
HDF5 Reference Manual

Release 1.8.6
February 2011

 http://www.HDFGroup.org

http://www.hdfgroup.org

Copyright Notice and License Terms for
HDF5 (Hierarchical Data Format 5) Software Library and Utilities

HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 2006-2011 by The HDF Group.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2006 by the Board of Trustees of the University of Illinois.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (including
commercial purposes) provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.1.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following
disclaimer in the documentation and/or materials provided with the distribution.

2.

In addition, redistributions of modified forms of the source or binary code must carry prominent notices stating that the
original code was changed and the date of the change.

3.

All publications or advertising materials mentioning features or use of this software are asked, but not required, to
acknowledge that it was developed by The HDF Group and by the National Center for Supercomputing Applications at the
University of Illinois at Urbana-Champaign and credit the contributors.

4.

Neither the name of The HDF Group, the name of the University, nor the name of any Contributor may be used to endorse
or promote products derived from this software without specific prior written permission from The HDF Group, the
University, or the Contributor, respectively.

5.

DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE HDF GROUP AND THE CONTRIBUTORS "AS IS" WITH NO
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall The HDF Group or the Contributors be
liable for any damages suffered by the users arising out of the use of this software, even if advised of the possibility of such damage.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois, Fortner Software, Unidata
Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip), and Digital Equipment
Corporation (DEC).

Portions of HDF5 were developed with support from the Lawrence Berkeley National Laboratory (LBNL) and the United States
Department of Energy under Prime Contract No. DE-AC02-05CH11231.

Portions of HDF5 were developed with support from the University of California, Lawrence Livermore National Laboratory (UC
LLNL). The following statement applies to those portions of the product and must be retained in any redistribution of source code,
binaries, documentation, and/or accompanying materials:

This work was partially produced at the University of California, Lawrence Livermore National Laboratory (UC LLNL)
under contract no. W-7405-ENG-48 (Contract 48) between the U.S. Department of Energy (DOE) and The Regents of the
University of California (University) for the operation of UC LLNL.

DISCLAIMER: This work was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any warranty,
express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately- owned rights.
Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or the University of California, and shall not be used for advertising or
product endorsement purposes.

Table of Contents

Overview 1

Fortran90 and C++ APIs 2

H5: General Library Functions 3

H5A: Attribute Interface 15

H5D: Datasets Interface 63

H5E: Error Interface 99

H5F: File Interface 137

H5G: Group Interface 177

H5I: Identifier Interface 213

H5L: Link Interface 235

H5O: Object Interface 281

H5P: Property List Interface 307

H5R: Reference Interface 545

H5S: Dataspace Interface 559

H5T: Datatype Interface 591

H5Z: Compression Interface 677

HDF5 Tools
 h5dump
 h5ls
 h5diff and ph5diff
 h5repack
 h5repart
 h5jam and j5unjam
 h5copy
 h5mkgrp
 h5import
 gif2h5
 h52gif
 Java-based tools (HDFview, etc.)
 H4toH5 Conversion Library
 h5toh4
 h4toh5

687
689
695
696
700
703
704
706
708
710
718
719

*
*

720
722

* Links to descriptions of these tools appear on the HDF5 Tools page:
http://hdfgroup.org/HDF5/doc/RM/Tools.html

HDF5 Tools (continued)
 h5stat
 h5check
 h5perf
 h5perf_serial
 h5redeploy
 h5cc and h5pcc
 h5fc and h5pfc
 h5c++

723
724
726
731
733
734
736
738

HDF5 Predefined Datatypes 741

HDF5 Fortran90 Flags, Datatypes,
 and User’s Notes

745

API Compatibility Macros
 in HDF5

749

Collective Calls in
 Parallel HDF5 Applications

757

HDF5 Glossary 761

HDF5: API Specification
Reference Manual

The HDF5 library provides several interfaces, each of which provides the tools required to meet specific aspects
of the HDF5 data-handling requirements.

Notes regarding Fortran90 and C++ APIs appear on the next page.

Main HDF5 Library, or Low-level APIs

The main HDF5 Library includes all of the low-level APIs, providing user applications with fine-grain control
of HDF5 functionality.

Library Functions The general-purpose H5 functions.

Attribute Interface The H5A API for attributes.

Dataset Interface The H5D API for manipulating scientific datasets.

Error Interface The H5E API for error handling.

File Interface The H5F API for accessing HDF5 files.

Group Interface The H5G API for creating physical groups of objects on disk.

Identifier Interface The H5I API for working with object identifiers.

Link Interface The H5L API for working with links.

Object Interface The H5O API for manipulating objects and reference counts.

Property List Interface The H5P API for manipulating object property lists.

Reference Interface The H5R API for references.

Dataspace Interface The H5S API for defining dataset dataspace.

Datatype Interface The H5T API for defining dataset element information.

Filters and
 Compression Interface

The H5Z API for inline data filters and data compression.

Tools Interactive tools for the examination of existing HDF5 files.

Predefined Datatypes Predefined datatypes in HDF5.

HDF5 Fortran90 Flags,
 Datatypes, User Notes

Flags and datatypes used in the HDF5 Fortran interface.
User notes for the HDF5 Fortran interface.

API Compatibility
 Macros

API compatibility macros provided in HDF5.

Collective Calling
 Requirements

Requirements for collective function calls and coordinated use
of properties in parallel HDF5 applications.

HDF5 Reference Manual

1

The Fortran90 and C++ APIs to HDF5

The HDF5 Library distribution includes FORTRAN90 and C++ APIs, which are described in the following
documents.

Fortran90 API

Fortran90 APIs in the HDF5 Reference Manual: The HDF5 Reference Manual includes descriptions of
the HDF5 Fortran90 APIs. Fortran subroutines exist in the H5, H5A, H5D, H5E, H5F, H5G, H5I, H5P,
H5R, H5S, H5T, and H5Z interfaces and are described on those pages. In general, each Fortran
subroutine performs exactly the same task as the corresponding C function, with which it is described.

HDF5 Fortran90 Flags, Datatypes and User’s Notes lists the flags employed in the Fortran90 interface,
contains a pointer to the HDF5 Fortran90 datatypes, and includes the document HDF5 Fortran90 User's
Notes.

HDF5 Fortran90 User’s Notes provides important information for users regarding the Fortran90 source
code and the Fortran90 API.

C++ API

HDF5 C++ Reference Manual provides a complete reference for the HDF5 C++ interface.

HDF5 Reference Manual

2

H5: General Library Functions
These functions serve general-purpose needs of the HDF5 library and it users.

The C Interfaces:

H5open•
H5close•

H5get_libversion•
H5check_version•

H5set_free_list_limits•
H5garbage_collect•
H5dont_atexit•

Alphabetical Listing

H5check_version•
H5close•
H5dont_atexit•

H5garbage_collect•
H5get_libversion•
H5open•

H5set_free_list_limits•

The FORTRAN90 Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

h5open_f•
h5close_f•

h5get_libversion_f•
h5check_version_f•

h5set_free_list_limits_f•
h5garbage_collect_f•
h5dont_atexit_f•

HDF5 Reference Manual

3

HDF5 Reference Manual

4

Last modified: 30 July 2010

Name:H5check_version
Signature:

herr_tH5check_version(unsigned majnum, unsignedminnum, unsignedrelnum)
Purpose:

Verifies that HDF5 library versions are consistent.
Description:

H5check_version verifies that the version of the HDF5 library with which an application was
compiled, as indicated by the passed parameters, matches the version of the HDF5 library against which
the application is currently linked.

majnum is the major version number of the HDF library with which the application was compiled,
minnum is the minor version number, and relnum is the release number. Consider the following
illustration:

An official HDF5 release is labelled as follows:
 HDF5 Release <majnum>.<minnum>.<relnum>

For example, in HDF5 Release 1.8.5:

1 is the major version number, majnum.⋅
8 is the minor version number, minnum.⋅
5 is the release number, relnum.⋅

As stated above, H5check_version first verifies that the version of the HDF5 library with which an
application was compiled matches the version of the HDF5 library against which the application is
currently linked. If this check fails, H5check_version causes the application to abort (by means of a
standard C abort() call) and prints information that is usually useful for debugging. This precaution is
is taken to avoid the risks of data corruption or segmentation faults.

The most common cause of this failure is that an application was compiled with one version of HDF5 and
is dynamically linked with a different version different version.

If the above test passes, H5check_version proceeds to verify the consistency of additional library
version information. This is designed to catch source code inconsistencies that do not normally cause
failures; if this check reveals an inconsistency, an informational warning is printed but the application is
allowed to run.

Parameters:
unsignedmajnum IN: HDF5 library major version number.

unsigned minnum IN: HDF5 library minor version number.

unsignedrelnum IN: HDF5 library release number.
Returns:

Returns a non-negative value if successful. Upon failure, this function causes the application to abort.
Fortran90 Interface: h5check_version_f

SUBROUTINE h5check_version_f(majnum, minnum, relnum, hdferr)
 IMPLICIT NONE
 INTEGER, INTENT(IN) :: majnum ! The major version of the library
 INTEGER, INTENT(IN) :: minnum ! The minor version of the library
 INTEGER, INTENT(IN) :: relnum ! The release number
 INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5check_version_f

HDF5 Reference Manual H5check_version

5

History:
Release Fortran90

1.4.5 Function introduced in this release.

H5check_version HDF5 Reference Manual

6

Last modified: 1 February 2011

Name:H5close
Signature:

herr_tH5close(void)
Purpose:

Flushes all data to disk, closes all open identifiers, and cleans up memory.
Description:

H5close flushes all data to disk, closes all open HDF5 identifiers, and cleans up all memory used by the
HDF5 library. This function is generally called when the application calls exit(), but may be called
earlier in the event of an emergency shutdown or out of a desire to free all resources used by the HDF5
library.

h5open_f and h5close_f are required calls in Fortran90 applications.
Parameters:

None.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5close_f

SUBROUTINE h5close_f(hdferr)
 IMPLICIT NONE
 INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5close_f

HDF5 Reference Manual H5close

7

Name:H5dont_atexit
Signature:

herr_tH5dont_atexit(void)
Purpose:

Instructs library not to install atexit cleanup routine.
Description:

H5dont_atexit indicates to the library that an atexit() cleanup routine should not be installed.
The major purpose for this is in situations where the library is dynamically linked into an application and
is un-linked from the application before exit() gets called. In those situations, a routine installed with
atexit() would jump to a routine which was no longer in memory, causing errors.

In order to be effective, this routine must be called before any other HDF function calls, and must be
called each time the library is loaded/linked into the application (the first time and after it's been
un-loaded).

Parameters:
None.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5dont_atexit_f

SUBROUTINE h5dont_atexit_f(hdferr)
 IMPLICIT NONE
 INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5dont_atexit_f

History:
Release Fortran90

1.4.5 Function introduced in this release.

H5dont_atexit HDF5 Reference Manual

8

Name:H5garbage_collect
Signature:

herr_tH5garbage_collect(void)
Purpose:

Garbage collects on all free-lists of all types.
Description:

H5garbage_collect walks through all the garbage collection routines of the library, freeing any
unused memory.

It is not required that H5garbage_collect be called at any particular time; it is only necessary in
certain situations where the application has performed actions that cause the library to allocate many
objects. The application should call H5garbage_collect if it eventually releases those objects and
wants to reduce the memory used by the library from the peak usage required.

The library automatically garbage collects all the free lists when the application ends.
Parameters:
None.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5garbage_collect_f

SUBROUTINE h5garbage_collect_f(hdferr)
 IMPLICIT NONE
 INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5garbage_collect_f

History:
Release Fortran90

1.4.5 Function introduced in this release.

HDF5 Reference Manual H5garbage_collect

9

Last modified: 24 July 2009

Name:H5get_libversion
Signature:

herr_tH5get_libversion(unsigned *majnum, unsigned *minnum, unsigned *relnum)
Purpose:

Returns the HDF library release number.
Description:

H5get_libversion retrieves the major, minor, and release numbers of the version of the HDF library
which is linked to the application.

Parameters:
unsigned *majnum OUT: The major version of the library.

unsigned *minnum OUT: The minor version of the library.

unsigned *relnum OUT: The release number of the library.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5get_libversion_f

SUBROUTINE h5get_libversion_f(majnum, minnum, relnum, hdferr)
 IMPLICIT NONE
 INTEGER, INTENT(OUT) :: majnum ! The major version of the library
 INTEGER, INTENT(OUT) :: minnum ! The minor version of the library
 INTEGER, INTENT(OUT) :: relnum ! The release number
 INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5get_libversion_f

History:
Release Fortran90

1.4.5 Function introduced in this release.

H5get_libversion HDF5 Reference Manual

10

Name:H5open
Signature:

herr_tH5open(void)
Purpose:

Initializes the HDF5 library.
Description:

H5open initialize the library.

When the HDF5 Library is employed in a C application, this function is normally called automatically,
but if you find that an HDF5 library function is failing inexplicably, try calling this function first. If you
wish to elimnate this possibility, it is safe to routinely call H5open before an application starts working
with the library as there are no damaging side-effects in calling it more than once.

When the HDF5 Library is employed in a Fortran90 application, h5open_f initializes global variables
(e.g. predefined types) and performs other tasks required to initialize the library. h5open_f and
h5close_f are therefore required calls in Fortran90 applications.

Parameters:
None.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5open_f
SUBROUTINE h5open_f(hdferr)
 IMPLICIT NONE
 INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5open_f

HDF5 Reference Manual H5open

11

Last modified: 6 May 2010

Name:H5set_free_list_limits
Signature:

herr_tH5set_free_list_limits(int reg_global_lim, int reg_list_lim, int
arr_global_lim, int arr_list_lim, int blk_global_lim, int blk_list_lim)

Purpose:
Sets free-list size limits.

Description:
H5set_free_list_limits sets size limits on all types of free lists. The HDF5 library uses free lists
internally to manage memory. The types of free lists used are as follows:

Regular free lists manage memory for single internal data structures.◊
Array free lists manage memory for arrays of internal data structures.◊
Block free lists manage memory for arbitrarily-sized blocks of bytes.◊
Factory free lists manage memory for fixed-size blocks of bytes.◊

The parameters specify global and per-list limits; for example, reg_global_limit and
reg_list_limit limit the accumulated size of all regular free lists and the size of each individual
regular free list, respectively. Therefore, if an application sets a 1Mb limit on each of the global lists, up
to 4Mb of total storage might be allocated, 1Mb for each of the regular, array, block, and factory type
lists.

The settings specified for block free lists are duplicated for factory free lists. Therefore, increasing the
global limit on block free lists by x bytes will increase the potential free list memory usage by 2x bytes.

Using a value of -1 for a limit means that no limit is set for the specified type of free list.
Parameters:

int reg_global_lim IN: The cumulative limit, in bytes, on memory used for all regular free
lists
(Default: 1MB)

int reg_list_lim IN: The limit, in bytes, on memory used for each regular free list
(Default: 64KB)

int arr_global_lim IN: The cumulative limit, in bytes, on memory used for all array free lists
(Default: 4MB)

int arr_list_lim IN: The limit, in bytes, on memory used for each array free list
(Default: 256KB)

int blk_global_lim IN: The cumulative limit, in bytes, on memory used for all block free lists
and, separately, for all factory free lists
(Default: 16MB)

int blk_list_lim IN: The limit, in bytes, on memory used for each block or factory free list
(Default: 1MB)

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.6.0 Function introduced in this release.

1.8.3 Function changed in this release to set factory free list memory limits.

H5set_free_list_limits HDF5 Reference Manual

12

HDF5 Reference Manual

13

HDF5 Reference Manual

14

H5A: Attribute Interface

Attribute API Functions

These functions create and manipulate attributes and information about attributes.
In the following lists, italic type indicates a configurable macro.

The C Interfaces:

H5Acreate•
H5Acreate1 *•
H5Acreate2•
H5Acreate_by_name•
H5Aopen•
H5Aopen_by_name•
H5Aopen_name *•
H5Aopen_by_idx•
H5Aopen_idx *•
H5Aexists•
H5Aexists_by_name•

H5Arename•
H5Arename_by_name•
H5Awrite•
H5Aread•
H5Aclose•
H5Aiterate•
H5Aiterate1 *•
H5Aiterate2•
H5Aiterate_by_name•
H5Adelete•
H5Adelete_by_name•
H5Adelete_by_idx•

H5Aget_info•
H5Aget_info_by_name•
H5Aget_info_by_idx•
H5Aget_num_attrs *•
H5Aget_name•
H5Aget_create_plist•
H5Aget_space•
H5Aget_type•
H5Aget_storage_size•
H5Aget_name_by_idx•

* Use of these functions is deprecated in Release 1.8.0.

Alphabetical Listing

H5Aclose•
H5Acreate•
H5Acreate1 *•
H5Acreate2•
H5Acreate_by_name•
H5Adelete•
H5Adelete_by_name•
H5Adelete_by_idx•
H5Aexists•
H5Aexists_by_name•
H5Aget_create_plist•

H5Aget_info•
H5Aget_info_by_idx•
H5Aget_info_by_name•
H5Aget_name•
H5Aget_name_by_idx•
H5Aget_num_attrs *•
H5Aget_space•
H5Aget_storage_size•
H5Aget_type•
H5Aiterate•
H5Aiterate1 *•

H5Aiterate2•
H5Aiterate_by_name•
H5Aopen•
H5Aopen_by_idx•
H5Aopen_by_name•
H5Aopen_idx *•
H5Aopen_name *•
H5Aread•
H5Arename•
H5Arename_by_name•
H5Awrite•

HDF5 Reference Manual

15

The FORTRAN90 Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

h5aclose_f•
h5acreate_f•
h5acreate_by_name_f•
h5adelete_f•
h5adelete_by_name_f•
h5adelete_by_idx_f•
H5Aexists_f•
H5Aexists_by_name_f•
h5aget_create_plist_f•

h5aget_info_f•
h5aget_info_by_idx_f•
h5aget_info_by_name_f•
h5aget_name_f•
h5aget_name_by_idx_f•
h5aget_num_attrs_f *•
h5aget_space_f•
h5aget_storage_size_f•
h5aget_type_f•

h5aopen_f•
h5aopen_by_idx_f•
h5aopen_by_name_f•
h5aopen_idx_f *•
h5aopen_name_f *•
h5aread_f•
h5arename_f•
h5arename_by_name_f•
h5awrite_f•

* Use of these functions is deprecated in Release 1.8.0.
The Attribute interface, H5A, is primarily designed to easily allow small datasets to be attached to primary
datasets as metadata information. Additional goals for the H5A interface include keeping storage requirement for
each attribute to a minimum and easily sharing attributes among datasets.

Because attributes are intended to be small objects, large datasets intended as additional information for a primary
dataset should be stored as supplemental datasets in a group with the primary dataset. Attributes can then be
attached to the group containing everything to indicate a particular type of dataset with supplemental datasets is
located in the group. How small is "small" is not defined by the library and is up to the user’s interpretation.

See Attributes in the HDF5 User's Guide for further information.

HDF5 Reference Manual

16

Name:H5Aclose
Signature:

herr_tH5Aclose(hid_t attr_id)
Purpose:

Closes the specified attribute.
Description:

H5Aclose terminates access to the attribute specified by attr_id by releasing the identifier.

Further use of a released attribute identifier is illegal; a function using such an identifier will fail.
Parameters:

hid_tattr_id IN: Attribute to release access to.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5aclose_f

SUBROUTINE h5aclose_f(attr_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(OUT) :: attr_id ! Attribute identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5aclose_f

HDF5 Reference Manual H5Aclose

17

Name:H5Acreate
Signature:

hid_tH5Acreate(hid_t loc_id, const char *attr_name,
hid_t type_id, hid_t space_id, hid_t acpl_id)

[1]

hid_tH5Acreate(hid_t loc_id, const char *attr_name,
hid_t type_id, hid_t space_id, hid_t acpl_id, hid_t aapl_id)

[2]

Purpose:
Creates an attribute attached to a specified object.

Description:
H5Acreate is a macro that is mapped to either H5Acreate1 or H5Acreate2, depending on the
needs of the application.

Such macros are provided to facilitate application compatibility. For example:

The H5Acreate macro will be mapped to H5Acreate1 and will use the H5Acreate1
syntax (first signature above) if an application is coded for HDF5 Release 1.6.x.

◊

The H5Acreate macro mapped to H5Acreate2 and will use the H5Acreate2 syntax
(second signature above) if an application is coded for HDF5 Release 1.8.x.

◊

Macro use and mappings are fully described in “API Compatibility Macros in HDF5”; we urge you to
read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Acreate is mapped to the most recent version of the function, currently H5Acreate2. If the
library and/or application is compiled for Release 1.6 emulation, H5Acreate will be mapped to
H5Acreate1. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Acreate mapping

Global settings

No compatibility flag H5Acreate2

Enable deprecated symbols H5Acreate2

Disable deprecated symbols H5Acreate2

Emulate Release 1.6 interface H5Acreate1

Function-level macros

H5Acreate_vers = 2 H5Acreate2

H5Acreate_vers = 1 H5Acreate1

H5Acreate HDF5 Reference Manual

18

Interface history: Signature [1] above is the original H5Acreate interface and the only interface
available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now deprecated
but will remain directly callable as H5Acreate1.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Acreate2.

See “API Compatibility Macros in HDF5” for circumstances under which either of these functions might
not be available in an installed instance of the HDF5 Library.

Fortran90 Interface: h5acreate_f
SUBROUTINE h5acreate_f(loc_id, name, type_id, space_id, attr_id, hdferr, &
 acpl_id, aapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! Object identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Attribute name
 INTEGER(HID_T), INTENT(IN) :: type_id ! Attribute datatype identifier
 INTEGER(HID_T), INTENT(IN) :: space_id ! Attribute dataspace identifier
 INTEGER(HID_T), INTENT(OUT) :: attr_id ! Attribute identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: acpl_id
 ! Attribute creation property
 ! list identifier
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: aapl_id
 ! Attribute access property
 ! list identifier
END SUBROUTINE h5acreate_f

History:
Release C

1.8.0 The function H5Acreate renamed to H5Acreate1 and deprecated in this
release.
The macro H5Acreate and the functions H5Acreate2 and
H5Acreate_by_name introduced in this release.

HDF5 Reference Manual H5Acreate

19

Last modified: 16 December 2010

Name:H5Acreate1
Signature:

hid_tH5Acreate1(hid_t loc_id, const char *attr_name, hid_t type_id, hid_t space_id,
hid_tacpl_id)

Purpose:
Creates a dataset as an attribute of another group, dataset, or named datatype.

Deprecated Function:
This function is deprecated in favor of the function H5Acreate2.

Description:
H5Acreate1 creates the attribute attr_name attached to the object specified with loc_id.

The attribute name specified in attr_name must be unique. Attempting to create an attribute with the
same name as an already existing attribute will fail, leaving the pre-existing attribute in place. To
overwrite an existing attribute with a new attribute of the same name, first call H5Adelete then recreate
the attribute with H5Acreate1.

The datatype and dataspace identifiers of the attribute, type_id and space_id, respectively, are
created with the H5T and H5S interfaces, respectively.

Currently only simple dataspaces are allowed for attribute dataspaces.

The attribute creation property list, acpl_id, is currently unused; it may be used in the future for
optional attribute properties. At this time, H5P_DEFAULT is the only accepted value.

The attribute identifier returned from this function must be released with H5Aclose or resource leaks
will develop.

Parameters:
hid_t loc_id IN: Identifier for the object to which the attribute is to be attached

May be any HDF5 object identifier (group, dataset, or committed
datatype) or an HDF5 file identifier; if loc_id is a file identifer, the
attribute will be attached to that file’s root group.

const char *attr_name IN: Name of attribute to create

hid_t type_id IN: Identifier of datatype for attribute

hid_tspace_id IN: Identifier of dataspace for attribute

hid_tacpl_id IN: Identifier of creation property list
(Currently not used; specifyH5P_DEFAULT.)

Returns:
Returns an attribute identifier if successful; otherwise returns a negative value.

Fortran90 Interface:
See listing under H5Acreate.

History:
Release C

1.8.0 The function H5Acreate renamed to H5Acreate1 and deprecated in this
release.

H5Acreate1 HDF5 Reference Manual

20

Last modified: 16 December 2010

Name:H5Acreate2
Signature:

hid_tH5Acreate2(hid_t loc_id, const char *attr_name, hid_t type_id, hid_t space_id,
hid_tacpl_id, hid_t aapl_id,)

Purpose:
Creates an attribute attached to a specified object.

Description:
H5Acreate2 creates an attribute, attr_name, which is attached to the object specified by the
identifier loc_id.

The attribute name, attr_name, must be unique for the object.

The attribute is created with the specified datatype and dataspace, type_id and space_id, which are
created with the H5T and H5S interfaces, respectively.

The attribute creation and access property lists are currently unused, but will be used in the future for
optional attribute creation and access properties. These property lists should currently be H5P_DEFAULT.

The attribute identifier returned by this function must be released with H5Aclose or resource leaks will
develop.

Parameters:
hid_t loc_id IN: Location or object identifier

May be any HDF5 object identifier (group, dataset, or committed datatype)
or an HDF5 file identifier; if loc_id is a file identifer, the attribute will
be attached to that file’s root group.

const char *attr_name IN: Attribute name

hid_t type_id IN: Attribute datatype identifier

hid_tspace_id IN: Attribute dataspace identifier

hid_tacpl_id IN: Attribute creation property list identifier
(Currently not used; specifyH5P_DEFAULT.)

hid_taapl_id IN: Attribute access property list identifier
(Currently not used; specifyH5P_DEFAULT.)

Returns:
Returns an attribute identifier if successful; otherwise returns a negative value.

Fortran90 Interface:
See listing under H5Acreate.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Acreate2

21

Name:H5Acreate_by_name
Signature:

hid_tH5Acreate_by_name(hid_t loc_id, const char *obj_name, const char *attr_name,
hid_t type_id, hid_t space_id, hid_t acpl_id, hid_t aapl_id, hid_t lapl_id)

Purpose:
Creates an attribute attached to a specified object.

Description:
H5Acreate_by_name creates an attribute, attr_name, which is attached to the object specified by
loc_id and obj_name.

loc_id is a location identifier; obj_name is the object name relative to loc_id. If loc_id fully
specifies the object to which the attribute is to be attached, obj_name should be '.' (a dot).

The attribute name, attr_name, must be unique for the object.

The attribute is created with the specified datatype and dataspace, type_id and space_id, which are
created with the H5T and H5S interfaces respectively.

The attribute creation and access property lists are currently unused, but will be used in the future for
optional attribute creation and access properties. These property lists should currently be H5P_DEFAULT.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

The attribute identifier returned by this function must be released with H5Aclose or resource leaks will
develop.

Parameters:
hid_t loc_id IN: Location or object identifier; may be dataset or group

const char *obj_name IN: Name, relative to loc_id, of object that attribute is to be attached to

const char *attr_name IN: Attribute name

hid_t type_id IN: Attribute datatype identifier

hid_tspace_id IN: Attribute dataspace identifier

hid_tacpl_id IN: Attribute creation property list identifier
(Currently not used.)

hid_taapl_id IN: Attribute access property list identifier
(Currently not used.)

hid_t lapl_id IN: Link access property list
Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5acreate_by_name_f

SUBROUTINE h5acreate_by_name_f(loc_id, obj_name, attr_name, type_id, space_id, &
 attr, hdferr, acpl_id, aapl_id, lapl_id)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! Object identifier
 CHARACTER(LEN=*), INTENT(IN) :: obj_name ! Name of object to which
 ! attribute is attached
 CHARACTER(LEN=*), INTENT(IN) :: attr_name ! Attribute name
 INTEGER(HID_T), INTENT(IN) :: type_id ! Attribute datatype identifier

H5Acreate_by_name HDF5 Reference Manual

22

 INTEGER(HID_T), INTENT(IN) :: space_id ! Attribute dataspace identifier
 INTEGER(HID_T), INTENT(OUT) :: attr ! An attribute identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: acpl_id
 ! Attribute creation property list
 ! identifier (Currently not used.)
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: aapl_id
 ! Attribute access property list
 ! identifier (Currently not used.)
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list
END SUBROUTINE h5acreate_by_name_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Acreate_by_name

23

Name:H5Adelete
Signature:

herr_tH5Adelete(hid_t loc_id, const char *attr_name)
Purpose:

Deletes an attribute from a specified location.
Description:

H5Adelete removes the attribute specified by its name, attr_name, from a dataset, group, or named
datatype. This function should not be used when attribute identifiers are open on loc_id as it may cause
the internal indexes of the attributes to change and future writes to the open attributes to produce incorrect
results.

Parameters:
hid_t loc_id IN: Identifier of the dataset, group, or named datatype to have the

attribute deleted from.

const char *attr_name IN: Name of the attribute to delete.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5adelete_f

SUBROUTINE h5adelete_f(obj_id, name, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Attribute name
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5adelete_f

History:
Release C

H5Adelete HDF5 Reference Manual

24

Name:H5Adelete_by_idx
Signature:

herr_tH5Adelete_by_idx(hid_t loc_id, const char *obj_name, H5_index_t idx_type,
H5_iter_order_torder, hsize_t n, hid_t lapl_id)

Purpose:
Deletes an attribute from an object according to index order.

Description:
H5Adelete_by_idx removes an attribute, specified by its location in an index, from an object.

The object from which the attribute is to be removed is specified by a location identifier and name,
loc_id and obj_name, respectively. If loc_id fully specifies the object from which the attribute is
to be removed, obj_name should be '.' (a dot).

The attribute to be removed is specified by a position in an index, n. The type of index is specified by
idx_type and may be H5_INDEX_NAME, for an alpha-numeric index by name, or
H5_INDEX_CRT_ORDER, for an index by creation order. The order in which the index is to be traversed
is specified by order and may be H5_ITER_INC (increment) for top-down iteration, H5_ITER_DEC
(decrement) for bottom-up iteration, or H5_ITER_NATIVE, in which case HDF5 will iterate in the
fastest-available order. For example, if idx_type, order, and n are set to H5_INDEX_NAME,
H5_ITER_INC, and 5, respectively, the fifth attribute by alpha-numeric order of attribute names will be
removed.

For a discussion of idx_type and order, the valid values of those parameters, and the use of n, see
the description of H5Aiterate2

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

Parameters:
hid_t loc_id IN: Location or object identifier; may be dataset or group

const char *obj_name IN: Name of object, relative to location, from which attribute is to be
removed

H5_index_tidx_type IN: Type of index

H5_iter_order_torder IN: Order in which to iterate over index

hsize_tn IN: Offset within index

hid_t lapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5adelete_by_idx_f

SUBROUTINE h5adelete_by_idx_f(loc_id, obj_name, idx_type, order, n, hdferr, &
 lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T),INTENT(IN) :: loc_id
 ! Identifer for object to which
 ! attribute is attached
 CHARACTER(LEN=*),INTENT(IN) :: obj_name
 ! Name of object, relative to location,
 ! from which attribute is to be removed
 INTEGER, INTENT(IN) :: idx_type
 ! Type of index; Possible values are:
 ! H5_INDEX_UNKNOWN_F - Unknown index type

HDF5 Reference Manual H5Adelete_by_idx

25

 ! H5_INDEX_NAME_F - Index on names
 ! H5_INDEX_CRT_ORDER_F - Index on creation order
 ! H5_INDEX_N_F - Number of indices defined
 INTEGER, INTENT(IN) :: order
 ! Order in which to iterate over index:
 ! H5_ITER_UNKNOWN_F - Unknown order
 ! H5_ITER_INC_F - Increasing order
 ! H5_ITER_DEC_F - Decreasing order
 ! H5_ITER_NATIVE_F - No particular order,
 ! whatever is fastest
 ! H5_ITER_N_F - Number of iteration orders
 INTEGER(HSIZE_T), INTENT(IN) :: n
 ! Offset within index
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list
END SUBROUTINE h5adelete_by_idx_f

History:
Release C

1.8.0 Function introduced in this release.

H5Adelete_by_idx HDF5 Reference Manual

26

Name:H5Adelete_by_name
Signature:

herr_tH5Adelete_by_name(hid_t loc_id, const char *obj_name, const char *attr_name,
hid_t lapl_id)

Purpose:
Removes an attribute from a specified location.

Description:
H5Adelete_by_name removes the attribute attr_name from an object specified by location and
name, loc_id and obj_name, respectively.

If loc_id fully specifies the object from which the attribute is to be removed, obj_name should be
'.' (a dot).

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

Parameters:
hid_t loc_id IN: Location or object identifier; may be dataset or group

const char *obj_name IN: Name of object, relative to location, from which attribute is to be
removed

const char *attr_name IN: Name of attribute to delete

hid_t lapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5adelete_by_name_f

SUBROUTINE h5adelete_by_name_f(loc_id, obj_name, attr_name, hdferr, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! Identifer for object to which
 ! attribute is attached
 CHARACTER(LEN=*), INTENT(IN) :: obj_name
 ! Name of object, relative to location,
 ! from which attribute is to be removed
 CHARACTER(LEN=*), INTENT(IN) :: attr_name
 ! Name of attribute to delete
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list
END SUBROUTINE h5adelete_by_name_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Adelete_by_name

27

Name:H5Aexists
Signature:

htri_t H5Aexists(hid_t obj_id, const char *attr_name)
Purpose:

Determines whether an attribute with a given name exists on an object.
Description:

H5Aexists determines whether the attribute attr_name exists on the object specified by obj_id.
Parameters:

hid_tobj_id, IN: Object identifier

const char *attr_name IN: Attribute name
Returns:

When successful, returns a positive value, for TRUE, or 0 (zero), for FALSE.
Otherwise returns a negative value.

Fortran90 Interface: h5aexists_f
SUBROUTINE h5aexists_f(obj_id, attr_name, attr_exists, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
 CHARACTER(LEN=*), INTENT(IN) :: attr_name ! Attribute name
 LOGICAL, INTENT(OUT) :: attr_exists ! .TRUE. if exists, .FALSE. otherwise
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE

History:
Release C

1.8.0 Function introduced in this release.

H5Aexists HDF5 Reference Manual

28

Name:H5Aexists_by_name
Signature:

htri_t H5Aexists_by_name(hid_t loc_id, const char *obj_name, const char *attr_name,
hid_t lapl_id)

Purpose:
Determines whether an attribute with a given name exists on an object.

Description:
H5Aexists_by_name determines whether the attribute attr_name exists on an object. That object
is specified by its location and name, loc_id and obj_name, respectively.

loc_id specifies a location in the file containing the object. obj_name is the name of the object to
which the attribute is attached and can be a relative name, relative to loc_id, or an absolute name,
based in the root group of the file. If loc_id fully specifies the object, obj_name should be '.' (a
dot).

The link access property list, lapl_id, may provide information regarding the properties of links
required to access obj_name. See “Link Access Properties” in the H5P APIs.

Parameters:
hid_t loc_id, IN: Location identifier

const char *obj_name IN: Object name
Either relative to loc_id, absolute from the file’s root group, or '.'
(a dot)

const char *attr_name IN: Attribute name

hid_t lapl_id IN: Link access property list identifier
Returns:

When successful, returns a positive value, for TRUE, or 0 (zero), for FALSE.
Otherwise returns a negative value.

Fortran90 Interface: h5aexists_by_name_f
SUBROUTINE h5aexists_by_name_f(loc_id, obj_name, attr_name, attr_exists, hdferr,&
 lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! Location identifier
 CHARACTER(LEN=*), INTENT(IN) :: obj_name
 ! Object name either relative to loc_id,
 ! absolute from the
 ! file’s root group, or '.'
 CHARACTER(LEN=*), INTENT(IN) :: attr_name
 ! Attribute name
 LOGICAL, INTENT(OUT) :: attr_exists ! .TRUE. if exists, .FALSE. otherwise
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list identifier
END SUBROUTINE h5aexists_by_name_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Aexists_by_name

29

Name:H5Aget_create_plist
Signature:

hid_tH5Aget_create_plist(hid_t attr_id)
Purpose:

Gets an attribute creation property list identifier.
Description:

H5Aget_create_plist returns an identifier for the attribute creation property list associated with the
attribute specified by attr_id.

The creation property list identifier should be released with H5Pclose.
Parameters:

hid_tattr_id IN: Identifier of the attribute.
Returns:

Returns an identifier for the attribute’s creation property list if successful. Otherwise returns a negative
value.

Fortran90 Interface: h5aget_create_plist_f
SUBROUTINE h5aget_create_plist_f(attr_id, creation_prop_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: attr_id
 ! Identifier of the attribute
 INTEGER(HID_T), INTENT(OUT) :: creation_prop_id
 ! Identifier for the attribute’s creation property
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5aget_create_plist_f

History:
Release C

1.8.0 Function introduced in this release.

H5Aget_create_plist HDF5 Reference Manual

30

Name:H5Aget_info
Signature:

herr_tH5Aget_info(hid_t attr_id, H5A_info_t *ainfo)
Purpose:

Retrieves attribute information, by attribute identifier.
Description:

H5Aget_info retrieves attribute information, locating the attribute with an attribute identifier,
attr_id, which is the identifier returned by H5Aopen or H5Aopen_by_idx. The attribute
information is returned in the ainfo struct.

The ainfo struct is defined as follows:

typedef struct {
 hbool_t corder_valid;
 H5O_msg_crt_idx_t corder;
 H5T_cset_t cset;
 hsize_t data_size;
} H5A_info_t;

corder_valid indicates whether the creation order data is valid for this attribute. Note that if creation
order is not being tracked, no creation order data will be valid. Valid values are TRUE and FALSE.

corder is a positive integer containing the creation order of the attribute. This value is 0-based, so, for
example, the third attribute created will have a corder value of 2.

cset indicates the character set used for the attribute’s name; valid values are defined in
H5Tpublic.h and include the following:

H5T_CSET_ASCII US ASCII

H5T_CSET_UTF8 UTF-8 Unicode encoding
This value is set with H5Pset_char_encoding.

data_size indicates the size, in the number of characters, of the attribute.
Parameters:

hid_tattr_id IN: Attribute identifier

H5A_info_t *ainfo OUT: Attribute information struct
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5aget_info_f

SUBROUTINE h5aget_info_f(attr_id, f_corder_valid, corder, cset, data_size,hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
 LOGICAL, INTENT(OUT) :: f_corder_valid ! Indicates whether the creation order
 ! data is valid for this attribute
 INTEGER, INTENT(OUT) :: corder ! Is a positive integer containing the
 ! creation order of the attribute
 INTEGER, INTENT(OUT) :: cset ! Indicates the character set used for
 ! the ! attribute’s name
 INTEGER(HSIZE_T), INTENT(OUT) :: data_size
 ! Indicates the size, in the number
 ! of characters, of the attribute

HDF5 Reference Manual H5Aget_info

31

 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5aget_info_f

History:
Release C

1.8.0 Function introduced in this release.

H5Aget_info HDF5 Reference Manual

32

Name:H5Aget_info_by_idx
Signature:

herr_tH5Aget_info_by_idx(hid_t loc_id, const char *obj_name, H5_index_t idx_type,
H5_iter_order_torder, hsize_t n, H5A_info_t *ainfo, hid_t lapl_id)

Purpose:
Retrieves attribute information, by attribute index position.

Description:
H5Aget_info_by_idx retrieves information for an attribute that is attached to an object, which is
specified by its location and name, loc_id and obj_name, respectively. The attribute is located by its
index position and the attribute information is returned in the ainfo struct.

If loc_id fully specifies the object to which the attribute is attached, obj_name should be '.' (a dot).

The attribute is located by means of an index type, an index traversal order, and a position in the index,
idx_type, order and n, respectively. These parameters and their valid values are discussed in the
description of H5Aiterate2.

The ainfo struct, which will contain the returned attribute information, is described in H5Aget_info.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

Parameters:
hid_t loc_id IN: Location of object to which attribute is attached

const char *obj_name IN: Name of object to which attribute is attached, relative to location

H5_index_tidx_type IN: Type of index

H5_iter_order_torder IN: Index traversal order

hsize_tn IN: Attribute’s position in index

H5A_info_t *ainfo OUT: Struct containing returned attribute information

hid_t lapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5aget_info_by_idx_f

SUBROUTINE h5aget_info_by_idx_f(loc_id, obj_name, idx_type, order, n, &
 f_corder_valid, corder, cset, data_size, hdferr, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id
 ! Object identifier
 CHARACTER(LEN=*), INTENT(IN) :: obj_name
 ! Name of object to which attribute is attached
 INTEGER, INTENT(IN) :: idx_type
 ! Type of index; Possible values are:
 ! H5_INDEX_UNKNOWN_F - Unknown index type
 ! H5_INDEX_NAME_F - Index on names
 ! H5_INDEX_CRT_ORDER_F - Index on creation order
 ! H5_INDEX_N_F - Number of indices defined
 INTEGER, INTENT(IN) :: order
 ! Order in which to iterate over index:
 ! H5_ITER_UNKNOWN_F - Unknown order
 ! H5_ITER_INC_F - Increasing order
 ! H5_ITER_DEC_F - Decreasing order
 ! H5_ITER_NATIVE_F - No particular order,

HDF5 Reference Manual H5Aget_info_by_idx

33

 ! whatever is fastest
 INTEGER(HSIZE_T), INTENT(IN) :: n
 ! Attribute’s position in index

 LOGICAL, INTENT(OUT) :: f_corder_valid
 ! Indicates whether the creation order data is
 ! valid for this attribute
 INTEGER, INTENT(OUT) :: corder
 ! Is a positive integer containing the creation
 !order of the attribute
 INTEGER, INTENT(OUT) :: cset
 ! Indicates the character set used for the
 ! attribute’s name
 INTEGER(HSIZE_T), INTENT(OUT) :: data_size
 ! Indicates the size, in the number of characters,
 ! of the attribute
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list
END SUBROUTINE h5aget_info_by_idx_f

History:
Release C

1.8.0 Function introduced in this release.

H5Aget_info_by_idx HDF5 Reference Manual

34

Name:H5Aget_info_by_name
Signature:

herr_tH5Aget_info_by_name(hid_t loc_id, const char *obj_name, const char *attr_name,
H5A_info_t *ainfo, hid_t lapl_id)

Purpose:
Retrieves attribute information, by attribute name.

Description:
H5Aget_info_by_name retrieves information for an attribute, attr_name, that is attached to an
object, specified by its location and name, loc_id and obj_name, respectively. The attribute
information is returned in the ainfo struct.

If loc_id fully specifies the object to which the attribute is attached, obj_name should be '.' (a dot).

The ainfo struct is described in H5Aget_info.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

Parameters:
hid_t loc_id IN: Location of object to which attribute is attached

const char *obj_name IN: Name of object to which attribute is attached, relative to location

const char *attr_name IN: Attribute name

H5A_info_t *ainfo OUT: Struct containing returned attribute information

hid_t lapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5aget_info_by_name_f

SUBROUTINE h5aget_info_by_name_f(loc_id, obj_name, attr_name, &
 f_corder_valid, corder, cset, data_size, hdferr, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! Object identifier
 CHARACTER(LEN=*), INTENT(IN) :: obj_name ! Name of object to which attribute
 ! is attached
 CHARACTER(LEN=*), INTENT(IN) :: attr_name ! Attribute name
 LOGICAL, INTENT(OUT) :: f_corder_valid ! Indicates whether the creation
 ! order data is valid for this
 ! attribute
 INTEGER, INTENT(OUT) :: corder ! Is a positive integer containing
 ! the creation order of the
 ! attribute
 INTEGER, INTENT(OUT) :: cset ! Indicates the character set used
 ! for the attribute’s name
 INTEGER(HSIZE_T), INTENT(OUT) :: data_size ! Indicates the size, in the number
 ! of characters, of the attribute
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list
END SUBROUTINE h5aget_info_by_name_f

HDF5 Reference Manual H5Aget_info_by_name

35

History:
Release C

1.8.0 Function introduced in this release.

H5Aget_info_by_name HDF5 Reference Manual

36

Name:H5Aget_name
Signature:

ssize_tH5Aget_name(hid_t attr_id, size_t buf_size, char *buf)
Purpose:

Gets an attribute name.
Description:

H5Aget_name retrieves the name of an attribute specified by the identifier, attr_id. Up to
buf_size characters are stored in buf followed by a \0 string terminator. If the name of the attribute is
longer than (buf_size -1), the string terminator is stored in the last position of the buffer to properly
terminate the string.

If the user only wants to find out the size of this name, the values 0 and NULL can be passed in for the
parameters bufsize and buf.

Parameters:
hid_tattr_id IN: Identifier of the attribute.

size_tbuf_size IN: The size of the buffer to store the name in.

char *buf OUT: Buffer to store name in.
Returns:

Returns the length of the attribute's name, which may be longer than buf_size, if successful. Otherwise
returns a negative value.

Fortran90 Interface: h5aget_name_f
SUBROUTINE h5aget_name_f(attr_id, size, buf, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
 INTEGER(SIZE_T), INTENT(IN) :: size ! Buffer size
 CHARACTER(LEN=*), INTENT(INOUT) :: buf
 ! Buffer to hold attribute name
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! name length is successful,
 ! -1 if fail
END SUBROUTINE h5aget_name_f

HDF5 Reference Manual H5Aget_name

37

Name:H5Aget_name_by_idx
Signature:

ssize_tH5Aget_name_by_idx(hid_t loc_id, const char *obj_name, H5_index_t idx_type,
H5_iter_order_torder, hsize_t n, char *name, size_tsize, hid_t lapl_id)

Purpose:
Gets an attribute name, by attribute index position

Description:
H5Aget_name_by_idx retrieves the name of an attribute that is attached to an object, which is
specified by its location and name, loc_id and obj_name, respectively. The attribute is located by its
index position, the size of the name is specified in size, and the attribute name is returned in name.

If loc_id fully specifies the object to which the attribute is attached, obj_name should be '.' (a dot).

The attribute is located by means of an index type, an index traversal order, and a position in the index,
idx_type, order and n, respectively. These parameters and their valid values are discussed in the
description of H5Aiterate2.

If the attribute name’s size is unknown, the values 0 and NULL can be passed in for the parameters size
and name. The function’s return value will provide the correct value for size.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

Parameters:
hid_t loc_id IN: Location of object to which attribute is attached

const char *obj_name IN: Name of object to which attribute is attached, relative to location

H5_index_tidx_type IN: Type of index

H5_iter_order_torder IN: Index traversal order

hsize_tn IN: Attribute’s position in index

char *name OUT: Attribute name

size_tsize IN: Size, in bytes, of attribute name

hid_t lapl_id IN: Link access property list
Returns:

Returns attribute name size, in bytes, if successful; otherwise returns a negative value.
Fortran90 Interface: h5aget_name_by_idx_f

SUBROUTINE h5aget_name_by_idx_f(loc_id, obj_name, idx_type, order, &
 n, name, hdferr, size, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! Identifer for object to which
 ! attribute is attached
 CHARACTER(LEN=*), INTENT(IN) :: obj_name ! Name of object, relative to
 ! location,from which attribute is to
 ! be removed
 INTEGER, INTENT(IN) :: idx_type
 ! Type of index; Possible values are:
 ! H5_INDEX_UNKNOWN_F - Unknown index type
 ! H5_INDEX_NAME_F - Index on names
 ! H5_INDEX_CRT_ORDER_F - Index on creation order
 ! H5_INDEX_N_F - Number indices defined

H5Aget_name_by_idx HDF5 Reference Manual

38

 INTEGER, INTENT(IN) :: order ! Order in which to iterate over index:
 ! H5_ITER_UNKNOWN_F - Unknown order
 ! H5_ITER_INC_F - Increasing order
 ! H5_ITER_DEC_F - Decreasing order
 ! H5_ITER_NATIVE_F - No particular order,
 ! whatever is fastest
 ! H5_ITER_N_F - Number of iteration orders

 INTEGER(HSIZE_T), INTENT(IN) :: n
 ! Attribute’s position in index
 CHARACTER(LEN=*), INTENT(OUT) :: name
 ! Attribute name
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code:
 ! Returns attribute name size,
 ! -1 if fail
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list
 INTEGER(SIZE_T), OPTIONAL, INTENT(OUT) :: size
 ! exact buffer size, in number of characters
END SUBROUTINE h5aget_name_by_idx_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Aget_name_by_idx

39

Last modified: 27 April 2010

Name:H5Aget_num_attrs
Signature:

int H5Aget_num_attrs(hid_t loc_id)
Purpose:

Determines the number of attributes attached to an object.
Deprecated Function:

This function is deprecated in favor of the functions H5Oget_info, H5Oget_info_by_name, and
H5Oget_info_by_idx.

Description:
H5Aget_num_attrs returns the number of attributes attached to the object specified by its identifier,
loc_id. The object can be a group, dataset, or named datatype.

Parameters:
hid_t loc_id IN: Identifier of a group, dataset, or named datatype.

Returns:
Returns the number of attributes if successful; otherwise returns a negative value.

Fortran90 Interface: h5aget_num_attrs_f
SUBROUTINE h5aget_num_attrs_f(obj_id, attr_num, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
 INTEGER, INTENT(OUT) :: attr_num ! Number of attributes of the object
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5aget_num_attrs_f

H5Aget_num_attrs HDF5 Reference Manual

40

Name:H5Aget_space
Signature:

hid_tH5Aget_space(hid_t attr_id)
Purpose:

Gets a copy of the dataspace for an attribute.
Description:

H5Aget_space retrieves a copy of the dataspace for an attribute. The dataspace identifier returned
from this function must be released with H5Sclose or resource leaks will develop.

Parameters:
hid_tattr_id IN: Identifier of an attribute.

Returns:
Returns attribute dataspace identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5aget_space_f
SUBROUTINE h5aget_space_f(attr_id, space_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
 INTEGER(HID_T), INTENT(OUT) :: space_id ! Attribute dataspace identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5aget_space_f

HDF5 Reference Manual H5Aget_space

41

Name:H5Aget_storage_size
Signature:

hsize_tH5Aget_storage_size(hid_t attr_id)
Purpose:

Returns the amount of storage required for an attribute.
Description:

H5Aget_storage_size returns the amount of storage that is required for the specified attribute,
attr_id.

Parameters:
hid_tattr_id IN: Identifier of the attribute to query.

Returns:
Returns the amount of storage size allocated for the attribute; otherwise returns 0 (zero).

Fortran90 Interface: h5aget_storage_size_f
SUBROUTINE h5aget_storage_size_f(attr_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
 INTEGER(HSIZE_T), INTENT(OUT) :: size ! Attribute storage requirement
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5aget_storage_size_f

H5Aget_storage_size HDF5 Reference Manual

42

Name:H5Aget_type
Signature:

hid_tH5Aget_type(hid_t attr_id)
Purpose:

Gets an attribute datatype.
Description:

H5Aget_type retrieves a copy of the datatype for an attribute.

The datatype is reopened if it is a named type before returning it to the application. The datatypes
returned by this function are always read-only. If an error occurs when atomizing the return datatype, then
the datatype is closed.

The datatype identifier returned from this function must be released with H5Tclose or resource leaks
will develop.

Parameters:
hid_tattr_id IN: Identifier of an attribute.

