is the path to the link and is interpreted relative to dest_loc _id.

Icpl and lapl are the link creation and link access property lists, respectively, associated with the new
link, dest_name.

Through these property lists, several properties are available to govern the behavior of HSLmove. The
property controlling creation of missing intermediate groups is set in the link creation property list with
H5Pset_create_intermediate_group; H5Lmove ignores any other properties in the link
creation property list. Properties controlling character encoding, link traversals, and external link prefixes
are set in the link access property list with H5Pset_char_encoding, H5Pset nlinks, and
H5Pset_elink_prefix, respectively.

Warning:
Exercise care in moving links as it is possible to render data in a file inaccessible with H5SLmove. If the
link being moved is on the only path leading to an HDF5 object, that object may become permanently
inaccessible in the file.

Parameters:

hid_tsrc_loc_id IN: Original file or group identifier.

const char'src_name IN: Original link name.

hid_tdest_loc_id IN: Destination file or group identifier.

const chardest_name IN: New link name.

hid_tlcpl_id IN: Link creation property list identifier to be associated with the new

link.

hid_tlapl_id IN: Link access property list identifier to be associated with the new link.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5lmove_f
SUBROUTINE h5Imove_f(src_loc_id, src_name, dest_loc_id, dest_name, hdferr, &
Icpl_id, lapl_id)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: src_loc_id
! Original file or group identifier.

CHARACTER(LEN=*), INTENT(IN) :: src_name
! Original link name.

INTEGER(HID_T), INTENT(IN) :: dest_loc_id
! Destination file or group identifier.

270

HDF5 Reference Manual

CHARACTER(LEN=%), INTENT(IN) :: dest_name

I new link name.
INTEGER(HID_T), INTENT(OUT) :: hdferr ! Error code:

1 0 on success and -1 on failure
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: Icpl_id

! Link creation property list identifier

! to be associated with the new link.
INTEGER(HID_T), OPTIONAL, INTENT(IN) : lapl_id

! Link access property list identifier

! to be associated with the new link.

END SUBROUTINE h5Imove_f

History:
Release C
1.8.0 Function introduced in this release.

H5Lmove

271

H5Lregister HDF5 Reference Manual

Name: H5Lregister

Signature:

herr_tH5Lregister(const H5L_class_t* link_class)
Purpose:

Registers user-defined link class or changes behavior of existing class.
Description:

H5Lregister registers a class of user-defined links, or changes the behavior of an existing class.

The struct H5L_class_t is defined in H5Lpublic.h as follows:

typedef struct H5L_class_t{

int version; [* Version number of this struct */
H5L_type_t class_id; [* Link class identifier */
const char *comment; [* Comment for debugging */

H5L_create_func_t create_func; /* Callback during link creation */
H5L_move_func_t move_func; /* Callback after moving link */
H5L_copy_func_t copy_func; /* Callback after copying link */
H5L_traverse_func_t trav_func; /* The main traversal function */
H5L_delete_func_t del_func; /* Callback for link deletion */
H5L_query_func_t query_func; /* Callback for queries */

} H5L_class_t;

The link class passed in will override any existing link class for the specified link class identifier
class_id. The class definition must include at least a H5L_class_t version (which should be
H5L_LINK_CLASS_T_VERS), a link class identifier, and a traversal function, trav_func.

Valid values of class_id already used in the HDF5 distribution include the following (defined in

H5Lpublic.h):
H5L_TYPE_HARD Hard link
H5L_TYPE_SOFT Soft link
H5L_TYPE_EXTERNAL E:lzema'

class_id must be a value between H5L_TYPE_UD_MIN and H5L_TYPE_UD_MAX (which equals
H5L_TYPE_MAX).

Important details include the following:

H5L_TYPE_MAX is the maximum allowed value for a link type identifier.
H5L_TYPE_UD_MIN equals H5L_TYPE_EXTERNAL.
H5L_TYPE_UD_MAX equals H5L_TYPE_MAX.

H5L _TYPE_HARD and H5L_TYPE_SOFT reside in the reserved space below
H5L_TYPE_UD_MIN.

H5L_TYPE_ERROR indicates that an error has occurred.
Notes:
If you plan to distribute files with a new user-defined link class, please contact the Help Desk at The HDF
Group to help prevent collisions between class_id values.

272

HDF5 Reference Manual H5Lregister

As distributed with the HDF5 Library, the external link class is implemented as an example of a
user-defined link class and H5L_LINK_EXTERNAL equals H5L_LINK_UD_MIN. Therefore,
class_id in the H5L_class_tH5L_LINK_UD_MIN unless you intend to overwrite or modify the
behavior of external links.

Parameters:

const H5L_class_t fink_class IN: Struct describing user-defined link class
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

273

H5Lunpack_elink_val HDF5 Reference Manual

Name: H5Lunpack_elink_val

Signature:
herr_tH5Lunpack_elink_val(char *ext_linkval, size_t link_size, unsigned *flags,
const char **filename, const char **obj_path)

Purpose:
Decodes external link information.

Description:

H5Lunpack_elink_val decodes the external link information returned by H5Lget_val in the
ext_linkval buffer.

ext_linkval should be the buffer set by H5Lget_val and will consist of two nuLL-terminated
strings, the filename and object path, one after the other.

Given this buffer, HSLunpack_elink_val creates pointers to the filename and object path within the
buffer and returns them in filename and obj_path, unless they are passed in as NULL.

H5Lunpack_elink_val requires that ext_linkval contain a concatenated pair of null-terminated
strings, so use of this function on a string that is not an external link udata buffer may result in a
segmentation fault. This failure can be avoided by adhering to the following procedure:

1. Call H5Lget _info to get the link type and the size of the link value.

2. Verify that the link is an external link, i.e., that its link type is HSL_TYPE_EXTERNAL.
3. Call H5Lget_val to get the link value.

4. Call H5Lunpack_elink_val to unpack that value.

Parameters:
const char *ext_linkval IN: Buffer containing external link information
size_tlink_size IN: Size, in bytes, of the ext_linkval buffer
unsigned *flags OUT: External link flags, packed as a bitmap
(Reserved as a bitmap for flags; no flags are currently defined, so the
only valid value is 0.)
const char **filename OUT: Returned filename
const char **obj_path OUT: Returned object path, relative to filename
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

274

HDF5 Reference Manual H5Lunregister

Name: H5Lunregister

Signature:

herr_tH5Lunregister(H5L_type t link_cls_id)
Purpose:

Unregisters a class of user-defined links.
Description:

H5Lunregister unregisters a class of user-defined links, preventing them from being traversed,
gueried, moved, etc.

A link class can be re-registered using H5Lregister.
Parameters:

H5L type_tink cls_id IN: User-defined link class identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

275

H5Lvisit HDF5 Reference Manual

Name: H5Lvisit

Signature:
herr_tH5Lvisit(hid_t group_id, H5 index_t index_type, H5 iter_order_t order,
H5L iterate_top, void *op_data)

Purpose:
Recursively visits all links starting from a specified group.

Description:
H5Lvisit is a recursive iteration function to visit all links in and below a group in an HDF5 file, thus
providing a mechanism for an application to perform a common set of operations across all of those links
or a dynamically selected subset. For non-recursive iteration across the members of a group, see
H5Literate.

The group serving as the root of the iteration is specified by its group identifier, group_id
Two parameters are used to establish the iteration: index_type and order.

index_type specifies the index to be used. If the links have not been indexed by the index type, they
will first be sorted by that index then the iteration will begin; if the links have been so indexed, the sorting
step will be unnecesary, so the iteration may begin more quickly. Valid values include the following:

H5 INDEX NAME Alpha-numeric index on hame

H5_INDEX_CRT_ORDER Index on creation order
Note that the index type passed in index_type is a best effort setting. If the application passes in a
value indicating iteration in creation order and a group is encountered that was not tracked in creation
order, that group will be iterated over in alpha-numeric order by name, or name order. (Name order is the
native order used by the HDF5 Library and is always available.)

order specifies the order in which objects are to be inspected along the index specified in
index_type. Valid values include the following:

H5 ITER_INC Increasing order

H5 ITER_DEC Decreasing order

H5 ITER_NATIVE Fastest available order
The protoype of the callback function op is as follows (as defined in the source code file
H5Lpublic.h):
herr_t(*H5L _iterate_t)(hid_t g_id, const char *name, const H5L_info_t *info, void
*op_data)

The parameters of this callback function have the following values or meanings:

g_id Group that serves as root of the iteration; same value as the H5Lvisit
group_id parameter

name Name of link, relative to g_id, being examined at current step of the iteration

info H5L_info_t struct containing information regarding that link

276

HDF5 Reference Manual H5Lvisit

op_data User-defined pointer to data required by the application in processing the link; a
pass-through of the op_data pointer provided with the H5Lvisit function
call
The H5L_info_t struct is defined (in H5Lpublic.h) as follows:

typedef struct {
H5L_type_t type; [* Type of link */
hbool_t corder_valid; /* Indicates whether creation */
[* order is valid */
int64_t corder; /* Creation order */
H5T_cset_t cset; /* Character set of link name */
union {
haddr_t address; /* Address hard link points to */
size_t val_size; [* Size of soft link or */
[* user-defined link value */
bu;
} H5L_info_t;

The possible return values from the callback function, and the effect of each, are as follows:

¢ Zero causes the visit iterator to continue, returning zero when all group members have been
processed.
¢ A positive value causes the visit iterator to immediately return that positive value, indicating
short-circuit success. The iterator can be restarted at the next group member.
¢ A negative value causes the visit iterator to immediately return that value, indicating failure. The
iterator can be restarted at the next group member.
The H5Lvisit op_data parameter is a user-defined pointer to the data required to process links in the
course of the iteration. This pointer is passed back to each step of the iteration in the op callback
function’s op_data parameter.

H5Lvisit and H50visit are companion functions: one for examining and operating on links; the
other for examining and operating on the objects that those links point to. Both functions ensure that by
the time the function completes successfully, every link or object below the specified point in the file has
been presented to the application for whatever processing the application requires.

Parameters:
hid_tgroup_id IN: Identifier of the group at which the recursive iteration begins.
H5_index_tindex_type IN: Type of index; valid values include:

H5_INDEX_NAME
H5_INDEX_CRT_ORDER

H5 iter_order_torder IN: Order in which index is traversed; valid values include:
H5_ITER_DEC
H5_ITER_INC
H5_ITER_NATIVE
H5L iterate_top IN: Callback function passing data regarding the link to the calling
application
void *op_data IN: User-defined pointer to data required by the application for its

processing of the link

277

H5Lvisit HDF5 Reference Manual

Returns:
On success, returns the return value of the first operator that returns a positive value, or zero if all
members were processed with no operator returning non-zero.

On failure, returns a negative value if something goes wrong within the library, or the first negative value
returned by an operator.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

278

HDF5 Reference Manual H5Lvisit_ by name

Name: H5Lvisit_by name

Signature:
herr_tH5Lvisit by name(hid_t loc_id, const char *group_name, H5_index_t index_type,
H5 iter_order_torder, H5L iterate_t op, void *op_data, hid_t lapl_id)

Purpose:
Recursively visits all links starting from a specified group.

Description:
H5Lvisit_by name is a recursive iteration function to visit all links in and below a group in an HDF5
file, thus providing a mechanism for an application to perform a common set of operations across all of
those links or a dynamically selected subset. For non-recursive iteration across the members of a group
see H5Literate.

The group serving as the root of the iteration is specified by the loc_id / group_name parameter pair.
loc_id specifies a file or group; group_name specifies either a group in the file (with an absolute
name based in the file’s root group) or a group relative to loc_id. If loc_id fully specifies the group
that is to serve as the root of the iteration, group_name should be "' (a dot). (Note that when

loc_id fully specifies the the group that is to serve as the root of the iteration, the user may wish to
consider using H5Lvisit instead of H5Lvisit_by name.)

Two parameters are used to establish the iteration: index_type and order.

index_type specifies the index to be used. If the links have not been indexed by the index type, they
will first be sorted by that index then the iteration will begin; if the links have been so indexed, the sorting
step will be unnecesary, so the iteration may begin more quickly. Valid values include the following:

H5 INDEX NAME Alpha-numeric index on hame

H5_INDEX_CRT_ORDER Index on creation order
Note that the index type passed in index_type is a best effort setting. If the application passes in a
value indicating iteration in creation order and a group is encountered that was not tracked in creation
order, that group will be iterated over in alpha-numeric order by name, or name order. (Name order is th
native order used by the HDF5 Library and is always available.)

order specifies the order in which objects are to be inspected along the index specified in
index_type. Valid values include the following:

H5 ITER_INC Increasing order
H5 ITER_DEC Decreasing order
H5 ITER_NATIVE Fastest available order

The op callback funtion, the related H5L_info_t struct, and the effect that the callback function’s return
value has on the application are described in H5Lvisit.

279

H5Lvisit_by name HDF5 Reference Manual

The H5Lvisit_by name op_data parameter is a user-defined pointer to the data required to process
links in the course of the iteration. This pointer is passed back to each step of the iteration in the callback
function’s op_data parameter.

lapl_id is a link access property list. In the general case, when default link access properties are
acceptable, this can be passed in as H5P_DEFAULT. An example of a situation that requires a non-default
link access property list is when the link is an external link; an external link may require that a link prefix

be set in a link access property list (see H5Pset_elink_prefix).

H5Lvisit_by name and H50visit_by name are companion functions: one for examining and

operating on links; the other for examining and operating on the objects that those links point to. Both
functions ensure that by the time the function completes successfully, every link or object below the
specified point in the file has been presented to the application for whatever processing the application
requires.

Parameters:
hid_tloc_id IN: Identifier of a file or group
const char *name IN: Name of the group, generally relative to loc_id, that will serve as
root of the iteration
H5_index_index_type IN: Type of index; valid values include:
H5_INDEX_NAME
H5_INDEX_CRT_ORDER
H5_iter_order_torder IN: Order in which index is traversed; valid values include:
H5_ITER_DEC
H5_ITER_INC
H5_ITER_NATIVE
H5L iterate_top IN: Callback function passing data regarding the link to the calling
application
void *op_data IN: User-defined pointer to data required by the application for its
processing of the link
hid_tlapl_id IN: Link access property list identifier
Returns:

On success, returns the return value of the first operator that returns a positive value, or zero if all
members were processed with no operator returning non-zero.

On failure, returns a negative value if something goes wrong within the library, or the first negative value
returned by an operator.

Fortran90 Interface:

History:

280

None.
Release C
1.8.0 Function introduced in this release.

HDF5 Reference Manual

H50: Object Interface

Object API Functions

The Object interface, H50, functions manipulate objects in an HDF5 file. This interface is designed to be used i
conjunction with the Links interface (H5L).

The C Interfaces:

* H500pen * H50set_comment * H500pen_by idx
* H50link * H50set_comment_by name ¢« H500pen_by addr
* H50close * H50get_comment

* H50copy » H50get_comment_by name ¢ H5QOincr_refcount
* H50Vvisit » H50get_info » H50decr_refcount

* H50visit_by name < H50get info_by name
* H50get _info_by idx
Alphabetical Listing

« H50close » H50get_info_by idx * H500pen_by_idx

* H50copy » H50get_info_by name < H50set _comment

« H50decr_refcount » H50incr_refcount « H50set_comment_by name
* H50get_comment » H50Iink « H50visit

¢ H50get_comment_by name « H50open « H50visit_by name

« H50get _info * H500pen_by addr

The FORTRAN9O Interfaces:
In general, each FORTRAN9O0 subroutine performs exactly the same task as the corresponding C function.

* h5olink_f
* h500pen_f

281

HDF5 Reference Manual

282

HDF5 Reference Manual H50close

Name: H5Oclose
Signature:
herr_tH50close(hid_t object _id)
Purpose:
Closes an object in an HDF5 file.
Description:
H50Oclose closes the group, dataset, or named datatype specified by object _id.

This function is the companion to H50o0pen, and has the same effect as calling H5Gclose, H5Dclose,
or H5Tclose.

H50Oclose is not used to close a dataspace, attribute, property list, or file.
Parameters:

hid_t object_id IN: Object identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

283

H50copy HDF5 Reference Manual

Name: H50copy
Signature:
herr_tH50copy(hid_tsrc_loc_id, const char *src_name, hid_t dst_loc_id, const char
*dst_name, hid_t ocpypl_id, hid_t Icpl_id)
Purpose:
Copies an object in an HDF5 file.
Description:
H5Ocopy copies the group, dataset or named datatype specified by src_name from the file or group
specified by src_loc_id to the destination location dst_loc _id.

The destination location, as specified in dst_loc_id, may be a group in the current file or a location in
a different file. If dst_loc_id is a file identifier, the copy will be placed in that file’s root group.

The new copy will be created with the name dst_name. dst_name must not pre-exist in the
destination location; if dst_name already exists at the location dst_loc_id, H5Ocopy will fail.

The new copy of the object is created with the creation property lists specified by ocpypl_id and
Icpl_id.

H50copy will always try to make a copy of the object specified in src_name.

¢ If the object specified by src_name is a group containing a soft or external link, the default is
that the new copy will contain a soft or external link with the same value as the original. See
H5Pset_copy_object for optional settings.
¢ If the path specified in src_name is or contains a soft link or an external link, H5Ocopy will
copy the target object. Use H5Lcopy if the intent is to create a new soft or external link with the
same value as the original link.
Several flags are available to govern the behavior of H5Ocopy. These flags are set in the creation
property list cplist_id with H5Pset_copy_object and
H5Pset_create_intermediate_group. All of the available flags are described at
H5Pset_copy_object.

Parameters:
hid_tsrc_loc_id IN: Object identifier indicating the location of the source object to be
copied
const char *src_name IN: Name of the source object to be copied
hid_tdst_loc_id IN: Location identifier specifying the destination
const char *dst_name IN: Name to be assigned to the new copy
hid_tocpypl_id IN: Object copy property list
hid_tlcpl_id IN: Link creation property list for the new hard link
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

284

HDF5 Reference Manual H50decr_refcount

Name: H50decr_refcount

Signature:

herr_tH50decr_refcount(hid_t object id)
Purpose:

Decrements an object reference count.
Description:

H50decr_refcount decrements the hard link reference count for an object. It should be used any time
a user-defined link that references an object by address is deleted. In general, H50incr_refcount will
have been used previously, when the link was created.

An object’s reference count is the number of hard links in the file that point to that object. See the
“Programming Model” section of the “HDF5 Groups” chapter in the HDF5 User’s Guide for a more
complete discussion of reference counts.

If a user application needs to determine an object’s reference count, an H50get_info call is required;
the reference count is returned in the rc field of the H50 _info_t struct.

Warning: This function must be used with care!
Improper use can lead to inaccessible data, wasted space in the file, or file corruption.
Parameters:

hid_t object_id IN: Object identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

285

H50get_comment HDF5 Reference Manual

Name: H50get_comment
Signature:
ssize_H50get_comment(hid_t object_id, char *comment, size_t bufsize,)
Purpose:
Retrieves comment for specified object.
Description:
H50get_comment retrieves the comment for the specified object in the buffer comment.

The target object is specified by an identifier, object _id.
The size in bytes of the comment, including the NULL terminator, is specified in bufsize. If bufsize
is unknown, a preliminary H50Oget_comment call with the pointer comment set to NULL will return

the size of the comment without the NULL terminator.

If bufsize is set to a smaller value than described above, only bufsize bytes of the comment,
without a NULL terminator, are returned in comment.

If an object does not have a comment, the empty string is returned in comment.
Parameters:

hid_tobject id IN: Identifier for the target object.

char *comment OUT: The comment.

size_tbufsize IN: Anticipated required size of the comment buffer.
Returns:

Upon success, returns the number of characters in the comment, not including the NULL terminator, or
zero (0) if the object has no comment. The value returned may be larger than bufsize. Otherwise
returns a negative value.

Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

286

HDF5 Reference Manual H50get_comment_by name

Name: H50get_comment_by name
Signature:
ssize_H50get_comment_by name(hid_t loc_id, const char *name, char *comment, size t
bufsize, hid_t lapl_id)
Purpose:
Retrieves comment for specified object.
Description:
H50get_comment_by name retrieves the comment for an object in the buffer comment.

The target object is specified by loc_id and name. loc_id can specify any object in the file. name
can be one of the following:

— The name of the object relative to loc_id

— An absolute name of the object, starting from /, the file’s root group

— A dot (), if loc_id fully specifies the object

The size in bytes of the comment, including the NULL terminator, is specified in bufsize. If bufsize
is unknown, a preliminary H50Oget_comment_by name call with the pointer comment set to NULL
will return the size of the comment without the NULL terminator.

If bufsize is set to a smaller value than described above, only bufsize bytes of the comment,
without a NULL terminator, are returned in comment.

If an object does not have a comment, the empty string is returned in comment.

lapl_id contains a link access property list identifier. A link access propety list can come into play
when traversing links to access an object.

Parameters:
hid_tloc_id IN: Identifier of a file, group, dataset, or named datatype.
const char *name IN: Name of the object whose comment is to be retrieved, specified as a path
relative to loc_id.
name can be "' (a dot) if loc_id fully specifies the object for which the
associated comment is to be retrieved.
char *comment OUT: The comment.
size_thufsize IN: Anticipated required size of the comment buffer.
hid_tlapl_id IN: Link access property list identifier.
Returns:

Upon success, returns the number of characters in the comment, not including the NULL terminator, or
zero (0) if the object has no comment. The value returned may be larger than bufsize. Otherwise
returns a negative value.

Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

287

H50get _info

HDF5 Reference Manual

Name: H50get_info
Signature:

herr_tH50get_info(hid_t object_id, H50 info_t *object_info)

Purpose:

Retrieves the metadata for an object specified by an identifier.

Description:

288

H50get_info specifies an object by its identifier, object_id, and retrieves the metadata describing
that object in object_info, an H50 _info_t struct.

An H50 info_t struct is defined (in H5Opublic.h) as follows :

typedef struct H50_info_t {

unsigned long fileno; /* File number that object is */
/* located in */

haddr_t addr; /* Object address in file */

H50_type_t type; /* Basic object type (group, */
/* dataset, etc.) */

unsigned rc; /* Reference count of object */

time_t atime; /* Access time */

time_t mtime; [* Modification time */

time_t ctime; /* Change time */

time_t btime; [* Birth time */

hsize_t num_attrs; /* # of attributes attached to object */

struct {

unsigned version;

/*
unsigned nmesgs;
unsigned nchunks;
unsigned flags;
struct {

hsize t total;

%

~

hsize_t meta;

~
*

hsize_t mesg;
*

~

hsize tfree;
} space;
struct {
uint64_t present;

%

~

uint64_t shared,;

*

~

} mesg;
} hdr;

[* Version number of header format in */
file *
/* Number of object header messages */
/* Number of object header chunks ~ */
/* Object header status flags */

/* Total space for storing object */
header in file *

[* Space within header for object */
header metadata information */

[* Space within header for actual */
message information */
/* Free space within object header */

[* Flags to indicate presence of */
message type in header */

[* Flags to indicate message type is */
shared in header */

[* Extra metadata storage for obj & attributes */

struct {
H5_ih_info_t obj;
/*
/*
H5_ih_info_t attr;
} meta_size;
} H50 _info_t;

[* v1/v2 B-tree & local/fractal heap */
for groups, B-tree for chunked */
datasets */

[* v2 B-tree & heap for attributes */

HDF5 Reference Manual H50get _info

Parameters:

hid_tobject_id IN: Identifier for target object

H50 _info_t *object _info OUT: Buffer in which to return object information
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

289

H50get_info_by idx HDF5 Reference Manual

Name: H50get_info_by idx
Signature:
herr_tH50get_info_by idx(hid_t loc_id, const char *group_name, H5_index _t
index_field, H5 iter_order_t order, hsize_t n, H50 _info_t *object_info, hid_t lapl_id)
Purpose:
Retrieves the metadata for an object, identifying the object by an index position.
Description:
H50get_info_by idx specifies a location, loc_id; a group name, group_name; an index by
which obects in that group are tracked, index_field; the order by which the index is to be traversed,
order; and an object’s position n within that index and retrieves the metadata describing that object in
the struct object _info.

object_info, in which the object information is returned, is a struct of type H50 _info_t. This struct
type is described in the H50get _info function entry.

If loc_id fully specifies the group in which the object resides, group_name can be a dot (.).

The link access property list, lapl_id, is not currently used; it should be passed in as NULL.
Parameters:

hid_tloc_id IN: File or group identifier specifying location of group in which
object is located

const char *group_name IN: Name of group in which object is located

H5_index_tindex_field IN: Index or field that determines the order

H5_ iter_order_torder IN: Order within field or index

hsize_mn IN: Object for which information is to be returned

H50_info_t *object_info OUT: Buffer in which to return object information

hid_tlapl_id IN: Link access property list

(Not currently used; pass as NULL.)
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

290

HDF5 Reference Manual H50get_info_by name

Name: H50get_info_by name
Signature:
herr_tH50get_info_by name(hid_t loc_id, const char *object name, H50_info_t
*object_info, hid_t lapl_id)
Purpose:
Retrieves the metadata for an object, identifying the object by location and relative name.
Description:
H50get_info_by name specifies an object’s location and name, loc_id and object_name,
respectively, and retrieves the metadata describing that object in object_info, an H50_info_t struct.

The struct H50 _info_t is defined in H5Opublic.h and described in the H50get_info function entry.

The link access property list, lapl_id, is not currently used; it should be passed in as H5P_DEFAULT.
Parameters:

hid_tloc_id IN: File or group identifier specifying location of group in which
object is located

const char *name IN: Name of group, relative to loc_id

H50_info_t *object_info OUT: Buffer in which to return object information

hid_tlapl_id IN: Link access property list

(Not currently used; pass as H5P_DEFAULT.)
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

291

H50incr_refcount HDF5 Reference Manual

Name: H50incr_refcount

Signature:

herr_tH50incr_refcount(hid_t object _id)
Purpose:

Increments an object reference count.
Description:

H50incr_refcount increments the hard link reference count for an object. It should be used any time
a user-defined link that references an object by address is added. When the link is deleted,
H50decr_refcount should be used.

An object’s reference count is the number of hard links in the file that point to that object. See the
“Programming Model” section of the “HDF5 Groups” chapter in the HDF5 User’s Guide for a more
complete discussion of reference counts.

If a user application needs to determine an object’s reference count, an H50get_info call is required;
the reference count is returned in the rc field of the H50 _info_t struct.

Warning: This function must be used with care!
Improper use can lead to inaccessible data, wasted space in the file, or file corruption.
Parameters:
hid_t object_id IN: Object identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

292

HDF5 Reference Manual H50Iink

Name: H50link
Signature:
herr_tH50Ilink(hid_t object_id, hid t new_loc_id, const char *new_link_name, hid_t
Icpl, hid_t lapl)
Purpose:
Creates a hard link to an object in an HDF5 file.
Description:
H50Iink creates a new hard link to an object in an HDF5 file.

new_loc_id and new_name specify the location and name of the new link while object_id
identifies the object that the link points to.

H50Iink is designed for two purposes:

¢ To create the first hard link to an object that has just been created with one of the
H5*create_anon functions or with H5Tcommit_anon.

+ To add additional structure to an existing file so that, for example, an object can be shared among
multiple groups.
Icpl and lapl are the link creation and access property lists associated with the new link.
Parameters:

hid_tobject_id IN: Object to be linked.
hid_tnew_loc id IN: File or group identifier specifying location at which object is
to be linked.
const charnew_link_name IN: Name of link to be created, relative to new_loc_id.
hid_tlcpl_id IN: Link creation property list identifier.
hid_tlapl_id IN: Link access property list identifier.
Example:

To create a new link to an object while simultaneously creating missing intermediate groups:

Suppose that an application must create the group C with the path /A/B01/C but may not know at run
time whether the groups A and B01 exist. The following code ensures that those groups are created if tf
are missing:

hid_t lcpl_id = H5Pcreate(H5P_LINK_CREATE); /* Creates a link creation
* property list (LCPL). */

int status = H5Pset_create_intermediate_group(lcpl_id, TRUE);
/* Sets "create missing intermediate
* groups"” property in that LCPL. */

hid_t gid = H5Gcreate_anon(file_id, HSP_DEFAULT, H5P_DEFAULT);
/* Creates a group without linking
* it into the file structure. */

status = H50Ilink(obj_id, file_id, "/A/BO1/C", Icpl_id, H5P_DEFAULT);
/* Links group into file structure.*/

Note that unless the object is intended to be temporary, the H50Ilink call is mandatory if an object
created with one of the H5*create_anon functions (or with H5STcommit_anon) is to be retained in
the file; without an H50Iink call, the object will not be linked into the HDFS5 file structure and will be
deleted when the file is closed.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

293

H50link

Fortran90 Interface: h5olink_f

History:
Release C
1.8.0 Function introduced in this release.

294

SUBROUTINE h5olink_f(object_id, new_loc_id, new_link_name, hdferr, &

Icpl_id, lapl_id)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: object_id

I Object to be linked
INTEGER(HID_T), INTENT(IN) :: new_loc_id

I File or group identifier specifying

I'location at which object is to be linked.
CHARACTER(LEN=*), INTENT(IN) :: new_link_name

I Name of link to be created,

I relative to new_loc_id.
INTEGER, INTENT(OUT) :: hdferr ! Error code

I Success: 0

I Failure: -1
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: Icpl_id

I Link creation property list identifier.
INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id

I Link creation property list identifier.

END SUBROUTINE h5olink_f

HDF5 Reference Manual

HDF5 Reference Manual H50o0pen

Name: H500pen

Signature:

hid_tH500pen(hid_tloc_id, const char *name, hid_t lapl_id)
Purpose:

Opens an object in an HDF5 file by location identifier and path name.
Description:

H50o0pen opens a group, dataset, or named datatype specified by a location, loc_id, and a path name,
name, in an HDF5 file.

This function opens the object in the same manner as H5Gopen, H5Topen, and H5Dopen. However,
H50o0pen does not require the type of object to be known beforehand. This can be useful with
user-defined links, for instance, when only a path may be known. H50Oopen cannot be used to open a
dataspace, attribute, property list, or file.

Once an object of unknown type has been opened with H50open, the type of that object can be
determined by means of an H5Iget_type call.

loc_id can be either a file or group identifier. name must be the path to that object relative to loc_id.

lapl_id is the link access property list associated with the link pointing to the object. If default link
access properties are appropriate, this can be passed in as H5P_DEFAULT.

When it is no longer needed, the opened object should be closed with H5Oclose, H5Gclose,
H5Tclose, or H5Dclose.

Parameters:

hid_tloc_id IN: File or group identifier

const char *name IN: Path to the object, relative to loc_id.

hid_tlapl_id IN: Access property list identifier for the link pointing to the object
Returns:

Returns an object identifier for the opened object if successful; otherwise returns a negative value.

Fortran90 Interface: h5oopen_f
SUBROUTINE h5o00pen_f(loc_id, name, obj_id, hdferr, lapl_id)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
CHARACTER(LEN=%), INTENT(IN) :: name ! Path to the object,
! relative to loc_id
INTEGER(HID_T), INTENT(OUT) :: obj_id ! Object identifier for opened object
INTEGER, INTENT(OUT) :: hdferr ! Error code
I Success: 0
I Failure: -1
INTEGER(HID_T), OPTIONAL, INTENT(IN) : lapl_id
| Attribute access property list
END SUBROUTINE h5oopen_f

History:
Release C
1.8.0 Function introduced in this release.

295

H500pen_by_addr HDF5 Reference Manual

Name: H500pen_by_addr
Signature:

hid_tH500pen_by addr(hid_t loc_id, haddr_t addr)

Purpose:

Opens an object using its address within an HDF5 file.

Description:

H50o0pen_by addr opens a group, dataset, or named datatype using its address within an HDF5 file,
addr. The resulting opened object is identical to an object opened with H5Oopen and should be closed

with H50close or an object-type-specific closing function (such as H5Gclose) when no longer
needed.

loc_id can be either the file identifier or a group identifier in the file. In either case, the HDF5 Library
uses the identifier only to identify the file.

The object’'s address within the file, addr, is the byte offset of the first byte of the object header from the
beginning of the HDF5 file space, i.e., from the beginning of the super block (see the “HDF5 Storage
Model” section of the “The HDF5 Data Model and File Structure” chapter of the HDF5 User’ Guide).

addr can be obtained via either of two function calls. H5Gget_objinfo returns the object’s address in
the objno field of the H5G_stat_t struct; H5Lget_linkinfo returns the address in the address
field of the H5L_linkinfo_t struct.

Warning: This function must be used with care!
Improper use can lead to inaccessible data, wasted space in the file, or file corruption.

This function is dangerous if called on an invalid address. The risk can be safely overcome by
retrieving the object address with H5Gget_objinfo or H5Lget_linkinfo immediately before
calling H50o0pen_by addr. The immediacy of the operation can be important; if time has elapged
and the object has been deleted from the file, the address will be invalid and file corruption can result.
The address of the HDF5 file on a physical device has no effect on H50Oopen_by addr, nor does the

use of any file driver. As stated above, the object address is its offset within the HDFb5 file; HDF5's file
drivers will transparently map this to an address on a storage device.

Parameters:
hid_tloc_id IN: File or group identifier
haddr_t addr IN: Object’s address in the file
Returns:

Returns an object identifier for the opened object if successful; otherwise returns a negative value.

Fortran90 Interface: h5oopen_by addr_f

296

SUBROUTINE h500pen_by _addr_f(loc_id, addr, obj_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T) , INTENT(IN) ::loc_id ! File or group identifier
INTEGER(HADDR_T), INTENT(IN) ::addr ! Object’'s address in the file
INTEGER(HID_T) , INTENT(OUT) :: obj_id ! Object identifier for the
I opened object
INTEGER , INTENT(OUT) :: hdferr ! Error code
I Success: 0
I Failure: -1
END SUBROUTINE

HDF5 Reference Manual H500pen_by_addr

History:
Release Change
1.8.0 Function introduced in this release.
1.8.4 Fortran subroutine added in this release.

297

H50o0pen_by_idx HDF5 Reference Manual

Name: H500pen_hy_idx
Signature:
hid_tH500pen_by idx(hid_t loc_id, const char *group_name, H5 index_t index_type,
H5 iter_order_torder, hsize_t n, hid_tlapl_id)
Purpose:
Open the nth object in a group.
Description:
H500pen_by idx opens the nth object in the group specified by loc_id and group_name.

loc_id specifies a file or group. group_name specifies the group relative to loc_id in which the
object can be found. If loc_id fully specifies the group in which the object resides, group_name can
be a dot (.).

The specific object to be opened within the group is specified by index_type, order, and n as
follows:

¢ index_type specifies the type of index by which objects are ordered. Valid index types
include H5_ INDEX_NAME, indexed by name, and H5_ INDEX_CRT_ORDER, indexed by
creation order.

¢ order specifies the order in which the links are to be referenced for the purposes of this
function. Valid orders include H5_ITER_INC for increasing order, H5 ITER_DEC for
decreasing order, and H5_ITER_NATIVE. Rather than implying a particular order,
H5 ITER_NATIVE instructs the HDF5 Library to iterate through the objects in the fastest
available order, i.e., in a natural order.

¢ n specifies the position of the object within the index. Note that this count is zero-based; 0 (zero)
indicates that the function will return the value of the first object; if n is 5, the function will
return the value of the sixth object; etc.

If lapl_id specifies the link access property list to be used in accessing the object.
Parameters:

hid_tloc_id IN: A file or group identifier.
const char *group_name IN: Name of group, relative to loc_id, in which object is located
H5_index_tndex_type IN: Type of index by which objects are ordered
H5 iter_order_torder IN: Order of iteration within index
hsize_in IN: Object to open
hid_tlapl_id IN: Link access property list
Returns:

Returns an object identifier for the opened object if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

298

HDF5 Reference Manual H50set_comment

Name: H50set_comment
Signature:
herr_tH50set_comment(hid_t object_id, const char *comment)
Purpose:
Sets comment for specified object.
Description:
H50set_comment sets the comment for the specified object to the contents of comment. Any
previously existing comment is overwritten.

The target object is specified by an identifier, object _id.

If comment is the empty string or a null pointer, any existing comment message is removed from the
object.

Comments should be relatively short, null-terminated, ASCII strings.

Comments can be attached to any object that has an object header, e.g., datasets, groups, and named
datatypes, but not symbolic links.

Parameters:
hid_tobject id IN: Identifier of the target object
const char *comment IN: The new comment.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

299

H50set_comment_by name HDF5 Reference Manual

Name: H50set_comment_by name
Signature:

herr_tH50set_comment_by name(hid_t loc_id, const char *name, const char *comment, hid_t
lapl_id)

Purpose:

Sets comment for specified object.

Description:

H50set_comment_by name sets the comment for the specified object to the contents of comment.
Any previously existing comment is overwritten.

The target object is specified by loc_id and name. loc_id can specify any object in the file. name
can be one of the following:

— The name of the object relative to loc_id

— An absolute name of the object, starting from /, the file’s root group

— A dot (), if loc_id fully specifies the object

If comment is the empty string or a null pointer, any existing comment message is removed from the
object.