Returns:
Returns a datatype identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5aget_type_f
SUBROUTINE h5aget_type_f(attr_id, type_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
 INTEGER(HID_T), INTENT(OUT) :: type_id ! Attribute datatype identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5aget_type_f

HDF5 Reference Manual H5Aget_type

43

Name:H5Aiterate
Signature:

herr_tH5Aiterate(hid_t loc_id, unsigned * idx, H5A_operator_t op,
void *op_data)

[1]

herr_tH5Aiterate(hid_t obj_id, H5_index_t idx_type,
H5_iter_order_torder, hsize_t *n, H5A_operator2_top, void *op_data)

[2]

Purpose:
Calls a user’s function for each attribute on an object.

Description:
H5Aiterate is a macro that is mapped to either H5Aiterate1 or H5Aiterate2, depending on the
needs of the application.

Such macros are provided to facilitate application compatibility. For example:

The H5Aiterate macro will be mapped to H5Aiterate1 and will use the H5Aiterate1
syntax (first signature above) if an application is coded for HDF5 Release 1.6.x.

◊

The H5Aiterate macro mapped to H5Aiterate2 and will use the H5Aiterate2 syntax
(second signature above) if an application is coded for HDF5 Release 1.8.x.

◊

Macro use and mappings are fully described in “API Compatibility Macros in HDF5”; we urge you to
read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Aiterate is mapped to the most recent version of the function, currently H5Aiterate2. If
the library and/or application is compiled for Release 1.6 emulation, H5Aiterate will be mapped to
H5Aiterate1. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Aiterate mapping

Global settings

No compatibility flag H5Aiterate2

Enable deprecated symbols H5Aiterate2

Disable deprecated symbols H5Aiterate2

Emulate Release 1.6 interface H5Aiterate1

Function-level macros

H5Aiterate_vers = 2 H5Aiterate2

H5Aiterate_vers = 1 H5Aiterate1

H5Aiterate HDF5 Reference Manual

44

Interface history: Signature [1] above is the original H5Aiterate interface and the only interface
available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now deprecated
but will remain directly callable as H5Aiterate1.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Aiterate2.

See “API Compatibility Macros in HDF5” for circumstances under which either of these functions might
not be available in an installed instance of the HDF5 Library.

Fortran90 Interface:
None.

History:
Release C

1.8.0 The function H5Aiterate renamed to H5Aiterate1 and deprecated in this
release.
The macro H5Aiterate and the functions H5Aiterate2 and
H5Aiterate_by_name introduced in this release.

HDF5 Reference Manual H5Aiterate

45

Name:H5Aiterate1
Signature:

herr_tH5Aiterate1(hid_t loc_id, unsigned * idx, H5A_operator1_t op, void *op_data)
Purpose:

Calls a user’s function for each attribute on an object.
Notice:

This function is deprecated in favor of the function H5Aiterate2.
Description:

H5Aiterate1 iterates over the attributes of the object specified by its identifier, loc_id. The object
can be a group, dataset, or named datatype. For each attribute of the object, the op_data and some
additional information specified below are passed to the operator function op. The iteration begins with
the attribute specified by its index, idx; the index for the next attribute to be processed by the operator,
op, is returned in idx. If idx is the null pointer, then all attributes are processed.

The prototype for H5A_operator_t is:
typedef herr_t (*H5A_operator1_t)(hid_t loc_id, const char *attr_name,
void *operator_data);

The operation receives the identifier for the group, dataset or named datatype being iterated over,
loc_id, the name of the current attribute about the object, attr_name, and the pointer to the operator
data passed in to H5Aiterate1, op_data. The return values from an operator are:

Zero causes the iterator to continue, returning zero when all attributes have been processed.◊
Positive causes the iterator to immediately return that positive value, indicating short-circuit
success. The iterator can be restarted at the next attribute.

◊

Negative causes the iterator to immediately return that value, indicating failure. The iterator can
be restarted at the next attribute.

◊

Parameters:
hid_t loc_id IN: Identifier of a group, dataset or named datatype.

unsigned *idx IN/OUT: Starting (IN) and ending (OUT) attribute index.

H5A_operator1_top IN: User's function to pass each attribute to

void *op_data IN/OUT: User's data to pass through to iterator operator function
Returns:

If successful, returns the return value of the last operator if it was non-zero, or zero if all attributes were
processed. Otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 The function H5Aiterate renamed to H5Aiterate1 and deprecated in this
release.

H5Aiterate1 HDF5 Reference Manual

46

Name:H5Aiterate2
Signature:

herr_tH5Aiterate2(hid_t obj_id, H5_index_t idx_type, H5_iter_order_t order, hsize_t *n,
H5A_operator2_top, void *op_data,)

Purpose:
Calls user-defined function for each attribute on an object.

Description:
H5Aiterate2 iterates over the attributes attached to a dataset, named datatype, or group, as specified
by obj_id. For each attribute, user-provided data, op_data, with additional information as defined
below, is passed to a user-defined function, op, which operates on that attribute.

The order of the iteration and the attributes iterated over are specified by three parameters: the index type,
idx_type; the order in which the index is to be traversed, order; and the attribute’s position in the
index, n.

The type of index specified by idx_type can be one of the following:

H5_INDEX_NAME An alpha-numeric index by attribute name

H5_INDEX_CRT_ORDER An index by creation order
The order in which the index is to be traversed, as specified by order, can be one of the following:

H5_ITER_INC Iteration is from beginning to end, i.e., a top-down iteration incrementing
the index position at each step.

H5_ITER_DEC Iteration starts at the end of the index, i.e., a bottom-up iteration
decrementing the index position at each step.

H5_ITER_NATIVE HDF5 iterates in the fastest-available order. No information is provided as
to the order, but HDF5 ensures that each element in the index will be
visited if the iteration completes successfully.

The next attribute to be operated on is specified by n, a position in the index.

For example, if idx_type, order, and n are set to H5_INDEX_NAME, H5_ITER_INC, and 5,
respectively, the attribute in question is the fifth attribute from the beginning of the alpha-numeric index
of attribute names. If order were set to H5_ITER_DEC, it would be the fifth attribute from the end of
the index.

The parameter n is passed in on an H5Aiterate2 call with one value and may be returned with another
value. The value passed in identifies the parameter to be operated on first; the value returned identifies the
parameter to be operated on in the next step of the iteration.

The H5A_operator2_t prototype for the op parameter is as follows:

typedef herr_t (*H5A_operator2_t)(hid_t location_id/*in*/, const char
*attr_name/*in*/, const H5A_info_t *ainfo/*in*/, void *op_data/*in,out*/)

The operation receives the location identifier for the group or dataset being iterated over,
location_id; the name of the current object attribute, attr_name; the attribute’s info struct,
ainfo; and a pointer to the operator data passed into H5Aiterate2, op_data.

HDF5 Reference Manual H5Aiterate2

47

Valid return values from an operator and the resulting H5Aiterate2 and op behavior are as follows:

Zero causes the iterator to continue, returning zero when all attributes have been processed.◊
A positive value causes the iterator to immediately return that positive value, indicating
short-circuit success. The iterator can be restarted at the next attribute, as indicated by the return
value of n.

◊

A negative value causes the iterator to immediately return that value, indicating failure. The
iterator can be restarted at the next attribute, as indicated by the return value of n.

◊

Parameters:
hid_tobj_id IN: Identifier for object to which attributes are attached; may be group,

dataset, or named datatype.

H5_index_tidx_type IN: Type of index

H5_iter_order_torder IN: Order in which to iterate over index

hsize_t *n IN/OUT: Initial and returned offset within index

H5A_operator2_top IN: User-defined function to pass each attribute to

void *op_data IN/OUT: User data to pass through to and to be returned by iterator operator
function

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Further note that this function returns the return value of the last operator if it was non-zero, which can be
a negative value, zero if all attributes were processed, or a positive value indicating short-circuit success
(see above).

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

H5Aiterate2 HDF5 Reference Manual

48

Name:H5Aiterate_by_name
Signature:

herr_tH5Aiterate_by_name(hid_t loc_id, const char *obj_name, H5_index_t idx_type,
H5_iter_order_torder, hsize_t *n, H5A_operator2_top, void *op_data, hid_t lapd_id)

Purpose:
Calls user-defined function for each attribute on an object.

Description:
H5Aiterate_by_name iterates over the attributes attached to the dataset or group specified with
loc_id and obj_name. For each attribute, user-provided data, op_data, with additional information
as defined below, is passed to a user-defined function, op, which operates on that attribute.

If loc_id fully specifies the object to which these attributes are attached, obj_name should be '.' (a
dot).

The order of the iteration and the attributes iterated over are specified by three parameters: the index type,
idx_type; the order in which the index is to be traversed, order; and the attribute’s position in the
index, n.

The type of index specified by idx_type can be one of the following:

H5_INDEX_NAME An alpha-numeric index by attribute name

H5_INDEX_CRT_ORDER An index by creation order
The order in which the index is to be traversed, as specified by order, can be one of the following:

H5_ITER_INC Iteration is from beginning to end, i.e., a top-down iteration incrementing
the index position at each step.

H5_ITER_DEC Iteration starts at the end of the index, i.e., a bottom-up iteration
decrementing the index position at each step.

H5_ITER_NATIVE HDF5 iterates in the fastest-available order. No information is provided as
to the order, but HDF5 ensures that each element in the index will be
visited if the iteration completes successfully.

The next attribute to be operated on is specified by n, a position in the index.

For example, if idx_type, order, and n are set to H5_INDEX_NAME, H5_ITER_INC, and 5,
respectively, the attribute in question is the fifth attribute from the beginning of the alpha-numeric index
of attribute names. If order were set to H5_ITER_DEC, it would be the fifth attribute from the end of
the index.

The parameter n is passed in on an H5Aiterate_by_name call with one value and may be returned
with another value. The value passed in identifies the parameter to be operated on first; the value returned
identifies the parameter to be operated on in the next step of the iteration.

The H5A_operator2_t prototype for the op parameter is as follows:

typedef herr_t (*H5A_operator2_t)(hid_t location_id/*in*/, const char
*attr_name/*in*/, const H5A_info_t *ainfo/*in*/, void *op_data/*in,out*/)

HDF5 Reference Manual H5Aiterate_by_name

49

The operation receives the location identifier for the group or dataset being iterated over,
location_id; the name of the current object attribute, attr_name; the attribute’s info struct,
ainfo; and a pointer to the operator data passed into H5Aiterate_by_name, op_data.

Valid return values from an operator and the resulting H5Aiterate_by_name and op behavior are as
follows:

Zero causes the iterator to continue, returning zero when all attributes have been processed.◊
A positive value causes the iterator to immediately return that positive value, indicating
short-circuit success. The iterator can be restarted at the next attribute, as indicated by the return
value of n.

◊

A negative value causes the iterator to immediately return that value, indicating failure. The
iterator can be restarted at the next attribute, as indicated by the return value of n.

◊

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

Parameters:
hid_t loc_id IN: Location or object identifier; may be dataset or group

const char *obj_name IN: Name of object, relative to location

H5_index_tidx_type IN: Type of index

H5_iter_order_torder IN: Order in which to iterate over index

hsize_t *n IN/OUT: Initial and returned offset within index

H5A_operator2_top IN: User-defined function to pass each attribute to

void *op_data IN/OUT: User data to pass through to and to be returned by iterator operator
function

hid_t lapd_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Further note that this function returns the return value of the last operator if it was non-zero, which can be
a negative value, zero if all attributes were processed, or a positive value indicating short-circuit success
(see above).

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

H5Aiterate_by_name HDF5 Reference Manual

50

Last modified: 24 February 2010

Name:H5Aopen
Signature:

hid_tH5Aopen(hid_t obj_id, const char *attr_name, hid_t aapl_id)
Purpose:

Opens an attribute for an object specified by object identifier and attribute name.
Description:

H5Aopen opens an existing attribute, attr_name, that is attached to an object specified an object
identifier, object_id.

The attribute access property list, aapl_id, is currently unused and should currently be
H5P_DEFAULT.

This function, H5Aopen_by_idx, or H5Aopen_by_name must be called before an attribute can be
accessed for any further purpose, including reading, writing, or any modification.

The attribute identifier returned by this function must be released with H5Aclose or resource leaks will
develop.

Parameters:
hid_tobj_id IN: Identifer for object to which attribute is attached

const char *attr_name IN: Name of attribute to open

hid_taapl_id IN: Attribute access property list
Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5aopen_f

SUBROUTINE h5aopen_f(obj_id, attr_name, attr_id, hdferr, aapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
 CHARACTER(LEN=*), INTENT(IN) :: attr_name ! Attribute name
 INTEGER(HID_T), INTENT(OUT) :: attr_id ! Attribute identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: aapl_id
 ! Attribute access property list
END SUBROUTINE h5aopen_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Aopen

51

Last modified: 24 February 2010

Name:H5Aopen_by_idx
Signature:

hid_tH5Aopen_by_idx(hid_t loc_id, const char *obj_name, H5_index_t idx_type,
H5_iter_order_torder, hsize_t n, hid_taapl_id, hid_t lapl_id)

Purpose:
Description:

H5Aopen_by_idx opens an existing attribute that is attached to an object specified by location and
name, loc_id and obj_name, respectively. If loc_id fully specifies the object to which the attribute
is attached, obj_name should be '.' (a dot).

The attribute is identified by an index type, an index traversal order, and a position in the index,
idx_type, order and n, respectively. These parameters and their valid values are discussed in the
description of H5Aiterate2.

The attribute access property list, aapl_id, is currently unused and should currently be
H5P_DEFAULT.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

This function, H5Aopen, or H5Aopen_by_name must be called before an attribute can be accessed for
any further purpose, including reading, writing, or any modification.

The attribute identifier returned by this function must be released with H5Aclose or resource leaks will
develop.

Parameters:
hid_t loc_id IN: Location of object to which attribute is attached

const char *obj_name IN: Name of object to which attribute is attached, relative to location

H5_index_tidx_type IN: Type of index

H5_iter_order_torder IN: Index traversal order

hsize_tn IN: Attribute’s position in index

hid_taapl_id IN: Attribute access property list

hid_t lapl_id IN: Link access property list
Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5aopen_by_idx_f

SUBROUTINE h5aopen_by_idx_f(loc_id, obj_name, idx_type, order, n, attr_id, &
 hdferr, aapl_id, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id
 ! Object identifier
 CHARACTER(LEN=*), INTENT(IN) :: obj_name
 ! Name of object to which attribute is attached

H5Aopen_by_idx HDF5 Reference Manual

52

 INTEGER, INTENT(IN) :: idx_type
 ! Type of index; Possible values are:
 ! H5_INDEX_UNKNOWN_F - Unknown index type
 ! H5_INDEX_NAME_F - Index on names
 ! H5_INDEX_CRT_ORDER_F - Index on creation order
 ! H5_INDEX_N_F - Number of indices defined
 INTEGER, INTENT(IN) :: order
 ! Order in which to iterate over index:
 ! H5_ITER_UNKNOWN_F - Unknown order
 ! H5_ITER_INC_F - Increasing order
 ! H5_ITER_DEC_F - Decreasing order
 ! H5_ITER_NATIVE_F - No particular order,
 ! whatever is fastest

 INTEGER(HSIZE_T), INTENT(IN) :: n
 ! Attribute’s position in index
 INTEGER(HID_T), INTENT(OUT) :: attr_id
 ! Attribute identifier
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: aapl_id
 ! Attribute access property list
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list
END SUBROUTINE h5aopen_by_idx_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Aopen_by_idx

53

Last modified: 24 July 2009

Name:H5Aopen_by_name
Signature:

hid_tH5Aopen_by_name(hid_t loc_id, const char *obj_name, const char *attr_name, hid_t
aapl_id, hid_t lapl_id)

Purpose:
Opens an attribute for an object by object name and attribute name.

Description:
H5Aopen_by_name opens an existing attribute, attr_name, that is attached to an object specified by
location and name, loc_id and obj_name, respectively.

loc_id specifies a location from which the target object can be located and obj_name is an object
name relative to loc_id. If loc_id fully specifies the object to which the attribute is attached,
obj_name should be '.' (a dot).

The attribute access property list, aapl_id, is currently unused and should currently be
H5P_DEFAULT.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

This function, H5Aopen, or H5Aopen_by_idx must be called before an attribute can be accessed for
any further purpose, including reading, writing, or any modification.

The attribute identifier returned by this function must be released with H5Aclose or resource leaks will
develop.

Parameters:
hid_t loc_id IN: Location from which to find object to which attribute is attached

const char *obj_name IN: Name of object to which attribute is attached, relative to loc_id

const char *attr_name IN: Name of attribute to open

hid_taapl_id IN: Attribute access property list
(Currently unused; should be passed in as H5P_DEFAULT.)

hid_t lapl_id IN: Link access property list
Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.
Fortran90 Interface:

SUBROUTINE h5aopen_by_name_f(loc_id, obj_name, attr_name, attr_id, hdferr, &
 aapl_id, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id
 ! Location identifier
 CHARACTER(LEN=*), INTENT(IN) :: obj_name
 ! Object name either relative to loc_id,
 ! absolute from file’s root group, or '.'
 CHARACTER(LEN=*), INTENT(IN) :: attr_name
 ! Attribute name
 INTEGER(HID_T), INTENT(OUT) :: attr_id
 ! Attribute identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure

H5Aopen_by_name HDF5 Reference Manual

54

 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: aapl_id
 ! Attribute access property list
 ! (Currently unused; set to H5P_DEFAULT_F)
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list identifier
END SUBROUTINE

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Aopen_by_name

55

Last modified: 27 April 2010

Name:H5Aopen_idx
Signature:

hid_tH5Aopen_idx(hid_t loc_id, unsigned int idx)
Purpose:

Opens the attribute specified by its index.
Deprecated Function:

This function is deprecated in favor of the function H5Aopen_by_idx.
Description:

H5Aopen_idx opens an attribute which is attached to the object specified with loc_id. The location
object may be either a group, dataset, or named datatype, all of which may have any sort of attribute. The
attribute specified by the index, idx, indicates the attribute to access. The value of idx is a 0-based,
non-negative integer. The attribute identifier returned from this function must be released with
H5Aclose or resource leaks will develop.

Parameters:
hid_t loc_id IN: Identifier of the group, dataset, or named datatype attribute to be attached to.

unsigned intidx IN: Index of the attribute to open.
Returns:

Returns attribute identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5aopen_idx_f

SUBROUTINE h5aopen_idx_f(obj_id, index, attr_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
 INTEGER, INTENT(IN) :: index ! Attribute index
 INTEGER(HID_T), INTENT(OUT) :: attr_id ! Attribute identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5aopen_idx_f

H5Aopen_idx HDF5 Reference Manual

56

Last modified: 27 April 2010

Name:H5Aopen_name
Signature:

hid_tH5Aopen_name(hid_t loc_id, const char *name)
Purpose:

Opens an attribute specified by name.
Deprecated Function:

This function is deprecated in favor of the function H5Aopen_by_name.
Description:

H5Aopen_name opens an attribute specified by its name, name, which is attached to the object
specified with loc_id. The location object may be either a group, dataset, or named datatype, which
may have any sort of attribute. The attribute identifier returned from this function must be released with
H5Aclose or resource leaks will develop.

Parameters:
hid_t loc_id IN: Identifier of a group, dataset, or named datatype that attribute is attached to.

const char *name IN: Attribute name.
Returns:

Returns attribute identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5aopen_name_f

SUBROUTINE h5aopen_name_f(obj_id, name, attr_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Attribute name
 INTEGER(HID_T), INTENT(OUT) :: attr_id ! Attribute identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5aopen_name_f

HDF5 Reference Manual H5Aopen_name

57

Name:H5Aread
Signature:

herr_tH5Aread(hid_t attr_id, hid_t mem_type_id, void *buf)
Purpose:

Reads an attribute.
Description:

H5Aread reads an attribute, specified with attr_id. The attribute's memory datatype is specified with
mem_type_id. The entire attribute is read into buf from the file.

Datatype conversion takes place at the time of a read or write and is automatic. See the Data Conversion
section of The Data Type Interface (H5T) in the HDF5 User's Guide for a discussion of data conversion,
including the range of conversions currently supported by the HDF5 libraries.

Parameters:
hid_tattr_id IN: Identifier of an attribute to read.

hid_tmem_type_id IN: Identifier of the attribute datatype (in memory).

void *buf OUT: Buffer for data to be read.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5aread_f

SUBROUTINE h5aread_f(attr_id, memtype_id, buf, dims, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
 INTEGER(HID_T), INTENT(IN) :: memtype_id ! Attribute datatype
 ! identifier (in memory)
 TYPE, INTENT(INOUT) :: buf ! Data buffer; may be a scalar or
 ! an array
 DIMENSION(*), INTEGER(HSIZE_T), INTENT(IN) :: dims
 ! Array to hold corresponding
 ! dimension sizes of data buffer buf;
 ! dim(k) has value of the
 ! k-th dimension of buffer buf;
 ! values are ignored if buf is a
 ! scalar
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5aread_f

History:
Release Fortran90

1.4.2 The dims parameter was added in this release.

H5Aread HDF5 Reference Manual

58

Name:H5Arename
Signature:

herr_tH5Arename(hid_t loc_id, char *old_attr_name, char *new_attr_name)
Purpose:

Renames an attribute.
Description:

H5Arename changes the name of the attribute located at loc_id.

The old name, old_attr_name, is changed to the new name, new_attr_name.
Parameters:

hid_t loc_id IN: Location of the attribute.

char *old_attr_name IN: Name of the attribute to be changed.

char *new_attr_name IN: New name for the attribute.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5arename_f

SUBROUTINE h5arename_f(loc_id, old_attr_name, new_attr_name, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! Object identifier
 CHARACTER(LEN=*), INTENT(IN) :: old_attr_name ! Prior attribute name
 CHARACTER(LEN=*), INTENT(IN) :: new_attr_name ! New attribute name
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success, -1 on failure
END SUBROUTINE h5arename_f

HDF5 Reference Manual H5Arename

59

Name:H5Arename_by_name
Signature:

herr_tH5Arename_by_name(hid_t loc_id, const char *obj_name, const char
*old_attr_name, const char *new_attr_name, hid_t lapl_id)

Purpose:
Renames an attribute.

Description:
H5Arename_by_name changes the name of attribute that is attached to the object specified by
loc_id and obj_name. The attribute named old_attr_name is renamed new_attr_name.

The link access property list, lapl_id, may provide information regarding the properties of links
required to access the object, obj_name. See “Link Access Properties” in the H5P APIs.

Parameters:
hid_t loc_id IN: Location or object identifier; may be dataset or group

const char *obj_name IN: Name of object, relative to location, whose attribute is to be
renamed

const char *old_attr_name IN: Prior attribute name

const char *new_attr_name IN: New attribute name

hid_t lapl_id IN: Link access property list identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5arename_by_name_f

SUBROUTINE h5arename_by_name_f(loc_id, obj_name, old_attr_name, new_attr_name, &
 hdferr, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! Object identifier
 CHARACTER(LEN=*), INTENT(IN) :: obj_name
 ! Name of object, relative to location,
 ! whose attribute is to be renamed
 CHARACTER(LEN=*), INTENT(IN) :: old_attr_name
 ! Prior attribute name
 CHARACTER(LEN=*), INTENT(IN) :: new_attr_name
 ! New attribute name
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list identifier
END SUBROUTINE h5arename_by_name_f

History:
Release C

1.8.0 Function introduced in this release.

H5Arename_by_name HDF5 Reference Manual

60

Name:H5Awrite
Signature:

herr_tH5Awrite(hid_t attr_id, hid_t mem_type_id, const void *buf)
Purpose:

Writes data to an attribute.
Description:

H5Awrite writes an attribute, specified with attr_id. The attribute's memory datatype is specified
with mem_type_id. The entire attribute is written from buf to the file.

Datatype conversion takes place at the time of a read or write and is automatic. See the Data Conversion
section of The Data Type Interface (H5T) in the HDF5 User's Guide for a discussion of data conversion,
including the range of conversions currently supported by the HDF5 libraries.

Parameters:
hid_tattr_id IN: Identifier of an attribute to write.

hid_tmem_type_id IN: Identifier of the attribute datatype (in memory).

const void *buf IN: Data to be written.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5awrite_f

SUBROUTINE h5awrite_f(attr_id, memtype_id, buf, dims, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: attr_id ! Attribute identifier
 INTEGER(HID_T), INTENT(IN) :: memtype_id ! Attribute datatype
 ! identifier (in memory)
 TYPE, INTENT(IN) :: buf ! Data buffer; may be a scalar or
 ! an array
 DIMENSION(*), INTEGER(HSIZE_T), INTENT(IN) :: dims
 ! Array to hold corresponding
 ! dimension sizes of data buffer buf;
 ! dim(k) has value of the k-th
 ! dimension of buffer buf;
 ! values are ignored if buf is
 ! a scalar
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5awrite_f

History:
Release Fortran90

1.4.2 The dims parameter was added in this release.

HDF5 Reference Manual H5Awrite

61

HDF5 Reference Manual

62

H5D: Datasets Interface

Dataset Object API Functions

These functions create and manipulate dataset objects, and set and retrieve their constant or persistent properties.

The C Interfaces:

H5Dcreate•
H5Dcreate1 *•
H5Dcreate2•
H5Dcreate_anon•
H5Dopen•
H5Dopen1 *•
H5Dopen2•
H5Dclose•

H5Dget_space•
H5Dget_space_status•
H5Dget_type•
H5Dget_create_plist•
H5Dget_access_plist•
H5Dget_offset•
H5Dget_storage_size•

H5Dvlen_get_buf_size•
H5Dvlen_reclaim•
H5Dread•
H5Dwrite•
H5Diterate•
H5Dextend *•
H5Dset_extent•
H5Dfill•

* Use of these functions is deprecated in Release 1.8.0.

Alphabetical Listing

H5Dclose•
H5Dcreate•
H5Dcreate1 *•
H5Dcreate2•
H5Dcreate_anon•
H5Dextend *•
H5Dfill•

H5Dget_access_plist•
H5Dget_create_plist•
H5Dget_offset•
H5Dget_space•
H5Dget_space_status•
H5Dget_storage_size•
H5Dget_type•
H5Diterate•

H5Dopen•
H5Dopen1 *•
H5Dopen2•
H5Dread•
H5Dset_extent•
H5Dvlen_get_buf_size•
H5Dvlen_reclaim•
H5Dwrite•

The FORTRAN90 Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

h5dclose_f•
h5dcreate_f•
h5dcreate_anon_f•
h5dopen_f•
h5dget_space_f•
h5dget_space_status_f•

h5dget_type_f•
h5dget_create_plist_f•
h5dget_offset_f•
h5dget_storage_size_f•
h5dvlen_get_max_len_f•

h5dread_f•
h5dread_vl_f•
h5dwrite_f•
h5dwrite_vl_f•
h5dextend_f•
h5dfill_f•

HDF5 Reference Manual

63

HDF5 Reference Manual

64

Name:H5Dclose
Signature:

herr_tH5Dclose(hid_t dataset_id)
Purpose:

Closes the specified dataset.
Description:

H5Dclose ends access to a dataset specified by dataset_id and releases resources used by it. Further
use of the dataset identifier is illegal in calls to the dataset API.

Parameters:
hid_tdataset_id IN: Identifier of the dataset to close access to.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5dclose_f
SUBROUTINE h5dclose_f(dset_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5dclose_f

HDF5 Reference Manual H5Dclose

65

Name:H5Dcreate
Signature:

hid_tH5Dcreate(hid_t loc_id, const char *name, hid_t type_id, hid_t space_id, hid_t
dcpl_id)
hid_tH5Dcreate(hid_t loc_id, const char *name, hid_t dtype_id, hid_t space_id, hid_t
lcpl_id, hid_t dcpl_id, hid_t dapl_id)

Purpose:
Creates a new dataset and links it to a location in the file.

Description:
H5Dcreate is a macro that is mapped to either H5Dcreate1 or H5Dcreate2, depending on the
needs of the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Dcreate is mapped to the most recent version of the function, currently H5Dcreate2. If the
library and/or application is compiled for Release 1.6 emulation, H5Dcreate will be mapped to
H5Dcreate1. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Dcreate mapping

Global settings

No compatibility flag H5Dcreate2

Enable deprecated symbols H5Dcreate2

Disable deprecated symbols H5Dcreate2

Emulate Release 1.6 interface H5Dcreate1

Function-level macros

H5Dcreate_vers = 2 H5Dcreate2

H5Dcreate_vers = 1 H5Dcreate1

Fortran90 Interface: h5dcreate_f
SUBROUTINE h5dcreate_f(loc_id, name, type_id, space_id, dset_id, &
 hdferr, dcpl_id, lcpl_id, dapl_id)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the dataset
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER(HID_T), INTENT(OUT) :: dset_id ! Dataset identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code

H5Dcreate HDF5 Reference Manual

66

 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: dcpl_id
 ! Dataset creation property list
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lcpl_id
 ! Link creation property list
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: dapl_id
 ! Dataset access property list
END SUBROUTINE h5dcreate_f

History:
Release C

1.8.0 The function H5Dcreate renamed to H5Dcreate1 and deprecated in this
release.
The macro H5Dcreate and the function H5Dcreate2 introduced in this
release.

HDF5 Reference Manual H5Dcreate

67

Last modified: 29 July 2009

Name:H5Dcreate1
Signature:

hid_tH5Dcreate1(hid_t loc_id, const char *name, hid_t type_id, hid_t space_id, hid_t
dcpl_id)

Purpose:
Creates a dataset at the specified location.

Notice:
This function is deprecated in favor of the function H5Dcreate2 or the macro H5Dcreate.

Description:
H5Dcreate1 creates a data set with a name, name, in the file or in the group specified by the identifier
loc_id.

name can be a relative path based at loc_id or an absolute path from the root of the file. Use of this
function requires that any intermediate groups specified in the path already exist.

The dataset’s datatype and dataspace are specified by type_id and space_id, respectively. These are
the datatype and dataspace of the dataset as it will exist in the file, which may differ from the datatype
and dataspace in application memory.

Names within a group are unique: H5Dcreate1 will return an error if a link with the name specified in
name already exists at the location specified in loc_id.

As is the case for any object in a group, the length of a dataset name is not limited.

dcpl_id is an H5P_DATASET_CREATE property list created with H5Pcreate1 and initialized with
various property list functions described in “H5P: Property List Interface.”

H5Dcreate and H5Dcreate_anon return an error if the dataset’s datatype includes a variable-length
(VL) datatype and the fill value is undefined, i.e., set to NULL in the dataset creation property list. Such a
VL datatype may be directly included, indirectly included as part of a compound or array datatype, or
indirectly included as part of a nested compound or array datatype.

H5Dcreate and H5Dcreate_anon return a dataset identifier for success or a negative value for
failure. The dataset identifier should eventually be closed by calling H5Dclose to release resources it
uses.

See H5Dcreate_anon for discussion of the differences between H5Dcreate and
H5Dcreate_anon.

Fill values and space allocation:
The HDF5 library provides flexible means of specifying a fill value, of specifying when space will be
allocated for a dataset, and of specifying when fill values will be written to a dataset. For further
information on these topics, see the document Fill Value and Dataset Storage Allocation Issues in HDF5
and the descriptions of the following HDF5 functions in this HDF5 Reference Manual:

H5Dfill
H5Pset_fill_value
H5Pget_fill_value

H5Pset_fill_time
H5Pget_fill_time
H5Pset_alloc_time

H5Dcreate1 HDF5 Reference Manual

68

http://hdfgroup.org/HDF5/doc_resource/H5Fill_Values.html

H5Pfill_value_defined H5Pget_alloc_time

This information is also included in the “HDF5 Datasets” chapter of the new HDF5 User's Guide, which
is being prepared for release.

Note:
H5Dcreate and H5Dcreate_anon can fail if there has been an error in setting up an element of the
dataset creation property list. In such cases, each item in the property list must be examined to ensure that
the setup satisfies all required conditions. This problem is most likely to occur with the use of filters.

For example, either function will fail without a meaningful explanation if the following conditions exist
simultaneously:

SZIP compression is being used on the dataset.◊
The SZIP parameter pixels_per_block is set to an inappropriate value.◊

In such a case, one would refer to the description of H5Pset_szip, looking for any conditions or
requirements that might affect the local computing environment.

Parameters:
hid_t loc_id IN: Identifier of the file or group within which to create the dataset.

const char *name IN: The name of the dataset to create.

hid_t type_id IN: Identifier of the datatype to use when creating the dataset.

hid_tspace_id IN: Identifier of the dataspace to use when creating the dataset.

hid_tdcpl_id IN: Dataset creation property list identifier.
Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Dcreate.
History:

Release C

1.8.0 Function H5Dcreate renamed to H5Dcreate1 and deprecated in this release.

HDF5 Reference Manual H5Dcreate1

69

Name:H5Dcreate2
Signature:

hid_tH5Dcreate2(hid_t loc_id, const char *name, hid_t dtype_id, hid_t space_id, hid_t
lcpl_id, hid_t dcpl_id, hid_t dapl_id)

Purpose:
Creates a new dataset and links it into the file.

Description:
H5Dcreate2 creates a new dataset named name at the location specified by loc_id, and associates
constant and initial persistent properties with that dataset, including dtype_id, the datatype of each data
element as stored in the file; space_id, the dataspace of the dataset; and other initial properties as
defined in the dataset creation property and access property lists, dcpl_id and dapl_id, respectively.
Once created, the dataset is opened for access.

loc_id may be a file identifier, or a group identifier within that file. name may be either an absolute
path in the file or a relative path from loc_id naming the dataset.

The link creation property list, lcpl_id, governs creation of the link(s) by which the new dataset is
accessed and the creation of any intermediate groups that may be missing.

The datatype and dataspace properties and the dataset creation and access property lists are attached to the
dataset, so the caller may derive new datatypes, dataspaces, and creation and access properties from the
old ones and reuse them in calls to create additional datasets.

Once created, the dataset is ready to receive raw data. Immediately attempting to read raw data from the
dataset will probably return the fill value.

To conserve and release resources, the dataset should be closed when access is no longer required.
Parameters:

hid_t loc_id IN: Location identifier

const char *name IN: Dataset name

hid_tdtype_id IN: Datatype identifier

hid_tspace_id IN: Dataspace identifier

hid_t lcpl_id IN: Link creation property list

hid_tdcpl_id IN: Dataset creation property list

hid_tdapl_id IN: Dataset access property list
Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Dcreate.
History:

Release C

1.8.0 Function introduced in this release.

H5Dcreate2 HDF5 Reference Manual

70

Last modified: 18 May 2009

Name:H5Dcreate_anon
Signature:

hid_tH5Dcreate_anon(hid_t loc_id, hid_t type_id, hid_t space_id, hid_t dcpl_id, hid_t
dapl_id)

Purpose:
Creates a dataset in a file without linking it into the file structure.

Description:
H5Dcreate_anon creates a dataset in the file specified by loc_id.

loc_id may be a file identifier or a group identifier within that file.

The dataset’s datatype and dataspace are specified by type_id and space_id, respectively. These are
the datatype and dataspace of the dataset as it will exist in the file, which may differ from the datatype
and dataspace in application memory.

Dataset creation properties are specified in the dataset creation property list dcpl_id. Dataset access
properties are specified in the dataset access property list dapl_id.

H5Dcreate_anon returns a new dataset identifier. Using this identifier, the new dataset must be linked
into the HDF5 file structure with H5Lcreate_hard or it will be deleted from the file when the file is
closed.

See H5Dcreate for further details and considerations on the use of H5Dcreate and
H5Dcreate_anon.

The differences between this function and H5Dcreate are as follows:

H5Dcreate_anon explicitly includes a dataset access property list. H5Dcreate always uses
default dataset access properties.

◊

H5Dcreate_anon neither provides the new dataset’s name nor links it into the HDF5 file
structure; those actions must be performed separately through a call to H5Lcreate_hard,
which offers greater control over linking.

◊

Parameters:
hid_t loc_id IN: Identifier of the file or group within which to create the dataset.

hid_t type_id IN: Identifier of the datatype to use when creating the dataset.

hid_tspace_id IN: Identifier of the dataspace to use when creating the dataset.

hid_tdcpl_id IN: Dataset creation property list identifier.

hid_tdapl_id IN: Dataset access property list identifier.
Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.
Fortran90 Interface:

SUBROUTINE h5dcreate_anon_f(loc_id, type_id, space_id, dset_id, hdferr, &
 dcpl_id, dapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier.
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier.
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier.
 INTEGER(HID_T), INTENT(OUT) :: dset_id ! Dataset identifier.

HDF5 Reference Manual H5Dcreate_anon

71

 INTEGER, INTENT(OUT) :: hdferr ! Error code.
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: dcpl_id
 ! Dataset creation property list
 ! identifier.
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: dapl_id
 ! Dataset access property list
 ! identifier.
END SUBROUTINE h5dcreate_anon_f

H5Dcreate_anon HDF5 Reference Manual

72

Last modified: 11 February 2010

Name:H5Dextend
Signature:

herr_tH5Dextend(hid_t dataset_id, const hsize_t size[])
Purpose:

Extends a dataset.
Notice:

This function is deprecated in favor of the function H5Dset_extent.
Description:

H5Dextend verifies that the dataset is at least of size size, extending it if necessary. The
dimensionality of size is the same as that of the dataspace of the dataset being changed.

This function can be applied to the following datasets:

Any dataset with unlimited dimensions◊
A dataset with fixed dimensions if the current dimension sizes are less than the maximum sizes
set with maxdims (see H5Screate_simple)

◊

Space on disk is immediately allocated for the new dataset extent if the dataset’s space allocation time is
set to H5D_ALLOC_TIME_EARLY. Fill values will be written to the dataset if the dataset’s fill time is set
to H5D_FILL_TIME_IFSET or H5D_FILL_TIME_ALLOC. (See H5Pset_fill_time and
H5Pset_alloc_time.)

This function ensures that the dataset dimensions are of at least the sizes specified in size. The function
H5Dset_extent must be used if the dataset dimension sizes are are to be reduced.

Parameters:
hid_tdataset_id IN: Identifier of the dataset.

const hsize_tsize[] IN: Array containing the new magnitude of each dimension.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5dextend_f

SUBROUTINE h5dextend_f(dataset_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dataset_id ! Dataset identifier
 INTEGER(HSIZE_T), DIMENSION(*), INTENT(IN) :: size
 ! Array containing
 ! dimensions' sizes
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5dextend_f

History:
Release C

1.8.0 Function deprecated in this release.

1.8.0 Parameter size syntax changed to 'const hsize_tsize[]' in this release.

HDF5 Reference Manual H5Dextend

73

Name:H5Dfill
Signature:

herr_tH5Dfill(const void *fill, hid_t fill_type_id, void *buf, hid_t buf_type_id, hid_t
space_id)

Purpose:
Fills dataspace elements with a fill value in a memory buffer.

Description:
H5Dfill explicitly fills the dataspace selection in memory, space_id, with the fill value specified in
fill. If fill is NULL, a fill value of 0 (zero) is used.

fill_type_id specifies the datatype of the fill value.
buf specifies the buffer in which the dataspace elements will be written.
buf_type_id specifies the datatype of those data elements.

Note that if the fill value datatype differs from the memory buffer datatype, the fill value will be
converted to the memory buffer datatype before filling the selection.

Note:
Applications sometimes write data only to portions of an allocated dataset. It is often useful in such cases
to fill the unused space with a known fill value. See H5Pset_fill_value for further discussion. Other
related functions include H5Pget_fill_value, H5Pfill_value_defined, H5Pset_fill_time, H5Pget_fill_time,
H5Dcreate, and H5Dcreate_anon.

Parameters:
const void *fill IN: Pointer to the fill value to be used.

hid_t fill_type_id IN: Fill value datatype identifier.

void *buf IN/OUT: Pointer to the memory buffer containing the selection to be
filled.

hid_tbuf_type_id IN: Datatype of dataspace elements to be filled.

hid_tspace_id IN: Dataspace describing memory buffer and containing the selection to
be filled.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5dfill_f
SUBROUTINE h5dfill_f(fill_value, space_id, buf, hdferr)
 IMPLICIT NONE
 TYPE, INTENET(IN) :: fill_value ! Fill value; may be have one of the
 ! following types:
 ! INTEGER, REAL, DOUBLE PRECISION,
 ! CHARACTER
 INTEGER(HID_T), INTENT(IN) :: space_id ! Memory dataspace selection identifier
 TYPE, DIMENSION(*) :: buf ! Memory buffer to fill in; must have
 ! the same datatype as fill value
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5dfill_f

H5Dfill HDF5 Reference Manual

74

Last modified: 8 May 2009

Name:H5Dget_access_plist
Signature:

hid_tH5Dget_access_plist(hid_t dataset_id)
Purpose:

Returns the dataset access property list associated with a dataset.
Description:

H5Dget_access_plist returns a copy of the dataset access property list used to open the specified
dataset. Modifications to the returned property list will have no effect on the dataset it was retrieved from.

The chunk cache parameters in the returned property lists will be those used by the dataset. If the
properties in the file access property list were used to determine the dataset's chunk cache configuration,
then those properties will be present in the returned dataset access property list. If the dataset does not use
a chunked layout, then the chunk cache properties will be set to the default. The chunk cache properties in
the returned list are considered to be “set”, and any use of this list will override the corresponding
properties in the fileâ’�s file access property list.

All link access properties in the returned list will be set to the default values.
Parameters:

hid_tdataset_id IN: Identifier of the dataset to get access property list of.
Returns:

Returns a dataset access property list identifier if successful; otherwise returns a negative value.
Example Usage:

The following code retrieves the dataset access property list used to open the dataset dataset_id into
dapl_id:

dapl_id = H5Dget_access_plist(dataset_id);

See Also:
“Dataset Access Properties” in the “H5P: Property List Interface” chapter of the HDF5 Reference Manual

History:
Release Change

1.8.3 C function introduced in this release.

HDF5 Reference Manual H5Dget_access_plist

75

Name:H5Dget_create_plist
Signature:

hid_tH5Dget_create_plist(hid_t dataset_id)
Purpose:

Returns an identifier for a copy of the dataset creation property list for a dataset.
Description:

H5Dget_create_plist returns an identifier for a copy of the dataset creation property list associated
with the dataset specified by dataset_id.

The creation property list identifier should be released with H5Pclose.
Parameters:

hid_tdataset_id IN: Identifier of the dataset to query.
Returns:

Returns a dataset creation property list identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5dget_create_plist_f

SUBROUTINE h5dget_create_plist_f(dataset_id, creation_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dataset_id ! Dataset identifier
 INTEGER(HID_T), INTENT(OUT) :: creation_id ! Dataset creation
 ! property list identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5dget_create_plist_f

H5Dget_create_plist HDF5 Reference Manual

76

Last modified: 17 August 2010

Name:H5Dget_offset
Signature:

haddr_tH5Dget_offset(hid_t dset_id)
Purpose:

Returns dataset address in file.
Description:

H5Dget_offset returns the address in the file of the dataset dset_id. That address is expressed as
the offset in bytes from the beginning of the file.

Parameters:
hid_t dset_id IN: Dataset identifier.

Returns:
Returns the offset in bytes; otherwise returns HADDR_UNDEF, a negative value.

Fortran90 Interface:
None.

History:
Release C

1.6.0 Function introduced in this release.

HDF5 Reference Manual H5Dget_offset

77

Name:H5Dget_space
Signature:

hid_tH5Dget_space(hid_t dataset_id)
Purpose:

Returns an identifier for a copy of the dataspace for a dataset.
Description:

H5Dget_space returns an identifier for a copy of the dataspace for a dataset. The dataspace identifier
should be released with the H5Sclose function.

Parameters:
hid_tdataset_id IN: Identifier of the dataset to query.

Returns:
Returns a dataspace identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5dget_space_f
SUBROUTINE h5dget_space_f(dataset_id, dataspace_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dataset_id ! Dataset identifier
 INTEGER(HID_T), INTENT(OUT) :: dataspace_id ! Dataspace identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5dget_space_f

H5Dget_space HDF5 Reference Manual

78

Name:H5Dget_space_status
Signature:

herr_tH5Dget_space_status(hid_t dset_id, H5D_space_status_t *status)
Purpose:

Determines whether space has been allocated for a dataset.
Description:

H5Dget_space_status determines whether space has been allocated for the dataset dset_id.

Space allocation status is returned in status, which will have one of the following values:

H5D_SPACE_STATUS_NOT_ALLOCATED Space has not been allocated for this dataset.

H5D_SPACE_STATUS_ALLOCATED Space has been allocated for this dataset.

H5D_SPACE_STATUS_PART_ALLOCATEDSpace has been partially allocated for this dataset.
(Used only for datasets with chunked storage.)

Parameters:
hid_tdset_id IN: Identifier of the dataset to query.

H5D_space_status_t *status OUT: Space allocation status.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5dget_space_status_f

SUBROUTINE h5dget_space_status_f(dset_id, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
 INTEGER, INTENET(OUT) :: flag ! Status flag ; possible values:
 ! H5D_SPACE_STS_ERROR_F
 ! H5D_SPACE_STS_NOT_ALLOCATED_F
 ! H5D_SPACE_STS_PART_ALLOCATED_F
 ! H5D_SPACE_STS_ALLOCATED_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5dget_space_status_f

History:
Release C

1.6.0 Function introduced in this release.

HDF5 Reference Manual H5Dget_space_status

79

Name:H5Dget_storage_size
Signature:

hsize_tH5Dget_storage_size(hid_t dataset_id)
Purpose:

Returns the amount of storage required for a dataset.
Description:

H5Dget_storage_size returns the amount of storage that is required for the specified dataset,
dataset_id. For chunked datasets, this is the number of allocated chunks times the chunk size. The
return value may be zero if no data has been stored.

Parameters:
hid_tdataset_id IN: Identifier of the dataset to query.

Returns:
Returns the amount of storage space allocated for the dataset, not counting meta data; otherwise returns 0
(zero).

Fortran90 Interface: h5dget_storage_size_f
SUBROUTINE h5dget_storage_size_f(dset_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
 INTEGER(HSIZE_T), INTENT(OUT) :: size ! Amount of storage required
 ! for dataset
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5dget_storage_size_f

History:
Release Fortran90

1.4.5 Function introduced in this release.

H5Dget_storage_size HDF5 Reference Manual

80

Name:H5Dget_type
Signature:

hid_tH5Dget_type(hid_t dataset_id)
Purpose:

Returns an identifier for a copy of the datatype for a dataset.
Description:

H5Dget_type returns an identifier for a copy of the datatype for a dataset. The datatype should be
released with the H5Tclose function.

If a dataset has a named datatype, then an identifier to the opened datatype is returned. Otherwise, the
returned datatype is read-only. If atomization of the datatype fails, then the datatype is closed.

Parameters:
hid_tdataset_id IN: Identifier of the dataset to query.

Returns:
Returns a datatype identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5dget_type_f
SUBROUTINE h5dget_type_f(dataset_id, datatype_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dataset_id ! Dataset identifier
 INTEGER(HID_T), INTENT(OUT) :: datatype_id ! Datatype identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5dget_type_f

HDF5 Reference Manual H5Dget_type

81

Name:H5Diterate
Signature:

herr_tH5Diterate(void *buf, hid_t type_id, hid_t space_id, H5D_operator_t operator,
void *operator_data)

Purpose:
Iterates over all selected elements in a dataspace.

Description:
H5Diterate iterates over all the data elements in the memory buffer buf, executing the callback
function operator once for each such data element.

The protoype of the callback function operator is as follows (as defined in the source code file
H5Lpublic.h):

herr_t (*H5D_operator_t)(void elem, hid_t type_id, unsigned ndim,
 const hsize_t *point, void *operator_data)

The parameters of this callback function have the following values or meanings:

void *elem IN/OUT: Pointer to the memory buffer containing the current
data element

hid_t type_id IN: Datatype identifier for the elements stored in elem

unsigned ndim IN: Number of dimensions for the point array

const hsize_t
*point

IN: Array containing the location of the element within the
original dataspace

void *operator_data IN/OUT: Pointer to any user-defined data associated with the
operation

The possible return values from the callback function, and the effect of each, are as follows:

Zero causes the iterator to continue, returning zero when all data elements have been processed.◊
A positive value causes the iterator to immediately return that positive value, indicating
short-circuit success.

◊

A negative value causes the iterator to immediately return that value, indicating failure.◊
The H5Diterate operator_data parameter is a user-defined pointer to the data required to process
dataset elements in the course of the iteration. If operator needs to pass data back to the application,
such data can be returned in this same buffer. This pointer is passed back to each step of the iteration in
the operator callback function’s operator_data parameter.

Unlike other HDF5 iterators, this iteration operation cannot be restarted at the point of exit; a second
H5Diterate call will always restart at the beginning.

H5Diterate HDF5 Reference Manual

82

Parameters:
void *buf IN/OUT: Pointer to the buffer in memory containing the elements to

iterate over

hid_t type_id IN: Datatype identifier for the elements stored in buf

hid_tspace_id IN: Dataspace identifier for buf

H5D_operator_t operator IN: Function pointer to the routine to be called for each element in
buf iterated over

void *operator_data IN/OUT: Pointer to any user-defined data associated with the
operation

Returns:
Returns the return value of the last operator if it was non-zero, or zero if all elements have been
processed. Otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.6.4 The following changes occured in the H5D_operator_t function in this
release:

ndim parameter type was changed to unsigned
point parameter type was changed to const hsize_t

HDF5 Reference Manual H5Diterate

83

Name:H5Dopen
Signature:

hid_tH5Dopen(hid_t loc_id, const char *name)
hid_tH5Dopen(hid_t loc_id, const char *name, hid_t dapl_id)

Purpose:
Opens an existing dataset.

Description:
H5Dopen is a macro that is mapped to either H5Dopen1 or H5Dopen2, depending on the needs of the
application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Dopen is mapped to the most recent version of the function, currently H5Dopen2. If the library
and/or application is compiled for Release 1.6 emulation, H5Dopen will be mapped to H5Dopen1.
Function-specific flags are available to override these settings on a function-by-function basis when the
application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Dopen mapping

Global settings

No compatibility flag H5Dopen2

Enable deprecated symbols H5Dopen2

Disable deprecated symbols H5Dopen2

Emulate Release 1.6 interface H5Dopen1

Function-level macros

H5Dopen_vers = 2 H5Dopen2

H5Dopen_vers = 1 H5Dopen1

Fortran90 Interface: h5dopen_f
SUBROUTINE h5dopen_f(loc_id, name, dset_id, hdferr, dapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the dataset
 INTEGER(HID_T), INTENT(OUT) :: dset_id ! Dataset identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: dapl_id
 ! Dataset access property list
END SUBROUTINE h5dopen_f

H5Dopen HDF5 Reference Manual

84

History:
Release C

1.8.0 The function H5Dopen renamed to H5Dopen1 and deprecated in this release.
The macro H5Dopen and the function H5Dopen2 introduced in this release.

HDF5 Reference Manual H5Dopen

85

Name:H5Dopen1
Signature:

hid_tH5Dopen1(hid_t loc_id, const char *name)
Purpose:

Opens an existing dataset.
Notice:

This function is deprecated in favor of the function H5Dopen2 or the macro H5Dopen.
Description:

H5Dopen1 opens an existing dataset for access in the file or group specified in loc_id. name is a
dataset name and is used to identify the dataset in the file.

Parameters:
hid_t loc_id IN: Identifier of the file or group within which the dataset to be accessed will

be found.

const char *name IN: The name of the dataset to access.
Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Dopen.
History:

Release C

1.8.0 Function H5Dopen renamed to H5Dopen1 and deprecated in this release.

H5Dopen1 HDF5 Reference Manual

86

Name:H5Dopen2
Signature:

hid_tH5Dopen2(hid_t loc_id, const char *name, hid_t dapl_id)
Purpose:

Opens an existing dataset.
Description:

H5Dopen2 opens the existing dataset specified by a location identifier and name, loc_id and name,
respectively.

The dataset access property list, dapl_id, provides information regarding access to the dataset.

To conserve and release resources, the dataset should be closed when access is no longer required.
Parameters:

hid_t loc_id IN: Location identifier

const char *name IN: Dataset name

hid_tdapl_id IN: Dataset access property list
Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Dopen.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Dopen2

87

Name:H5Dread
Signature:

herr_tH5Dread(hid_t dataset_id, hid_t mem_type_id, hid_t mem_space_id, hid_t
file_space_id, hid_t xfer_plist_id, void * buf)

Purpose:
Reads raw data from a dataset into a buffer.

Description:
H5Dread reads a (partial) dataset, specified by its identifier dataset_id, from the file into an
application memory buffer buf. Data transfer properties are defined by the argument xfer_plist_id.
The memory datatype of the (partial) dataset is identified by the identifier mem_type_id. The part of
the dataset to read is defined by mem_space_id and file_space_id.

file_space_id is used to specify only the selection within the file dataset's dataspace. Any dataspace
specified in file_space_id is ignored by the library and the dataset's dataspace is always used.
file_space_id can be the constant H5S_ALL. which indicates that the entire file dataspace, as
defined by the current dimensions of the dataset, is to be selected.

mem_space_id is used to specify both the memory dataspace and the selection within that dataspace.
mem_space_id can be the constant H5S_ALL, in which case the file dataspace is used for the memory
dataspace and the selection defined with file_space_id is used for the selection within that
dataspace.

If raw data storage space has not been allocated for the dataset and a fill value has been defined, the
returned buffer buf is filled with the fill value.

The behavior of the library for the various combinations of valid dataspace identifiers and H5S_ALL for
the mem_space_id and the file_space_id parameters is described below:

mem_space_id file_space_id Behavior

valid dataspace
identifier

valid dataspace
identifier

mem_space_id specifies the memory dataspace and
the selection within it. file_space_id specifies the
selection within the file dataset's dataspace.

H5S_ALL valid dataspace
identifier

The file dataset's dataspace is used for the memory
dataspace and the selection specified with
file_space_id specifies the selection within it. The
combination of the file dataset's dataspace and the
selection from file_space_id is used for memory
also.

valid dataspace
identifier

H5S_ALL mem_space_id specifies the memory dataspace and
the selection within it. The selection within the file
dataset's dataspace is set to the "all" selection.

H5S_ALL H5S_ALL The file dataset's dataspace is used for the memory
dataspace and the selection within the memory dataspace
is set to the "all" selection. The selection within the file
dataset's dataspace is set to the "all" selection.

Setting an H5S_ALL selection indicates that the entire dataspace, as defined by the current dimensions of
a dataspace, will be selected. The number of elements selected in the memory dataspace must match the

H5Dread HDF5 Reference Manual

88

number of elements selected in the file dataspace.

xfer_plist_id can be the constant H5P_DEFAULT. in which case the default data transfer properties
are used.

Data is automatically converted from the file datatype and dataspace to the memory datatype and
dataspace at the time of the read. See the Data Conversion section of The Data Type Interface (H5T) in
the HDF5 User's Guide for a discussion of data conversion, including the range of conversions currently
supported by the HDF5 libraries.

Parameters:
hid_tdataset_id IN: Identifier of the dataset read from.

hid_tmem_type_id IN: Identifier of the memory datatype.

hid_tmem_space_id IN: Identifier of the memory dataspace.

hid_t file_space_id IN: Identifier of the dataset's dataspace in the file.

hid_txfer_plist_id IN: Identifier of a transfer property list for this I/O operation.

void * buf OUT: Buffer to receive data read from file.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5dread_f, h5dread_vl_f

There is no direct FORTRAN couterpart for the C function H5Dread. Instead, that functionality is
provided by two FORTRAN functions:

h5dread_f Purpose: Reads data other than variable-length data.

h5dread_vl_f Purpose: Reads variable-length data.

SUBROUTINE h5dread_f(dset_id, mem_type_id, buf, dims, hdferr, &
 mem_space_id, file_space_id, xfer_prp)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
 INTEGER(HID_T), INTENT(IN) :: mem_type_id ! Memory datatype identifier
 TYPE, INTENT(INOUT) :: buf ! Data buffer; may be a scalar
 ! or an array
 DIMENSION(*), INTEGER(HSIZE_T), INTENT(IN) :: dims
 ! Array to hold corresponding
 ! dimension sizes of data
 ! buffer buf
 ! dim(k) has value of the k-th
 ! dimension of buffer buf
 ! Values are ignored if buf is
 ! a scalar
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: mem_space_id
 ! Memory dataspace identfier
 ! Default value is H5S_ALL_F
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: file_space_id
 ! File dataspace identfier
 ! Default value is H5S_ALL_F
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: xfer_prp
 ! Transfer property list identifier
 ! Default value is H5P_DEFAULT_F
END SUBROUTINE h5dread_f

HDF5 Reference Manual H5Dread

89

SUBROUTINE h5dread_vl_f(dset_id, mem_type_id, buf, dims, len, hdferr, &
 mem_space_id, file_space_id, xfer_prp)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
 INTEGER(HID_T), INTENT(IN) :: mem_type_id ! Memory datatype identifier
 TYPE, INTENT(INOUT), & DIMENSION(dims(1),dims(2)) :: buf
 ! Data buffer; may be a scalar
 ! or an array
 ! TYPE must be one of the following
 ! INTEGER
 ! REAL
 ! CHARACTER

 INTEGER(HSIZE_T), INTENT(IN), DIMENSION(2) :: dims
 ! Array to hold corresponding
 ! dimension sizes of data
 ! buffer buf
 ! dim(k) has value of the k-th
 ! dimension of buffer buf
 ! Values are ignored if buf is
 ! a scalar
 INTEGER(SIZE_T), INTENT(INOUT), DIMENSION(*) :: len
 ! Array to store length of
 ! each element
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: mem_space_id
 ! Memory dataspace identfier
 ! Default value is H5S_ALL_F
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: file_space_id
 ! File dataspace identfier
 ! Default value is H5S_ALL_F
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: xfer_prp
 ! Transfer property list identifier
 ! Default value is H5P_DEFAULT_F
END SUBROUTINE h5dread_vl_f

History:
Release Fortran90

1.4.2 The dims parameter was added in this release.

H5Dread HDF5 Reference Manual

90

Last modified: 3 December 2010

Name:H5Dset_extent
Signature:

herr_tH5Dset_extent(hid_t dset_id, const hsize_t size[])
Purpose:

Changes the sizes of a dataset’s dimensions.
Description:

H5Dset_extent sets the current dimensions of the chunked dataset dset_id to the sizes specified in
size.

size is a 1-dimensional array with n elements, where n is the rank of the dataset’s current dataspace.

This function can be applied to the following datasets:

A chunked dataset with unlimited dimensions◊
A chunked dataset with fixed dimensions if the new dimension sizes are less than the maximum
sizes set with maxdims (see H5Screate_simple)

◊

An external dataset with unlimited dimensions◊
An external dataset with fixed dimensions if the new dimension sizes are less than the maximum
sizes set with maxdims

Note that external datasets are always contiguous and can be extended only along the first
dimension.

◊

Space on disk is immediately allocated for the new dataset extent if the dataset’s space allocation time is
set to H5D_ALLOC_TIME_EARLY.

Fill values will be written to the dataset in either of the following situations, but not otherwise:

If the dataset’s fill time is set to H5D_FILL_TIME_IFSET and a fill value is defined (see
H5Pset_fill_time and H5Pset_fill_value)

◊

If the dataset’s fill time is set to H5D_FILL_TIME_ALLOC (see H5Pset_alloc_time)◊
Note:

If the sizes specified in size are smaller than the dataset’s current dimension sizes, H5Dset_extent
will reduce the dataset’s dimension sizes to the specified values. It is the user application’s responsibility
to ensure that valuable data is not lost as H5Dset_extent does not check.

Except for external datasets, H5Dset_extent is for use with chunked datasets only, not contiguous
datasets.

Parameters:
hid_tdset_id IN: Dataset identifier

const hsize_t size[] IN: Array containing the new magnitude of each dimension of the dataset.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Dset_extent

91

Fortran90 Interface: H5Dset_extent
SUBROUTINE h5dset_extent_f(dataset_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dataset_id ! Dataset identifier
 INTEGER(HSIZE_T), DIMENSION(*), INTENT(IN) :: size
 ! Array containing
 ! dimensions’ sizes
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5dset_extent_f

See Also:
H5Pset_alloc_time
H5Pset_fill_time
H5Pset_fill_value
H5Screate_simple

History:
Release Change

1.6.0 Function implemented but not supported in this release.

1.8.0 Function supported in this release.

H5Dset_extent HDF5 Reference Manual

92

Name:H5Dvlen_get_buf_size
Signature:

herr_tH5Dvlen_get_buf_size(hid_t dataset_id, hid_t type_id, hid_t space_id, hsize_t
*size)

Purpose:
Determines the number of bytes required to store VL data.

Description:
H5Dvlen_get_buf_size determines the number of bytes required to store the VL data from the
dataset, using the space_id for the selection in the dataset on disk and the type_id for the memory
representation of the VL data in memory.

*size is returned with the number of bytes required to store the VL data in memory.
Parameters:

hid_tdataset_id IN: Identifier of the dataset to query.

hid_t type_id IN: Datatype identifier.

hid_tspace_id IN: Dataspace identifier.

hsize_t *size OUT: The size in bytes of the memory buffer required to store the VL data.
Returns:

Returns non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5dvlen_get_max_len_f

There is no direct FORTRAN couterpart for the C function H5Dvlen_get_buf_size; corresponding
functionality is provided by the FORTRAN function h5dvlen_get_max_len_f.

SUBROUTINE h5dvlen_get_max_len_f(dset_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier

 INTEGER(SIZE_T), INTENT(OUT) :: elem_len ! Maximum length of the element
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5dvlen_get_max_len_f

History:
Release C Fortran90

1.4.5 Function introduced in this release.

1.4.0 Function introduced in this release.

HDF5 Reference Manual H5Dvlen_get_buf_size

93

Name:H5Dvlen_reclaim
Signature:

herr_tH5Dvlen_reclaim(hid_t type_id, hid_t space_id, hid_t plist_id, void *buf)
Purpose:

Reclaims VL datatype memory buffers.
Description:

H5Dvlen_reclaim reclaims memory buffers created to store VL datatypes.

The type_id must be the datatype stored in the buffer. The space_id describes the selection for the
memory buffer to free the VL datatypes within. The plist_id is the dataset transfer property list which
was used for the I/O transfer to create the buffer. And buf is the pointer to the buffer to be reclaimed.

The VL structures (hvl_t) in the user's buffer are modified to zero out the VL information after the
memory has been reclaimed.

If nested VL datatypes were used to create the buffer, this routine frees them from the bottom up,
releasing all the memory without creating memory leaks.

Parameters:
hid_t type_id IN: Identifier of the datatype.

hid_tspace_id IN: Identifier of the dataspace.

hid_tplist_id IN: Identifier of the property list used to create the buffer.

void *buf IN: Pointer to the buffer to be reclaimed.
Returns:

Returns non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.

H5Dvlen_reclaim HDF5 Reference Manual

94

Name:H5Dwrite
Signature:

herr_tH5Dwrite(hid_t dataset_id, hid_t mem_type_id, hid_t mem_space_id, hid_t
file_space_id, hid_t xfer_plist_id, const void * buf)

Purpose:
Writes raw data from a buffer to a dataset.

Description:
H5Dwrite writes a (partial) dataset, specified by its identifier dataset_id, from the application
memory buffer buf into the file. Data transfer properties are defined by the argument
xfer_plist_id. The memory datatype of the (partial) dataset is identified by the identifier
mem_type_id. The part of the dataset to write is defined by mem_space_id and file_space_id.

file_space_id is used to specify only the selection within the file dataset's dataspace. Any dataspace
specified in file_space_id is ignored by the library and the dataset's dataspace is always used.
file_space_id can be the constant H5S_ALL. which indicates that the entire file dataspace, as
defined by the current dimensions of the dataset, is to be selected.

mem_space_id is used to specify both the memory dataspace and the selection within that dataspace.
mem_space_id can be the constant H5S_ALL, in which case the file dataspace is used for the memory
dataspace and the selection defined with file_space_id is used for the selection within that
dataspace.

The behavior of the library for the various combinations of valid dataspace IDs and H5S_ALL for the
mem_space_id and the file_space_id parameters is described below:

mem_space_id file_space_id Behavior

valid dataspace
identifier

valid dataspace
identifier

mem_space_id specifies the memory dataspace and
the selection within it. file_space_id specifies the
selection within the file dataset's dataspace.

H5S_ALL valid dataspace
identifier

The file dataset's dataspace is used for the memory
dataspace and the selection specified with
file_space_id specifies the selection within it. The
combination of the file dataset's dataspace and the
selection from file_space_id is used for memory
also.

valid dataspace
identifier

H5S_ALL mem_space_id specifies the memory dataspace and
the selection within it. The selection within the file
dataset's dataspace is set to the "all" selection.

H5S_ALL H5S_ALL The file dataset's dataspace is used for the memory
dataspace and the selection within the memory dataspace
is set to the "all" selection. The selection within the file
dataset's dataspace is set to the "all" selection.

Setting an "all" selection indicates that the entire dataspace, as defined by the current dimensions of a
dataspace, will be selected. The number of elements selected in the memory dataspace must match the
number of elements selected in the file dataspace.

HDF5 Reference Manual H5Dwrite

95

xfer_plist_id can be the constant H5P_DEFAULT. in which case the default data transfer properties
are used.

Writing to an dataset will fail if the HDF5 file was not opened with write access permissions.

Data is automatically converted from the memory datatype and dataspace to the file datatype and
dataspace at the time of the write. See the Data Conversion section of The Data Type Interface (H5T) in
the HDF5 User's Guide for a discussion of data conversion, including the range of conversions currently
supported by the HDF5 libraries.

If the dataset's space allocation time is set to H5D_ALLOC_TIME_LATE or H5D_ALLOC_TIME_INCR
and the space for the dataset has not yet been allocated, that space is allocated when the first raw data is
written to the dataset. Unused space in the dataset will be written with fill values at the same time if the
dataset's fill time is set to H5D_FILL_TIME_IFSET or H5D_FILL_TIME_ALLOC. (Also see
H5Pset_fill_time and H5Pset_alloc_time.)

If a dataset's storage layout is 'compact', care must be taken when writing data to the dataset in parallel. A
compact dataset's raw data is cached in memory and may be flushed to the file from any of the parallel
processes, so parallel applications should always attempt to write identical data to the dataset from all
processes.

Parameters:
hid_tdataset_id IN: Identifier of the dataset to write to.

hid_tmem_type_id IN: Identifier of the memory datatype.

hid_tmem_space_id IN: Identifier of the memory dataspace.

hid_t file_space_id IN: Identifier of the dataset's dataspace in the file.

hid_txfer_plist_id IN: Identifier of a transfer property list for this I/O operation.

const void *buf IN: Buffer with data to be written to the file.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5dwrite_f, h5dwrite_vl_f

There is no direct FORTRAN couterpart for the C function H5Dwrite. Instead, that functionality is
provided by two FORTRAN functions:

h5dwrite_f Purpose: Writes data other than variable-length data.

h5dwrite_vl_f Purpose: Writes variable-length data.

SUBROUTINE h5dwrite_f(dset_id, mem_type_id, buf, dims, hdferr, &
 mem_space_id, file_space_id, xfer_prp)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
 INTEGER(HID_T), INTENT(IN) :: mem_type_id ! Memory datatype identifier
 TYPE, INTENT(IN) :: buf ! Data buffer; may be a scalar
 ! or an array
 DIMENSION(*), INTEGER(HSIZE_T), INTENT(IN) :: dims
 ! Array to hold corresponding
 ! dimension sizes of data
 ! buffer buf; dim(k) has value
 ! of the k-th dimension of
 ! buffer buf; values are
 ! ignored if buf is a scalar
 INTEGER, INTENT(OUT) :: hdferr ! Error code

H5Dwrite HDF5 Reference Manual

96

 ! 0 on success and -1 on failure

 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: mem_space_id
 ! Memory dataspace identfier
 ! Default value is H5S_ALL_F
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: file_space_id
 ! File dataspace identfier
 ! Default value is H5S_ALL_F

 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: xfer_prp
 ! Transfer property list
 ! identifier; default value
 ! is H5P_DEFAULT_F
END SUBROUTINE h5dwrite_f

SUBROUTINE h5dwrite_vl_f(dset_id, mem_type_id, buf, dims, len, hdferr, &
 mem_space_id, file_space_id, xfer_prp)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
 INTEGER(HID_T), INTENT(IN) :: mem_type_id ! Memory datatype identifier
 TYPE, INTENT(IN), & DIMENSION(dims(1),dims(2)) :: buf
 ! Data buffer; may be a scalar
 ! or an array
 ! TYPE must be one of the following
 ! INTEGER
 ! REAL
 ! CHARACTER
 INTEGER(HSIZE_T), INTENT(IN), DIMENSION(2) :: dims
 ! Array to hold corresponding
 ! dimension sizes of data
 ! buffer buf
 ! dim(k) has value of the k-th
 ! dimension of buffer buf
 ! Values are ignored if buf is
 ! a scalar
 INTEGER(SIZE_T), INTENT(IN), DIMENSION(*) :: len
 ! Array to store length of
 ! each element
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: mem_space_id
 ! Memory dataspace identfier
 ! Default value is H5S_ALL_F
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: file_space_id
 ! File dataspace identfier
 ! Default value is H5S_ALL_F
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: xfer_prp
 ! Transfer property list identifier
 ! Default value is H5P_DEFAULT_F
END SUBROUTINE h5dwrite_vl_f

History:
Release Fortran90

1.4.2 A dims parameter has been added.

HDF5 Reference Manual H5Dwrite

97

HDF5 Reference Manual

98

H5E: Error Interface

Error API Functions

These functions provide error handling capabilities in the HDF5 environment.
In the following lists, italic type indicates a configurable macro.

The C Interfaces:

H5Eclear•
H5Eclear1 *•
H5Eclear2•
H5Ecreate_stack•
H5Eclose_stack•
H5Eprint•
H5Eprint1 *•
H5Eprint2•
H5Epush•
H5Epush1 *•
H5Epush2•

H5Epop•
H5Eget_num•
H5Eget_major *•
H5Eget_minor *•
H5Eget_msg•
H5Ecreate_msg•
H5Eclose_msg•
H5Eregister_class•
H5Eunregister_class•
H5Eget_class_name•
H5Eauto_is_v2•

H5Eset_auto•
H5Eset_auto1 *•
H5Eset_auto2•
H5Eget_auto•
H5Eget_auto1 *•
H5Eget_auto2•
H5Ewalk•
H5Ewalk1 *•
H5Ewalk2•
H5Eget_current_stack•
H5Eset_current_stack•

* Use of these functions is deprecated in Release 1.8.0.

Alphabetical Listing

H5Eauto_is_v2•
H5Eclear•
H5Eclear1 *•
H5Eclear2•
H5Eclose_msg•
H5Eclose_stack•
H5Ecreate_msg•
H5Ecreate_stack•
H5Eget_auto•
H5Eget_auto1 *•
H5Eget_auto2•

H5Eget_class_name•
H5Eget_current_stack•
H5Eget_major *•
H5Eget_minor *•
H5Eget_msg•
H5Eget_num•
H5Epop•
H5Eprint•
H5Eprint1 *•
H5Eprint2•
H5Epush•

H5Epush1 *•
H5Epush2•
H5Eregister_class•
H5Eset_auto•
H5Eset_auto1 *•
H5Eset_auto2•
H5Eset_current_stack•
H5Eunregister_class•
H5Ewalk•
H5Ewalk1 *•
H5Ewalk2•

* Use of these functions is deprecated in Release 1.8.0.

The FORTRAN90 Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

h5eclear_f•
h5eprint_f•

h5eset_auto_f• h5eget_major_f•
h5eget_minor_f•

The Error interface provides error handling in the form of a stack. The FUNC_ENTER() macro clears the error
stack whenever an interface function is entered. When an error is detected, an entry is pushed onto the stack. As
the functions unwind, additional entries are pushed onto the stack. The API function will return some indication
that an error occurred and the application can print the error stack.

HDF5 Reference Manual

99

Certain API functions in the H5E package, such as H5Eprint1, do not clear the error stack. Otherwise, any
function which does not have an underscore immediately after the package name will clear the error stack. For
instance, H5Fopen clears the error stack while H5F_open does not.

An error stack has a fixed maximum size. If this size is exceeded then the stack will be truncated and only the
inner-most functions will have entries on the stack. This is expected to be a rare condition.

Each thread has its own error stack, but since multi-threading has not been added to the library yet, this package
maintains a single error stack. The error stack is statically allocated to reduce the complexity of handling errors
within the H5E package.

HDF5 Reference Manual

100

Last modified: 17 August 2010

Name:H5Eauto_is_v2
Signature:

herr_tH5Eauto_is_v2(hid_t estack_id, unsigned *is_stack)
Purpose:

Determines type of error stack.
Description:

H5Eauto_is_v2 determines whether the error auto reporting function for an error stack conforms to
the H5E_auto2_t typedef or the H5E_auto1_t typedef.

The is_stack parameter is set to 1 if the error stack conforms to H5E_auto2_t and 0 if it conforms
to H5E_auto1_t.

Parameters:
hid_testack_id IN: The error stack identifier

unsigned *is_stack OUT: A flag indicating which error stack typedef the specified error stack
conforms to.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Eauto_is_v2

101

Last modified: 24 May 2009

Name:H5Eclear
Signature:

herr_tH5Eclear1(void)
herr_tH5Eclear2(hid_t estack_id)

Purpose:
Clears an error stack.

Description:
H5Eclear is a macro that is mapped to either H5Eclear1 or H5Eclear2, depending on the needs of
the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Eclear is mapped to the most recent version of the function, currently H5Eclear2. If the
library and/or application is compiled for Release 1.6 emulation, H5Eclear will be mapped to
H5Eclear1. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Eclear mapping

Global settings

No compatibility flag H5Eclear2

Enable deprecated symbols H5Eclear2

Disable deprecated symbols H5Eclear2

Emulate Release 1.6 interface H5Eclear1

Function-level macros

H5Eclear_vers = 2 H5Eclear2

H5Eclear_vers = 1 H5Eclear1

Fortran90 Interface: h5eclear_f
SUBROUTINE h5eclear_f(hdferr)
 IMPLICIT NONE
 INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5eclear_f

History:
Release C

1.8.0 The function H5Eclear renamed to H5Eclear1 and deprecated in this release.
The macro H5Eclear and the function H5Eclear2 introduced in this release.

H5Eclear HDF5 Reference Manual

102

Last modified: 24 May 2009

Name:H5Eclear1
Signature:

herr_tH5Eclear1(void)
Purpose:

Clears the error stack for the current thread.
Notice:

This function is deprecated in favor of the function H5Eclear2 or the macro H5Eclear.
Description:

H5Eclear1 clears the error stack for the current thread.

The stack is also cleared whenever an API function is called, with certain exceptions (for instance,
H5Eprint1).

Parameters:
None

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5eclear_f
See H5Eclear.

History:
Release C

1.8.0 Function H5Eclear renamed to H5Eclear1 and deprecated in this release.

HDF5 Reference Manual H5Eclear1

103

Name:H5Eclear2
Last modified: 24 May 2009

Signature:
herr_tH5Eclear2(hid_t estack_id)

Purpose:
Clears the specified error stack or the error stack for the current thread.

Description:
H5Eclear2 clears the error stack specified by estack_id, or, if estack_id is set to
H5E_DEFAULT, the error stack for the current thread.

estack_id is an error stack identifier, such as that returned by H5Eget_current_stack.

The current error stack is also cleared whenever an API function is called, with certain exceptions (for
instance, H5Eprint1 or H5Eprint2).

Parameters:
hid_testack_id IN: Error stack identifier.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
See H5Eclear.

History:
Release C

1.8.0 Function introduced in this release.

H5Eclear2 HDF5 Reference Manual

104

Name:H5Eclose_msg
Signature:

herr_tH5Eclose_msg(hid_t mesg_id)
Purpose:

Closes an error message identifier.
Description:

H5Eclose_msg closes an error message identifier., which can be either a major or minor message.
Parameters:

hid_tmesg_id IN: Error message identifier.
Returns:

Returns a non-negative value on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Eclose_msg

105

Name:H5Eclose_stack
Signature:

herr_tH5Eclose_stack(hid_t estack_id)
Purpose:

Closes object handle for error stack.
Description:

H5Eclose_stack closes the object handle for an error stack and releases its resources.
H5E_DEFAULT cannot be closed.

Parameters:
hid_testack_id IN: Error stack identifier.

Returns:
Returns a non-negative value on success; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

H5Eclose_stack HDF5 Reference Manual

106

Name:H5Ecreate_msg
Signature:

hid_tH5Ecreate_msg(hid_t class, H5E_type_t msg_type, const char* mesg)
Purpose:

Add major error message to an error class.
Description:

H5Ecreate_msg adds an error message to an error class defined by client library or application
program. The error message can be either major or minor which is indicated by parameter msg_type.

Parameters:
hid_tclass IN: Error class identifier.

H5E_type_tmsg_type IN: The type of the error message.
Valid values are H5E_MAJOR and H5E_MINOR.

const char* mesg IN: Major error message.
Returns:

Returns a message identifier on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Ecreate_msg

107

Name:H5Ecreate_stack
Signature:

hid_tH5Ecreate_stack(void)
Purpose:

Creates a new empty error stack.
Description:

H5Ecreate_stack creates a new empty error stack and returns the new stack’s identifier.
Parameters:

None.
Returns:

Returns an error stack identifier on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

H5Ecreate_stack HDF5 Reference Manual

108

Last modified: 24 May 2009

Name:H5Eget_auto
Signature:

herr_tH5Eget_auto(H5E_auto_t * func, void **client_data)
herr_tH5Eget_auto(hid_t estack_id, H5E_auto_t * func, void **client_data)

Purpose:
Returns settings for automatic error stack traversal function and its data.

Description:
H5Eget_auto is a macro that is mapped to either H5Eget_auto1 or H5Eget_auto2, depending on
the needs of the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Eget_auto is mapped to the most recent version of the function, currently H5Eget_auto2.
If the library and/or application is compiled for Release 1.6 emulation, H5Eget_auto will be mapped to
H5Eget_auto1. Function-specific flags are available to override these settings on a
function-by-function basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Eget_auto mapping

Global settings

No compatibility flag H5Eget_auto2

Enable deprecated symbols H5Eget_auto2

Disable deprecated symbols H5Eget_auto2

Emulate Release 1.6 interface H5Eget_auto1

Function-level macros

H5Eget_auto_vers = 2 H5Eget_auto2

H5Eget_auto_vers = 1 H5Eget_auto1

Fortran90 Interface: h5eget_auto_f
None.

History:
Release C

1.8.0 The function H5Eget_auto renamed to H5Eget_auto1 and deprecated in
this release.
The macro H5Eget_auto and the function H5Eget_auto2 introduced in this
release.

HDF5 Reference Manual H5Eget_auto

109

Name:H5Eget_auto1
Signature:

herr_tH5Eget_auto1(H5E_auto1_t * func, void **client_data)
Purpose:

Returns the current settings for the automatic error stack traversal function and its data.
Notice:

This function is deprecated in favor of the function H5Eget_auto2 or the macro H5Eget_auto.
Description:

H5Eget_auto1 returns the current settings for the automatic error stack traversal function, func, and
its data, client_data. Either or both arguments may be null, in which case the value is not returned.

Parameters:
H5E_auto1_t *func OUT: Current setting for the function to be called upon an error condition.

void **client_data OUT: Current setting for the data passed to the error function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function H5Eget_auto renamed to H5Eget_auto1 and deprecated in this
release.

H5Eget_auto1 HDF5 Reference Manual

110

Name:H5Eget_auto2
Signature:

herr_tH5Eget_auto2(hid_t estack_id, H5E_auto2_t * func, void **client_data)
Purpose:

Returns the settings for the automatic error stack traversal function and its data.
Description:

H5Eget_auto2 returns the settings for the automatic error stack traversal function, func, and its data,
client_data, that are associated with the error stack specified by estack_id.

Either or both of the func and client_data arguments may be null, in which case the value is not
returned.

Parameters:
hid_testack_id IN: Error stack identifier. H5E_DEFAULT indicates the current stack.

H5E_auto2_t *func OUT: The function currently set to be called upon an error condition.

void **client_data OUT: Data currently set to be passed to the error function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Eget_auto2

111

Name:H5Eget_class_name
Signature:

ssize_tH5Eget_class_name(hid_t class_id, char* name, size_t size)
Purpose:

Retrieves error class name.
Description:

H5Eget_class_name retrieves the name of the error class specified by the class identifier. If
non-NULL pointer is passed in for name and size is greater than zero, the class name of size long is
returned. The length of the error class name is also returned. If NULL is passed in as name, only the
length of class name is returned. If zero is returned, it means no name. User is responsible for allocated
enough buffer for the name.

Parameters:
hid_tclass_id IN: Error class identifier.

char* name OUT: The name of the class to be queried.

size_tsize IN: The length of class name to be returned by this function.
Returns:

Returns non-negative value as on success; otherwise returns negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

H5Eget_class_name HDF5 Reference Manual

112

Name:H5Eget_current_stack
Signature:

hid_tH5Eget_current_stack(void)
Purpose:

Returns copy of current error stack.
Description:

H5Eget_current_stack copies the current error stack and returns an error stack identifier for the
new copy.

Parameters:
None.

Returns:
Returns an error stack identifier on success; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Eget_current_stack

113

Name:H5Eget_major
Signature:

const char *H5Eget_major(H5E_major_t n)
Purpose:

Returns a character string describing an error specified by a major error number.
Notice:

This function has been deprecated.
Description:

Given a major error number, H5Eget_major returns a constant character string that describes the error.
Parameters:

H5E_major_tn IN: Major error number.
Returns:

Returns a character string describing the error if successful. Otherwise returns "Invalid major error
number."

Fortran90 Interface: h5eget_major_f
SUBROUTINE h5eget_major_f(error_no, name, hdferr)
 INTEGER, INTENT(IN) :: error_no !Major error number
 CHARACTER(LEN=*), INTENT(OUT) :: name ! File name
 INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5eget_major_f

History:
Release C

1.8.0 Function deprecated in this release.

H5Eget_major HDF5 Reference Manual

114

Last modified: 25 November 2009

Name:H5Eget_minor
Signature:

char * H5Eget_minor(H5E_minor_t n)
Purpose:

Returns a character string describing an error specified by a minor error number.
Notice:

This function has been deprecated.
Description:

Given a minor error number, H5Eget_minor returns a constant character string that describes the error.
Note:

In the Release 1.8.x series, H5Eget_minor returns a string of dynamic allocated char array. An
application calling this function from an HDF5 library of Release 1.8.0 or later must free the memory
associated with the return value to prevent a memory leak. This is a change from the 1.6.x release series.

Parameters:
H5E_minor_tn IN: Minor error number.

Returns:
Returns a character string describing the error if successful. Otherwise returns "Invalid minor error
number."

Fortran90 Interface: h5eget_minor_f
SUBROUTINE h5eget_minor_f(error_no, name, hdferr)
 INTEGER, INTENT(IN) :: error_no !Major error number
 CHARACTER(LEN=*), INTENT(OUT) :: name ! File name
 INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5eget_minor_f

History:
Release Change

1.8.0 Function deprecated and return type changed in this release.

HDF5 Reference Manual H5Eget_minor

115

Name:H5Eget_msg
Signature:

ssize_tH5Eget_msg(hid_t mesg_id, H5E_type_t* mesg_type, char* mesg, size_t size)
Purpose:

Retrieves an error message.
Description:

H5Eget_msg retrieves the error message including its length and type. The error message is specified
by mesg_id. User is responsible for passing in enough buffer for the message. If mesg is not NULL and
size is greater than zero, the error message of size long is returned. The length of the message is also
returned. If NULL is passed in as mesg, only the length and type of the message is returned. If the return
value is zero, it means no message.

Parameters:
hid_tmesg_id IN: Idenfier for error message to be queried.

H5E_type_t* mesg_type OUT: The type of the error message.
Valid values are H5E_MAJOR and H5E_MINOR.

char* mesg OUT: Error message buffer.

size_tsize IN: The length of error message to be returned by this function.
Returns:

Returns the size of the error message in bytes on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

H5Eget_msg HDF5 Reference Manual

116

Name:H5Eget_num
Signature:

ssize_tH5Eget_num(hid_t estack_id)
Purpose:

Retrieves the number of error messages in an error stack.
Description:

H5Eget_num retrieves the number of error records in the error stack specified by estack_id
(including major, minor messages and description).

Parameters:
hid_testack_id IN: Error stack identifier.

Returns:
Returns a non-negative value on success; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Eget_num

117

Name:H5Epop
Signature:

herr_tH5Epop(hid_testack_id, size_t count)
Purpose:

Deletes specified number of error messages from the error stack.
Description:

H5Epop deletes the number of error records specified in count from the top of the error stack specified
by estack_id (including major, minor messages and description). The number of error messages to be
deleted is specified by count.

Parameters:
hid_testack_id IN: Error stack identifier.

size_tcount IN: The number of error messages to be deleted from the top of error stack.
Returns:

Returns a non-negative value on success; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

H5Epop HDF5 Reference Manual

118

Last modified: 24 May 2009

Name:H5Eprint
Signature:

herr_tH5Eprint1(FILE * stream)
herr_tH5Eprint2(hid_t estack_id, FILE * stream))

Purpose:
Prints an error stack in a default manner.

Description:
H5Eprint is a macro that is mapped to either H5Eprint1 or H5Eprint2, depending on the needs of
the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Eprint is mapped to the most recent version of the function, currently H5Eprint2. If the
library and/or application is compiled for Release 1.6 emulation, H5Eprint will be mapped to
H5Eprint1. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Eprint mapping

Global settings

No compatibility flag H5Eprint2

Enable deprecated symbols H5Eprint2

Disable deprecated symbols H5Eprint2

Emulate Release 1.6 interface H5Eprint1

Function-level macros

H5Eprint_vers = 2 H5Eprint2

H5Eprint_vers = 1 H5Eprint1

Fortran90 Interface: h5eprint_f
SUBROUTINE h5eprint_f(hdferr, name)
 CHARACTER(LEN=*), OPTIONAL, INTENT(IN) :: name ! File name
 INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5eprint_f

History:
Release C

1.8.0 The function H5Eprint renamed to H5Eprint1 and deprecated in this release.
The macro H5Eprint and the function H5Eprint2 introduced in this release.

HDF5 Reference Manual H5Eprint

119

Last modified: 24 May 2009

Name:H5Eprint1
Signature:

herr_tH5Eprint1(FILE * stream)
Purpose:

Prints the current error stack in a default manner.
Notice:

This function is deprecated in favor of the function H5Eprint2 or the macro H5Eprint.
Description:

H5Eprint1 prints the error stack for the current thread on the specified stream, stream. Even if the
error stack is empty, a one-line message will be printed:

HDF5-DIAG: Error detected in thread 0.

H5Eprint1 is a convenience function for H5Ewalk1 with a function that prints error messages. Users
are encouraged to write their own more specific error handlers.

Parameters:
FILE * stream IN: File pointer, or stderr if NULL.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5eprint_f
See H5Eprint.

History:

Release C

1.8.0 Function H5Eprint renamed to H5Eprint1 and deprecated in this release.

H5Eprint1 HDF5 Reference Manual

120

Last modified: 24 May 2009

Name:H5Eprint2
Signature:

herr_tH5Eprint2(hid_t estack_id, FILE * stream)
Purpose:

Prints the specified error stack in a default manner.
Description:

H5Eprint2 prints the error stack specified by estack_id on the specified stream, stream. Even if
the error stack is empty, a one-line message of the following form will be printed:

HDF5-DIAG: Error detected in HDF5 library version: 1.5.62 thread 0.

A similar line will appear before the error messages of each error class stating the library name, library
version number, and thread identifier.

If estack_id is H5E_DEFAULT, the current error stack will be printed.

H5Eprint2 is a convenience function for H5Ewalk2 with a function that prints error messages. Users
are encouraged to write their own more specific error handlers.

Parameters:
hid_testack_id IN: Identifier of the error stack to be printed. If the identifier is H5E_DEFAULT,

the current error stack will be printed.

FILE * stream IN: File pointer, or stderr if NULL.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

See H5Eprint.
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Eprint2

121

Last modified: 24 May 2009

Name:H5Epush
Signature:

herr_tH5Epush(const char *file, const char *func, unsigned line, H5E_major_t maj_num,
H5E_minor_tmin_num, const char *str)
herr_tH5Epush(hid_t estack_id, const char *file, const char *func, unsigned line, hid_t
class_id, hid_t major_id, hid_t minor_id, const char *msg, ...)

Purpose:
Pushes a new error message onto an error stack.

Description:
H5Epush is a macro that is mapped to either H5Epush1 or H5Epush2, depending on the needs of the
application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Epush is mapped to the most recent version of the function, currently H5Epush2. If the library
and/or application is compiled for Release 1.6 emulation, H5Epush will be mapped to H5Epush1.
Function-specific flags are available to override these settings on a function-by-function basis when the
application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Epush mapping

Global settings

No compatibility flag H5Epush2

Enable deprecated symbols H5Epush2

Disable deprecated symbols H5Epush2

Emulate Release 1.6 interface H5Epush1

Function-level macros

H5Epush_vers = 2 H5Epush2

H5Epush_vers = 1 H5Epush1

Fortran90 Interface:
None.

History:
Release C

1.8.0 The function H5Epush renamed to H5Epush1 and deprecated in this release.
The macro H5Epush and the function H5Epush2 introduced in this release.

H5Epush HDF5 Reference Manual

122

Name:H5Epush1
Signature:

herr_tH5Epush1(const char *file, const char *func, unsigned line, H5E_major_t maj_num,
H5E_minor_tmin_num, const char *str)

Purpose:
Pushes new error record onto error stack.

Notice:
This function is deprecated in favor of the function H5Epush2 or the macro H5Epush.

Description:
H5Epush1 pushes a new error record onto the error stack for the current thread.

The error has major and minor numbers maj_num and min_num, the function func where the error
was detected, the name of the file file where the error was detected, the line line within that file, and
an error description string str.

The function name, filename, and error description strings must be statically allocated.
Parameters:

const char *file IN: Name of the file in which the error was detected.

const char *func IN: Name of the function in which the error was detected.

unsignedline IN: Line within the file at which the error was detected.

H5E_major_tmaj_num IN: Major error number.

H5E_minor_tmin_num IN: Minor error number.

const char *str IN: Error description string.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.4.0 Function introduced in this release.

1.8.0 Function H5Epush renamed to H5Epush1 and deprecated in this release.

HDF5 Reference Manual H5Epush1

123

Name:H5Epush2
Signature:

herr_tH5Epush2(hid_t estack_id, const char *file, const char *func, unsigned line, hid_t
class_id, hid_t major_id, hid_t minor_id, const char *msg, ...)

Purpose:
Pushes new error record onto error stack.

Description:
H5Epush2 pushes a new error record onto the error stack specified by estack_id.

The error record contains the error class identifier class_id, the major and minor message identifiers
major_id and minor_id, the function name func where the error was detected, the filename file
and line number line within that file where the error was detected, and an error description msg.

The major and minor errors must be in the same error class.

The function name, filename, and error description strings must be statically allocated.

msg can be a format control string with additional arguments. This design of appending additional
arguments is similar to the system and C functions printf and fprintf.

Parameters:
hid_testack_id IN: Identifier of the error stack to which the error record is to be pushed. If the

identifier is H5E_DEFAULT, the error record will be pushed to the current
stack.

const char *file IN: Name of the file in which the error was detected.

const char *func IN: Name of the function in which the error was detected.

unsignedline IN: Line number within the file at which the error was detected.

hid_tclass_id IN: Error class identifier.

hid_tmajor_id IN: Major error identifier.

hid_tminor_id IN: Minor error identifier.

const char *msg IN: Error description string.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

H5Epush2 HDF5 Reference Manual

124

Name:H5Eregister_class
Signature:

hid_tH5Eregister_class(const char* cls_name, const char* lib_name, const char*
version)

Purpose:
Registers a client library or application program to the HDF5 error API.

Description:
H5Eregister_class registers a client library or application program to the HDF5 error API so that
the client library or application program can report errors together with HDF5 library. It receives an
identifier for this error class for further error operations. The library name and version number will be
printed out in the error message as preamble.

Parameters:
const char* cls_name IN: Name of the error class.

const char* lib_name IN: Name of the client library or application to which the error class belongs.

const char* version IN: Version of the client library or application to which the error class
belongs. A NULL can be passed in.

Returns:
Returns a class identifier on success; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Eregister_class

125

Last modified: 17 November 2010

Name:H5Eset_auto
Signature:

herr_tH5Eset_auto(H5E_auto_t func, void *client_data)
herr_tH5Eset_auto(hid_t estack_id, H5E_auto_t func, void *client_data)

Purpose:
Returns settings for automatic error stack traversal function and its data.

Description:
H5Eset_auto is a macro that is mapped to either H5Eset_auto1 or H5Eset_auto2, depending on
the needs of the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Eset_auto is mapped to the most recent version of the function, currently H5Eset_auto2.
If the library and/or application is compiled for Release 1.6 emulation, H5Eset_auto will be mapped to
H5Eset_auto1. Function-specific flags are available to override these settings on a
function-by-function basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Eset_auto mapping

Global settings

No compatibility flag H5Eset_auto2

Enable deprecated symbols H5Eset_auto2

Disable deprecated symbols H5Eset_auto2

Emulate Release 1.6 interface H5Eset_auto1

Function-level macros

H5Eset_auto_vers = 2 H5Eset_auto2

H5Eset_auto_vers = 1 H5Eset_auto1

Fortran90 Interface: h5eset_auto_f
SUBROUTINE h5eset_auto_f(printflag, hdferr)
 INTEGER, INTENT(IN) :: printflag !flag to turn automatic error
 !printing on or off
 !possible values are:
 !printon (1)
 !printoff(0)
 INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5eset_auto_f

H5Eset_auto HDF5 Reference Manual

126

History:
Release C

1.8.0 The function H5Eset_auto renamed to H5Eset_auto1 and deprecated in
this release.
The macro H5Eset_auto and the function H5Eset_auto2 introduced in this
release.

HDF5 Reference Manual H5Eset_auto

127

Last modified: 24 May 2009

Name:H5Eset_auto1
Signature:

herr_tH5Eset_auto1(H5E_auto1_t func, void *client_data)
Purpose:

Turns automatic error printing on or off.
Description:

H5Eset_auto1 turns on or off automatic printing of errors. When turned on (non-null func pointer),
any API function which returns an error indication will first call func, passing it client_data as an
argument.

When the library is first initialized the auto printing function is set to H5Eprint1 (cast appropriately)
and client_data is the standard error stream pointer, stderr.

Automatic stack traversal is always in the H5E_WALK_DOWNWARD direction.
Parameters:

H5E_auto1_tfunc IN: Function to be called upon an error condition.

void *client_data IN: Data passed to the error function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5eset_auto_f

See H5Eset_auto.
History:

Release C

1.8.0 Function H5Eset_auto renamed to H5Eset_auto1 and deprecated in this
release.

H5Eset_auto1 HDF5 Reference Manual

128

Last modified: 24 May 2009

Name:H5Eset_auto2
Signature:

herr_tH5Eset_auto2(hid_t estack_id, H5E_auto2_t func, void *client_data)
Purpose:

Turns automatic error printing on or off.
Description:

H5Eset_auto2 turns on or off automatic printing of errors for the error stack specified with
estack_id. An estack_id value of H5E_DEFAULT indicates the current stack.

When automatic printing is turned on, by the use of a non-null func pointer, any API function which
returns an error indication will first call func, passing it client_data as an argument.

When the library is first initialized, the auto printing function is set to H5Eprint2 (cast appropriately)
and client_data is the standard error stream pointer, stderr.

Automatic stack traversal is always in the H5E_WALK_DOWNWARD direction.

Automatic error printing is turned off with a H5Eset_auto2 call with a NULL func pointer.
Parameters:

hid_testack_id IN: Error stack identifier.

H5E_auto2_tfunc IN: Function to be called upon an error condition.

void *client_data IN: Data passed to the error function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5eset_auto_f

See H5Eset_auto.
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Eset_auto2

129

Name:H5Eset_current_stack
Signature:

herr_tH5Eset_current_stack(hid_t estack_id)
Purpose:

Replaces the current error stack.
Description:

H5Eset_current_stack replaces the content of the current error stack with a copy of the content of
the error stack specified by estack_id, and it closes the error stack specified by estack_id.

Parameters:
hid_testack_id IN: Error stack identifier.

Returns:
Returns a non-negative value on success; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

H5Eset_current_stack HDF5 Reference Manual

130

Name:H5Eunregister_class
Signature:

herr_tH5Eunregister_class(hid_t class_id)
Purpose:

Removes an error class.
Description:

H5Eunregister_class removes the error class specified by class_id. All the major and minor
errors in this class will also be closed.

Parameters:
hid_tclass_id IN: Error class identifier.

Returns:
Returns a non-negative value on success; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Eunregister_class

131

Last modified: 24 May 2009

Name:H5Ewalk
Signature:

herr_tH5Ewalk(H5E_direction_tdirection, H5E_walk_t func, void * client_data)
herr_tH5Ewalk(hid_t estack_id, H5E_direction_t direction, H5E_walk_t func, void *
client_data)

Purpose:
Walks an error stack, calling a specified function.

Description:
H5Ewalk is a macro that is mapped to either H5Ewalk1 or H5Ewalk2, depending on the needs of the
application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Ewalk is mapped to the most recent version of the function, currently H5Ewalk2. If the library
and/or application is compiled for Release 1.6 emulation, H5Ewalk will be mapped to H5Ewalk1.
Function-specific flags are available to override these settings on a function-by-function basis when the
application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Ewalk mapping

Global settings

No compatibility flag H5Ewalk2

Enable deprecated symbols H5Ewalk2

Disable deprecated symbols H5Ewalk2

Emulate Release 1.6 interface H5Ewalk1

Function-level macros

H5Ewalk_vers = 2 H5Ewalk2

H5Ewalk_vers = 1 H5Ewalk1

Fortran90 Interface:
None.

History:
Release C

1.8.0 The function H5Ewalk renamed to H5Ewalk1 and deprecated in this release.
The macro H5Ewalk and the function H5Ewalk2 introduced in this release.

H5Ewalk HDF5 Reference Manual

132

Name:H5Ewalk1
Signature:

herr_tH5Ewalk1(H5E_direction_tdirection, H5E_walk1_t func, void * client_data)
Purpose:

Walks the error stack for the current thread, calling a specified function.
Notice:

This function is deprecated in favor of the function H5Ewalk2 or the macro H5Ewalk.
Description:

H5Ewalk1 walks the error stack for the current thread and calls the specified function for each error
along the way.

direction determines whether the stack is walked from the inside out or the outside in. A value of
H5E_WALK_UPWARD means begin with the most specific error and end at the API; a value of
H5E_WALK_DOWNWARD means to start at the API and end at the inner-most function where the error was
first detected.

func will be called for each error in the error stack. Its arguments will include an index number
(beginning at zero regardless of stack traversal direction), an error stack entry, and the client_data
pointer passed to H5E_print. The H5E_walk1_t prototype is as follows:

typedef herr_t (*H5E_walk1_t)(int n, H5E_error1_t *err_desc, void
*client_data)

where the parameters have the following meanings:

int n
Indexed position of the error in the stack.

H5E_error1_t *err_desc
Pointer to a data structure describing the error. (This structure is currently described only
in the source code filehdf5/src/H5Epublic.h. That file also contains the definitive
list of major and minor error codes. That information will eventually be presented as an
appendix to this Reference Manual.)

void *client_data
Pointer to client data in the format expected by the user-defined function.

Parameters:
H5E_direction_tdirection IN: Direction in which the error stack is to be walked.

H5E_walk1_tfunc IN: Function to be called for each error encountered.

void * client_data IN: Data to be passed with func.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function H5Ewalk renamed to H5Ewalk1 and deprecated in this release.

HDF5 Reference Manual H5Ewalk1

133

Name:H5Ewalk2
Signature:

herr_tH5Ewalk2(hid_t estack_id, H5E_direction_t direction, H5E_walk2_t func, void *
client_data)

Purpose:
Walks the specified error stack, calling the specified function.

Description:
H5Ewalk2 walks the error stack specified by estack_id for the current thread and calls the function
specified in func for each error along the way.

If the value of estack_id is H5E_DEFAULT, then H5Ewalk2 walks the current error stack.

direction specifies whether the stack is walked from the inside out or the outside in. A value of
H5E_WALK_UPWARD means to begin with the most specific error and end at the API; a value of
H5E_WALK_DOWNWARD means to start at the API and end at the innermost function where the error was
first detected.

func, a function compliant with the H5E_walk2_t prototype, will be called for each error in the error
stack. Its arguments will include an index number n (beginning at zero regardless of stack traversal
direction), an error stack entry err_desc, and the client_data pointer passed to H5E_print. The
H5E_walk2_t prototype is as follows:

typedef herr_t (*H5E_walk2_t)(unsigned n, const H5E_error2_t *err_desc, void
*client_data)

where the parameters have the following meanings:

unsignedn
Indexed position of the error in the stack.

const H5E_error2_t *err_desc
Pointer to a data structure describing the error. (This structure is currently described only
in the source code file hdf5/src/H5Epublic.h. That file also contains the definitive
list of major and minor error codes; that information will eventually be presented as an
appendix to this HDF5 Reference Manual.)

void *client_data
Pointer to client data in the format expected by the user-defined function.

Parameters:
hid_testack_id IN: Error stack identifier.

H5E_direction_tdirection IN: Direction in which the error stack is to be walked.

H5E_walk2_tfunc IN: Function to be called for each error encountered.

void * client_data IN: Data to be passed with func.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

H5Ewalk2 HDF5 Reference Manual

134

HDF5 Reference Manual

135

HDF5 Reference Manual

136

H5F: File Interface

File API Functions

These functions are designed to provide file-level access to HDF5 files. Further manipulation of objects inside a
file is performed through one of APIs documented below.