Comments should be relatively short, null-terminated, ASCII strings.

Comments can be attached to any object that has an object header, e.g., datasets, groups, and named
datatypes, but not symbolic links.

lapl_id contains a link access property list identifier. A link access propety list can come into play
when traversing links to access an object.

Parameters:
hid_tloc_id IN: Identifier of a file, group, dataset, or named datatype.
const char *name IN: Name of the object whose comment is to be set or reset, specified as a
path relative to loc_id.
name can be "' (a dot) if loc_id fully specifies the object for which the
comment is to be set.
const char *comment IN: The new comment.
hid_tlapl_id IN: Link access property list identifier.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:

History:

300

None.
Release C
1.8.0 Function introduced in this release.

HDF5 Reference Manual H5O0visit

Name: H50visit
Signature:
herr_tH50visit(hid_t object id, H5 index_t index_type, H5 iter_order_t order,
H50 _iterate_top, void *op_data)
Purpose:
Recursively visits all objects accessible from a specified object.
Description:
H50visit is a recursive iteration function to visit the object object_id and, if object_id is a
group, all objects in and below it in an HDF5 file, thus providing a mechanism for an application to
perform a common set of operations across all of those objects or a dynamically selected subset. For
non-recursive iteration across the members of a group, see H5Literate.

If object_id is a group identifier, that group serves as the root of a recursive iteration. If object_id
is a file identifier, that file’s root group serves as the root of the recursive iteration. If object_id is any
other type of object, such as a dataset or named datatype, there is no iteration.

Two parameters are used to establish the iteration: index_type and order.

index_type specifies the index to be used. If the links in a group have not been indexed by the index
type, they will first be sorted by that index then the iteration will begin; if the links have been so indexed,
the sorting step will be unnecesary, so the iteration may begin more quickly. Valid values include the
following:

H5 INDEX NAME Alpha-numeric index on hame

H5_INDEX_CRT_ORDER Index on creation order
Note that the index type passed in index_type is a best effort setting. If the application passes in a
value indicating iteration in creation order and a group is encountered that was not tracked in creation
order, that group will be iterated over in alpha-numeric order by name, or name order. (Name order is th
native order used by the HDF5 Library and is always available.)

order specifies the order in which objects are to be inspected along the index specified in
index_type. Valid values include the following:

H5 ITER_INC Increasing order

H5 ITER_DEC Decreasing order

H5 ITER_NATIVE Fastest available order
The protoype of the callback function op is as follows (as defined in the source code file
H50public.h):
herr_t(*H50 _iterate_t)(hid_t 0_id, const char *name, const H50 _info_t *object_info,

void *op_data)

301

H50visit HDF5 Reference Manual

The parameters of this callback function have the following values or meanings:

o_id Object that serves as root of the iteration; same value as the H50Vvisit
object_id parameter

name Name of object, relative to o_id, being examined at current step of the
iteration

object_info H50_info_t struct containing information regarding that object

op_data User-defined pointer to data required by the application in processing the

object; a pass-through of the op_data pointer provided with the
H50Vvisit_by name function call

The H50 info_t struct is defined in H5Opublic.h and described in the H50get_info function entry.
The return values from an operator are:

¢ Zero causes the visit iterator to continue, returning zero when all group members have been
processed.
O A positive value causes the visit iterator to immediately return that positive value, indicating
short-circuit success. The iterator can be restarted at the next group member.
¢ A negative value causes the visit iterator to immediately return that value, indicating failure. The
iterator can be restarted at the next group member.
The H50visit op_data parameter is a user-defined pointer to the data required to process objects in
the course of the iteration. This pointer is passed back to each step of the iteration in the callback
function’s op_data parameter.

H5Lvisit and H50Vvisit are companion functions: one for examining and operating on links; the

other for examining and operating on the objects that those links point to. Both functions ensure that by
the time the function completes successfully, every link or object below the specified point in the file has
been presented to the application for whatever processing the application requires.

Parameters:
hid_tobject id IN: Identifier of the object at which the recursive iteration begins.
H5_index_index_type IN: Type of index; valid values include:
H5_INDEX_NAME
H5_INDEX_CRT_ORDER
H5_iter_order_torder IN: Order in which index is traversed; valid values include:
H5_ITER_DEC
H5_ITER_INC
H5_ITER_NATIVE
H50 iterate_top IN: Callback function passing data regarding the object to the calling
application
void *op_data IN: User-defined pointer to data required by the application for its

302

processing of the object

HDF5 Reference Manual H5Ovisit

Returns:
On success, returns the return value of the first operator that returns a positive value, or zero if all
members were processed with no operator returning non-zero.

On failure, returns a negative value if something goes wrong within the library, or the first negative value
returned by an operator.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

303

H50visit_by name HDF5 Reference Manual

Name: H50visit_by name

Signature:
herr_tH50visit_by name(hid_t loc_id, const char *object_name, H5_index_t
index_type, H5 iter_order_t order, H50 iterate t op, void *op_data, hid_t lapl_id)

Purpose:
Recursively visits all objects starting from a specified object.

Description:
H50visit_by name is a recursive iteration function to visit the object specified by the loc_id /
object_name parameter pair and, if that object is a group, all objects in and below it in an HDF5 file,
thus providing a mechanism for an application to perform a common set of operations across all of those
objects or a dynamically selected subset. For non-recursive iteration across the members of a group, see
H5Literate.

The object serving as the root of the iteration is specified by the loc_id / object_name parameter

pair. loc_id specifies a file or an object in a file; object_name specifies either an object in the file

(with an absolute name based in the file’s root group) or an object name relative to loc_id. If loc_id
fully specifies the object that is to serve as the root of the iteration, object_name should be "' (a

dot). (Note that when loc_id fully specifies the the object that is to serve as the root of the iteration, the
user may wish to consider using H50uvisit instead of H50visit_by name.)

Two parameters are used to establish the iteration: index_type and order.

index_type specifies the index to be used. If the links in a group have not been indexed by the index
type, they will first be sorted by that index then the iteration will begin; if the links have been so indexed,
the sorting step will be unnecesary, so the iteration may begin more quickly. Valid values include the
following:

H5 INDEX NAME Alpha-numeric index on hame

H5_INDEX_CRT_ORDER Index on creation order
Note that the index type passed in index_type is a best effort setting. If the application passes in a
value indicating iteration in creation order and a group is encountered that was not tracked in creation
order, that group will be iterated over in alpha-numeric order by name, or name order. (Name order is the
native order used by the HDF5 Library and is always available.)

order specifies the order in which objects are to be inspected along the index specified in
index_type. Valid values include the following:

H5 ITER_INC Increasing order
H5 ITER_DEC Decreasing order
H5 ITER_NATIVE Fastest available order

The op callback funtion and the effect of the callback function’s return value on the application are
described in H50visit.

304

HDF5 Reference Manual H50visit_by name

The H50_info_t struct is defined in H5Opublic.h and described in the H50get_info function entry.

The H50visit_by name op_data parameter is a user-defined pointer to the data required to process
objects in the course of the iteration. This pointer is passed back to each step of the iteration in the
callback function’s op_data parameter.

lapl_id is a link access property list. In the general case, when default link access properties are
acceptable, this can be passed in as H5SP_DEFAULT. An example of a situation that requires a non-def:
link access property list is when the link is an external link; an external link may require that a link prefix
be set in a link access property list (see H5Pset_elink_prefix).

H5Lvisit_by name and H50visit_by name are companion functions: one for examining and

operating on links; the other for examining and operating on the objects that those links point to. Both
functions ensure that by the time the function completes successfully, every link or object below the
specified point in the file has been presented to the application for whatever processing the application

requires.
Parameters:
hid_tloc_id IN: Identifier of a file or group
const char *object_name IN: Name of the object, generally relative to loc_id, that will serve as
root of the iteration
H5_index_index_type IN: Type of index; valid values include:
H5_INDEX_NAME
H5_INDEX_CRT_ORDER
H5_iter_order_torder IN: Order in which index is traversed; valid values include:
H5_ITER_DEC
H5_ITER_INC
H5_ITER_NATIVE
H50 iterate_top IN: Callback function passing data regarding the object to the calling
application
void *op_data IN: User-defined pointer to data required by the application for its
processing of the object
hid_tlapl_id IN: Link access property list identifier
Returns:

On success, returns the return value of the first operator that returns a positive value, or zero if all
members were processed with no operator returning non-zero.

On failure, returns a negative value if something goes wrong within the library, or the first negative value
returned by an operator.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

305

HDF5 Reference Manual

306

HDF5 Reference Manual

H5P: Property List Interface

Property List APl Functions
These functions manipulate property list objects to allow objects which require many different parameters to be
easily manipulated.

In the following lists, italic type indicates a configurable macro.

The C Interfaces:

General Functions File Access Properties File Access Properties (cont.)
» H5Pcreate » H5Pset_driver » H5Pset_cache
» H5Pget_class » H5Pget_driver_info » H5Pget_cache
* H5Pcopy » H5Pset _fclose _degree » H5Pget_mdc_config
» H5Pclose » H5Pget_fclose degree » H5Pset_mdc_config
» H5Pset_fapl_core » H5Pset_gc_references
Generic Properties » H5Pget_fapl core » H5Pget_gc_references
» H5Pset_fapl_direct » H5Pset_small_data_block_size
« H5Pcreate_class » H5Pget_fapl_direct » H5Pget_small_data_block_size
» H5Pregister » H5Pset_fapl_family » H5Pset_libver_bounds
» H5Pregisterl * » H5Pget_fapl_family » H5Pget_libver_bounds
» H5Pregister2 » H5Pset_family_offset
» H5Pinsert » H5Pget_family offset File Creation Properties
e H5Pinsertl * » H5Pset fapl_log
» H5Pinsert2 » H5Pset_fapl_mpio || » H5Pget_version
» H5Pset » H5Pget_fapl_mpio || » H5Pset_userblock
» H5Pexist » H5Pset_fapl_mpiposix || » H5Pget_userblock
» H5Pget_size » H5Pget_fapl_mpiposix || » H5Pset_sizes
« H5Pget_nprops » H5Pset_fapl_multi » H5Pget_sizes
» H5Pget_class_name * H5Pget_fapl_multi » H5Pset_sym_k
* H5Pget_class_parent » H5Pset_multi_type * H5Pget_sym_k
» H5Pisa_class » H5Pget_multi_type » H5Pset_istore_k
* H5Pget » H5Pset_fapl_split » H5Pget _istore k
» H5Pequal » H5Pset_fapl_sec2 » H5Pset_shared_mesg_nindexes
» H5Piterate » H5Pset_fapl_stdio » H5Pget_shared_mesg_nindexes
« H5Pcopy_prop » H5Pset_fapl_windows » H5Pset_shared_mesg_index
* H5Premove » H5set_driver » H5Pget_shared_mesg_index
» H5Punregister » H5Pget_driver » H5Pset_shared_mesg_phase_change
» H5Pclose_class » H5Pget_driver_info » H5Pget_shared_mesg_phase_change
» H5Pset_meta_block_size
» H5Pget_meta_block_size || Indicates functions
» H5Pset_sieve buf size available only in the
» H5Pget_sieve buf size parallel HDF5 library.

» H5Pset_alignment
» H5Pget_alignment

307

HDF5 Reference Manual

Dataset Creation Properties Dataset Access, Memory, and
Transfer Properties
« H5Pset_layout

« H5Pget_layout » H5Pset_buffer

» H5Pset_chunk » H5Pget_buffer

* H5Pget_chunk » H5Pset_preserve *

» H5Pset_deflate » H5Pget_preserve *

» H5Pset_fill_value » H5Pset_chunk_cache

» H5Pget_fill_value » H5Pget_chunk_cache

» H5Pfill_value_defined » H5Pset_edc_check

» H5Pset_fill_time » H5Pget_edc_check

« H5Pget _fill_time » H5Pset_data_transform

* H5Pset_alloc_time » H5Pget_data_transform

« H5Pget_alloc_time » H5Pset _filter_callback

» H5Pset_filter » H5Pset_hyper_vector_size

» H5Pall_filters_avail » H5Pget_hyper_vector_size

» H5Pget_nfilters » H5Pset_btree_ratios

» H5Pget _filter » H5Pget_btree_ratios

* H5Pget _filterl * » H5Pset_vlen_mem_manager

* H5Pget_filter2 » H5Pget_vlen_mem_manager

» H5Pget _filter_by id » H5Pset_dxpl_mpio ||

» H5Pget _filter_by id1l * » H5Pset_dxpl_mpio_chunk_opt ||

» H5Pget_filter_by_id2 » H5Pset_dxpl_mpio_chunk_opt_num ||
* H5Pmodify_filter » H5Pset_dxpl_mpio_chunk_opt_ratio ||
« H5Premove_filter » H5Pset_dxpl_mpio_collective_opt ||
» H5Pset_fletcher32 » H5Pget_dxpl_mpio ||

» H5Pset_shuffle * H5Pset_dxpl_multi

» H5Pset_szip * H5Pget_dxpl_multi

« H5Pset_external

« H5Pget_external_count Group Creation Properties

« H5Pget_external
» H5Pset_create_intermediate_group
» H5Pget_create_intermediate_group
» H5Pset_link_creation_order
» H5Pget_link_creation_order
» H5Pset_est_link_info

|| Indicates functions » H5Pget_est_link_info
available only in the » H5Pset_local_heap_size_hint
parallel HDFS5 library. » H5Pget_local_heap_size_hint

» H5Pset_link_phase_change
» H5Pget_link_phase_change

308

HDF5 Reference Manual

Object Copy and Link Creation Properties
Object Creation Properties
» H5Pset_char_encoding
« H5Pset_create_intermediate_group H5Pget_char_encoding
« H5Pget_create_intermediate_groupH5Pset_create_intermediate_group
« H5Pset_copy_object » H5Pget_create_intermediate_group
« H5Pget_copy_object
« H5Pset_attr_phase_change Link Access Properties
« H5Pget_attr_phase_change

« H5Pset_attr_creation_order » H5Pset_nlinks
« H5Pget_attr_creation_order » H5Pget_nlinks
« H5Pset_obj_track_times » H5Pset_elink_cb
« H5Pget_obj_track_times » H5Pget_elink_cb

» H5Pset_elink_prefix

» H5Pget_elink_prefix

» H5Pset_elink_fapl

» H5Pget_elink_fapl

» H5Pset_elink_acc_flags

|| Indicates functions » H5Pget_elink_acc_flags
available only in the
parallel HDFS5 library. String Properties

» H5Pset_char_encoding
» H5Pget_char_encoding

309

Alphabetical Listing

310

HDF5 Reference Manual

» H5Pall_filters_avail » H5Pget_fclose_degree

» H5Pclose » H5Pget_fill_time

* H5Pclose_class » H5Pget_fill_value

* H5Pcopy » H5Pget_filter

e H5Pcopy_prop » H5Pget filterl *

* H5Pcreate » H5Pget_filter2

» H5Pcreate_class » H5Pget_filter_by_id

* H5Pequal » H5Pget_filter_by_id1 *

» H5Pexist » H5Pget_filter_by_id2

» H5Pfill_value_defined » H5Pget_gc_references

* H5Pget » H5Pget_hyper_vector_size

* H5Pget_alignment » H5Pget_istore_k

* H5Pget_alloc_time » H5Pget_layout

« H5Pget_attr_creation_order » H5Pget_libver_bounds

« H5Pget_attr_phase_change » H5Pget_link_creation_order
» H5Pget_btree_ratios » H5Pget_link_phase_change
» H5Pget_buffer » H5Pget_local_heap_size_hint
» H5Pget_cache » H5Pget_mdc_config

» H5Pget_char_encoding » H5Pget_meta_block_size

* H5Pget_chunk * H5Pget_multi_type

« H5Pget_chunk_cache » H5Pget_nfilters

* H5Pget_class » H5Pget_nlinks

* H5Pget_class_name * H5Pget_nprops

* H5Pget_class_parent * H5Pget_preserve *

« H5Pget_copy_object » H5Pget_obj_track_times

« H5Pget_create_intermediate_groupH5Pget_shared_mesg_index
» H5Pget_data_transform » H5Pget_shared_mesg_nindexes
« H5Pget_driver » H5Pget_shared_mesg_phase_change
» H5Pget_driver_info » H5Pget_sieve_buf_size

« H5Pget_dxpl_mpio || » H5Pget_size

« H5Pget_dxpl_multi » H5Pget_sizes

» H5Pget_edc_check » H5Pget_small_data_block_size
« H5Pget_elink_acc_flags » H5Pget_sym_k

* H5Pget_elink_cb » H5Pget_type_conv_cb

« H5Pget_elink_fapl » H5Pget_userblock

« H5Pget_elink_prefix » H5Pget_version

* H5Pget_est_link_info » H5Pget_vlen_mem_manager
« H5Pget_external » H5Pinsert

« H5Pget_external_count » H5Pinsertl *

« H5Pget_family_offset » H5Pinsert2

« H5Pget_fapl_core » H5Pisa_class

« H5Pget_fapl_direct » H5Piterate

« H5Pget_fapl_family » H5Pmodify_filter

« H5Pget_fapl_mpio ||
* H5Pget_fapl_mpiposix ||
» H5Pget_fapl_multi

HDF5 Reference Manual

« H5Pregister » H5Pset_fclose_degree

* H5Pregisterl * » H5Pset_fill_time

» H5Pregister2 » H5Pset_fill_value

* H5Premove » H5Pset_filter

* H5Premove_filter » H5Pset_filter_callback

* H5Pset » H5Pset_fletcher32

» H5Pset_alignment » H5Pset_gc_references

» H5Pset_alloc_time » H5Pset_hyper_vector_size
« H5Pset_attr_creation_order » H5Pset_istore_k

« H5Pset_attr_phase_change » H5Pset_layout

» H5Pset_btree_ratios » H5Pset_libver_bounds

» H5Pset_buffer » H5Pset_link_creation_order
» H5Pset_cache » H5Pset_link_phase_change
» H5Pset_char_encoding » H5Pset_local_heap_size_hint
» H5Pset_chunk » H5Pset_mdc_config

« H5Pset_chunk_cache » H5Pset_meta_block_size

« H5Pset_copy_object » H5Pset_multi_type

« H5Pset_create_intermediate_group ¢ H5Pset_nbit

« H5Pset_data_transform » H5Pset_nlinks

» H5Pset_deflate » H5Pset_preserve *

» H5Pset_driver » H5Pset_obj_track_times

« H5Pset_dxpl_mpio || » H5Pset_scaleoffset

« H5Pset_dxpl_mpio_chunk_opt || » H5Pset_shared_mesg_index

e H5Pset_dxpl_mpio_chunk_opt_num {|H5Pset_shared_mesg_nindexes
« H5Pset_dxpl_mpio_chunk_opt_ratio 4|H5Pset_shared_mesg_phase_change
« H5Pset_dxpl_mpio_collective_opt || * H5Pset_shuffle

* H5Pset_dxpl_multi » H5Pset_sieve_buf_size

« H5Pset_edc_check » H5Pset_sizes

» H5Pset_elink_acc_flags » H5Pset_small_data_block_size
» H5Pset_elink_cb * H5Pset_sym_k

* H5Pset_elink_fapl » H5Pset_szip

» H5Pset_elink_prefix » H5Pset_type_conv_cb

* H5Pset_est_link_info » H5Pset_userblock

» H5Pset_external » H5Pset_vlen_mem_manager

« H5Pset_family_offset » H5Punregister

« H5Pset_fapl_core

» H5Pset_fapl_family

» H5Pset_fapl_direct || Available only in the
« H5Pset_fapl_log parallel HDF5 library.
* H5Pset_fapl_mpio ||

» H5Pset_fapl_mpiposix ||

» H5Pset_fapl_multi

* H5Pset_fapl_sec2

» H5Pset_fapl_split

« H5Pset_fapl_stdio

« H5Pset_fapl_windows

311

HDF5 Reference Manual

The FORTRAN9O Interfaces:
In general, each FORTRAN9O0 subroutine performs exactly the same task as the corresponding C function.

General Property List Link Access Properties Dataset Creation Properties
Operations
» h5pset_nlinks_f * h5pset_layout_f
* h5pcreate_f » h5pget_nlinks_f * h5pget_layout_f
* h5pget_class_f * h5pset_chunk_f
* h5pcopy_f Group Creation Properties * h5pget_chunk_f
 h5pclose_f » h5pset_deflate_f
» h5pset_create_inter_group_f » h5pset_fill_value_f
Generic Properties » h5pget_create_inter_group_f » h5pget _fill_value_f
» h5pset_local_heap_size_hint_f h5pset_fill_time_f
* h5pcreate_class_f » hSpget_local_heap_size_hint_f » h5pget_fill_time_f
 h5pregister_f » h5pset_link_creation_order_f * h5pset_alloc_time_f
 h5pinsert_f » h5pget_link_creation_order_f * h5pget_alloc_time_f
* h5pset_f » h5pset_est_link_info_f » h5pset _filter_f
* h5pexist_f * hSpget_est_link_info_f » h5pget_nfilters_f
* h5pget_size f » h5pset_link_phase_change_f » h5pget _filter_f
« h5pget_nprops_f » h5pget_link_phase_change_f » h5pget _filter_by id_f
* h5pget_class_name_f » h5pmadify_filter_f
« h5pget_class_parent_fObject Copy and » h5premove_filter_f
 h5pisa_class_f Object Creation Properties » h5pset_fletcher32_f
* h5pget_f » h5pset_shuffle_f
* h5pequal_f » hSpset_create_inter_group_f * hbSpset_szip_f
« h5pcopy_prop_f » h5pget_create_inter_group_f » h5pset_external_f
* h5premove_f » h5pset_copy_object_f * h5pget_external_count_f
« h5punregister_f » h5pget_copy_object_f * h5pget_external_f
* h5pclose_class_f » hSpset_attr_phase_change_f
» h5pget_attr_phase_change_f Dataset Access, Memory, and
String Properties » h5pset_attr_creation_order_f Transfer Properties
» h5pget_attr_creation_order_f
* h5pset_char_encoding_f « h5pset_obj_track_times_f h5pset_buffer_f
* h5pget_char_encoding_f ¢ h5pget_obj_track times_f » h5pget_buffer_f

» h5pset_preserve_f *
* h5pget_preserve f *
* h5pset_chunk_cache_f

[| Indicates functions » h5pget_chunk_cache_f
available only in the * hSpset_edc_check_f
parallel HDFS5 library. » h5pget_edc_check_f

» h5pset_data_transform_f

* Use of these functions » hSpget_data_transform_f
is deprecated in » hSpset_hyper_vector_size_f
Release 1.8.0. » hSpget_hyper_vector_size_f

* h5pset_btree_ratios_f
* h5pget_btree_ratios_f
» h5pset_dxpl_mpio_f ||
» h5pget_dxpl_mpio_f ||

312

HDF5 Reference Manual

File Creation Properties File Access Properties
* h5pget_version_f » hSpset_driver_f
» h5pset_userblock_f » hSpget_driver_info_f
* h5pget_userblock_f » h5pset_fclose_degree_f
* h5pset_sizes_f » h5pget_fclose_degree_f
* h5pget_sizes_f * hSpset_fapl_core_f
* h5pset_sym_k_f * hSpget_fapl_core_f
* h5pget_sym_k_f » h5pset_fapl_direct_f
» h5pset_istore_k_f » h5pget_fapl_direct_f
» h5pget_istore_k_f *» h5Spset_fapl_family_f
» h5pset_shared_mesg_nindexes_f » hSpget_fapl_family_f
* h5pset_shared_mesg_index_f » h5pset_family offset_f

*» hSpset_fapl_mpio_f ||
*» hSpget_fapl_mpio_f ||
* hSpset_fapl_mpiposix_f ||

[| Indicates functions » hSpget_fapl_mpiposix_f ||
available only in the * hSpset_fapl_multi_f
parallel HDFS5 library. * hSpget_fapl_multi_f

» h5pset_multi_type_f

* Use of these functions » hSpget_multi_type_f
is deprecated in *» hSpset_fapl_split_f
Release 1.8.0. * hSpset_fapl_sec2_f

» h5pset_fapl_stdio_f

» hSpget_driver_f

» h5pset_meta_block_size f

» h5pget_meta_block_size f

» h5pset_sieve _buf _size f

» h5pget_sieve_buf_size f

* h5Spset_alignment_f

» hSpget_alignment_f

» h5pset_cache_f

» h5pget_cache_f

» h5pset_gc_references_f

» h5pget_gc_references_f

» h5pset_small_data_block_size_f
» h5pget_small_data_block_size f
» h5pset_libver_bounds_f

313

HDF5 Reference Manual

Filter Behavior in HDF5:

Filters can be inserted into the HDF5 pipeline to perform functions such as compression and conversion. As such,
they are a very flexible aspect of HDF5; for example, a user-defined filter could provide encryption for an HDF5
dataset.

A filter can be declared as either required or optional. Required is the default status; optional status must be
explicitly declared.

A required filter that fails or is not defined causes an entire output operation to fail; if it was applied when the data
was written, such a filter will cause an input operation to fail.

The following table summarizes required filter behavior.

Required FILTER_x FILTER_X available
not available
H5Pset <FILTER_X> Will fail. Will succeed.
H5Dwrite Will falil. Will succeed; FILTER X
with FILTER_x set will be applied to the
data.
H5Dread Will fail. Will succeed.

with FILTER X set

An optional filter can be set for an HDF5 dataset even when the filter is not available. Such a filter can then be
applied to the dataset when it becomes available on the original system or when the file containing the dataset is
processed on a system on which it is available.

A filter can be declared as optional through the use of the H5Z_FLAG_OPTIONAL flag with H5Pset_filter.

Consider a situation where one is creating files that will normally be used only on systems where the optional
(and fictional) filter FiILTER_Z is routinely available. One can create those files on system A, which lacks FILTER_z,
create chunked datasets in the files with FiLTER_z defined in the dataset creation property list, and even write data
to those datasets. The dataset object header will indicate that FiLTER_z has been associated with this dataset. But
since system A does not have FiLTER_z, dataset chunks will be written without it being applied.

HDF5 has a mechanism for determining whether chunks are actually written with the filters specified in the object
header, so while the filter remains unavailable, system A will be able to read the data. Once the file is moved to
system B, where FiLTER_z is available, HDF5 will apply FiLTER_z to any data rewritten or new data written in these
datasets. Dataset chunks that have been written on system B will then be unreadable on system A; chunks that
have not been re-written since being written on system A will remain readable on system A. All chunks will be
readable on system B.

314

HDF5 Reference Manual

The following table summarizes optional filter behavior.

FILTER_Z FILTER_z available FiLTER z available
not available with encode and decode only
decode
H5Pset <FILTER_Z> Will succeed. Will succeed. Will succeed.
H5Dwrite Will succeed; Will succeed; Will succeed;
with FILTER z set FILTER_z Will not be rFiLTER_Z will be FILTER_z Will not be

applied to the data.applied to the dataapplied to the data.

H5Dread Will succeed if Will succeed. Will succeed.
with FILTER z set FILTER_z has not

actually been

applied to data.

The above principles apply generally in the use of HDF5 optional filters insofar as HDF5 does as much as
possible to complete an operation when an optional filter is unavailable. (The SZIP filter is an exception to this
rule; see H5Pset_szip for details.)

Notes:
Filters can be applied only to chunked datasets; they cannot be used with other dataset storage methods, such
contiguous, compact, or external datasets.

Dataset elements of variable-length and dataset region reference datatypes are stored in separate structures in
file called heaps. Filters cannot currently be applied to these heaps.

315

H5Pall_filters_avail HDF5 Reference Manual

Name: H5Pall_filters_avalil

Signature:

htri_t H5Pall_filters_avail(hid_t plist_id)
Purpose:

Verifies that all required filters are available.
Description:

H5Pall_filters_avail verifies that all of the filters set in the dataset or group creation property list
plist_id are currently available.

Parameters:
hid_tplist_id IN: Dataset or group creation property list identifier.

Returns:
Returns TRUE if all filters are available and FALSE if one or more is not currently available.
Returns FAIL, a negative value, on error.

Fortran90 Interface:

None.
History:
Release Change
1.6.0 Function introduced in this release.
1.85 Function extended to work with group creation property lists.

316

HDF5 Reference Manual H5Pclose

Name: H5Pclose
Signature:
herr_tH5Pclose(hid_t plist)
Purpose:
Terminates access to a property list.
Description:
H5Pclose terminates access to a property list. All property lists should be closed when the application
is finished accessing them. This frees resources used by the property list.
Parameters:
hid_tplist IN: Identifier of the property list to terminate access to.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pclose_f
SUBROUTINE h5pclose_f(prp_id, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code

10 on success and -1 on failure
END SUBROUTINE h5pclose_f

317

H5Pclose_class HDF5 Reference Manual

Name: H5Pclose_class

Signature:

herr_tH5Pclose_class(hid_t class)
Purpose:

Closes an existing property list class.
Description:

Removes a property list class from the library.

Existing property lists of this class will continue to exist, but new ones are not able to be created.
Parameters:
hid_tclass IN: Property list class to close
Returns:
Success: a non-negative value
Failure: a negative value
Fortran90 Interface: h5pclose_class f
SUBROUTINE h5pclose_class_f(class, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: class ! Property list class identifier
I to close
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pclose_class_f

318

HDF5 Reference Manual H5Pcopy

Name: H5Pcopy
Signature:
hid_tH5Pcopy(hid_t plist)
Purpose:
Copies an existing property list to create a new property list.
Description:
H5Pcopy copies an existing property list to create a new property list. The new property list has the
same properties and values as the original property list.
Parameters:
hid_tplist IN: Identifier of property list to duplicate.
Returns:
Returns a property list identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5pcopy_f
SUBROUTINE h5pcopy_f(prp_id, new_prp_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id I Property list identifier
INTEGER(HID_T), INTENT(OUT) :: new_prp_id ! Identifier of property list
I co
INTEGER, INTENT(OUT) :: hd?grr | Error code
10 on success and -1 on failure
END SUBROUTINE h5pcopy_f

319

H5Pcopy_prop HDF5 Reference Manual

Name: H5Pcopy_prop
Signature:

herr_tH5Pcopy_prop(hid_t dst_id, hid_t src_id, const char *name)

Purpose:

Copies a property from one list or class to another.

Description:

H5Pcopy_prop copies a property from one property list or class to another.

If a property is copied from one class to another, all the property information will be first deleted from the
destination class and then the property information will be copied from the source class into the
destination class.

If a property is copied from one list to another, the property will be first deleted from the destination list
(generating a call to the close callback for the property, if one exists) and then the property is copied
from the source list to the destination list (generating a call to the copy callback for the property, if one
exists).

If the property does not exist in the class or list, this call is equivalent to calling H5Pregister or
H5Pinsert (for a class or list, as appropriate) and the create callback will be called in the case of the
property being copied into a list (if such a callback exists for the property).

Parameters:
hid_tdst_id IN: Identifier of the destination property list or class
hid_tsrc_id IN: Identifier of the source property list or class
const char *name IN: Name of the property to copy

Returns:

Success: a hon-negative value
Failure: a negative value

Fortran90 Interface: h5pcopy_prop_f

320

SUBROUTINE h5pcopy_prop_f(dst_id, src_id, name, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dst_id ! Destination property list
!identifier
INTEGER(HID_T), INTENT(IN) :: src_id ! Source property list identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Property name
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pcopy_prop_f

HDF5 Reference Manual H5Pcreate

Name: H5Pcreate

Signature:

hid_tH5Pcreate(hid_t cls_id)
Purpose:

Creates a new property as an instance of a property list class.
Description:

H5Pcreate creates a new property as an instance of some property list class. The new property list is
initialized with default values for the specified class. The classes are as follows; see the function index a
the top of this page for a list of functions related to each class:
H5P_OBJECT_CREATE
Properties for object creation during the object copying process.
H5P_FILE_CREATE
Properties for file creation.
H5P_FILE_ACCESS
Properties for file access.
H5P_DATASET_CREATE
Properties for dataset creation.
H5P_DATASET_ACCESS
Properties for dataset access.
H5P_DATASET_XFER
Properties for raw data transfer.
H5P_FILE_MOUNT
Properties for file mounting.
H5P_GROUP_CREATE
Properties for group creation during the object copying process.
H5P_GROUP_ACCESS
Properties for group access during the object copying process.
H5P_DATATYPE_CREATE
Properties for datatype creation during the object copying process.
H5P_DATATYPE_ACCESS
Properties for datatype access during the object copying process.
H5P_STRING_CREATE
Properties for character encoding when encoding strings or object names.
H5P_ATTRIBUTE_CREATE
Properties for attribute creation during the object copying process.
H5P_OBJECT_COPY
Properties governing the object copying process.
H5P_LINK_CREATE
Properties governing link creation.
H5P_LINK_ACCESS
Properties governing link traversal when accessing objects.
This property list must eventually be closed with H5Pclose; otherwise, errors are likely to occur.
Parameters:
hid_tcls_id IN: The class of the property list to create.
Returns:
Returns a property list identifier (plist) if successful; otherwise Fail (-1).

321

H5Pcreate

Fortran90 Interface: hSpcreate_f
SUBROUTINE h5pcreate_f(classtype, prp_id, hdferr)

IMPLICIT NONE

INTEGER, INTENT(IN) :: classtype I The type of the property list

'to

be created

! Possible values are:

INTEGER(HID_T), INTENT
INTEGER, INTENT(OUT) ::

H5P_FILE_CREATE_F
H5P_FILE_ACCESS_F
H5P_DATASET_CREATE_F
H5P_DATASET _XFER_F
H5P_MOUNT_F

(OUT) :: prp_id ! Property list identifier

hdferr I Error code

1 0 on success and -1 on failure
END SUBROUTINE h5pcreate_f

322

HDF5 Reference Manual

HDF5 Reference Manual H5Pcreate_class

Name: H5Pcreate_class

Signature:
hid_tH5Pcreate_class(hid_t parent_class, const char *name, H5P_cls_create_func_t
create, void *create_data, H5P_cls_copy_func_t copy, void *copy_data,
H5P_cls_close_func dose, void *close_data)

Purpose:
Creates a new property list class.

Description:
H5Pcreate_class registers a new property list class with the library. The new property list class can
inherit from an existing property list class, parent_class, or may be derived from the default “empty”
class, NULL. New classes with inherited properties from existing classes may not remove those existing
properties, only add or remove their own class properties. Property list classes defined and supported in
the HDF5 Library distribution are listed and briefly described in H5Pcreate.

The create routine is called when a new property list of this class is being created. The
H5P_cls_create_func_t callback function is defined as follows:

typedef herr_t (*H5P_cls_create_func_t)(hid_t prop_id, void * create_data); The
parameters to this callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being created
void * create_data IN: User pointer to any class creation data required

The create routine is called after any registered create function is called for each property value. If
the create routine returns a negative value, the new list is not returned to the user and the property list
creation routine returns an error value.

The copy routine is called when an existing property list of this class is copied. The
H5P_cls_copy_func_t callback function is defined as follows:

typedef herr_t (*H5P_cls_copy_func_t)(hid_t prop_id, void * copy_data); The parameters to
this callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list created by copying

void * copy_data IN: User pointer to any class copy data required

The copy routine is called after any registered copy function is called for each property value. If the
copy routine returns a negative value, the new list is not returned to the user and the property list copy
routine returns an error value.

The close routine is called when a property list of this class is being closed. The
H5P_cls_close_func_t callback function is defined as follows:

typedef herr_t (*H5P_cls_close _func _t)(hid_t prop_id, void * close_data); The
parameters to this callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being closed
void * close_data IN: User pointer to any class close data required

323

H5Pcreate_class

HDF5 Reference Manual

The close routine is called before any registered close function is called for each property value. If
the close routine returns a negative value, the property list close routine returns an error value but the

property list is still closed.
Parameters:

hid_tparent_class

const char *name

H5P_cls_create func dreate

void *create_data

H5P_cls_copy_func dopy
void *copy_data

H5P_cls_close_func dose
void *close_data

Returns:

IN: Property list class to inherit from or NULL
IN: Name of property list class to register
IN: Callback routine called when a property list is created

IN: Pointer to user-defined class create data, to be passed along
to class create callback

IN: Callback routine called when a property list is copied

IN: Pointer to user-defined class copy data, to be passed along to
class copy callback

IN: Callback routine called when a property list is being closed

IN: Pointer to user-defined class close data, to be passed along
to class close callback

On success, returns a valid property list class identifier; otherwise returns a negative value.

Fortran90 Interface: hSpcreate_class_f

SUBROUTINE h5pcreate_class_f(parent, name, class, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: parent ! Parent property list class

! identifier

I Possible values include:

I H5P_NO _CLASS F
H5P_FILE_CREATE_F
H5P_FILE_ACCESS_F

H5P_DATASET XFER_F

!
!
| H5P_DATASET CREATE_F
!
|

I H5P_MOUNT_F
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of property to create
INTEGER(HID_T), INTENT(OUT) :: class ! Property list class identifier

INTEGER, INTENT(OUT) :: hdferr

! Error code

1 0 on success and -1 on failure

END SUBROUTINE h5pcreate_class_f

324

HDF5 Reference Manual H5Pequal

Name: H5Pequal

Signature:

htri_t H5Pequal(hid_t id1, hid_t id2)
Purpose:

Compares two property lists or classes for equality.
Description:

H5Pequal compares two property lists or classes to determine whether they are equal to one another.