The C Interfaces:

H5Fcreate•
H5Fopen•
H5Freopen•
H5Fclose•
H5Fflush•
H5Fis_hdf5•
H5Fmount•
H5Funmount•

H5Fget_vfd_handle•
H5Fget_filesize•
H5Fget_create_plist•
H5Fget_access_plist•
H5Fget_info•
H5Fget_intent•
H5Fget_name•
H5Fget_obj_count•

H5Fget_obj_ids•
H5Fget_freespace•
H5Fget_mdc_config•
H5Fget_mdc_hit_rate•
H5Fget_mdc_size•
H5Freset_mdc_hit_rate_stats•
H5Fset_mdc_config•

Alphabetical Listing

H5Fclose•
H5Fcreate•
H5Fflush•
H5Fget_access_plist•
H5Fget_create_plist•
H5Fget_filesize•
H5Fget_freespace•
H5Fget_info•

H5Fget_intent•
H5Fget_mdc_config•
H5Fget_mdc_hit_rate•
H5Fget_mdc_size•
H5Fget_name•
H5Fget_obj_count•
H5Fget_obj_ids•
H5Fget_vfd_handle•

H5Fis_hdf5•
H5Fmount•
H5Fopen•
H5Freopen•
H5Freset_mdc_hit_rate_stats•
H5Fset_mdc_config•
H5Funmount•

The FORTRAN90 Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

h5fcreate_f•
h5fopen_f•
h5freopen_f•
h5fclose_f•
h5fflush_f•
h5fis_hdf5_f•

h5fmount_f•
h5funmount_f•
h5fget_vfd_handle_f•
h5fget_filesize_f•
h5fget_freespace_f•

h5fget_create_plist_f•
h5fget_access_plist_f•
h5fget_name_f•
h5fget_obj_count_f•
h5fget_obj_ids_f•

HDF5 Reference Manual

137

HDF5 Reference Manual

138

Last modified: 9 April 2009

Name:H5Fclose
Signature:

herr_tH5Fclose(hid_t file_id)
Purpose:

Terminates access to an HDF5 file.
Description:

H5Fclose terminates access to an HDF5 file by flushing all data to storage and terminating access to the
file through file_id.

If this is the last file identifier open for the file and no other access identifier is open (e.g., a dataset
identifier, group identifier, or shared datatype identifier), the file will be fully closed and access will end.

Delayed close:
Note the following deviation from the above-described behavior. If H5Fclose is called for a file but one
or more objects within the file remain open, those objects will remain accessible until they are
individually closed. Thus, if the dataset data_sample is open when H5Fclose is called for the file
containing it, data_sample will remain open and accessible (including writable) until it is explicitely
closed. The file will be automatically closed once all objects in the file have been closed.

Be warned, however, that there are circumstances where it is not possible to delay closing a file. For
example, an MPI-IO file close is a collective call; all of the processes that opened the file must close it
collectively. The file cannot be closed at some time in the future by each process in an independent
fashion. Another example is that an application using an AFS token-based file access privilage may
destroy its AFS token after H5Fclose has returned successfully. This would make any future access to
the file, or any object within it, illegal.

In such situations, applications must close all open objects in a file before calling H5Fclose. It is
generally recommended to do so in all cases.

Parameters:
hid_t file_id IN: Identifier of a file to terminate access to.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5fclose_f
SUBROUTINE h5fclose_f(file_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: file_id ! File identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5fclose_f

HDF5 Reference Manual H5Fclose

139

Last modified: 15 May 2009

Name:H5Fcreate
Signature:

hid_tH5Fcreate(const char *name, unsignedflags, hid_t fcpl_id, hid_t fapl_id)
Purpose:

Creates an HDF5 file.
Description:

H5Fcreate is the primary function for creating HDF5 files; it creates a new HDF5 file with the
specified name and property lists and specifies whether an existing file of same name should be
overwritten.

The name parameter specifies the name of the new file.

The flags parameter specifies whether an existing file is to be overwritten. It should be set to either
H5F_ACC_TRUNC to overwrite an existing file or H5F_ACC_EXCL, instructing the function to fail if the
file already exists.

New files are always created in read-write mode, so the read-write and read-only flags, H5F_ACC_RDWR
and H5F_ACC_RDONLY, respectively, are not relevant in this function. Further note that a specification
of H5F_ACC_RDONLY will be ignored; the file will be created in read-write mode, regardless.

More complex behaviors of file creation and access are controlled through the file creation and file access
property lists, fcpl_id and fapl_id, respectively. The value of H5P_DEFAULT for any property list
value indicates that the library should use the default values for that appropriate property list.

The return value is a file identifier for the newly-created file; this file identifier should be closed by
calling H5Fclose when it is no longer needed.

Special case -- File creation in the case of an already-open file:
If a file being created is already opened, by either a previous H5Fopen or H5Fcreate call, the HDF5
library may or may not detect that the open file and the new file are the same physical file. (See
H5Fopen regarding the limitations in detecting the re-opening of an already-open file.)

If the library detects that the file is already opened, H5Fcreate will return a failure, regardless of the
use of H5F_ACC_TRUNC.

If the library does not detect that the file is already opened and H5F_ACC_TRUNC is not used,
H5Fcreate will return a failure because the file already exists. Note that this is correct behavior.

But if the library does not detect that the file is already opened and H5F_ACC_TRUNC is used,
H5Fcreate will truncate the existing file and return a valid file identifier. Such a truncation of a
currently-opened file will almost certainly result in errors. While unlikely, the HDF5 library may not be
able to detect, and thus report, such errors.

Applications should avoid calling H5Fcreate with an already opened file.

H5Fcreate HDF5 Reference Manual

140

Parameters:
const char *name IN: Name of the file to access.

uintn flags IN: File access flags. Allowable values are:
H5F_ACC_TRUNC

Truncate file, if it already exists, erasing all data previously
stored in the file.

H5F_ACC_EXCL
Fail if file already exists.

H5F_ACC_TRUNC and H5F_ACC_EXCL are mutually exclusive; use exactly
one.

♦

An additional flag, H5F_ACC_DEBUG, prints debug information. This flag can
be combined with one of the above values using the bit-wise OR operator (`|'),
but it is used only by HDF5 Library developers; it is neither tested nor
supported for use in applications.

♦

hid_t fcpl_id IN: File creation property list identifier, used when modifying default file
meta-data. Use H5P_DEFAULT to specify default file creation properties.

hid_t fapl_id IN: File access property list identifier. If parallel file access is desired, this is a
collective call according to the communicator stored in the fapl_id. Use
H5P_DEFAULT for default file access properties.

Returns:
Returns a file identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5fcreate_f
SUBROUTINE h5fcreate_f(name, access_flags, file_id, hdferr, &
 creation_prp, access_prp)
 IMPLICIT NONE
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the file
 INTEGER, INTENT(IN) :: access_flag ! File access flags
 ! Possible values are:
 ! H5F_ACC_RDWR_F
 ! H5F_ACC_RDONLY_F
 ! H5F_ACC_TRUNC_F
 ! H5F_ACC_EXCL_F
 ! H5F_ACC_DEBUG_F
 INTEGER(HID_T), INTENT(OUT) :: file_id ! File identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: creation_prp
 ! File creation propertly
 ! list identifier, if not
 ! specified its value is
 ! H5P_DEFAULT_F
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: access_prp
 ! File access property list
 ! identifier, if not
 ! specified its value is
 ! H5P_DEFAULT_F
END SUBROUTINE h5fcreate_f

HDF5 Reference Manual H5Fcreate

141

Name:H5Fflush
Signature:

herr_tH5Fflush(hid_t object_id, H5F_scope_t scope)
Purpose:

Flushes all buffers associated with a file to disk.
Description:

H5Fflush causes all buffers associated with a file to be immediately flushed to disk without removing
the data from the cache.

object_id can be any object associated with the file, including the file itself, a dataset, a group, an
attribute, or a named data type.

scope specifies whether the scope of the flushing action is global or local. Valid values are

H5F_SCOPE_GLOBAL Flushes the entire virtual file.

H5F_SCOPE_LOCAL Flushes only the specified file.
Note:

HDF5 does not possess full control over buffering. H5Fflush flushes the internal HDF5 buffers then
asks the operating system (the OS) to flush the system buffers for the open files. After that, the OS is
responsible for ensuring that the data is actually flushed to disk.

Parameters:
hid_tobject_id IN: Identifier of object used to identify the file.

H5F_scope_tscope IN: Specifies the scope of the flushing action.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5fflush_f

SUBROUTINE h5fflush_f(obj_id, scope, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
 INTEGER, INTENT(IN) :: scope ! Flag with two possible values:
 ! H5F_SCOPE_GLOBAL_F
 ! H5F_SCOPE_LOCAL_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5fflush_f

H5Fflush HDF5 Reference Manual

142

Name:H5Fget_access_plist
Signature:

hid_tH5Fget_access_plist(hid_t file_id)
Purpose:

Returns a file access property list identifier.
Description:

H5Fget_access_plist returns the file access property list identifier of the specified file.

See "File Access Properties" in H5P: Property List Interface in this reference manual and "File Access
Property Lists" in Files in the HDF5 User's Guide for additional information and related functions.

Parameters:
hid_t file_id IN: Identifier of file to get access property list of

Returns:
Returns a file access property list identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5fget_access_plist_f
SUBROUTINE h5fget_access_plist_f(file_id, fcpl_id, hdferr)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: file_id ! File identifier
 INTEGER(HID_T), INTENT(OUT) :: fapl_id ! File access property list identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5fget_access_plist_f

HDF5 Reference Manual H5Fget_access_plist

143

Name:H5Fget_create_plist
Signature:

hid_tH5Fget_create_plist(hid_t file_id)
Purpose:

Returns a file creation property list identifier.
Description:

H5Fget_create_plist returns a file creation property list identifier identifying the creation
properties used to create this file. This function is useful for duplicating properties when creating another
file.

See "File Creation Properties" in H5P: Property List Interface in this reference manual and "File Creation
Properties" in Files in the HDF5 User's Guide for additional information and related functions.

The creation property list identifier should be released with H5Pclose.
Parameters:

hid_t file_id IN: File identifier
Returns:

Returns a file creation property list identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5fget_create_plist_f

SUBROUTINE h5fget_create_plist_f(file_id, fcpl_id, hdferr)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: file_id ! File identifier
 INTEGER(HID_T), INTENT(OUT) :: fcpl_id ! File creation property list
 ! identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5fget_create_plist_f

H5Fget_create_plist HDF5 Reference Manual

144

Last modified: 17 November 2010

Name:H5Fget_filesize
Signature:

herr_tH5Fget_filesize(hid_t file_id, hsize_t *size)
Purpose:

Returns the size of an HDF5 file.
Description:

H5Fget_filesize returns the size of the HDF5 file specified by file_id.

The returned size is that of the entire file, as opposed to only the HDF5 portion of the file. I.e., size
includes the user block, if any, the HDF5 portion of the file, and any data that may have been appended
beyond the data written through the HDF5 Library.

Parameters:
hid_t file_id

IN: Identifier of a currently-open HDF5 file
hsize_t *size

OUT: Size of the file, in bytes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5fget_filesize_f

SUBROUTINE h5fget_filesize_f(file_id, size, hdferr)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: file_id ! file identifier
 INTEGER(HSIZE_T), INTENT(OUT) :: size ! Size of the file
 INTEGER, INTENT(OUT) :: hdferr ! Error code: 0 on success,
 ! -1 if fail
END SUBROUTINE h5fget_filesize_f

History:
Release C

1.6.3 Function introduced in this release.
Fortran subroutine introduced in this release.

HDF5 Reference Manual H5Fget_filesize

145

Name:H5Fget_freespace
Signature:

hssize_tH5Fget_freespace(hid_t file_id)
Purpose:

Returns the amount of free space in a file.
Description:

Given the identifier of an open file, file_id, H5Fget_freespace returns the amount of space that
is unused by any objects in the file.

Currently, the HDF5 library only tracks free space in a file from a file open or create until that file is
closed, so this routine will only report the free space that has been created during that interval.

Parameters:
hid_t file_id IN: Identifier of a currently-open HDF5 file

Returns:
Returns the amount of free space in the file if successful; otherwise returns a negative value.

Fortran90 Interface: h5fget_freespace_f
SUBROUTINE h5fget_freespace_f(file_id, free_space, hdferr)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: file_id ! File identifier
 INTEGER(HSSIZE_T), INTENT(OUT) :: free_space ! Amount of free space in file
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5fget_freespace_f

History:
Release C

1.6.1 Function introduced in this release.

H5Fget_freespace HDF5 Reference Manual

146

Name:H5Fget_info
Signature:

herr_tH5Fget_info(hid_t obj_id, H5F_info_t *file_info)
Purpose:

Returns global information for a file.
Description:

H5Fget_info returns global information for the file associated with the object identifier obj_id in
the H5F_info_t struct named file_info.

obj_id is an identifier for any object in the file of interest.

An H5F_info_t struct is defined as follows (in H5Fpublic.h):

 typedef struct H5F_info_t {
 hsize_t super_ext_size;
 struct {
 hsize_t hdr_size;
 H5_ih_info_t msgs_info;
 } sohm;
 } H5F_info_t;

super_ext_size is the size of the superblock extension.

The sohm sub-struct contains shared object header message information: hdr_size is the size of shared
of object header messages. msgs_info is a H5_ih_info_t struct containing the cumulative shared
object header message index size and heap size; an H5_ih_info_t struct is defined as follows (in
H5public.h):

 typedef struct H5_ih_info_t {
 hsize_t index_size;
 hsize_t heap_size;
 } H5_ih_info_t;

index_size is the summed size of all of the shared of object header indexes. Each index might be
either a B-tree or a list. heap_size is the size of the heap.

Parameters:
hid_tobj_id, IN: Object identifier for any object in the file.

H5F_info_t *file_info OUT: Struct containing global file information.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Fget_info

147

Name:H5Fget_intent
Signature:

herr_tH5Fget_intent(hid_t file_id, unsigned *intent)
Purpose:

Determines the read/write or read-only status of a file.
Description:

Given the identifier of an open file, file_id, H5Fget_intent retrieves the “intended access mode”
flag passed with H5Fopen when the file was opened.

The value of the flag is returned in intent. Valid values are as follows:

H5F_ACC_RDWR File was opened with read/write access.

H5F_ACC_RDONLY File was opened with read-only access.
The function will not return an error if intent is NULL; it will simply do nothing.

Parameters:
hid_t file_id IN: File identifier for a currently-open HDF5 file

unsigned *intent OUT: Intended access mode flag, as originally passed with H5Fopen.
Returns:

Returns the amount of free space in the file if successful; otherwise returns a negative value.
Fortran90 Interface: None.
History:

Release C

1.8.0 Function introduced in this release.

H5Fget_intent HDF5 Reference Manual

148

Name:H5Fget_mdc_config
Signature:

herr_tH5Fget_mdc_config(hid_t file_id, H5AC_cache_config_t *config_ptr)
Purpose:

Obtain current metadata cache configuration for target file.
Description:

H5Fget_mdc_config loads the current metadata cache configuration into the instance of
H5AC_cache_config_t pointed to by the config_ptr parameter.

Note that the version field of *config_ptr must be initialized --this allows the library to support old
versions of the H5AC_cache_config_t structure.

See the overview of the metadata cache in the special topics section of the user manual for details on
metadata cache configuration. If you haven't read and understood that documentation, the results of this
call will not make much sense.

Parameters:
hid_t file_id IN: Identifier of the target file

H5AC_cache_config_t *config_ptr IN/OUT: Pointer to the instance of
H5AC_cache_config_t in which the current
metadata cache configuration is to be reported.
The fields of this structure are discussed below:

General configuration section:

int version IN: Integer field indicating the the version of the
H5AC_cache_config_t in use. This field should
be set to
H5AC__CURR_CACHE_CONFIG_VERSION
(defined in H5ACpublic.h).

hbool_trpt_fcn_enabled OUT: Boolean flag indicating whether the
adaptive cache resize report function is enabled.
This field should almost always be set to
FALSE. Since resize algorithm activity is
reported via stdout, it MUST be set to FALSE
on Windows machines.

The report function is not supported code, and
can be expected to change between versions of
the library. Use it at your own risk.

hbool_topen_trace_file OUT: Boolean field indicating whether the
trace_file_name field should be used to
open a trace file for the cache. This field will
always be set to FALSE in this context.

hbool_tclose_trace_file OUT: Boolean field indicating whether the
current trace file (if any) should be closed. This
field will always be set to FALSE in this
context.

HDF5 Reference Manual H5Fget_mdc_config

149

char *trace_file_name OUT: Full path name of the trace file to be
opened if the open_trace_file field is
TRUE. This field will always be set to the empty
string in this context.

hbool_tevictions_enabled OUT: Boolean flag indicating whether metadata
cache entry evictions are enabled.

hbool_tset_initial_size OUT: Boolean flag indicating whether the cache
should be created with a user specified initial
maximum size.

If the configuration is loaded from the cache,
this flag will always be FALSE.

size_tinitial_size OUT: Initial maximum size of the cache in
bytes, if applicable.

If the configuration is loaded from the cache,
this field will contain the cache maximum size
as of the time of the call.

doublemin_clean_fraction OUT: Float value specifing the minimum
fraction of the cache that must be kept either
clean or empty when possible.

size_tmax_size OUT: Upper bound (in bytes) on the range of
values that the adaptive cache resize code can
select as the maximum cache size.

size_tmin_size OUT: Lower bound (in bytes) on the range of
values that the adaptive cache resize code can
select as the maximum cache size.

long intepoch_length OUT: Number of cache accesses between runs
of the adaptive cache resize code.

Increment configuration section:

enum H5C_cache_incr_modeincr_mode OUT: Enumerated value indicating the
operational mode of the automatic cache size
increase code. At present, only the following
values are legal:

H5C_incr__off: Automatic cache size increase
is disabled.

H5C_incr__threshold: Automatic cache size
increase is enabled using the hit rate threshold
algorithm.

doublelower_hr_threshold OUT: Hit rate threshold used in the hit rate
threshold cache size increase algorithm.

H5Fget_mdc_config HDF5 Reference Manual

150

doubleincrement OUT: The factor by which the current maximum
cache size is multiplied to obtain an initial new
maximum cache size if a size increase is
triggered in the hit rate threshold cache size
increase algorithm.

hbool_tapply_max_increment OUT: Boolean flag indicating whether an upper
limit will be applied to the size of cache size
increases.

size_tmax_increment OUT: The maximum number of bytes by which
the maximum cache size can be increased in a
single step -- if applicable.

enum H5C_cache_flash_incr_modeflash_incr_mode OUT: Enumerated value indicating the
operational mode of the flash cache size increase
code. At present, only the following values are
legal:

H5C_flash_incr__off: Flash cache size increase
is disabled.

H5C_flash_incr__add_space: Flash cache size
increase is enabled using the add space
algorithm.

doubleflash_threshold OUT: The factor by which the current maximum
cache size is multiplied to obtain the minimum
size entry / entry size increase which may trigger
a flash cache size increase.

doubleflash_multiple OUT: The factor by which the size of the
triggering entry / entry size increase is
multiplied to obtain the initial cache size
increment. This increment may be reduced to
reflect existing free space in the cache and the
max_size field above.

HDF5 Reference Manual H5Fget_mdc_config

151

Decrement configuration section:

enum H5C_cache_decr_modedecr_mode OUT: Enumerated value indicating the
operational mode of the automatic cache size
decrease code. At present, the following values
are legal:

H5C_decr__off: Automatic cache size decrease
is disabled, and the remaining decrement fields
are ignored.

H5C_decr__threshold: Automatic cache size
decrease is enabled using the hit rate threshold
algorithm.

H5C_decr__age_out: Automatic cache size
decrease is enabled using the ageout algorithm.

H5C_decr__age_out_with_threshold: Automatic
cache size decrease is enabled using the ageout
with hit rate threshold algorithm

doubleupper_hr_threshold OUT: Upper hit rate threshold. This value is
only used if the decr_mode is either
H5C_decr__threshold or
H5C_decr__age_out_with_threshold.

doubledecrement OUT: Factor by which the current max cache
size is multiplied to obtain an initial value for
the new cache size when cache size reduction is
triggered in the hit rate threshold cache size
reduction algorithm.

hbool_tapply_max_decrement OUT: Boolean flag indicating whether an upper
limit should be applied to the size of cache size
decreases.

size_tmax_decrement OUT: The maximum number of bytes by which
cache size can be decreased if any single step, if
applicable.

int epochs_before_eviction OUT: The minimum number of epochs that an
entry must reside unaccessed in cache before
being evicted under either of the ageout cache
size reduction algorithms.

hbool_tapply_empty_reserve OUT: Boolean flag indicating whether an empty
reserve should be maintained under either of the
ageout cache size reduction algorithms.

doubleempty_reserve OUT: Empty reserve for use with the ageout
cache size reduction algorithms, if applicable.

H5Fget_mdc_config HDF5 Reference Manual

152

Parallel configuration section:

int dirty_bytes_threshold OUT: Threshold number of bytes of dirty
metadata generation for triggering
synchronizations of the metadata caches serving
the target file in the parallel case.

Synchronization occurs whenever the number of
bytes of dirty metadata created since the last
synchronization exceeds this limit.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Fget_mdc_config

153

Name:H5Fget_mdc_hit_rate
Signature:

herr_tH5Fget_mdc_hit_rate(hid_t file_id, double *hit_rate_ptr)
Purpose:

Obtain target file's metadata cache hit rate.
Description:

H5Fget_mdc_hit_rate queries the metadata cache of the target file to obtain its hit rate (cache hits / (cache
hits + cache misses)) since the last time hit rate statistics were reset. If the cache has not been accessed
since the last time the hit rate stats were reset, the hit rate is defined to be 0.0.

The hit rate stats can be reset either manually (via H5Freset_mdc_hit_rate_stats()), or automatically. If
the cache's adaptive resize code is enabled, the hit rate stats will be reset once per epoch. If they are reset
manually as well, the cache may behave oddly.

See the overview of the metadata cache in the special topics section of the user manual for details on the
metadata cache and its adaptive resize algorithms.

Parameters:
hid_t file_id IN: Identifier of the target file.

double *hit_rate_ptr OUT: Pointer to the double in which the hit rate is returned. Note that
*hit_rate_ptr is undefined if the API call fails.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

H5Fget_mdc_hit_rate HDF5 Reference Manual

154

Name:H5Fget_mdc_size
Signature:

herr_tH5Fget_mdc_size(hid_t file_id, size_t *max_size_ptr, size_t
*min_clean_size_ptr, size_t *cur_size_ptr, int *cur_num_entries_ptr)

Purpose:
Obtain current metadata cache size data for specified file.

Description:
H5Fget_mdc_size queries the metadata cache of the target file for the desired size information, and
returns this information in the locations indicated by the pointer parameters. If any pointer parameter is
NULL, the associated data is not returned.

If the API call fails, the values returned via the pointer parameters are undefined.

If adaptive cache resizing is enabled, the cache maximum size and minimum clean size may change at the
end of each epoch. Current size and current number of entries can change on each cache access.

Current size can exceed maximum size under certain conditions. See the overview of the metadata cache
in the special topics section of the user manual for a discussion of this.

Parameters:
hid_t file_id IN: Identifier of the target file.

size_t *max_size_ptr OUT: Pointer to the location in which the current cache maximum
size is to be returned, or NULL if this datum is not desired.

size_t *min_clean_size_ptr OUT: Pointer to the location in which the current cache minimum
clean size is to be returned, or NULL if that datum is not desired.

size_t *cur_size_ptr OUT: Pointer to the location in which the current cache size is to
be returned, or NULL if that datum is not desired.

int *cur_num_entries_ptr OUT: Pointer to the location in which the current number of
entries in the cache is to be returned, or NULL if that datum is not
desired.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Fget_mdc_size

155

Name:H5Fget_name
Signature:

ssize_tH5Fget_name(hid_t obj_id, char *name, size_t size)
Purpose:

Retrieves name of file to which object belongs.
Description:

H5Fget_name retrieves the name of the file to which the object obj_id belongs. The object can be a
group, dataset, attribute, or named datatype.

Up to size characters of the filename are returned in name; additional characters, if any, are not
returned to the user application.

If the length of the name, which determines the required value of size, is unknown, a preliminary
H5Fget_name call can be made by setting name to NULL. The return value of this call will be the size
of the filename; that value plus one (1) can then be assigned to size for a second H5Fget_name call,
which will retrieve the actual name. (The value passed in with the parameter size must be one greater
than size in bytes of the actual name in order to accommodate the null terminator; if size is set to the
exact size of the name, the last byte passed back will contain the null terminator and the last character will
be missing from the name passed back to the calling application.)

If an error occurs, the buffer pointed to by name is unchanged and the function returns a negative value.
Parameters:

hid_tobj_id
IN: Identifier of the object for which the associated filename is sought. The object can be a group,
dataset, attribute, or named datatype.

char *name
OUT: Buffer to contain the returned filename.

size_tsize
IN: Size, in bytes, of the name buffer.

Returns:
Returns the length of the filename if successful; otherwise returns a negative value.

Fortran90 Interface: h5fget_name_f
SUBROUTINE h5fget_name_f(obj_id, buf, size, hdferr)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
 CHARACTER(LEN=*), INTENT(INOUT) :: buf ! Buffer to hold filename
 INTEGER(SIZE_T), INTENT(OUT) :: size ! Size of the filename
 INTEGER, INTENT(OUT) :: hdferr ! Error code: 0 on success,
 ! -1 if fail
END SUBROUTINE h5fget_name_f

History:
Release C

1.6.3 Function introduced in this release.
Fortran subroutine introduced in this release.

H5Fget_name HDF5 Reference Manual

156

Name:H5Fget_obj_count
Last modified: 5 November 2009

Signature:
ssize_tH5Fget_obj_count(hid_t file_id, unsigned int types)

Purpose:
Returns the number of open object identifiers for an open file.

Description:
Given the identifier of an open file, file_id, and the desired object types, types,
H5Fget_obj_count returns the number of open object identifiers for the file.

To retrieve a count of open identifiers for open objects in all HDF5 application files that are currently
open, pass the value H5F_OBJ_ALL in file_id.

The types of objects to be counted are specified in types as follows:

H5F_OBJ_FILE Files only

H5F_OBJ_DATASET Datasets only

H5F_OBJ_GROUP Groups only

H5F_OBJ_DATATYPE Named datatypes only

H5F_OBJ_ATTR Attributes only

H5F_OBJ_ALL All of the above
(That is, H5F_OBJ_FILE| H5F_OBJ_DATASET|
H5F_OBJ_GROUP| H5F_OBJ_DATATYPE|
H5F_OBJ_ATTR)

H5F_OBJ_LOCAL Restrict search to objects opened through current file identifier.
Note: H5F_OBJ_LOCAL does not stand alone; it is effective
only when used in combination with one or more of the preceding
types. For example,
 H5F_OBJ_DATASET | H5F_OBJ_GROUP|
H5F_OBJ_LOCAL
would count all datasets and groups opened through the current
file identifier.

Multiple object types can be combined with the logical OR operator (|). For example, the expression
(H5F_OBJ_DATASET|H5F_OBJ_GROUP) would call for datasets and groups.

Parameters:
hid_t file_id IN: Identifier of a currently-open HDF5 file or H5F_OBJ_ALL for all

currently-open HDF5 files.

unsigned inttypes IN: Type of object for which identifiers are to be returned.
Returns:

Returns the number of open objects if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Fget_obj_count

157

Fortran90 Interface: h5fget_obj_count_f
SUBROUTINE h5fget_obj_count_f(file_id, obj_type, obj_count, hdferr)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: file_id ! File identifier
 INTEGER, INTENT(IN) :: obj_type ! Object types, possible values are:
 ! H5F_OBJ_FILE_F
 ! H5F_OBJ_GROUP_F
 ! H5F_OBJ_DATASET_F
 ! H5F_OBJ_DATATYPE_F
 ! H5F_OBJ_ALL_F
 INTEGER(SIZE_T), INTENT(OUT) :: obj_count ! Number of opened objects
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5fget_obj_count_f

History:
Release Change

1.6.5 H5F_OBJ_LOCAL has been added as a qualifier on the types of objects to be
counted. H5F_OBJ_LOCAL restricts the search to objects opened through
current file identifier.

1.6.8 and 1.8.2 C function return type changed to ssize_t.

H5Fget_obj_count HDF5 Reference Manual

158

Name:H5Fget_obj_ids
Signature:

ssize_tH5Fget_obj_ids(hid_t file_id, unsigned int types, size_t max_objs, hid_t
*obj_id_list)

Purpose:
Returns a list of open object identifiers.

Description:
Given the file identifier file_id and the type of objects to be identified, types, H5Fget_obj_ids
returns the list of identifiers for all open HDF5 objects fitting the specified criteria.

To retrieve identifiers for open objects in all HDF5 application files that are currently open, pass the value
H5F_OBJ_ALL in file_id.

The types of object identifiers to be retrieved are specified in types using the codes listed for the same
parameter in H5Fget_obj_count

To retrieve identifiers for all open objects, pass a negative value for the max_objs.
Parameters:

hid_t file_id IN: Identifier of a currently-open HDF5 file or H5F_OBJ_ALL for all
currently-open HDF5 files.

unsigned inttypes IN: Type of object for which identifiers are to be returned.

size_tmax_objs IN: Maximum number of object identifiers to place into obj_id_list.

hid_t *obj_id_list OUT: Pointer to the returned list of open object identifiers.
Returns:

Returns number of objects placed into obj_id_list if successful; otherwise returns a negative value.
Fortran90 Interface: h5fget_obj_ids_f

SUBROUTINE h5fget_obj_ids_f(file_id, obj_type, max_objs, obj_ids, hdferr)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: file_id ! File identifier
 INTEGER, INTENT(IN) :: obj_type ! Object types, possible values are:
 ! H5F_OBJ_FILE_F
 ! H5F_OBJ_GROUP_F
 ! H5F_OBJ_DATASET_F
 ! H5F_OBJ_DATATYPE_F
 ! H5F_OBJ_ALL_F
 INTEGER, INTENT(IN) :: max_objs ! Maximum number of object
 ! identifiers to retrieve
 INTEGER(HID_T), DIMENSION(*), INTENT(OUT) :: obj_ids
 ! Array of requested object
 ! identifiers
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5fget_obj_ids_f

History:
Release Change

1.6.0 C function introduced in this release.

1.6.8 &
 1.8.2

C function return type changed to ssize_t
 and max_objs parameter datatype changed to size_t.

HDF5 Reference Manual H5Fget_obj_ids

159

Name:H5Fget_vfd_handle
Signature:

herr_tH5Fget_vfd_handle(hid_t file_id, hid_t fapl_id, void **file_handle)
Purpose:

Returns pointer to the file handle from the virtual file driver.
Description:

Given the file identifier file_id and the file access property list fapl_id, H5Fget_vfd_handle
returns a pointer to the file handle from the low-level file driver currently being used by the HDF5 library
for file I/O.

Notes:
Users are not supposed to modify any file through this file handle.

This file handle is dynamic and is valid only while the file remains open; it will be invalid if the file is
closed and reopened or opened during a subsequent session.

Parameters:
hid_t file_id IN: Identifier of the file to be queried.

hid_t fapl_id IN: File access property list identifier. For most drivers, the value will be
H5P_DEFAULT. For the FAMILY or MULTI drivers, this value should be
defined through the property list functions: H5Pset_family_offset
for the FAMILY driver and H5Pset_multi_type for the MULTI
driver.

void **file_handle OUT: Pointer to the file handle being used by the low-level virtual file
driver.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.6.0 Function introduced in this release.

H5Fget_vfd_handle HDF5 Reference Manual

160

Name:H5Fis_hdf5
Signature:

htri_t H5Fis_hdf5(const char *name)
Purpose:

Determines whether a file is in the HDF5 format.
Description:

H5Fis_hdf5 determines whether a file is in the HDF5 format.
Parameters:

const char *name IN: File name to check format.
Returns:

When successful, returns a positive value, for TRUE, or 0 (zero), for FALSE.
On any error, including the case that the file does not exist, returns a negative value.

Fortran90 Interface: h5fis_hdf5_f
SUBROUTINE h5fis_hdf5_f(name, status, hdferr)
 IMPLICIT NONE
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the file
 LOGICAL, INTENT(OUT) :: status ! This parameter indicates
 ! whether file is an HDF5 file
 ! (TRUE or FALSE)
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5fis_hdf5_f

HDF5 Reference Manual H5Fis_hdf5

161

Name:H5Fmount
Signature:

herr_tH5Fmount(hid_t loc_id, const char *name, hid_t child_id, hid_t plist_id)
Purpose:

Mounts a file.
Description:

H5Fmount mounts the file specified by child_id onto the group specified by loc_id and name
using the mount properties plist_id.

Note that loc_id is either a file or group identifier and name is relative to loc_id.
Parameters:

hid_t loc_id IN: Identifier for of file or group in which name is defined.

const char *name IN: Name of the group onto which the file specified by child_id is to be
mounted.

hid_tchild_id IN: Identifier of the file to be mounted.

hid_tplist_id IN: Identifier of the property list to be used.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5fmount_f

SUBROUTINE h5fmount_f(loc_id, name, child_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN):: name ! Group name at locationloc_id
 INTEGER(HID_T), INTENT(IN) :: child_id ! File(to be mounted) identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5fmount_f

H5Fmount HDF5 Reference Manual

162

Last modified: 15 May 2009

Name:H5Fopen
Signature:

hid_tH5Fopen(const char *name, unsignedflags, hid_t fapl_id)
Purpose:

Opens an existing HDF5 file.
Description:

H5Fopen is the primary function for accessing existing HDF5 files. This function opens the named file
in the specified access mode and with the specified access property list.

Note that H5Fopen does not create a file if it does not already exist; see H5Fcreate.

The name parameter specifies the name of the file to be opened.

The fapl_id parameter specifies the file access property list. Use of H5P_DEFAULT specifies that
default I/O access properties are to be used

The flags parameter specifies whether the file will be opened in read-write or read-only mode,
H5F_ACC_RDWR or H5F_ACC_RDONLY, respectively. More complex behaviors of file access are
controlled through the file-access property list.

The return value is a file identifier for the open file; this file identifier should be closed by calling
H5Fclose when it is no longer needed.

Special case -- Multiple opens:
A file can often be opened with a new H5Fopen call without closing an already-open identifier
established in a previous H5Fopen or H5Fcreate call. Each such H5Fopen call will return a unique
identifier and the file can be accessed through any of these identifiers as long as the identifier remains
valid. In such multiply-opened cases, all the open calls should use the same flags argument.

In some cases, such as files on a local Unix file system, the HDF5 library can detect that a file is multiply
opened and will maintain coherent access among the file identifiers.

But in many other cases, such as parallel file systems or networked file systems, it is not always possible
to detect multiple opens of the same physical file. In such cases, HDF5 will treat the file identifiers as
though they are accessing different files and will be unable to maintain coherent access. Errors are likely
to result in these cases. While unlikely, the HDF5 library may not be able to detect, and thus report, such
errors.

It is generally recommended that applications avoid multiple opens of the same file.
Parameters:

const char *name IN: Name of the file to be created.

unsignedflags IN: File access flags. Allowable values are:
H5F_ACC_RDWR

Allow read and write access to file.
H5F_ACC_RDONLY

Allow read-only access to file.
H5F_ACC_RDWR and H5F_ACC_RDONLY are mutually exclusive; use
exactly one.

◊

HDF5 Reference Manual H5Fopen

163

An additional flag, H5F_ACC_DEBUG, prints debug information. This
flag can be combined with one of the above values using the bit-wise
OR operator (`|'), but it is used only by HDF5 Library developers; it is
neither tested nor supported for use in applications.

◊

hid_t fapl_id IN: Identifier for the file access properties list. If parallel file access is desired,
this is a collective call according to the communicator stored in the fapl_id.
Use H5P_DEFAULT for default file access properties.

Returns:
Returns a file identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5fopen_f
SUBROUTINE h5fopen_f(name, access_flags, file_id, hdferr, &
 access_prp)
 IMPLICIT NONE
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the file
 INTEGER, INTENT(IN) :: access_flag ! File access flags
 ! Possible values are:
 ! H5F_ACC_RDWR_F
 ! H5F_ACC_RDONLY_F
 INTEGER(HID_T), INTENT(OUT) :: file_id ! File identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: access_prp
 ! File access property list
 ! identifier
END SUBROUTINE h5fopen_f

H5Fopen HDF5 Reference Manual

164

Name:H5Freopen
Signature:

hid_tH5Freopen(hid_t file_id)
Purpose:

Returns a new identifier for a previously-opened HDF5 file.
Description:

H5Freopen returns a new file identifier for an already-open HDF5 file, as specified by file_id. Both
identifiers share caches and other information. The only difference between the identifiers is that the new
identifier is not mounted anywhere and no files are mounted on it.

Note that there is no circumstance under which H5Freopen can actually open a closed file; the file must
already be open and have an active file_id. E.g., one cannot close a file with
H5Fclose (file_id) then use H5Freopen (file_id) to reopen it.

The new file identifier should be closed by calling H5Fclose when it is no longer needed.
Parameters:

hid_t file_id IN: Identifier of a file for which an additional identifier is required.
Returns:

Returns a new file identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5freopen_f

SUBROUTINE h5freopen_f(file_id, new_file_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: file_id ! File identifier
 INTEGER(HID_T), INTENT(OUT) :: new_file_id ! New file identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5freopen_f

HDF5 Reference Manual H5Freopen

165

Name:H5Freset_mdc_hit_rate_stats
Signature:

herr_tH5Freset_mdc_hit_rate_stats(hid_t file_id)
Purpose:

Reset hit rate statistics counters for the target file.
Description:

H5Freset_mdc_hit_rate_stats resets the hit rate statistics counters in the metadata cache associated with
the specified file.

If the adaptive cache resizing code is enabled, the hit rate statistics are reset at the beginning of each
epoch. This API call allows you to do the same thing from your program.

The adaptive cache resizing code may behave oddly if you use this call when adaptive cache resizing is
enabled. However, the call should be useful if you choose to control metadata cache size from your
program.

See the overview of the metadata cache in the special topics section of the user manual for details of the
metadata cache and the adaptive cache resizing algorithms. If you haven't read, understood, and thought
about the material covered in that documentation, you shouldn't be using this API call.

Parameters:
hid_t file_id IN: Identifier of the target file.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

H5Freset_mdc_hit_rate_stats HDF5 Reference Manual

166

Last modified: 18 May 2009

Name:H5Fset_mdc_config
Signature:

herr_tH5Fset_mdc_config(hid_t file_id, H5AC_cache_config_t *config_ptr)
Purpose:

Attempt to configure metadata cache of target file.
Description:

H5Fset_mdc_config attempts to configure the file's metadata cache according configuration supplied in
*config_ptr.

See the overview of the metadata cache in the special topics section of the user manual for details on what
is being configured. If you haven't read and understood that documentation, you really shouldn't be using
this API call.

Parameters:
hid_t file_id IN: Identifier of the target file

H5AC_cache_config_t *config_ptr IN: Pointer to the instance of
H5AC_cache_config_t containing the desired
configuration. The fields of this structure are
discussed below:

General configuration section:

int version IN: Integer field indicating the the version of the
H5AC_cache_config_t in use. This field should
be set to
H5AC__CURR_CACHE_CONFIG_VERSION
(defined in H5ACpublic.h).

hbool_trpt_fcn_enabled IN: Boolean flag indicating whether the adaptive
cache resize report function is enabled. This
field should almost always be set to FALSE.
Since resize algorithm activity is reported via
stdout, it MUST be set to FALSE on Windows
machines.

The report function is not supported code, and
can be expected to change between versions of
the library. Use it at your own risk.

hbool_topen_trace_File IN: Boolean field indicating whether the
trace_file_name field should be used to
open a trace file for the cache.

The trace file is a debuging feature that allows
the capture of top level metadata cache requests
for purposes of debugging and/or optimization.
This field should normally be set to FALSE, as
trace file collection imposes considerable
overhead.

HDF5 Reference Manual H5Fset_mdc_config

167

This field should only be set to TRUE when the
trace_file_name contains the full path of
the desired trace file, and either there is no open
trace file on the cache, or the
close_trace_file field is also TRUE.

The trace file feature is unsupported unless used
at the direction of THG. It is intended to allow
THG to collect a trace of cache activity in cases
of occult failures and/or poor performance seen
in the field, so as to aid in reproduction in the
lab. If you use it absent the direction of THG,
you are on your own.

hbool_tclose_trace_file IN: Boolean field indicating whether the current
trace file (if any) should be closed.

See the above comments on the
open_trace_file field. This field should be
set to FALSE unless there is an open trace file
on the cache that you wish to close.

The trace file feature is unsupported unless used
at the direction of THG. It is intended to allow
THG to collect a trace of cache activity in cases
of occult failures and/or poor performance seen
in the field, so as to aid in reproduction in the
lab. If you use it absent the direction of THG,
you are on your own.

char trace_file_name[] IN: Full path of the trace file to be opened if the
open_trace_file field is TRUE.

In the parallel case, an ascii representation of the
mpi rank of the process will be appended to the
file name to yield a unique trace file name for
each process.

The length of the path must not exceed
H5AC__MAX_TRACE_FILE_NAME_LEN
characters.

The trace file feature is unsupported unless used
at the direction of THG. It is intended to allow
THG to collect a trace of cache activity in cases
of occult failures and/or poor performance seen
in the field, so as to aid in reproduction in the
lab. If you use it absent the direction of THG,
you are on your own.

hbool_tevictions_enabled IN: A boolean flag indicating whether evictions
from the metadata cache are enabled. This flag
is initially set to TRUE.

H5Fset_mdc_config HDF5 Reference Manual

168

In rare circumstances, the raw data throughput
requirements may be so high that the user
wishes to postpone metadata writes so as to
reserve I/O throughput for raw data. The
evictions_enabled field exists to allow
this. However, this is an extreme step, and you
have no business doing it unless you have read
the User Guide section on metadata caching, and
have considered all other options carefully.

The evictions_enabled field may not be
set to FALSE unless all adaptive cache resizing
code is disabled via the incr_mode,
flash_incr_mode, and decr_mode fields.

When this flag is set to FALSE, the metadata
cache will not attempt to evict entries to make
space for new entries, and thus will grow
without bound.

Evictions will be re-enabled when this field is
set back to TRUE. This should be done as soon
as possible.

hbool_tset_initial_size IN: Boolean flag indicating whether the cache
should be forced to the user specified initial size.

size_tinitial_size IN: If set_initial_size is TRUE, initial_size must
contains the desired initial size in bytes. This
value must lie in the closed interval [min_size,
max_size]. (see below)

doublemin_clean_fraction IN: This field specifies the minimum fraction of
the cache that must be kept either clean or
empty.

The value must lie in the interval [0.0, 1.0]. 0.01
is a good place to start in the serial case. In the
parallel case, a larger value is needed -- see the
overview of the metadata cache in the “HDF5
Special Topics” section of the HDF5 User’s
Guide for details.

size_tmax_size IN: Upper bound (in bytes) on the range of
values that the adaptive cache resize code can
select as the maximum cache size.

size_tmin_size IN: Lower bound (in bytes) on the range of
values that the adaptive cache resize code can
select as the maximum cache size.

long intepoch_length IN: Number of cache accesses between runs of
the adaptive cache resize code. 50,000 is a good
starting number.

HDF5 Reference Manual H5Fset_mdc_config

169

Increment configuration section:

enum H5C_cache_incr_modeincr_mode
IN: Enumerated value indicating the operational
mode of the automatic cache size increase code.
At present, only two values are legal:

H5C_incr__off: Automatic cache size increase
is disabled, and the remaining increment fields
are ignored.

H5C_incr__threshold: Automatic cache size
increase is enabled using the hit rate threshold
algorithm.

doublelower_hr_threshold IN: Hit rate threshold used by the hit rate
threshold cache size increment algorithm.

When the hit rate over an epoch is below this
threshold and the cache is full, the maximum
size of the cache is multiplied by increment
(below), and then clipped as necessary to stay
within max_size, and possibly max_increment.

This field must lie in the interval [0.0, 1.0]. 0.8
or 0.9 is a good starting point.

doubleincrement IN: Factor by which the hit rate threshold cache
size increment algorithm multiplies the current
cache max size to obtain a tentative new cache
size.

The actual cache size increase will be clipped to
satisfy the max_size specified in the general
configuration, and possibly max_increment
below.

The parameter must be greater than or equal to
1.0 -- 2.0 is a reasonable value.

If you set it to 1.0, you will effectively disable
cache size increases.

hbool_tapply_max_increment IN: Boolean flag indicating whether an upper
limit should be applied to the size of cache size
increases.

size_tmax_increment IN: Maximum number of bytes by which cache
size can be increased in a single step -- if
applicable.

enum H5C_cache_flash_incr_modeflash_incr_mode IN: Enumerated value indicating the operational
mode of the flash cache size increase code. At
present, only the following values are legal:

H5Fset_mdc_config HDF5 Reference Manual

170

H5C_flash_incr__off: Flash cache size increase
is disabled.

H5C_flash_incr__add_space: Flash cache size
increase is enabled using the add space
algorithm.

doubleflash_threshold IN: The factor by which the current maximum
cache size is multiplied to obtain the minimum
size entry / entry size increase which may trigger
a flash cache size increase.

At present, this value must lie in the range [0.1,
1.0].

doubleflash_multiple IN: The factor by which the size of the
triggering entry / entry size increase is
multiplied to obtain the initial cache size
increment. This increment may be reduced to
reflect existing free space in the cache and the
max_size field above.

At present, this field must lie in the range [0.1,
10.0].

HDF5 Reference Manual H5Fset_mdc_config

171

Decrement configuration section:

enum H5C_cache_decr_modedecr_mode
IN: Enumerated value indicating the operational
mode of the automatic cache size decrease code.
At present, the following values are legal:

H5C_decr__off: Automatic cache size decrease
is disabled.

H5C_decr__threshold: Automatic cache size
decrease is enabled using the hit rate threshold
algorithm.

H5C_decr__age_out: Automatic cache size
decrease is enabled using the ageout algorithm.

H5C_decr__age_out_with_threshold: Automatic
cache size decrease is enabled using the ageout
with hit rate threshold algorithm

doubleupper_hr_threshold IN: Hit rate threshold for the hit rate threshold
and ageout with hit rate threshold cache size
decrement algorithms.

When decr_mode is H5C_decr__threshold, and
the hit rate over a given epoch exceeds the
supplied threshold, the current maximum cache
size is multiplied by decrement to obtain a
tentative new (and smaller) maximum cache
size.

When decr_mode is
H5C_decr__age_out_with_threshold, there is no
attempt to find and evict aged out entries unless
the hit rate in the previous epoch exceeded the
supplied threshold.

This field must lie in the interval [0.0, 1.0].

For H5C_incr__threshold, .9995 or .99995 is a
good place to start.

For H5C_decr__age_out_with_threshold, .999
might be more useful.

doubledecrement IN: In the hit rate threshold cache size decrease
algorithm, this parameter contains the factor by
which the current max cache size is multiplied to
produce a tentative new cache size.

The actual cache size decrease will be clipped to
satisfy the min_size specified in the general

H5Fset_mdc_config HDF5 Reference Manual

172

configuration, and possibly max_decrement
below.

The parameter must be be in the interval [0.0,
1.0].

If you set it to 1.0, you will effectively disable
cache size decreases. 0.9 is a reasonable starting
point.

hbool_tapply_max_decrement IN: Boolean flag indicating whether an upper
limit should be applied to the size of cache size
decreases.

size_tmax_decrement IN: Maximum number of bytes by which the
maximum cache size can be decreased in any
single step -- if applicable.

int epochs_before_eviction IN: In the ageout based cache size reduction
algorithms, this field contains the minimum
number of epochs an entry must remain
unaccessed in cache before the cache size
reduction algorithm tries to evict it. 3 is a
reasonable value.

hbool_tapply_empty_reserve IN: Boolean flag indicating whether the ageout
based decrement algorithms will maintain a
empty reserve when decreasing cache size.

doubleempty_reserve IN: Empty reserve as a fraction of maximum
cache size if applicable.

When so directed, the ageout based algorithms
will not decrease the maximum cache size
unless the empty reserve can be met.

The parameter must lie in the interval [0.0, 1.0].
0.1 or 0.05 is a good place to start.

HDF5 Reference Manual H5Fset_mdc_config

173

Parallel configuration section:

int dirty_bytes_threshold IN: Threshold number of bytes of dirty metadata
generation for triggering synchronizations of the
metadata caches serving the target file in the
parallel case.

Synchronization occurs whenever the number of
bytes of dirty metadata created since the last
synchronization exceeds this limit.

This field only applies to the parallel case.
While it is ignored elsewhere, it can still draw a
value out of bounds error.

It must be consistant across all caches on any
given file.

By default, this field is set to 256 KB. It
shouldn't be more than half the current max
cache size times the min clean fraction.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

H5Fset_mdc_config HDF5 Reference Manual

174

Name:H5Funmount
Signature:

herr_tH5Funmount(hid_t loc_id, const char *name)
Purpose:

Unmounts a file.
Description:

Given a mount point, H5Funmount dissassociates the mount point's file from the file mounted there.
This function does not close either file.

The mount point can be either the group in the parent or the root group of the mounted file (both groups
have the same name). If the mount point was opened before the mount then it is the group in the parent; if
it was opened after the mount then it is the root group of the child.

Note that loc_id is either a file or group identifier and name is relative to loc_id.
Parameters:

hid_t loc_id IN: File or group identifier for the location at which the specified file is to be
unmounted.

const char *name IN: Name of the mount point.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5funmount_f

SUBROUTINE h5funmount_f(loc_id, name, child_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN):: name ! Group name at location loc_id
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5funmount_f

HDF5 Reference Manual H5Funmount

175

HDF5 Reference Manual

176

H5G: Group Interface

Group Object API Functions

The Group interface functions create and manipulate groups of objects in an HDF5 file.
In the following lists, italic type indicates a configurable macro.

The C Interfaces:

H5Gcreate•
H5Gcreate1 *•
H5Gcreate2•
H5Gcreate_anon•
H5Gopen•
H5Gopen1 *•
H5Gopen2•
H5Gclose•

H5Gmove *•
H5Gmove2 *•
H5Glink *•
H5Glink2 *•
H5Gunlink *•
H5Gset_comment *•
H5Gget_comment *•
H5Gget_info•
H5Gget_info_by_name•

H5Gget_objinfo *•
H5Gget_num_objs *•
H5Gget_create_plist•
H5Gget_linkval *•
H5Giterate *•
H5Gget_info_by_idx•
H5Gget_objname_by_idx *•
H5Gget_objtype_by_idx *•

* Use of these functions is deprecated in Release 1.8.0.
Alphabetical Listing

H5Gclose•
H5Gcreate•
H5Gcreate1 *•
H5Gcreate2•
H5Gcreate_anon•
H5Gget_comment *•
H5Gget_create_plist•
H5Gget_linkval *•

H5Gget_info•
H5Gget_info_by_idx•
H5Gget_info_by_name•
H5Gget_num_objs *•
H5Gget_objinfo *•
H5Gget_objname_by_idx *•
H5Gget_objtype_by_idx *•
H5Giterate *•
H5Glink *•

H5Glink2 *•
H5Gmove *•
H5Gmove2 *•
H5Gopen•
H5Gopen1 *•
H5Gopen2•
H5Gset_comment *•
H5Gunlink *•

The FORTRAN90 Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

h5gclose_f•
h5gcreate_f•
h5gcreate_anon_f•
h5gget_comment_f *•
h5gget_create_plist_f•
h5gget_linkval_f *•

h5gget_info_f•
h5gget_info_by_idx_f•
h5gget_info_by_name_f•
h5giterate_f *•
h5glink_f *•

h5glink2_f *•
h5gmove_f *•
h5gmove2_f *•
h5gopen_f•
h5gset_comment_f *•
h5gunlink_f *•

* Use of these functions is deprecated in Release 1.8.0.

HDF5 Reference Manual

177

Groups in HDF5:
A group associates names with objects and provides a mechanism for mapping a name to an object. Since all
objects appear in at least one group (with the possible exception of the root object) and since objects can have
names in more than one group, the set of all objects in an HDF5 file is a directed graph. The internal nodes (nodes
with out-degree greater than zero) must be groups while the leaf nodes (nodes with out-degree zero) are either
empty groups or objects of some other type. Exactly one object in every non-empty file is the root object. The
root object always has a positive in-degree because it is pointed to by the file super block.

Group implementations in HDF5:
The original HDF5 group implementation provided a single indexed structure for link storage. A new group
implementation, in HDF5 Release 1.8.0, enables more efficient compact storage for very small groups, improved
link indexing for large groups, and other advanced features.

The original indexed format remains the default. Links are stored in a B-tree in the group’s local heap.•
Groups created in the new compact-or-indexed format, the implementation introduced with Release 1.8.0,
can be tuned for performance, switching between the compact and indexed formats at thresholds set in the
user application.

The compact format will conserve file space and processing overhead when working with small
groups and is particularly valuable when a group contains no links. Links are stored as a list of
messages in the group’s header.

♦

The indexed format will yield improved performance when working with large groups, e.g.,
groups containing thousands to millions of members. Links are stored in a fractal heap and
indexed with an improved B-tree.

♦

•

The new implementation also enables the use of link names consisting of non-ASCII character sets (see
H5Pset_char_encoding) and is required for all link types other than hard or soft links, e.g., external
and user-defined links (see the H5L APIs).

•

The original group structure and the newer structures are not directly interoperable. By default, a group will be
created in the original indexed format. An existing group can be changed to a compact-or-indexed format if the
need arises; there is no capability to change back. As stated above, once in the compact-or-indexed format, a
group can switch between compact and indexed as needed.

Groups will be initially created in the compact-or-indexed format only when one or more of the following
conditions is met:

The low version bound value of the library version bounds property has been set to Release 1.8.0 or later
in the file access property list (see H5Pset_libver_bounds). Currently, that would require an
H5Pset_libver_bounds call with the low parameter set to H5F_LIBVER_LATEST.

When this property is set for an HDF5 file, all objects in the file will be created using the latest available
format; no effort will be made to create a file that can be read by older libraries.

•

The creation order tracking property, H5P_CRT_ORDER_TRACKED, has been set in the group creation
property list (see H5Pset_link_creation_order).

•

An existing group, currently in the original indexed format, will be converted to the compact-or-indexed format
upon the occurrence of any of the following events:

An external or user-defined link is inserted into the group.•
A link named with a string composed of non-ASCII characters is inserted into the group.•

HDF5 Reference Manual

178

The compact-or-indexed format offers performance improvements that will be most notable at the extremes, i.e.,
in groups with zero members and in groups with tens of thousands of members. But measurable differences may
sometimes appear at a threshold as low as eight group members. Since these performance thresholds and criteria
differ from application to application, tunable settings are provided to govern the switch between the compact and
indexed formats (see H5Pset_link_phase_change). Optimal thresholds will depend on the application and
the operating environment.

Future versions of HDF5 will retain the ability to create, read, write, and manipulate all groups stored in either the
original indexed format or the compact-or-indexed format.

Locating objects in the HDF5 file hierarchy:
An object name consists of one or more components separated from one another by slashes. An absolute name
begins with a slash and the object is located by looking for the first component in the root object, then looking for
the second component in the first object, etc., until the entire name is traversed. A relative name does not begin
with a slash and the traversal begins at the location specified by the create or access function.

HDF5 Reference Manual

179

HDF5 Reference Manual

180

Name:H5Gclose
Signature:

herr_tH5Gclose(hid_t group_id)
Purpose:

Closes the specified group.
Description:

H5Gclose releases resources used by a group which was opened by H5Gcreate* or H5Gopen*.
After closing a group, the group_id cannot be used again.

Failure to release a group with this call will result in resource leaks.
Parameters:

hid_tgroup_id IN: Group identifier to release.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5gclose_f

SUBROUTINE h5gclose_f(gr_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: gr_id ! Group identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5gclose_f

HDF5 Reference Manual H5Gclose

181

Last modified: 7 November 2009

Name:H5Gcreate
Signatures:

hid_tH5Gcreate(hid_t loc_id, const char *name, size_t size_hint) [1]

hid_tH5Gcreate(hid_t loc_id, const char *name, hid_t lcpl_id,
hid_tgcpl_id, hid_t gapl_id)

[2]

Purpose:
Creates a new empty group and links it to a location in the file.

Description:
H5Gcreate is a macro that is mapped to either H5Gcreate1 or H5Gcreate2, depending on the
HDF5 Library configuration and application compile-time compatibility macro mapping options.

This macro is provided to facilitate application compatibility. For example:

The H5Gcreate macro will be mapped to H5Gcreate1 and will use the H5Gcreate1
syntax (first signature above) if the application is coded for HDF5 Release 1.6.x.

◊

The H5Gcreate macro will be mapped to H5Gcreate2 and will use the H5Gcreate2
syntax (second signature above) if the application is coded for HDF5 Release 1.8.x.

◊

Macro use and compatibility macro mapping options are fully described in “API Compatibility Macros in
HDF5.”

When both the HDF5 Library and the application are built without specific compatibility macro mapping
options, the default behavior occurs and H5Gcreate is mapped to the most recent version of the
function, currently H5Gcreate2. If the library and/or application is compiled for Release 1.6 emulation,
H5Gcreate will be mapped to H5Gcreate1.

Function mapping flags can be used to override these settings on a function-by-function basis when the
application is compiled. The H5Gcreate function mapping flags are shown:

h5cc flag macro maps to

-DH5Acreate_vers=1 H5Acreate1

-DH5Acreate_vers=2 H5Acreate2

Interface history: Signature [1] above is the original H5Gcreate interface and the only interface
available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now deprecated
but will remain directly callable as H5Gcreate1.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Gcreate2.

Deprecated functions may not be available in all installations of the HDF5 libary. See “API Compatibility
Macros in HDF5” for details.

H5Gcreate HDF5 Reference Manual

182

Fortran90 Interface: h5gcreate_f
SUBROUTINE h5gcreate_f(loc_id, name, grp_id, hdferr, &
 size_hint, lcpl_id, gcpl_id, gapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the group
 INTEGER(HID_T), INTENT(OUT) :: grp_id ! Group identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
 INTEGER(SIZE_T), OPTIONAL, INTENT(IN) :: size_hint
 ! Parameter indicating the number of
 ! bytes to reserve for the names that
 ! will appear in the group.
 ! Note, set to OBJECT_NAMELEN_DEFAULT_F
 ! if using any of the optional
 ! parameters lcpl_id, gcpl_id,
 ! and/or gapl_id when not
 ! using keywords in specifying the
 ! optional parameters.
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lcpl_id
 ! Property list for link creation
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: gcpl_id
 ! Property list for group creation
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: gapl_id
 ! Property list for group access
END SUBROUTINE h5gcreate_f

History:
Release C

1.8.0 The function H5Gcreate renamed to H5Gcreate1 and deprecated in this
release.
The macro H5Gcreate and the function H5Gcreate2 introduced in this
release.

HDF5 Reference Manual H5Gcreate

183

Last modified: 29 July 2009

Name:H5Gcreate1
Signature:

hid_tH5Gcreate1(hid_t loc_id, const char *name, size_t size_hint)
Purpose:

Creates a new empty group and links it to a location in the file.
Notice:

This function is renamed from H5Gcreate and deprecated in favor of the functions H5Gcreate2 and
H5Gcreate_anon, or the new macro H5Gcreate.

Description:
H5Gcreate1 creates a new group with the specified name at the specified location, loc_id. The
location is identified by a file or group identifier. The name, name, must not already be taken by some
other object and all parent groups must already exist.

name can be a relative path based at loc_id or an absolute path from the root of the file. Use of this
function requires that any intermediate groups specified in the path already exist.

The length of a group name, or of the name of any object within a group, is not limited.

size_hint is a hint for the number of bytes to reserve to store the names which will be eventually
added to the new group. Passing a value of zero for size_hint is usually adequate since the library is
able to dynamically resize the name heap, but a correct hint may result in better performance. If a
non-positive value is supplied for size_hint, then a default size is chosen.

The return value is a group identifier for the open group. This group identifier should be closed by calling
H5Gclose when it is no longer needed.

See H5Gcreate_anon for a discussion of the differences between H5Gcreate1 and
H5Gcreate_anon.

Parameters:
hid_t loc_id IN: File or group identifier.

const char *name IN: Absolute or relative name of the o new group.

size_tsize_hint IN: Optional parameter indicating the number of bytes to reserve for the
names that will appear in the group. A conservative estimate could result in
multiple system-level I/O requests to read the group name heap; a liberal
estimate could result in a single large I/O request even when the group has
just a few names. HDF5 stores each name with a null terminator.

Returns:
Returns a valid group identifier for the open group if successful; otherwise returns a negative value.

Fortran90 Interface: See listing under H5Gcreate.
History:

Release C

1.8.0 Function H5Gcreate renamed to H5Gcreate1 and deprecated in this release.

H5Gcreate1 HDF5 Reference Manual

184

Name:H5Gcreate2
Signature:

hid_tH5Gcreate2(hid_t loc_id, const char *name, hid_t lcpl_id, hid_t gcpl_id, hid_t
gapl_id)

Purpose:
Creates a new empty group and links it into the file.

Description:
H5Gcreate2 creates a new group named name at the location specified by loc_id with the group
creation and access properties spceified in gcpl_id and gapl_id, respectively.

loc_id may be a file identifier, or a group identifier within that file. name may be either an absolute
path in the file or a relative path from loc_id naming the dataset.

The link creation property list, lcpl_id, governs creation of the link(s) by which the new dataset is
accessed and the creation of any intermediate groups that may be missing.

To conserve and release resources, the group should be closed when access is no longer required.
Parameters:

hid_t loc_id IN: File or group identifier

const char *name IN: Absolute or relative name of the new group

hid_t lcpl_id IN: Property list for link creation

hid_tgcpl_id IN: Property list for group creation

hid_tgapl_id IN: Property list for group access
(No group access properties have been implemented at this time; use
H5P_DEFAULT.)

Returns:
Returns a group identifier if successful; otherwise returns a negative value.

Fortran90 Interface: See listing under H5Gcreate.
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Gcreate2

185

Last modified: 17 August 2010

Name:H5Gcreate_anon
Signature:

hid_tH5Gcreate_anon(hid_t loc_id, hid_t gcpl_id, hid_t gapl_id)
Purpose:

Creates a new empty group without linking it into the file structure.
Description:

H5Gcreate_anon creates a new empty group in the file specified by loc_id. With default settings,
H5Gcreate_anon provides similar functionality to that provided by H5Gcreate, with the differences
described below.

The new group’s creation and access properties are specified in gcpl_id and gapl_id, respectively.

H5Gcreate_anon returns a new group identifier. This identifier must be linked into the HDF5 file
structure with H5Lcreate_hard or it will be deleted from the file when the file is closed.

The differences between this function and H5Gcreate1 are as follows:

H5Gcreate1 does not provide for the use of custom property lists; H5Gcreate1 always uses
default properties.

◊

H5Gcreate_anon neither provides the new group’s name nor links it into the HDF5 file
structure; those actions must be performed separately through a call to H5Lcreate_hard,
which offers greater control over linking.

◊

H5Gcreate_anon does not directly provide a hint mechanism for the group’s heap size.
Comparable information can be included in the group creation property list gcpl_id through a
H5Pset_local_heap_size_hint call.

◊

Parameters:
hid_t loc_id IN: File or group identifier specifying the file in which the new group is to be

created

hid_tgcpl_id IN: Group creation property list identifier
(H5P_DEFAULT for the default property list)

hid_tgapl_id IN: Group access property list identifier
(No group access properties have been implemented at this time; use
H5P_DEFAULT.)

Returns:
Returns a new group identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5gcreate_anon_f
SUBROUTINE h5gcreate_anon_f(loc_id, grp_id, hdferr, gcpl_id, gapl_id)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
 INTEGER(HID_T), INTENT(OUT) :: grp_id ! Group identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: gcpl_id
 ! Property list for group creation
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: gapl_id
 ! Property list for group access
END SUBROUTINE h5gcreate_anon_f

H5Gcreate_anon HDF5 Reference Manual

186

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Gcreate_anon

187

Name:H5Gget_comment
Signature:

int H5Gget_comment(hid_t loc_id, const char *name, size_t bufsize, char *comment)
Purpose:

Retrieves comment for specified object.
Notice:

This function is deprecated in favor of the function H5Oget_comment.
Description:

H5Gget_comment retrieves the comment for the the object specified by loc_id and name. The
comment is returned in the buffer comment.

loc_id can specify any object in the file. name can be one of the following:
 — The name of the object relative to loc_id
 — An absolute name of the object, starting from /, the file’s root group
 — A dot (.), if loc_id fully specifies the object

At most bufsize characters, including a null terminator, are returned in comment. The returned value
is not null terminated if the comment is longer than the supplied buffer. If the size of the comment is
unknown, a preliminary H5Gget_comment call will return the size of the comment, including space for
the null terminator.

If an object does not have a comment, the empty string is returned in comment.
Parameters:

hid_t loc_id IN: Identifier of the file, group, dataset, or named datatype.

const char *name IN: Name of the object in loc_id whose comment is to be retrieved.
name must be '.' (dot) if loc_id fully specifies the object for which the
associated comment is to be retrieved.

size_tbufsize IN: Anticipated required size of the comment buffer.

char *comment OUT: The comment.
Returns:

Returns the number of characters in the comment, counting the null terminator, if successful; the value
returned may be larger than bufsize. Otherwise returns a negative value.

Fortran90 Interface: h5gget_comment_f
SUBROUTINE h5gget_comment_f(loc_id, name, size, buffer, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File, group, dataset, or
 ! named datatype identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the object link
 CHARACTER(LEN=size), INTENT(OUT) :: buffer ! Buffer to hold the comment
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5gget_comment_f

History:
Release C

1.8.0 Function deprecated in this release.

H5Gget_comment HDF5 Reference Manual

188

Name:H5Gget_create_plist
Signature:

hid_tH5Gget_create_plist(hid_t group_id)
Purpose:

Gets a group creation property list identifier.
Description:

H5Gget_create_plist returns an identifier for the group creation property list associated with the
group specified by group_id.

The creation property list identifier should be released with H5Pclose.
Parameters:

hid_tgroup_id IN: Identifier of the group.
Returns:

Returns an identifier for the group’s creation property list if successful. Otherwise returns a negative
value.

Fortran90 Interface: h5gget_create_plist_f
SUBROUTINE h5gget_create_plist_f(grp_id, gcpl_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: grp_id ! Group identifier
 INTEGER(HID_T), INTENT(OUT) :: gcpl_id ! Property list for group creation
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5gget_create_plist_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Gget_create_plist

189

Name:H5Gget_info
Signature:

herr_tH5Gget_info(hid_t group_id, H5G_info_t *group_info)
Purpose:

Retrieves information about a group.
Description:

H5Gget_info retrieves information about the group specified by group_id. The information is
returned in the group_info struct.

group_info is an H5G_info_t struct and is defined (in H5Gpublic.h) as follows:

H5G_storage_type_t storage_type Type of storage for links in group
H5G_STORAGE_TYPE_COMPACT: Compact storage
H5G_STORAGE_TYPE_DENSE: Indexed storage
H5G_STORAGE_TYPE_SYMBOL_TABLE:

 Symbol tables, the original HDF5 structure

hsize_tnlinks Number of links in group

int64_tmax_corder Current maximum creation order value for group

hbool_tmounted Whether the group has a file mounted on it
Parameters:

hid_tgroup_id IN: Group identifier

H5G_info_t *group_info OUT: Struct in which group information is returned
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5gget_info_f

SUBROUTINE h5gget_info_f(group_id, storage_type, nlinks, max_corder, hdferr, &
 mounted)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: group_id
 ! Group identifier
 INTEGER, INTENT(OUT) :: storage_type
 ! Type of storage for links in group:
 ! H5G_STORAGE_TYPE_COMPACT_F: Compact storage
 ! H5G_STORAGE_TYPE_DENSE_F: Indexed storage
 ! H5G_STORAGE_TYPE_SYMBOL_TABLE_F: Symbol tables
 INTEGER, INTENT(OUT) :: nlinks
 ! Number of links in group
 INTEGER, INTENT(OUT) :: max_corder
 ! Current maximum creation order value for group
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code:
 ! 0 on success and -1 on failure
 LOGICAL, INTENT(OUT), OPTIONAL :: mounted
 ! Whether group has a file mounted on it
END SUBROUTINE h5gget_info_f

History:
Release C

1.8.2 Added 'mounted' field.

1.8.0 Function introduced in this release.

H5Gget_info HDF5 Reference Manual

190

Name:H5Gget_info_by_idx
Signature:

herr_tH5Gget_info_by_idx(hid_t loc_id, const char *group_name, H5_index_t
index_type, H5_iter_order_t order, hsize_t n, H5G_info_t *group_info, hid_t lapl_id)

Purpose:
Retrieves information about a group, according to the group’s position within an index.

Description:
H5Gget_info_by_idx retrieves the same imformation about a group as retrieved by the function
H5Gget_info, immediately above, but the means of identifying the group differs; the group is
identified by position in an index rather than by name.

loc_id and group_name specify the group containing the group for which information is sought. The
groups in group_name are indexed by index_type; the group for which information is retrieved is
identified in that index by index order, order, and index position, n.

If loc_id specifies the group containing the group for which information is queried, group_name can
be a dot (.).

Valid values for index_type are as follows:

H5_INDEX_NAME An alpha-numeric index by group name

H5_INDEX_CRT_ORDER An index by creation order
The order in which the index is to be examined, as specified by order, can be one of the following:

H5_ITER_INC The count is from beginning of the index, i.e., top-down.

H5_ITER_DEC The count is from the end of the index, i.e., bottom-up.

H5_ITER_NATIVE HDF5 counts through the index in the fastest-available order. No
information is provided as to the order, but HDF5 ensures that no element
in the index will be overlooked.

Parameters:
hid_t loc_id IN: File or group identifier

const char *group_name IN: Name of group containing group for which information is to be
retrieved

H5_index_tindex_type IN: Index type

H5_iter_order_torder IN: Order of the count in the index

hsize_tn IN: Position in the index of the group for which information is retrieved

H5G_info_t *group_info OUT: Struct in which group information is returned

hid_t lapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Gget_info_by_idx

191

Fortran90 Interface: h5gget_info_by_idx_f
SUBROUTINE h5gget_info_by_idx_f(loc_id, group_name, index_type, order, n, &
 storage_type, nlinks, max_corder, hdferr, lapl_id, mounted)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id
 ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: group_name
 ! Name of group containing group for which
 ! information is to be retrieved
 INTEGER, INTENT(IN) :: index_type
 ! Index type
 INTEGER, INTENT(IN) :: order
 ! Order of the count in the index
 INTEGER(HSIZE_T), INTENT(IN) :: n
 ! Position in the index of the group for which
 ! information is retrieved
 INTEGER, INTENT(OUT) :: storage_type
 ! Type of storage for links in group:
 ! H5G_STORAGE_TYPE_COMPACT_F: Compact storage
 ! H5G_STORAGE_TYPE_DENSE_F: Indexed storage
 ! H5G_STORAGE_TYPE_SYMBOL_TABLE_F: Symbol tables
 INTEGER, INTENT(OUT) :: nlinks
 ! Number of links in group
 INTEGER, INTENT(OUT) :: max_corder
 ! Current maximum creation order value for group
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list
 LOGICAL, INTENT(OUT), OPTIONAL :: mounted
 ! Whether group has a file mounted on it
END SUBROUTINE h5gget_info_by_idx_f

History:
Release C

1.8.0 Function introduced in this release.

H5Gget_info_by_idx HDF5 Reference Manual

192

Name:H5Gget_info_by_name
Signature:

herr_tH5Gget_info_by_name(hid_t loc_id, const char *group_name, H5G_info_t
*group_info, hid_t lapl_id)

Purpose:
Retrieves information about a group.

Description:
H5Gget_info_by_name retrieves information about the group group_name located in the file or
group specified by loc_id. The information is returned in the group_info struct.

If loc_id specifies the group for which information is queried, group_name can be a dot (.).

group_info is an H5G_info_t struct and is defined (in H5Gpublic.h) as follows:

H5G_storage_type_tstorage_type Type of storage for links in group
H5G_STORAGE_TYPE_COMPACT: Compact storage
H5G_STORAGE_TYPE_DENSE: Dense storage
H5G_STORAGE_TYPE_SYMBOL_TABLE:

 Symbol tables, the original HDF5 structure

hsize_tnlinks Number of links in group

int64_tmax_corder Current maximum creation order value for group

hbool_tmounted Whether the group has a file mounted on it
Parameters:

hid_t loc_id IN: File or group identifier

const char *group_name IN: Name of group for which information is to be retrieved

H5G_info_t *group_info OUT: Struct in which group information is returned

hid_t lapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5gget_info_by_name_f

SUBROUTINE h5gget_info_by_name_f(loc_id, group_name, &
 storage_type, nlinks, max_corder, hdferr, lapl_id, mounted)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id
 ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: group_name
 ! Name of group containing group for which
 ! information is to be retrieved
 INTEGER, INTENT(OUT) :: storage_type
 ! Type of storage for links in group:
 ! H5G_STORAGE_TYPE_COMPACT_F: Compact storage
 ! H5G_STORAGE_TYPE_DENSE_F: Indexed storage
 ! H5G_STORAGE_TYPE_SYMBOL_TABLE_F: Symbol tables
 INTEGER, INTENT(OUT) :: nlinks
 ! Number of links in group
 INTEGER, INTENT(OUT) :: max_corder
 ! Current maximum creation order value for group

HDF5 Reference Manual H5Gget_info_by_name

193

 INTEGER, INTENT(OUT) :: hdferr
 ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list
 LOGICAL, INTENT(OUT), OPTIONAL :: mounted
 ! Whether group has a file mounted on it
END SUBROUTINE h5gget_info_by_name_f

History:
Release C

1.8.2 Added 'mounted' field.

1.8.0 Function introduced in this release.

H5Gget_info_by_name HDF5 Reference Manual

194

Name:H5Gget_linkval
Signature:

herr_tH5Gget_linkval(hid_t loc_id, const char *name, size_t size, char *value)
Purpose:

Returns the name of the object that the symbolic link points to.
Notice:

This function is deprecated in favor of the function H5Lget_val.
Description:

H5Gget_linkval returns size characters of the name of the object that the symbolic link name
points to.

The parameter loc_id is a file or group identifier.

The parameter name must be a symbolic link pointing to the desired object and must be defined relative
to loc_id.

If size is smaller than the size of the returned object name, then the name stored in the buffer value
will not be null terminated.

This function fails if name is not a symbolic link. The presence of a symbolic link can be tested by
passing zero for size and NULL for value.

This function should be used only after H5Lget_info (or the deprecated function
H5Gget_objinfo) has been called to verify that name is a symbolic link.

Parameters:
hid_t loc_id IN: Identifier of the file or group.

const char *name IN: Symbolic link to the object whose name is to be returned.

size_tsize IN: Maximum number of characters of value to be returned.

char *value OUT: A buffer to hold the name of the object being sought.
Returns:

Returns a non-negative value, with the link value in value, if successful. Otherwise returns a negative
value.

Fortran90 Interface: h5gget_linkval_f
SUBROUTINE h5gget_linkval_f(loc_id, name, size, buffer, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the symbolic link
 CHARACTER(LEN=size), INTENT(OUT) :: buffer ! Buffer to hold a
 ! name of the object
 ! symbolic link points to
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5gget_linkval_f

History:
Release C

1.8.0 Function deprecated in this release.

HDF5 Reference Manual H5Gget_linkval

195

Name:H5Gget_num_objs
Signature:

herr_tH5Gget_num_objs(hid_t loc_id, hsize_t* num_obj)
Purpose:

Returns number of objects in the group specified by its identifier
Notice:

This function is deprecated in favor of the function H5Gget_info.
Description:

H5Gget_num_objs returns number of objects in a group. Group is specified by its identifier loc_id.
If a file identifier is passed in, then the number of objects in the root group is returned.

Parameters:
hid_t loc_id IN: Identifier of the group or the file

hsize_t *num_obj OUT: Number of objects in the group.
Returns:

Returns positive value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.6.0 Function introduced in this release.

1.8.0 Function deprecated in this release.

H5Gget_num_objs HDF5 Reference Manual

196

Name:H5Gget_objinfo
Signature:

herr_tH5Gget_objinfo(hid_t loc_id, const char *name, hbool_t follow_link, H5G_stat_t
*statbuf)

Purpose:
Returns information about an object.

Notice:
This function is deprecated in favor of the function H5Oget_info and H5Lget_info.

Description:
H5Gget_objinfo returns information about the specified object through the statbuf argument.

A file or group identifier, loc_id, and an object name, name, relative to loc_id, are commonly used
to specify the object. However, if the object identifier is already known to the application, an alternative
approach is to use that identifier, obj_id, in place of loc_id, and a dot (.) in place of name. Thus,
the alternative versions of the first portion of an H5Gget_objinfo call would be as follows:
 H5Gget_objinfo (loc_id name ...)
 H5Gget_objinfo (obj_id)

If the object is a symbolic link and follow_link is zero (0), then the information returned describes
the link itself; otherwise the link is followed and the information returned describes the object to which
the link points. If follow_link is non-zero but the final symbolic link is dangling (does not point to
anything), then an error is returned. The statbuf fields are undefined for an error. The existence of an
object can be tested by calling this function with a null statbuf.

H5Gget_objinfo fills in the following data structure (defined in H5Gpublic.h):

 typedef struct H5G_stat_t {
 unsigned long fileno[2];
 haddr_t objno[2];
 unsigned nlink;
 H5G_obj_t type;
 time_t mtime;
 size_t linklen;
 H5O_stat_t ohdr;
 } H5G_stat_t

where H5O_stat_t (defined in H5Opublic.h) is:

 typedef struct H5O_stat_t {
 hsize_t size;
 hsize_t free;
 unsigned nmesgs;
 unsigned nchunks;
 } H5O_stat_t

The fileno and objno fields contain four values which uniquely identify an object among those HDF5
files which are open: if all four values are the same between two objects, then the two objects are the
same (provided both files are still open).

Note that if a file is closed and re-opened, the value in fileno will change.◊

HDF5 Reference Manual H5Gget_objinfo

197

If a VFL driver either does not or cannot detect that two H5Fopen calls referencing the same file
actually open the same file, each will get a different fileno.

◊

The nlink field is the number of hard links to the object or zero when information is being returned
about a symbolic link (symbolic links do not have hard links but all other objects always have at least
one).

The type field contains the type of the object, one of H5G_GROUP, H5G_DATASET, H5G_LINK, or
H5G_TYPE.

The mtime field contains the modification time.

If information is being returned about a symbolic link then linklen will be the length of the link value
(the name of the pointed-to object with the null terminator); otherwise linklen will be zero.

The fields in the H5O_stat_t struct contain information about the object header for the object queried:

size The total size of all the object header information in the file (for all
chunks).

free The size of unused space in the object header.

nmesgs The number of object header messages.

nchunks The number of chunks the object header is broken up into.

Other fields may be added to this structure in the future.
Note:

Some systems will be able to record the time accurately but unable to retrieve the correct time; such
systems (e.g., Irix64) will report an mtime value of 0 (zero).

Parameters:
hid_t loc_id IN: File or group identifier.

Alternative: An object identifier, obj_id

const char*name IN: Name of the object for which status is being sought.
Alternative: If the preceding parameter is the object’s direct identifier,
i.e., the obj_id, this parameter should be a dot (.).

hbool_tfollow_link IN: Link flag.

H5G_stat_t*statbuf OUT: Buffer in which to return information about the object.
Returns:

Returns a non-negative value if successful, with the fields of statbuf (if non-null) initialized.
Otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.6.1 Two new fields were added to the H5G_stat_t struct in this release.

1.8.0 Function deprecated in this release.

H5Gget_objinfo HDF5 Reference Manual

198

Name:H5Gget_objname_by_idx
Signature:

ssize_tH5Gget_objname_by_idx(hid_t loc_id, hsize_t idx, char *name, size_t size)
Purpose:

Returns a name of an object specified by an index.
Notice:

This function is deprecated in favor of the function H5Lget_name_by_idx.
Description:

H5Gget_objname_by_idx returns a name of the object specified by the index idx in the group
loc_id.

The group is specified by a group identifier loc_id. If preferred, a file identifier may be passed in
loc_id; that file's root group will be assumed.

idx is the transient index used to iterate through the objects in the group. The value of idx is any
nonnegative number less than the total number of objects in the group, which is returned by the function
H5Gget_num_objs. Note that this is a transient index; an object may have a different index each time
a group is opened.

The object name is returned in the user-specified buffer name.

If the size of the provided buffer name is less or equal the actual object name length, the object name is
truncated to max_size - 1 characters.

Note that if the size of the object's name is unkown, a preliminary call to H5Gget_objname_by_idx
with name set to NULL will return the length of the object's name. A second call to
H5Gget_objname_by_idx can then be used to retrieve the actual name.

Parameters:
hid_t loc_id IN: Group or file identifier.

hsize_tidx IN: Transient index identifying object.

char *name IN/OUT: Pointer to user-provided buffer the object name.

size_tsize IN: Name length.
Returns:

Returns the size of the object name if successful, or 0 if no name is associated with the group identifier.
Otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.6.0 Function introduced in this release.

1.8.0 Function deprecated in this release.

HDF5 Reference Manual H5Gget_objname_by_idx

199

Name:H5Gget_objtype_by_idx
Signature:

int H5Gget_objtype_by_idx(hid_t loc_id, hsize_t idx)
Purpose:

Returns the type of an object specified by an index.
Notice:

This function is deprecated in favor of the function H5Oget_info.
Description:

H5Gget_objtype_by_idx returns the type of the object specified by the index idx in the group
loc_id.

The group is specified by a group identifier loc_id. If preferred, a file identifier may be passed in
loc_id; that file's root group will be assumed.

idx is the transient index used to iterate through the objects in the group. This parameter is described in
more detail in the discussion of H5Gget_objname_by_idx.

The object type is returned as the function return value:

H5G_LINK 0 Object is a symbolic link.

H5G_GROUP 1 Object is a group.

H5G_DATASET 2 Object is a dataset.

H5G_TYPE 3 Object is a named datatype.
Parameters:

hid_t loc_id IN: Group or file identifier.

hsize_tidx IN: Transient index identifying object.
Returns:

Returns the type of the object if successful. Otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.6.0 Function introduced in this release.

1.6.0 The function return type changed from int to the enumerated type H5G_obj_t.

1.8.0 Function deprecated in this release.

H5Gget_objtype_by_idx HDF5 Reference Manual

200

Name:H5Giterate
Signature:

int H5Giterate(hid_t loc_id, const char *name, int *idx, H5G_iterate_t operator, void
*operator_data)

Purpose:
Iterates an operation over the entries of a group.

Notice:
This function is deprecated in favor of the function H5Literate.

Description:
H5Giterate iterates over the members of name in the file or group specified with loc_id. For each
object in the group, the operator_data and some additional information, specified below, are passed
to the operator function. The iteration begins with the idx object in the group and the next element to
be processed by the operator is returned in idx. If idx is NULL, then the iterator starts at the first group
member; since no stopping point is returned in this case, the iterator cannot be restarted if one of the calls
to its operator returns non-zero. H5Giterate does not recursively follow links into subgroups of the
specified group.

The prototype for H5G_iterate_t is:

typedef herr_t (*H5G_iterate_t) (hid_t group_id, const char * member_name, void
*operator_data);

The operation receives the group identifier for the group being iterated over, group_id, the name of the
current object within the group, member_name, and the pointer to the operator data passed in to
H5Giterate, operator_data.

The return values from an operator are:

Zero causes the iterator to continue, returning zero when all group members have been processed.◊
Positive causes the iterator to immediately return that positive value, indicating short-circuit
success. The iterator can be restarted at the next group member.

◊

Negative causes the iterator to immediately return that value, indicating failure. The iterator can
be restarted at the next group member.

◊

H5Giterate assumes that the membership of the group identified by name remains unchanged through
the iteration. If the membership changes during the iteration, the function's behavior is undefined.

H5Giterate is not recursive. In particular, if a member of name is found to be a group, call it
subgroup_a, H5Giterate does not examine the members of subgroup_a. When recursive
iteration is required, the application must handle the recursion, explicitly calling H5Giterate on
discovered subgroups.

Parameters:
hid_t loc_id IN: File or group identifier.

const char*name IN: Group over which the iteration is performed.

int *idx IN/OUT: Location at which to begin the iteration.

H5G_iterate_toperator IN: Operation to be performed on an object at each step of the
iteration.

void *operator_data IN/OUT: Data associated with the operation.

HDF5 Reference Manual H5Giterate

201

Returns:
Returns the return value of the last operator if it was non-zero, or zero if all group members were
processed. Otherwise returns a negative value.

Fortran90 Interface:
There is no direct FORTRAN couterpart for the C function H5Giterate. Instead, that functionality is
provided by two FORTRAN functions:

h5gn_members_f Purpose: Returns the number of group
members.

h5gget_obj_info_idx_f Purpose: Returns name and type of the group
member identified by its index.

SUBROUTINE h5gn_members_f(loc_id, name, nmembers, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the group
 INTEGER, INTENT(OUT) :: nmembers ! Number of members in the group
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5gn_members_f

SUBROUTINE h5gget_obj_info_idx_f(loc_id, name, idx, &
 obj_name, obj_type, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the group
 INTEGER, INTENT(IN) :: idx ! Index of member object
 CHARACTER(LEN=*), INTENT(OUT) :: obj_name ! Name of the object
 INTEGER, INTENT(OUT) :: obj_type ! Object type :
 ! H5G_LINK_F
 ! H5G_GROUP_F
 ! H5G_DATASET_F
 ! H5G_TYPE_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5gget_obj_info_idx_f

History:
Release C

1.8.0 Function deprecated in this release.

H5Giterate HDF5 Reference Manual

202

Name:H5Glink
Signature:

herr_tH5Glink(hid_t loc_id, H5G_link_t link_type, const char *current_name, const char
*new_name)

Purpose:
Creates a link of the specified type from new_name to current_name.

Notice:
This function is deprecated in favor of the functions H5Lcreate_hard and H5Lcreate_soft.

Description:
H5Glink creates a new name for an object that has some current name, possibly one of many names it
currently has.

If link_type is H5G_LINK_HARD, then current_name must specify the name of an existing
object and both names are interpreted relative to loc_id, which is either a file identifier or a group
identifier.

If link_type is H5G_LINK_SOFT, then current_name can be anything and is interpreted at
lookup time relative to the group which contains the final component of new_name. For instance, if
current_name is ./foo, new_name is ./x/y/bar, and a request is made for ./x/y/bar, then
the actual object looked up is ./x/y/./foo.

Parameters:
hid_t loc_id IN: File or group identifier.

H5G_link_tlink_type IN: Link type. Possible values are H5G_LINK_HARD and
H5G_LINK_SOFT.

const char *current_name IN: Name of the existing object if link is a hard link. Can be
anything for the soft link.

const char *new_name IN: New name for the object.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5glink_f

SUBROUTINE h5glink_f(loc_id, link_type, current_name, new_name, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group location identifier
 INTEGER, INTENT(IN) :: link_type ! Link type, possible values are:
 ! H5G_LINK_HARD_F
 ! H5G_LINK_SOFT_F
 CHARACTER(LEN=*), INTENT(IN) :: current_name
 ! Current object name relative
 ! to loc_id
 CHARACTER(LEN=*), INTENT(IN) :: new_name ! New object name
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure

END SUBROUTINE h5glink_f

History:
Release C

1.8.0 Function deprecated in this release.

HDF5 Reference Manual H5Glink

203

Name:H5Glink2
Signature:

herr_tH5Glink2(hid_t curr_loc_id, const char *current_name, H5G_link_t link_type,
hid_tnew_loc_id, const char *new_name)

Notice:
This function is deprecated in favor of the functions H5Lcreate_hard and H5Lcreate_soft.

Purpose:
Creates a link of the specified type from current_name to new_name.

Description:
H5Glink2 creates a new name for an object that has some current name, possibly one of many names it
currently has.

If link_type is H5G_LINK_HARD, then current_name must specify the name of an existing
object. In this case, current_name and new_name are interpreted relative to curr_loc_id and
new_loc_id, respectively, which are either file or group identifiers.

If link_type is H5G_LINK_SOFT, then current_name can be anything and is interpreted at
lookup time relative to the group which contains the final component of new_name. For instance, if
current_name is ./foo, new_name is ./x/y/bar, and a request is made for ./x/y/bar, then
the actual object looked up is ./x/y/./foo.

Parameters:
hid_tcurr_loc_id IN: The file or group identifier for the original object.

const char *current_name IN: Name of the existing object if link is a hard link. Can be
anything for the soft link.

H5G_link_tlink_type IN: Link type. Possible values are H5G_LINK_HARD and
H5G_LINK_SOFT.

hid_tnew_loc_id IN: The file or group identifier for the new link.

const char *new_name IN: New name for the object.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5glink2_f

SUBROUTINE h5glink2_f(cur_loc_id, cur_name, link_type, new_loc_id, new_name, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: cur_loc_id ! File or group location identifier
 CHARACTER(LEN=*), INTENT(IN) :: cur_name ! Name of the existing object
 ! is relative to cur_loc_id
 ! Can be anything for the soft link
 INTEGER, INTENT(IN) :: link_type ! Link type, possible values are:
 ! H5G_LINK_HARD_F
 ! H5G_LINK_SOFT_F
 INTEGER(HID_T), INTENT(IN) :: new_loc_id ! New location identifier
 CHARACTER(LEN=*), INTENT(IN) :: new_name ! New object name
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure

END SUBROUTINE h5glink2_f

History:
Release C

1.8.0 Function deprecated in this release.

H5Glink2 HDF5 Reference Manual

204

Name:H5Gmove
Signature:

herr_tH5Gmove(hid_tloc_id, const char *src_name, const char *dst_name)
Purpose:

Renames an object within an HDF5 file.
Notice:

This function is deprecated in favor of the function H5Lmove.
Description:

H5Gmove renames an object within an HDF5 file. The original name, src_name, is unlinked from the
group graph and the new name, dst_name, is inserted as an atomic operation. Both names are
interpreted relative to loc_id, which is either a file or a group identifier.

Warning:
Exercise care in moving groups as it is possible to render data in a file inaccessible with H5Gmove. See
The Group Interface in the HDF5 User's Guide.

Parameters:
hid_t loc_id IN: File or group identifier.

const char*src_name IN: Object's original name.

const char*dst_name IN: Object's new name.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5gmove_f

SUBROUTINE h5gmove_f(loc_id, name, new_name, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Original name of an object
 CHARACTER(LEN=*), INTENT(IN) :: new_name ! New name of an object
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5gmove_f

History:
Release C

1.8.0 Function deprecated in this release.

HDF5 Reference Manual H5Gmove

205

Name:H5Gmove2
Signature:

herr_tH5Gmove2(hid_tsrc_loc_id, const char *src_name, hid_t dst_loc_id, const char
*dst_name)

Purpose:
Renames an object within an HDF5 file.

Notice:
This function is deprecated in favor of the function H5Lmove.

Description:
H5Gmove2 renames an object within an HDF5 file. The original name, src_name, is unlinked from the
group graph and the new name, dst_name, is inserted as an atomic operation.

src_name and dst_name are interpreted relative to src_name and dst_name, respectively, which
are either file or group identifiers.

Warning:
Exercise care in moving groups as it is possible to render data in a file inaccessible with H5Gmove. See
The Group Interface in the HDF5 User's Guide.

Parameters:
hid_tsrc_loc_id IN: Original file or group identifier.

const char*src_name IN: Object's original name.

hid_tdst_loc_id IN: Destination file or group identifier.

const char*dst_name IN: Object's new name.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5gmove2_f

SUBROUTINE h5gmove2_f(src_loc_id, src_name, dst_loc_id, dst_name, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: src_loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: src_name ! Original name of an object
 ! relative to src_loc_id
 INTEGER(HID_T), INTENT(IN) :: dst_loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: dst_name ! New name of an object
 ! relative to dst_loc_id
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5gmove2_f

History:
Release C

1.8.0 Function deprecated in this release.

H5Gmove2 HDF5 Reference Manual

206

Name:H5Gopen
Signature:

hid_tH5Gopen(hid_tloc_id, const char *name)
hid_tH5Gopen(hid_tloc_id, const char * name, hid_tgapl_id)

Purpose:
Opens an existing group in a file.

Description:
H5Gopen is a macro that is mapped to either H5Gopen1 or H5Gopen2, depending on the needs of the
application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5” we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Gopen is mapped to the most recent version of the function, currently H5Gopen2. If the library
and/or application is compiled for Release 1.6 emulation, H5Gopen will be mapped to H5Gopen1.
Function-specific flags are available to override these settings on a function-by-function basis when the
application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Gopen mapping

Global settings

No compatibility flag H5Gopen2

Enable deprecated symbols H5Gopen2

Disable deprecated symbols H5Gopen2

Emulate Release 1.6 interface H5Gopen1

Function-level macros

H5Gopen_vers = 2 H5Gopen2

H5Gopen_vers = 1 H5Gopen1

Fortran90 Interface: h5gopen_f
SUBROUTINE h5gopen_f(loc_id, name, grp_id, hdferr, gapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the group
 INTEGER(HID_T), INTENT(OUT) :: grp_id ! File identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: gapl_id
 ! Group access property list identifier
END SUBROUTINE h5gopen_f

HDF5 Reference Manual H5Gopen

207

History:
Release C

1.8.0 The function H5Gopen renamed to H5Gopen1 and deprecated in this release.
The macro H5Gopen and the function H5Gopen2 introduced in this release.

H5Gopen HDF5 Reference Manual

208

Name:H5Gopen1
Signature:

hid_tH5Gopen1(hid_t loc_id, const char *name)
Notice:

This function is deprecated in favor of the function H5GOpen2 or the macro H5GOpen.
Purpose:

Opens an existing group for modification and returns a group identifier for that group.
Description:

H5Gopen1 opens an existing group with the specified name at the specified location, loc_id.

The location is identified by a file or group identifier

H5Gopen1 returns a group identifier for the group that was opened. This group identifier should be
released by calling H5Gclose when it is no longer needed.

Parameters:
hid_t loc_id IN: File or group identifier within which group is to be open.

const char *name IN: Name of group to open.
Returns:

Returns a valid group identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Gopen.
History:

Release C

1.8.0 The function H5Gopen renamed to H5Gopen1 and deprecated in this release.

HDF5 Reference Manual H5Gopen1

209

Last modified: 17 August 2010

Name:H5Gopen2
Signature:

hid_tH5Gopen2(hid_t loc_id, const char * name, hid_tgapl_id)
Purpose:

Opens an existing group with a group access property list.
Description:

H5Gopen2 opens an existing group, name, at the location specified by loc_id.

With default settings, H5Gopen2 provides similar functionality to that provided by H5Gopen1. The
only difference is that H5Gopen2 can provide a group access property list, gapl_id.

H5Gopen2 returns a group identifier for the group that was opened. This group identifier should be
released by calling H5Gclose when it is no longer needed.

Parameters:
hid_t loc_id IN: File or group identifier specifying the location of the group to be opened

const char *name IN: Name of the group to open

hid_tgapl_id IN: Group access property list identifier
(No group access properties have been implemented at this time; use
H5P_DEFAULT.)

Returns:
Returns a group identifier if successful; otherwise returns a negative value.

Fortran90 Interface: See listing under H5Gopen.
History:

Release C

1.8.0 Function introduced in this release.

H5Gopen2 HDF5 Reference Manual

210

Name:H5Gset_comment
Signature:

herr_tH5Gset_comment(hid_t loc_id, const char *name, const char *comment)
Purpose:

Sets comment for specified object.
Notice:

This function is deprecated in favor of the function H5Oset_comment.
Description:

H5Gset_comment sets the comment for the object specified by loc_id and name to comment. Any
previously existing comment is overwritten.

loc_id can specify any object in the file. name can be one of the following:
 — The name of the object relative to loc_id
 — An absolute name of the object, starting from /, the file’s root group
 — A dot (.), if loc_id fully specifies the object

If comment is the empty string or a null pointer, the comment message is removed from the object.

Comments should be relatively short, null-terminated, ASCII strings.

Comments can be attached to any object that has an object header, e.g., datasets, groups, and named
datatypes, but not symbolic links.

Parameters:
hid_t loc_id IN: Identifier of the file, group, dataset, or named datatype.

const char *name IN: Name of the object whose comment is to be set or reset.
name must be '.' (dot) if loc_id fully specifies the object for which the
comment is to be set.

const char *comment IN: The new comment.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5gset_comment_f

SUBROUTINE h5gset_comment_f(loc_id, name, comment, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File, group, dataset, or
 ! named datatype identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of object
 CHARACTER(LEN=*), INTENT(IN) :: comment ! Comment for the object
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5gset_comment_f

History:
Release C

1.8.0 Function deprecated in this release.

HDF5 Reference Manual H5Gset_comment

211

Name:H5Gunlink
Signature:

herr_tH5Gunlink(hid_t loc_id, const char *name)
Purpose:

Removes the link to an object from a group.
Notice:

This function is deprecated in favor of the function H5Ldelete.
Description:

H5Gunlink removes the object specified by name from the group graph and decrements the link count
for the object to which name points. This action eliminates any association between name and the object
to which name pointed.

Object headers keep track of how many hard links refer to an object; when the link count reaches zero, the
object can be removed from the file. Objects which are open are not removed until all identifiers to the
object are closed.

If the link count reaches zero, all file space associated with the object will be released, i.e., identified in
memory as freespace. If any object identifier is open for the object, the space will not be released until
after the object identifier is closed.

Note that space identified as freespace is available for re-use only as long as the file remains open; once a
file has been closed, the HDF5 library loses track of freespace. See “Freespace Management” in the
HDF5 User's Guide for further details.

Warning:
Exercise care in unlinking groups as it is possible to render data in a file inaccessible with H5Gunlink.
See The Group Interface in the HDF5 User's Guide.

Parameters:
hid_t loc_id IN: Identifier of the file or group containing the object.

const char *name IN: Name of the object to unlink.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5gunlink_f

SUBROUTINE h5gunlink_f(loc_id, name, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the object to unlink
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5gunlink_f

History:
Release C

1.8.0 Function deprecated in this release.

H5Gunlink HDF5 Reference Manual

212

H5I: Identifier Interface

Identifier API Functions

These functions provides tools for working with object identifiers and object names.

The C Interface:

H5Iget_file_id•
H5Iget_name•
H5Iget_type•
H5Iobject_verify•
H5Iremove_verify•
H5Isearch•
H5Iis_valid•

H5Iget_ref•
H5Iinc_ref•
H5Idec_ref•
H5Iregister•
H5Iregister_type•
H5Idestroy_type•

H5Itype_exists•
H5Iget_type_ref•
H5Idec_type_ref•
H5Iinc_type_ref•
H5Iclear_type•
H5Inmembers•

Alphabetical Listing

H5Iclear_type•
H5Idec_ref•
H5Idec_type_ref•
H5Idestroy_type•
H5Iget_file_id•
H5Iget_name•

H5Iget_ref•
H5Iget_type•
H5Iget_type_ref•
H5Iinc_ref•
H5Iinc_type_ref•
H5Iis_valid•
H5Inmembers•

H5Iobject_verify•
H5Iregister•
H5Iregister_type•
H5Iremove_verify•
H5Isearch•
H5Itype_exists•

The FORTRAN90 Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

h5iget_name_f•
h5iget_type_f•

h5iget_ref_f•
h5iinc_ref_f•

h5idec_ref_f•
H5iis_valid_f•

HDF5 Reference Manual

213

HDF5 Reference Manual

214

Name:H5Iclear_type
Signature:

herr_tH5Iclear_type(H5I_type_t type, hbool_t force)
Purpose:

Deletes all IDs of the given type
Description:

H5Iclear_type deletes all IDs of the type identified by the argument type.

The typeÂ�s free function is first called on all of these IDs to free their memory, then they are removed
from the type.

If the force flag is set to false, only those IDs whose reference counts are equal to 1 will be deleted, and
all other IDs will be entirely unchanged. If the force flag is true, all IDs of this type will be deleted.

Parameters:
H5I_type_ttype IN: Identifier of ID type which is to be cleared of IDs

hbool_tforce IN: Whether or not to force deletion of all IDs
Returns:

Returns non-negative on success, negative on failure.
Fortran90 Interface:

This function is not supported in FORTRAN 90.

HDF5 Reference Manual H5Iclear_type

215

Name:H5Idec_ref
Signature:

int H5Idec_ref(hid_t obj_id)
Purpose:

Decrements the reference count for an object.
Description:

H5Idec_ref decrements the reference count of the object identified by obj_id.

The reference count for an object ID is attached to the information about an object in memory and has no
relation to the number of links to an object on disk.

The reference count for a newly created object will be 1. Reference counts for objects may be explicitly
modified with this function or with H5Iinc_ref. When an object ID's reference count reaches zero, the
object will be closed. Calling an object ID's 'close' function decrements the reference count for the ID
which normally closes the object, but if the reference count for the ID has been incremented with
H5Iinc_ref, the object will only be closed when the reference count reaches zero with further calls to
this function or the object ID's 'close' function.

If the object ID was created by a collective parallel call (such as H5Dcreate, H5Gopen, etc.), the
reference count should be modified by all the processes which have copies of the ID. Generally this
means that group, dataset, attribute, file and named datatype IDs should be modified by all the processes
and that all other types of IDs are safe to modify by individual processes.

This function is of particular value when an application is maintaining multiple copies of an object ID.
The object ID can be incremented when a copy is made. Each copy of the ID can then be safely closed or
decremented and the HDF5 object will be closed when the reference count for that that object drops to
zero.

Parameters:
hid_tobj_id IN: Object identifier whose reference count will be modified.

Returns:
Returns a non-negative reference count of the object ID after decrementing it, if successful; otherwise a
negative value is returned.