Either both id1 and id2 must be property lists or both must be classes; comparing a list to a class is an

error.
Parameters:
hid_tid1 IN: First property object to be compared
hid_tid2 IN: Second property object to be compared
Returns:

Success: TRUE (positive) if equal; FALSE (zero) if unequal
Failure: a negative value

Fortran90 Interface: hSpequal_f
SUBROUTINE h5pequal_f(plist1_id, plist2_id, flag, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist1_id ! Property list identifier
INTEGER(HID_T), INTENT(IN) :: plist2_id ! Property list identifier
LOGICAL, INTENET(OUT) :flag !Flag
I .TRUE. if lists are equal
I .FALSE. otherwise
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pequal_f

325

H5Pexist HDF5 Reference Manual

Name: H5Pexist

Signature:

htri_t H5Pexist(hid_t id, const char *name)
Purpose:

Queries whether a property name exists in a property list or class.
Description:

H5Pexist determines whether a property exists within a property list or class.
Parameters:

hid_tid IN: Identifier for the property to query

const char *name IN: Name of property to check for
Returns:

Success: a positive value if the property exists in the property object; zero if the property does not exist
Failure: a negative value

Fortran90 Interface: hSpexist_f
SUBROUTINE h5pexist_f(prp_id, name, flag, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of property to modify
LOGICAL, INTENT(OUT) :: flag I Logical flag
I .TRUE. if exists
I .FALSE. otherwise
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5pexist_f

326

HDF5 Reference Manual H5Pfill_value_defined

Name: H5Pfill_value_defined

Signature:
herr_tH5Pfill_value_defined(hid_t plist_id, H5D _fill_value_t *status)
Purpose:
Determines whether fill value is defined.
Description:
H5Pfill_value_defined determines whether a fill value is defined in the dataset creation property
list plist_id.

Valid values returned in status are as follows:

H5D_FILL_VALUE_UNDEFINED Fill value is undefined.
H5D FILL_VALUE_DEFAULT Fill value is the library default.
H5D_FILL_VALUE_USER_DEFINED Fill value is defined by the
application.
Note:

H5Pfill_value_defined is designed for use in concert with the dataset fill value properties
functions H5Pget fill_value and H5Pget fill _time.

See H5Dcreate for further cross-references.
Parameters:

hid_tplist_id IN: Dataset creation property list identifier.
H5D_fill_value_t *status OUT: Status of fill value in property list.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.6.0 Function introduced in this release.

327

H5Pget HDF5 Reference Manual

Name: H5Pget

Signature:
herr_tH5Pget(hid_t plid, const char *name, void *value)

Purpose:
Queries the value of a property.

Description:
H5Pget retrieves a copy of the value for a property in a property list. If there is a get callback routine
registered for this property, the copy of the value of the property will first be passed to that routine and
any changes to the copy of the value will be used when returning the property value from this routine.

This routine may be called for zero-sized properties with the value set to NULL. The get routine will
be called with a NULL value if the callback exists.

The property name must exist or this routine will fail.

If the get callback routine returns an error, value will not be modified.

Parameters:
hid_tplid IN: Identifier of the property list to query
const char *name IN: Name of property to query
_— OUT: Pointer to a location to which to copy the value of of the
void *value
property
Returns:

Success: a hon-negative value
Failure: a negative value

Fortran90 Interface: h5pget_f
SUBROUTINE h5pget_f(plid, name, value, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plid ! Property list identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of property to get
TYPE, INTENT(OUT) :: value ! Property value
! Supported types are:
I INTEGER
! REAL
! DOUBLE PRECISION
I CHARACTER(LEN=%)
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5pget_f

328

HDF5 Reference Manual H5Pget_alignment

Name: H5Pget_alignment
Signature:
herr_tH5Pget_alignment(hid_t plist, hsize_t *threshold, hsize_t *alignment)
Purpose:
Retrieves the current settings for alignment properties from a file access property list.
Description:
H5Pget_alignment retrieves the current settings for alignment properties from a file access property
list. The threshold and/or alignment pointers may be null pointers (NULL).

Parameters:
hid_tplist IN: Identifier of a file access property list.
hsize_tthreshold OUT: Pointer to location of return threshold value.
hsize_talignment OUT: Pointer to location of return alignment value.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_alignment_f

SUBROUTINE h5pget_alignment_f(prp_id, threshold, alignment, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER(HSIZE_T), INTENT(OUT) :: threshold ! Threshold value
INTEGER(HSIZE_T), INTENT(OUT) :: alignment ! Alignment value
INTEGER, INTENT(OUT) :: hdferr ! Error code

1 0 on success and -1 on failure
END SUBROUTINE h5pget_alignment_f

329

H5Pget_alloc_time HDF5 Reference Manual

Name: H5Pget_alloc_time

Signature:

herr_tH5Pget_alloc_time(hid_t plist_id, H5D_alloc_time_t *alloc_time)
Purpose:

Retrieves the timing for storage space allocation.
Description:

H5Pget_alloc_time retrieves the timing for allocating storage space for a dataset's raw data. This
property is set in the dataset creation property list plist_id.

The timing setting is returned in alloc_time as one of the following values:

H5D_ALLOC_TIME_DEFAULT Uses the default allocation time, based on the dataset storage
method.
See the alloc_time description in H5Pset_alloc_time for
default allocation times for various storage methods.

H5D_ALLOC_TIME_EARLY All space is allocated when the dataset is created.
H5D_ALLOC_TIME_INCR Space is allocated incrementally as data is written to the dataset.

H5D_ALLOC _TIME_LATE All space is allocated when data is first written to the dataset.

Note:
H5Pget_alloc_time is designed to work in concert with the dataset fill value and fill value write
time properties, set with the functions H5Pget_fill_value and H5Pget_fill_time.

Parameters:

hid_tplist_id IN: Dataset creation property list identifier.

H5D_alloc_time_t *alloc_time IN: When to allocate dataset storage space.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_alloc_time_f
SUBROUTINE h5pget_alloc_time_f(plist_id, flag, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist_id ! Dataset creation
! property list identifier
INTEGER(HSIZE_T), INTENT(OUT) :: flag ! Allocation time flag
! Possible values are:
| H5D_ALLOC_TIME_ERROR_F
! H5D_ALLOC_TIME_DEFAULT_F
! H5D_ALLOC_TIME_EARLY_F
! H5D_ALLOC_TIME_LATE_F
I H5D_ALLOC_TIME_INCR_F
INTEGER, INTENT(OUT) - hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pget_alloc_time_f

History:
Release C
1.6.0 Function introduced in this release.

330

HDF5 Reference Manual H5Pget_attr_creation_order

Name: H5Pget_attr_creation_order

Signature:

herr_tH5Pget_attr_creation_order(hid_t ocpl_id, unsigned *crt_order_flags)
Purpose:

Retrieves tracking and indexing settings for attribute creation order.
Description:

H5Pget_attr_creation_order retrieves the settings for tracking and indexing attribute creation
order on an object.

ocpl_id is a dataset or group creation property list identifier. The term ocpl, for object creation
property list, is used when different types of objects may be involved.

crt_order_flags returns flags with the following meanings:

H5P_CRT_ORDER_TRACKED Attribute creation order is tracked but not necessarily
indexed.

H5P_CRT_ORDER_INDEXED Attribute creation order is indexed (requires
H5P_CRT_ORDER_TRACKED).
If crt_order_flags is returned with a value of O (zero), attribute creation order is neither tracked nor

indexed.
Parameters:
hid_tocpl_id IN: Object (group or dataset) creation property list identifier
unsigned *crt_order_flags OUT: Flags specifying whether to track and index attribute creation
order
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_attr_creation_order_f
SUBROUTINE h5pget_attr_creation_order_f(ocpl_id, crt_order_flags, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: ocpl_id ! Object (group or dataset) creation
I property list identifier
INTEGER, INTENT(OUT) :: crt_order_flags ! Flags specifying whether to track
I 'and index attribute creation order
INTEGER, INTENT(OUT) :: hdferr I Error code
I'0 on success and -1 on failure
END SUBROUTINE h5pget_attr_creation_order_f

History:
Release C
1.8.0 Function introduced in this release.

331

H5Pget_attr_phase_change HDF5 Reference Manual

Name: H5Pget_attr_phase_change

Signature:
herr_tH5Pget_attr_phase_change(hid_t ocpl_id, unsigned *max_compact, unsigned
*min_dense)

Purpose:
Retrieves attribute storage phase change thresholds.

Description:
H5Pget_attr_phase_change retrieves threshold values for attribute storage on an object. These
thresholds determine the point at which attribute storage changes from compact storage (i.e., storage in
the object header) to dense storage (i.e., storage in a heap and indexed with a B-tree).

In the general case, attributes are initially kept in compact storage. When the number of attributes exceeds
max_compact, attribute storage switches to dense storage. If the number of attributes subsequently falls
below min_dense, the attributes are returned to compact storage.

If max_compact is set to 0 (zero), dense storage always used.

ocpl_id is a dataset or group creation property list identifier. The term ocpl, for object creation
property list, is used when different types of objects may be involved.

Parameters:
hid_tocpl_id IN: Object (dataset or group) creation property list identifier
unsigned *max_compact ~ OUT: Maximum number of attributes to be stored in compact storage
(Default: 8)
unsigned *min_dense OUT: Minimum number of attributes to be stored in dense storage
(Default: 6)
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_attr_phase _change_f
SUBROUTINE h5pget_attr_phase_change_f(ocpl_id, max_compact, min_dense, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: ocpl_id
! Object (dataset or group) creation property list identifier
INTEGER, INTENT(OUT) :: max_compact
I Maximum number of attributes to be stored in compact storage
I (Default: 8)
INTEGER, INTENT(OUT) :: min_dense
I Minimum number of attributes to be stored in dense storage
| (Default: 6)
INTEGER, INTENT(OUT) :: hdferr
! Error code:
1 0 on success and -1 on failure
END SUBROUTINE h5pget_attr_phase_change_f

History:
Release C
1.8.0 Function introduced in this release.

332

HDF5 Reference Manual H5Pget_btree_ratios

Name: H5Pget_btree_ratios

Signature:

herr_tH5Pget btree_ratios(hid_t plist, double *left, double *middle, double *right)
Purpose:

Gets B-tree split ratios for a dataset transfer property list.
Description:

H5Pget_btree_ratios returns the B-tree split ratios for a dataset transfer property list.

The B-tree split ratios are returned through the non-NULL arguments left, middle, and right, as set
by the H5Pset_btree_ratios function.

Parameters:
hid_tplist IN: The dataset transfer property list identifier.
doubleleft OUT: The B-tree split ratio for left-most nodes.
doubleright OUT: The B-tree split ratio for right-most nodes and lone nodes.
doublemiddle OUT: The B-tree split ratio for all other nodes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_btree_ratios_f
SUBROUTINE h5pget_btree_ratios_f(prp_id, left, middle, right, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id
I Property list identifier
REAL, INTENT(OUT) :: left ! B-tree split ratio for left-most nodes
REAL, INTENT(OUT) :: middle ! B-tree split ratio for all other nodes
REAL, INTENT(OUT) :: right ! The B-tree split ratio for right-most
I nodes and lone nodes.
INTEGER, INTENT(OUT) :: hdferr ! Error code:
I 0 on success and -1 on failure
END SUBROUTINE h5pget_btree_ratios_f

333

H5Pget_buffer HDF5 Reference Manual

Name: H5Pget_buffer

Signature:
hsize_tH5Pget_buffer(hid_t plist, void **tconv, void **bkg)
Purpose:
Reads buffer settings.
Description:
H5Pget_buffer reads values previously set with H5Pset_buffer.
Parameters:
hid_tplist IN: Identifier for the dataset transfer property list.
void **tconv OUT: Address of the pointer to application-allocated type conversion buffer.
void **bkg OUT: Address of the pointer to application-allocated background buffer.
Returns:

Returns buffer size, in bytes, if successful; otherwise 0 on failure.

Fortran90 Interface: h5pget_buffer_f
SUBROUTINE h5pget_buffer_f(plist_id, size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist_id ! Dataset transfer
I property list identifier
INTEGER(HSIZE_T), INTENT(OUT) :: size ! Conversion buffer size
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pget_buffer_f

History:
Release C
1.6.0 The return type changed from hsize_t to size_t.
1.4.0 The return type changed to hsize_t.

334

HDF5 Reference Manual H5Pget_cache

Name: H5Pget_cache
Signature:
herr_tH5Pget cache(hid_t plist_id, int *mdc_nelmts, size_t *rdcc_nelmts, size_t
*rdcc_nbytes, double *rdcc_w0)
Purpose:
Queries the raw data chunk cache parameters.
Description:
H5Pget_cache retrieves the maximum possible number of elements in the raw data chunk cache, the
maximum possible number of bytes in the raw data chunk cache, and the preemption policy value.

Any (or all) arguments may be null pointers, in which case the corresponding datum is not returned.

Note that the *mdc_nelmts parameter is not longer used.

Parameters:
hid_tplist_id IN: Identifier of the file access property list.
int *mdc_nelmts IN/OUT: No longer used.
size_t*rdcc_nelmts IN/OUT: Number of elements (objects) in the raw data chunk cache.
size_t*rdcc_nbytes IN/OUT: Total size of the raw data chunk cache, in bytes.
double*rdcc_wO0 IN/OUT: Preemption policy.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_cache_f
SUBROUTINE h5pget_cache_f(prp_id, mdc_nelmts, rdcc_nelmts, rdcc_nbytes,
rdcc_wO, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(OUT) :: mdc_nelmts I Number of elements (objects)

l'in the meta data cache

INTEGER(SIZE_T), INTENT(OUT) :: rdcc_nelmts ! Number of elements (objects)
l'in the meta data cache

INTEGER(SIZE_T), INTENT(OUT) :: rdcc_nbytes ! Total size of the raw data
I chunk cache, in bytes

REAL, INTENT(OUT) :: rdcc_wO ! Preemption policy

INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure

END SUBROUTINE h5pget_cache_f

History:
Release C
1.8.0 Use of the mdc_nelmts parameter discontinued.
Metadata cache configuration is managed with H5Pset_mdc_config and
H5Pget_mdc_config.
1.6.0 The rdcc_nbytes and rdcc_nelmts parameters changed from type int to

size t.

335

H5Pget_char_encoding HDF5 Reference Manual

Name: H5Pget_char_encoding

Signature:

herr_tH5Pget char_encoding(hid_t plist_id, H5T cset t encoding)
Purpose:

Retrieves the character encoding used to create a string.
Description:

H5Pget_char_encoding retrieves the character encoding used to encode strings or object names that
are created with the property list plist_id.

Valid values for encoding are defined in H5Tpublic.h and include the following:

H5T_CSET_ASCII US ASCII
H5T CSET_UTF8 UTF-8 Unicode encoding
Parameters:
hid_tplist_id IN: Property list identifier
H5T cset_tncoding OUT: String encoding character set

Returns:
Returns a non-negative valule if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_char_encoding_f

SUBROUTINE h5pget_char_encoding_f(plist_id, encoding, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist_id
! Property list identifier
INTEGER, INTENT(OUT) :: encoding ! Valid values for encoding are:
I H5T_CSET_ASCII_F -> US ASCII
! H5T_CSET_UTF8_F -> UTF-8 Unicode encoding
INTEGER, INTENT(OUT) :: hdferr ! Error code:
1 0 on success and -1 on failure
END SUBROUTINE h5pget_char_encoding_f

History:
Release C
1.8.0 Function introduced in this release.

336

HDF5 Reference Manual H5Pget_chunk

Name: H5Pget_chunk

Signature:

int H5Pget_chunk(hid_t plist, int max_ndims, hsize_t *dims)
Purpose:

Retrieves the size of chunks for the raw data of a chunked layout dataset.
Description:

H5Pget_chunk retrieves the size of chunks for the raw data of a chunked layout dataset. This function
is only valid for dataset creation property lists. At most, max_ndims elements of dims will be

initialized.
Parameters:

hid_tplist IN: Identifier of property list to query.

int max_ndims IN: Size of the dims array.

hsize_t *dims OUT: Array to store the chunk dimensions.
Returns:

Returns chunk dimensionality if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_chunk_f
SUBROUTINE h5pget_chunk_f(prp_id, ndims, dims, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(IN) :: ndims ! Number of chunk dimensions

! to return

INTEGER(HSIZE_T), DIMENSION(ndims), INTENT(OUT) :: dims
! Array containing sizes of
I chunk dimensions

INTEGER, INTENT(OUT) :: hdferr ! Error code
I chunk rank on success
l'and -1 on failure

END SUBROUTINE h5pget_chunk_f

337

H5Pget_chunk_cache HDF5 Reference Manual

Name: H5Pget_chunk_cache
Signature:
herr_tH5Pget_chunk_cache(hid_t dapl_id, size_t *rdcc_nslots, size_t *rdcc_nbytes,
double *rdcc_w0)
Purpose:
Retrieves the raw data chunk cache parameters.
Description:
H5Pget_chunk_cache retrieves the number of chunk slots in the raw data chunk cache hash table ,
the maximum possible number of bytes in the raw data chunk cache, and the preemption policy value.

These values are retrieved from a dataset access property list. If the values have not been set on the
property list, then values returned will be the corresponding values from a default file access property list.

Any (or all) pointer arguments may be null pointers, in which case the corresponding datua is not

returned.
Parameters:
hid_tplist_id IN: Dataset access property list identifier.
size_t *rdcc_nslots OUT: Number of chunk slots in the raw data chunk cache hash
table.
size_t *rdcc_nbytes OUT: Total size of the raw data chunk cache, in bytes.
double *rdcc_w0 OUT: Preemption policy.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Example Usage:
The following code retrieves the chunk cache settings on the dataset access property list dapl_id into

local variables:
size_t nslots, nbytes;
double wO;
status = H5Pget_chunk_cache(dapl_id, &nslots, &nbytes, &wO0);
Fortran90 Interface: h5pget_chunk_cache_f
SUBROUTINE h5pget_chunk_cache_f(dapl_id, rdcc_nslots, rdcc_nbytes, rdcc_wO, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dapl_id I Dataset access property list identifier.
INTEGER(SIZE_T), INTENT(OUT) :: rdcc_nslots ! Number of chunk slots in the raw data chunk
I cache hash table.
INTEGER(SIZE_T), INTENT(OUT) :: rdcc_nbytes ! Total size of the raw data chunk cache, in bytes.
REAL, INTENT(OUT) :: rdcc_wO0 ! Preemption policy.
INTEGER, INTENT(OUT) :: hdferr ! error code
I 0 on success and -1 on failure
END SUBROUTINE h5pget_chunk_cache_f

See Also:
H5Pset_chunk_cache
History:
Release Change
1.8.3 C function introduced in this release.

338

HDF5 Reference Manual H5Pget_class

Name: H5Pget_class

Signature:

H5P_class_H5Pget class(hid_t plist)
Purpose:

Returns the property list class for a property list.
Description:

H5Pget_class returns the property list class for the property list identified by the plist parameter.
Valid property list classes are defined in the description of H5Pcreate.
Parameters:
hid_tplist IN: Identifier of property list to query.
Returns:
Returns a property list class if successful. Otherwise returns H5P_NO_CLASS (-1).

Fortran90 Interface: h5pget_class_f
SUBROUTINE h5pget_class_f(prp_id, classtype, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(OUT) :: classtype ! The type of the property list
I to be created
I Possible values are:
| H5P_NO_CLASS
| H5P_FILE_CREATE_F
I H5P_FILE_ACCESS_F
I H5PE_DATASET_CREATE_F
I H5P_DATASET_XFER_F
| H5P_MOUNT_F
INTEGER, INTENT(OUT) :: hdferr I Error code
I 0 on success and -1 on failure
END SUBROUTINE h5pget_class_f

339

H5Pget_class_name HDF5 Reference Manual

Name: H5Pget_class_name
Purpose:
Retrieves the name of a class.
Signature:
char * H5Pget_class_name(hid_t pcid)
Description:
H5Pget_class_name retrieves the name of a generic property list class. The pointer to the name must
be freed by the user after each successful call.

Parameters:
hid_tpcid IN: Identifier of the property class to query
Returns:
Success: a pointer to an allocated string containing the class name
Failure: NULL

Fortran90 Interface: h5pget_class_name_f
SUBROUTINE h5pget_class_name_f(prp_id, name, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier to
I query
CHARACTER(LEN=%*), INTENT(INOUT) :: name ! Buffer to retrieve class name
INTEGER, INTENT(OUT) :: hdferr ! Error code, possible values:
! Success: Actual length of the
I class name
! If provided buffer "name" is
I smaller, than name will be
I truncated to fit into
! provided user buffer
! Failure: -1
END SUBROUTINE h5pget_class_name_f

340

HDF5 Reference Manual H5Pget_class_parent

Name: H5Pget_class_parent

Signature:

hid_tH5Pget_class_parent(hid_t pcid)
Purpose:

Retrieves the parent class of a property class.
Description:

H5Pget_class_parent retrieves an identifier for the parent class of a property class.
Parameters:
hid_tpcid IN: Identifier of the property class to query
Returns:
Success: a valid parent class object identifier
Failure: a negative value
Fortran90 Interface: h5pget_class_parent f
SUBROUTINE h5pget_class_parent_f(prp_id, parent_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER(HID_T), INTENT(OUT) :: parent_id ! Parent class property list
!identifier
INTEGER, INTENT(OUT) :: hdferr I Error code

10 on success and -1 on failure
END SUBROUTINE h5pget_class_parent_f

341

H5Pget_copy_object HDF5 Reference Manual

Name: H5Pget_copy_object

Signature:

herr_tH5Pget_copy_object(hid_t ocp_plist_id, unsigned *copy_options)
Purpose:

Retrieves the properties to be used when an object is copied.
Description:

H5Pget_copy_object retrieves the properties currently specified in the object copy property list
ocp_plist_id, which will be invoked when a new copy is made of an existing object.

copy_options is a bit map indicating the flags, or properties, governing object copying that are set in
the property list ocp_plist_id.

The available flags are described in H5Pset_copy_obiject.
Parameters:
hid_tocp_plist_id IN: Object copy property list identifier
unsigned *copy_options OUT: Copy option(s) set in the object copy property list

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_copy_object_f
SUBROUTINE h5pget_copy_object_f(ocp_plist_id, copy_options, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: ocp_plist_id
! Object copy property list identifier
INTEGER, INTENT(OUT) :: copy_options ! Valid copy options returned are:
I H50_COPY_SHALLOW_HIERARCHY_F
I H50_COPY_EXPAND_SOFT_LINK_F
! H50_COPY_EXPAND_EXT_LINK_F
| H50_COPY_EXPAND_REFERENCE_F
I H50_COPY_WITHOUT_ATTR_FLAG_F
INTEGER, INTENT(OUT) :: hdferr I Error code

History:
Release C
1.8.0 Function introduced in this release.
1.8.3 Fortran subroutine introduced in this release.

342

HDF5 Reference Manual H5Pget_create_intermediate_group

Name: H5Pget_create_intermediate_group
Signature:
herr_tH5Pget_create_intermediate_group(hid_t Icpl_id, unsigned
*crt_intermed_group)
Purpose:
Determines whether property is set to enable creating missing intermediate groups.
Description:
H5Pget_create_intermediate_group determines whether the link creation property list
Icpl_id is set to allow functions that create objects in groups different from the current working group
to create intermediate groups that may be missing in the path of a new or moved object.

Functions that create objects in or move objects to a group other than the current working group make u
of this property. H5Gcreate_anon and H5Lmove are examles of such functions.

If crt_intermed_group is true, missing intermediate groups will be created; if
crt_intermed_group is false, missing intermediate groups will not be created.

Parameters:
hid_tlcpl_id IN: Link creation property list identifier
unsigned *crt_intermed_group OUT: Flag specifying whether to create intermediate groups
upon creation of an object
Returns:

Returns a non-negative valule if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

343

H5Pget_data_transform HDF5 Reference Manual

Name: H5Pget_data_transform
Signature:
ssize_ H5Pget_data_transform (hid_t plist_id, char *expression, size_t size)
Purpose:
Retrieves a data transform expression.
Description:
H5Pget_data_transform retrieves the data transform expression previously set in the dataset
transfer property list plist_id by H5Pset_data_transform.

H5Pget_data_transform can be used to both retrieve the transform expression and to query its size.
If expression is non-NULL, up to size bytes of the data transform expression are written to the
buffer. If expression is NULL, size is ignored and the function does not write anything to the

buffer. The function always returns the size of the data transform expression.

If 0 is returned for the size of the expression, no data transform expression exists for the property list.

If an error occurs, the buffer pointed to by expression is unchanged and the function returns a
negative value.

Parameters:
hid_tplist_id IN: Identifier of the property list or class
char *expression OUT: Pointer to memory where the transform expression will be
copied
size_tsize IN: Number of bytes of the transform expression to copy to
Returns:

Success: size of the transform expression.
Failure: a negative value.
Fortran90 Interface: h5pget_data_transform_f

SUBROUTINE h5pget_data_transform_f(plist_id, expression, hdferr, size)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist_id
I ldentifier of the property list or class
CHARACTER(LEN=*), INTENT(OUT) :: expression
! Buffer to hold transform expression
INTEGER(SIZE_T), INTENT(OUT), OPTIONAL :: size
! Registered size for transform expression
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5pget_data_transform_f

History:
Release C
1.8.0 Function introduced in this release.

344

HDF5 Reference Manual H5Pget_driver

Name: H5Pget_driver

Signature:

hid_tH5Pget_driver(hid_t plist_id)
Purpose:

Returns low-lever driver identifier.
Description:

H5Pget_driver returns the identifier of the low-level file driver associated with the file access
property list or data transfer property list plist_id.

Valid driver identifiers with the standard HDF5 library distribution include the following:

H5FD_CORE

H5FD_DIRECT

H5FD_FAMILY

H5FD_LOG

H5FD_MPIO

H5FD_MULTI

H5FD_SEC2

H5FD_STDIO

H5FD_WINDOWS (Windows only)

If a user defines and registers custom drivers or if additional drivers are defined in an HDF5 distribution,
this list will be longer.

The Windows driver, HSFD_WINDOWS, is available only on Windows systems.

The returned driver identifier is only valid as long as the file driver remains registered.
Parameters:

hid_tplist_id IN: File access or data transfer property list identifier.
Returns:

Returns a valid low-level driver identifier if successful. Otherwise returns a negative value.

Fortran90 Interface: hSpget_driver_f

SUBROUTINE h5pget_driver_f(prp_id, driver, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(OUT) :: driver ! Low-level file driver identifier
INTEGER, INTENT(OUT) :: hdferr I Error code

1 0 on success and -1 on failure
END SUBROUTINE h5pget_driver_f

History:
Release C
1.4.0 Function introduced in this release.

345

H5Pget_driver HDF5 Reference Manual

Name: H5Pget_driver_info

Signature:

void *H5Pget_driver_info(hid_t plist_id)
Purpose:

Returns a pointer to file driver information.
Description:

H5Pget_driver_info returns a pointer to file driver-specific information for the low-level driver
associated with the file access or data transfer property list plist_id.

The pointer returned by this function points to an “uncopied” struct. Driver-specific versions of that struct
are defined for each low-level driver in the relevant source code file HSFD*.c. For example, the struct
used for the MULTI driver is H5FD_multi_fapl_t defined in HSFDmulti.c.

If no driver-specific properties have been registered, H5Pget_driver_info returns NULL.

Note:
H5Pget_driver_info and H5Pset_driver are used only when creating a virtual file driver
(VFD) in the virtual file layer (VFL). For further information, see “Virtual File Layer” and “List of VFL
Functions” in the HDF5 Technical Notes.
Parameters:
hid_tplist_id
IN: File access or data transfer property list identifier.
Returns:
Returns a pointer to a struct containing low-level driver information. Otherwise returns NULL.
NULL is also returned if no driver-specific properties have been registered. No error is pushed on the
stack in this case.
Non-C API(s):
None.
History:
Release C
1.8.2 Function publicized in this release; previous releases described this function only

in the virtual file driver documentation.

346

HDF5 Reference Manual H5Pget_dxpl_mpio

Name: H5Pget_dxpl_mpio

Signature:
herr_tH5Pget_dxpl_mpio(hid_t dxpl_id, HSFD_mpio_xfer_t *xfer_mode)
Purpose:
Returns the data transfer mode.
Description:
H5Pget_dxpl_mpio queries the data transfer mode currently set in the data transfer property list
dxpl_id.

Upon return, xfer_mode contains the data transfer mode, if it is non-null.

H5Pget_dxpl_mpio is not a collective function.

Parameters:
hid_tdxpl_id IN: Data transfer property list identifier.
H5FD_mpio_xfer_t *xfer_mode OUT: Data transfer mode.

Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface: hSpget_dxpl_mpio_f
SUBROUTINE h5pget_dxpl_mpio_f(prp_id, data_xfer_mode, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(OUT) :: data_xfer_mode ! Data transfer mode
I Possible values are:
I H5FD_MPIO_INDEPENDENT_F
I H5FD_MPIO_COLLECTIVE_F
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pget_dxpl_mpio_f

History:
Release C
1.4.0 Function introduced in this release.

347

H5Pget_dxpl_multi HDF5 Reference Manual

Name: H5Pget_dxpl_multi
Signature:
herr_tH5Pget_dxpl_multi(hid_t dxpl_id, const hid_t *memb_dxpl)

Purpose:

Returns multi-file data transfer property list information.
Description:

H5Pget_dxpl_multi returns the data transfer property list information for the multi-file driver.
Parameters:

hid_tdxpl_id, IN: Data transfer property list identifier.

const hid_t *memb_dxpl OUT: Array of data access property lists.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.4.0 Function introduced in this release.

348

HDF5 Reference Manual H5Pget_edc_check

Name: H5Pget_edc_check

Signature:

H5Z EDC_tH5Pget _edc_check(hid_t plist)
Purpose:

Determines whether error-detection is enabled for dataset reads.
Description:

H5Pget_edc_check queries the dataset transfer property list plist to determine whether error
detection is enabled for data read operations.
Parameters:
hid_tplist IN: Dataset transfer property list identifier.
Returns:
Returns H5Z ENABLE_EDC or H5Z DISABLE_EDC if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_edc_check f
SUBROUTINE h5pget_edc_check_f(prp_id, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: prp_id ! Dataset transfer property list
! identifier

INTEGER, INTENT(OUT) ::flag ! EDC flag; possible values

| H5Z_DISABLE_EDC_F
| H5Z_ENABLE_EDC F
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5pget_edc_check_f

History:
Release C
1.6.0 Function introduced in this release.

349

H5Pget_elink_acc_flags HDF5 Reference Manual

Name: H5Pget_elink_acc_flags

Signature:

herr_tH5Pget_elink_acc_flags(hid_t lapl_id, unsigned *flags)
Purpose:

Retrieves the external link traversal file access flag from the specified link access property list.
Description:

H5Pget_elink_acc_flags retrieves the file access flag used to open an external link target file
from the specified link access property list.

The value returned, if it is not H5F_ACC_DEFAULT will override the default access flag, which is the
access flag used to open the parent file.

Parameters:
hid_tlapl_id IN: Link access property list identifier
unsigned *flags OUT: File access flag for link traversal.
Valid values include:
H5F_ACC_RDWR Files opened through external links will be opened
with write access.
H5F _ACC_RDONLY Files opened through external links will be opened
with read-only access.
H5F ACC_DEFAULT Files opened through external links will be opened
with the same access flag as the parent file.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Example Usage:
The following code retrieves the external link access flag settings on the link access property list

lapl_id into a local variable:
unsigned acc_flags;
status = H5Pget_elink_acc_flags(lapl_id, &acc_flags);

See Also:
H5Pset_elink_acc_flags
History:
Release Change
1.8.3 C function introduced in this release.

350

HDF5 Reference Manual H5Pget_elink _cb

Name: H5Pget_elink_cb

Signature:

herr_tH5Pget_elink_cb(hid_t lapl_id, H5L_elink_traverse_t *func, void **op_data)
Purpose:

Retrieves the external link traversal callback function from the specified link access property list.
Description:

H5Pget_elink_cb retrieves the user-defined external link traversal callback function defined in the
specified link access property list.

The callback function may adjust the file access property list and file access flag to use when opening a
file through an external link. The callback will be executed by the HDF5 Library immediately before
opening the target file.

Parameters:
hid_tlapl_id IN: Link access property list identifier.
H5L_elink_traverse_t *func OUT: User-defined external link traversal callback function.
void **op_data OUT: User-defined input data for the callback function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Failure Modes:
H5Pget_elink_cb will fail if the link access property list identifier, lapl_id, is invalid.

An invalid function pointer or data pointer, func or op_data respectively, may cause a segmentation
fault or an invalid memory access.

Example Usage:
The following code retrieves the external link callback settings on the link access property list lapl_id

into local variables:
H5L_elink_traverse_t elink_callback_func;
void *elink_callback _udata;
status = H5Pget_elink_cb(lapl_id, &elink_callback_func, &elink_callback_udata);

See Also:
H5Pset_elink_cb

H5Pset_elink_fapl, H5Pset_elink_acc_flags, Hb5Lcreate external
H5Fopen for discussion of H5SF_ ACC_RDWR and H5F _ACC_RDONLY file access flags
H5L_elink_traverse_t

History:

Release Change
1.8.3 C function introduced in this release.

351

H5Pget_elink_fapl HDF5 Reference Manual

Name: H5Pget_elink_fapl

Signature:

hid_tH5Pget_elink_fapl(hid_t lapl_id)
Purpose:

Retrieves the file access property list identifier associated with the link access property list.
Description:

H5Pget_elink_fapl retrieves the file access property list identifier that is set for the link access
property list identifier, lapl_id. The library uses this file access property list identifier to open the
target file for the external link access.

When no such identifier is set, this routine returns H5P_DEFAULT.

See also H5Pset_elink_fapl and H5Lcreate_external.
Parameters:

hid_tlapl_id IN: Link access property list identifier.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.2 Function introduced in this release.

352

HDF5 Reference Manual H5Pget_elink_prefix

Name: H5Pget_elink_prefix

Signature:

ssize_H5Pget_elink_prefix(hid_t lapl_id, char *prefix, size_t size)
Purpose:

Retrieves prefix applied to external link paths.
Description:

H5Pget_elink_prefix retrieves the prefix applied to the path of any external links traversed.

When an external link is traversed, the prefix is retrieved from the link access property list lapl_id,
returned in the user-allocated buffer pointed to by prefix, and prepended to the filename stored in the
external link.

The size in bytes of the prefix, including the NULL terminator, is specified in size. If size is unknown,
a preliminary H5Pget_elink_prefix call with the pointer prefix set to NULL will return the size
of the prefix without the NULL terminator.

Parameters:
hid_tlapl_id IN: Link access property list identifier
char *prefix OUT: Prefix applied to external link paths
size_tsize IN: Size of prefix, including null terminator
Returns:

If successful, returns a non-negative value specifying the size in bytes of the prefix without the NULL
terminator; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

353

H5Pget_est link_info HDF5 Reference Manual

Name: H5Pget_est_link_info

Signature:
herr_tH5Pget_est_link_info(hid_t gepl_id, unsigned *est_num_entries, unsigned
*est_name_len)
Purpose:
Queries data required to estimate required local heap or object header size.
Description:

H5Pget_est_link_info queries a group creation property list, gcpl_id, for its “estimated number
of links” and “estimated average name length” settings.

The estimated number of links anticipated to be inserted into a group created with this property list is
returned in est_num_entries.

The estimated average length of the anticipated link names is returned in est_name_len.

The values for these two settings are multiplied to compute the initial local heap size (for old-style
groups, if the local heap size hint is not set) or the initial object header size for (new-style compact
groups; see “Group implementations in HDF5"). Accurately setting these parameters will help reduce
wasted file space.

A value of 0 (zero) in est_num_entries will prevent a group from being created in the compact
format.

See “Group implementations in HDF5” in the H5G API introduction for a discussion of the available
types of HDF5 group structures.

Parameters:
hid_tgcpl_id IN: Group creation property list identifier
unsigned *est_num_entries OUT: Estimated number of links to be inserted into group
unsigned *est_name_len OUT: Estimated average length of link names

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_est_link_info_f

SUBROUTINE h5pget_est_link_info_f(gcpl_id,est_num_entries, est_name_len,hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: gcpl_id ! Group creation property list id

INTEGER, INTENT(OUT) :: est_num_entries ! Estimated number of links to be
linserted into group

INTEGER, INTENT(OUT) :: est_name_len ! Estimated average length of link
I names

INTEGER, INTENT(OUT) :: hdferr I Error code
I 0 on success and -1 on failure

END SUBROUTINE h5pget_est_link_info_f

History:
Release C
1.8.0 Function introduced in this release.