Fortran90 Interface: h5idec_ref_f
SUBROUTINE h5idec_ref_f(obj_id, ref_count, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id !Object identifier
 INTEGER, INTENT(OUT) :: ref_count !Reference count of object ID
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success, and -1 on failure
END SUBROUTINE h5idec_ref_f

History:
Release C

1.6.2 Function introduced in this release.
Fortran subroutine introduced in this release.

H5Idec_ref HDF5 Reference Manual

216

Name:H5Idec_type_ref
Signature:

int H5Idec_type_ref(H5I_type_t type)
Purpose:

Decrements the reference count on an ID type.
Description:

H5Idec_type_ref decrements the reference count on an ID type. The reference count is used by the
library to indicate when an ID type can be destroyed. If the reference count reaches zero, this function
will destroy it.

The type parameter is the identifier for the ID type whose reference count is to be decremented. This
identifier must have been created by a call to H5Iregister_type.

Parameters:
H5I_type_ttype IN: The identifier of the type whose reference count is to be decremented

Returns:
Returns the current reference count on success, negative on failure.

Fortran90 Interface:
This function is not supported in FORTRAN 90.

HDF5 Reference Manual H5Idec_type_ref

217

Name:H5Idestroy_type
Signature:

herr_tH5Idestroy_type(H5I_type_t type)
Purpose:

Removes the type type and all IDs within that type.
Description:

H5Idestroy_type deletes an entire ID type. All IDs of this type are destroyed and no new IDs of this
type can be registered.

The typeÂ�s free function is called on all of the IDs which are deleted by this function, freeing their
memory. In addition, all memory used by this typeÂ�s hash table is freed.

Since the H5I_type_t values of destroyed ID types are reused when new types are registered, it is a good
idea to set the variable holding the value of the destroyed type to H5I_UNINIT.

Parameters:
H5I_type_ttype IN: Identifier of ID type which is to be destroyed

Returns:
Returns non-negative on success, negative on failure.

Fortran90 Interface:
This function is not supported in FORTRAN 90.

H5Idestroy_type HDF5 Reference Manual

218

Name:H5Iget_file_id
Signature:

hid_tH5Iget_file_id(hid_t obj_id)
Purpose:

Retrieves an identifier for the file containing the specified object.
Description:

H5Iget_file_id returns the identifier of the file associated with the object referenced by obj_id.

obj_id can be a file, group, dataset, named datatype, or attribute identifier.

Note that the HDF5 Library permits an application to close a file while objects within the file remain
open. If the file containing the object obj_id is still open, H5Iget_file_id will retrieve the existing
file identifier. If there is no existing file identifier for the file, i.e., the file has been closed,
H5Iget_file_id will reopen the file and return a new file identifier. In either case, the file identifier
must eventually be released using H5Fclose.

Parameters:
hid_tobj_id IN: Identifier of the object whose associated file identifier will be returned.

Returns:
Returns a file identifier on success, negative on failure.

Fortran90 Interface:
SUBROUTINE h5iget_file_id_f(obj_id, file_id, hdferr)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
 INTEGER(HID_T), INTENT(OUT) :: file_id ! File identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5iget_file_id_f

History:
Release C

1.6.3 Function introduced in this release.
Fortran subroutine introduced in this release.

HDF5 Reference Manual H5Iget_file_id

219

Name:H5Iget_name
Signature:

ssize_tH5Iget_name(hid_t obj_id, char *name, size_t size)
Purpose:

Retrieves a name of an object based on the object identifier.
Description:

H5Iget_name retrieves a name for the object identified by obj_id.

Up to size characters of the name are returned in name; additional characters, if any, are not returned to
the user application.

If the length of the name, which determines the required value of size, is unknown, a preliminary
H5Iget_name call can be made. The return value of this call will be the size in bytes of the object
name. That value, plus 1 for a NULL terminator, is then assigned to size for a second H5Iget_name
call, which will retrieve the actual name.

If the object identified by obj_id is an attribute, as determined via H5Iget_type, H5Iget_name
retrieves the name of the object to which that attribute is attached. To retrieve the name of the attribute
itself, use H5Aget_name.

If there is no name associated with the object identifier or if the name is NULL, H5Iget_name returns 0
(zero).

Note that an object in an HDF5 file may have multiple paths if there are multiple links pointing to it. This
function may return any one of these paths. When possible, H5Iget_name returns the path with which
the object was opened.

Parameters:
hid_tobj_id IN: Identifier of the object. This identifier can refer to a group, dataset, or named

datatype.

char *name OUT: A name associated with the identifier.

size_tsize IN: The size of the name buffer; must be the size of the name in bytes plus 1 for a
NULL terminator.

Returns:
Returns the length of the name if successful, returning 0 (zero) if no name is associated with the
identifier. Otherwise returns a negative value.

Fortran90 Interface: h5iget_name_f
SUBROUTINE h5iget_name_f(obj_id, buf, buf_size, name_size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
 CHARACTER(LEN=*), INTENT(OUT) :: buf ! Buffer to hold object name
 INTEGER(SIZE_T), INTENT(IN) :: buf_size ! Buffer size
 INTEGER(SIZE_T), INTENT(OUT) :: name_size ! Name size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success, and -1 on failure
END SUBROUTINE h5iget_name_f

History:
Release C

1.6.0 Function introduced in this release.

H5Iget_name HDF5 Reference Manual

220

Last modified: 15 June 2009

Name:H5Iget_ref
Signature:

int H5Iget_ref(hid_t obj_id)
Purpose:

Retrieves the reference count for an object.
Description:

H5Iget_ref retrieves the reference count of the object identified by obj_id.

The reference count for an object identifier is attached to the information about an object in memory and
has no relation to the number of links to an object on disk.

The function H5Iis_valid is used to determine whether a specific object identifier is valid.
Parameters:

hid_tobj_id IN: Object identifier whose reference count will be retrieved.
Returns:

Returns a non-negative current reference count of the object identifier if successful; otherwise a negative
value is returned.

See Also:
H5Iis_valid◊
H5Iget_type◊

Fortran90 Interface: h5iget_ref_f
SUBROUTINE h5iget_ref_f(obj_id, ref_count, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id !Object identifier
 INTEGER, INTENT(OUT) :: ref_count !Reference count of object ID
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success, and -1 on failure
END SUBROUTINE h5iget_ref_f

History:
Release C

1.6.2 Function introduced in this release.
Fortran subroutine introduced in this release.

HDF5 Reference Manual H5Iget_ref

221

Last modified: 15 June 2009

Name:H5Iget_type
Signature:

H5I_type_tH5Iget_type(hid_t obj_id)
Purpose:

Retrieves the type of an object.
Description:

H5Iget_type retrieves the type of the object identified by obj_id.

Valid types returned by the function are

 H5I_FILE File

 H5I_GROUP Group

 H5I_DATATYPE Datatype

 H5I_DATASPACE Dataspace

 H5I_DATASET Dataset

 H5I_ATTR Attribute
If no valid type can be determined or the identifier submitted is invalid, the function returns

 H5I_BADID
Invalid
identifier

This function is of particular value in determining the type of object closing function (H5Dclose,
H5Gclose, etc.) to call after a call to H5Rdereference.

Note that this function returns only the type of object that obj_id would identify if it were valid; it does
not determine whether obj_id is valid identifier. Validity can be determined with a call to
H5Iis_valid.

Parameters:
hid_tobj_id IN: Object identifier whose type is to be determined.

Returns:
Returns the object type if successful; otherwise H5I_BADID.

See Also:
H5Iis_valid◊

Fortran90 Interface: h5iget_type_f
SUBROUTINE h5iget_type_f(obj_id, type, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id !Object identifier
 INTEGER, INTENT(OUT) :: type !type of an object.
 !possible values are:
 !H5I_FILE_F
 !H5I_GROUP_F
 !H5I_DATATYPE_F
 !H5I_DATASPACE_F
 !H5I_DATASET_F
 !H5I_ATTR_F
 !H5I_BADID_F
 INTEGER, INTENT(OUT) :: hdferr ! E rror code
 ! 0 on success, and -1 on failure
END SUBROUTINE h5iget_type_f

H5Iget_type HDF5 Reference Manual

222

Name:H5Iget_type_ref
Signature:

int H5Iget_type_ref(H5I_type_t type)
Purpose:

Retrieves the reference count on an ID type.
Description:

H5Iget_type_ref retrieves the reference count on an ID type. The reference count is used by the
library to indicate when an ID type can be destroyed.

The type parameter is the identifier for the ID type whose reference count is to be retrieved. This
identifier must have been created by a call to H5Iregister_type.

Parameters:
H5I_type_ttype IN: The identifier of the type whose reference count is to be retrieved

Returns:
Returns the current reference count on success, negative on failure.

Fortran90 Interface:
This function is not supported in FORTRAN 90.

HDF5 Reference Manual H5Iget_type_ref

223

Name:H5Iinc_ref
Signature:

int H5Iinc_ref(hid_t obj_id)
Purpose:

Increments the reference count for an object.
Description:

H5Iinc_ref increments the reference count of the object identified by obj_id.

The reference count for an object ID is attached to the information about an object in memory and has no
relation to the number of links to an object on disk.

The reference count for a newly created object will be 1. Reference counts for objects may be explicitly
modified with this function or with H5Idec_ref. When an object ID's reference count reaches zero, the
object will be closed. Calling an object ID's 'close' function decrements the reference count for the ID
which normally closes the object, but if the reference count for the ID has been incremented with this
function, the object will only be closed when the reference count reaches zero with further calls to
H5Idec_ref or the object ID's 'close' function.

If the object ID was created by a collective parallel call (such as H5Dcreate, H5Gopen, etc.), the
reference count should be modified by all the processes which have copies of the ID. Generally this
means that group, dataset, attribute, file and named datatype IDs should be modified by all the processes
and that all other types of IDs are safe to modify by individual processes.

This function is of particular value when an application is maintaining multiple copies of an object ID.
The object ID can be incremented when a copy is made. Each copy of the ID can then be safely closed or
decremented and the HDF5 object will be closed when the reference count for that that object drops to
zero.

Parameters:
hid_tobj_id IN: Object identifier whose reference count will be modified.

Returns:
Returns a non-negative reference count of the object ID after incrementing it if successful; otherwise a
negative value is returned.

Fortran90 Interface: h5iinc_ref_f
SUBROUTINE h5iinc_ref_f(obj_id, ref_count, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id !Object identifier
 INTEGER, INTENT(OUT) :: ref_count !Reference count of object ID
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success, and -1 on failure
END SUBROUTINE h5iinc_ref_f

History:
Release C

1.6.2 Function introduced in this release.
Fortran subroutine introduced in this release.

H5Iinc_ref HDF5 Reference Manual

224

Name:H5Iinc_type_ref
Signature:

int H5Iinc_type_ref(H5I_type_t type)
Purpose:

Increments the reference count on an ID type.
Description:

H5Iinc_type_ref increments the reference count on an ID type. The reference count is used by the
library to indicate when an ID type can be destroyed.

The type parameter is the identifier for the ID type whose reference count is to be incremented. This
identifier must have been created by a call to H5Iregister_type.

Parameters:
H5I_type_ttype IN: The identifier of the type whose reference count is to be incremented

Returns:
Returns the current reference count on success, negative on failure.

Fortran90 Interface:
This function is not supported in FORTRAN 90.

HDF5 Reference Manual H5Iinc_type_ref

225

Last modified: 15 June 2009

Name:H5Iis_valid
Signature:

htri_t H5Iis_valid(hid_t obj_id)
Purpose:

Determines whether an identifier is valid.
Description:

H5Iis_valid determines whether the identifier obj_id is valid.

Valid identifiers are those that have been obtained by an application and can still be used to access the
original target. Examples of invalid identifiers include:

Out of range values: negative, for example◊
Previously-valid identifiers that have been released: for example, a dataset identifier for which the
dataset has been closed

◊

H5Iis_valid can be used with any type of identifier: object identifier, property list identifier, attribute
identifier, error message identifier, etc. When necessary, a call to H5Iget_type can determine the type
of the object that obj_id identifies.

Parameters:
hid_tobj_id IN: Identifier to validate

Returns:
Returns TRUE if obj_id is valid and FALSE if invalid. Otherwise returns a negative value.

See Also:
H5Iget_type◊

Fortran90 Interface:
SUBROUTINE h5iis_valid_f(id, valid, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: id ! Identifier
 LOGICAL, INTENT(OUT) :: valid ! Status of id as
 ! valid (.true.) or invalid (.false.)
 INTEGER, INTENT(OUT) :: hdferr ! Error code: 0 on success, and -1 on failure
END SUBROUTINE h5iis_valid_f

History:
Release Change

1.8.3 C function introduced in this release.

H5Iis_valid HDF5 Reference Manual

226

Name:H5Inmembers
Signature:

herr_tH5Inmembers(H5I_type_t type, hsize_t *num_members)
Purpose:

Returns the number of identifiers in a given identifier type.
Description:

H5Inmembers returns the number of identifiers of the identifier type specified in type.

The number of identifiers is returned in num_members. If no identifiers of this type have been
registered, the type does not exist, or it has been destroyed, num_members is returned with the value 0.

Parameters:
H5I_type_ttype IN: Identifier for the identifier type whose member count will be

retrieved

hsize_t *num_members OUT: Number of identifiers of the specified identifier type.
Returns:

Returns a non-negative value on success; otherwise returns negative value.
Fortran90 Interface:

This function is not supported in FORTRAN 90.

HDF5 Reference Manual H5Inmembers

227

Name:H5Iobject_verify
Signature:

void * H5Iobject_verify(hid_t id, H5I_type_t id_type)
Purpose:

Returns the object referenced by id.
Description:

H5Iobject_verify returns a pointer to the memory referenced by id after verifying that id is of
type id_type. This function is analogous to dereferencing a pointer in C with type checking.

H5Iregister(H5I_type_t type, void *object) takes an H5I_type_t and a void pointer to an object,
returning an hid_t of that type. This hid_t can then be passed to H5Iobject_verify along with its
type to retrieve the object.

H5Iobject_verify does not change the ID it is called on in any way (as opposed to
H5Iremove_verify, which removes the ID from its typeÂ�s hash table).

Parameters:
hid_t id IN: ID to be dereferenced

H5I_type_ttype IN: ID type to which id should belong
Returns:

Pointer to the object referenced by id on success, NULL on failure.
Fortran90 Interface:

This function is not supported in FORTRAN 90.

H5Iobject_verify HDF5 Reference Manual

228

Name:H5Iregister
Signature:

hid_tH5Iregister(H5I_type_t type, void *object)
Purpose:

Creates and returns a new ID.
Description:

H5Iregister allocates space for a new ID and returns an identifier for it.

The type parameter is the identifier for the ID type to which this new ID will belong. This identifier
must have been created by a call to H5Iregister_type.

The object parameter is a pointer to the memory which the new ID will be a reference to. This pointer
will be stored by the library and returned to you via a call to H5Iobject_verify.

Parameters:
H5I_type_ttype IN: The identifier of the type to which the new ID will belong

void *object IN: Pointer to memory for the library to store
Returns:

Returns the new ID on success, negative on failure.
Fortran90 Interface:

This function is not supported in FORTRAN 90.

HDF5 Reference Manual H5Iregister

229

Name:H5Iregister_type
Signature:

H5I_type_tH5Iregister_type(size_t hash_size, unsigned reserved, H5I_free_t
free_func)

Purpose:
Creates and returns a new ID type.

Description:
H5Iregister_type allocates space for a new ID type and returns an identifier for it.

The hash_size parameter indicates the minimum size of the hash table used to store IDs in the new
type.

The reserved parameter indicates the number of IDs in this new type to be reserved. Reserved IDs are
valid IDs which are not associated with any storage within the library.

The free_func parameter is a function pointer to a function which returns an herr_t and accepts a void
*. The purpose of this function is to deallocate memory for a single ID. It will be called by
H5Iclear_type and H5Idestroy_type on each ID. This function is NOT called by
H5Iremove_verify. The void * will be the same pointer which was passed in to the H5Iregister
function. The free_func function should return 0 on success and -1 on failure.

Parameters:
size_thash_size IN: Size of the hash table (in entries) used to store IDs for the new type

unsignedreserved IN: Number of reserved IDs for the new type

H5I_free_tfree_func IN: Function used to deallocate space for a single ID
Returns:

Returns the type identifier on success, negative on failure.
Fortran90 Interface:

This function is not supported in FORTRAN 90.

H5Iregister_type HDF5 Reference Manual

230

Name:H5Iremove_verify
Signature:

void *H5Iremove_verify(hid_t id, H5I_type_t id_type)
Purpose:

Removes an ID from internal storage.
Description:

H5Iremove_verify first ensures that id belongs to id_type. If so, it removes id from internal
storage and returns the pointer to the memory it referred to. This pointer is the same pointer that was
placed in storage by H5Iregister. If id does not belong to id_type, then NULL is returned.

The id parameter is the ID which is to be removed from internal storage. Note: this function does NOT
deallocate the memory that id refers to. The pointer returned by H5Iregister must be deallocated by
the user to avoid memory leaks.

The type parameter is the identifier for the ID type which id is supposed to belong to. This identifier
must have been created by a call to H5Iregister_type.

Parameters:
hid_t id IN: The ID to be removed from internal storage

H5I_type_ttype IN: The identifier of the type whose reference count is to be retrieved
Returns:

Returns a pointer to the memory referred to by id on success, NULL on failure.
Fortran90 Interface:

This function is not supported in FORTRAN 90.

HDF5 Reference Manual H5Iremove_verify

231

Name:H5Isearch
Signature:

void *H5Isearch(H5I_type_t type, H5I_search_func_tfunc, void *key)
Purpose:

Finds the memory referred to by an ID within the given ID type such that some criterion is satisfied.
Description:

H5Isearch searches through a give ID type to find an object that satisfies the criteria defined by func.
If such an object is found, the pointer to the memory containing this object is returned. Otherwise, NULL
is returned. To do this, func is called on every member of type. The first member to satisfy func is
returned.

The type parameter is the identifier for the ID type which is to be searched. This identifier must have
been created by a call to H5Iregister_type.

The parameter func is a function pointer to a function which takes three parameters. The first parameter
is a void *. It will be a pointer the object to be tested. This is the same object that was placed in storage
using H5Iregister. The second parameter is a hid_t. It is the ID of the object to be tested. The last
parameter is a void *. This is the key parameter and can be used however the user finds helpful. Or it can
simply be ignored if it is not needed. func returns 0 if the object it is testing does not pass its criteria. A
non-zero value should be returned if the object does pass its criteria.

The key parameter will be passed to the search function as a parameter. It can be used to further define
the search at run-time.

Parameters:
H5I_type_ttype IN: The identifier of the type to be searched

H5I_search_func_tfunc IN: The function defining the search criteria

void *key IN: A key for the search function
Returns:

Returns a pointer to the object which satisfies the search function on success, NULL on failure.
Fortran90 Interface:

This function is not supported in FORTRAN 90.

H5Isearch HDF5 Reference Manual

232

Name:H5Itype_exists
Signature:

htri_t H5Itype_exists(H5I_type_t type)
Purpose:

Determines whether an identifier type is registered.
Description:

H5Itype_exists determines whether the given identifier type, type, is registered with the library.
Parameters:

H5I_type_ttype IN: Identifier type.
Returns:

Returns 1 if the type is registered and 0 if not. Returns a negative value on failure.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Itype_exists

233

HDF5 Reference Manual

234

H5L: Link Interface

Link API Functions

The Link interface, H5L, functions create and manipulate links in an HDF5 group. This interface includes
functions that enable the creation and use of user-defined link classes.

The C Interfaces:

H5Lcreate_hard•
H5Lcreate_soft•
H5Lcreate_external•
H5Lexists•
H5Lmove•
H5Lcopy•
H5Ldelete•

H5Lget_info•
H5Lget_val•
H5Lunpack_elink_val•

H5Lcreate_ud•
H5Lregister•
H5Lunregister•
H5Lis_registered•

H5Literate•
H5Literate_by_name•
H5Lvisit•
H5Lvisit_by_name•
H5Lget_info_by_idx•
H5Lget_name_by_idx•
H5Lget_val_by_idx•
H5Ldelete_by_idx•

Alphabetical Listing

H5Lcopy•
H5Lcreate_external•
H5Lcreate_hard•
H5Lcreate_soft•
H5Lcreate_ud•
H5Ldelete•
H5Ldelete_by_idx•
H5Lexists•

H5Lget_info•
H5Lget_info_by_idx•
H5Lget_name_by_idx•
H5Lget_val•
H5Lget_val_by_idx•
H5Lis_registered•
H5Literate•
H5Literate_by_name•

H5Lmove•
H5Lregister•
H5Lunpack_elink_val•
H5Lunregister•
H5Lvisit•
H5Lvisit_by_name•

The FORTRAN90 Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

h5lcopy_f•
h5lcreate_external_f•
h5lcreate_hard_f•
h5lcreate_soft_f•

h5ldelete_f•
h5ldelete_by_idx_f•
h5lexists_f•
h5lget_info_f•

h5lget_info_by_idx_f•
h5lget_name_by_idx_f•
h5lis_registered_f•
h5lmove_f•

HDF5 Reference Manual

235

HDF5 Reference Manual

236

Last modified: 11 August 2009

Name:H5L_elink_traverse_t
Signature:

typedef herr_t (*H5L_elink_traverse_t)(const char *parent_file_name, const char
*parent_group_name, const char *child_file_name, const char *child_object_name,
unsigned *acc_flags, hid_t fapl_id, void *op_data)

Purpose:
Sets the access flags and file access property list used to open the specified external link target.

Motivation:
H5L_elink_traverse_t defines the prototype for a user-defined callback function to be called when
traversing an external link. This callback will be executed by the HDF5 Library immediately before
opening the target file and provides a mechanism to set specific access permissions, modify the file access
property list, modify the parent or target file, or take any other user-defined action. This callback function
is used in situations where the HDF5 Library's default behavior is not suitable.

Description:
H5L_elink_traverse_t defines a callback function which may adjust the file access property list
and file access flag to use when opening a file through an external link.

The callback is set with H5Pset_elink_cb but will be executed by the HDF5 Library immediately
before opening the target file via an external link.

The callback function should return 0 if there are no issues and a negative value in case of an error. If the
callback function returns a negative value, the external link will not be traversed and an error will be
returned.

Parameters:
const char *parent_file_name IN: Name of the file containing the external link.

const char *parent_group_name IN: Name of the group containing the exernal link.

const char *child_file_name IN: Name of the external link target file

const char *child_object_name IN: Name of the external link target object

unsigned *acc_flags IN/OUT: File access flags used to open the target file. This
should be set to either H5F_ACC_RDWR or
H5F_ACC_RDONLY. The initial value of this field will be the
flags that would otherwise be used to open the target file as
inherited from the parent file or as overridden with
H5Pset_elink_acc_flags. After making the callback,
the flags returned in this parameter will always be used to open
the target file.

hid_t fapl_id IN/OUT: Identifier of the file access property list used to open
the target file. This will initially be a copy of the property list
that would otherwise be used to open the target file, as
inherited from the parent file or as overridden with
H5Pset_elink_fapl. After making the callback, this
property list, including any changes made by the callback
function, will always be used to open the target file.

void *op_data IN/OUT: Pointer to user-defined input data. This is a
pass-through of the data that was passed to
H5Pset_elink_cb.

HDF5 Reference Manual H5L_elink_traverse_t

237

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Failure Modes:
H5L_elink_traverse_t failure modes are dependent on the implementation of the callback
function.

Example Usage:
This example defines a callback function that prints the name of the target file every time an external link
is followed.

herr_t elink_callback(const char *parent_file_name, const char
 *parent_group_name, const char *child_file_name, const char
 *child_object_name, unsigned *acc_flags, hid_t fapl_id, void *op_data) {
 puts(child_file_name);
 return 0;
}

See Also:
H5Pset_elink_cb, H5Pget_elink_cb

H5Pset_elink_fapl, H5Pset_elink_acc_flags, H5Lcreate_external

H5Fopen for discussion of H5F_ACC_RDWR and H5F_ACC_RDONLY file access flags
History:

Release Change

1.8.3 C function type introduced in this release.

H5L_elink_traverse_t HDF5 Reference Manual

238

Last modified: 27 April 2010

Name:H5Lcopy
Signature:

herr_tH5Lcopy(hid_t src_loc_id, const char *src_name, hid_t dest_loc_id, const char
*dest_name, hid_t lcpl_id hid_t lapl_id)

Purpose:
Copies a link from one location to another.

Description:
H5Lcopy copies the link specified by src_name from the file or group specified by src_loc_id to
the file or group specified by dest_loc_id. The new copy of the link is created with the name
dest_name.

If dest_loc_id is a file identifier, dest_name will be interpreted relative to that file’s root group.

The new link is created with the creation and access property lists specified by lcpl_id and lapl_id.
The interpretation of lcpl_id is limited in the manner described in the next paragraph.

H5Lcopy retains the creation time and the target of the original link. However, since the link may be
renamed, the character encoding is that specified in lcpl_id rather than that of the original link. Other
link creation properties are ignored.

If the link is a soft link, also known as a symbolic link, its target is interpreted relative to the location of
the copy.

Several properties are available to govern the behavior of H5Lcopy. These properties are set in the link
creation and access property lists, lcpl_id and lapl_id, respectively. The property controlling
creation of missing intermediate groups is set in the link creation property list with
H5Pset_create_intermediate_group; this function ignores any other properties in the link
creation property list. Properties controlling character encoding, link traversals, and external link prefixes
are set in the link access property list with H5Pset_char_encoding, H5Pset_nlinks, and
H5Pset_elink_prefix.

H5Lcopy does not affect the object that the link points to.

H5Lcopy cannot copy hard links across files as a hard link is not valid without a target object; to copy
objects from one file to another, see H5Ocopy.

Parameters:
hid_tsrc_loc_id IN: Location identifier of the source link

const char *src_name IN: Name of the link to be copied

hid_tdest_loc_id IN: Location identifier specifying the destination of the copy

const char *dest_name IN: Name to be assigned to the new copy

hid_t lcpl_id IN: Link creation property list identifier

hid_t lapl_id IN: Link access property list identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Lcopy

239

Fortran90 Interface: h5lcopy_f
SUBROUTINE h5lcopy_f(src_loc_id, src_name, dest_loc_id, dest_name, hdferr, &
 lcpl_id, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: src_loc_id
 ! Location identifier of the source link
 CHARACTER(LEN=*), INTENT(IN) :: src_name
 ! Name of the link to be copied
 INTEGER(HID_T), INTENT(IN) :: dest_loc_id
 ! Location identifier specifying the
 ! destination of the copy
 CHARACTER(LEN=*), INTENT(IN) :: dest_name
 ! Name to be assigned to the new copy
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lcpl_id
 ! Link creation property list identifier
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list identifier
END SUBROUTINE h5lcopy_f

History:
Release C

1.8.0 Function introduced in this release.

H5Lcopy HDF5 Reference Manual

240

Last modified: 5 November 2009

Name:H5Lcreate_external
Signature:

herr_tH5Lcreate_external(const char *target_file_name, const char
*target_obj_name, hid_t link_loc_id, const char *link_name, hid_t lcpl_id, hid_t
lapl_id)

Purpose:
Creates an external link, a soft link to an object in a different file.

Description:
H5Lcreate_external creates a new external link. An external link is a soft link to an object in a
different HDF5 file from the location of the link, i.e., to an external object.

target_file_name identifies the target file containing the target object; target_obj_name
specifies the path of the target object within that file. target_obj_name must be an absolute
pathname in target_file_name, i.e., it must start at the target file’s root group, but it is not
interpreted until an application attempts to traverse it.

link_loc_id and link_name specify the location and name, respectively, of the new link.
link_name is interpreted relative to link_loc_id

lcpl_id is the link creation property list used in creating the new link.

lapl_id is the link access property list used in traversing the new link.

An external link behaves similarly to a soft link, and like a soft link in an HDF5 file, it may dangle: the
target file and object need not exist at the time that the external link is created.

When the external link link_name is accessed, the library will search for the target file
target_file_name as described below:

If target_file_name is a relative pathname, the following steps are performed:
The library will get the prefix(es) set in the environment variable HDF5_EXT_PREFIX
and will try to prepend each prefix to target_file_name to form a new
target_file_name.

⋅

If the new target_file_name does not exist or if HDF5_EXT_PREFIX is not set,
the library will get the prefix set via H5Pset_elink_prefix and prepend it to
target_file_name to form a new target_file_name.

⋅

If the new target_file_name does not exist or no prefix is being set by
H5Pset_elink_prefix, then the path of the file associated with link_loc_id is
obtained. This path can be the absolute path or the current working directory plus the
relative path of that file when it is created/opened. The library will prepend this path to
target_file_name to form a new target_file_name.

⋅

If the new target_file_name does not exist, then the library will look for
target_file_name and will return failure/success accordingly.

⋅

◊

If target_file_name is an absolute pathname, the library will first try to find
target_file_name. If target_file_name does not exist, target_file_name is
stripped of directory paths to form a new target_file_name. The search for the new
target_file_name then follows the same steps as described above for a relative pathname.
See examples below illustrating how target_file_name is stripped to form a new

◊

HDF5 Reference Manual H5Lcreate_external

241

target_file_name.
Note that target_file_name is considered to be an absolute pathname when the following condition
is true:

For Unix, the first character of target_file_name is a slash (/).

For example, consider a target_file_name of /tmp/A.h5. If that target file does not exist,
the new target_file_name after stripping will be A.h5.

◊

For Windows, there are 6 cases:
target_file_name is an absolute drive with absolute pathname.

For example, consider a target_file_name of /tmp/A.h5. If that target file does
not exist, the new target_file_name after stripping will be A.h5.

1.

target_file_name is an absolute pathname without specifying drive name.

For example, consider a target_file_name of /tmp/A.h5. If that target file does
not exist, the new target_file_name after stripping will be A.h5.

2.

target_file_name is an absolute drive with relative pathname.

For example, consider a target_file_name of /tmp/A.h5. If that target file does
not exist, the new target_file_name after stripping will be tmp\A.h5.

3.

target_file_name is in UNC (Uniform Naming Convention) format with server
name, share name, and pathname.

For example, consider a target_file_name of /tmp/A.h5. If that target file does
not exist, the new target_file_name after stripping will be A.h5.

4.

target_file_name is in Long UNC (Uniform Naming Convention) format with
server name, share name, and pathname.

For example, consider a target_file_name of /tmp/A.h5. If that target file does
not exist, the new target_file_name after stripping will be A.h5

5.

target_file_name is in Long UNC (Uniform Naming Convention) format with an
absolute drive and an absolute pathname.

For example, consider a target_file_name of /tmp/A.h5. If that target file does
not exist, the new target_file_name after stripping will be A.h5

6.

◊

The library opens target file target_file_name with the file access property list that is set via
H5Pset_elink_fapl when the external link link_name is accessed. If no such property list is set,
the library uses the file access property list associated with the file of link_loc_id to open the target
file.

If an application requires additional control over file access flags or the file access property list, see
H5Pset_elink_cb; this function enables the use of an external link callback function as described in
H5L_elink_traverse_t.

H5Lcreate_external HDF5 Reference Manual

242

Parameters:
const char *target_file_name IN: Name of the target file containing the target object

const char *target_obj_name IN: Path within the target file to the target object

hid_t link_loc_id IN: File or group identifier where the new link is to be created

const char *link_name IN: Name of the new link, relative to link_loc_id

hid_t lcpl_id IN: Link creation property list identifier

hid_t lapl_id IN: Link access property list identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5lcreate_external_f

SUBROUTINE h5lcreate_external_f(file_name, obj_name, link_loc_id, link_name, &
 hdferr, lcpl_id, lapl_id)
 IMPLICIT NONE
 CHARACTER(LEN=*), INTENT(IN) :: file_name
 ! Name of the file containing the target object. Neither
 ! the file nor the target object is required to exist.
 ! May be the file the link is being created in.
 CHARACTER(LEN=*), INTENT(IN) :: obj_name
 ! Name of the target object, which need not already exist.
 INTEGER(HID_T), INTENT(IN) :: link_loc_id
 ! The file or group identifier for the new link.
 CHARACTER(LEN=*), INTENT(IN) :: link_name
 ! The name of the new link.
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lcpl_id
 ! Link creation property list identifier.
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list identifier.
END SUBROUTINE h5lcreate_external_f

See Also:
H5Pset_elink_fapl, H5Pset_elink_cb

H5L_elink_traverse_t
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Lcreate_external

243

Last modified: 9 November 2009

Name:H5Lcreate_hard
Signature:

herr_tH5Lcreate_hard(hid_t obj_loc_id, const char *obj_name, hid_t link_loc_id, const
char *link_name, hid_t lcpl_id, hid_t lapl_id)

Purpose:
Creates a hard link to an object.

Description:
H5Lcreate_hard creates a new hard link to a pre-existing object in an HDF5 file. The new link may
be one of many that point to that object.

The target object must already exist in the file.

obj_loc_id and obj_name specify the location and name, respectively, of the target object, i.e., the
object that the new hard link points to.

link_loc_id and link_name specify the location and name, respectively, of the new hard link.

obj_name and link_name are interpreted relative to obj_loc_id and link_loc_id,
respectively.

If obj_loc_id and link_loc_id are the same location, the HDF5 macro H5L_SAME_LOC can be
used for either parameter (but not both).

lcpl_id and lapl_id are the link creation and access property lists associated with the new link.

Hard and soft links are for use only if the target object is in the current file. If the desired target object is
in a different file from the new link, an external link may be created with H5Lcreate_external.

The HDF5 library keeps a count of all hard links pointing to an object; if the hard link count reaches zero
(0), the object will be deleted from the file. Creating new hard links to an object will prevent it from
being deleted if other links are removed. The library maintains no similar count for soft links and they can
dangle.

Parameters:
hid_tobj_loc_id IN: The file or group identifier for the target object.

const char *obj_name IN: Name of the target object, which must already exist.

hid_t link_loc_id IN: The file or group identifier for the new link.

const char *link_name IN: The name of the new link.

hid_t lcpl_id IN: Link creation property list identifier.

hid_t lapl_id IN: Link access property list identifier.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

H5Lcreate_hard HDF5 Reference Manual

244

Fortran90 Interface: h5lcreate_hard_f
SUBROUTINE h5lcreate_hard_f(obj_loc_id, obj_name, link_loc_id, link_name, &
 hdferr, lcpl_id, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_loc_id
 ! The file or group identifier for the target object.
 CHARACTER(LEN=*), INTENT(IN) :: obj_name
 ! Name of the target object, which must already exist.
 INTEGER(HID_T), INTENT(IN) :: link_loc_id
 ! The file or group identifier for the new link.
 CHARACTER(LEN=*), INTENT(IN) :: link_name
 ! The name of the new link.
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lcpl_id
 ! Link creation property list identifier.
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list identifier.
END SUBROUTINE h5lcreate_hard_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Lcreate_hard

245

Name:H5Lcreate_soft
Signature:

herr_tH5Lcreate_soft(const char *target_path, hid_t link_loc_id, const char
*link_name, hid_t lcpl_id, hid_t lapl_id)

Purpose:
Creates a soft link to an object.

Description:
H5Lcreate_soft creates a new soft link to an object in an HDF5 file. The new link may be one of
many that point to that object.

target_path specifies the path to the target object, i.e., the object that the new soft link points to.
target_path can be anything and is interpreted at lookup time. This path may be absolute in the file
or relative to link_loc_id.

link_loc_id and link_name specify the location and name, respectively, of the new soft link.
link_name is interpreted relative to link_loc_id

lcpl_id and lapl_id are the link creation and access property lists associated with the new link.

For instance, if target_path is ./foo, link_loc_id specifies ./x/y/bar, and the name of the
new link is new_link, then a subsequent request for new_link will look up the object
./x/y/bar/foo.

H5Lcreate_soft is for use only if the target object is in the current file. If the desired target object is
in a different file from the new link, use H5Lcreate_external to create an external link.

Soft links and external links are also known as symbolic links as they use a name to point to an object;
hard links employ an object’s address in the file.

Unlike hard links, a soft link in an HDF5 file is allowed to dangle, meaning that the target object need not
exist at the time that the link is created.

The HDF5 library does not keep a count of soft links as it does of hard links.
Parameters:

const char *target_path IN: Path to the target object, which is not required to exist.

hid_t link_loc_id IN: The file or group identifier for the new link.

const char *link_name IN: The name of the new link.

hid_t lcpl_id IN: Link creation property list identifier.

hid_t lapl_id IN: Link access property list identifier.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

H5Lcreate_soft HDF5 Reference Manual

246

Fortran90 Interface: h5lcreate_soft_f
SUBROUTINE h5lcreate_soft_f(target_path, link_loc_id, link_name, hdferr, &
 lcpl_id, lapl_id)
 IMPLICIT NONE
 CHARACTER(LEN=*), INTENT(IN) :: target_path
 ! Path to the target object,
 ! which is not required to exist.
 INTEGER(HID_T), INTENT(IN) :: link_loc_id
 ! The file or group identifier for the new link.
 CHARACTER(LEN=*), INTENT(IN) :: link_name
 ! The name of the new link.
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lcpl_id
 ! Link creation property list identifier.
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list identifier.
END SUBROUTINE h5lcreate_soft_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Lcreate_soft

247

Last modified: 13 August 2009

Name:H5Lcreate_ud
Signature:

herr_tH5Lcreate_ud(hid_t link_loc_id, const char *link_name, H5L_type_t link_type,
const char *udata, size_tudata_size, hid_t lcpl_id, hid_t lapl_id)

Purpose:
Creates a link of a user-defined type.

Description:
H5Lcreate_ud creates a link of user-defined type link_type named link_name at the location
specified in link_loc_id with user-specified data udata.

link_name is interpreted relative to link_loc_id.

Valid values for the link class of the new link, link_type, include H5L_TYPE_EXTERNAL and any
user-defined link classes that have been registered with the library. See H5Lregister for further
information.

The format of the information pointed to by udata is defined by the user. udata_size specifies the
size of the udata buffer. udata may be NULL if udata_size is zero (0).

The property lists specified by lcpl_id and lapl_id specify properties used to create and access the
link.

Note:
The external link type, H5L_TYPE_EXTERNAL, included in the HDF5 Library distribution, is
implemented as a user-defined link type. This was done, in part, to provide a model for the
implementation of other user-defined links.

Parameters:
hid_t link_loc_id IN: Link location identifier

const char *link_name IN: Link name

H5L_type_tlink_type IN: User-defined link class

const char *udata IN: User-supplied link information

size_tudata_size IN: Size of udata buffer

hid_t lcpl_id IN: Link creation property list identifier

hid_t lapl_id IN: Link access property list identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

H5Lcreate_ud HDF5 Reference Manual

248

Name:H5Ldelete
Signature:

herr_tH5Ldelete(hid_t loc_id, const char *name, hid_t lapl_id)
Purpose:

Removes a link from a group.
Description:

H5Ldelete removes the link specified by name from the location loc_id.

If the link being removed is a hard ink, H5Ldelete also decrements the link count for the object to
which name points. Unless there is a duplicate hard link in that group, this action removes the object to
which name points from the group that previously contained it.

Object headers keep track of how many hard links refer to an object; when the hard link count, also
referred to as the reference count, reaches zero, the object can be removed from the file. The file space
associated will then be released, i.e., identified in memory as freespace. Objects which are open are not
removed until all identifiers to the object are closed.

Note that space identified as freespace is available for re-use only as long as the file remains open; once a
file has been closed, the HDF5 library loses track of freespace. See “Freespace Management” in
“Performace Analysis and Issues” for further details.

Warning:
Exercise caution in the use of H5Ldelete; if the link being removed is on the only path leading to an
HDF5 object, that object may become permanently inaccessible in the file.

Parameters:
hid_t loc_id IN: Identifier of the file or group containing the object.

const char *name IN: Name of the link to delete.

hid_t lapl_id IN: Link access property list identifier.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5ldelete_f

SUBROUTINE h5ldelete_f(loc_id, name, hdferr, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! Identifier of the file or group
 ! containing the object
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the link to delete
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list identifier
END SUBROUTINE h5ldelete_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Ldelete

249

Name:H5Ldelete_by_idx
Signature:

herr_tH5Ldelete_by_idx(hid_t loc_id, const char *group_name, H5_index_t
index_field, H5_iter_order_t order, hsize_t n, hid_t lapl_id)

Purpose:
Removes the nth link in a group.

Description:
H5Ldelete_by_idx removes the nth link in a group according to the specified order, order, in the
specified index, index.

If loc_id specifies the group in which the link resides, group_name can be a dot (.).
Parameters:

hid_t loc_id IN: File or group identifier specifying location of subject group

const char *group_name IN: Name of subject group

H5_index_tindex_field IN: Index or field which determines the order

H5_iter_order_torder IN: Order within field or index

hsize_tn IN: Link for which to retrieve information

hid_t lapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5ldelete_by_idx_f

SUBROUTINE h5ldelete_by_idx_f(loc_id, group_name, index_field, order, n, &
 hdferr, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id
 ! Identifer for object to which attribute is attached.
 CHARACTER(LEN=*), INTENT(IN) :: group_name
 ! Name of object, relative to location,
 ! from which attribute is to be removed
 INTEGER, INTENT(IN) :: index_field
 ! Type of index; Possible values are:
 ! H5_INDEX_UNKNOWN_F - Unknown index type
 ! H5_INDEX_NAME_F - Index on names
 ! H5_INDEX_CRT_ORDER_F - Index on creation order
 ! H5_INDEX_N_F - Number of indices defined
 INTEGER, INTENT(IN) :: order
 ! Order in which to iterate over index;
 ! Possible values are:
 ! H5_ITER_UNKNOWN_F - Unknown order
 ! H5_ITER_INC_F - Increasing order
 ! H5_ITER_DEC_F - Decreasing order
 ! H5_ITER_NATIVE_F - No particular order,
 ! whatever is fastest
 ! H5_ITER_N_F - Number of iteration orders
 INTEGER(HSIZE_T), INTENT(IN) :: n
 ! Offset within index
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list
END SUBROUTINE h5ldelete_by_idx_f

H5Ldelete_by_idx HDF5 Reference Manual

250

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Ldelete_by_idx

251

Last modified: 10 April 2009

Name:H5Lexists
Signature:

htri_t H5Lexists(hid_t loc_id, const char *name, hid_t lapl_id)
Purpose:

Determine whether a link with the specified name exists in a group.
Description:

H5Lexists allows an application to determine whether the link name exists in the group or file
specified with loc_id. The link may be of any type; only the presence of a link with that name is
checked.

Note that H5Lexists verifies only that the target link exists. If name includes either a relative path or
an absloute path to the target link, intermediate steps along the path must be verified before the existence
of the target link can be safely checked. If the path is not verified and an intermediate element of the path
does not exist, H5Lexists will fail. The example in the next paragraph illustrates one step-by-step
method for verifying the existence of a link with a relative or absolute path.

Example: Use the following steps to verify the existence of the link datasetD in the group
group1/group2/softlink_to_group3/, where group1 is a member of the group specified by
loc_id:

First use H5Lexists to verify that group1 exists.◊
If group1 exists, use H5Lexists again, this time with name set to group1/group2, to
verify thatgroup2 exists.

◊

If group2 exists, use H5Lexists with name set to
group1/group2/softlink_to_group3 to verify that softlink_to_group3 exists.

◊

If softlink_to_group3 exists, you can now safely use H5Lexists with name set to
group1/group2/softlink_to_group3/datasetD to verify that the target link,
datasetD, exists.

◊

If the link to be verified is specified with an absolute path, the same approach should be used, but starting
with the first link in the file’s root group. For instance, if datasetD were in
/group1/group2/softlink_to_group3, the first call to H5Lexists would have name set to
/group1.

Note that this is an outline and does not include all necessary details. Depending on circumstances, for
example, you may need to verify that an intermediate link points to a group and that a soft link points to
an existing target.

Parameters:
hid_t loc_id IN: Identifier of the file or group to query.

const char *name IN: The name of the link to check.

hid_t lapl_id IN: Link access property list identifier.
Returns:

Returns TRUE or FALSE if successful; otherwise returns a negative value.

H5Lexists HDF5 Reference Manual

252

Failure Modes:
H5Lexists checks the existence of only the final element in a relative or absolute path; it does not
check any other path elements. The function will therefore fail when both of the following conditions
exist:

name is not local to the group specified by loc_id or, if loc_id is something other than a
group identifier, name is not local to the root group.

◊

Any element of the relative path or absolute path in name, except the target link, does not exist.◊
Fortran90 Interface: h5lexists_f

SUBROUTINE h5lexists_f(loc_id, name, link_exists, hdferr, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! Identifier of file or group to query.
 CHARACTER(LEN=*), INTENT(IN) :: name ! Link name to check.
 LOGICAL, INTENT(OUT) :: link_exists ! .TRUE. if exists, .FALSE. otherwise
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list identifier.
END SUBROUTINE h5lexists_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Lexists

253

Last modified: 11 January 2010

Name:H5Lget_info
Signature:

herr_tH5Lget_info(hid_t link_loc_id, const char *link_name, H5L_info_t *link_buff,
hid_t lapl_id)

Purpose:
Returns information about a link.

Description:
H5Lget_info returns information about the specified link through the link_buff argument.

A file or group identifier, link_loc_id, specifies the location of the link. A link name, link_name,
interpreted relative to loc_id, specifies the link being queried.

lapl_id is the link access property list associated with the link link_name. In the general case, when
default link access properties are acceptable, this can be passed in as H5P_DEFAULT. An example of a
situation that requires a non-default link access property list is when the link is an external link; an
external link may require that a link prefix be set in a link access property list (see
H5Pset_elink_prefix).

H5Lget_info returns information about link_name in the data structure H5L_info_t, which is
described below and defined in H5Lpublic.h. This structure is returned in the buffer link_buff.

 typedef struct {
 H5L_type_t type;
 hbool_t corder_valid;
 int64_t corder;
 H5T_cset_t cset;
 union {
 haddr_t address;
 size_t val_size;
 } u;
 } H5L_info_t;

In the above struct, type specifies the link class. Valid values include the following:

H5L_TYPE_HARD Hard link

H5L_TYPE_SOFT Soft link

H5L_TYPE_EXTERNAL External link

H5L_TYPE_ERROR Error
There will be additional valid values if user-defined links have been registered.

corder specifies the link’s creation order position while corder_valid indicates whether the value
in corder is valid.

If corder_valid is TRUE, the value in corder is known to be valid; if corder_valid is FALSE,
the value in corder is presumed to be invalid;

corder starts at zero (0) and is incremented by one (1) as new links are created. But higher-numbered
entries are not adjusted when a lower-numbered link is deleted; the deleted link’s creation order position

H5Lget_info HDF5 Reference Manual

254

is simply left vacant. In such situations, the value of corder for the last link created will be larger than
the number of links remaining in the group.

cset specifies the character set in which the link name is encoded. Valid values include the following:

H5T_CSET_ASCII US ASCII

H5T_CSET_UTF8 UTF-8 Unicode encoding
address and val_size are returned for hard and symbolic links, respectively. Symbolic links include
soft and external links and some user-defined links.

If the link is a hard link, address specifies the file address that the link points to.

If the link is a symbolic link, val_size will be the length of the link value, e.g., the length of the name
of the pointed-to object with a null terminator.

Parameters:
hid_t link_loc_id IN: File or group identifier.

const char*link_name IN: Name of the link for which information is being sought.

H5L_info_t*link_buff OUT: Buffer in which link information is returned.

hid_t lapl_id IN: Link access property list identifier.
Returns:

Returns a non-negative value if successful, with the fields of link_buff (if non-null) initialized.
Otherwise returns a negative value.

Fortran90 Interface: h5lget_info_f
SUBROUTINE h5lget_info_f(link_loc_id, link_name, &
 cset, corder, f_corder_valid, link_type, address, val_size, &
 hdferr, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: link_loc_id
 ! File or group identifier.
 CHARACTER(LEN=*), INTENT(IN) :: link_name
 ! Name of the link for which information is being sought.
 INTEGER, INTENT(OUT) :: cset
 ! Indicates the character set used for the link’s name.
 INTEGER, INTENT(OUT) :: corder
 ! Specifies the link’s creation order position.
 LOGICAL, INTENT(OUT) :: f_corder_valid
 ! Indicates whether the value in corder is valid.
 INTEGER, INTENT(OUT) :: link_type
 ! Specifies the link class:
 ! H5L_TYPE_HARD_F - Hard link
 ! H5L_TYPE_SOFT_F - Soft link
 ! H5L_TYPE_EXTERNAL_F - External link
 ! H5L_TYPE_ERROR_F - Error
 INTEGER(HADDR_T), INTENT(OUT) :: address
 ! If the link is a hard link, address specifies the file
 ! address that the link points to
 INTEGER(SIZE_T), INTENT(OUT) :: val_size
 ! If the link is a symbolic link, val_size will be the
 ! length of the link value, i.e. the length of the name
 ! of the pointed-to object with a null terminator.

HDF5 Reference Manual H5Lget_info

255

 INTEGER, INTENT(OUT) :: hdferr
 ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list
END SUBROUTINE h5lget_info_f

History:
Release C

1.8.0 Function introduced in this release.

1.8.2 Fortran subroutine added in this release.

1.8.4 Fortran subroutine syntax changed in this release.

H5Lget_info HDF5 Reference Manual

256

Last modified: 11 November 2009

Name:H5Lget_info_by_idx
Signature:

herr_tH5Lget_info_by_idx(hid_t loc_id, const char *group_name, H5_index_t
index_field, H5_iter_order_t order, hsize_t n, H5L_info_t *link_val, hid_t lapl_id)

Purpose:
Retrieves metadata for a link in a group, according to the order within a field or index.

Description:
H5Lget_info_by_idx returns the metadata for a link in a group according to a specified field or
index and a specified order.

The link for which information is to be returned is specified by index_field, order, and n as
follows:

index_field specifies the field by which the links in group_name are ordered. The links
may be indexed on this field, in which case operations seeking specific links are likely to
complete more quickly.

◊

order specifies the order in which the links are to be referenced for the purposes of this
function.

◊

n specifies the position of the subject link. Note that this count is zero-based; 0 (zero) indicates
that the function will return the value of the first link; if n is 5, the function will return the value
of the sixth link; etc.

◊

For example, assume that index_field, order, and n are H5_INDEX_NAME, H5_ITER_DEC, and
5, respectively. H5_INDEX_NAME indicates that the links are accessed in alpha-numeric order by their
names. H5_ITER_DEC specifies that the list be traversed in reverse order, or in decremented order. And
5 specifies that this call to the function will return the metadata for the 6th link (n + 1) from the end.

See H5Literate for a list of valid values and further discussion regarding index_field and
order.