354

HDF5 Reference Manual H5Pget_external

Name: H5Pget_external

Signature:
herr_tH5Pget_external(hid_t plist, unsigned idx, size_t name_size, char *name, off t
*offset, hsize t *size)

Purpose:
Returns information about an external file.

Description:
H5Pget_external returns information about an external file. The external file is specified by its

index, idx, which is a number from zero to N-1, where N is the value returned by
H5Pget_external_count. At most name_size characters are copied into the name array. If the
external file name is longer than name_size with the null terminator, the return value is not null
terminated (similar to strncpy()).

If name_size is zero or name is the null pointer, the external file name is not returned. If offset or
size are null pointers then the corresponding information is not returned.

Parameters:

hid_tplist IN: Identifier of a dataset creation property list.

unsigneddx IN: External file index.

size_thame_size IN: Maximum length of name array.

char*name OUT: Name of the external file.

off_t*offset OUT: Pointer to a location to return an offset value.

hsize_t'size OUT: Pointer to a location to return the size of the external file data.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_external_f
SUBROUTINE h5pget_external_f(prp_id, idx, name_size, name, offset,bytes, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(IN) :: idx I External file index.

INTEGER(SIZE_T), INTENT(IN) :: name_size ! Maximum length of name array
CHARACTER(LEN=¥*), INTENT(OUT) :: name ! Name of an external file
INTEGER, INTENT(OUT) :: offset I Offset, in bytes, from the
! beginning of the file to the
!'location in the file where
! the data starts.
INTEGER(HSIZE_T), INTENT(OUT) :: bytes ! Number of bytes reserved in
I the file for the data
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pget_external_f

History:
Release C
1.6.4 idx parameter type changed to unsigned.

355

H5Pget_external_count HDF5 Reference Manual

Name: H5Pget_external _count

Signature:

int H5Pget_external_count(hid_t plist)
Purpose:

Returns the number of external files for a dataset.
Description:

H5Pget_external_count returns the number of external files for the specified dataset.
Parameters:

hid_tplist IN: Identifier of a dataset creation property list.
Returns:

Returns the number of external files if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_external_count_f
SUBROUTINE h5pget_external_count_f (prp_id, count, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(OUT) :: count I Number of external files for

I the specified dataset
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pget_external_count_f

356

HDF5 Reference Manual H5Pget_family_offset

Name: H5Pget_family offset

Signature:

herr_tH5Pget family_offset (hid_t fapl_id, hsize_t *offset)
Purpose:

Retrieves a data offset from the file access property list.
Description:

H5Pget_family_offset retrieves the value of offset from the file access property list fapl_id

so that the user application can retrieve a file handle for low-level access to a particular member of a
family of files. The file handle is retrieved with a separate call to H5Fget_vfd_handle (or, in special
circumstances, to H5FDget_vfd_handle; see Virtual File Layer and List of VFL Functions in HDF5
Technical Notes).

The data offset returned in offset is the offset of the data in the HDF5 file that is stored on disk in the
selected member file in a family of files.

Use of this function is only appropriate for an HDF5 file written as a family of files with the FAMILY file

driver.
Parameters:
hid_tfapl_id IN: File access property list identifier.
hsize_t *offset OUT: Offset in bytes within the HDF5 file.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.6.0 Function introduced in this release.

357

H5Pget_fapl_core HDF5 Reference Manual

Name: H5Pget_fapl_core
Signature:

herr_tH5Pget fapl _core(hid_t fapl_id, size t *increment, hbool_t *backing_store)
Purpose:

Queries core file driver properties.
Description:

H5Pget_fapl_core queries the H5FD_CORE driver properties as set by H5Pset_fapl_core.
Parameters:

hid_tfapl_id IN: File access property list identifier.
size_t *increment OUT: Size, in bytes, of memory increments.
hbool_t *backing_store OUT: Boolean flag indicating whether to write the file contents to

disk when the file is closed.

Returns:
Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5pget_fapl_core_f
SUBROUTINE h5pget_fapl_core_f(prp_id, increment, backing_store, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER(SIZE_T), INTENT(OUT) :: increment ! File block size in bytes
LOGICAL, INTENT(OUT) :: backing_store ! Flag to indicate that entire
I file contents are flushed to
I a file with the same name as
I this core file
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pget_fapl_core_f

History:
Release C Fortran90
1.6.0 The backing_store parameter type changed from
INTEGER to LOGICAL to better match the C API
1.4.0 Function introduced

in this release.

358

HDF5 Reference Manual H5Pget_fapl_direct

Name: H5Pget_fapl_direct

Signature:
herr_tH5Pget_fapl_direct(hid_t fapl_id, size_t *alignment, size_t *block_size, size t
*cbuf_size)

Purpose:
Retrieves direct I/O driver settings.

Description:
H5Pget_fapl_direct retrieves the required memory alignment (alignment), file system block
size (block_size), and copy buffer size (cbuf_size) settings for the direct I/O driver,
H5FD_DIRECT, from the file access property list fapl_id.

See H5Pset_fapl_direct for discussion of these values, requirements, and important
considerations.

Parameters:
hid_tfapl_id IN: File access property list identifier
size_t *alignment OUT: Required memory alignment boundary
size_t *block_size OUT: File system block size
size_t *cbuf_size OUT: Copy buffer size
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
SUBROUTINE H5Pget_fapl_direct_f(fapl_id, alignment, block_size, cbuf_size, &
hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: fapl_id ! File access property list identifier
INTEGER(SIZE_T), INTENT(OUT) :: alignment
I Required memory alignment boundary!
INTEGER(SIZE_T), INTENT(OUT) :: block_size
| File system block size
INTEGER(SIZE_T), INTENT(OUT) :: cbuf_size
! Copy buffer size
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE H5Pget_fapl_direct_f

History:
Release C
1.8.0 Function introduced in this release.

359

H5Pget_fapl_family HDF5 Reference Manual

Name: H5Pget_fapl_family

Signature:

herr_tH5Pget_fapl_family (hid_t fapl_id, hsize_t *memb_size, hid_t *memb_fapl_id)
Purpose:

Returns file access property list information.
Description:

H5Pget_fapl_family returns file access property list for use with the family driver. This
information is returned through the output parameters.

Parameters:
hid_tfapl_id IN: File access property list identifier.
hsize_t *memb_size OUT: Size in bytes of each file member.
hid_t *memb_fapl_id OUT: Identifier of file access property list for each family
member.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_fapl_family_f
SUBROUTINE h5pget_fapl_family_f(prp_id, imemb_size, memb_plist, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER(HSIZE_T), INTENT(OUT) :: memb_size ! Logical size, in bytes,
I of each family member
INTEGER(HID_T), INTENT(OUT) :: memb_plist ! Identifier of the file
I access property list to be
I used for each family member
INTEGER, INTENT(OUT) :: hdferr ! Error code
I 0 on success and -1 on failure
END SUBROUTINE h5pget_fapl_family_f

History:
Release C
1.4.0 Function introduced in this release.

360

HDF5 Reference Manual H5Pget_fapl_mpio

Name: H5Pget_fapl_mpio

Signature:

herr_tH5Pget_fapl_mpio(hid_t fapl_id, MPI_Comm *comm, MPI_Info *info)
Purpose:

Returns MPI communicator information.
Description:

If the file access property list is set to the H5FD_MPIO driver, H5Pget_fapl_mpio returns duplicates
of the stored MPI communicator and Info object through the comm and info pointers, if those values are
non-null.

Since the MPI communicator and Info object are duplicates of the stored information, future
modifications to the access property list will not affect them. It is the responsibility of the application to
free these objects.

Parameters:
hid_tfapl_id IN: File access property list identifier
MPI_Comm *comm OUT: MPI-2 communicator
MPI_Info *info OUT: MPI-2 Info object

Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5Spget_fapl_mpio_f
SUBROUTINE h5pget_fapl_mpio_f(prp_id, comm, info, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(OUT) :: comm ! Buffer to return communicator
INTEGER, INTENT(IN) :: info I Buffer to return info object as

I defined in MPI_FILE_OPEN of MPI-2
INTEGER, INTENT(OUT) :: hdferr I Error code
I 0 on success and -1 on failure
END SUBROUTINE h5pget_fapl_mpio_f

History:
Release Change
1.45 Handling of the MPI Communicator and Info object changed at this release. A
duplicate of each of these objects is now returned instead of pointers to each
object.
1.4.0 C function introduced in this release.

361

H5Pget_fapl_mpiposix HDF5 Reference Manual

Name: H5Pget_fapl_mpiposix

Signature:
herr_tH5Pget fapl_mpiposix(hid_t fapl_id, MPI_Comm *comm, hbool _t
*use_gpfs_hints)

Purpose:
Returns MPI communicator information.

Description:
If the file access property list is set to the H5FD_MPIO driver, H5Pget fapl_mpiposix returns the
MPI communicator through the comm pointer, if those values are non-null.

comm is not copied, so it is valid only until the file access property list is either modified or closed.
use_gpfs_hints specifies whether to attempt to use GPFS hints when accessing this file. A value of

TRUE (or 1) indicates that the hints are being used, where possible. A value of FALSE (or 0) indicates
that the hints are not being used.

Parameters:
hid_tfapl_id IN: File access property list identifier.
MPI_Comm *comm OUT: MPI-2 communicator.
hbool_t *use_gpfs_hints OUT: Use of GPFS hints.

Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5pget_fapl_mpiposix_f
SUBROUTINE h5pget_fapl_mpiposix_f(prp_id, comm, use_gpfs, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(OUT) :: comm I Buffer to return communicator
LOGICAL, INTENT(OUT) :: use_gpfs
INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5pget_fapl_mpiposix_f
History:
Release C Fortran90
1.6.1 Fortran subroutine introduced in this
release.
1.6.0 use_gpfs_hints parameter
added.
1.6.0 Function introduced in this release.

362

HDF5 Reference Manual H5Pget_fapl_multi

Name: H5Pget_fapl_multi
Signature:
herr_tH5Pget fapl_multi(hid_t fapl_id, const H5FD_mem_t *memb_map, const hid_t
*memb_fapl, const char **memb_name, const haddr_t *memb_addr, hbool_t *relax)
Purpose:
Returns information about the multi-file access property list.
Description:
H5Pget_fapl_multi returns information about the multi-file access property list.
Parameters:

hid_tfapl_id IN: File access property list identifier.

const HSFD_mem_t *memb_map OUT: Maps memory usage types to other memory usage types.

const hid_t *memb_fapl OUT: Property list for each memory usage type.

const char **memb_name OUT: Name generator for names of member files.

const haddr_t *memb_addr OUT: The offsets within the virtual address space, from O (zero)
to HADDR_MAX, at which each type of data storage begins.

hbool_t *relax OUT: Allows read-only access to incomplete file sets when
TRUE.

Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5pget_fapl_multi_f
SUBROUTINE h5pget_fapl_multi_f(prp_id, memb_map, memb_fapl, memb_name,
memb_addr, relax, hdferr)
IMPLICIT NONE
INTEGER(HID_T),INTENT(IN) :: prp_id ! Property list identifier

INTEGER,DIMENSION(0:H5FD_MEM_NTYPES_F-1),INTENT(OUT) ;> memb_map
INTEGER(HID_T),DIMENSION(0:H5FD_MEM_NTYPES_F-1),INTENT(OUT) :: memb_fapl
CHARACTER(LEN=*),DIMENSION(0:H5FD_MEM_NTYPES_F-1),INTENT(OUT) :: memb_name
REAL, DIMENSION(0:H5FD_MEM_NTYPES_F-1), INTENT(OUT) :: memb_addr

I Numbers in the interval [0,1) (e.g. 0.0 0.1 0.5 0.2 0.3 0.4)

! real address in the file will be calculated as X*HADDR_MAX

LOGICAL, INTENT(OUT) :: relax
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5pget_fapl_multi_f

History:
Release C
1.4.0 Function introduced in this release.

363

H5Pget_fclose degree HDF5 Reference Manual

Name: H5Pget_fclose degree
Signature:
herr_tH5Pget fclose_degree(hid_t fapl_id, H5F close_degree t *fc_degree)
Purpose:
Returns the file close degree.
Description:
H5Pget_fclose_degree returns the current setting of the file close degree property fc_degree in
the file access property list fapl_id.

The value of fc_degree determines how aggressively H5Fclose deals with objects within a file that
remain open when H5Fclose is called to close that file. fc_degree can have any one of four valid
values as described in H5Pset_fclose_degree.

Parameters:
hid_tfapl_id IN: File access property list identifier.
H5F _close_degree_t *fc_degree OUT: Pointer to a location to which to return the file close
degree property, the value of fc_degree.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5pget_fclose_degree_f
SUBROUTINE h5pget_fclose_degree_f(fapl_id, degree, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: fapl_id ! File access property list identifier
INTEGER, INTENT(OUT) :: degree ! Info about file close behavior

! Possible values:

! H5F CLOSE_DEFAULT_F

I H5F CLOSE_WEAK F

I H5F_CLOSE_SEMI_F

| H5F_CLOSE_STRONG_F
INTEGER, INTENT(OUT) :: hdferr ! Error code

1'0 on success and -1 on failure

END SUBROUTINE h5pget_fclose_degree_f

History:
Release C
1.6.0 Function introduced in this release.

364

HDF5 Reference Manual H5Pget fill_time

Name: H5Pget _fill_time

Signature:

herr_tH5Pget fill_time(hid_t plist_id, H5D_fill_time_t *fill_time)
Purpose:

Retrieves the time when fill value are written to a dataset.
Description:

H5Pget _fill_time examines the dataset creation property list plist_id to determine when fill
values are to be written to a dataset.

Valid values returned in fill_time are as follows:

H5D_FILL_TIME_IFSET Fill values are written to the dataset when storage space is allocated
only if there is a user-defined fill value, i.e., one set with
H5Pset fill_value. (Default)

H5D_FILL_TIME_ALLOC Fill values are written to the dataset when storage space is allocated.
H5D_FILL_TIME_NEVER Fill values are never written to the dataset.
Note:
H5Pget fill_time is designed to work in coordination with the dataset fill value and dataset storage

allocation time properties, retrieved with the functions H5Pget_fill_value and
H5Pget_alloc_time.

Parameters:

hid_tplist_id IN: Dataset creation property list identifier.

H5D_fill_time_t *fill_time OUT: Setting for the timing of writing fill values to the dataset.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_fill_time_f
SUBROUTINE h5pget_fill_time_f(plist_id, flag, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist_id ! Dataset creation property
! list identifier
INTEGER(HSIZE_T), INTENT(OUT) :: flag ! Fill time flag
! Possible values are:
! H5D_FILL_TIME_ERROR_F
! H5D_FILL_TIME_ALLOC F
! H5D_FILL_TIME_NEVER_F
INTEGER, INTENT(OUT) ;> hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pget_fill_time_f

History:
Release C
1.6.0 Function introduced in this release.

365

H5Pget fill_value HDF5 Reference Manual

Name: H5Pget _fill_value
Signature:
herr_tH5Pget fill_value(hid_t plist_id, hid_t type_id, void *value)
Purpose:
Retrieves a dataset fill value.
Description:
H5Pget _fill_value returns the dataset fill value defined in the dataset creation property list
plist_id.

The fill value is returned through the value pointer and will be converted to the datatype specified by
type_id. This datatype may differ from the fill value datatype in the property list, but the HDFS5 library
must be able to convert between the two datatypes.

If the fill value is undefined, i.e., set to NULL in the property list, H5Pget fill_value will return an
error. H5Pfill_value_defined should be used to check for this condition before
H5Pget _fill_value is called.

Memory must be allocated by the calling application.
Note:
H5Pget fill_value is designed to coordinate with the dataset storage allocation time and fill value
write time properties, which can be retrieved with the functions H5Pget_alloc_time and
H5Pget fill_time, respectively.

Parameters:
hid_tplist_id IN: Dataset creation property list identifier.
hid_ttype_id, IN: Datatype identifier for the value passed via value.
void *value OUT: Pointer to buffer to contain the returned fill value.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_fill_value f
SUBROUTINE h5pget_fill_value_f(prp_id, type_id, fillvalue, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier of fill
! value datatype (in memory)
TYPE(VOID), INTENT(IN) :: fillvalue ! Fillvalue
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure

END SUBROUTINE h5pget_fill_value_f

366

HDF5 Reference Manual H5Pget filter

Name: H5Pget _filter

Signatures:
H5Z filter _tH5Pget filter(hid_t plist, unsigned int idx, [1]
unsigned int *flags, size_t *cd_nelmts, unsigned int *cd_values,
size_tnamelen, char name[])

H5Z_filter_tH5Pget_filter(hid_t plist_id, unsigned idx, [2]
unsigned int *flags, size_t *cd_nelmts, unsigned cd_values]],
size_tmamelen, char name[], unsigned *filter_config)

Purpose:
Returns information about a filter in a pipeline.

Description:
H5Pget_filter is a macro that is mapped to either H5Pget_filterl or H5Pget_filter2,
depending on the needs of the application.

Such macros are provided to facilitate application compatibility. For example:

0 The H5Pget_filter macro will be mapped to H5Pget_filterl and will use the
H5Pget_filterl syntax (first signature above) if an application is coded for HDF5 Release
1.6.x.
0 The H5Pget_filter macro mapped to H5Pget_filter2 and will use the
H5Pget_filter2 syntax (second signature above) if an application is coded for HDF5
Release 1.8.x.
Macro use and mappings are fully described in “API Compatibility Macros in HDF5” we urge you to read
that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Pget_filter is mapped to the most recent version of the function, currently

H5Pget _filter2. If the library and/or application is compiled for Release 1.6 emulation,

H5Pget_filter will be mapped to H5Pget _filterl. Function-specific flags are available to

override these settings on a function-by-function basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Pget_filter mapping

Global settings

No compatibility flag H5Pget _filter2
Enable deprecated symbols H5Pget _filter2
Disable deprecated symbols H5Pget _filter2

Emulate Release 1.6 interface H5Pget _filterl

367

H5Pget filter

Function-level macros
H5Pget _filter_vers =2 H5Pget _filter2
H5Pget filter_vers =1 H5Pget _filterl

HDF5 Reference Manual

Interface history: Signature [1] above is the original H5Pget filter interface and the only
interface available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now

deprecated but will remain directly callable as H5Pget _filter1.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default

interface. It is directly callable as H5Pget filter2.

See “AP| Compatibility Macros in HDF5” for circumstances under which either of these functions might

not be available in an installed instance of the HDF5 Library.

Fortran90 Interface: h5pget filter_f

SUBROUTINE h5pget_filter_f(prp_id, filter_number, flags, cd_nelmts,
cd_values, namelen, name, filter_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(IN) :: filter_number ! Sequence number within the filter
I pipeline of the filter for which
Iinformation is sought
INTEGER, DIMENSION(*), INTENT(OUT) :: cd_values
I Auxiliary data for the filter
INTEGER, INTENT(OUT) :: flags I Bit vector specifying certain
I general properties of the filter
INTEGER(SIZE_T), INTENT(INOUT) :: cd_nelmts
I Number of elements in cd_values
INTEGER(SIZE_T), INTENT(IN) :: namelen ! Anticipated number of characters
I'in name
CHARACTER(LEN=%*), INTENT(OUT) :: name ! Name of the filter
INTEGER, INTENT(OUT) :: filter_id ! Filter identification number
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pget filter_f

History:

368

Release C

1.8.0 The function H5Pget_filter renamed to H5Pget filterl and deprecated

in this release.

The macro H5Pget _filter and the function H5Pget _filter2 introduced

in this release.

HDF5 Reference Manual H5Pget filterl

Name: H5Pget_filterl

Signature:
H5Z_filter_tH5Pget_filter1(hid_t plist_id, unsigned int idx, unsigned int *flags, size_t
*cd_nelmts, unsigned int *cd_values, size_t namelen, char name][])

Purpose:
Returns information about a filter in a pipeline.

Notice:
This function is renamed from H5Pget_filter and deprecated in favor of the function
H5Pget_filter2 or the new macro H5Pget_filter.

Description:
H5Pget_filterl returns information about a filter, specified by its filter number, in a filter pipeline,
specified by the property list with which it is associated.

plist_id must be a dataset or group creation property list.

idx is a value between zero and N-1, as described in H5Pget_nfilters. The function will return a
negative value if the filter number is out of range.

The structure of the flags argument is discussed in H5Pset_filter.

On input, cd_nelmts indicates the number of entries in the cd_values array, as allocated by the
caller; on return,cd_nelmts contains the number of values defined by the filter.

If name is a pointer to an array of at least namelen bytes, the filter name will be copied into that array.
The name will be null terminated if namelen is large enough. The filter name returned will be the name
appearing in the file, the name registered for the filter, or an empty string.

Parameters:
hid_tplist_id IN: Dataset or group creation property list identifier.
int idx IN: Sequence number within the filter pipeline of the filter for which
information is sought.
unsigned int *flags OUT: Bit vector specifying certain general properties of the filter.
size_t *cd_nelmts IN/OUT: Number of elements in cd_values.
unsigned int OUT: Auxiliary data for the filter.
*cd_values
size_tnamelen IN: Anticipated number of characters in name.
charname]] OUT: Name of the filter.

369

H5Pget filterl

Returns:

Returns the filter identifier if successful;

HDF5 Reference Manual

H5Z_FILTER_DEFLATE Data compression filter, employing the

gzip algorithm
H5Z FILTER_SHUFFLE Data shuffling filter

H5Z_FILTER_FLETCHER32 Error detection filter, employing the
Fletcher32 checksum algorithm

H5Z FILTER_SZIP Data compression filter, employing the

SZIP algorithm

H5Z FILTER_NBIT Data compression filter, employing the

N-bit algorithm

H5Z_FILTER_SCALEOFFSET Data compression filter, employing the

scale-offset algorithm

Otherwise returns a negative value.

Fortran90 Interface: hSpget_filter_f

History:

370

SUBROUTINE h5pget_filter_f(prp_id, filter_number, flags, cd_nelmts,
cd_values, namelen, name, filter_id, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(IN) :: filter_number ! Sequence number within the filter
I pipeline of the filter for which
I information is sought
INTEGER, DIMENSION(*), INTENT(OUT) :: cd_values
I Auxiliary data for the filter
INTEGER, INTENT(OUT) :: flags I Bit vector specifying certain
I general properties of the filter
INTEGER(SIZE_T), INTENT(INOUT) :: cd_nelmts
I Number of elements in cd_values
INTEGER(SIZE_T), INTENT(IN) :: namelen ! Anticipated number of characters
I'in name
CHARACTER(LEN=%*), INTENT(OUT) :: name ! Name of the filter
INTEGER, INTENT(OUT) :: filter_id ! Filter identification number
INTEGER, INTENT(OUT) :: hdferr I Error code
I 0 on success and -1 on failure
END SUBROUTINE h5pget_filter_f

Release Change

1.6.4 filter parameter type changed to unsigned.

1.8.0 N-bit and scale-offset filters added.

1.8.0 Function H5Pget_filter renamed to H5Pget_filterl and deprecated in
this release.

1.85 Function extended to work with group creation property lists.

HDF5 Reference Manual H5Pget filter2

Name: H5Pget_filter2

Signature:
H5Z _filter_tH5Pget_filter2(hid_t plist_id, unsigned idx, unsigned int *flags, size_t
*cd_nelmts, unsigned cd_values[], size_t namelen, char name[], unsigned
*filter_config)

Purpose:
Returns information about a filter in a pipeline.

Description:
H5Pget_filter2 returns information about a filter, specified by its filter number, in a filter pipeline,
specified by the property list with which it is associated.

plist_id must be a dataset or group creation property list.

idx is a value between zero and N-1, as described in H5Pget_nfilters. The function will return a
negative value if the filter number is out of range.

The structure of the flags argument is discussed in H5Pset_filter.

On input, cd_nelmts indicates the number of entries in the cd_values array, as allocated by the
caller; on return,cd_nelmts contains the number of values defined by the filter.

If name is a pointer to an array of at least namelen bytes, the filter name will be copied into that array.
The name will be null terminated if namelen is large enough. The filter name returned will be the name

appearing in the file, the name registered for the filter, or an empty string.

filter_config is the bit field described in H5Zget _filter_info.

Parameters:

hid_tplist_id IN: Dataset or group creation property list identifier.

int idx IN: Sequence number within the filter pipeline of the filter for
which information is sought.

unsigned int *flags OUT: Bit vector specifying certain general properties of the
filter.

size_t *cd_nelmts IN/OUT: Number of elements in cd_values.

unsigned int *cd_values OUT: Auxiliary data for the filter.

size_tamelen IN: Anticipated number of characters in name.

charname]] OUT: Name of the filter.

unsigned int *filter_config OUT: Bit field, as described in H5Zget_filter_info.

371

H5Pget filter2 HDF5 Reference Manual

Returns:
Returns the filter identifier if successful;

H5Z_FILTER_DEFLATE Data compression filter, employing the
gzip algorithm
H5Z FILTER_SHUFFLE Data shuffling filter

H5Z_FILTER_FLETCHER32 Error detection filter, employing the
Fletcher32 checksum algorithm

H5Z FILTER_SZIP Data compression filter, employing the
SZIP algorithm
H5Z FILTER_NBIT Data compression filter, employing the

N-bit algorithm
H5Z_FILTER_SCALEOFFSET Data compression filter, employing the
scale-offset algorithm

Otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release Change
1.8.0 Function introduced in this release.
1.85 Function extended to work with group creation property lists.

372

HDF5 Reference Manual H5Pget filter_by id

Name: H5Pget _filter_by id

Signatures:
herr_tH5Pget filter_by id(hid _t plist_id, H5Z_filter_t [1]
filter_id, unsigned int *flags, size_t *cd_nelmts, unsigned int
cd_values[], size_t namelen, char name[])

herr_tH5Pget_filter_by id(hid_t plist_id, H5Z_filter_t [2]
filter_id, unsigned int *flags, size_t *cd_nelmts, unsigned int
cd_values[], size_t namelen, char name[], unsigned int
*filter_config)
Purpose:
Returns information about the specified filter.
Description:
H5Pget_filter_by id is a macro that is mapped to either H5Pget_filter_by_id1 or
H5Pget _filter_by id2, depending on the needs of the application.

Such macros are provided to facilitate application compatibility. For example:

O The H5Pget_filter_by_id macro will be mapped to H5Pget_filter_by_id1 and will
use the H5Pget _filter_by id1 syntax (first signature above) if an application is coded for
HDF5 Release 1.6.x.
O The H5Pget_filter_by_id macro mapped to H5Pget_filter_by_id2 and will use the
H5Pget _filter_by id2 syntax (second signature above) if an application is coded for
HDF5 Release 1.8.x.
Macro use and mappings are fully described in “API Compatibility Macros in HDF5” we urge you to read
that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Pget_filter_by_id is mapped to the most recent version of the function, currently

H5Pget _filter_by id2. If the library and/or application is compiled for Release 1.6 emulation,
H5Pget_filter_by_id will be mapped to H5Pget_filter_by_id1. Function-specific flags are

available to override these settings on a function-by-function basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Pget filter_by id mapping

Global settings

No compatibility flag H5Pget filter_by id2
Enable deprecated symbols H5Pget filter_by id2
Disable deprecated symbols H5Pget filter_by id2
Emulate Release 1.6 interface H5Pget filter_by idl

373

H5Pget filter_by id

HDF5 Reference Manual

Function-level macros

H5Pget filter_by id vers =2 H5Pget filter_by id2

H5Pget filter_by id vers=1 H5Pget filter_by idl

Interface history: Signature [1] above is the original H5Pget filter_by id interface and the only
interface available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now

deprecated but will remain directly callable as H5Pget filter_by id1.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default

interface. It is directly callable as H5Pget filter by id2.

See “AP| Compatibility Macros in HDF5” for circumstances under which either of these functions might

not be available in an installed instance of the HDF5 Library.

Fortran90 Interface: h5pget filter_by id_f

History:

374

SUBROUTINE h5pget_filter_by_id_f(prp_id, filter_id, flags, cd_nelmts,
cd_values, namelen, name, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(IN) i filter_id ! Filter identifier

INTEGER(SIZE_T), INTENT(INOUT) :: cd_nelmts
! Number of elements in cd_values
INTEGER, DIMENSION(*), INTENT(OUT) :: cd_values
I Auxiliary data for the filter
INTEGER, INTENT(OUT) :: flags ! Bit vector specifying certain
I general properties of the filter
INTEGER(SIZE_T), INTENT(IN) :: namelen ! Anticipated number of characters

'in name
CHARACTER(LEN=%*), INTENT(OUT) :: name ! Name of the filter
INTEGER, INTENT(OUT) > hdferr ! Error code

1 0 on success and -1 on failure
END SUBROUTINE h5pget_filter_by_id_f

Release C

1.8.0 The function H5Pget_filter_by id renamed to
H5Pget _filter_by id1 and deprecated in this release.
The macro H5Pget _filter_by_id and the function
H5Pget_filter_by id2 introduced in this release.

HDF5 Reference Manual H5Pget filter_by id1

Name: H5Pget_filter_by id1

Signature:
herr_tH5Pget_filter_by id1(hid_t plist_id, H5Z_filter_t filter_id, unsigned int
*flags, size_t *cd_nelmts, unsigned int cd_values|], size_t namelen, char name][])
Purpose:
Returns information about the specified filter.
Notice:

This function is renamed from H5Pget_filter_by id and deprecated in favor of the function
H5Pget_filter_by_id2 or the new macro H5Pget_filter_by id.

Description:
H5Pget_filter_by id1 returns information about the filter specified in filter_id, a filter
identifier.

plist_id must be a dataset or group creation property list and filter_id must be in the associated
filter pipeline.

The filter_id and flags parameters are used in the same manner as described in the discussion of
H5Pset_filter.

Aside from the fact that they are used for output, the parameters cd_nelmts and cd_values[] are
used in the same manner as described in the discussion of H5Pset_filter. On input, the cd_nelmts
parameter indicates the number of entries in the cd_values|] array allocated by the calling program;
on exit it contains the number of values defined by the filter.

On input, the namelen parameter indicates the number of characters allocated for the filter name by the
calling program in the array name[]. On exit name[] contains the name of the filter with one character
of the name in each element of the array.

If the filter specified in filter_id is not set for the property list, an error will be returned and
H5Pget_filter_by_id1 will fail.

Parameters:
hid_tplist_id IN: Dataset or group creation property list identifier.
H5Z filter_tfilter _id IN: Filter identifier.
unsigned int *flags OUT: Bit vector specifying certain general properties of the filter.
size_t *cd_nelmts IN/OUT: Number of elements in cd_values.
unsigned int *cd_values OUT: Auxiliary data for the filter.
size_tamelen IN: Length of filter name and number of elements in name][].
charname]] OUT: Name of filter.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

375

H5Pget filter_by id1l HDF5 Reference Manual

Fortran90 Interface: hbpget_filter_by id_f
See the H5Pget _filter_by id macro description.

History:
Release Change
1.6.0 Function introduced in this release.
1.8.0 Function H5Tget_filter_by id renamed to H5Tget_filter_by id1
and deprecated in this release.
1.85 Function extended to work with group creation property lists.

376

HDF5 Reference Manual H5Pget filter_by id2

Name: H5Pget_filter_by id2
Signature:
herr_tH5Pget filter_by id2(hid_t plist_id, H5Z filter_t filter_id, unsigned int
*flags, size_t *cd_nelmts, unsigned int cd_values|], size_t namelen, char name][], unsigned
int *filter_config)
Purpose:
Returns information about the specified filter.
Description:
H5Pget_filter_by id2 returns information about the filter specified in filter_id, a filter
identifier.

plist_id must be a dataset or group creation property list and filter_id must be in the associated
filter pipeline.

The filter_id and flags parameters are used in the same manner as described in the discussion of
H5Pset _filter.

Aside from the fact that they are used for output, the parameters cd_nelmts and cd_values[] are
used in the same manner as described in the discussion of H5Pset_filter. On input, the cd_nelmts
parameter indicates the number of entries in the cd_values|] array allocated by the calling program;
on exit it contains the number of values defined by the filter.

On input, the namelen parameter indicates the number of characters allocated for the filter name by the
calling program in the array name[]. On exit name[] contains the name of the filter with one character
of the name in each element of the array.

filter_config is the bit field described in H5Zget _filter_info.

If the filter specified in filter_id is not set for the property list, an error will be returned and
H5Pget_filter_by_id2 will fail.

Parameters:
hid_tplist_id IN: Dataset or group creation property list identifier.
H5Z filter_tfilter _id IN: Filter identifier.
unsigned int *flags OUT: Bit vector specifying certain general properties of the
filter.
size_t *cd_nelmts IN/OUT: Number of elements in cd_values.
unsigned int *cd_values OUT: Auxiliary data for the filter.
size_tamelen IN: Length of filter name and number of elements in name(].
charname]] OUT: Name of filter.
unsigned int *filter_config OUT: Bit field, as described in H5Zget _filter_info.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

377

H5Pget filter by id2 HDF5 Reference Manual

Fortran90 Interface: hbpget_filter_by id_f
See the H5Pget _filter_by id macro description.

History:
Release Change
1.8.0 Function introduced in this release.
1.85 Function extended to work with group creation property lists.

378

HDF5 Reference Manual H5Pget_gc_references

Name: H5Pget_gc_references

Signature:

herr_tH5Pget gc_references(hid_t plist, unsigned *gc_ref)
Purpose:

Returns garbage collecting references setting.
Description:

H5Pget_gc_references returns the current setting for the garbage collection references property
from the specified file access property list. The garbage collection references property is set by
H5Pset_gc_references.

Parameters:
hid_tplist IN: File access property list identifier.
unsignedyc_ref OUT: Flag returning the state of reference garbage collection. A returned value
of 1 indicates that garbage collection is on while 0 indicates that garbage
collection is off.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hSpget_gc_references_f
SUBROUTINE h5pget_gc_references_f (prp_id, gc_reference, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(OUT) :: gc_reference ! The flag for garbage collecting
I references for the file
INTEGER, INTENT(OUT) :: hdferr I Error code
I 0 on success and -1 on failure
END SUBROUTINE h5pget_gc_references_f

379

H5Pget_hyper_vector_size HDF5 Reference Manual

Name: H5Pget_hyper_vector_size

Signature:

herr_tH5Pget _hyper_vector_size(hid_t dxpl_id, size_t *vector_size)
Purpose:

Retrieves number of I/O vectors to be read/written in hyperslab 1/O.
Description:

H5Pset_hyper_vector_size retrieves the number of I/O vectors to be accumulated in memory
before being issued to the lower levels of the HDF5 library for reading or writing the actual data.

The number of I/O vectors set in the dataset transfer property list dxpl_id is returned in
vector_size. Unless the default value is in use, vector_size was previously set with a call to
H5Pset_hyper_vector_size.

Parameters:

hid_tdxpl_id IN: Dataset transfer property list identifier.

size_t *vector_size OUT: Number of I/0O vectors to accumulate in memory for I/O operations.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: hSpget_hyper_vector_size_f
SUBROUTINE h5pget_hyper_vector_size_f(plist_id, size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist_id ! Dataset transfer property list
I identifier
INTEGER(SIZE_T), INTENT(OUT) :: size ! Vector size
INTEGER, INTENT(OUT) > hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pget_hyper_vector_size_f

History:
Release C
1.6.0 Function introduced in this release.

380

HDF5 Reference Manual H5Pget_istore_k

Name: H5Pget _istore_k

Signature:

herr_tH5Pget istore_k(hid_t plist, unsigned * ik)
Purpose:

Queries the 1/2 rank of an indexed storage B-tree.
Description:

H5Pget_istore_k queries the 1/2 rank of an indexed storage B-tree. The argument ik may be the
null pointer (NULL). This function is only valid for file creation property lists.

See H5Pset_istore_k for details.

Parameters:

hid_tplist IN: Identifier of property list to query.

unsigned %k OUT: Pointer to location to return the chunked storage B-tree 1/2 rank.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_istore_k_f
SUBROUTINE h5pget_istore_k_f(prp_id, ik, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(OUT) :: ik I 1/2 rank of chunked storage B-tree

INTEGER, INTENT(OUT) :: hdferr I Error code
! 0 on success and -1 on failure
END SUBROUTINE h5pget_istore_k_f

History:
Release C
1.6.4 ik parameter type changed to unsigned.

381

H5Pget_layout HDF5 Reference Manual

Name: H5Pget_layout

Signature:

H5D layout_tH5Pget layout(hid_t plist)
Purpose:

Returns the layout of the raw data for a dataset.
Description:

H5Pget_layout returns the layout of the raw data for a dataset. This function is only valid for dataset
creation property lists.

Note that a compact storage layout may affect writing data to the dataset with parallel applications. See
note in H5Dwrite documentation for details.

Parameters:
hid_tplist IN: Identifier for property list to query.