If loc_id specifies the group in which the link resides, group_name can be a dot (.).
Parameters:

hid_t loc_id IN: File or group identifier specifying location of subject group

const char *group_name IN: Name of subject group

H5_index_tindex_field IN: Index or field which determines the order

H5_iter_order_torder IN: Order within field or index

hsize_tn IN: Link for which to retrieve information

H5L_info_t *link_val OUT: Buffer in which link value is returned

hid_t lapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Lget_info_by_idx

257

Fortran90 Interface: h5lget_info_by_idx_f
SUBROUTINE h5lget_info_by_idx_f(loc_id, group_name, index_field, order, n, &
 link_type, f_corder_valid, corder, cset, address, val_size, &
 hdferr, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id
 ! File or group identifier specifying
 ! location of subject group
 CHARACTER(LEN=*), INTENT(IN) :: group_name
 ! Name of subject group
 INTEGER, INTENT(IN) :: index_field
 ! Index/field which determines the order
 ! H5_INDEX_UNKNOWN_F - Unknown index type
 ! H5_INDEX_NAME_F - Index on names
 ! H5_INDEX_CRT_ORDER_F - Index on creation order
 ! H5_INDEX_N_F - Number of indices defined
 INTEGER, INTENT(IN) :: order
 ! Order in which to iterate over index;
 ! Possible values are:
 ! H5_ITER_UNKNOWN_F - Unknown order
 ! H5_ITER_INC_F - Increasing order
 ! H5_ITER_DEC_F - Decreasing order
 ! H5_ITER_NATIVE_F - No particular order,
 ! whatever is fastest
 INTEGER(HSIZE_T), INTENT(IN) :: n
 ! Attribute’s position in index
 INTEGER, INTENT(OUT) :: link_type
 ! Specifies the link class:
 ! H5L_TYPE_HARD_F - Hard link
 ! H5L_TYPE_SOFT_F - Soft link
 ! H5L_TYPE_EXTERNAL_F - External link
 ! H5L_TYPE_ERROR_F - Error
 LOGICAL, INTENT(OUT) :: f_corder_valid
 ! Indicates whether the creation order data is
 ! valid for this attribute
 INTEGER, INTENT(OUT) :: corder
 ! Is a positive integer containing the creation
 ! order of the attribute
 INTEGER, INTENT(OUT) :: cset
 ! Indicates the character set used for the
 ! attribute’s name
 INTEGER(HADDR_T), INTENT(OUT) :: address
 ! If the link is a hard link, address specifies the
 ! file address that the link points to
 INTEGER(SIZE_T), INTENT(OUT) :: val_size
 ! If the link is a symbolic link, val_size will be
 ! the length of the link value, i.e. the length of
 ! the name of the pointed-to object with a null
 ! terminator.
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list
END SUBROUTINE h5lget_info_by_idx_f

H5Lget_info_by_idx HDF5 Reference Manual

258

History:
Release C

1.8.0 Function introduced in this release.

1.8.2 Fortran subroutine added in this release.

1.8.4 Fortran subroutine syntax changed in this release.

HDF5 Reference Manual H5Lget_info_by_idx

259

Name:H5Lget_name_by_idx
Signature:

ssize_tH5Lget_name_by_idx(hid_t loc_id, const char *group_name, H5_index_t
index_field, H5_iter_order_t order, hsize_t n, char *name, size_tsize, hid_t lapl_id)

Purpose:
Retrieves name of the nth link in a group, according to the order within a specified field or index.

Description:
H5Lget_name_by_idx retrieves the name of the nth link in a group, according to the specified order,
order, within a specified field or index, index_field.

If loc_id specifies the group in which the link resides, group_name can be a dot (.).

The size in bytes of name is specified in size. If size is unknown, it can be determined via an initial
H5Lget_name_by_idx call with name set to NULL; the function's return value will be the size of the
name.

Parameters:
hid_t loc_id IN: File or group identifier specifying location of subject group

const char *group_name IN: Name of subject group

H5_index_tindex_field IN: Index or field which determines the order

H5_iter_order_torder IN: Order within field or index

hsize_tn IN: Link for which to retrieve information

char *name OUT: Buffer in which link value is returned

size_tsize IN: Size in bytes of name

hid_t lapl_id IN: Link access property list
Returns:

Returns the size of the link name if successful; otherwise returns a negative value.
Fortran90 Interface: h5lget_name_by_idx_f

SUBROUTINE h5lget_name_by_idx_f(loc_id, group_name, index_field, order, n, &
 name, hdferr, lapl_id, size)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id
 ! File or group identifier specifying location of
 ! subject group
 CHARACTER(LEN=*), INTENT(IN) :: group_name
 ! Name of subject group
 INTEGER, INTENT(IN) :: index_field
 ! Index or field which determines the order
 ! H5_INDEX_UNKNOWN_F - Unknown index type
 ! H5_INDEX_NAME_F - Index on names
 ! H5_INDEX_CRT_ORDER_F - Index on creation order
 ! H5_INDEX_N_F - Number of indices defined
 INTEGER, INTENT(IN) :: order
 ! Order in which to iterate over index:
 ! H5_ITER_UNKNOWN_F - Unknown order
 ! H5_ITER_INC_F - Increasing order
 ! H5_ITER_DEC_F - Decreasing order
 ! H5_ITER_NATIVE_F - No particular order,
 ! whatever is fastest

H5Lget_name_by_idx HDF5 Reference Manual

260

 INTEGER(HSIZE_T), INTENT(IN) :: n
 ! Attribute’s position in index
 CHARACTER(LEN=*), INTENT(OUT) :: name
 ! Buffer in which link value is returned
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(SIZE_T), OPTIONAL, INTENT(OUT) :: size
 ! Indicates the size, in the number of characters,
 ! of the link, returns exact size
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list
END SUBROUTINE h5lget_name_by_idx_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Lget_name_by_idx

261

Last modified: 9 November 2009

Name:H5Lget_val
Signature:

herr_tH5Lget_val(hid_t link_loc_id, const char *link_name, void *linkval_buff, size_t
size, hid_t lapl_id)

Purpose:
Returns the value of a symbolic link.

Description:
H5Lget_val returns the link value of the link link_name.

The parameter link_loc_id is a file or group identifier.

link_name identifies a symbolic link and is defined relative to link_loc_id. Symbolic links include
soft and external links and some user-defined links. This function is not for use with hard links.

The link value is returned in the buffer linkval_buff. For soft links, this is the path to which the link
points, including the null terminator; for external and user-defined links, it is the link buffer.

size is the size of linkval_buff and should be the size of the link value being returned. This size
value can be determined through a call to H5Lget_info; it is returned in the val_size field of the
H5L_info_t struct.

If size is smaller than the size of the returned value, then the string stored in linkval_buff will be
truncated to size bytes. For soft links, this means that the value will not be null terminated.

In the case of external links, the target file and object names are extracted from linkval_buff by
calling H5Lunpack_elink_val.

The link class of link_name can be determined with a call to H5Lget_info.

lapl_id specifies the link access property list associated with the link link_name. In the general
case, when default link access properties are acceptable, this can be passed in as H5P_DEFAULT. An
example of a situation that requires a non-default link access property list is when the link is an external
link; an external link may require that a link prefix be set in a link access property list (see
H5Pset_elink_prefix).

This function should be used only after H5Lget_info has been called to verify that link_name is a
symbolic link. This can be deteremined from the link_type field of the H5L_info_t struct.

Parameters:
hid_t link_loc_id IN: File or group identifier.

const char *link_name IN: Link whose value is to be returned.

void *linkval_buff OUT: The buffer to hold the returned link value.

size_tsize IN: Maximum number of characters of link value to be returned.

hid_t lapl_id IN: List access property list identifier.

H5Lget_val HDF5 Reference Manual

262

Returns:
Returns a non-negative value, with the link value in linkval_buff, if successful. Otherwise returns a
negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Lget_val

263

Last modified: 4 December 2010

Name:H5Lget_val_by_idx
Signature:

herr_tH5Lget_val_by_idx(hid_t loc_id, const char *group_name, H5_index_t
index_type, H5_iter_order_t order, hsize_t n, void *link_val, size_t size, hid_t lapl_id)

Purpose:
Retrieves value of the nth link in a group, according to the order within an index.

Description:
H5Lget_val_by_idx retrieves the value of the nth link in a group, according to the specified order,
order, within an index, index.

For soft links, the value is the path name of the object pointed to.◊
For external links, this is a compound value containing file and path name information; to use this
external link information, it must first be decoded with H5Lunpack_elink_val

◊

For user-defined links, this value will be described in the definition of the user-defined link type.◊
This function will fail if called on a hard link.◊

loc_id specifies the file or group in which the group specified by group_name is located.

group_name specifies the group in which the link exists. If loc_id already specifies the group in
which the link exists, group_name must be a dot (.).

The size in bytes of group_name is specified in size. If size is unknown, it can be determined via an
initial H5Lget_val_by_idx call with size set to NULL; size will be returned with the actual size
of group_name.

If the type of the link is unknown or uncertain, H5Lget_val_by_idx should be called only after the
type has been determined via a call to H5Lget_info_by_idx.

Parameters:
hid_t loc_id IN: File or group identifier specifying location of subject group

const char *group_name IN: Name of subject group

H5_index_tindex_type IN: Type of index; valid values include:
 NAME Indexed by name
 CORDER Indexed by creation order

H5_iter_order_torder IN: Order within field or index; valid values include:
 H5_ITER_INC Iterate in increasing order
 H5_ITER_DEC Iterate in decreasing order
 H5_ITER_NATIVE Iterate in fastest order

hsize_tn IN: Link for which to retrieve information

void *link_val OUT: Pointer to buffer in which link value is returned

size_tsize IN: Size in bytes of group_name

hid_t lapl_id IN: Link access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

H5Lget_val_by_idx HDF5 Reference Manual

264

Name:H5Lis_registered
Signature:

htri_t H5Lis_registered(H5L_type_t link_cls_id)
Purpose:

Determines whether a class of user-defined links is registered.
Description:

H5Lis_registered tests whether a user-defined link class is currently registered, either by the HDF5
Library or by the user through the use of H5Lregister.

A link class must be registered to create new links of that type or to traverse exisitng links of that type.
Parameters:

H5L_type_tlink_cls_id IN: User-defined link class identifier
Returns:

Returns a positive value if the link class has been registered and zero if it is unregistered. Otherwise
returns a negative value; this may mean that the identifier is not a valid user-defined class identifier.

Fortran90 Interface: H5Lis_registered_f
SUBROUTINE H5Lis_registered_f(link_cls_id, registered, hdferr)
 IMPLICIT NONE
 INTEGER, INTENT(IN) :: link_cls_id ! User-defined link class identifier
 LOGICAL, INTENT(OUT) :: registered ! .TRUE. - if the link class is registered
 ! .FALSE. - if it is unregistered
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE H5Lis_registered_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Lis_registered

265

Last modified: 12 August 2009

Name:H5Literate
Signature:

herr_tH5Literate(hid_t group_id, H5_index_t index_type, H5_iter_order_t order, hsize_t
*idx, H5L_iterate_t op, void *op_data)

Purpose:
Iterates through links in a group.

Description:
H5Literate iterates through the links in a group, specified by group_id, in the order of the specified
index, index_type, using a user-defined callback routine op. H5Literate does not recursively
follow links into subgroups of the specified group.

Three parameters are used to manage progress of the iteration: index_type, order, and idx.

index_type specifies the index to be used. If the links have not been indexed by the index type, they
will first be sorted by that index then the iteration will begin; if the links have been so indexed, the sorting
step will be unnecesary, so the iteration may begin more quickly. Valid values include the following:

H5_INDEX_NAME Alpha-numeric index on name

H5_INDEX_CRT_ORDER Index on creation order
order specifies the order in which objects are to be inspected along the index specified in
index_type. Valid values include the following:

H5_ITER_INC Increasing order

H5_ITER_DEC Decreasing order

H5_ITER_NATIVE Fastest available order
idx allows an interrupted iteration to be resumed; it is passed in by the application with a starting point
and returned by the library with the point at which the iteration stopped.

The op callback funtion, the related H5L_info_t struct, and the effect of the callback function’s return
value on the application are described in H5Lvisit.

op_data is a user-defined pointer to the data required to process links in the course of the iteration. This
pointer is passed back to each step of the iteration in the op callback function’s op_data parameter.

As mentioned above, H5Literate is not recursive. In particular, if a member of group_id is found to
be a group, call it subgroup_a, H5Literate does not examine the members of subgroup_a.
When recursive iteration is required, the application can do either of the following:

Use one of the following recursive routines instead of H5Literate:
H5Lvisit
H5Lvisit_by_name
H5Ovisit
H5Ovisit_by_name

◊

Handle the recursion manually, explicitly calling H5Literate on discovered subgroups.◊

H5Literate HDF5 Reference Manual

266

H5Literate assumes that the membership of the group being iterated over remains unchanged through
the iteration; if any of the links in the group change during the iteration, the function’s behavior is
undefined. Note, however, that objects pointed to by the links can be modified.

H5Literate is the same as H5Giterate, except that H5Giterate always proceeds in
alphanumeric order.

Parameters:
hid_tgroup_id IN: Identifier specifying subject group

H5_index_tindex_type IN: Type of index which determines the order

H5_iter_order_torder IN: Order within index

hsize_t *idx IN: Iteration position at which to start
OUT: Position at which an interrupted iteration may be restarted

H5L_iterate_top IN: Callback function passing data regarding the link to the calling
application

void *op_data IN: User-defined pointer to data required by the application for its
processing of the link

Returns:
On success, returns the return value of the first operator that returns a positive value, or zero if all
members were processed with no operator returning non-zero.

On failure, returns a negative value if something goes wrong within the library, or the first negative value
returned by an operator.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Literate

267

Last modified: 12 August 2009

Name:H5Literate_by_name
Signature:

herr_tH5Literate_by_name(hid_t loc_id, const char *group_name, H5_index_t
index_type, H5_iter_order_t order, hsize_t *idx, H5L_iterate_t op, void *op_data, hid_t
*lapl_id)

Purpose:
Iterates through links in a group.

Description:
H5Literate_by_name iterates through the links in a group, specified by loc_id and
group_name, in the order of the specified index, index_type, using a user-defined callback routine
op. H5Literate_by_name does not recursively follow links into subgroups of the specified group.

index_type specifies the index to be used. If the links have not been indexed by the index type, they
will first be sorted by that index then the iteration will begin; if the links have been so indexed, the sorting
step will be unnecesary, so the iteration may begin more quickly. Valid values include the following:

H5_INDEX_NAME Alpha-numeric index on name

H5_INDEX_CRT_ORDER Index on creation order
order specifies the order in which objects are to be inspected along the index specified in
index_type. Valid values include the following:

H5_ITER_INC Increasing order

H5_ITER_DEC Decreasing order

H5_ITER_NATIVE Fastest available order
idx allows an interrupted iteration to be resumed; it is passed in by the application with a starting point
and returned by the library with the point at which the iteration stopped.

H5Literate_by_name is not recursive. In particular, if a member of group_name is found to be a
group, call it subgroup_a, H5Literate_by_name does not examine the members of
subgroup_a. When recursive iteration is required, the application must handle the recursion, explicitly
calling H5Literate_by_name on discovered subgroups.

H5Literate_by_name assumes that the membership of the group being iterated over remains
unchanged through the iteration; if any of the links in the group change during the iteration, the function’s
behavior is undefined. Note, however, that objects pointed to by the links can be modified.

H5Literate_by_name is the same as H5Giterate, except that H5Giterate always proceeds in
alphanumeric order.

Parameters:
hid_t loc_id IN: File or group identifier specifying location of subject group

const char *group_name IN: Name of subject group

H5_index_tindex_type IN: Type of index which determines the order

H5_iter_order_torder IN: Order within index

hsize_t *idx IN: Iteration position at which to start
OUT: Position at which an interrupted iteration may be restarted

H5Literate_by_name HDF5 Reference Manual

268

H5L_iterate_top IN: Callback function passing data regarding the link to the calling
application

void *op_data IN: User-defined pointer to data required by the application for its
processing of the link

hid_t lapl_id IN: Link access property list
Returns:

On success, returns the return value of the first operator that returns a positive value, or zero if all
members were processed with no operator returning non-zero.

On failure, returns a negative value if something goes wrong within the library, or the first negative value
returned by an operator.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Literate_by_name

269

Name:H5Lmove
Signature:

herr_tH5Lmove(hid_tsrc_loc_id, const char *src_name, hid_t dest_loc_id, const char
*dest_name, hid_t lcpl, hid_t lapl)

Purpose:
Renames a link within an HDF5 file.

Description:
H5Lmove renames a link within an HDF5 file. The original link, src_name, is removed from the group
graph and the new link, dest_name, is inserted; this change is accomplished as an atomic operation.

src_loc_id and src_name identify the existing link. src_loc_id is either a file or group
identifier; src_name is the path to the link and is interpreted relative to src_loc_id.

dest_loc_id and dest_name identify the new link. dest_loc_id is either a file or group
identifier; dest_name is the path to the link and is interpreted relative to dest_loc_id.

lcpl and lapl are the link creation and link access property lists, respectively, associated with the new
link, dest_name.

Through these property lists, several properties are available to govern the behavior of H5Lmove. The
property controlling creation of missing intermediate groups is set in the link creation property list with
H5Pset_create_intermediate_group; H5Lmove ignores any other properties in the link
creation property list. Properties controlling character encoding, link traversals, and external link prefixes
are set in the link access property list with H5Pset_char_encoding, H5Pset_nlinks, and
H5Pset_elink_prefix, respectively.

Warning:
Exercise care in moving links as it is possible to render data in a file inaccessible with H5Lmove. If the
link being moved is on the only path leading to an HDF5 object, that object may become permanently
inaccessible in the file.

Parameters:
hid_tsrc_loc_id IN: Original file or group identifier.

const char*src_name IN: Original link name.

hid_tdest_loc_id IN: Destination file or group identifier.

const char*dest_name IN: New link name.

hid_t lcpl_id IN: Link creation property list identifier to be associated with the new
link.

hid_t lapl_id IN: Link access property list identifier to be associated with the new link.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5lmove_f

SUBROUTINE h5lmove_f(src_loc_id, src_name, dest_loc_id, dest_name, hdferr, &
 lcpl_id, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: src_loc_id
 ! Original file or group identifier.
 CHARACTER(LEN=*), INTENT(IN) :: src_name
 ! Original link name.
 INTEGER(HID_T), INTENT(IN) :: dest_loc_id
 ! Destination file or group identifier.

H5Lmove HDF5 Reference Manual

270

 CHARACTER(LEN=*), INTENT(IN) :: dest_name
 ! new link name.
 INTEGER(HID_T), INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lcpl_id
 ! Link creation property list identifier
 ! to be associated with the new link.
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link access property list identifier
 ! to be associated with the new link.
END SUBROUTINE h5lmove_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Lmove

271

Last modified: 11 January 2010

Name:H5Lregister
Signature:

herr_tH5Lregister(const H5L_class_t * link_class)
Purpose:

Registers user-defined link class or changes behavior of existing class.
Description:

H5Lregister registers a class of user-defined links, or changes the behavior of an existing class.

The struct H5L_class_t is defined in H5Lpublic.h as follows:

 typedef struct H5L_class_t {
 int version; /* Version number of this struct */
 H5L_type_t class_id; /* Link class identifier */
 const char *comment; /* Comment for debugging */
 H5L_create_func_t create_func; /* Callback during link creation */
 H5L_move_func_t move_func; /* Callback after moving link */
 H5L_copy_func_t copy_func; /* Callback after copying link */
 H5L_traverse_func_t trav_func; /* The main traversal function */
 H5L_delete_func_t del_func; /* Callback for link deletion */
 H5L_query_func_t query_func; /* Callback for queries */
 } H5L_class_t;

The link class passed in will override any existing link class for the specified link class identifier
class_id. The class definition must include at least a H5L_class_t version (which should be
H5L_LINK_CLASS_T_VERS), a link class identifier, and a traversal function, trav_func.

Valid values of class_id already used in the HDF5 distribution include the following (defined in
H5Lpublic.h):

H5L_TYPE_HARD Hard link

H5L_TYPE_SOFT Soft link

H5L_TYPE_EXTERNAL
External
link

class_id must be a value between H5L_TYPE_UD_MIN and H5L_TYPE_UD_MAX (which equals
H5L_TYPE_MAX).

Important details include the following:

H5L_TYPE_MAX is the maximum allowed value for a link type identifier.

H5L_TYPE_UD_MIN equals H5L_TYPE_EXTERNAL.

H5L_TYPE_UD_MAX equals H5L_TYPE_MAX.

H5L_TYPE_HARD and H5L_TYPE_SOFT reside in the reserved space below
H5L_TYPE_UD_MIN.

H5L_TYPE_ERROR indicates that an error has occurred.
Notes:

If you plan to distribute files with a new user-defined link class, please contact the Help Desk at The HDF
Group to help prevent collisions between class_id values.

H5Lregister HDF5 Reference Manual

272

As distributed with the HDF5 Library, the external link class is implemented as an example of a
user-defined link class and H5L_LINK_EXTERNAL equals H5L_LINK_UD_MIN. Therefore,
class_id in the H5L_class_tH5L_LINK_UD_MIN unless you intend to overwrite or modify the
behavior of external links.

Parameters:
const H5L_class_t *link_class IN: Struct describing user-defined link class

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Lregister

273

Last modified: 11 January 2010

Name:H5Lunpack_elink_val
Signature:

herr_tH5Lunpack_elink_val(char *ext_linkval, size_t link_size, unsigned *flags,
const char **filename, const char **obj_path)

Purpose:
Decodes external link information.

Description:
H5Lunpack_elink_val decodes the external link information returned by H5Lget_val in the
ext_linkval buffer.

ext_linkval should be the buffer set by H5Lget_val and will consist of two NULL-terminated
strings, the filename and object path, one after the other.

Given this buffer, H5Lunpack_elink_val creates pointers to the filename and object path within the
buffer and returns them in filename and obj_path, unless they are passed in as NULL.

H5Lunpack_elink_val requires that ext_linkval contain a concatenated pair of null-terminated
strings, so use of this function on a string that is not an external link udata buffer may result in a
segmentation fault. This failure can be avoided by adhering to the following procedure:

Call H5Lget_info to get the link type and the size of the link value.1.
Verify that the link is an external link, i.e., that its link type is H5L_TYPE_EXTERNAL.2.
Call H5Lget_val to get the link value.3.
Call H5Lunpack_elink_val to unpack that value.4.

Parameters:

const char *ext_linkval IN: Buffer containing external link information

size_tlink_size IN: Size, in bytes, of the ext_linkval buffer

unsigned *flags OUT: External link flags, packed as a bitmap
(Reserved as a bitmap for flags; no flags are currently defined, so the
only valid value is 0.)

const char **filename OUT: Returned filename

const char **obj_path OUT: Returned object path, relative to filename

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

H5Lunpack_elink_val HDF5 Reference Manual

274

Name:H5Lunregister
Signature:

herr_tH5Lunregister(H5L_type_t link_cls_id)
Purpose:

Unregisters a class of user-defined links.
Description:

H5Lunregister unregisters a class of user-defined links, preventing them from being traversed,
queried, moved, etc.

A link class can be re-registered using H5Lregister.
Parameters:

H5L_type_tlink_cls_id IN: User-defined link class identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Lunregister

275

Name:H5Lvisit
Signature:

herr_tH5Lvisit(hid_t group_id, H5_index_t index_type, H5_iter_order_t order,
H5L_iterate_top, void *op_data)

Purpose:
Recursively visits all links starting from a specified group.

Description:
H5Lvisit is a recursive iteration function to visit all links in and below a group in an HDF5 file, thus
providing a mechanism for an application to perform a common set of operations across all of those links
or a dynamically selected subset. For non-recursive iteration across the members of a group, see
H5Literate.

The group serving as the root of the iteration is specified by its group identifier, group_id

Two parameters are used to establish the iteration: index_type and order.

index_type specifies the index to be used. If the links have not been indexed by the index type, they
will first be sorted by that index then the iteration will begin; if the links have been so indexed, the sorting
step will be unnecesary, so the iteration may begin more quickly. Valid values include the following:

H5_INDEX_NAME Alpha-numeric index on name

H5_INDEX_CRT_ORDER Index on creation order
Note that the index type passed in index_type is a best effort setting. If the application passes in a
value indicating iteration in creation order and a group is encountered that was not tracked in creation
order, that group will be iterated over in alpha-numeric order by name, or name order. (Name order is the
native order used by the HDF5 Library and is always available.)

order specifies the order in which objects are to be inspected along the index specified in
index_type. Valid values include the following:

H5_ITER_INC Increasing order

H5_ITER_DEC Decreasing order

H5_ITER_NATIVE Fastest available order
The protoype of the callback function op is as follows (as defined in the source code file
H5Lpublic.h):

herr_t (*H5L_iterate_t)(hid_t g_id, const char *name, const H5L_info_t *info, void
*op_data)

The parameters of this callback function have the following values or meanings:

g_id Group that serves as root of the iteration; same value as the H5Lvisit
group_id parameter

name Name of link, relative to g_id, being examined at current step of the iteration

info H5L_info_t struct containing information regarding that link

H5Lvisit HDF5 Reference Manual

276

op_data User-defined pointer to data required by the application in processing the link; a
pass-through of the op_data pointer provided with the H5Lvisit function
call

The H5L_info_t struct is defined (in H5Lpublic.h) as follows:

 typedef struct {
 H5L_type_t type; /* Type of link */
 hbool_t corder_valid; /* Indicates whether creation */
 /* order is valid */
 int64_t corder; /* Creation order */
 H5T_cset_t cset; /* Character set of link name */
 union {
 haddr_t address; /* Address hard link points to */
 size_t val_size; /* Size of soft link or */
 /* user-defined link value */
 } u;
 } H5L_info_t;

The possible return values from the callback function, and the effect of each, are as follows:

Zero causes the visit iterator to continue, returning zero when all group members have been
processed.

◊

A positive value causes the visit iterator to immediately return that positive value, indicating
short-circuit success. The iterator can be restarted at the next group member.

◊

A negative value causes the visit iterator to immediately return that value, indicating failure. The
iterator can be restarted at the next group member.

◊

The H5Lvisit op_data parameter is a user-defined pointer to the data required to process links in the
course of the iteration. This pointer is passed back to each step of the iteration in the op callback
function’s op_data parameter.

H5Lvisit and H5Ovisit are companion functions: one for examining and operating on links; the
other for examining and operating on the objects that those links point to. Both functions ensure that by
the time the function completes successfully, every link or object below the specified point in the file has
been presented to the application for whatever processing the application requires.

Parameters:
hid_tgroup_id IN: Identifier of the group at which the recursive iteration begins.

H5_index_tindex_type IN: Type of index; valid values include:
H5_INDEX_NAME
H5_INDEX_CRT_ORDER

H5_iter_order_torder IN: Order in which index is traversed; valid values include:
H5_ITER_DEC
H5_ITER_INC
H5_ITER_NATIVE

H5L_iterate_top IN: Callback function passing data regarding the link to the calling
application

void *op_data IN: User-defined pointer to data required by the application for its
processing of the link

HDF5 Reference Manual H5Lvisit

277

Returns:
On success, returns the return value of the first operator that returns a positive value, or zero if all
members were processed with no operator returning non-zero.

On failure, returns a negative value if something goes wrong within the library, or the first negative value
returned by an operator.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

H5Lvisit HDF5 Reference Manual

278

Name:H5Lvisit_by_name
Signature:

herr_tH5Lvisit_by_name(hid_t loc_id, const char *group_name, H5_index_t index_type,
H5_iter_order_torder, H5L_iterate_t op, void *op_data, hid_t lapl_id)

Purpose:
Recursively visits all links starting from a specified group.

Description:
H5Lvisit_by_name is a recursive iteration function to visit all links in and below a group in an HDF5
file, thus providing a mechanism for an application to perform a common set of operations across all of
those links or a dynamically selected subset. For non-recursive iteration across the members of a group,
see H5Literate.

The group serving as the root of the iteration is specified by the loc_id / group_name parameter pair.
loc_id specifies a file or group; group_name specifies either a group in the file (with an absolute
name based in the file’s root group) or a group relative to loc_id. If loc_id fully specifies the group
that is to serve as the root of the iteration, group_name should be '.' (a dot). (Note that when
loc_id fully specifies the the group that is to serve as the root of the iteration, the user may wish to
consider using H5Lvisit instead of H5Lvisit_by_name.)

Two parameters are used to establish the iteration: index_type and order.

index_type specifies the index to be used. If the links have not been indexed by the index type, they
will first be sorted by that index then the iteration will begin; if the links have been so indexed, the sorting
step will be unnecesary, so the iteration may begin more quickly. Valid values include the following:

H5_INDEX_NAME Alpha-numeric index on name

H5_INDEX_CRT_ORDER Index on creation order
Note that the index type passed in index_type is a best effort setting. If the application passes in a
value indicating iteration in creation order and a group is encountered that was not tracked in creation
order, that group will be iterated over in alpha-numeric order by name, or name order. (Name order is the
native order used by the HDF5 Library and is always available.)

order specifies the order in which objects are to be inspected along the index specified in
index_type. Valid values include the following:

H5_ITER_INC Increasing order

H5_ITER_DEC Decreasing order

H5_ITER_NATIVE Fastest available order
The op callback funtion, the related H5L_info_t struct, and the effect that the callback function’s return
value has on the application are described in H5Lvisit.

HDF5 Reference Manual H5Lvisit_by_name

279

The H5Lvisit_by_name op_data parameter is a user-defined pointer to the data required to process
links in the course of the iteration. This pointer is passed back to each step of the iteration in the callback
function’s op_data parameter.

lapl_id is a link access property list. In the general case, when default link access properties are
acceptable, this can be passed in as H5P_DEFAULT. An example of a situation that requires a non-default
link access property list is when the link is an external link; an external link may require that a link prefix
be set in a link access property list (see H5Pset_elink_prefix).

H5Lvisit_by_name and H5Ovisit_by_name are companion functions: one for examining and
operating on links; the other for examining and operating on the objects that those links point to. Both
functions ensure that by the time the function completes successfully, every link or object below the
specified point in the file has been presented to the application for whatever processing the application
requires.

Parameters:
hid_t loc_id IN: Identifier of a file or group

const char *name IN: Name of the group, generally relative to loc_id, that will serve as
root of the iteration

H5_index_tindex_type IN: Type of index; valid values include:
H5_INDEX_NAME
H5_INDEX_CRT_ORDER

H5_iter_order_torder IN: Order in which index is traversed; valid values include:
H5_ITER_DEC
H5_ITER_INC
H5_ITER_NATIVE

H5L_iterate_top IN: Callback function passing data regarding the link to the calling
application

void *op_data IN: User-defined pointer to data required by the application for its
processing of the link

hid_t lapl_id IN: Link access property list identifier
Returns:

On success, returns the return value of the first operator that returns a positive value, or zero if all
members were processed with no operator returning non-zero.

On failure, returns a negative value if something goes wrong within the library, or the first negative value
returned by an operator.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

H5Lvisit_by_name HDF5 Reference Manual

280

H5O: Object Interface

Object API Functions

The Object interface, H5O, functions manipulate objects in an HDF5 file. This interface is designed to be used in
conjunction with the Links interface (H5L).

The C Interfaces:

H5Oopen•
H5Olink•
H5Oclose•
H5Ocopy•
H5Ovisit•
H5Ovisit_by_name•

H5Oset_comment•
H5Oset_comment_by_name•
H5Oget_comment•
H5Oget_comment_by_name•
H5Oget_info•
H5Oget_info_by_name•
H5Oget_info_by_idx•

H5Oopen_by_idx•
H5Oopen_by_addr•

H5Oincr_refcount•
H5Odecr_refcount•

Alphabetical Listing

H5Oclose•
H5Ocopy•
H5Odecr_refcount•
H5Oget_comment•
H5Oget_comment_by_name•
H5Oget_info•

H5Oget_info_by_idx•
H5Oget_info_by_name•
H5Oincr_refcount•
H5Olink•
H5Oopen•
H5Oopen_by_addr•

H5Oopen_by_idx•
H5Oset_comment•
H5Oset_comment_by_name•
H5Ovisit•
H5Ovisit_by_name•

The FORTRAN90 Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

h5olink_f•
h5oopen_f•

HDF5 Reference Manual

281

HDF5 Reference Manual

282

Name:H5Oclose
Signature:

herr_tH5Oclose(hid_t object_id)
Purpose:

Closes an object in an HDF5 file.
Description:

H5Oclose closes the group, dataset, or named datatype specified by object_id.

This function is the companion to H5Oopen, and has the same effect as calling H5Gclose, H5Dclose,
or H5Tclose.

H5Oclose is not used to close a dataspace, attribute, property list, or file.
Parameters:

hid_t object_id IN: Object identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Oclose

283

Last modified: 17 August 2010

Name:H5Ocopy
Signature:

herr_tH5Ocopy(hid_t src_loc_id, const char *src_name, hid_t dst_loc_id, const char
*dst_name, hid_t ocpypl_id, hid_t lcpl_id)

Purpose:
Copies an object in an HDF5 file.

Description:
H5Ocopy copies the group, dataset or named datatype specified by src_name from the file or group
specified by src_loc_id to the destination location dst_loc_id.

The destination location, as specified in dst_loc_id, may be a group in the current file or a location in
a different file. If dst_loc_id is a file identifier, the copy will be placed in that file’s root group.

The new copy will be created with the name dst_name. dst_name must not pre-exist in the
destination location; if dst_name already exists at the location dst_loc_id, H5Ocopy will fail.

The new copy of the object is created with the creation property lists specified by ocpypl_id and
lcpl_id.

H5Ocopy will always try to make a copy of the object specified in src_name.

If the object specified by src_name is a group containing a soft or external link, the default is
that the new copy will contain a soft or external link with the same value as the original. See
H5Pset_copy_object for optional settings.

◊

If the path specified in src_name is or contains a soft link or an external link, H5Ocopy will
copy the target object. Use H5Lcopy if the intent is to create a new soft or external link with the
same value as the original link.

◊

Several flags are available to govern the behavior of H5Ocopy. These flags are set in the creation
property list cplist_id with H5Pset_copy_object and
H5Pset_create_intermediate_group. All of the available flags are described at
H5Pset_copy_object.

Parameters:
hid_tsrc_loc_id IN: Object identifier indicating the location of the source object to be

copied

const char *src_name IN: Name of the source object to be copied

hid_tdst_loc_id IN: Location identifier specifying the destination

const char *dst_name IN: Name to be assigned to the new copy

hid_tocpypl_id IN: Object copy property list

hid_t lcpl_id IN: Link creation property list for the new hard link
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

H5Ocopy HDF5 Reference Manual

284

Name:H5Odecr_refcount
Signature:

herr_tH5Odecr_refcount(hid_t object_id)
Purpose:

Decrements an object reference count.
Description:

H5Odecr_refcount decrements the hard link reference count for an object. It should be used any time
a user-defined link that references an object by address is deleted. In general, H5Oincr_refcount will
have been used previously, when the link was created.

An object’s reference count is the number of hard links in the file that point to that object. See the
“Programming Model” section of the “HDF5 Groups” chapter in the HDF5 User’s Guide for a more
complete discussion of reference counts.

If a user application needs to determine an object’s reference count, an H5Oget_info call is required;
the reference count is returned in the rc field of the H5O_info_t struct.

Warning: This function must be used with care!
Improper use can lead to inaccessible data, wasted space in the file, or file corruption.

Parameters:
hid_t object_id IN: Object identifier

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Odecr_refcount

285

Name:H5Oget_comment
Signature:

ssize_tH5Oget_comment(hid_t object_id, char *comment, size_t bufsize,)
Purpose:

Retrieves comment for specified object.
Description:

H5Oget_comment retrieves the comment for the specified object in the buffer comment.

The target object is specified by an identifier, object_id.

The size in bytes of the comment, including the NULL terminator, is specified in bufsize. If bufsize
is unknown, a preliminary H5Oget_comment call with the pointer comment set to NULL will return
the size of the comment without the NULL terminator.

If bufsize is set to a smaller value than described above, only bufsize bytes of the comment,
without a NULL terminator, are returned in comment.

If an object does not have a comment, the empty string is returned in comment.
Parameters:

hid_tobject_id IN: Identifier for the target object.

char *comment OUT: The comment.

size_tbufsize IN: Anticipated required size of the comment buffer.
Returns:

Upon success, returns the number of characters in the comment, not including the NULL terminator, or
zero (0) if the object has no comment. The value returned may be larger than bufsize. Otherwise
returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

H5Oget_comment HDF5 Reference Manual

286

Name:H5Oget_comment_by_name
Signature:

ssize_tH5Oget_comment_by_name(hid_t loc_id, const char *name, char *comment, size_t
bufsize, hid_t lapl_id)

Purpose:
Retrieves comment for specified object.

Description:
H5Oget_comment_by_name retrieves the comment for an object in the buffer comment.

The target object is specified by loc_id and name. loc_id can specify any object in the file. name
can be one of the following:
 — The name of the object relative to loc_id
 — An absolute name of the object, starting from /, the file’s root group
 — A dot (.), if loc_id fully specifies the object

The size in bytes of the comment, including the NULL terminator, is specified in bufsize. If bufsize
is unknown, a preliminary H5Oget_comment_by_name call with the pointer comment set to NULL
will return the size of the comment without the NULL terminator.

If bufsize is set to a smaller value than described above, only bufsize bytes of the comment,
without a NULL terminator, are returned in comment.

If an object does not have a comment, the empty string is returned in comment.

lapl_id contains a link access property list identifier. A link access propety list can come into play
when traversing links to access an object.

Parameters:
hid_t loc_id IN: Identifier of a file, group, dataset, or named datatype.

const char *name IN: Name of the object whose comment is to be retrieved, specified as a path
relative to loc_id.
name can be '.' (a dot) if loc_id fully specifies the object for which the
associated comment is to be retrieved.

char *comment OUT: The comment.

size_tbufsize IN: Anticipated required size of the comment buffer.

hid_t lapl_id IN: Link access property list identifier.
Returns:

Upon success, returns the number of characters in the comment, not including the NULL terminator, or
zero (0) if the object has no comment. The value returned may be larger than bufsize. Otherwise
returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Oget_comment_by_name

287

Name:H5Oget_info
Signature:

herr_tH5Oget_info(hid_t object_id, H5O_info_t *object_info)
Purpose:

Retrieves the metadata for an object specified by an identifier.
Description:

H5Oget_info specifies an object by its identifier, object_id, and retrieves the metadata describing
that object in object_info, an H5O_info_t struct.

An H5O_info_t struct is defined (in H5Opublic.h) as follows :

typedef struct H5O_info_t {
 unsigned long fileno; /* File number that object is */
 /* located in */
 haddr_t addr; /* Object address in file */
 H5O_type_t type; /* Basic object type (group, */
 /* dataset, etc.) */
 unsigned rc; /* Reference count of object */
 time_t atime; /* Access time */
 time_t mtime; /* Modification time */
 time_t ctime; /* Change time */
 time_t btime; /* Birth time */
 hsize_t num_attrs; /* # of attributes attached to object */
 struct {
 unsigned version; /* Version number of header format in */
 /* file */
 unsigned nmesgs; /* Number of object header messages */
 unsigned nchunks; /* Number of object header chunks */
 unsigned flags; /* Object header status flags */
 struct {
 hsize_t total; /* Total space for storing object */
 /* header in file */
 hsize_t meta; /* Space within header for object */
 /* header metadata information */
 hsize_t mesg; /* Space within header for actual */
 /* message information */
 hsize_t free; /* Free space within object header */
 } space;
 struct {
 uint64_t present; /* Flags to indicate presence of */
 /* message type in header */
 uint64_t shared; /* Flags to indicate message type is */
 /* shared in header */
 } mesg;
 } hdr;
 /* Extra metadata storage for obj & attributes */
 struct {
 H5_ih_info_t obj; /* v1/v2 B-tree & local/fractal heap */
 /* for groups, B-tree for chunked */
 /* datasets */
 H5_ih_info_t attr; /* v2 B-tree & heap for attributes */
 } meta_size;
} H5O_info_t;

H5Oget_info HDF5 Reference Manual

288

Parameters:
hid_tobject_id IN: Identifier for target object

H5O_info_t *object_info OUT: Buffer in which to return object information
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Oget_info

289

Name:H5Oget_info_by_idx
Signature:

herr_tH5Oget_info_by_idx(hid_t loc_id, const char *group_name, H5_index_t
index_field, H5_iter_order_t order, hsize_t n, H5O_info_t *object_info, hid_t lapl_id)

Purpose:
Retrieves the metadata for an object, identifying the object by an index position.

Description:
H5Oget_info_by_idx specifies a location, loc_id; a group name, group_name; an index by
which obects in that group are tracked, index_field; the order by which the index is to be traversed,
order; and an object’s position n within that index and retrieves the metadata describing that object in
the struct object_info.

object_info, in which the object information is returned, is a struct of type H5O_info_t. This struct
type is described in the H5Oget_info function entry.

If loc_id fully specifies the group in which the object resides, group_name can be a dot (.).

The link access property list, lapl_id, is not currently used; it should be passed in as NULL.
Parameters:

hid_t loc_id IN: File or group identifier specifying location of group in which
object is located

const char *group_name IN: Name of group in which object is located

H5_index_tindex_field IN: Index or field that determines the order

H5_iter_order_torder IN: Order within field or index

hsize_tn IN: Object for which information is to be returned

H5O_info_t *object_info OUT: Buffer in which to return object information

hid_t lapl_id IN: Link access property list
(Not currently used; pass as NULL.)

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

H5Oget_info_by_idx HDF5 Reference Manual

290

Name:H5Oget_info_by_name
Signature:

herr_tH5Oget_info_by_name(hid_t loc_id, const char *object_name, H5O_info_t
*object_info, hid_t lapl_id)

Purpose:
Retrieves the metadata for an object, identifying the object by location and relative name.

Description:
H5Oget_info_by_name specifies an object’s location and name, loc_id and object_name,
respectively, and retrieves the metadata describing that object in object_info, an H5O_info_t struct.

The struct H5O_info_t is defined in H5Opublic.h and described in the H5Oget_info function entry.

The link access property list, lapl_id, is not currently used; it should be passed in as H5P_DEFAULT.
Parameters:

hid_t loc_id IN: File or group identifier specifying location of group in which
object is located

const char *name IN: Name of group, relative to loc_id

H5O_info_t *object_info OUT: Buffer in which to return object information

hid_t lapl_id IN: Link access property list
(Not currently used; pass as H5P_DEFAULT.)

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Oget_info_by_name

291

Name:H5Oincr_refcount
Signature:

herr_tH5Oincr_refcount(hid_t object_id)
Purpose:

Increments an object reference count.
Description:

H5Oincr_refcount increments the hard link reference count for an object. It should be used any time
a user-defined link that references an object by address is added. When the link is deleted,
H5Odecr_refcount should be used.

An object’s reference count is the number of hard links in the file that point to that object. See the
“Programming Model” section of the “HDF5 Groups” chapter in the HDF5 User’s Guide for a more
complete discussion of reference counts.

If a user application needs to determine an object’s reference count, an H5Oget_info call is required;
the reference count is returned in the rc field of the H5O_info_t struct.

Warning: This function must be used with care!
Improper use can lead to inaccessible data, wasted space in the file, or file corruption.

Parameters:
hid_t object_id IN: Object identifier

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

H5Oincr_refcount HDF5 Reference Manual

292

Name:H5Olink
Signature:

herr_tH5Olink(hid_t object_id, hid_t new_loc_id, const char *new_link_name, hid_t
lcpl, hid_t lapl)

Purpose:
Creates a hard link to an object in an HDF5 file.

Description:
H5Olink creates a new hard link to an object in an HDF5 file.

new_loc_id and new_name specify the location and name of the new link while object_id
identifies the object that the link points to.

H5Olink is designed for two purposes:

To create the first hard link to an object that has just been created with one of the
H5*create_anon functions or with H5Tcommit_anon.

♦

To add additional structure to an existing file so that, for example, an object can be shared among
multiple groups.

♦

lcpl and lapl are the link creation and access property lists associated with the new link.
Parameters:

hid_tobject_id IN: Object to be linked.

hid_tnew_loc_id IN: File or group identifier specifying location at which object is
to be linked.

const char*new_link_name IN: Name of link to be created, relative to new_loc_id.

hid_t lcpl_id IN: Link creation property list identifier.

hid_t lapl_id IN: Link access property list identifier.
Example:

To create a new link to an object while simultaneously creating missing intermediate groups:
Suppose that an application must create the group C with the path /A/B01/C but may not know at run
time whether the groups A and B01 exist. The following code ensures that those groups are created if they
are missing:

 hid_t lcpl_id = H5Pcreate(H5P_LINK_CREATE); /* Creates a link creation
 * property list (LCPL). */
 int status = H5Pset_create_intermediate_group(lcpl_id, TRUE);
 /* Sets "create missing intermediate
 * groups" property in that LCPL. */
 hid_t gid = H5Gcreate_anon(file_id, H5P_DEFAULT, H5P_DEFAULT);
 /* Creates a group without linking
 * it into the file structure. */
 status = H5Olink(obj_id, file_id, "/A/B01/C", lcpl_id, H5P_DEFAULT);
 /* Links group into file structure.*/

Note that unless the object is intended to be temporary, the H5Olink call is mandatory if an object
created with one of the H5*create_anon functions (or with H5Tcommit_anon) is to be retained in
the file; without an H5Olink call, the object will not be linked into the HDF5 file structure and will be
deleted when the file is closed.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Olink

293

Fortran90 Interface: h5olink_f
SUBROUTINE h5olink_f(object_id, new_loc_id, new_link_name, hdferr, &
 lcpl_id, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: object_id
 ! Object to be linked
 INTEGER(HID_T), INTENT(IN) :: new_loc_id
 ! File or group identifier specifying
 ! location at which object is to be linked.
 CHARACTER(LEN=*), INTENT(IN) :: new_link_name
 ! Name of link to be created,
 ! relative to new_loc_id.
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! Success: 0
 ! Failure: -1
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lcpl_id
 ! Link creation property list identifier.
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Link creation property list identifier.
END SUBROUTINE h5olink_f

History:
Release C

1.8.0 Function introduced in this release.

H5Olink HDF5 Reference Manual

294

Name:H5Oopen
Signature:

hid_tH5Oopen(hid_tloc_id, const char *name, hid_t lapl_id)
Purpose:

Opens an object in an HDF5 file by location identifier and path name.
Description:

H5Oopen opens a group, dataset, or named datatype specified by a location, loc_id, and a path name,
name, in an HDF5 file.

This function opens the object in the same manner as H5Gopen, H5Topen, and H5Dopen. However,
H5Oopen does not require the type of object to be known beforehand. This can be useful with
user-defined links, for instance, when only a path may be known. H5Oopen cannot be used to open a
dataspace, attribute, property list, or file.

Once an object of unknown type has been opened with H5Oopen, the type of that object can be
determined by means of an H5Iget_type call.

loc_id can be either a file or group identifier. name must be the path to that object relative to loc_id.

lapl_id is the link access property list associated with the link pointing to the object. If default link
access properties are appropriate, this can be passed in as H5P_DEFAULT.

When it is no longer needed, the opened object should be closed with H5Oclose, H5Gclose,
H5Tclose, or H5Dclose.

Parameters:
hid_t loc_id IN: File or group identifier

const char *name IN: Path to the object, relative to loc_id.

hid_t lapl_id IN: Access property list identifier for the link pointing to the object
Returns:

Returns an object identifier for the opened object if successful; otherwise returns a negative value.
Fortran90 Interface: h5oopen_f

SUBROUTINE h5oopen_f(loc_id, name, obj_id, hdferr, lapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Path to the object,
 ! relative to loc_id
 INTEGER(HID_T), INTENT(OUT) :: obj_id ! Object identifier for opened object
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! Success: 0
 ! Failure: -1
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lapl_id
 ! Attribute access property list
END SUBROUTINE h5oopen_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Oopen

295

Last modified: 4 November 2009

Name:H5Oopen_by_addr
Signature:

hid_tH5Oopen_by_addr(hid_t loc_id, haddr_t addr)
Purpose:

Opens an object using its address within an HDF5 file.
Description:

H5Oopen_by_addr opens a group, dataset, or named datatype using its address within an HDF5 file,
addr. The resulting opened object is identical to an object opened with H5Oopen and should be closed
with H5Oclose or an object-type-specific closing function (such as H5Gclose) when no longer
needed.

loc_id can be either the file identifier or a group identifier in the file. In either case, the HDF5 Library
uses the identifier only to identify the file.

The object’s address within the file, addr, is the byte offset of the first byte of the object header from the
beginning of the HDF5 file space, i.e., from the beginning of the super block (see the “HDF5 Storage
Model” section of the “The HDF5 Data Model and File Structure” chapter of the HDF5 User’ Guide).

addr can be obtained via either of two function calls. H5Gget_objinfo returns the object’s address in
the objno field of the H5G_stat_t struct; H5Lget_linkinfo returns the address in the address
field of the H5L_linkinfo_t struct.

Warning: This function must be used with care!
Improper use can lead to inaccessible data, wasted space in the file, or file corruption.

This function is dangerous if called on an invalid address. The risk can be safely overcome by
retrieving the object address with H5Gget_objinfo or H5Lget_linkinfo immediately before
calling H5Oopen_by_addr. The immediacy of the operation can be important; if time has elapsed
and the object has been deleted from the file, the address will be invalid and file corruption can result.

The address of the HDF5 file on a physical device has no effect on H5Oopen_by_addr, nor does the
use of any file driver. As stated above, the object address is its offset within the HDF5 file; HDF5’s file
drivers will transparently map this to an address on a storage device.

Parameters:
hid_t loc_id IN: File or group identifier

haddr_t addr IN: Object’s address in the file
Returns:

Returns an object identifier for the opened object if successful; otherwise returns a negative value.
Fortran90 Interface: h5oopen_by_addr_f

 SUBROUTINE h5oopen_by_addr_f(loc_id, addr, obj_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T) , INTENT(IN) :: loc_id ! File or group identifier
 INTEGER(HADDR_T), INTENT(IN) :: addr ! Object’s address in the file
 INTEGER(HID_T) , INTENT(OUT) :: obj_id ! Object identifier for the
 ! opened object
 INTEGER , INTENT(OUT) :: hdferr ! Error code
 ! Success: 0
 ! Failure: -1
 END SUBROUTINE

H5Oopen_by_addr HDF5 Reference Manual

296

History:
Release Change

1.8.0 Function introduced in this release.

1.8.4 Fortran subroutine added in this release.

HDF5 Reference Manual H5Oopen_by_addr

297

Name:H5Oopen_by_idx
Signature:

hid_tH5Oopen_by_idx(hid_t loc_id, const char *group_name, H5_index_t index_type,
H5_iter_order_torder, hsize_t n, hid_t lapl_id)

Purpose:
Open the nth object in a group.

Description:
H5Oopen_by_idx opens the nth object in the group specified by loc_id and group_name.

loc_id specifies a file or group. group_name specifies the group relative to loc_id in which the
object can be found. If loc_id fully specifies the group in which the object resides, group_name can
be a dot (.).

The specific object to be opened within the group is specified by index_type, order, and n as
follows:

index_type specifies the type of index by which objects are ordered. Valid index types
include H5_INDEX_NAME, indexed by name, and H5_INDEX_CRT_ORDER, indexed by
creation order.