Returns:
Returns the layout type (a non-negative value) of a dataset creation property list if successful. Valid return
values are:

H5D_COMPACT
Raw data is stored in the object header in the file.
H5D_CONTIGUOUS
Raw data is stored separately from the object header in one contiguous chunk in the file.
H5D_CHUNKED
Raw data is stored separately from the object header in chunks in separate locations in the
file.
Otherwise, returns a negative value indicating failure.
Fortran90 Interface: h5pget_layout_f
SUBROUTINE h5pget_layout_f (prp_id, layout, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(OUT) :: layout I Type of storage layout for raw data
I possible values are:
I H5D_COMPACT_F
I H5D_CONTIGUOUS F
! H5D_CHUNKED_F
INTEGER, INTENT(OUT) :: hdferr I Error code
! 0 on success and -1 on failure
END SUBROUTINE h5pget_layout_f

382

HDF5 Reference Manual H5Pget_libver_bounds

Name: H5Pget_libver_bounds

Signature:
herr_tH5Pget_libver_bounds(hid_t fapl_id, H5F_libver_t *libver_low, H5F_libver _t
*libver_high)

Purpose:
Retrieves library version bounds settings that indirectly control the format versions used when creating
objects.

Description:
H5Pget_libver_bounds retrieves the lower and upper bounds on the HDF5 Library versions that
indirectly determine the object formats versions used when creating objects in the file.

This property is retrieved from the file access property list specified by fapl_id.
Parameters:
hid_tfapl_id IN: File access property list identifier
H5F _libver_t *libver_low OUT: The earliest version of the library that will be used for writing
objects. The library version indirectly specifies the earliest object
format version that can be used when creating objects in the file.

Valid values of libver_low are as follows:

H5F_LIBVER_EARLIEST
H5F_LIBVER_18
H5F_LIBVER_LATEST

H5F _libver_t *libver_high OUT: The latest version of the library that will be used for writing
objects. The library version indirectly specifies the latest object
format version that can be used when creating objects in the file.

Valid values of libver_high are as follows:

H5F_LIBVER_18
H5F_LIBVER_LATEST

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.
1.8.6 H5F_LIBVER_18 version boundary setting added in this release.

383

H5Pget_link_creation_order HDF5 Reference Manual

Name: H5Pget_link_creation_order

Signature:

herr_tH5Pget_link_creation_order(hid_t gepl_id, unsigned *crt_order_flags)
Purpose:

Queries whether link creation order is tracked and/or indexed in a group.
Description:

H5Pget_link_creation_order queries the group creation property list, gcpl_id, and returns a
flag indicating whether link creation order is tracked and/or indexed in a group.

See H5Pset_link_creation_order for a list of valid creation order flags, as passed in
crt_order_flags, and their meanings.

Parameters:
hid_tgcpl_id IN: Group creation property list identifier
unsigned *crt_order_flags OUT: Creation order flag(s)

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_link_creation_order_f
SUBROUTINE h5pget_link_creation_order_f(gcpl_id, crt_order_flags, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: gcpl_id ! Group creation property list id
INTEGER, INTENT(OUT) :: crt_order_flags ! Creation order flag(s)
INTEGER, INTENT(OUT) :: hdferr I Error code
I 0 on success and -1 on failure
END SUBROUTINE h5pget_link_creation_order_f

History:
Release C
1.8.0 Function introduced in this release.

384

HDF5 Reference Manual H5Pget_link_phase_change

Name: H5Pget_link_phase_change

Signature:
herr_tH5Pget_link_phase_change(hid_t gepl_id, unsigned *max_compact, unsigned
*min_dense)

Purpose:
Queries the settings for conversion between compact and dense groups.

Description:
H5Pget_link_phase_change queries the maximum number of entries for a compact group and the
minimum number links to require before converting a group to a dense form.

In the compact format, links are stored as messages in the group’s header. In the dense format, links ar
stored in a fractal heap and indexed with a version 2 B-tree.

max_compact is the maximum number of links to store as header messages in the group header before
converting the group to the dense format. Groups that are in the compact format and exceed this numbe
of links are automatically converted to the dense format.

min_dense is the minimum number of links to store in the dense format. Groups which are in dense
format and in which the number of links falls below this number are automatically converted back to the
compact format.

In the compact format, links are stored as messages in the group’s header. In the dense format, links ar
stored in a fractal heap and indexed with a version 2 B-tree.

See H5Pset_link_phase_change for a discussion of traditional, compact, and dense group storage.
Parameters:

hid_tgcpl_id IN: Group creation property list identifier

unsigned *max_compact OUT: Maximum number of links for compact storage

unsigned *min_dense OUT: Minimum number of links for dense storage
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
SUBROUTINE h5pset_link_phase_change_f(gcpl_id, max_compact, min_dense, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: gcpl_id
I Group creation property list identifier
INTEGER, INTENT(IN) :: max_compact
I Maximum number of attributes to be stored
I'in compact storage
INTEGER, INTENT(IN) :: min_dense
I Minimum number of attributes to be stored
I'in dense storage
INTEGER, INTENT(OUT) :: hdferr ! Error code
I 0 on success and -1 on failure
END SUBROUTINE h5pset_link_phase_change_f

385

H5Pget_link_phase_change HDF5 Reference Manual

History:
Release C
1.8.0 Function introduced in this release.

386

HDF5 Reference Manual H5Pget_local_heap_size hint

Name: H5Pget_local_heap_size hint

Signature:

herr_tH5Pget local_heap_size hint(hid_t gepl_id, size_t *size_hint)
Purpose:

Retrieves the anticipated size of the local heap for original-style groups.
Description:

H5Pget_local_heap_size hint queries the group creation property list, gcpl_id, for the
anticipated size of the local heap, size_hint, for original-style groups, i.e., for groups of the style used
prior to HDF5 Release 1.8.0.

See H5Pset_local_heap_size hint for further discussion.

Parameters:
hid_tgcpl_id IN: Group creation property list identifier
size_t *size_hint OUT: Anticipated size of local heap
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:
SUBROUTINE h5pget_local_heap_size_hint_f(gcpl_id, size_hint, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: gcpl_id
I Group creation property list identifier
INTEGER(SIZE_T), INTENT(OUT) :: size_hint
I Hint for size of local heap
INTEGER, INTENT(OUT) :: hdferr ! Error code
I 0 on success and -1 on failure
END SUBROUTINE h5pget_local_heap_size_hint_f

History:
Release Change
1.8.0 Function introduced in this release.

387

H5Pget_mdc_config HDF5 Reference Manual

Name: H5Pget_mdc_config

Signature:

herr_tH5Pget _mdc_config(hid_t plist_id, HSAC_cache_config_t *config_ptr)
Purpose:

Get the current initial metadata cache configuration from the indicated File Access Property List.
Description:

H5Pget_mdc_config gets the initial metadata cache configuration contained in a file access property
list and loads it into the instance of HSAC_cache_config_t pointed to by the config_ptr
parameter. This configuration is used when the file is opened.

Note that the version field of *config_ptr must be initialized; this allows the library to support old
versions of the H5AC_cache_config_t structure.

See the overview of the metadata cache in the special topics section of the user guide for details on the
configuration data returned. If you haven't read and understood that documentation, the results of this call
will not make much sense.

Parameters:
hid_tplist_id IN: Identifier of the file access property list.
H5AC_cache_config_t *config_ptr IN/OUT: Pointer to the instance of

H5AC_cache_config_t in which the current metadata
cache configuration is to be reported. The fields of this
structure are discussed below:

General configuration section:

int version IN: Integer field indicating the the version of the
H5AC_cache_config_t in use. This field should be set to
H5AC__CURR_CACHE_CONFIG_VERSION (defined
in H5ACpublic.h).

hbool_trpt_fcn_enabled OUT: Boolean flag indicating whether the adaptive
cache resize report function is enabled. This field should
almost always be set to FALSE. Since resize algorithm
activity is reported via stdout, it MUST be set to FALSE
on Windows machines.

The report function is not supported code, and can be
expected to change between versions of the library. Use
it at your own risk.

hbool_topen_trace_file OUT: Boolean field indicating whether the
trace_file_name field should be used to open a
trace file for the cache. This field will always be set to
FALSE in this context.

hbool_tclose_trace_file OUT: Boolean field indicating whether the current trace
file (if any) should be closed. This field will always be
set to FALSE in this context.

char *trace_file_name OUT: Full path name of the trace file to be opened if the
open_trace_file field is TRUE. This field will
always be set to the empty string in this context.

388

HDF5 Reference Manual

hbool_tevictions_enabled

hbool_tset_initial_size
size_tinitial_size

doublemin_clean_fraction

size_tmax_size

size_tmin_size

int epoch_length

Increment configuration section:
enum H5C_cache_incr_moder_mode

doublelower_hr_threshold

doubleincrement

hbool_tapply_max_increment

size_tmax_increment

enum H5C_cache_flash_incr_mode
flash_incr_mode

H5Pget_mdc_config

OUT: Boolean flag indicating whether metadata cache
entry evictions will be enabled when the file is opened /
created.

OUT: Boolean flag indicating whether the cache should
be created with a user specified initial maximum size.

OUT: Initial maximum size of the cache in bytes, if
applicable.

OUT: Float value specifing the minimum fraction of the
cache that must be kept either clean or empty when
possible.

OUT: Upper bound (in bytes) on the range of values that
the adaptive cache resize code can select as the
maximum cache size.

OUT: Lower bound (in bytes) on the range of values that
the adaptive cache resize code can select as the
maximum cache size.

OUT: Number of cache accesses between runs of the
adaptive cache resize code.

OUT: Enumerated value indicating the operational mode
of the automatic cache size increase code. At present,
only the following values are legal:

H5C _incr__ off: Automatic cache size increase is
disabled.

H5C _incr__threshold: Automatic cache size increase is
enabled using the hit rate threshold algorithm.

OUT: Hit rate threshold used in the hit rate threshold
cache size increase algorithm.

OUT: The factor by which the current maximum cache
size is multiplied to obtain an initial new maximum
cache size if a size increase is triggered in the hit rate
threshold cache size increase algorithm.

OUT: Boolean flag indicating whether an upper limit
will be applied to the size of cache size increases.

OUT: The maximum number of bytes by which the
maximum cache size can be increased in a single step --
if applicable.

OUT: Enumerated value indicating the operational mode
of the flash cache size increase code. At present, only the
following values are legal:

H5C flash_incr__ off: Flash cache size increase is
disabled.

389

H5Pget_mdc_config

390

doubleflash_threshold

doubleflash_multiple

Decrement configuration section:
enum H5C_cache_decr_modecr_mode

doubleupper_hr_threshold

doubledecrement

hbool_tapply_max_decrement

size_tmax_decrement

int epochs_before_eviction

hbool_tapply_empty reserve

doubleempty_reserve

HDF5 Reference Manual

H5C_flash_incr__add_space: Flash cache size increase
is enabled using the add space algorithm.

OUT: The factor by which the current maximum cache
size is multiplied to obtain the minimum size entry /
entry size increase which may trigger a flash cache size
increase.

OUT: The factor by which the size of the triggering

entry / entry size increase is multiplied to obtain the

initial cache size increment. This increment may be
reduced to reflect existing free space in the cache and the
max_size field above.

OUT: Enumerated value indicating the operational mode
of the automatic cache size decrease code. At present,
the following values are legal:

H5C_decr__ off: Automatic cache size decrease is
disabled, and the remaining decrement fields are
ignored.

H5C_decr__threshold: Automatic cache size decrease is
enabled using the hit rate threshold algorithm.

H5C _decr__age_out: Automatic cache size decrease is
enabled using the ageout algorithm.

H5C _decr__age_out_with_threshold: Automatic cache
size decrease is enabled using the ageout with hit rate
threshold algorithm

OUT: Upper hit rate threshold. This value is only used if
the decr_mode is either H5C_decr__threshold or
H5C_decr__age_out_with_threshold.

OUT: Factor by which the current max cache size is
multiplied to obtain an initial value for the new cache
size when cache size reduction is triggered in the hit rate
threshold cache size reduction algorithm.

OUT: Boolean flag indicating whether an upper limit
should be applied to the size of cache size decreases.

OUT: The maximum number of bytes by which cache
size can be decreased if any single step, if applicable.

OUT: The minimum number of epochs that an entry
must reside unaccessed in cache before being evicted
under either of the ageout cache size reduction
algorithms.

OUT: Boolean flag indicating whether an empty reserve
should be maintained under either of the ageout cache
size reduction algorithms.

HDF5 Reference Manual H5Pget_mdc_config

OUT: Empty reserve for use with the ageout cache size
reduction algorithms, if applicable.

Parallel configuration section:

int dirty_bytes_threshold OUT: Threshold number of bytes of dirty metadata
generation for triggering synchronizations of the
metadata caches serving the target file in the parallel
case.

Synchronization occurs whenever the number of bytes of
dirty metadata created since the last synchronization
exceeds this limit.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

391

H5Pget_meta_block_size HDF5 Reference Manual

Name: H5Pget_meta_block_size

Signature:

herr_tH5Pget _meta_block_size(hid_t fapl_id, hsize_t *size)
Purpose:

Returns the current metadata block size setting.
Description:

H5Pget_meta_block_size returns the current minimum size, in bytes, of new metadata block
allocations. This setting is retrieved from the file access property list fapl_id.

This value is set by H5Pset_meta_block_size and is retrieved from the file access property list fapl_id.
Parameters:
hid_tfapl_id IN: File access property list identifier.
hsize_t *size OUT: Minimum size, in bytes, of metadata block allocations.
Returns:
Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface: hSpget_meta_block_size_f
SUBROUTINE h5pget_meta_block_size_f(plist_id, size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist_id ! File access property list
! identifier
INTEGER(HSIZE_T), INTENT(OUT) :: size ! Metadata block size
INTEGER, INTENT(OUT) :: hdferr ! Error code

1 0 on success and -1 on failure
END SUBROUTINE h5pget_meta_block_size_f

History:
Release C
1.4.0 Function introduced in this release.

392

HDF5 Reference Manual H5Pget_multi_type

Name: H5Pget_multi_type

Signature:

herr_tH5Pget_multi_type (hid_t fapl_id, HSFD_mem_t *type)
Purpose:

Retrieves type of data property for MULTI driver.
Description:

H5Pget_multi_type retrieves the type of data setting from the file access or data transfer property

list fapl_id. This enables a user application to specify the type of data the application wishes to access
so that the application can retrieve a file handle for low-level access to the particular member of a set of
MULTI files in which that type of data is stored. The file handle is retrieved with a separate call to
H5Fget_vfd_handle (or, in special circumstances, to H5FDget_vfd_handle; see Virtual File

Layer and List of VFL Functions in HDF5 Technical Notes).

The type of data returned in type will be one of those listed in the discussion of the type parameter in
the the description of the function H5Pset_multi_type.

Use of this function is only appropriate for an HDF5 file written as a set of files with the MULTI file

driver.

Parameters:
hid_tfapl_id IN: File access property list or data transfer property list identifier.
H5FD_mem_t *type OUT: Type of data.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.6.0 Function introduced in this release.

393

H5Pget_nfilters HDF5 Reference Manual

Name: H5Pget_nfilters

Signature:

int H5Pget_nfilters(hid_t plist)
Purpose:

Returns the number of filters in the pipeline.
Description:

H5Pget_nfilters returns the number of filters defined in the filter pipeline associated with the
property list plist.

In each pipeline, the filters are numbered from 0 through N-1, where N is the value returned by this
function. During output to the file, the filters are applied in increasing order; during input from the file,
they are applied in decreasing order.

H5Pget_nfilters returns the number of filters in the pipeline, including zero (0) if there are none.

Note:
This function currently supports only the permanent filter pipeline; plist_id must be a dataset creation
property list.

Parameters:
hid_tplist IN: Property list identifier.

Returns:

Returns the number of filters in the pipeline if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_nfilters_f
SUBROUTINE h5pget_nfilters_f(prp_id, nfilters, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: prp_id ! Dataset creation property
! list identifier

INTEGER, INTENT(OUT) :: nfilters I The number of filters in
I the pipeline

INTEGER, INTENT(OUT) ;> hdferr ! Error code

1 0 on success and -1 on failure
END SUBROUTINE h5pget_nfilters_f

394

HDF5 Reference Manual H5Pget_nlinks

Name: H5Pget_nlinks

Signature:

herr_tH5Pget nlinks(hid_t lapl_id, size_t *nlinks)
Purpose:

Retrieves the maximum number of link traversals.
Description:

H5Pget_nlinks retrieves the maximum number of soft or user-defined link traversals allowed,
nlinks, before the library assumes it has found a cycle and aborts the traversal. This value is retrieved
from the link access property list lapl_id.

The limit on the number soft or user-defined link traversals is designed to terminate link traversal if one
or more links form a cycle. User control is provided because some files may have legitimate paths forme
of large numbers of soft or user-defined links. This property can be used to allow traversal of as many
links as desired.

Parameters:

hid_tfapl_id IN: File access property list identifier

size_t *nlinks OUT: Maximum number of links to traverse
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_nlinks_f
SUBROUTINE h5pget_nlinks_f(lapl_id, nlinks, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: lapl_id
! File access property list identifier
INTEGER(SIZE_T), INTENT(OUT) :: nlinks
I Maximum number of links to traverse
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5pget_nlinks_f

History:
Release C
1.8.0 Function introduced in this release.

395

H5Pget_nprops HDF5 Reference Manual

Name: H5Pget_nprops

Signature:

int H5Pget_nprops(hid_t id, size_t *nprops)
Purpose:

Queries number of properties in property list or class.
Description:

H5Pget_nprops retrieves the number of properties in a property list or class. If a property class
identifier is given, the number of registered properties in the class is returned in nprops. If a property
list identifier is given, the current number of properties in the list is returned in nprops.

Parameters:

hid_tid IN: Identifier of property object to query

size_t *nprops OUT: Number of properties in object
Returns:

Success: a hon-negative value

Failure: a negative value

Fortran90 Interface: h5Spget_nprops_f

SUBROUTINE h5pget_nprops_f(prp_id, nprops, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER(SIZE_T), INTENT(OUT) :: nprops ! Number of properties
INTEGER, INTENT(OUT) :: hdferr I Error code

I 0 on success and -1 on failure
END SUBROUTINE h5pget_nprops_f

396

HDF5 Reference Manual H5Pget_obj_track time

Name: H5Pget_obj_track_times

Signature:

herr_tH5Pget_obj_track times(hid_t ocpl_id, hbool_t *track_times)
Purpose:

Determines whether times associated with an object are being recorded.
Description:

H5get_obj_track times queries the object creation property list, ocpl_id, to determine whether
object times are being recorded.

If track_times is returned as TRUE, times are being recorded; if track_times is returned as
FALSE, times are not being recorded.

Time data can be retrieved with H50get _info, which will return it in the H50 _info_t struct.

If times are not tracked, they will be reported as follows when queried:
12:00 AM UDT, Jan. 1, 1970

See H5Pset_obj_track_times for further discussion.

Parameters:
hid_tocpl_id IN: Object creation property list identifier
hbool_t *track_times OUT: Boolean value, TRUE or FALSE, specifying whether object times
are being recorded
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_obj_track_times_f
SUBROUTINE h5pget_obj_track_times_f(plist_id, flag, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist_id
| Dataset creation property
! list identifier
LOGICAL, INTENT(OUT) :: flag ! Object timestamp setting
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pget_obj_track_times_f

History:
Release C
1.8.0 Function introduced in this release.

397

H5Pget_preserve HDF5 Reference Manual

Name: H5Pget_preserve

Signature:

int H5Pget_preserve(hid_t plist)
Purpose:

Checks status of the dataset transfer property list.
Notice:

This function is deprecated as it is no longer useful; compound datatype field preservation is now core
functionality in the HDF5 Library.

Description:

H5Pget_preserve checks the status of the dataset transfer property list.
Parameters:

hid_tplist IN: Identifier for the dataset transfer property list.
Returns:

Returns TRUE or FALSE if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_preserve_f
SUBROUTINE h5pget_preserve_f(prp_id, flag, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Dataset transfer property
! list identifier
LOGICAL, INTENT(OUT) ::flag ! Status of for the dataset
I transfer property list
INTEGER, INTENT(OUT) ;> hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pget_preserve_f

History:
Release Fortran90

1.6.0 The flag parameter was changed from INTEGER to LOGICAL to better match
the C API.

398

HDF5 Reference Manual H5Pget_shared_mesg_index

Name: H5Pget_shared_mesg_index

Signature:
herr_tH5Pget shared_mesg_index(hid_t fcpl_id, unsigned index_num, unsigned
*mesg_type_flags, unsigned *min_mesg_size)

Purpose:
Retrieves the configuration settings for a shared message index.

Description:
H5Pget_shared_mesg_index retrieves the message type and minimum message size settings from
the file creation property list fcpl_id for the shared object header message index specified by
index_num.

index_num specifies the index. index_num is zero-indexed, so in a file with three indexes, they will
be numbered 0, 1, and 2.

mesg_type_flags and min_mesg_size will contain, respectively, the types of messages and the
minimum size, in bytes, of messages that can be stored in this index.

Valid message types are described in H5Pset_shared_mesg_index.

Parameters:
hid_tfcpl_id IN: File creation property list identifier.
unsignedndex_num IN: Index being configured.
unsigned *mesg_type_flags OUT: Types of messages that may be stored in this index.
unsigned *min_mesg_size OUT: Minimum message size.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

399

H5Pget_shared_mesg_nindexes HDF5 Reference Manual

Name: H5Pget_shared_mesg_nindexes
Signature:
herr_tH5Pget shared_mesg_nindexes(hid_t fcpl_id, unsigned *nindexes)
Purpose:
Retrieves number of shared object header message indexes in file creation property list.
Description:
H5Pget_shared_mesg_nindexes retrieves the number of shared object header message indexes in
the specified file creation property list fcpl_id.

If the value of nindexes is 0 (zero), shared object header messages are disabled in files created with
this property list.
Parameters:
hid_tfcpl_id IN: File creation property list
unsigned *nindexes OUT: Number of shared object header message indexes available in files
created with this property list
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

400

HDF5 Reference Manual H5Pget_shared_mesg_phase_change

Name: H5Pget_shared_mesg_phase_change

Signature:
herr_tH5Pget shared_mesg_phase change(hid_t fcpl_id, unsigned *max_list, unsigned
*min_btree)

Purpose:
Retrieves shared object header message phase change information.

Description:
H5Pget_shared_mesg_phase_change retrieves the threshold values for storage of shared object
header message indexes in a file. These phase change thresholds determine the point at which the inde
storage mechanism changes from a more compact list format to a more performance-oriented B-tree
format, and vice-versa.

By default, a shared object header message index is initially stored as a compact list. When the number
messages in an index exceeds the specified max_list threshold, storage switches to a B-tree format for
impoved performance. If the number of messages subsequently falls below the min_btree threshold,
the index will revert to the list format.

If max_compact is set to 0 (zero), shared object header message indexes in the file will always be
stored as B-trees.

fcpl_id specifies the file creation property list.
Parameters:
hid_tfcpl_id IN: File creation property list identifier
unsigned *max_compact OUT: Threshold above which storage of a shared object header message
index shifts from list to B-tree
unsigned *min_btree OUT: Threshold below which storage of a shared object header message
index reverts to list format
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

401

H5Pget_sieve buf_size HDF5 Reference Manual

Name: H5Pget_sieve buf size

Signature:
herr_tH5Pget_sieve_buf_size(hid_t fapl_id, size_t *size)
Purpose:
Returns maximum data sieve buffer size.
Description:
H5Pget_sieve_buf_size retrieves, size, the current maximum size of the data sieve buffer.

This value is set by H5Pset_sieve_buf_size and is retrieved from the file access property list

fapl_id.
Parameters:

hid_tfapl_id IN: File access property list identifier.

size_t *size IN: Maximum size, in bytes, of data sieve buffer.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: hS5pget_sieve_buf_size_f
SUBROUTINE h5pget_sieve_buf_size_f(plist_id, size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist_id ! File access property list
I identifier
INTEGER(SIZE_T), INTENT(OUT) :: size ! Sieve buffer size
INTEGER, INTENT(OUT) > hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pget_sieve_buf_size_f

History:
Release C
1.6.0 The size parameter has changed from type hsize_t to size t.
1.4.0 Function introduced in this release.

402

HDF5 Reference Manual H5Pget_size

Name: H5Pget_size

Signature:

int H5Pget_size(hid_t id, const char *name, size_t *size)
Purpose:

Queries the size of a property value in bytes.
Description:

H5Pget_size retrieves the size of a property's value in bytes. This function operates on both property
lists and property classes

Zero-sized properties are allowed and return 0.

Parameters:
hid_tid IN: Identifier of property object to query
const char *name IN: Name of property to query
size_t *size OUT: Size of property in bytes
Returns:

Success: a hon-negative value
Failure: a negative value

Fortran90 Interface: h5pget_size f

SUBROUTINE h5pget_size_f(prp_id, name, size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
CHARACTER(LEN=*), INTENT(IN) :: name ! Name of property to query
INTEGER(SIZE_T), INTENT(OUT) :: size ! Size in bytes
INTEGER, INTENT(OUT) :: hdferr ! Error code

1 0 on success and -1 on failure
END SUBROUTINE h5pget_size_f

403

H5Pget_sizes HDF5 Reference Manual

Name: H5Pget_sizes
Signature:
herr_tH5Pget_sizes(hid_t plist, size t* sizeof addr, size_t* sizeof size)
Purpose:
Retrieves the size of the offsets and lengths used in an HDF5 file.
Description:
H5Pget_sizes retrieves the size of the offsets and lengths used in an HDF5 file. This function is only
valid for file creation property lists.

Parameters:
hid_tplist IN: Identifier of property list to query.
size_t *size OUT: Pointer to location to return offset size in bytes.
size_t *size OUT: Pointer to location to return length size in bytes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_sizes_f
SUBROUTINE h5pget_sizes_f(prp_id, sizeof_addr, sizeof_size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER(SIZE_T), DIMENSION(:), INTENT(OUT) :: sizeof_addr
! Size of an object address in bytes
INTEGER(SIZE_T), DIMENSION(:), INTENT(OUT) :: sizeof_size
| Size of an object in bytes
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pget_sizes_f

404

HDF5 Reference Manual H5Pget_small_data_block_size

Name: H5Pget_small_data block_size
Signature:
herr_tH5Pget small_data_block_size(hid_t fapl_id, hsize_t *size)
Purpose:
Retrieves the current small data block size setting.
Description:
H5Pget_small_data_block_size retrieves the current setting for the size of the small data block.

If the returned value is zero (0), the small data block mechanism has been disabled for the file.
Parameters:

hid_tfapl_id IN: File access property list identifier.
hsize_t *size OUT: Maximum size, in bytes, of the small data block.
Returns:

Returns a non-negative value if successful; otherwise a negative value.

Fortran90 Interface: hS5pget_small_data_block_size_f
SUBROUTINE h5pget_small_data_block_size_f(plist_id, size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist_id ! File access property list
I identifier
INTEGER(HSIZE_T), INTENT(OUT) :: size ! Small raw data block size
INTEGER, INTENT(OUT) :: hdferr ! Error code
I 0 on success and -1 on failure
END SUBROUTINE h5pget_small_data_block_size_f

History:
Release C
1.4.4 Function introduced in this release.

405

H5Pget_sym_k HDF5 Reference Manual

Name: H5Pget_sym_k
Signature:
herr_tH5Pget _sym_k(hid_t plist, unsigned * ik, unsigned * Ik)
Purpose:
Retrieves the size of the symbol table B-tree 1/2 rank and the symbol table leaf node 1/2 size.
Description:
H5Pget_sym_Kk retrieves the size of the symbol table B-tree 1/2 rank and the symbol table leaf node 1/2
size. This function is only valid for file creation property lists. If a parameter valued is set to NULL, that
parameter is not retrieved. See the description for H5Pset_sym_k for more information.
Parameters:
hid_tplist IN: Property list to query.
unsigned %k OUT: Pointer to location to return the symbol table's B-tree 1/2 rank.

unsigned *size OUT: Pointer to location to return the symbol table's leaf node 1/2 size.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_sym_k_f
SUBROUTINE h5pget_sym_k_f(prp_id, ik, Ik, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(OUT) :: ik I Symbol table tree rank
INTEGER, INTENT(OUT) :: Ik ! Symbol table node size
INTEGER, INTENT(OUT) :: hdferr ! Error code

10 on success and -1 on failure
END SUBROUTINE h5pget_sym_k_f

History:
Release C
1.6.4 ik parameter type changed to unsigned
1.6.0 The ik parameter has changed from type int to unsigned

406

HDF5 Reference Manual H5Pget_type conv_cb

Name: H5Pget_type conv_cb

Signature:

herr_tH5Pget type _conv_cb(hid_t plist, HST conv_except_func_t *func, void **op_data)
Purpose:

Gets user-defined datatype conversion callback function.
Description:

H5Pget_type conv_ch gets the user-defined datatype conversion callback function func in the
dataset transfer property list plist.

The parameter op_data is a pointer to user-defined input data for the callback function.

The callback function func defines the actions an application is to take when there is an exception
during datatype conversion.

Please refer to the function H5Pset_type conv_cb for more details.

Parameters:
hid_tplist IN: Dataset transfer property list identifier.
H5T_conv_except_func_t *func OUT: User-defined type conversion callback function.
void **op_data OUT: User-defined input data for the callback function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:
None.

407

H5Pget_userblock HDF5 Reference Manual

Name: H5Pget_userblock
Signature:
herr_tH5Pget _userblock(hid_t plist, hsize_t* size)
Purpose:
Retrieves the size of a user block.
Description:
H5Pget_userblock retrieves the size of a user block in a file creation property list.
Parameters:
hid_tplist IN: Identifier for property list to query.
hsize_t *size OUT: Pointer to location to return user-block size.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: hS5pget_userblock_f
SUBROUTINE h5pget_userblock_f(prp_id, block_size, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER(HSIZE_T), DIMENSIONC(:), INTENT(OUT) :: block_size
I Size of the user-block in bytes
INTEGER, INTENT(OUT) :: hdferr I Error code

1 0 on success and -1 on failure
END SUBROUTINE h5pget_userblock_f

408

HDF5 Reference Manual H5Pget_version

Name: H5Pget_version
Signature:
herr_tH5Pget version(hid_t plist, unsigned * super, unsigned * freelist, unsigned *
stab, unsigned * shhdr)
Purpose:
Retrieves the version information of various objects for a file creation property list.
Description:
H5Pget_version retrieves the version information of various objects for a file creation property list.
Any pointer parameters which are passed as NULL are not queried.

Parameters:
hid_tplist IN: Identifier of the file creation property list.
unsigned *super OUT: Poainter to location to return super block version number.
unsigned *freelist OUT: Pointer to location to return global freelist version number.
unsigned *stab OUT: Pointer to location to return symbol table version number.
unsigned *shhdr OUT: Pointer to location to return shared object header version number.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hSpget_version_f
SUBROUTINE h5pget_version_f(prp_id, boot, freelist, &
stab, shhdr, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, DIMENSION(:), INTENT(OUT) :: boot ! Array to put boot block
I version number
INTEGER, DIMENSIONC(:), INTENT(OUT) :: freelist
I Array to put global
I freelist version number
INTEGER, DIMENSION(:), INTENT(OUT) :: stab ! Array to put symbol table
I'version number
INTEGER, DIMENSIONY(:), INTENT(OUT) :: shhdr ! Array to put shared object
I header version humber
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pget_version_f

History:
Release C
1.6.4 boot, freelist, stab, shhdr parameter types changed to unsigned.

409

H5Pget_vlen_mem_manager HDF5 Reference Manual

Name: H5Pget_vlen_mem_manager

Signature:
herr_tH5Pget vlen_mem_manager(hid_t plist, HSMM_allocate _t *alloc, void
**alloc_info, HSMM_free_t *free, void **free_info)

Purpose:
Gets the memory manager for variable-length datatype allocation in H5Dread and
H5Dvlen_reclaim.

Description:
H5Pget_vlen_mem_manager is the companion function to H5Pset_vlen_mem_manager,
returning the parameters set by that function.

Parameters:
hid_tplist IN: Identifier for the dataset transfer property list.
H5MM _allocate talloc OUT: User's allocate routine, or NULL for system malloc.
void *alloc_info OUT: Extra parameter for user's allocation routine.
Contents are ignored if preceding parameter is NULL.
H5MM _free_tfree OUT: User's free routine, or NULL for system free.
void *free_info OUT: Extra parameter for user's free routine.
Contents are ignored if preceding parameter is NULL.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:
None.

410

HDF5 Reference Manual H5Pinsert

Name: H5Pinsert

Signatures:
herr_tH5Pinsert(hid_t plid, const char *name, size_t size, [1]
void *value, H5P_prp_set _func_tset, H5P_prp_get func_tget,
H5P_prp_delete_func delete, HS5P_prp_copy_func_t copy,
H5P_prp_close_func dlose)

herr_tH5Pinsert(hid_t plid, const char *name, size_t size, [2]
void *value, H5P_prp_set_func_tset, H5P_prp_get_func_tget,
H5P_prp_delete_func delete, H5P_prp_copy_func_t copy,
H5P_prp_compare_funccompare, H5P_prp_close_func_tlose)
Purpose:
Registers a temporary property with a property list.
Description:
H5Pinsert is a macro that is mapped to either H5Pinsertl or H5Pinsert2, depending on the
needs of the application.

Such macros are provided to facilitate application compatibility. For example:

¢ The H5Pinsert macro will be mapped to H5Pinsertl and will use the H5Pinsertl
syntax (first signature above) if an application is coded for HDF5 Release 1.6.x.
¢ The H5Pinsert macro mapped to H5Pinsert2 and will use the H5Pinsert2 syntax
(second signature above) if an application is coded for HDF5 Release 1.8.x.
Macro use and mappings are fully described in “API Compatibility Macros in HDF5” we urge you to read
that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Pinsert is mapped to the most recent version of the function, currently H5Pinsert2. If the
library and/or application is compiled for Release 1.6 emulation, H5Pinsert will be mapped to
H5Pinsertl. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Pinsert mapping

Global settings
No compatibility flag H5Pinsert2

Enable deprecated symbols H5Pinsert2
Disable deprecated symbols H5Pinsert2

Emulate Release 1.6 interface H5Pinsertl

411

H5Pinsert HDF5 Reference Manual

Function-level macros
H5Pinsert_vers =2 H5Pinsert2

H5Pinsert_vers =1 H5Pinsertl

Interface history: Signature [1] above is the original H5Pinsert interface and the only interface
available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now deprecated
but will remain directly callable as H5Pinsert1.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Pinsert2.

See “AP| Compatibility Macros in HDF5” for circumstances under which either of these functions might
not be available in an installed instance of the HDF5 Library.

Fortran90 Interface: h5pinsert_f

SUBROUTINE h5pinsert_f
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist ! Property list class identifier
CHARACTER(LEN=%), INTENT(IN) :: name ! Name of property to insert
INTEGER(SIZE_T), INTENT(IN) :: size ! Size of the property value
TYPE, INTENT(IN) :: value ! Property value
! Supported types are:
I INTEGER
! REAL
! DOUBLE PRECISION
I CHARACTER(LEN=%)
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pinsert_f

History:

412

Release C

1.8.0 The function H5Pinsert renamed to H5Pinsertl and deprecated in this
release.
The macro H5Pinsert and the function H5Pinsert2 introduced in this
release.

HDF5 Reference Manual H5Pinsertl

Name: H5Pinsertl

Signature:
herr_tH5Pinsertl(hid_t plid, const char *name, size_tsize, void *value, H5P_prp_set func_t
set, H5P_prp_get func_tget, H5P_prp_delete_func_telete, H5P_prp_copy_func_t copy,
H5P_prp_close_func dlose)

Purpose:
Registers a temporary property with a property list.

Notice:
This function is renamed from H5Pinsert and deprecated in favor of the function H5Pinsert2 or the
new macro H5Pinsert.

Description:
H5Pinsertl create a new property in a property list. The property will exist only in this property list
and copies made from it.

The initial property value must be provided in value and the property value will be set accordingly.
The name of the property must not already exist in this list, or this routine will fail.

The set and get callback routines may be set to NULL if they are not needed.

Zero-sized properties are allowed and do not store any data in the property list. The default value of a
zero-size property may be set to NULL. They may be used to indicate the presence or absence of a

particular piece of information.

The set routine is called before a new value is copied into the property. The H5P_prp_set func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_set_func_t)(hid_t prop_id, const char *name, size_t size, void
*new_value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being modified
const char *name IN: The name of the property being modified
size_tsize IN: The size of the property in bytes

void **new_value IN: Pointer to new value pointer for the property being modified
The set routine may modify the value pointer to be set and those changes will be used when setting the
property's value. If the set routine returns a negative value, the new property value is not copied into the
property and the set routine returns an error value. The set routine will be called for the initial value.

Note: The set callback function may be useful to range check the value being set for the property or
may perform some transformation or translation of the value set. The get callback would then reverse
the transformation or translation. A single get or set callback could handle multiple properties by
performing different actions based on the property name or other properties in the property list.

The get routine is called when a value is retrieved from a property value. The H5P_prp_get_func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_get func_t)(hid_t prop_id, const char *name, size_t size, void
*value);

413

H5Pinsertl HDF5 Reference Manual

414

The parameters to the above callback function are:

hid_tprop._id IN: The identifier of the property list being

queried
const char *name IN: The name of the property being queried
size_tsize IN: The size of the property in bytes
void *value IN: The value of the property being returned

The get routine may modify the value to be returned from the query and those changes will be
preserved. If the get routine returns a negative value, the query routine returns an error value.

The delete routine is called when a property is being deleted from a property list. The
H5P_prp_delete_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_delete_func_t)(hid_t prop_id, const char *name, size t
size, void *value);

The parameters to the above callback function are:

hid_tprop_id IN: The identifier of the property list the property is being deleted from
const char *name IN: The name of the property in the list

size_tsize IN: The size of the property in bytes

void * value IN: The value for the property being deleted

The delete routine may modify the value passed in, but the value is not used by the library when the
delete routine returns. If the delete routine returns a negative value, the property list delete routine
returns an error value but the property is still deleted.

The copy routine is called when a new property list with this property is being created through a copy
operation. The H5P_prp_copy_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_copy_func_t)(const char *name, size_t size, void *value);

The parameters to the above callback function are:

const char *name IN: The name of the property being copied
size_tsize IN: The size of the property in bytes

void * value IN/OUT: The value for the property being copied
The copy routine may modify the value to be set and those changes will be stored as the new value of the
property. If the copy routine returns a negative value, the new property value is not copied into the
property and the copy routine returns an error value.

The close routine is called when a property list with this property is being closed. The
H5P_prp_close_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_close_func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being closed
const char *name IN: The name of the property in the list

HDF5 R

eference Manual H5Pinsertl
size_t size IN: The size of the property in bytes
void *value IN: The value for the property being closed

The close routine may modify the value passed in, the value is not used by the library when the close
routine returns. If the close routine returns a negative value, the property list close routine returns an
error value but the property list is still closed.

Note: There is no create callback routine for temporary property list objects; the initial value is
assumed to have any necessary setup already performed on it.

Parameters:
hid_tplid IN: Property list identifier to create temporary property within
const char *name IN: Name of property to create
size_tsize IN: Size of property in bytes
void *value IN: Initial value for the property
H5P_prp_set_func det IN: Callback routine called before a new value is copied into the
property's value
H5P_prp_get_func_det IN: Callback routine called when a property value is retrieved
from the property
H5P_prp_delete_func delete IN: Callback routine called when a property is deleted from a
property list
H5P_prp_copy_func dopy IN: Callback routine called when a property is copied from an
existing property list
H5P_prp_close_func dlose IN: Callback routine called when a property list is being closed
and the property value will be disposed of
Returns:

Success: a non-negative value
Failure: a negative value

Fortran90 Interface: h5pinsert_f

History:

SUBROUTINE h5pinsert_f
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist ! Property list class identifier
CHARACTER(LEN=%), INTENT(IN) :: name ! Name of property to insert
INTEGER(SIZE_T), INTENT(IN) :: size ! Size of the property value
TYPE, INTENT(IN) :: value ! Property value
! Supported types are:
I INTEGER
I REAL
! DOUBLE PRECISION
I CHARACTER(LEN=¥)
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5pinsert_f

Release C
1.8.0 Function H5Pinsert renamed to H5Pinsertl and deprecated in this release.

415

H5Pinsert2 HDF5 Reference Manual

Name: H5Pinsert2

Signature:
herr_tH5Pinsert2(hid_t plid, const char *name, size_tsize, void *value, H5P_prp_set func_t
set, H5P_prp_get func_tget, H5P_prp_delete_func_telete, H5P_prp_copy_func_t copy,
H5P_prp_compare_funccbmpare, H5P_prp_close_func_tlose)

Purpose:
Registers a temporary property with a property list.

Description:
H5Pinsert2 create a new property in a property list. The property will exist only in this property list
and copies made from it.

The initial property value must be provided in value and the property value will be set accordingly.
The name of the property must not already exist in this list, or this routine will fail.

The set and get callback routines may be set to NULL if they are not needed.

Zero-sized properties are allowed and do not store any data in the property list. The default value of a
zero-size property may be set to NULL. They may be used to indicate the presence or absence of a

particular piece of information.

The set routine is called before a new value is copied into the property. The H5P_prp_set func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_set_func_t)(hid_t prop_id, const char *name, size_t size, void
*new_value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being modified
const char *name IN: The name of the property being modified
size_tsize IN: The size of the property in bytes

void **new_value IN: Pointer to new value pointer for the property being modified
The set routine may modify the value pointer to be set and those changes will be used when setting the
property's value. If the set routine returns a negative value, the new property value is not copied into the
property and the set routine returns an error value. The set routine will be called for the initial value.

Note: The set callback function may be useful to range check the value being set for the property or
may perform some transformation or translation of the value set. The get callback would then reverse
the transformation or translation. A single get or set callback could handle multiple properties by
performing different actions based on the property name or other properties in the property list.

The get routine is called when a value is retrieved from a property value. The H5P_prp_get_func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_get func_t)(hid_t prop_id, const char *name, size_t size, void
*value);

The parameters to the above callback function are:

416

HDF5 Reference Manual H5Pinsert2

IN: The identifier of the property list being

hid_tprop_id queried

const char *name IN: The name of the property being queried
size_tsize IN: The size of the property in bytes

void *value IN: The value of the property being returned

The get routine may modify the value to be returned from the query and those changes will be
preserved. If the get routine returns a negative value, the query routine returns an error value.

The delete routine is called when a property is being deleted from a property list. The
H5P_prp_delete_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_delete_func_t)(hid_t prop_id, const char *name, size t
size, void *value);

The parameters to the above callback function are:

hid_tprop_id IN: The identifier of the property list the property is being deleted from
const char *name IN: The name of the property in the list

size_tsize IN: The size of the property in bytes

void * value IN: The value for the property being deleted

The delete routine may modify the value passed in, but the value is not used by the library when the
delete routine returns. If the delete routine returns a negative value, the property list delete routine
returns an error value but the property is still deleted.

The copy routine is called when a new property list with this property is being created through a copy
operation. The H5P_prp_copy_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_copy_func_t)(const char *name, size_t size, void *value);

The parameters to the above callback function are:

const char *name IN: The name of the property being copied
size_tsize IN: The size of the property in bytes

void * value IN/OUT: The value for the property being copied

The copy routine may modify the value to be set and those changes will be stored as the new value of ti
property. If the copy routine returns a negative value, the new property value is not copied into the
property and the copy routine returns an error value.

The compare routine is called when a property list with this property is compared to another property
list with the same property. The H5P_prp_compare_func_t callback function is defined as follows:

typedef int (*H5P_prp_compare_func_t)(const void *valuel, const void *value2, size_t
size); The parameters to the callback function are defined as follows:

const void *valuel IN: The value of the first property to compare
const void *value2 IN: The value of the second property to compare
size_tsize IN: The size of the property in bytes

417

H5Pinsert2 HDF5 Reference Manual

The compare routine may not modify the values. The compare routine should return a positive value if
valuel is greater than value2, a negative value if value2 is greater than valuel and zero if
valuel and value2 are equal.

The close routine is called when a property list with this property is being closed. The
H5P_prp_close_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_close_func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being closed
const char *name IN: The name of the property in the list

size_t size IN: The size of the property in bytes

void *value IN: The value for the property being closed

The close routine may modify the value passed in, the value is not used by the library when the close
routine returns. If the close routine returns a negative value, the property list close routine returns an
error value but the property list is still closed.

Note: There is no create callback routine for temporary property list objects; the initial value is
assumed to have any necessary setup already performed on it.

Parameters:

hid_tplid IN: Property list identifier to create temporary property within

const char *name IN: Name of property to create

size_tsize IN: Size of property in bytes

void *value IN: Initial value for the property

H5P_prp_set_func det IN: Callback routine called before a new value is copied into the
property's value

H5P_prp_get func_det IN: Callback routine called when a property value is retrieved
from the property

H5P_prp_delete func delete IN: Callback routine called when a property is deleted from a
property list

H5P_prp_copy_func_dopy IN: Callback routine called when a property is copied from an

existing property list
H5P_prp_compare_funccompare IN: Callback routine called when a property is compared with
another property list

H5P_prp_close_func dlose IN: Callback routine called when a property list is being closed
and the property value will be disposed of
Returns:
Success: a non-negative value
Failure: a negative value
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

418

HDF5 Reference Manual H5Pisa_class

Name: H5Pisa_class

Signature:
htri_t H5Pisa_class(hid_t plist, hid_t pclass)
Purpose:
Determines whether a property list is a member of a class.
Description:
H5Pisa_class checks to determine whether the property list plist is a member of the property list
class pclass.
Parameters:
hid_tplist IN: Property list identifier
hid t pclass IN: Property list class identifier
Returns:

Returns a positive value if true or zero if false; returns a negative value on failure.
See Also:
H5Pcreate

Fortran90 Interface: h5pisa_class_f
SUBROUTINE hb5pisa_class_f(plist, pclass, flag, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist ! Property list identifier
INTEGER(HID_T), INTENT(IN) :: pclass ! Class identifier
LOGICAL, INTENT(OUT) :: flag ! Logical flag
I .TRUE. if a member
I .FALSE. otherwise
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
END SUBROUTINE hb5pisa_class_f

419

H5Piterate HDF5 Reference Manual

Name: H5Piterate
Purpose:
Iterates over properties in a property class or list.
Signature:
int H5Piterate(hid_t id, int* idx, H5P_iterate titer_func, void * iter_data)
Description:

H5Piterate iterates over the properties in the property object specified in id, which may be either a property
list or a property class, performing a specified operation on each property in turn.

For each property in the object, iter_func and the additional information specified below are passed to the
H5P_iterate_t operator function.

The iteration begins with the idx-th property in the object; the next element to be processed by the operator is
returned in idx. If idx is NULL, the iterator starts at the first property; since no stopping point is returned in this
case, the iterator cannot be restarted if one of the calls to its operator returns non-zero.

The prototype for the H5P_iterate_t operator is as follows:

typedef herr_t (*H5P_iterate_t)(hid_t id, const char *name, void *iter_data)
The operation receives the property list or class identifier for the object being iterated over, id, the name of the
current property within the object, name, and the pointer to the operator data passed in to H5Piterate,
iter_data.

The valid return values from an operator are as follows:

Zero Causes the iterator to continue, returning zero when all properties have been processed

Positive Causes the iterator to immediately return that positive value, indicating short-circuit success.
The iterator can be restarted at the index of the next property

NegativeCauses the iterator to immediately return that value, indicating failure. The iterator can be
restarted at the index of the next property
H5Piterate assumes that the properties in the object identified by id remain unchanged through the iteration.
If the membership changes during the iteration, the function's behavior is undefined.
Parameters:

hid_tid IN: Identifier of property object to iterate over
int * idx IN/OUT: Index of the property to begin with

IN: Function pointer to function to be called with each property
iterated over

void * iter_data IN/OUT: Pointer to iteration data from user
Returns:
Success: the return value of the last call to iter_func if it was non-zero; zero if all properties have
been processed
Failure: a negative value
Fortran90 Interface:
None.

H5P_iterate_titer_func

420

HDF5 Reference Manual H5Pmodify_filter

Name: H5Pmodify_filter

Signature:
herr_tH5Pmodify_filter(hid_t plist_id, H5Z_filter_t filter_id, unsigned int flags,
size_tcd_nelmts, const unsigned int cd_values|])

Purpose:
Modifies a filter in the filter pipeline.

Description:
H5Pmodify_filter modifies the specified filter_id in the filter pipeline. plist_id must be a
dataset or group creation property list.

The filter_id, flags cd_nelmts[], and cd_values parameters are used in the same manner
and accept the same values as described in the discussion of H5Pset_filter.
Parameters:

hid_tplist_id IN: Dataset or group creation property list identifier.
H5Z filter_tfilter _id IN: Filter to be modified.
unsigned inflags IN: Bit vector specifying certain general properties of the
filter.
size_tcd_nelmts IN: Number of elements in cd_values.
const unsigned irtd_values]] IN: Auxiliary data for the filter.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hSpmodify_filter_f
SUBROUTINE h5pmodify_filter_f(prp_id, filter, flags, cd_nelmts, &
cd_values, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(IN) - filter ! Filter to be modified
INTEGER, INTENT(IN) . flags ! Bit vector specifying certain

I general properties of the filter
INTEGER(SIZE_T), INTENT(IN) :: cd_nelmts ! Number of elements in cd_values
INTEGER, DIMENSION(*), INTENT(IN) :: cd_values
I Auxiliary data for the filter
INTEGER, INTENT(OUT) : hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pmodify_filter_f

History:
Release Change
1.6.0 Function introduced in this release.
1.85 Function extended to work with group creation property lists.

421

H5Pregister HDF5 Reference Manual

Name: H5Pregister
Signatures:

herr_tH5Pregister(hid_t class, const char * name, size_size, void [1]
* default, H5P_prp_create_func_t create, H5P_prp_set_func_t set,
H5P_prp_get func _dget, H5P_prp_delete func_telete,

H5P_prp_copy_func dopy, H5P_prp_close_func_tlose)

herr_tH5Pregister(hid_t class, const char * name, size_size, [2]
void * default, HS5P_prp_create_func_t create,

H5P_prp_set_func get, HS5P_prp_get_func_tget,

H5P_prp_delete_func delete, H5P_prp_copy_func_t copy,
H5P_prp_compare_funccobmpare, H5P_prp_close_func_tlose)

Purpose:

Returns information about the specified filter.

Description:

422

H5Pregister is a macro that is mapped to either H5Pregisterl or H5Pregister2, depending on
the needs of the application.

Such macros are provided to facilitate application compatibility. For example:

¢ The H5Pregister macro will be mapped to H5Pregisterl and will use the
H5Pregisterl syntax (first signature above) if an application is coded for HDF5 Release
1.6.x.
¢ The H5Pregister macro mapped to H5Pregister2 and will use the H5Pregister2
syntax (second signature above) if an application is coded for HDF5 Release 1.8.x.
Macro use and mappings are fully described in “API Compatibility Macros in HDF5” we urge you to read
that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Pregister is mapped to the most recent version of the function, currently H5Pregister2.

If the library and/or application is compiled for Release 1.6 emulation, H5Pregister will be mapped to
H5Pregisterl. Function-specific flags are available to override these settings on a
function-by-function basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Pregister mapping

Global settings

No compatibility flag H5Pregister2
Enable deprecated symbols H5Pregister2
Disable deprecated symbols H5Pregister2

Emulate Release 1.6 interface H5Pregisterl

HDF5 Reference Manual H5Pregister

Function-level macros
H5Pregister_vers = 2 H5Pregister2

H5Pregister_vers =1 H5Pregisterl

Interface history: Signature [1] above is the original H5Pregister interface and the only interface
available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now deprecate
but will remain directly callable as H5Pregisterl.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Pregister2.

See “AP| Compatibility Macros in HDF5” for circumstances under which either of these functions might
not be available in an installed instance of the HDF5 Library.

Fortran90 Interface: h5pregister_f
SUBROUTINE h5pregister_f
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: class ! Property list class identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of property to register
INTEGER(SIZE_T), INTENT(IN) :: size ! Size of the property value
TYPE, INTENT(IN) :: value ! Property value
! Supported types are:
I INTEGER
I REAL
! DOUBLE PRECISION
I CHARACTER(LEN=%)
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pregister_f

History:
Release C
1.8.0 The function H5Pregister renamed to H5Pregisterl and deprecated in
this release.
The macro H5Pregister and the function H5Pregister2 introduced in this
release.

423

H5Pregisterl HDF5 Reference Manual

Name: H5Pregisterl

Signature:
herr_tH5Pregisterl(hid_t class, const char * name, size_size, void * default,
H5P_prp_create_func dreate, H5P_prp_set _func_t set, H5P_prp_get func_tget,
H5P_prp_delete_func delete, H5P_prp_copy_func_t copy, H5P_prp_close_func_tlose)

Purpose:
Registers a permanent property with a property list class.

Notice:
This function is renamed from H5Pregister and deprecated in favor of the function H5Pregister2
and or the new macro H5Pregister.

Description:
H5Pregisterl registers a new property with a property list class. The property will exist in all
property list objects of class created after this routine finishes. The hame of the property must not
already exist, or this routine will fail. The default property value must be provided and all new property
lists created with this property will have the property value set to the default value. Any of the callback
routines may be set to NULL if they are not needed.

Zero-sized properties are allowed and do not store any data in the property list. These may be used as
flags to indicate the presence or absence of a particular piece of information. The default pointer for a
zero-sized property may be set to NULL. The property create and close callbacks are called for
zero-sized properties, but the set and get callbacks are never called.

The create routine is called when a new property list with this property is being created. The
H5P_prp_create_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_create_func_t)(const char *name, size_t size, void
*initial_value); The parameters to this callback function are defined as follows:

const char *name IN: The name of the property being modified

size_tsize IN: The size of the property in bytes

void IN/OUT: The default value for the property being created, which will
*initial_value be passed to H5Pregisterl

The create routine may modify the value to be set and those changes will be stored as the initial value
of the property. If the create routine returns a negative value, the new property value is not copied into
the property and the create routine returns an error value.

424

HDF5 Reference Manual H5Pregisterl

The set routine is called before a new value is copied into the property. The H5P_prp_set_func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_set_func_t)(highrbp_id, const char *name, size_t size, void
*new_value); The parameters to this callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being modified
const char *name IN: The name of the property being modified
size_tsize IN: The size of the property in bytes

void **new_value IN/OUT: Pointer to new value pointer for the property being modified
The set routine may modify the value pointer to be set and those changes will be used when setting the
property's value. If the set routine returns a negative value, the new property value is not copied into the
property and the set routine returns an error value. The set routine will not be called for the initial
value, only the create routine will be called.

Note: The set callback function may be useful to range check the value being set for the property or
may perform some transformation or translation of the value set. The get callback would then reverse
the transformation or translation. A single get or set callback could handle multiple properties by
performing different actions based on the property name or other properties in the property list.

The get routine is called when a value is retrieved from a property value. The H5P_prp_get func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_get func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

IN: The identifier of the property list being

hid_tprop_id queried

const char *name IN: The name of the property being queried

size_tsize IN: The size of the property in bytes

void * value IN/OUT: The value of the property being
returned

The get routine may modify the value to be returned from the query and those changes will be returned
to the calling routine. If the set routine returns a negative value, the query routine returns an error value.

The delete routine is called when a property is being deleted from a property list. The
H5P_prp_delete_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_delete_func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list the property is being deleted from
const char *name IN: The name of the property in the list

size_tsize IN: The size of the property in bytes

void * value IN: The value for the property being deleted

425

H5Pregisterl HDF5 Reference Manual

The delete routine may modify the value passed in, but the value is not used by the library when the
delete routine returns. If the delete routine returns a negative value, the property list delete routine
returns an error value but the property is still deleted.

The copy routine is called when a new property list with this property is being created through a copy
operation. The H5P_prp_copy_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_copy_func_t)(const char *name, size_t size, void *value); The
parameters to the callback function are defined as follows:

const char *name IN: The name of the property being copied
size_tsize IN: The size of the property in bytes
void *value IN/OUT: The value for the property being copied
The copy routine may modify the value to be set and those changes will be stored as the new value of the

property. If the copy routine returns a negative value, the new property value is not copied into the
property and the copy routine returns an error value.

The close routine is called when a property list with this property is being closed. The
H5P_prp_close_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_close_func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being closed
const char *name IN: The name of the property in the list
size_tsize IN: The size of the property in bytes

void *value IN: The value for the property being closed

The close routine may modify the value passed in, but the value is not used by the library when the
close routine returns. If the close routine returns a negative value, the property list close routine
returns an error value but the property list is still closed.

Parameters:

hid_tclass IN: Property list class to register permanent property within

const char *name IN: Name of property to register

size_tsize IN: Size of property in bytes

void * default IN: Default value for property in newly created property lists

H5P_prp_create_func dreate IN: Callback routine called when a property list is being created
and the property value will be initialized

H5P_prp_set func gdet IN: Callback routine called before a new value is copied into
the property's value

H5P_prp_get_func_det IN: Callback routine called when a property value is retrieved
from the property

H5P_prp_delete_func delete IN: Callback routine called when a property is deleted from a
property list

H5P_prp_copy_func dopy IN: Callback routine called when a property is copied from a
property list

H5P_prp_close_func dlose IN: Callback routine called when a property list is being closed

426

and the property value will be disposed of

HDF5 Reference Manual H5Pregisterl

Returns:
Success: a non-negative value
Failure: a negative value

Fortran90 Interface: hSpregister_f
SUBROUTINE h5pregister_f
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: class ! Property list class identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of property to register
INTEGER(SIZE_T), INTENT(IN) :: size ! Size of the property value
TYPE, INTENT(IN) :: value ! Property value
! Supported types are:
I INTEGER
I REAL
! DOUBLE PRECISION
! CHARACTER(LEN=%*)
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pregister_f

History:
Release C
1.8.0 Function H5Pregister renamed to H5Pregisterl and deprecated in this
release.

427

H5Pregister2 HDF5 Reference Manual

Name: H5Pregister2
Signature:

herr_tH5Pregister2(hid_t class, const char * name, size_size, void * default,
H5P_prp_create_func dreate, H5P_prp_set _func_t set, H5P_prp_get func_tget,
H5P_prp_delete_func delete, H5P_prp_copy_func_t copy, H5P_prp_compare_func_d¢ompare,
H5P_prp_close_func dlose)

Purpose:

Registers a permanent property with a property list class.

Description:

428

H5Pregister2 registers a new property with a property list class. The property will exist in all

property list objects of class created after this routine finishes. The nhame of the property must not
already exist, or this routine will fail. The default property value must be provided and all new property
lists created with this property will have the property value set to the default value. Any of the callback
routines may be set to NULL if they are not needed.

Zero-sized properties are allowed and do not store any data in the property list. These may be used as
flags to indicate the presence or absence of a particular piece of information. The default pointer for a
zero-sized property may be set to NULL. The property create and close callbacks are called for
zero-sized properties, but the set and get callbacks are never called.

The create routine is called when a new property list with this property is being created. The
H5P_prp_create_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_create_func_t)(const char *name, size_t size, void
*initial_value); The parameters to this callback function are defined as follows:

const char *name IN: The name of the property being modified

size_tsize IN: The size of the property in bytes

void IN/OUT: The default value for the property being created, which will
*initial_value be passed to H5Pregister2

The create routine may modify the value to be set and those changes will be stored as the initial value
of the property. If the create routine returns a negative value, the new property value is not copied into
the property and the create routine returns an error value.

The set routine is called before a new value is copied into the property. The H5P_prp_set func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_set_func_t)(highrbp_id, const char *name, size_t size, void
*new_value); The parameters to this callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being modified
const char *name IN: The name of the property being modified
size_tsize IN: The size of the property in bytes

void *new_value IN/OUT: Pointer to new value pointer for the property being modified

HDF5 Reference Manual H5Pregister2

The set routine may modify the value pointer to be set and those changes will be used when setting the
property's value. If the set routine returns a negative value, the new property value is not copied into the
property and the set routine returns an error value. The set routine will not be called for the initial

value, only the create routine will be called.

Note: The set callback function may be useful to range check the value being set for the property or
may perform some transformation or translation of the value set. The get callback would then reverse
the transformation or translation. A single get or set callback could handle multiple properties by
performing different actions based on the property name or other properties in the property list.

The get routine is called when a value is retrieved from a property value. The H5P_prp_get_func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_get_func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

hid_tprop._id IN: The identifier of the property list being

queried
const char *name IN: The name of the property being queried
size_tsize IN: The size of the property in bytes
void * value IN/OUT: The value of the property being
returned

The get routine may modify the value to be returned from the query and those changes will be returned
to the calling routine. If the set routine returns a negative value, the query routine returns an error value.

The delete routine is called when a property is being deleted from a property list. The
H5P_prp_delete_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_delete_func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list the property is being deleted from
const char *name IN: The name of the property in the list

size_tsize IN: The size of the property in bytes

void * value IN: The value for the property being deleted

The delete routine may modify the value passed in, but the value is not used by the library when the
delete routine returns. If the delete routine returns a negative value, the property list delete routine
returns an error value but the property is still deleted.

429

H5Pregister2 HDF5 Reference Manual

430

The copy routine is called when a new property list with this property is being created through a copy
operation. The H5P_prp_copy_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_copy_func_t)(const char *name, size_t size, void *value); The
parameters to the callback function are defined as follows:

const char *name IN: The name of the property being copied
size_tsize IN: The size of the property in bytes
void *value IN/OUT: The value for the property being copied
The copy routine may modify the value to be set and those changes will be stored as the new value of the

property. If the copy routine returns a negative value, the new property value is not copied into the
property and the copy routine returns an error value.

The compare routine is called when a property list with this property is compared to another property
list with the same property. The H5P_prp_compare_func_t callback function is defined as follows:

typedef int (*H5P_prp_compare_func_t)(const void *valuel, const void *value2, size_t
size); The parameters to the callback function are defined as follows:

const void *valuel IN: The value of the first property to compare
const void *value2 IN: The value of the second property to compare
size_tsize IN: The size of the property in bytes
The compare routine may not modify the values. The compare routine should return a positive value if

valuel is greater than value2, a negative value if value2 is greater than valuel and zero if
valuel and value2 are equal.

The close routine is called when a property list with this property is being closed. The
H5P_prp_close_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_close_func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being closed
const char *name IN: The name of the property in the list
size_tsize IN: The size of the property in bytes

void *value IN: The value for the property being closed

The close routine may modify the value passed in, but the value is not used by the library when the
close routine returns. If the close routine returns a negative value, the property list close routine
returns an error value but the property list is still closed.

HDF5 Reference Manual

Parameters:

hid_tclass

const char *name

size_tsize

void * default
H5P_prp_create_func dreate
H5P_prp_set_func det
H5P_prp_get_func_get
H5P_prp_delete func delete
H5P_prp_copy_func_dopy

H5P_prp_compare_funccompare

H5P_prp_close_func dlose

Returns:

Success: a non-negative value
Failure: a negative value

Fortran90 Interface:

History:

H5Pregister2

IN: Property list class to register permanent property within
IN: Name of property to register

IN: Size of property in bytes

IN: Default value for property in newly created property lists

IN: Callback routine called when a property list is being
created and the property value will be initialized

IN: Callback routine called before a new value is copied into
the property's value

IN: Callback routine called when a property value is retrieved
from the property

IN: Callback routine called when a property is deleted from a
property list

IN: Callback routine called when a property is copied from a
property list

IN: Callback routine called when a property is compared with
another property list

IN: Callback routine called when a property list is being closed
and the property value will be disposed of

None.
Release C
1.8.0 Function introduced in this release.

431

H5Premove HDF5 Reference Manual

Name: H5Premove
Signature:

herr_tH5Premove(hid_t plid; const char *name)
Purpose:

Removes a property from a property list.
Description:

H5Premove removes a property from a property list.

Both properties which were in existence when the property list was created (i.e. properties registered with
H5Pregister) and properties added to the list after it was created (i.e. added with H5Pinsertl) may

be removed from a property list. Properties do not need to be removed from a property list before the list
itself is closed; they will be released automatically when H5Pclose is called.

If a close callback exists for the removed property, it will be called before the property is released.
Parameters:
hid_tplid IN: Identifier of the property list to modify

const char *name IN: Name of property to remove

Returns:
Success: a non-negative value
Failure: a negative value
Fortran90 Interface: hSpremove_f
SUBROUTINE h5premove_f(plid, name, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plid ! Property list identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of property to remove
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
END SUBROUTINE h5premove_f

432

HDF5 Reference Manual H5Premove _filter

Name: H5Premove_filter

Signature:

herr_tH5Premove_filter(hid_t plist_id, H5Z filter_t filter)
Purpose:

Delete one or more filters in the filter pipeline.
Description:

H5Premove_filter removes the specified filter from the filter pipeline in the dataset or group
creation property list plist_id.

The filter parameter specifies the filter to be removed. Valid values for use in filter are as follows:

H5Z FILTER_ALL Removes all filters from the filter
pipeline.

H5Z FILTER _DEFLATE Data compression filter, employing the
gzip algorithm

H5Z FILTER_SHUFFLE Data shuffling filter

H5Z FILTER_FLETCHER32 Error detection filter, employing the
Fletcher32 checksum algorithm

H5Z FILTER_SZIP Data compression filter, employing the
SZIP algorithm
H5Z FILTER_NBIT Data compression filter, employing the

N-Bit algorithm
H5Z FILTER_SCALEOFFSET Data compression filter, employing the
scale-offset algorithm

Additionally, user-defined filters can be removed with this routine by passing the filter identifier with
which they were registered with the HDF5 Library.

Attempting to remove a filter that is not in the filter pipeline is an error.
Parameters:
hid_tplist_id
IN: Dataset or group creation property list identifier.
H5Z filter_tfilter
IN: Filter to be deleted.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

433

H5Premove_filter

Fortran90 Interface: hS5premove_filter_f
SUBROUTINE h5premove_filter_f(prp_id, filter, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(IN) :: filter | Filter to be removed

! Valid values are:
I H5Z _FILTER_ALL F
I H5Z_FILTER_DEFLATE_F
I H5Z_FILTER_SHUFFLE_F
I H5Z_FILTER_FLETCHER32_F
I H5Z_FILTER_SZIP_F
INTEGER, INTENT(OUT) :: hdferr I Error code
! 0 on success, -1 on failure
END SUBROUTINE h5premove_filter_f

History:
Release Changes
1.6.3 Function introduced in this release.
Fortran subroutine introduced in this release.
1.8.5 Function extended to work with group creation property lists.

434

HDF5 Reference Manual

HDF5 Reference Manual H5Pset

Name: H5Pset

Signature:
herr_tH5Pset(hid_t plid, const char *name, void *value))

Purpose:
Sets a property list value.

Description:
H5Pset sets a new value for a property in a property list. If there is a set callback routine registered for
this property, the value will be passed to that routine and any changes to the value will be used when
setting the property value. The information pointed to by the value pointer (possibly modified by the
set callback) is copied into the property list value and may be changed by the application making the
H5Pset call without affecting the property value.

The property name must exist or this routine will fail.
If the set callback routine returns an error, the property value will not be modified.

This routine may not be called for zero-sized properties and will return an error in that case.
Parameters:

hid_tplid; IN: Property list identifier to modify

const char *name; IN: Name of property to modify

void *value; IN: Pointer to value to set the property to
Returns:

Success: a hon-negative value
Failure: a negative value

Fortran90 Interface: h5pset_f
SUBROUTINE h5pset_f(plid, name, value, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plid ! Property list identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of property to set
TYPE, INTENT(IN) :: value ! Property value
! Supported types are:
I INTEGER
! REAL
! DOUBLE PRECISION
I CHARACTER(LEN=%)
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5pset_f

435

H5Pset_alignment HDF5 Reference Manual

Name: H5Pset_alignment

Signature:
herr_tH5Pset_alignment(hid_t plist, hsize_t threshold, hsize t alignment)

Purpose:
Sets alignment properties of a file access property list.

Description:
H5Pset_alignment sets the alignment properties of a file access property list so that any file object
greater than or equal in size to threshold bytes will be aligned on an address which is a multiple of
alignment. The addresses are relative to the end of the user block; the alignment is calculated by
subtracting the user block size from the absolute file address and then adjusting the address to be a
multiple of alignment.

Default values for threshold and alignment are one, implying no alignment. Generally the default
values will result in the best performance for single-process access to the file. For MPI 10 and other
parallel systems, choose an alignment which is a multiple of the disk block size.

Parameters:

hid_tplist IN: Identifier for a file access property list.
hsize_threshold IN: Threshold value. Note that setting the threshold value to 0 (zero) has the
effect of a special case, forcing everything to be aligned.
hsize_talignment IN: Alignment value.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_alignment_f

SUBROUTINE h5pset_alignment_f(prp_id, threshold, alignment, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id I Property list identifier
INTEGER(HSIZE_T), INTENT(IN) :: threshold ! Threshold value
INTEGER(HSIZE_T), INTENT(IN) :: alignment ! Alignment value
INTEGER, INTENT(OUT) :: hdferr ! Error code

I 0 on success and -1 on failure
END SUBROUTINE h5pset_alignment_f

436

HDF5 Reference Manual H5Pset_alloc_time

Name: H5Pset_alloc_time

Signature:

herr_tH5Pset_alloc_time(hid_t plist_id, H5D alloc_time_t alloc_time)
Purpose:

Sets the timing for storage space allocation.

Description:

Note:

H5Pset_alloc_time sets up the timing for the allocation of storage space for a dataset's raw data.
This property is set in the dataset creation property list plist_id.

Timing is specified in alloc_time with one of the following values:

H5D_ALLOC_TIME_DEFAULT Allocate dataset storage space at the default time.
(Defaults differ by storage method.)

H5D_ALLOC_TIME_EARLY Allocate all space when the dataset is created.
(Default for compact datasets.)

H5D_ALLOC_TIME_INCR Allocate space incrementally, as data is written to the dataset.

(Default for chunked storage datasets.)

¢ Chunked datasets: Storage space allocation for each chunk is
deferred until data is written to the chunk.

¢ Contiguous datasets: Incremental storage space allocation for
contiguous data is treated as late allocation.

¢ Compact datasets: Incremental allocation is not allowed with
compact datasets; H5Pset_alloc_time will return an error.

H5D_ALLOC _TIME_LATE Allocate all space when data is first written to the dataset.
(Default for contiguous datasets.)

H5Pset_alloc_time is designed to work in concert with the dataset fill value and fill value write
time properties, set with the functions H5Pset_fill value and H5Pset fill_time.

See H5Dcreate for further cross-references.

Parameters:
hid_tplist_id IN: Dataset creation property list identifier.
H5D_alloc_time_glloc_time IN: When to allocate dataset storage space.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

437

H5Pset_alloc_time

Fortran90 Interface: hSpset_alloc_time_f
SUBROUTINE h5pset_alloc_time_f(plist_id, flag, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist_id ! Dataset creation property
I list identifier
INTEGER(HSIZE_T), INTENT(IN) :: flag ! Allocation time flag
I Possible values are:
I H5D_ALLOC_TIME_ERROR_F
I H5D_ALLOC_TIME_DEFAULT_F
| H5D_ALLOC_TIME_EARLY_F
| H5D_ALLOC_TIME_LATE_F
I H5D_ALLOC_TIME_INCR_F
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5pset_alloc_time_f

History:
Release C
1.6.0 Function introduced in this release.

438

HDF5 Reference Manual

HDF5 Reference Manual H5Pset_attr_creation_order

Name: H5Pset_attr_creation_order

Signature:

herr_tH5Pset_attr_creation_order(hid_t ocpl_id, unsigned crt_order_flags)
Purpose:

Sets tracking and indexing of attribute creation order.
Description:

H5Pset_attr_creation_order sets flags specifying whether to track and index attribute creation
order on an object.

ocpl_id is a dataset or group creation property list identifier. The term ocpl, for object creation
property list, is used when different types of objects may be involved.

crt_order_flags contains flags with the following meanings:

H5P_CRT_ORDER_TRACKED Attribute creation order is tracked but not necessarily
indexed.

H5P_CRT_ORDER_INDEXED Attribute creation order is indexed (requires
H5P_CRT_ORDER_TRACKED).

Default behavior is that attribute creation order is neither tracked nor indexed.
Parameters:

hid_tocpl_id IN: Object creation property list identifier
unsigneccrt_order_flags IN: Flags specifying whether to track and index attribute creation
order
Default: No flag set; attribute creation order is neither tracked not
indexed.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_attr_creation_order_f
SUBROUTINE h5pget_attr_creation_order_f(ocpl_id, crt_order_flags, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: ocpl_id
I Object (group or dataset) creation property
I list identifier
INTEGER, INTENT(OUT) :: crt_order_flags
I Flags specifying whether to track
I 'and index attribute creation order
INTEGER, INTENT(OUT) :: hdferr | Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pget_attr_creation_order_f

History:
Release C
1.8.0 Function introduced in this release.

439

H5Pset_attr_phase_change HDF5 Reference Manual

Name: H5Pset_attr_phase _change
Signature:
herr_tH5Pset_attr_phase_change(hid_t ocpl_id, unsigned max_compact, unsigned
min_dense)
Purpose:
Sets attribute storage phase change thresholds.
Description:
H5Pset_attr_phase_change sets threshold values for attribute storage on an object. These
thresholds determine the point at which attribute storage changes from compact storage (i.e., storage in
the object header) to dense storage (i.e., storage in a heap and indexed with a B-tree).

In the general case, attributes are initially kept in compact storage. When the number of attributes exceeds
max_compact, attribute storage switches to dense storage. If the number of attributes subsequently falls
below min_dense, the attributes are returned to compact storage.

If max_compact is set to O (zero), dense storage always used.

ocpl_id is a dataset or group creation property list identifier. The term ocpl, for object creation
property list, is used when different types of objects may be involved.

Parameters:
hid_tocpl_id IN: Object (group or dataset) creation property list identifier
unsignedmax_compact IN: Maximum number of attributes to be stored in compact storage
(Default: 8)
unsignednin_dense IN: Minimum number of attributes to be stored in dense storage
(Default: 6)
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_attr_phase_change_f
SUBROUTINE h5pset_attr_phase_change_f(ocpl_id, max_compact, min_dense, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: ocpl_id
I Object (dataset or group) creation property
! list identifier
INTEGER, INTENT(IN) :: max_compact
I Maximum number of attributes to be stored in
I compact storage (Default: 8)
INTEGER, INTENT(IN) :: min_dense
I Minimum number of attributes to be stored in
I dense storage (Default: 6)
INTEGER, INTENT(OUT) :: hdferr
! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pset_attr_phase_change_f

History:
Release C
1.8.0 Function introduced in this release.

440

HDF5 Reference Manual H5Pset_btree_ratios

Name: H5Pset_btree_ratios

Signature:

herr_tH5Pset_btree_ratios(hid_t plist, double left, double middle, double right)
Purpose:

Sets B-tree split ratios for a dataset transfer property list.
Description:

H5Pset_btree_ratios sets the B-tree split ratios for a dataset transfer property list. The split ratios
determine what percent of children go in the first node when a node splits.

The ratio left is used when the splitting node is the left-most node at its level in the tree; the ratio
right is used when the splitting node is the right-most node at its level; and the ratio middle is used
for all other cases.

A node which is the only node at its level in the tree uses the ratio right when it splits.

All ratios are real numbers between 0 and 1, inclusive.

Parameters:
hid_tplist IN: The dataset transfer property list identifier.
doubleleft IN: The B-tree split ratio for left-most nodes.
doubleright IN: The B-tree split ratio for right-most nodes and lone nodes.
doublemiddle IN: The B-tree split ratio for all other nodes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_btree_ratios_f
SUBROUTINE h5pset_btree_ratios_f(prp_id, left, middle, right, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id
I Property list identifier
REAL, INTENT(IN) :: left ! The B-tree split ratio for left-most nodes
REAL, INTENT(IN) :: middle ! The B-tree split ratio for all other nodes
REAL, INTENT(IN) :: right ! The B-tree split ratio for right-most
I nodes and lone nodes.
INTEGER, INTENT(OUT) :: hdferr ! Error code
I 0 on success and -1 on failure
END SUBROUTINE h5pset_btree_ratios_f

441

H5Pset_buffer HDF5 Reference Manual

Name: H5Pset_buffer

Signature:

herr_tH5Pset_buffer(hid_t plist, hsize_t size, void *tconv, void *bkg)
Purpose:

Sets type conversion and background buffers.
Description:

Given a dataset transfer property list, H5Pset_buffer sets the maximum size for the type conversion
buffer and background buffer and optionally supplies pointers to application-allocated buffers. If the

buffer size is smaller than the entire amount of data being transferred between the application and the file,
and a type conversion buffer or background buffer is required, then strip mining will be used.

Note that there are minimum size requirements for the buffer. Strip mining can only break the data up
along the first dimension, so the buffer must be large enough to accommodate a complete slice that
encompasses all of the remaining dimensions. For example, when strip mining a 100x200x300 hyperslab
of a simple data space, the buffer must be large enough to hold 1x200x300 data elements. When strip
mining a 100x200x300x150 hyperslab of a simple data space, the buffer must be large enough to hold
1x200x300x150 data elements.

If tconv and/or bkg are null pointers, then buffers will be allocated and freed during the data transfer.

The default value for the maximum buffer is 1 Mb.

Parameters:
hid_tplist IN: Identifier for the dataset transfer property list.
hsize_tsize IN: Size, in bytes, of the type conversion and background buffers.
void tconv IN: Pointer to application-allocated type conversion buffer.
void bkg IN: Pointer to application-allocated background buffer.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_buffer_f
SUBROUTINE h5pset_buffer_f(plist_id, size, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: plist_id ! Dataset transfer property
! list identifier

INTEGER(HSIZE_T), INTENT(IN) :: size ! Conversion buffer size

INTEGER, INTENT(OUT) - hdferr ! Error code

10 on success and -1 on failure
END SUBROUTINE h5pset_buffer_f

History:
Release C
1.6.0 The size parameter has changed from type hsize_t to size t.
1.4.0 The size parameter has changed to type hsize_t.

442

HDF5 Reference Manual H5Pset_cache

Name: H5Pset_cache
Signature:
herr_tH5Pset_cache(hid_t plist_id, int mdc_nelmts, size_t rdcc_nelmts, size_t
rdcc_nbytes, double rdcc_wO0)
Purpose:
Sets the raw data chunk cache parameters.
Description:
H5Pset_cache sets the number of elements, the total number of bytes, and the preemption policy value
in the raw data chunk cache.

The plist_id is a file access property list.

The number of elements (objects) in the raw data chunk cache is rdcc_nelmts. The total size of the raw
data chunk cache and the preemption policy are rdcc_nbytes and rdcc_wO, respectively.

Any (or all) of the H5Pget_cache pointer arguments may be null pointers.

The rdcc_wO value should be between 0 and 1 inclusive and indicates how much chunks that have beel
fully read are favored for preemption. A value of zero means fully read chunks are treated no differently
than other chunks (the preemption is strictly LRU) while a value of one means fully read chunks are
always preempted before other chunks.

The *mdc_nelmts parameter is no longer used; any value passed in that parameter is ignored.
Note:

Raw dataset chunk caching is not currently supported when using the MPI I/O and MPI POSIX file

drivers in read/write mode; see H5Pset_fapl_mpio and H5Pset_fapl_mpiposix, respectively.

When using one of these file drivers, all calls to H5Dread and H5Dwrite will access the disk directly,

and H5Pset_cache will have no effect on performance.

Raw dataset chunk caching is supported when these drivers are used in read-only mode.
Parameters:

hid_tplist_id IN: Identifier of the file access property list.
int mdc_nelmts IN: No longer used; any value passed is ignored.
size_trdcc_nelmts IN: Number of elements (objects) in the raw data chunk cache.
size_trdcc_nbytes IN: Total size of the raw data chunk cache, in bytes.
doublerdcc_wO IN: Preemption policy.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_cache_f
SUBROUTINE h5pset_cache_f(prp_id, mdc_nelmts,rdcc_nelmts, rdcc_nbytes, rdcc_wO, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(IN) :: mdc_nelmts ! Number of elements (objects)

!'in the meta data cache

INTEGER(SIZE_T), INTENT(IN) :: rdcc_nelmts ! Number of elements (objects)
!'in the meta data cache

INTEGER(SIZE_T), INTENT(IN) :: rdcc_nbytes ! Total size of the raw data
! chunk cache, in bytes

REAL, INTENT(IN) :: rdcc_wO I Preemption policy

443

H5Pset_cache HDF5 Reference Manual

INTEGER, INTENT(OUT) :: hdferr ! Error code

1 0 on success and -1 on failure
END SUBROUTINE h5pset_cache_f

History:
Release Change
1.8.0 In C, use of the mdc_nelmts parameter discontinued.
Metadata cache configuration is managed with H5Pset_mdc_config and
H5Pget_mdc_config.
1.6.1 Fortran rdcc_nbytes parameter type changed to INTEGER(SIZE_T).
1.6.0 In C, the rdcc_nbytes and rdcc_nelmts parameters changed from type

int to size_t.

444

HDF5 Reference Manual H5Pset_char_encoding

Name: H5Pset_char_encoding

Signature:

herr_tH5Pset_char_encoding(hid_t plist_id, H5T cset t encoding)
Purpose:

Sets the character encoding used to encode a string.
Description:

H5Pset_char_encoding sets the character encoding used to encode strings or object names that are
created with the property list plist_id.

Valid values for encoding are defined in H5Tpublic.h and include the following:

H5T_CSET_ASCII US ASCII
H5T CSET_UTF8 UTF-8 Unicode encoding
Parameters:
hid_tplist_id IN: Property list identifier
H5T cset_tncoding IN: String encoding character set

Returns:
Returns a non-negative valule if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_char_encoding_f
SUBROUTINE h5pset_char_encoding_f(plist_id, encoding, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist_id
I Property list identifier
INTEGER, INTENT(IN) :: encoding ! String encoding character set:
I H5T_CSET_ASCII_F -> US ASCII
I H5T_CSET_UTF8_F -> UTF-8 Unicode encoding
INTEGER, INTENT(OUT) :: hdferr ! Error code
I 0 on success and -1 on failure
END SUBROUTINE h5pset_char_encoding_f

History:
Release C
1.8.0 Function introduced in this release.

445

H5Pset_chunk HDF5 Reference Manual

Name: H5Pset_chunk

Signature:

herr_tH5Pset_chunk(hid_t plist, int ndims, const hsize_t *dim)
Purpose:

Sets the size of the chunks used to store a chunked layout dataset.
Description:

H5Pset_chunk sets the size of the chunks used to store a chunked layout dataset. This function is only
valid for dataset creation property lists.

The ndims parameter currently must be the same size as the rank of the dataset.

The values of the dim array define the size of the chunks to store the dataset's raw data. The unit of
measure for dim values is dataset elements.

As a side-effect of this function, the layout of the dataset is changed to H5D CHUNKED, if it is not
already so set. (See H5Pset_layout.)

Note regarding fixed-size datasets:
Chunk size cannot exceed the size of a fixed-size dataset. For example, a dataset consisting of a 5x4
fixed-size array cannot be defined with 10x10 chunks.

Parameters:

hid_tplist IN: Dataset creation property list identifier.

int ndims IN: The number of dimensions of each chunk.

const hsize_t lim IN: An array defining the size, in dataset elements, of each chunk.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_chunk_f
SUBROUTINE h5pset_chunk_f(prp_id, ndims, dims, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(IN) :: ndims ! Number of chunk dimensions

INTEGER(HSIZE_T), DIMENSION(ndims), INTENT(IN) :: dims
! Array containing sizes of
! chunk dimensions
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5pset_chunk_f

446

HDF5 Reference Manual

H5Pset_chunk_cache

Name: H5Pset_chunk_cache
Signature:

herr_tH5Pset_chunk_cache(hid_t dapl_id, size_t rdcc_nslots, size_t rdcc_nbytes,

doublerdcc_wO0)
Purpose:

Sets the raw data chunk cache parameters.

Motivation:

H5Pset_chunk_cache is used to adjust the chunk cache parameters on a per-dataset basis, as opposec
to a global setting for the file. The optimum chunk cache parameters vary wildly with different data
layout and access patterns, so for optimal performance they must be set individually for each dataset. It
may also be beneficial to reduce the size of the chunk cache for datasets whose performance is not
important in order to save memory space.

Description:

H5Pset_chunk_cache sets the number of elements, the total number of bytes, and the preemption
policy value in the raw data chunk cache on a dataset access property list. After calling this function, the
values set in the property list will override the values in the file's file access property list.

The raw data chunk cache inserts chunks into the cache by first computing a hash value using the addre
of a chunk, then using that hash value as the chunk's index into the table of cached chunks. The size of
this hash table, i.e., and the number of possible hash values, is determined by the rdcc_nslots
parameter. If a different chunk in the cache has the same hash value, this causes a collision, which
reduces efficiency. If inserting the chunk into cache would cause the cache to be too big, then the cache
pruned according to the rdcc_wO0 parameter.

Parameters:
hid_tdapl_id
size_t rdcc_nslots

size_trdcc_nbytes

doublerdcc_wO

IN: Dataset access property list identifier.

IN:The number of chunk slots in the raw data chunk cache for this dataset.
Increasing this value reduces the number of cache collisions, but slightly
increases the memory used. Due to the hashing strategy, this value should
ideally be a prime number. As a rule of thumb, this value should be at least 10
times the number of chunks that can fit in rdcc_nbytes bytes. For

maximum performance, this value should be set approximately 100 times that
number of chunks.

The default value is 521. If the value passed is
H5D_CHUNK_CACHE_NSLOTS_DEFAULT, then the property will not be set
on dapl_id and the parameter will come from the file access property list

used to open the file.

IN: The total size of the raw data chunk cache for this dataset. In most cases
increasing this number will improve performance, as long as you have enough
free memory.

The default size is 1 MB. If the value passed is
H5D_CHUNK_CACHE_NBYTES_DEFAULT, then the property will not be set
on dapl_id and the parameter will come from the file access property list.

IN: The chunk preemption policy for this dataset. This must be between 0 and
1 inclusive and indicates the weighting according to which chunks which

have been fully read or written are penalized when determining which chunks

447

H5Pset_chunk_cache HDF5 Reference Manual

to flush from cache. A value of O means fully read or written chunks are
treated no differently than other chunks (the preemption is strictly LRU)

while a value of 1 means fully read or written chunks are always preempted
before other chunks. If your application only reads or writes data once, this
can be safely set to 1. Otherwise, this should be set lower, depending on how
often you re-read or re-write the same data.

The default value is 0.75. If the value passed is
H5D_CHUNK_CACHE_WO0_DEFAULT, then the property will not be set on
dapl_id and the parameter will come from the file access property list.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Example Usage:
The following code sets the chunk cache to use a hash table with 12421 elements and a maximum size of
16 MB, while using the preemption policy specified for the entire file:
H5Pset_chunk_cache(dapl_id, 12421, 16*1024*1024, H5D_CHUNK_CACHE_WO0_DEFAULT);
Fortran90 Interface: hSpset_chunk_cache_f
SUBROUTINE h5pset_chunk_cache_f(dapl_id, rdcc_nslots, rdcc_nbytes, rdcc_wO, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: dapl_id ! Dataset access property list identifier.
INTEGER(SIZE_T), INTENT(IN) :: rdcc_nslots ! The number of chunk slots in the raw data
I chunk cache for this dataset.
INTEGER(SIZE_T), INTENT(IN) :: rdcc_nbytes ! The total size of the raw data chunk cache
I for this dataset.

REAL, INTENT(IN) :: rdcc_wO I The chunk preemption policy for this dataset.
INTEGER, INTENT(OUT) :: hdferr I Error code

1 0 on success and -1 on failure
END SUBROUTINE h5pset_chunk_cache_f

See Also:

H5Pget_chunk_cache, H5Pset cache
History:

Release Change

1.8.3 C function introduced in this release.

448

HDF5 Reference Manual H5Pset_copy_object

Name: H5Pset_copy_object
Signature:
herr_tH5Pset_copy_object(hid_t ocp_plist_id, unsigned copy_options)
Purpose:
Sets properties to be used when an object is copied.
Description:
H5Pset_copy_object sets properties in the object copy property list ocp_plist_id that will be
invoked when a new copy is made of an existing object.

ocp_plist_id is the object copy property list and specifies the properties governing the copying of
the object.

Several flags, described in the following table, are available for inclusion in the object copy property list:

H50_COPY_SHALLOW_HIERARCHY_FLAG Copy only immediate members of a group.
Default behavior, without flag: Recursively
copy all objects below the group.

H50 COPY_EXPAND_SOFT_LINK_FLAG Expand soft links into new objects.

Default behavior, without flag: Keep soft
links as they are.

H50 COPY_EXPAND_ EXT_ LINK_FLAG Expand external link into new objects.
Default behavior, without flag: Keep
external links as they are.

H50_COPY_EXPAND_ REFERENCE_FLAG Copy objects that are pointed to by
references.

Default behavior, without flag: Update only
the values of object references.

H50_ COPY_WITHOUT _ATTR_FLAG Copy object without copying attributes.
Default behavior, without flag: Copy object
along with all its attributes.

Parameters:
hid_tocp_plist_id IN: Object copy property list identifier
unsigned copy_options IN: Copy option(s) to be set

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_copy_object f
SUBROUTINE h5pset_copy_object_f(ocp_plist_id, copy_options, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: ocp_plist_id
I Object copy property list identifier

INTEGER, INTENT(IN) :: copy_options
I Copy option(s) to be set, valid options are:
! H50_COPY_SHALLOW_HIERARCHY_F
| H50_COPY_EXPAND_SOFT_LINK_F
I H50_COPY_EXPAND_EXT_LINK_F
I H50_COPY_EXPAND_REFERENCE_F
I H50_COPY_WITHOUT_ATTR_FLAG_F

449

H5Pset_copy_object HDF5 Reference Manual

INTEGER, INTENT(OUT) :: hdferr
I Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pset_copy_object_f

History:
Release C
1.8.0 Function introduced in this release.

450

HDF5 Reference Manual H5Pset_create_intermediate_group

Name: H5Pset_create_intermediate_group

Signature:
herr_tH5Pset_create_intermediate_group(hid_t Icpl_id, unsigned
crt_intermed_group)
Purpose:
Specifies in property list whether to create missing intermediate groups.
Description:

H5Pset_create_intermediate_group specifies whether to set the link creation property list
Icpl_id so that calls to functions that create objects in groups different from the current working group
will create intermediate groups that may be missing in the path of a new or moved object.

Functions that create objects in or move objects to a group other than the current working group make u
of this property. H5Gcreate_anon and H5Lmove are examles of such functions.

If crt_intermed_group is positive, the H5G_CRT_INTMD_GROUP will be added to Icpl_id (if it
is not already there). Missing intermediate groups will be created upon calls to functions such as those
listed above that use Icpl_id.

If crt_intermed_group is non-positive, the HSG_CRT_INTMD_GROUP, if present, will be removed
from Icpl_id. Missing intermediate groups will not be created upon calls to functions such as those
listed above that use Icpl_id.

Parameters:
hid_tlcpl_id IN: Link creation property list identifier
unsigned crt_intermed_group IN: Flag specifying whether to create intermediate groups upon
the creation of an object
Returns:
Returns a non-negative valule if successful; otherwise returns a negative value.
Example:

The following call sets the link creation property list Icpl_id such that a call to H5Gcreate_anon or
other function using Icpl_id will create any missing groups in the path to the new object:

herr_t ret_value = H5Pset_create_intermediate_group(Icpl_id, 1)
Fortran90 Interface: h5pset_create_inter_group_f
SUBROUTINE h5pset_create_inter_group_f(lcpl_id, crt_intermed_group, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: Icpl_id
I Link creation property list identifier
INTEGER, INTENT(IN) :: crt_intermed_group
I Specifying whether to create intermediate groups
I upon the creation of an object
INTEGER, INTENT(OUT) :: hdferr
! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pset_create_inter_group_f

History:
Release C
1.8.0 Function introduced in this release.

451

H5Pset_data_transform HDF5 Reference Manual

Name: H5Pset_data_transform
Signature:

herr_tH5Pset_data_transform (hid_t plist_id, const char *expression)

Purpose:

Sets a data transform expression.

Description:

H5Pset_data_transform sets the data transform to be used for reading and writing data. This
function operates on the dataset transfer property lists plist_id.

The expression parameter is a string containing an algebraic expression, such as (5/9.0)*(x-32) or
x*(x-5). When a dataset is read or written with this property list, the transform expression is applied
with the x being replaced by the values in the dataset. When reading data, the values in the file are not
changed and the transformed data is returned to the user.

Data transforms can only be applied to integer or floating-point datasets. Order of operations is obeyed
and the only supported operations are +, -, *, and /. Parentheses can be nested arbitrarily and can be used
to change precedence.

When writing data back to the dataset, the transformed data is written to the file and there is no way to
recover the original values to which the transform was applied.

Parameters:

hid_tplist_id IN: Identifier of the property list or class

const char *expression IN: Pointer to the null-terminated data transform expression
Returns:

Success: a non-negative value
Failure: a negative value

Fortran90 Interface: SUBROUTINE h5pset_data_transform_f

SUBROUTINE h5pset_data_transform_f(plist_id, expression, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist_id
I Identifier of the property list or class
CHARACTER(LEN=*), INTENT(IN) :: expression
I Buffer to hold transform expression
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pset_data_transform_f

History:

452

Release C
1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_deflate

Name: H5Pset_deflate

Signature:

herr_tH5Pset_deflate(hid_t plist_id, uint level)
Purpose:

Sets deflate (GNU gzip) compression method and compression level.
Description:

H5Pset_deflate sets the deflate compression method for a dataset or group creation property list to
H5Z_FILTER_DEFLATE and the compression level to level, which should be a value from zero to
nine, inclusive.

Lower compression levels are faster but result in less compression.

HDFS5 relies on GNU gzip for this compression (see zlib).

Parameters:
hid_tplist_id IN: Dataset or group creation property list identifier.
uint level IN: Compression level.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hSpset_deflate_f
SUBROUTINE h5pset_deflate_f(prp_id, level, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(IN) - level ! Compression level
INTEGER, INTENT(OUT) :: hdferr | Error code

! 0 on success and -1 on failure
END SUBROUTINE h5pset_deflate_f

History:
Release Change
1.85 Function extended to work with group creation property lists.

453

http://www.zlib.net

H5Pset_driver HDF5 Reference Manual

Name: H5Pset_driver

Signature:
herr_tH5Pset_driver(hid_t plist_id, hid_t new_driver_id, const void
*new_driver_info)

Purpose:
Sets a file driver.

Description:
H5Pset_driver sets the file driver, new_driver_id, for a file access or data transfer property list,
plist_id, and supplies an optional struct containing the driver-specific properties,
new_driver_info.

The driver properties will be copied into the property list and the reference count on the driver will be
incremented, allowing the caller to close the driver identifier but still use the property list.

Note:
H5Pset_driver and H5Pget_driver_info are used only when creating a virtual file driver
(VFD) in the virtual file layer (VFL). For further information, see “Virtual File Layer” and “List of VFL
Functions” in the HDF5 Technical Notes.

Parameters:

hid_tplist_id
IN: File access or data transfer property list identifier.
hid_tnew_driver_id
IN: Driver identifier.
const void *new_driver_info
IN: Optional struct containing driver properties.
Returns:
Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.2 Function publicized in this release; previous releases described this function only

in the virtual file driver documentation.

454

HDF5 Reference Manual H5Pset_dxpl_mpio

Name: H5Pset_dxpl_mpio
Signature:
herr_tH5Pset_dxpl_mpio(hid_t dxpl_id, HSFD_mpio_xfer_t xfer_mode)
Purpose:
Sets data transfer mode.
Description:
H5Pset_dxpl_mpio sets the data transfer property list dxpl_id to use transfer mode xfer_mode.
The property list can then be used to control the 1/O transfer mode during data I/O operations.

Valid transfer modes are as follows:

H5FD_MPIO_INDEPENDENT

Use independent I/0O access (default).
H5FD_MPIO_COLLECTIVE

Use collective I/0O access.

Parameters:
hid_tdxpl_id IN: Data transfer property list identifier.
H5FD_mpio_xfer_kfer_mode IN: Transfer mode.

Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface:
SUBROUTINE h5pset_dxpl_mpio_f(prp_id, data_xfer_mode, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(IN) :: data_xfer_mode ! Data transfer mode
! Possible values are:
! H5FD_MPIO_INDEPENDENT_F
! H5FD_MPIO_COLLECTIVE_F
INTEGER, INTENT(OUT) :: hdferr ! Error code

10 on success and -1 on failure
END SUBROUTINE h5pset_dxpl_mpio_f

History:
Release C
1.4.0 Function introduced in this release.

455

H5Pset_dxpl_mpio_chunk_opt HDF5 Reference Manual

Name: H5Pset_dxpl_mpio_chunk_opt
Signature:

herr_tH5Pset_dxpl_mpio_chunk_opt (hid_t dxpl_id, HS5FD_mpio_chunk_opt_t opt_mode)

Purpose:

Sets a flag specifying linked-chunk I/O or multi-chunk I/O.

Description:

H5Pset_dxpl_mpio_chunk_opt specifies whether 1/O is to be performed as linked-chunk I/O or as
multi-chunk 1/0. This function overrides the HDF5 Library's internal algorithm for determining which
mechanism to use.

When an application uses collective I/O with chunked storage, the HDF5 Library normally uses an
internal algorithm to determine whether that 1/0 activity should be conducted as one linked-chunk I/O or
as multi-chunk I/O. H5Pset_dxpl_mpio_chunk_opt is provided so that an application can override

the library's alogorithm in circumstances where the library might lack the information needed to make an
optimal desision.

H5Pset_dxpl_mpio_chunk_opt works by setting one of the following flags in the parameter
opt_mode:

H5FD_MPIO_CHUNK_ONE_IO Do one link chunked I/O.
H5FD_MPIO_CHUNK_MULTI_IO Do multi-chunked 1/0.
This function works by setting a corresponding property in the dataset transfer property list dxpl_id.

The library perform I/O in the specified manner unless it determines that the low-level MPI 10 package
does not support the requested behavior; in such cases, the HDF5 Library will internally use independent
I/0.

Use of this function is optional.

Parameters:

hid_tdxpl_id IN: Data transfer property list identifier

H5FD_mpio_chunk_opt dpt mode IN: Optimization flag specifying linked-chunk 1/O or
multi-chunk I/O

Returns:

456

Returns a non-negative value if successful. Otherwise returns a negative value.

HDF5 Reference Manual H5Pset_dxpl_mpio_chunk_opt_num

Name: H5Pset_dxpl_mpio_chunk_opt_num
Signature:
herr_tH5Pset_dxpl_mpio_chunk_opt_num (hid_t dxpl_id, unsigned
num_chunk_per_proc)
Purpose:
Sets a numeric threshold for linked-chunk I/O.
Description:
H5Pset_dxpl_mpio_chunk_opt_num sets a humeric threshold for the use of linked-chunk 1/O.

The library will calculate the average number of chunks selected by each process when doing collective
access with chunked storage. If the number is greater than the threshold set in num_chunk_per_proc,
the library will use linked-chunk I/O; otherwise, a separate 1/O process will be invoked for each chunk
(multi-chunk I/O).

Parameters:
hid_tdxpl_id IN: Data transfer property list identifier
unsignechum_proc_per_chunk IN: Numeric threshold for performing linked-chunk I/O
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

457

H5Pset_dxpl_mpio_chunk_opt_ratio HDF5 Reference Manual

Name: H5Pset_dxpl_mpio_chunk_opt_ratio

Signature:
herr_tH5Pset_dxpl_mpio_chunk_opt_ratio (hid_t dxpl_id, unsigned
percent_proc_per_chunk)

Purpose:
Sets a ratio threshold for collective I/O.

Description:

H5Pset_dxpl_mpio_chunk_opt_ratio sets a threshold for the use of collective I/O based on the
ratio of processes with collective access to a dataset with chunked storage. The decision whether to use
collective I/0O is made on a per-chunk basis.

The library will calculate the percentage of the total number of processes, the ratio, that hold selections in
each chunk. If that percentage is greater than the threshold set in percent_proc_per_chunk, the
library will do collective I/O for this chunk; otherwise, independent I/O will be done for the chunk.
Parameters:
hid_tdxpl_id IN: Data transfer property list identifier
unsignedpercent_proc_per_chunk IN: Percent threshold, on the number of processes holding
selections per chunk, for performing linked-chunk I/O
Returns:
Returns a non-negative value if successful. Otherwise returns a negative value.

458

HDF5 Reference Manual H5Pset_dxpl_mpio_collective_opt

Name: H5Pset_dxpl_mpio_collective_opt

Signature:
herr_tH5Pset_dxpl_mpio_collective_opt (hid_t dxpl_id, H5FD_mpio_collective_opt_t
opt_mode)

Purpose:
Sets a flag governing the use of independent versus collective 1/O.

Description:
H5Pset_dxpl_mpio_collective_opt enables an application to specify that the HDF5 Library
will use independent I/O internally when the dataset transfer property list dxpl_id is set for collective
I/0, i.e., with H5FD_MPIO_COLLECTIVE specified. This allows the application greater control over
low-level /0O while maintaining the collective interface at the application level.

H5Pset_dxpl_mpio_collective_opt works by setting one of the following flags in the
parameter opt_mode:

H5FD_MPIO_COLLECTIVE_IO Use collective I/O. (Default)

H5FD_MPIO_INDIVIDUAL_IO Use independent 1/O.
This function should be used only when H5FD_MPIO_COLLECTIVE has been set through
H5Pset_dxpl_mpio. In such situations, normal behavior would be to use low-level collective I/O
functions, but the library will use low-level MPI independent I/O functions when
H5FD_MPIO_INDIVIDUAL IO is set.

Use of this function is optional.

Parameters:
hid_tdxpl_id IN: Data transfer property list identifier
H5FD_mpio_collective_opt dpt_mode IN: Optimization flag specifying the use of independent or
collective I/O
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

459

H5Pset_dxpl_multi HDF5 Reference Manual

Name: H5Pset_dxpl_multi

Signature:

herr_tH5Pset_dxpl_multi(hid_t dxpl_id, const hid_t *memb_dxpl)
Purpose:

Sets the data transfer property list for the multi-file driver.
Description:

H5Pset_dxpl_multi sets the data transfer property list dxpl_id to use the multi-file driver for each
memory usage type memb_dxpl[].

H5Pset_dxpl_multi can only be used after the member map has been set with
H5Pset_fapl_muilti.

Parameters:
hid_tdxpl_id, IN: Data transfer property list identifier.
const hid_t *memb_dxpl IN: Array of data access property lists.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.4.0 Function introduced in this release.

460

HDF5 Reference Manual H5Pset_edc_check

Name: H5Pset_edc_check
Signature:

herr_tH5Pset_edc_check(hid_t plist, H5Z _EDC_t check)

Purpose:

Sets whether to enable error-detection when reading a dataset.

Description:

Note:

Note:

H5Pset_edc_check sets the dataset transfer property list plist to enable or disable error detection
when reading data.

Whether error detection is enabled or disabled is specified in the check parameter. Valid values are as
follows:

H5Z ENABLE_EDC (default)

H5Z DISABLE_EDC
The error detection algorithm used is the algorithm previously specified in the corresponding dataset
creation property list. A

This function does not affect the use of error detection when writing data. A

The initial error detection implementation, Fletcher32 checksum, supports error detection for chunked
datasets only.

The Fletcher32 EDC checksum filter, set with H5Pset_fletcher32, was added in HDF5 Release
1.6.0. In the original implementation, however, the checksum value was calculated incorrectly on
little-endian systems. The error was fixed in HDF5 Release 1.6.3.

As a result of this fix, an HDF5 Library of Release 1.6.0 through Release 1.6.2 cannot read a dataset
created or written with Release 1.6.3 or later if the dataset was created with the checksum filter and the
filter is enabled in the reading library. (Libraries of Release 1.6.3 and later understand the earlier error a
comensate appropriately.)

Work-around: An HDF5 Library of Release 1.6.2 or earlier will be able to read a dataset created or
written with the checksum filter by an HDF5 Library of Release 1.6.3 or later if the checksum filter is
disabled for the read operation. This can be accomplished via an H5Pset_edc_check call with the

value H5Z_DISABLE_EDC in the second parameter. This has the obvious drawback that the applicatior
will be unable to verify the checksum, but the data does remain accessible.

Parameters:

hid_tplist IN: Dataset transfer property list identifier.

H5Z_ EDC_tcheck IN: Specifies whether error checking is enabled or disabled for dataset read
operations.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

461

H5Pset_edc_check

Fortran90 Interface: hS5pset_edc_check_f
SUBROUTINE h5pset_edc_check_f(prp_id, flag, hdferr)

IMPLICIT NONE

INTEGER(HID_T), INTENT(IN) :: prp_id ! Dataset transfer property
! list identifier

INTEGER, INTENT(IN) :flag ! EDC flag; possible values

! H5Z DISABLE_EDC F

! H5Z ENABLE_EDC F
INTEGER, INTENT(OUT) > hdferr ! Error code

1 0 on success and -1 on failure

END SUBROUTINE h5pset_edc_check_f

HDF5 Reference Manual

History:
Release Change
1.6.0 Function introduced in this release.
1.6.3 Error in checksum calculation on little-endian systems corrected in this release.

462

HDF5 Reference Manual H5Pset_elink_acc_flags

Name: H5Pset_elink_acc_flags

Signature:

herr_tH5Pset_elink_acc_flags(hid_t lapl_id, unsigned flags)
Purpose:

Sets the external link traversal file access flag in a link access property list.
Motivation:

H5Pset_elink_acc_flags is used to adjust the file access flag used to open files reached through
external links. This may be useful to, for example, prevent modifying files accessed through an external
link. Otherwise, the target file is opened with whatever flag was used to open the parent.

Description:
H5Pset_elink_acc_flags specifies the file access flag to use to open the target file of an external
link. This allows read-only access of files reached through an external link in a file opened with write
access, or vice-versa.

The library will normally use the file access flag used to open the parent file as the file access flag for th
target file. This function provides a way to override that behaviour. The external link traversal callback
function set by H5Pset_elink_cb can override the setting from H5Pset_elink_acc_flags.

Parameters:
hid_tlapl_id IN: Link access property list identifier
unsigned flags IN: The access flag for external link traversal.

Valid values include:

H5F_ACC_RDWR Causes files opened through external links to be
opened with write access.

H5F _ACC_RDONLY Causes files opened through external links to be
opened with read-only access.

H5F ACC_DEFAULT Removes any external link file access flag setting
from lapl_id, causing the file access flag setting to
be taken from the parent file.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Example Usage:

The following code sets the link access property list lapl_id to open external link target files with

read-only access:

status = H5Pset_elink_acc_flags(lapl_id, HSF_ACC_RDONLY);

See Also:

H5Pget_elink_acc_flags, H5Pset_elink_cb, H5Fopen, Hb5Lcreate_external
History:

Release Change

1.8.3 C function introduced in this release.

463

H5Pset_elink_cb HDF5 Reference Manual

Name: H5Pset_elink_cb

Signature:

herr_tH5Pset_elink_cb(hid_t lapl_id, H5L_elink_traverse_t func, void *op_data)
Purpose:

Sets the external link traversal callback function in a link access property list.
Motivation:

H5Pset_elink_cb is used to specify a callback function that is executed by the HDF5 Library when
traversing an external link. This provides a mechanism to set specific access permissions, modify the file
access property list, modify the parent or target file, or take any other user-defined action. This callback
function is used in situations where the HDF5 Library's default behavior is not suitable.

Description:
H5Pset_elink_cb sets a user-defined external link traversal callback function in the link access
property list lapl_id. The callback function func must conform to the prototype specified in
H5L_elink_traverse_t.

The callback function may adjust the file access property list and file access flags to use when opening a
file through an external link. The callback will be executed by the HDF5 Library immediately before
opening the target file.

The callback will be made after the file access property list set by H5Pset_elink_fapl and the file
access flag set by H5Pset_elink_acc_flags are applied, so changes made by this callback
function will take precedence.

Parameters:
hid_tlapl_id IN: Link access property list identifier.
H5L_elink_traverse_tfunc IN: User-defined external link traversal callback function.
void *op_data IN: User-defined input data for the callback function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Failure Modes:
H5Pset_elink_cb will fail if the link access property list identifier, lapl_id, is invalid or if the
function pointer, func, is NULL.

An invalid function pointer, func, will cause a segmentation fault or other failure when an attempt is
subsequently made to traverse an external link.
Example Usage:
This example defines a callback function that prints the name of the target file every time an external link
is followed, and sets this callback function on lapl_id
herr_t elink_callback(const char *parent_file_name, const char
*parent_group_name, const char *child_file_name, const char
*child_object_name, unsigned *acc_flags, hid_t fapl_id, void *op_data) {
puts(child_file_name);
return O;

}

int main(void) {
hid_t lapl_id = H5Pcreate(H5P_LINK_ACCESS);
H5Pset_elink_cb(lapl_id, elink_callback, NULL);

464

HDF5 Reference Manual H5Pset_elink_cb

See Also:
H5Pget_elink_cb

H5Pset_elink_fapl, H5Pset_elink_acc_flags, Hb5Lcreate_external
H5Fopen for discussion of H5F_ACC_RDWR and H5F_ACC_RDONLY file access flags
H5L_elink_traverse t

History:

Release Change
1.8.3 C function introduced in this release.

465

H5Pset_elink_fapl HDF5 Reference Manual

Name: H5Pset_elink_fapl
Signature:
herr_tH5Pset_elink_fapl(hid_t lapl_id, hid_t fapl_id)
Purpose:
Sets a file access property list for use in accessing a file pointed to by an external link.
Description:
H5Pset_elink_fapl sets the file access property list, fapl_id, to be used when accessing the
target file of an external link associated with lapl_id.

Parameters:
hid_tlapl_id IN: Link access property list identifier
hid_tfapl_id IN: File access property list identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
See Also:

H5Pget_elink_fapl

H5Lcreate external
Fortran90 Interface:

None.
History:
Release Change
1.9.0 C function introduced in this release.

466

HDF5 Reference Manual H5Pset_elink_prefix

Name: H5Pset_elink_prefix

Signature:

herr_tH5Pset_elink_prefix(hid_t lapl_id, const char *prefix)
Purpose:

Sets prefix to be applied to external link paths.
Description:

H5Pset_elink_prefix sets the prefix to be applied to the path of any external links traversed. The
prefix is prepended to the filename stored in the external link.

The prefix is specified in the user-allocated buffer prefix and set in the link access property list
lapl_id. The buffer should not be freed until the property list has been closed.
Parameters:
hid_tlapl_id IN: Link access property list identifier
const char *prefix IN: Prefix to be applied to external link paths
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

467

H5Pset_est_link_info HDF5 Reference Manual

Name: H5Pset_est_link_info
Signature:

herr_tH5Pset_est _link_info(hid_t gepl_id, unsigned est_num_entries, unsigned
est_ name_len)

Purpose:

Sets estimated number of links and length of link names in a group.

Description:

H5Pset_est_link_info inserts two settings into the group creation property list gcpl_id: the
estimated number of links that are expected to be inserted into a group created with the property list and
the estimated average length of those link names.

The estimated number of links is passed in est_num_entries.

The estimated average length of the anticipated link names is passed in est_name_len.

The values for these two settings are multiplied to compute the initial local heap size (for old-style
groups, if the local heap size hint is not set) or the initial object header size for (new-style compact
groups; see “Group implementations in HDF5"). Accurately setting these parameters will help reduce

wasted file space.

If a group is expected to have many links and to be stored in dense format, set est_ num_entries to 0
(zero) for maximum efficiency. This will prevent the group from being created in the compact format.

See “Group implementations in HDF5” in the H5G API introduction for a discussion of the available
types of HDF5 group structures.

Parameters:
hid_tgcpl_id IN: Group creation property list identifier
unsignecest_num_entries IN: Estimated number of links to be inserted into group
unsignedest_name_len IN: Estimated average length of link names

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:

468

SUBROUTINE H5Pset_est_link_info_f(gcpl_id, est_num_entries, est_name_len, &
hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: gcpl_id
I Group creation property list identifier
INTEGER, INTENT(IN) :: est_num_entries
I Estimated number of links to be
linserted into group
INTEGER, INTENT(IN) :: est_name_len
| Estimated average length of link names
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE H5Pset_est_link_info_f

HDF5 Reference Manual H5Pset_est_link_info

History:
Release C
1.8.0 Function introduced in this release.

469

H5Pset_external

Name: H5Pset_external
Signature:

herr_tH5Pset_external(hid_t plist, const char *name, off toffset, hsize_t size)

Purpose:

Adds an external file to the list of external files.

Description:

Parameters:
hid_tplist IN: Identifier of a dataset creation property list.
const charname IN: Name of an external file.
off_toffset IN: Offset, in bytes, from the beginning of the file to the location in the file
where the data starts.
hsize_size IN: Number of bytes reserved in the file for the data.
Returns:

The first call to H5Pset_external sets the external storage property in the property list, thus
designating that the dataset will be stored in one or more non-HDF5 file(s) external to the HDF5 file. This
call also adds the file name as the first file in the list of external files. Subsequent calls to the function

add the named file as the next file in the list.

If a dataset is split across multiple files, then the files should be defined in order. The total size of the
dataset is the sum of the size arguments for all the external files. If the total size is larger than the size
of a dataset then the dataset can be extended (provided the data space also allows the extending).

The size argument specifies the number of bytes reserved for data in the external file. If size is set to
H5F UNLIMITED, the external file can be of unlimited size and no more files can be added to the

external files list.

All of the external files for a given dataset must be specified with H5Pset_external before
H5Dcreate is called to create the dataset. If one these files does not exist on the system when
H5Dwrite is called to write data to it, the library will create the file.

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_external_f

470

SUBROUTINE h5pset_external_f(prp_id, name, offset,bytes, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
CHARACTER(LEN=%*), INTENT(IN) :: name ! Name of an external file
INTEGER, INTENT(IN) :: offset I Offset, in bytes, from the
! beginning of the file to the
! location in the file where
! the data starts
INTEGER(HSIZE_T), INTENT(IN) :: bytes ! Number of bytes reserved in
! the file for the data
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5pset_external_f

HDF5 Reference Manual

HDF5 Reference Manual H5Pset_family offset

Name: H5Pset_family offset

Signature:

herr_tH5Pset_family offset (hid_t fapl_id, hsize t offset)
Purpose:

Sets offset property for low-level access to a file in a family of files.
Description:

H5Pset_family_offset sets the offset property in the file access property list fapl_id so that the

user application can retrieve a file handle for low-level access to a particular member of a family of files.
The file handle is retrieved with a separate call to H5Fget vfd_handle (or, in special circumstances,

to H5FDget _vfd_handle; see Virtual File Layer and List of VFL Functions in HDF5 Technical

Notes).

The value of offset is an offset in bytes from the beginning of the HDF5 file, identifying a
user-determined location within the HDF5 file. The file handle the user application is seeking is for the
specific member-file in the associated family of files to which this offset is mapped.

Use of this function is only appropriate for an HDF5 file written as a family of files with the FAMILY file

driver.
Parameters:
hid_tfapl_id IN: File access property list identifier.
hsize_wffset IN: Offset in bytes within the HDF5 file.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: hSpset_family_offset_f
SUBROUTINE h5pset_family_offset_f(prp_id, offset, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER(HSIZE_T), INTENT(IN) :: offset ! Offset in bytes
INTEGER, INTENT(OUT) - hdferr ! Error code
1 0 on success and -1 on failure

END SUBROUTINE h5pset_family_offset_f

History:
Release C
1.6.0 Function introduced in this release.

471

H5Pset_fapl_core HDF5 Reference Manual

Name: H5Pset_fapl_core
Signature:
herr_tH5Pset_fapl core(hid_t fapl id, size t increment, hbool t backing_store)
Purpose:
Modifies the file access property list to use the H5FD_CORE driver.
Description:
H5Pset_fapl_core modifies the file access property list to use the HSFD_CORE driver.

The H5FD_CORE driver enables an application to work with a file in memory, speeding reads and writes
as no disk access is made. File contents are stored only in memory until the file is closed. The
backing_store parameter determines whether file contents are ever written to disk.

increment specifies the increment by which allocated memory is to be increased each time more
memory is required.

While using H5Fcreate to create a core file, if the backing_store is set to 1 (TRUE), the file
contents are flushed to a file with the same name as this core file when the file is closed or access to the
file is terminated in memory.

The application is allowed to open an existing file with H5FD_CORE driver. While using H5Fopen to
open an existing file, if the backing_store is set to 1 and the flags for H5Fopen is set to

H5F _ACC_RDWR, any change to the file contents are saved to the file when the file is closed. If
backing_store is set to 0 and the flags for H5Fopen is set to H5SF_ ACC_RDWR, any change to the
file contents will be lost when the file is closed. If the flags for H5Fopen is set to

H5F ACC_RDONLY, no change to the file is allowed either in memory or on file.

Note:
Currently this driver cannot create or open family or multi files.
Parameters:
hid_tfapl_id IN: File access property list identifier.
size_tincrement IN: Size, in bytes, of memory increments.
hbool_tbacking_store IN: Boolean flag indicating whether to write the file contents to disk
when the file is closed.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5pset_fapl core f
SUBROUTINE h5pset_fapl_core_f(prp_id, increment, backing_store, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER(SIZE_T), INTENT(IN) :: increment ! File block size in bytes
LOGICAL, INTENT(IN) :: backing_store ! Flag to indicate that entire
! file contents are flushed to
I a file with the same name as
I this core file
INTEGER, INTENT(OUT) :: hdferr ! Error code
10 on success and -1 on failure
END SUBROUTINE h5pset_fapl_core_f

472

HDF5 Reference Manual

History:
Release C
1.6.0
1.4.0 Function introduced

in this release.

H5Pset_fapl_core

Fortran90

The backing_store parameter has changed from
INTEGER to LOGICAL to better match the C API.

473

H5Pset_fapl_direct HDF5 Reference Manual

Name: H5Pset_fapl_direct

Signature:
herr_tH5Pset_fapl_direct(hid_t fapl_id, size_t alignment, size_t block_size, size_t
cbuf_size)

Purpose:
Sets up use of the direct I/O driver.

Description:
H5Pset_fapl_direct sets the file access property list, fapl_id, to use the direct I/O driver,
H5FD_DIRECT. With this driver, data is written to or read from the file synchronously without being
cached by the system.

File systems usually require the data address in memory, the file address, and the size of the data to be
aligned. The HDF5 Library’s direct I/O driver is able to handle unaligned data, though that will consume
some additional memory resources and may slow performance. To get better performance, use the system
function posix_memalign to align the data buffer in memory and the HDF5 function

H5Pset_alignment to align the data in the file. Be aware, however, that aligned data I/O may cause

the HDFS5 file to be bigger than the actual data size would otherwise require because the alignment may
leave some holes in the file.

alignment specifies the required alignment boundary in memory.

block_size specifies the file system block size. A value of 0 (zero) means to use HDF5 Library’s
default value of 4KB.

cbuf_size specifies the copy buffer size.

Note:
On an SGI Altix Linux 2.6 system, the memory alignment must be a multiple of 512 bytes, and the file
system block size is 4KB. The maximum size for the copy buffer has to be a multiple of the file system
block size. The HDF5 Library’s default maximum copy buffer size is 16MB. This copy buffer is used by
the library’s internal algorithm to copy data in fragments between an application’s unaligned buffer and
the file. The buffer's size may affect I/0O performance.

Parameters:
hid_tfapl_id IN: File access property list identifier
size_talignment IN: Required memory alignment boundary
size_tblock_size IN: File system block size
size_tcbuf _size IN: Copy buffer size

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_fapl_direct f
SUBROUTINE h5pset_fapl_direct_f(fapl_id, alignment, block_size, cbuf_size, &
hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: fapl_id ! File access property list identifier
INTEGER(SIZE_T), INTENT(IN) :: alignment
I Required memory alignment boundary
INTEGER(SIZE_T), INTENT(IN) :: block_size
| File system block size

474

HDF5 Reference Manual

INTEGER(SIZE_T), INTENT(IN) :: cbuf_size
! Copy buffer size
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE H5Pset_fapl_direct_f

History:
Release C
1.8.0 Function introduced in this release.

H5Pset_fapl_direct

475

H5Pset_fapl_family HDF5 Reference Manual

Name: H5Pset_fapl_family
Signature:
herr_tH5Pset_fapl_family (hid_t fapl_id, hsize_ t memb_size, hid_t memb_fapl_id)
Purpose:
Sets the file access property list to use the family driver.
Description:
H5Pset_fapl_family sets the file access property list identifier, fapl_id, to use the family driver.

memb_size is the size in bytes of each file member and is used only when creating a new file.

memb_fapl_id is the identifier of the file access property list to be used for each family member.
Parameters:

hid_tfapl_id IN: File access property list identifier.

hsize_tmemb_size IN: Size in bytes of each file member.

hid_tmemb_fapl_id IN: Identifier of file access property list for each family member.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_fapl _family f
SUBROUTINE h5pset_fapl_family_f(prp_id, imemb_size, memb_plist, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER(HSIZE_T), INTENT(IN) :: memb_size ! Logical size, in bytes,
I of each family member
INTEGER(HID_T), INTENT(IN) :: memb_plist ! Identifier of the file
I access property list to be
I used for each family member
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pset_fapl_family_f

History:
Release C
1.4.0 Function introduced in this release.

476

HDF5 Reference Manual H5Pset_fapl_log

Name: H5Pset_fapl log
Signature:
herr_tH5Pset_fapl_log(hid_t fapl_id, const char *logfile, unsigned int flags, size t
buf_size)
Purpose:
Sets up the use of the logging driver.
Description:
H5Pset_fapl_log modifies the file access property list to use the logging driver HSFD_LOG.

lodfile is the name of the file in which the logging entries are to be recorded.

The actions to be logged are specified in the parameter flags using the pre-defined constants described
in the following table. Multiple flags can be set through the use of an logical OR contained in
parentheses. For example, logging read and write locations would be specified as
(H5FD_LOG_LOC_READ|H5FD_LOG_LOC_WRITE).

Flag Description

H5FD_LOG_LOC_READ Track the location and length of every read, write, or seek operation.
H5FD_LOG_LOC_WRITE
H5FD_LOG_LOC_SEEK

H5FD_LOG_LOC_IO Track all I/0 locations and lengths. The logical equivalent of the
following:
(HSFD_LOG_LOC_READ | H5FD_LOG_LOC_WRITE |
H5FD_LOG_LOC_SEEK)

H5FD_LOG_FILE_READ Track the number of times each byte is read or written.
H5FD_LOG_FILE_WRITE

H5FD_LOG_FILE IO Track the number of times each byte is read and written. The logical
equivalent of the following:

(H5FD_LOG_FILE_READ | H5FD_LOG_FILE_WRITE)

H5FD_LOG_FLAVOR Track the type, or flavor, of information stored at each byte.

H5FD LOG_NUM_READ Track the total number of read, write, or seek operations that occur.
H5FD_LOG_NUM_WRITE
H5FD _LOG_NUM_SEEK

H5FD _LOG_NUM 10O Track the total number of all types of I/O operations. The logical
equivalent of the following:

(HSFD_LOG_NUM_READ | H5FD_LOG_NUM_WRITE |
H5FD_LOG_NUM_SEEK)

477

H5Pset_fapl_log

HDF5 Reference Manual

H5FD_LOG_TIME_OPEN
H5FD_LOG_TIME_READ
H5FD_LOG_TIME_WRITE
H5FD_LOG_TIME_SEEK
H5FD_LOG_TIME_CLOSE
H5FD_LOG_TIME_IO

Track the time spent in open, read, write, seek, or close operations.
Not implemented in this release: open and read

Partially implemented: write and seek

Fully implemented: close

Track the time spent in each of the above operations. The logical
equivalent of the following:

(H5FD_LOG_TIME_OPEN | H5FD_LOG_TIME_READ |
H5FD_LOG_TIME_WRITE | H5FD_LOG_TIME_SEEK |
H5FD_LOG_TIME_CLOSE)

H5FD_LOG_ALLOC

Track the allocation of space in the file.

H5FD_LOG_ALL

Track everything. The logical equivalent of the following:
(H5FD_LOG_ALLOC | H5FD_LOG_TIME_IO |
H5FD_LOG_NUM_IO | H5FD_LOG_FLAVOR
|[HSFD_LOG_FILE_IO | H5FD_LOG_LOC_l0O)

The logging driver can track the number of times each byte in the file is read from or written to (using
H5FD_LOG_FILE_READ and H5FD_LOG_FILE_WRITE) and what kind of data is at that location
(e.g., meta data, raw data; using H5FD_LOG_FLAVOR). This information is tracked in a buffer of size
buf_size, which must be at least the size in bytes of the file to be logged.

Parameters:
hid_tfapl_id IN: File access property list identifier.
char *logfile IN: Name of the log file.
unsigned inflags IN: Flags specifying the types of logging activity.
size_tbuf size IN: The size of the logging buffer.
Returns:

Returns non-negative if successful. Otherwise returns negative.

Fortran90 Interface:

None.
History:
Release C
1.6.0 The verbosity parameter has been removed.
Two new parameters have been added: flags of type unsigned and buf_size
of type size_t.
1.4.0 Function introduced in this release.

478

HDF5 Reference Manual H5Pset_fapl_mpio

Name: H5Pset_fapl_mpio
Signature:

herr_tH5Pset_fapl_mpio(hid_t fapl_id, MPI_Comm comm, MPI_Infdnfo)

Purpose:

Stores MPI 1O communicator information to the file access property list.

Description:

Note:

H5Pset_fapl_mpio stores the user-supplied MPI 10 parameters comm, for communicator, and info,
for information, in the file access property list fapl_id. That property list can then be used to create
and/or open a file.

H5Pset_fapl_mpio is available only in the parallel HDF5 library and is not a collective function.

comm is the MPI communicator to be used for file open, as defined in MPI_FILE_OPEN of MPI-2. This
function makes a duplicate of the communicator, so modifications to comm after this function call return:
have no effect on the file access property list.

info is the MPI Info object to be used for file open, as defined in MPI_FILE_OPEN of MPI-2. This
function makes a duplicate copy of the Info object, so modifications to the Info object after this function
call returns will have no effect on the file access property list.

If the file access property list already contains previously-set communicator and Info values, those value
will be replaced and the old communicator and Info object will be freed.

Raw dataset chunk caching is not currently supported when using this file driver in read/write mode. All
calls to H5Dread and H5Dwrite will access the disk directly, and H5Pset_cache and
H5Pset_chunk_cache will have no effect on performance.

Raw dataset chunk caching is supported when this driver is used in read-only mode.

Parameters:
hid_tfapl_id IN: File access property list identifier
MPI_Commcomm IN: MPI-2 communicator
MPI_Infoinfo IN: MPI-2 info object

Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5pset_fapl_mpio_f

SUBROUTINE h5pset_fapl_mpio_f(prp_id, comm, info, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(IN) :: comm I MPI communicator to be used for

! file open as defined in
! MPI_FILE_OPEN of MPI-2

INTEGER, INTENT(IN) :: info I MPI info object to be used for
! file open as defined in
I MPI_FILE_OPEN of MPI-2

INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure

END SUBROUTINE h5pset_fapl_mpio_f

479

H5Pset_fapl_mpio HDF5 Reference Manual

History:
Release Change
1.45 Handling of the MPI Communicator and Info object changed at this release. A
duplicate of each of these is now stored in the property list instead of pointers to
each.
1.4.0 C function introduced in this release.

480

HDF5 Reference Manual H5Pset_fapl_mpiposix

Name: H5Pset_fapl_mpiposix
Signature:

herr_tH5Pset_fapl_mpiposix(hid_t fapl_id, MPI_Comm comm, hbool_tise_gpfs_hints
)

Purpose:

Stores MPI IO communicator information to a file access property list.

Description:

Note:

H5Pset_fapl_mpiposix stores the user-supplied MPI 10 parameter comm, for communicator, in the
file access property list fapl_id. That property list can then be used to create and/or open the file.

H5Pset_fapl_mpiposix is available only in the parallel HDF5 library and is not a collective
function.

comm is the MPI communicator to be used for file open, as defined in MPI_FILE_OPEN of MPI-2. This
function does not create a duplicated communicator. Modifications to comm after this function call
returns may have an undetermined effect on the file access property list. Users should not modify the
communicator while it is defined in a property list.

use_gpfs_hints specifies whether to attempt to use GPFS hints when accessing this file. A value of
TRUE (or 1) indicates that the hints should be used, if possible. A value of FALSE (or 0) indicates that
the hints should not be used.

Available GPFS hints are known to the HFD5 Library and are not user configurable. They may be used
only with GPFS file systems and may improve file access for some applications; the user of a GPFS
system is encouraged to experiment by running an application with and without this parameter set.

Raw dataset chunk caching is not currently supported when using this file driver in read/write mode. All
calls to H5Dread and H5Dwrite will access the disk directly, and H5Pset_cache and
H5Pset_chunk_cache will have no effect on performance.

Raw dataset chunk caching is supported when this driver is used in read-only mode.

Parameters:
hid_tfapl_id IN: File access property list identifier.
MPI_Commcomm IN: MPI-2 communicator.
hbool_tuse_gpfs_hints IN: Use of GPFS hints.

Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: hSpset_fapl_mpiposix_f

SUBROUTINE h5pset_fapl_mpiposix_f(prp_id, comm, use_gpfs, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(IN) :: comm I MPI communicator to be used

| for file open as defined in
! MPI_FILE_OPEN of MPI-2
LOGICAL, INTENT(IN) :: use_gpfs
INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5pset_fapl_mpiposix_f

481

H5Pset_fapl_mpiposix HDF5 Reference Manual

History:
Release Change
1.6.1 Fortran subroutine introduced in this release.
1.6.0 use_gpfs_hints parameter added.
1.6.0 C function introduced in this release.

482

HDF5 Reference Manual H5Pset_fapl_multi

Name: H5Pset_fapl_multi
Signature:
herr_tH5Pset_fapl_multi(hid_t fapl_id, const H5FD_mem_t *memb_map, const hid_t
*memb_fapl, const char * const *memb_name, const haddr_t *memb_addr, hboolrelax)
Purpose:
Sets up use of the multi-file driver.
Description:
H5Pset_fapl_multi sets the file access property list fapl_id to use the multi-file driver.

The multi-file driver enables different types of HDF5 data and metadata to be written to separate files.
These files are viewed by the HDF5 library and the application as a single virtual HDF5 file with a single
HDFS5 file address space. The types of data that can be broken out into separate files include raw data, 1
superblock, B-tree data, global heap data, local heap data, and object headers. At the programmer's
discretion, two or more types of data can be written to the same file while other types of data are written
to separate files.

The array memb_map maps memory usage types to other memory usage types and is the mechanism 1
allows the caller to specify how many files are created. The array contains HSFD_MEM_NTYPES entrie
which are either the value H5FD_MEM_DEFAULT or a memory usage type. The number of unique valu
determines the number of files that are opened.

The array memb_fapl contains a property list for each memory usage type that will be associated with a
file.

The array memb_name should be a name generator (a printf-style format with a %s which will be
replaced with the name passed to H5FDopen, usually from H5Fcreate or H5Fopen).

The array memb_addr specifies the offsets within the virtual address space, from 0 (zero) to
HADDR_MAX, at which each type of data storage begins.

If relax is set to TRUE (or 1), then opening an existing file for read-only access will not fail if some file
members are missing. This allows a file to be accessed in a limited sense if just the meta data is availab

Default values for each of the optional arguments are as follows:

memb_map
The default member map contains the value HSFD_MEM_DEFAULT for each element.
memb_fapl
The default value is H5P_DEFAULT for each element.
memb_name
The default string is %s-X.h5 where X is one of the following letters:
s for H5SFD_MEM_SUPER
b for HSFD_MEM_BTREE
r for HSFD_MEM_DRAW
g for HSFD_MEM_GHEAP
| for HSFD_MEM_LHEAP
o for HSFD_MEM_OHDR

483

H5Pset_fapl_multi HDF5 Reference Manual

memb_addr
The default value is HADDR_UNDEF for each element.

Parameters:

hid_tfapl_id IN: File access property list identifier.

const H5FD_mem_t *memb_map IN: Maps memory usage types to other memory usage types.

const hid_t *memb_fapl IN: Property list for each memory usage type.

const char * const *memb_name IN: Name generator for names of member files.

const haddr_t *memb_addr IN: The offsets within the virtual address space, from 0 (zero)

to HADDR_MAX, at which each type of data storage begins.

hbool_trelax IN: Allows read-only access to incomplete file sets when TRUE.

Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

Example:

The following code sample sets up a multi-file access property list that partitions data into meta and raw
files, each being one-half of the address:

H5FD_mem_t mt, memb_map[H5FD_MEM_NTYPES];
hid_t memb_fapl[H5FD_MEM_NTYPES];

const char *memb[H5FD_MEM_NTYPES];

haddr_t memb_addr[H5FD_MEM_NTYPES];

/I The mapping...
for (mt=0; mt<H5FD_MEM_NTYPES; mt++) {
memb_map[mt] = H5FD_MEM_SUPER,;

memb_map[H5FD_MEM_DRAW] = HSFD_MEM_DRAW;

/I Member information
memb_fapl[H5FD_MEM_SUPER] = H5P_DEFAULT;
memb_name[H5FD_MEM_SUPER] = "%s.meta";
memb_addr[H5FD_MEM_SUPER] = 0;

memb_fapl[H5FD_MEM_DRAW] = H5P_DEFAULT;
memb_name[H5FD_MEM_DRAW] = "%s.raw";
memb_addr[H5FD_MEM_DRAW] = HADDR_MAX/2;

hid_t fapl = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_multi(fapl, memb_map, memb_fapl,
memb_name, memb_addr, TRUE);

Fortran90 Interface: h5pset_fapl_multi_f

484

SUBROUTINE h5pset_fapl_multi_f(prp_id, memb_map, memb_fapl, memb_name,
memb_addr, relax, hdferr)
IMPLICIT NONE
INTEGER(HID_T),INTENT(IN) : prp_id ! Property list identifier

INTEGER,DIMENSION(0:H5FD_MEM_NTYPES_F-1),INTENT(IN) ;> memb_map
INTEGER(HID_T),DIMENSION(0:H5FD_MEM_NTYPES_F-1),INTENT(IN) :: memb_fapl
CHARACTER(LEN=*),DIMENSION(0:H5FD_MEM_NTYPES_F-1),INTENT(IN) :: memb_name
REAL, DIMENSION(0:H5FD_MEM_NTYPES_F-1), INTENT(IN) :: memb_addr

I Numbers in the interval [0,1) (e.g. 0.0 0.1 0.5 0.2 0.3 0.4)

I real address in the file will be calculated as X*HADDR_MAX

HDF5 Reference Manual H5Pset_fapl_multi

LOGICAL, INTENT(IN) :: relax
INTEGER, INTENT(OUT) :: hdferr I Error code
10 on success and -1 on failure
END SUBROUTINE h5pset_fapl_multi_f

History:
Release C
1.6.3 memb_name parameter type changed to const char* const*.
1.4.0 Function introduced in this release.

485

H5Pset_fapl_sec2 HDF5 Reference Manual

Name: H5Pset_fapl_sec2
Signature:
herr_tH5Pset_fapl _sec2(hid_t fapl_id)
Purpose:
Sets the sec?2 driver.
Description:
H5Pset_fapl_sec2 modifies the file access property list to use the H5FD_SEC2 driver.
Parameters:
hid_tfapl_id IN: File access property list identifier.
Returns:
Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5pset_fapl _sec2 f
SUBROUTINE h5pset_fapl_sec2_f(prp_id, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code

10 on success and -1 on failure
END SUBROUTINE h5pset_fapl_sec2_f

History:
Release C
1.4.0 Function introduced in this release.

486

HDF5 Reference Manual H5Pset_fapl_split

Name: H5Pset_fapl_split
Signature:
herr_tH5Pset_fapl_split(hid_t fapl_id, const char *meta_ext, hid_t meta_plist_id,
const char *raw_ext, hid_t raw_plist_id)
Purpose:
Emulates the old split file driver.
Description:
H5Pset_fapl_split is a compatibility function that enables the multi-file driver to emulate the split
driver from HDF5 Releases 1.0 and 1.2. The split file driver stored metadata and raw data in separate fil
but provided no mechanism for separating types of metadata.

fapl_id is a file access property list identifier.

meta_ext is the filename extension for the metadata file. The extension is appended to the name passet
to H5FDopen, usually from H5Fcreate or H5Fopen, to form the name of the metadata file. If the
string %s is used in the extension, it works like the name generator as in H5Pset_fapl_multi.

meta_plist_id is the file access property list identifier for the metadata file.

raw_ext is the filename extension for the raw data file. The extension is appended to the name passed
to H5FDopen, usually from H5Fcreate or H5Fopen, to form the name of the rawdata file. If the
string %s is used in the extension, it works like the name generator as in H5Pset_fapl_multi.

raw_plist_id is the file access property list identifier for the raw data file.

If a user wishes to check to see whether this driver is in use, the user must call H5Pget_driver and
compare the returned value to the string HSFD_MULTI. A positive match will confirm that the multi
driver is in use; HDF5 provides no mechanism to determine whether it was called as the special case
invoked by H5Pset_fapl_split.

Parameters:

hid_tfapl_id, IN: File access property list identifier.

const char *meta_ext, IN: Metadata filename extension.

hid_tmeta_plist_id, IN: File access property list identifier for the metadata file.

const char *raw_ext, IN: Raw data filename extension.

hid_traw_plist_id IN: File access property list identifier for the raw data file.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Example:

/* Example 1: Both metadata and rawdata files are in the same */

[* directory. Use Stationl-m.h5 and Stationl-r.h5as */

/* the metadata and rawdata files. */

hid_t fapl, fid;

fapl = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_split(fapl, "-m.h5", H5P_DEFAULT, "-r.h5", H5P_DEFAULT);
fid=H5Fcreate("Station1",H5F_ACC_TRUNC,H5P_DEFAULT,fapl);

/* Example 2: metadata and rawdata files are in different */
/* directories. Use PointA-m.h5 and /pfs/PointA-r.h5 as */
/* the metadata and rawdata files. */

hid_t fapl, fid;

487

H5Pset_fapl_split HDF5 Reference Manual

fapl = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_split(fapl, "-m.h5", HSP_DEFAULT, "/pfs/%s-r.h5", H5P_DEFAULT);
fid=H5Fcreate("PointA",HSF_ACC_TRUNC,H5P_DEFAULT fapl);
Fortran90 Interface: h5pset_fapl_split_f
SUBROUTINE h5pset_fapl_split_f(prp_id, meta_ext, meta_plist, raw_ext, &
raw_plist, hdferr)
IMPLICIT NONE
INTEGER(HID_T),INTENT(IN) :: prp_id ! Property list identifier
CHARACTER(LEN=%*),INTENT(IN) :: meta_ext ! Name of the extension for
I the metafile filename
INTEGER(HID_T),INTENT(IN) :: meta_plist ! Identifier of the meta file
I access property list
CHARACTER(LEN=*),INTENT(IN) :: raw_ext ! Name extension for the raw
I file filename
INTEGER(HID_T),INTENT(IN) :: raw_plist ! Identifier of the raw file
I access property list
INTEGER, INTENT(OUT) :: hdferr I Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pset_fapl_split_f

History:
Release C
1.4.0 Function introduced in this release.

488

HDF5 Reference Manual H5Pset_fapl_stdio

Name: H5Pset_fapl_stdio

Signature:
herr_tH5Pset_fapl_stdio(hid_t fapl_id)
Purpose:
Sets the standard 1/O driver.
Description:
H5Pset_fapl_stdio modifies the file access property list to use the standard I/O driver,
H5FD_STDIO.
Parameters:
hid_tfapl_id IN: File access property list identifier.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5pset_fapl_stdio_f
SUBROUTINE h5pset_fapl_stdio_f(prp_id, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER, INTENT(OUT) :: hdferr ! Error code

10 on success and -1 on failure
END SUBROUTINE h5pset_fapl_stdio_f

History:
Release C
1.4.0 Function introduced in this release.

489

H5Pset_fapl_windows HDF5 Reference Manual

Name: H5Pset_fapl_windows
Signature:
herr_tH5Pset_fapl_windows(hid_t fapl_id)
Purpose:
Sets the Windows I/O driver.
Description:
H5Pset_fapl_windows sets the default HDF5 Windows I/O driver on Windows systems.

Since the HDF5 Library uses this driver, HSFD_WINDOWS, by default on Windows systems, it is not
normally necessary for a user application to call H5Pset fapl _windows. While it is not
recommended, there may be times when a user chooses to set a different HDF5 driver, such as the
standard I/O driver (H5FD_STDIO) or the sec2 driver (H5FD_SEC?2), in a Windows application.
H5Pset_fapl_windows is provided so that the application can return to the Windows 1/O driver

when the time comes.

Only the Windows driver is tested on Windows systems; other drivers are used at the application’s and
the user’s risk.

Furthermore, the Windows driver is tested and available only on Windows systems; it is not available on
non-Windows systems.
Parameters:
hid_tfapl_id IN: File access property list identifier
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:
Release C
1.8.0 Function introduced in this release.

490

HDF5 Reference Manual H5Pset_fclose_degree

Name: H5Pset_fclose degree
Signature:
herr_tH5Pset_fclose degree(hid_t fapl_id, H5F close_degree t fc_degree)
Purpose:
Sets the file close degree.
Description:
H5Pset_fclose degree sets the file close degree property fc_degree in the file access property
list fapl_id.A

The value of fc_degree determines how aggressively H§Fc|ose deals with objects within a file that
remain open when H5Fclose is called to close that file.A fc_degree can have any one of four valid

values:
Degree name H5Fclose behavior H5Fclose
with no open object in| behavior with open
file object(s) in file
H5F CLOSE_WEAK Actual file is closed. |Access to file
identifier is
terminated; actual
file close is delayed
until all objects in
file are closed
H5F CLOSE_SEMI Actual file is closed. |Function returns
FAILURE
H5F_CLOSE_STRONG |Actual file is closed. |All open objects
remaining in the file
are closed then file is
closed
H5F _CLOSE_DEFAULT |The VFL driver chooses the behavior.A
Currently, all VFL drivers set this value to
H5F CLOSE_WEAK, except for the MPI-I/Q
driver, which sets it to H5F_CLOSE_SEMI.
Parameters:
hid_tfapl_id IN: File access property list identifier.
H5F close_degree ft_degree IN: Pointer to a location containing the file close degree
property, the value of fc_degree.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5pset_fclose degree_f
SUBROUTINE h5pset_fclose_degree_f(fapl_id, degree, hdferr)

IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: fapl_id ! File access property list identifier
INTEGER, INTENT(IN) :: degree ! Info about file close behavior

! Possible values:

I H5F_CLOSE_DEFAULT_F
! H5F_CLOSE_WEAK_F

! H5F _CLOSE_SEMI_F

I H5F CLOSE_STRONG_F

491

H5Pset_fclose_degree HDF5 Reference Manual

INTEGER, INTENT(OUT) :: hdferr ! Error code
1'0 on success and -1 on failure
END SUBROUTINE h5pset_fclose_degree_f

History:
Release C
1.6.0 Function introduced in this release.

492

HDF5 Reference Manual H5Pset _fill_time

Name: H5Pset_fill_time

Signature:

herr_tH5Pset _fill_time(hid_t plist_id, H5D _fill_time_t fill_time)
Purpose:

Sets the time when fill values are written to a dataset.
Description:

H5Pset_fill_time sets up the timing for writing fill values to a dataset. This property is set in the
dataset creation property list plist_id.

Timing is specified in fill_time with one of the following values:

H5D FILL_TIME_IFSET Write fill values to the dataset when storage space is allocated only if
there is a user-defined fill value, i.e., one set with H5Pset_fill_value.
(Default)
H5D_FILL_TIME_ALLOC Write fill values to the dataset when storage space is allocated.
H5D_FILL_TIME_NEVER Never write fill values to the dataset.
Note:
H5Pset_fill_time is designed for coordination with the dataset fill value and dataset storage
allocation time properties, set with the functions H5Pset_fill_value and H5Pset_alloc_time.

See H5Dcreate for further cross-references.

Parameters:
hid_tplist_id IN: Dataset creation property list identifier.
H5D_fill_time_tfill_time IN: When to write fill values to a dataset.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_fill_time_f
SUBROUTINE h5pset_fill_time_f(plist_id, flag, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: plist_id ! Dataset creation property
! list identifier
INTEGER(HSIZE_T), INTENT(IN) :: flag ! File time flag
! Possible values are:
! H5D_FILL_TIME_ERROR_F
! H5D_FILL_TIME_ALLOC_F
! H5D_FILL_TIME_NEVER_F
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pset_fill_time_f

History:
Release C
1.6.0 Function introduced in this release.

493

H5Pset _fill_value HDF5 Reference Manual

Name: H5Pset _fill_value
Signature:

herr_tH5Pset_fill_value(hid_t plist_id, hid_t type_id, const void *value)

Purpose:

Sets the fill value for a dataset.

Description:

Notes:

H5Pset_fill_value sets the fill value for a dataset in the dataset creation property list.

value is interpreted as being of datatype type_id. This datatype may differ from that of the dataset,
but the HDF5 library must be able to convert value to the dataset datatype when the dataset is created.

The default fill value is 0 (zero), which is interpreted according to the actual dataset datatype.
Setting value to NULL indicates that the fill value is to be undefined.

Applications sometimes write data only to portions of an allocated dataset. It is often useful in such cases
to fill the unused space with a known fill value. This function allows the user application to set that fill
value; the functions H5Dfill and H5Pset fill_time, respectively, provide the ability to apply the fill value

on demand or to set up its automatic application.

A fill value should be defined so that it is appropriate for the application. While the HDF5 default fill
value is 0 (zero), it is often appropriate to use another value. It might be useful, for example, to use a
value that is known to be impossible for the application to legitimately generate.

H5Pset_fill_value is designed to work in concert with H5Pset_alloc_time and

H5Pset_fill_time. H5Pset_alloc_time and H5Pset _fill_time govern the timing of

dataset storage allocation and fill value write operations and can be important in tuning application
performance.

See H5Dcreate for further cross-references.

Parameters:

hid_tplist_id IN: Dataset creation property list identifier.

hid_ttype_id, IN: Datatype of value.

const void *value IN: Pointer to buffer containing value to use as fill value.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_fill_value_f

494

SUBROUTINE h5pset _fill_value_f(prp_id, type_id, fillvalue, hdferr)
IMPLICIT NONE
INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier of fill
! value datatype (in memory)
TYPE(VOID), INTENT(IN) :: fillvalue ! Fillvalue
INTEGER, INTENT(OUT) :: hdferr ! Error code
1 0 on success and -1 on failure
END SUBROUTINE h5pset_fill_value_f

HDF5 Reference Manual H5Pset filter

Name: H5Pset _filter

Signature:
herr_tH5Pset _filter(hid_t plist_id, H5Z filter_t filter_id, unsigned int flags, size_t
cd_nelmts, const unsigned int cd_values][])

Purpose:
Adds a filter to the filter pipeline.

Description:
H5Pset_filter adds the specified filter_id and corresponding properties to the end of an output
filter pipeline.

plist_id must be either a dataset creation property list or group creation property list identifier. If
plist_id is a dataset creation property list identifier, the filter is added to the raw data filter pipeline.

If plist_id is a group creation property list identifier, the filter is added to the link filter pipeline,

which filters the fractal heap used to store the most of link metadata in certain types of groups. The only
predefined filters that can be set in a group creation property list are the gzip filter
(H5Z_FILTER_DEFLATE) and the Fletcher32 error detection filter (H5Z_FILTER_FLETCHER32).

The array cd_values contains cd_nelmts integers which are auxili