◊

order specifies the order in which the links are to be referenced for the purposes of this
function. Valid orders include H5_ITER_INC for increasing order, H5_ITER_DEC for
decreasing order, and H5_ITER_NATIVE. Rather than implying a particular order,
H5_ITER_NATIVE instructs the HDF5 Library to iterate through the objects in the fastest
available order, i.e., in a natural order.

◊

n specifies the position of the object within the index. Note that this count is zero-based; 0 (zero)
indicates that the function will return the value of the first object; if n is 5, the function will
return the value of the sixth object; etc.

◊

If lapl_id specifies the link access property list to be used in accessing the object.
Parameters:

hid_t loc_id IN: A file or group identifier.

const char *group_name IN: Name of group, relative to loc_id, in which object is located

H5_index_tindex_type IN: Type of index by which objects are ordered

H5_iter_order_torder IN: Order of iteration within index

hsize_tn IN: Object to open

hid_t lapl_id IN: Link access property list
Returns:

Returns an object identifier for the opened object if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

H5Oopen_by_idx HDF5 Reference Manual

298

Name:H5Oset_comment
Signature:

herr_tH5Oset_comment(hid_t object_id, const char *comment)
Purpose:

Sets comment for specified object.
Description:

H5Oset_comment sets the comment for the specified object to the contents of comment. Any
previously existing comment is overwritten.

The target object is specified by an identifier, object_id.

If comment is the empty string or a null pointer, any existing comment message is removed from the
object.

Comments should be relatively short, null-terminated, ASCII strings.

Comments can be attached to any object that has an object header, e.g., datasets, groups, and named
datatypes, but not symbolic links.

Parameters:
hid_tobject_id IN: Identifier of the target object

const char *comment IN: The new comment.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Oset_comment

299

Name:H5Oset_comment_by_name
Signature:

herr_tH5Oset_comment_by_name(hid_t loc_id, const char *name, const char *comment, hid_t
lapl_id)

Purpose:
Sets comment for specified object.

Description:
H5Oset_comment_by_name sets the comment for the specified object to the contents of comment.
Any previously existing comment is overwritten.

The target object is specified by loc_id and name. loc_id can specify any object in the file. name
can be one of the following:
 — The name of the object relative to loc_id
 — An absolute name of the object, starting from /, the file’s root group
 — A dot (.), if loc_id fully specifies the object

If comment is the empty string or a null pointer, any existing comment message is removed from the
object.

Comments should be relatively short, null-terminated, ASCII strings.

Comments can be attached to any object that has an object header, e.g., datasets, groups, and named
datatypes, but not symbolic links.

lapl_id contains a link access property list identifier. A link access propety list can come into play
when traversing links to access an object.

Parameters:
hid_t loc_id IN: Identifier of a file, group, dataset, or named datatype.

const char *name IN: Name of the object whose comment is to be set or reset, specified as a
path relative to loc_id.
name can be '.' (a dot) if loc_id fully specifies the object for which the
comment is to be set.

const char *comment IN: The new comment.

hid_t lapl_id IN: Link access property list identifier.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

H5Oset_comment_by_name HDF5 Reference Manual

300

Name:H5Ovisit
Signature:

herr_tH5Ovisit(hid_t object_id, H5_index_t index_type, H5_iter_order_t order,
H5O_iterate_top, void *op_data)

Purpose:
Recursively visits all objects accessible from a specified object.

Description:
H5Ovisit is a recursive iteration function to visit the object object_id and, if object_id is a
group, all objects in and below it in an HDF5 file, thus providing a mechanism for an application to
perform a common set of operations across all of those objects or a dynamically selected subset. For
non-recursive iteration across the members of a group, see H5Literate.

If object_id is a group identifier, that group serves as the root of a recursive iteration. If object_id
is a file identifier, that file’s root group serves as the root of the recursive iteration. If object_id is any
other type of object, such as a dataset or named datatype, there is no iteration.

Two parameters are used to establish the iteration: index_type and order.

index_type specifies the index to be used. If the links in a group have not been indexed by the index
type, they will first be sorted by that index then the iteration will begin; if the links have been so indexed,
the sorting step will be unnecesary, so the iteration may begin more quickly. Valid values include the
following:

H5_INDEX_NAME Alpha-numeric index on name

H5_INDEX_CRT_ORDER Index on creation order
Note that the index type passed in index_type is a best effort setting. If the application passes in a
value indicating iteration in creation order and a group is encountered that was not tracked in creation
order, that group will be iterated over in alpha-numeric order by name, or name order. (Name order is the
native order used by the HDF5 Library and is always available.)

order specifies the order in which objects are to be inspected along the index specified in
index_type. Valid values include the following:

H5_ITER_INC Increasing order

H5_ITER_DEC Decreasing order

H5_ITER_NATIVE Fastest available order
The protoype of the callback function op is as follows (as defined in the source code file
H5Opublic.h):

herr_t (*H5O_iterate_t)(hid_t o_id, const char *name, const H5O_info_t *object_info,
void *op_data)

HDF5 Reference Manual H5Ovisit

301

The parameters of this callback function have the following values or meanings:

o_id Object that serves as root of the iteration; same value as the H5Ovisit
object_id parameter

name Name of object, relative to o_id, being examined at current step of the
iteration

object_info H5O_info_t struct containing information regarding that object

op_data User-defined pointer to data required by the application in processing the
object; a pass-through of the op_data pointer provided with the
H5Ovisit_by_name function call

The H5O_info_t struct is defined in H5Opublic.h and described in the H5Oget_info function entry.

The return values from an operator are:

Zero causes the visit iterator to continue, returning zero when all group members have been
processed.

◊

A positive value causes the visit iterator to immediately return that positive value, indicating
short-circuit success. The iterator can be restarted at the next group member.

◊

A negative value causes the visit iterator to immediately return that value, indicating failure. The
iterator can be restarted at the next group member.

◊

The H5Ovisit op_data parameter is a user-defined pointer to the data required to process objects in
the course of the iteration. This pointer is passed back to each step of the iteration in the callback
function’s op_data parameter.

H5Lvisit and H5Ovisit are companion functions: one for examining and operating on links; the
other for examining and operating on the objects that those links point to. Both functions ensure that by
the time the function completes successfully, every link or object below the specified point in the file has
been presented to the application for whatever processing the application requires.

Parameters:
hid_tobject_id IN: Identifier of the object at which the recursive iteration begins.

H5_index_tindex_type IN: Type of index; valid values include:
H5_INDEX_NAME
H5_INDEX_CRT_ORDER

H5_iter_order_torder IN: Order in which index is traversed; valid values include:
H5_ITER_DEC
H5_ITER_INC
H5_ITER_NATIVE

H5O_iterate_top IN: Callback function passing data regarding the object to the calling
application

void *op_data IN: User-defined pointer to data required by the application for its
processing of the object

H5Ovisit HDF5 Reference Manual

302

Returns:
On success, returns the return value of the first operator that returns a positive value, or zero if all
members were processed with no operator returning non-zero.

On failure, returns a negative value if something goes wrong within the library, or the first negative value
returned by an operator.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Ovisit

303

Name:H5Ovisit_by_name
Signature:

herr_tH5Ovisit_by_name(hid_t loc_id, const char *object_name, H5_index_t
index_type, H5_iter_order_t order, H5O_iterate_t op, void *op_data, hid_t lapl_id)

Purpose:
Recursively visits all objects starting from a specified object.

Description:
H5Ovisit_by_name is a recursive iteration function to visit the object specified by the loc_id /
object_name parameter pair and, if that object is a group, all objects in and below it in an HDF5 file,
thus providing a mechanism for an application to perform a common set of operations across all of those
objects or a dynamically selected subset. For non-recursive iteration across the members of a group, see
H5Literate.

The object serving as the root of the iteration is specified by the loc_id / object_name parameter
pair. loc_id specifies a file or an object in a file; object_name specifies either an object in the file
(with an absolute name based in the file’s root group) or an object name relative to loc_id. If loc_id
fully specifies the object that is to serve as the root of the iteration, object_name should be '.' (a
dot). (Note that when loc_id fully specifies the the object that is to serve as the root of the iteration, the
user may wish to consider using H5Ovisit instead of H5Ovisit_by_name.)

Two parameters are used to establish the iteration: index_type and order.

index_type specifies the index to be used. If the links in a group have not been indexed by the index
type, they will first be sorted by that index then the iteration will begin; if the links have been so indexed,
the sorting step will be unnecesary, so the iteration may begin more quickly. Valid values include the
following:

H5_INDEX_NAME Alpha-numeric index on name

H5_INDEX_CRT_ORDER Index on creation order
Note that the index type passed in index_type is a best effort setting. If the application passes in a
value indicating iteration in creation order and a group is encountered that was not tracked in creation
order, that group will be iterated over in alpha-numeric order by name, or name order. (Name order is the
native order used by the HDF5 Library and is always available.)

order specifies the order in which objects are to be inspected along the index specified in
index_type. Valid values include the following:

H5_ITER_INC Increasing order

H5_ITER_DEC Decreasing order

H5_ITER_NATIVE Fastest available order
The op callback funtion and the effect of the callback function’s return value on the application are
described in H5Ovisit.

H5Ovisit_by_name HDF5 Reference Manual

304

The H5O_info_t struct is defined in H5Opublic.h and described in the H5Oget_info function entry.

The H5Ovisit_by_name op_data parameter is a user-defined pointer to the data required to process
objects in the course of the iteration. This pointer is passed back to each step of the iteration in the
callback function’s op_data parameter.

lapl_id is a link access property list. In the general case, when default link access properties are
acceptable, this can be passed in as H5P_DEFAULT. An example of a situation that requires a non-default
link access property list is when the link is an external link; an external link may require that a link prefix
be set in a link access property list (see H5Pset_elink_prefix).

H5Lvisit_by_name and H5Ovisit_by_name are companion functions: one for examining and
operating on links; the other for examining and operating on the objects that those links point to. Both
functions ensure that by the time the function completes successfully, every link or object below the
specified point in the file has been presented to the application for whatever processing the application
requires.

Parameters:
hid_t loc_id IN: Identifier of a file or group

const char *object_name IN: Name of the object, generally relative to loc_id, that will serve as
root of the iteration

H5_index_tindex_type IN: Type of index; valid values include:
H5_INDEX_NAME
H5_INDEX_CRT_ORDER

H5_iter_order_torder IN: Order in which index is traversed; valid values include:
H5_ITER_DEC
H5_ITER_INC
H5_ITER_NATIVE

H5O_iterate_top IN: Callback function passing data regarding the object to the calling
application

void *op_data IN: User-defined pointer to data required by the application for its
processing of the object

hid_t lapl_id IN: Link access property list identifier
Returns:

On success, returns the return value of the first operator that returns a positive value, or zero if all
members were processed with no operator returning non-zero.

On failure, returns a negative value if something goes wrong within the library, or the first negative value
returned by an operator.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Ovisit_by_name

305

HDF5 Reference Manual

306

H5P: Property List Interface

Property List API Functions

These functions manipulate property list objects to allow objects which require many different parameters to be
easily manipulated.
In the following lists, italic type indicates a configurable macro.

The C Interfaces:

General Functions

H5Pcreate•
H5Pget_class•
H5Pcopy•
H5Pclose•

Generic Properties

H5Pcreate_class•
H5Pregister•
H5Pregister1 *•
H5Pregister2•
H5Pinsert•
H5Pinsert1 *•
H5Pinsert2•
H5Pset•
H5Pexist•
H5Pget_size•
H5Pget_nprops•
H5Pget_class_name•
H5Pget_class_parent•
H5Pisa_class•
H5Pget•
H5Pequal•
H5Piterate•
H5Pcopy_prop•
H5Premove•
H5Punregister•
H5Pclose_class•

File Access Properties

H5Pset_driver•
H5Pget_driver_info•
H5Pset_fclose_degree•
H5Pget_fclose_degree•
H5Pset_fapl_core•
H5Pget_fapl_core•
H5Pset_fapl_direct•
H5Pget_fapl_direct•
H5Pset_fapl_family•
H5Pget_fapl_family•
H5Pset_family_offset•
H5Pget_family_offset•
H5Pset_fapl_log•
H5Pset_fapl_mpio ||•
H5Pget_fapl_mpio ||•
H5Pset_fapl_mpiposix ||•
H5Pget_fapl_mpiposix ||•
H5Pset_fapl_multi•
H5Pget_fapl_multi•
H5Pset_multi_type•
H5Pget_multi_type•
H5Pset_fapl_split•
H5Pset_fapl_sec2•
H5Pset_fapl_stdio•
H5Pset_fapl_windows•
H5set_driver•
H5Pget_driver•
H5Pget_driver_info•
H5Pset_meta_block_size•
H5Pget_meta_block_size•
H5Pset_sieve_buf_size•
H5Pget_sieve_buf_size•
H5Pset_alignment•
H5Pget_alignment•

File Access Properties (cont.)

H5Pset_cache•
H5Pget_cache•
H5Pget_mdc_config•
H5Pset_mdc_config•
H5Pset_gc_references•
H5Pget_gc_references•
H5Pset_small_data_block_size•
H5Pget_small_data_block_size•
H5Pset_libver_bounds•
H5Pget_libver_bounds•

File Creation Properties

H5Pget_version•
H5Pset_userblock•
H5Pget_userblock•
H5Pset_sizes•
H5Pget_sizes•
H5Pset_sym_k•
H5Pget_sym_k•
H5Pset_istore_k•
H5Pget_istore_k•
H5Pset_shared_mesg_nindexes•
H5Pget_shared_mesg_nindexes•
H5Pset_shared_mesg_index•
H5Pget_shared_mesg_index•
H5Pset_shared_mesg_phase_change•
H5Pget_shared_mesg_phase_change

 || Indicates functions
 available only in the
 parallel HDF5 library.

•

HDF5 Reference Manual

307

Dataset Creation Properties

H5Pset_layout•
H5Pget_layout•
H5Pset_chunk•
H5Pget_chunk•
H5Pset_deflate•
H5Pset_fill_value•
H5Pget_fill_value•
H5Pfill_value_defined•
H5Pset_fill_time•
H5Pget_fill_time•
H5Pset_alloc_time•
H5Pget_alloc_time•
H5Pset_filter•
H5Pall_filters_avail•
H5Pget_nfilters•
H5Pget_filter•
H5Pget_filter1 *•
H5Pget_filter2•
H5Pget_filter_by_id•
H5Pget_filter_by_id1 *•
H5Pget_filter_by_id2•
H5Pmodify_filter•
H5Premove_filter•
H5Pset_fletcher32•
H5Pset_shuffle•
H5Pset_szip•
H5Pset_external•
H5Pget_external_count•
H5Pget_external•

 || Indicates functions
 available only in the
 parallel HDF5 library.

Dataset Access, Memory, and
Transfer Properties

H5Pset_buffer•
H5Pget_buffer•
H5Pset_preserve *•
H5Pget_preserve *•
H5Pset_chunk_cache•
H5Pget_chunk_cache•
H5Pset_edc_check•
H5Pget_edc_check•
H5Pset_data_transform•
H5Pget_data_transform•
H5Pset_filter_callback•
H5Pset_hyper_vector_size•
H5Pget_hyper_vector_size•
H5Pset_btree_ratios•
H5Pget_btree_ratios•
H5Pset_vlen_mem_manager•
H5Pget_vlen_mem_manager•
H5Pset_dxpl_mpio ||•
H5Pset_dxpl_mpio_chunk_opt ||•
H5Pset_dxpl_mpio_chunk_opt_num ||•
H5Pset_dxpl_mpio_chunk_opt_ratio ||•
H5Pset_dxpl_mpio_collective_opt ||•
H5Pget_dxpl_mpio ||•
H5Pset_dxpl_multi•
H5Pget_dxpl_multi•

Group Creation Properties

H5Pset_create_intermediate_group•
H5Pget_create_intermediate_group•
H5Pset_link_creation_order•
H5Pget_link_creation_order•
H5Pset_est_link_info•
H5Pget_est_link_info•
H5Pset_local_heap_size_hint•
H5Pget_local_heap_size_hint•
H5Pset_link_phase_change•
H5Pget_link_phase_change•

HDF5 Reference Manual

308

Object Copy and
Object Creation Properties

H5Pset_create_intermediate_group•
H5Pget_create_intermediate_group•
H5Pset_copy_object•
H5Pget_copy_object•
H5Pset_attr_phase_change•
H5Pget_attr_phase_change•
H5Pset_attr_creation_order•
H5Pget_attr_creation_order•
H5Pset_obj_track_times•
H5Pget_obj_track_times•

 || Indicates functions
 available only in the
 parallel HDF5 library.

Link Creation Properties

H5Pset_char_encoding•
H5Pget_char_encoding•
H5Pset_create_intermediate_group•
H5Pget_create_intermediate_group•

Link Access Properties

H5Pset_nlinks•
H5Pget_nlinks•
H5Pset_elink_cb•
H5Pget_elink_cb•
H5Pset_elink_prefix•
H5Pget_elink_prefix•
H5Pset_elink_fapl•
H5Pget_elink_fapl•
H5Pset_elink_acc_flags•
H5Pget_elink_acc_flags•

String Properties

H5Pset_char_encoding•
H5Pget_char_encoding•

HDF5 Reference Manual

309

Alphabetical Listing

H5Pall_filters_avail•
H5Pclose•
H5Pclose_class•
H5Pcopy•
H5Pcopy_prop•
H5Pcreate•
H5Pcreate_class•
H5Pequal•
H5Pexist•
H5Pfill_value_defined•
H5Pget•
H5Pget_alignment•
H5Pget_alloc_time•
H5Pget_attr_creation_order•
H5Pget_attr_phase_change•
H5Pget_btree_ratios•
H5Pget_buffer•
H5Pget_cache•
H5Pget_char_encoding•
H5Pget_chunk•
H5Pget_chunk_cache•
H5Pget_class•
H5Pget_class_name•
H5Pget_class_parent•
H5Pget_copy_object•
H5Pget_create_intermediate_group•
H5Pget_data_transform•
H5Pget_driver•
H5Pget_driver_info•
H5Pget_dxpl_mpio ||•
H5Pget_dxpl_multi•
H5Pget_edc_check•
H5Pget_elink_acc_flags•
H5Pget_elink_cb•
H5Pget_elink_fapl•
H5Pget_elink_prefix•
H5Pget_est_link_info•
H5Pget_external•
H5Pget_external_count•
H5Pget_family_offset•
H5Pget_fapl_core•
H5Pget_fapl_direct•
H5Pget_fapl_family•
H5Pget_fapl_mpio ||•
H5Pget_fapl_mpiposix ||•
H5Pget_fapl_multi•

H5Pget_fclose_degree•
H5Pget_fill_time•
H5Pget_fill_value•
H5Pget_filter•
H5Pget_filter1 *•
H5Pget_filter2•
H5Pget_filter_by_id•
H5Pget_filter_by_id1 *•
H5Pget_filter_by_id2•
H5Pget_gc_references•
H5Pget_hyper_vector_size•
H5Pget_istore_k•
H5Pget_layout•
H5Pget_libver_bounds•
H5Pget_link_creation_order•
H5Pget_link_phase_change•
H5Pget_local_heap_size_hint•
H5Pget_mdc_config•
H5Pget_meta_block_size•
H5Pget_multi_type•
H5Pget_nfilters•
H5Pget_nlinks•
H5Pget_nprops•
H5Pget_preserve *•
H5Pget_obj_track_times•
H5Pget_shared_mesg_index•
H5Pget_shared_mesg_nindexes•
H5Pget_shared_mesg_phase_change•
H5Pget_sieve_buf_size•
H5Pget_size•
H5Pget_sizes•
H5Pget_small_data_block_size•
H5Pget_sym_k•
H5Pget_type_conv_cb•
H5Pget_userblock•
H5Pget_version•
H5Pget_vlen_mem_manager•
H5Pinsert•
H5Pinsert1 *•
H5Pinsert2•
H5Pisa_class•
H5Piterate•
H5Pmodify_filter•

HDF5 Reference Manual

310

H5Pregister•
H5Pregister1 *•
H5Pregister2•
H5Premove•
H5Premove_filter•
H5Pset•
H5Pset_alignment•
H5Pset_alloc_time•
H5Pset_attr_creation_order•
H5Pset_attr_phase_change•
H5Pset_btree_ratios•
H5Pset_buffer•
H5Pset_cache•
H5Pset_char_encoding•
H5Pset_chunk•
H5Pset_chunk_cache•
H5Pset_copy_object•
H5Pset_create_intermediate_group•
H5Pset_data_transform•
H5Pset_deflate•
H5Pset_driver•
H5Pset_dxpl_mpio ||•
H5Pset_dxpl_mpio_chunk_opt ||•
H5Pset_dxpl_mpio_chunk_opt_num ||•
H5Pset_dxpl_mpio_chunk_opt_ratio ||•
H5Pset_dxpl_mpio_collective_opt ||•
H5Pset_dxpl_multi•
H5Pset_edc_check•
H5Pset_elink_acc_flags•
H5Pset_elink_cb•
H5Pset_elink_fapl•
H5Pset_elink_prefix•
H5Pset_est_link_info•
H5Pset_external•
H5Pset_family_offset•
H5Pset_fapl_core•
H5Pset_fapl_family•
H5Pset_fapl_direct•
H5Pset_fapl_log•
H5Pset_fapl_mpio ||•
H5Pset_fapl_mpiposix ||•
H5Pset_fapl_multi•
H5Pset_fapl_sec2•
H5Pset_fapl_split•
H5Pset_fapl_stdio•
H5Pset_fapl_windows•

H5Pset_fclose_degree•
H5Pset_fill_time•
H5Pset_fill_value•
H5Pset_filter•
H5Pset_filter_callback•
H5Pset_fletcher32•
H5Pset_gc_references•
H5Pset_hyper_vector_size•
H5Pset_istore_k•
H5Pset_layout•
H5Pset_libver_bounds•
H5Pset_link_creation_order•
H5Pset_link_phase_change•
H5Pset_local_heap_size_hint•
H5Pset_mdc_config•
H5Pset_meta_block_size•
H5Pset_multi_type•
H5Pset_nbit•
H5Pset_nlinks•
H5Pset_preserve *•
H5Pset_obj_track_times•
H5Pset_scaleoffset•
H5Pset_shared_mesg_index•
H5Pset_shared_mesg_nindexes•
H5Pset_shared_mesg_phase_change•
H5Pset_shuffle•
H5Pset_sieve_buf_size•
H5Pset_sizes•
H5Pset_small_data_block_size•
H5Pset_sym_k•
H5Pset_szip•
H5Pset_type_conv_cb•
H5Pset_userblock•
H5Pset_vlen_mem_manager•
H5Punregister•

 || Available only in the
 parallel HDF5 library.

HDF5 Reference Manual

311

The FORTRAN90 Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.
General Property List
Operations

h5pcreate_f•
h5pget_class_f•
h5pcopy_f•
h5pclose_f•

Generic Properties

h5pcreate_class_f•
h5pregister_f•
h5pinsert_f•
h5pset_f•
h5pexist_f•
h5pget_size_f•
h5pget_nprops_f•
h5pget_class_name_f•
h5pget_class_parent_f•
h5pisa_class_f•
h5pget_f•
h5pequal_f•
h5pcopy_prop_f•
h5premove_f•
h5punregister_f•
h5pclose_class_f•

String Properties

h5pset_char_encoding_f•
h5pget_char_encoding_f•

 || Indicates functions
 available only in the
 parallel HDF5 library.

 * Use of these functions
 is deprecated in
 Release 1.8.0.

Link Access Properties

h5pset_nlinks_f•
h5pget_nlinks_f•

Group Creation Properties

h5pset_create_inter_group_f•
h5pget_create_inter_group_f•
h5pset_local_heap_size_hint_f•
h5pget_local_heap_size_hint_f•
h5pset_link_creation_order_f•
h5pget_link_creation_order_f•
h5pset_est_link_info_f•
h5pget_est_link_info_f•
h5pset_link_phase_change_f•
h5pget_link_phase_change_f•

Object Copy and
Object Creation Properties

h5pset_create_inter_group_f•
h5pget_create_inter_group_f•
h5pset_copy_object_f•
h5pget_copy_object_f•
h5pset_attr_phase_change_f•
h5pget_attr_phase_change_f•
h5pset_attr_creation_order_f•
h5pget_attr_creation_order_f•
h5pset_obj_track_times_f•
h5pget_obj_track_times_f•

Dataset Creation Properties

h5pset_layout_f•
h5pget_layout_f•
h5pset_chunk_f•
h5pget_chunk_f•
h5pset_deflate_f•
h5pset_fill_value_f•
h5pget_fill_value_f•
h5pset_fill_time_f•
h5pget_fill_time_f•
h5pset_alloc_time_f•
h5pget_alloc_time_f•
h5pset_filter_f•
h5pget_nfilters_f•
h5pget_filter_f•
h5pget_filter_by_id_f•
h5pmodify_filter_f•
h5premove_filter_f•
h5pset_fletcher32_f•
h5pset_shuffle_f•
h5pset_szip_f•
h5pset_external_f•
h5pget_external_count_f•
h5pget_external_f•

Dataset Access, Memory, and
Transfer Properties

h5pset_buffer_f•
h5pget_buffer_f•
h5pset_preserve_f *•
h5pget_preserve_f *•
h5pset_chunk_cache_f•
h5pget_chunk_cache_f•
h5pset_edc_check_f•
h5pget_edc_check_f•
h5pset_data_transform_f•
h5pget_data_transform_f•
h5pset_hyper_vector_size_f•
h5pget_hyper_vector_size_f•
h5pset_btree_ratios_f•
h5pget_btree_ratios_f•
h5pset_dxpl_mpio_f ||•
h5pget_dxpl_mpio_f ||•

HDF5 Reference Manual

312

File Creation Properties

h5pget_version_f•
h5pset_userblock_f•
h5pget_userblock_f•
h5pset_sizes_f•
h5pget_sizes_f•
h5pset_sym_k_f•
h5pget_sym_k_f•
h5pset_istore_k_f•
h5pget_istore_k_f•
h5pset_shared_mesg_nindexes_f•
h5pset_shared_mesg_index_f•

 || Indicates functions
 available only in the
 parallel HDF5 library.

 * Use of these functions
 is deprecated in
 Release 1.8.0.

File Access Properties

h5pset_driver_f•
h5pget_driver_info_f•
h5pset_fclose_degree_f•
h5pget_fclose_degree_f•
h5pset_fapl_core_f•
h5pget_fapl_core_f•
h5pset_fapl_direct_f•
h5pget_fapl_direct_f•
h5pset_fapl_family_f•
h5pget_fapl_family_f•
h5pset_family_offset_f•
h5pset_fapl_mpio_f ||•
h5pget_fapl_mpio_f ||•
h5pset_fapl_mpiposix_f ||•
h5pget_fapl_mpiposix_f ||•
h5pset_fapl_multi_f•
h5pget_fapl_multi_f•
h5pset_multi_type_f•
h5pget_multi_type_f•
h5pset_fapl_split_f•
h5pset_fapl_sec2_f•
h5pset_fapl_stdio_f•
h5pget_driver_f•
h5pset_meta_block_size_f•
h5pget_meta_block_size_f•
h5pset_sieve_buf_size_f•
h5pget_sieve_buf_size_f•
h5pset_alignment_f•
h5pget_alignment_f•
h5pset_cache_f•
h5pget_cache_f•
h5pset_gc_references_f•
h5pget_gc_references_f•
h5pset_small_data_block_size_f•
h5pget_small_data_block_size_f•
h5pset_libver_bounds_f•

HDF5 Reference Manual

313

Filter Behavior in HDF5:
Filters can be inserted into the HDF5 pipeline to perform functions such as compression and conversion. As such,
they are a very flexible aspect of HDF5; for example, a user-defined filter could provide encryption for an HDF5
dataset.

A filter can be declared as either required or optional. Required is the default status; optional status must be
explicitly declared.

A required filter that fails or is not defined causes an entire output operation to fail; if it was applied when the data
was written, such a filter will cause an input operation to fail.

The following table summarizes required filter behavior.

Required FILTER_X

not available
FILTER_X available

H5Pset_<FILTER_X> Will fail. Will succeed.

H5Dwrite
with FILTER_X set

Will fail. Will succeed; FILTER_X

will be applied to the
data.

H5Dread
with FILTER_X set

Will fail. Will succeed.

An optional filter can be set for an HDF5 dataset even when the filter is not available. Such a filter can then be
applied to the dataset when it becomes available on the original system or when the file containing the dataset is
processed on a system on which it is available.

A filter can be declared as optional through the use of the H5Z_FLAG_OPTIONAL flag with H5Pset_filter.

Consider a situation where one is creating files that will normally be used only on systems where the optional
(and fictional) filter FILTER_Z is routinely available. One can create those files on system A, which lacks FILTER_Z,
create chunked datasets in the files with FILTER_Z defined in the dataset creation property list, and even write data
to those datasets. The dataset object header will indicate that FILTER_Z has been associated with this dataset. But
since system A does not have FILTER_Z, dataset chunks will be written without it being applied.

HDF5 has a mechanism for determining whether chunks are actually written with the filters specified in the object
header, so while the filter remains unavailable, system A will be able to read the data. Once the file is moved to
system B, where FILTER_Z is available, HDF5 will apply FILTER_Z to any data rewritten or new data written in these
datasets. Dataset chunks that have been written on system B will then be unreadable on system A; chunks that
have not been re-written since being written on system A will remain readable on system A. All chunks will be
readable on system B.

HDF5 Reference Manual

314

The following table summarizes optional filter behavior.

FILTER_Z
not available

FILTER_Z available
with encode and
decode

FILTER_Z available
decode only

H5Pset_<FILTER_Z> Will succeed. Will succeed. Will succeed.

H5Dwrite
with FILTER_Z set

Will succeed;
FILTER_Z will not be
applied to the data.

Will succeed;
FILTER_Z will be
applied to the data.

Will succeed;
FILTER_Z will not be
applied to the data.

H5Dread
with FILTER_Z set

Will succeed if
FILTER_Z has not
actually been
applied to data.

Will succeed. Will succeed.

The above principles apply generally in the use of HDF5 optional filters insofar as HDF5 does as much as
possible to complete an operation when an optional filter is unavailable. (The SZIP filter is an exception to this
rule; see H5Pset_szip for details.)

Notes:
Filters can be applied only to chunked datasets; they cannot be used with other dataset storage methods, such as
contiguous, compact, or external datasets.

Dataset elements of variable-length and dataset region reference datatypes are stored in separate structures in the
file called heaps. Filters cannot currently be applied to these heaps.

HDF5 Reference Manual

315

Last modified: 10 June 2010

Name:H5Pall_filters_avail
Signature:

htri_t H5Pall_filters_avail(hid_t plist_id)
Purpose:

Verifies that all required filters are available.
Description:

H5Pall_filters_avail verifies that all of the filters set in the dataset or group creation property list
plist_id are currently available.

Parameters:
hid_tplist_id IN: Dataset or group creation property list identifier.

Returns:
Returns TRUE if all filters are available and FALSE if one or more is not currently available.
Returns FAIL, a negative value, on error.

Fortran90 Interface:
None.

History:
Release Change

1.6.0 Function introduced in this release.

1.8.5 Function extended to work with group creation property lists.

H5Pall_filters_avail HDF5 Reference Manual

316

Name:H5Pclose
Signature:

herr_tH5Pclose(hid_t plist)
Purpose:

Terminates access to a property list.
Description:

H5Pclose terminates access to a property list. All property lists should be closed when the application
is finished accessing them. This frees resources used by the property list.

Parameters:
hid_tplist IN: Identifier of the property list to terminate access to.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pclose_f
SUBROUTINE h5pclose_f(prp_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pclose_f

HDF5 Reference Manual H5Pclose

317

Name:H5Pclose_class
Signature:

herr_tH5Pclose_class(hid_t class)
Purpose:

Closes an existing property list class.
Description:

Removes a property list class from the library.

Existing property lists of this class will continue to exist, but new ones are not able to be created.
Parameters:

hid_tclass IN: Property list class to close
Returns:

Success: a non-negative value
Failure: a negative value

Fortran90 Interface: h5pclose_class_f
SUBROUTINE h5pclose_class_f(class, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: class ! Property list class identifier
 ! to close
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pclose_class_f

H5Pclose_class HDF5 Reference Manual

318

Name:H5Pcopy
Signature:

hid_tH5Pcopy(hid_t plist)
Purpose:

Copies an existing property list to create a new property list.
Description:

H5Pcopy copies an existing property list to create a new property list. The new property list has the
same properties and values as the original property list.

Parameters:
hid_tplist IN: Identifier of property list to duplicate.

Returns:
Returns a property list identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5pcopy_f
SUBROUTINE h5pcopy_f(prp_id, new_prp_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(HID_T), INTENT(OUT) :: new_prp_id ! Identifier of property list
 ! copy
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pcopy_f

HDF5 Reference Manual H5Pcopy

319

Name:H5Pcopy_prop
Signature:

herr_tH5Pcopy_prop(hid_t dst_id, hid_t src_id, const char *name)
Purpose:

Copies a property from one list or class to another.
Description:

H5Pcopy_prop copies a property from one property list or class to another.

If a property is copied from one class to another, all the property information will be first deleted from the
destination class and then the property information will be copied from the source class into the
destination class.

If a property is copied from one list to another, the property will be first deleted from the destination list
(generating a call to the close callback for the property, if one exists) and then the property is copied
from the source list to the destination list (generating a call to the copy callback for the property, if one
exists).

If the property does not exist in the class or list, this call is equivalent to calling H5Pregister or
H5Pinsert (for a class or list, as appropriate) and the create callback will be called in the case of the
property being copied into a list (if such a callback exists for the property).

Parameters:
hid_tdst_id IN: Identifier of the destination property list or class

hid_tsrc_id IN: Identifier of the source property list or class

const char *name IN: Name of the property to copy
Returns:

Success: a non-negative value
Failure: a negative value

Fortran90 Interface: h5pcopy_prop_f
SUBROUTINE h5pcopy_prop_f(dst_id, src_id, name, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dst_id ! Destination property list
 ! identifier
 INTEGER(HID_T), INTENT(IN) :: src_id ! Source property list identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Property name
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pcopy_prop_f

H5Pcopy_prop HDF5 Reference Manual

320

Name:H5Pcreate
Signature:

hid_tH5Pcreate(hid_t cls_id)
Purpose:

Creates a new property as an instance of a property list class.
Description:

H5Pcreate creates a new property as an instance of some property list class. The new property list is
initialized with default values for the specified class. The classes are as follows; see the function index at
the top of this page for a list of functions related to each class:

H5P_OBJECT_CREATE
Properties for object creation during the object copying process.

H5P_FILE_CREATE
Properties for file creation.

H5P_FILE_ACCESS
Properties for file access.

H5P_DATASET_CREATE
Properties for dataset creation.

H5P_DATASET_ACCESS
Properties for dataset access.

H5P_DATASET_XFER
Properties for raw data transfer.

H5P_FILE_MOUNT
Properties for file mounting.

H5P_GROUP_CREATE
Properties for group creation during the object copying process.

H5P_GROUP_ACCESS
Properties for group access during the object copying process.

H5P_DATATYPE_CREATE
Properties for datatype creation during the object copying process.

H5P_DATATYPE_ACCESS
Properties for datatype access during the object copying process.

H5P_STRING_CREATE
Properties for character encoding when encoding strings or object names.

H5P_ATTRIBUTE_CREATE
Properties for attribute creation during the object copying process.

H5P_OBJECT_COPY
Properties governing the object copying process.

H5P_LINK_CREATE
Properties governing link creation.

H5P_LINK_ACCESS
Properties governing link traversal when accessing objects.

This property list must eventually be closed with H5Pclose; otherwise, errors are likely to occur.
Parameters:

hid_tcls_id IN: The class of the property list to create.
Returns:

Returns a property list identifier (plist) if successful; otherwise Fail (-1).

HDF5 Reference Manual H5Pcreate

321

Fortran90 Interface: h5pcreate_f
SUBROUTINE h5pcreate_f(classtype, prp_id, hdferr)
 IMPLICIT NONE
 INTEGER, INTENT(IN) :: classtype ! The type of the property list
 ! to be created
 ! Possible values are:
 ! H5P_FILE_CREATE_F
 ! H5P_FILE_ACCESS_F
 ! H5P_DATASET_CREATE_F
 ! H5P_DATASET_XFER_F
 ! H5P_MOUNT_F
 INTEGER(HID_T), INTENT(OUT) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pcreate_f

H5Pcreate HDF5 Reference Manual

322

Last modified: 26 March 2009

Name:H5Pcreate_class
Signature:

hid_tH5Pcreate_class(hid_t parent_class, const char *name, H5P_cls_create_func_t
create, void *create_data, H5P_cls_copy_func_t copy, void *copy_data,
H5P_cls_close_func_tclose, void *close_data)

Purpose:
Creates a new property list class.

Description:
H5Pcreate_class registers a new property list class with the library. The new property list class can
inherit from an existing property list class, parent_class, or may be derived from the default “empty”
class, NULL. New classes with inherited properties from existing classes may not remove those existing
properties, only add or remove their own class properties. Property list classes defined and supported in
the HDF5 Library distribution are listed and briefly described in H5Pcreate.

The create routine is called when a new property list of this class is being created. The
H5P_cls_create_func_t callback function is defined as follows:

typedef herr_t (*H5P_cls_create_func_t)(hid_t prop_id, void * create_data); The
parameters to this callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being created

void * create_data IN: User pointer to any class creation data required
The create routine is called after any registered create function is called for each property value. If
the create routine returns a negative value, the new list is not returned to the user and the property list
creation routine returns an error value.

The copy routine is called when an existing property list of this class is copied. The
H5P_cls_copy_func_t callback function is defined as follows:

typedef herr_t (*H5P_cls_copy_func_t)(hid_t prop_id, void * copy_data); The parameters to
this callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list created by copying

void * copy_data IN: User pointer to any class copy data required
The copy routine is called after any registered copy function is called for each property value. If the
copy routine returns a negative value, the new list is not returned to the user and the property list copy
routine returns an error value.

The close routine is called when a property list of this class is being closed. The
H5P_cls_close_func_t callback function is defined as follows:

typedef herr_t (*H5P_cls_close_func_t)(hid_t prop_id, void * close_data); The
parameters to this callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being closed

void * close_data IN: User pointer to any class close data required

HDF5 Reference Manual H5Pcreate_class

323

The close routine is called before any registered close function is called for each property value. If
the close routine returns a negative value, the property list close routine returns an error value but the
property list is still closed.

Parameters:
hid_tparent_class IN: Property list class to inherit from or NULL

const char *name IN: Name of property list class to register

H5P_cls_create_func_tcreate IN: Callback routine called when a property list is created

void *create_data IN: Pointer to user-defined class create data, to be passed along
to class create callback

H5P_cls_copy_func_tcopy IN: Callback routine called when a property list is copied

void *copy_data IN: Pointer to user-defined class copy data, to be passed along to
class copy callback

H5P_cls_close_func_tclose IN: Callback routine called when a property list is being closed

void *close_data IN: Pointer to user-defined class close data, to be passed along
to class close callback

Returns:
On success, returns a valid property list class identifier; otherwise returns a negative value.

Fortran90 Interface: h5pcreate_class_f
SUBROUTINE h5pcreate_class_f(parent, name, class, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: parent ! Parent property list class
 ! identifier
 ! Possible values include:
 ! H5P_NO_CLASS_F
 ! H5P_FILE_CREATE_F
 ! H5P_FILE_ACCESS_F
 ! H5P_DATASET_CREATE_F
 ! H5P_DATASET_XFER_F
 ! H5P_MOUNT_F
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of property to create
 INTEGER(HID_T), INTENT(OUT) :: class ! Property list class identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pcreate_class_f

H5Pcreate_class HDF5 Reference Manual

324

Name:H5Pequal
Signature:

htri_t H5Pequal(hid_t id1, hid_t id2)
Purpose:

Compares two property lists or classes for equality.
Description:

H5Pequal compares two property lists or classes to determine whether they are equal to one another.

Either both id1 and id2 must be property lists or both must be classes; comparing a list to a class is an
error.

Parameters:
hid_t id1 IN: First property object to be compared

hid_t id2 IN: Second property object to be compared
Returns:

Success: TRUE (positive) if equal; FALSE (zero) if unequal
Failure: a negative value

Fortran90 Interface: h5pequal_f
SUBROUTINE h5pequal_f(plist1_id, plist2_id, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist1_id ! Property list identifier
 INTEGER(HID_T), INTENT(IN) :: plist2_id ! Property list identifier
 LOGICAL, INTENET(OUT) :: flag ! Flag
 ! .TRUE. if lists are equal
 ! .FALSE. otherwise
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pequal_f

HDF5 Reference Manual H5Pequal

325

Name:H5Pexist
Signature:

htri_t H5Pexist(hid_t id, const char *name)
Purpose:

Queries whether a property name exists in a property list or class.
Description:

H5Pexist determines whether a property exists within a property list or class.
Parameters:

hid_t id IN: Identifier for the property to query

const char *name IN: Name of property to check for
Returns:

Success: a positive value if the property exists in the property object; zero if the property does not exist
Failure: a negative value

Fortran90 Interface: h5pexist_f
SUBROUTINE h5pexist_f(prp_id, name, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of property to modify
 LOGICAL, INTENT(OUT) :: flag ! Logical flag
 ! .TRUE. if exists
 ! .FALSE. otherwise
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pexist_f

H5Pexist HDF5 Reference Manual

326

Name:H5Pfill_value_defined
Signature:

herr_tH5Pfill_value_defined(hid_t plist_id, H5D_fill_value_t *status)
Purpose:

Determines whether fill value is defined.
Description:

H5Pfill_value_defined determines whether a fill value is defined in the dataset creation property
list plist_id.

Valid values returned in status are as follows:

H5D_FILL_VALUE_UNDEFINED Fill value is undefined.

H5D_FILL_VALUE_DEFAULT Fill value is the library default.

H5D_FILL_VALUE_USER_DEFINED Fill value is defined by the
application.

Note:
H5Pfill_value_defined is designed for use in concert with the dataset fill value properties
functions H5Pget_fill_value and H5Pget_fill_time.

See H5Dcreate for further cross-references.
Parameters:

hid_tplist_id IN: Dataset creation property list identifier.

H5D_fill_value_t *status OUT: Status of fill value in property list.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.6.0 Function introduced in this release.

HDF5 Reference Manual H5Pfill_value_defined

327

Name:H5Pget
Signature:

herr_tH5Pget(hid_t plid, const char *name, void *value)
Purpose:

Queries the value of a property.
Description:

H5Pget retrieves a copy of the value for a property in a property list. If there is a get callback routine
registered for this property, the copy of the value of the property will first be passed to that routine and
any changes to the copy of the value will be used when returning the property value from this routine.

This routine may be called for zero-sized properties with the value set to NULL. The get routine will
be called with a NULL value if the callback exists.

The property name must exist or this routine will fail.

If the get callback routine returns an error, value will not be modified.
Parameters:

hid_tplid IN: Identifier of the property list to query

const char *name IN: Name of property to query

void *value
OUT: Pointer to a location to which to copy the value of of the
property

Returns:
Success: a non-negative value
Failure: a negative value

Fortran90 Interface: h5pget_f
SUBROUTINE h5pget_f(plid, name, value, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plid ! Property list identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of property to get
 TYPE, INTENT(OUT) :: value ! Property value
 ! Supported types are:
 ! INTEGER
 ! REAL
 ! DOUBLE PRECISION
 ! CHARACTER(LEN=*)
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_f

H5Pget HDF5 Reference Manual

328

Name:H5Pget_alignment
Signature:

herr_tH5Pget_alignment(hid_t plist, hsize_t *threshold, hsize_t *alignment)
Purpose:

Retrieves the current settings for alignment properties from a file access property list.
Description:

H5Pget_alignment retrieves the current settings for alignment properties from a file access property
list. The threshold and/or alignment pointers may be null pointers (NULL).

Parameters:
hid_tplist IN: Identifier of a file access property list.

hsize_t*threshold OUT: Pointer to location of return threshold value.

hsize_t*alignment OUT: Pointer to location of return alignment value.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_alignment_f

SUBROUTINE h5pget_alignment_f(prp_id, threshold, alignment, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(HSIZE_T), INTENT(OUT) :: threshold ! Threshold value
 INTEGER(HSIZE_T), INTENT(OUT) :: alignment ! Alignment value
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_alignment_f

HDF5 Reference Manual H5Pget_alignment

329

Name:H5Pget_alloc_time
Signature:

herr_tH5Pget_alloc_time(hid_t plist_id, H5D_alloc_time_t *alloc_time)
Purpose:

Retrieves the timing for storage space allocation.
Description:

H5Pget_alloc_time retrieves the timing for allocating storage space for a dataset's raw data. This
property is set in the dataset creation property list plist_id.

The timing setting is returned in alloc_time as one of the following values:

H5D_ALLOC_TIME_DEFAULT Uses the default allocation time, based on the dataset storage
method.
See the alloc_time description in H5Pset_alloc_time for
default allocation times for various storage methods.

H5D_ALLOC_TIME_EARLY All space is allocated when the dataset is created.

H5D_ALLOC_TIME_INCR Space is allocated incrementally as data is written to the dataset.

H5D_ALLOC_TIME_LATE All space is allocated when data is first written to the dataset.
Note:

H5Pget_alloc_time is designed to work in concert with the dataset fill value and fill value write
time properties, set with the functions H5Pget_fill_value and H5Pget_fill_time.

Parameters:
hid_tplist_id IN: Dataset creation property list identifier.

H5D_alloc_time_t *alloc_time IN: When to allocate dataset storage space.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_alloc_time_f

SUBROUTINE h5pget_alloc_time_f(plist_id, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id ! Dataset creation
 ! property list identifier
 INTEGER(HSIZE_T), INTENT(OUT) :: flag ! Allocation time flag
 ! Possible values are:
 ! H5D_ALLOC_TIME_ERROR_F
 ! H5D_ALLOC_TIME_DEFAULT_F
 ! H5D_ALLOC_TIME_EARLY_F
 ! H5D_ALLOC_TIME_LATE_F
 ! H5D_ALLOC_TIME_INCR_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_alloc_time_f

History:
Release C

1.6.0 Function introduced in this release.

H5Pget_alloc_time HDF5 Reference Manual

330

Name:H5Pget_attr_creation_order
Signature:

herr_tH5Pget_attr_creation_order(hid_t ocpl_id, unsigned *crt_order_flags)
Purpose:

Retrieves tracking and indexing settings for attribute creation order.
Description:

H5Pget_attr_creation_order retrieves the settings for tracking and indexing attribute creation
order on an object.

ocpl_id is a dataset or group creation property list identifier. The term ocpl, for object creation
property list, is used when different types of objects may be involved.

crt_order_flags returns flags with the following meanings:

H5P_CRT_ORDER_TRACKED Attribute creation order is tracked but not necessarily
indexed.

H5P_CRT_ORDER_INDEXED Attribute creation order is indexed (requires
H5P_CRT_ORDER_TRACKED).

If crt_order_flags is returned with a value of 0 (zero), attribute creation order is neither tracked nor
indexed.

Parameters:
hid_tocpl_id IN: Object (group or dataset) creation property list identifier

unsigned *crt_order_flags OUT: Flags specifying whether to track and index attribute creation
order

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_attr_creation_order_f
SUBROUTINE h5pget_attr_creation_order_f(ocpl_id, crt_order_flags, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: ocpl_id ! Object (group or dataset) creation
 ! property list identifier
 INTEGER, INTENT(OUT) :: crt_order_flags ! Flags specifying whether to track
 ! and index attribute creation order
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_attr_creation_order_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_attr_creation_order

331

Name:H5Pget_attr_phase_change
Signature:

herr_tH5Pget_attr_phase_change(hid_t ocpl_id, unsigned *max_compact, unsigned
*min_dense)

Purpose:
Retrieves attribute storage phase change thresholds.

Description:
H5Pget_attr_phase_change retrieves threshold values for attribute storage on an object. These
thresholds determine the point at which attribute storage changes from compact storage (i.e., storage in
the object header) to dense storage (i.e., storage in a heap and indexed with a B-tree).

In the general case, attributes are initially kept in compact storage. When the number of attributes exceeds
max_compact, attribute storage switches to dense storage. If the number of attributes subsequently falls
below min_dense, the attributes are returned to compact storage.

If max_compact is set to 0 (zero), dense storage always used.

ocpl_id is a dataset or group creation property list identifier. The term ocpl, for object creation
property list, is used when different types of objects may be involved.

Parameters:
hid_tocpl_id IN: Object (dataset or group) creation property list identifier

unsigned *max_compact OUT: Maximum number of attributes to be stored in compact storage
(Default: 8)

unsigned *min_dense OUT: Minimum number of attributes to be stored in dense storage
(Default: 6)

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_attr_phase_change_f
SUBROUTINE h5pget_attr_phase_change_f(ocpl_id, max_compact, min_dense, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: ocpl_id
 ! Object (dataset or group) creation property list identifier
 INTEGER, INTENT(OUT) :: max_compact
 ! Maximum number of attributes to be stored in compact storage
 ! (Default: 8)
 INTEGER, INTENT(OUT) :: min_dense
 ! Minimum number of attributes to be stored in dense storage
 ! (Default: 6)
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_attr_phase_change_f

History:
Release C

1.8.0 Function introduced in this release.

H5Pget_attr_phase_change HDF5 Reference Manual

332

Name:H5Pget_btree_ratios
Signature:

herr_tH5Pget_btree_ratios(hid_t plist, double *left, double *middle, double *right)
Purpose:

Gets B-tree split ratios for a dataset transfer property list.
Description:

H5Pget_btree_ratios returns the B-tree split ratios for a dataset transfer property list.

The B-tree split ratios are returned through the non-NULL arguments left, middle, and right, as set
by the H5Pset_btree_ratios function.

Parameters:
hid_tplist IN: The dataset transfer property list identifier.

doubleleft OUT: The B-tree split ratio for left-most nodes.

doubleright OUT: The B-tree split ratio for right-most nodes and lone nodes.

doublemiddle OUT: The B-tree split ratio for all other nodes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_btree_ratios_f

SUBROUTINE h5pget_btree_ratios_f(prp_id, left, middle, right, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id
 ! Property list identifier
 REAL, INTENT(OUT) :: left ! B-tree split ratio for left-most nodes
 REAL, INTENT(OUT) :: middle ! B-tree split ratio for all other nodes
 REAL, INTENT(OUT) :: right ! The B-tree split ratio for right-most
 ! nodes and lone nodes.
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_btree_ratios_f

HDF5 Reference Manual H5Pget_btree_ratios

333

Name:H5Pget_buffer
Signature:

hsize_tH5Pget_buffer(hid_t plist, void **tconv, void **bkg)
Purpose:

Reads buffer settings.
Description:

H5Pget_buffer reads values previously set with H5Pset_buffer.
Parameters:

hid_tplist IN: Identifier for the dataset transfer property list.

void **tconv OUT: Address of the pointer to application-allocated type conversion buffer.

void **bkg OUT: Address of the pointer to application-allocated background buffer.
Returns:

Returns buffer size, in bytes, if successful; otherwise 0 on failure.
Fortran90 Interface: h5pget_buffer_f

SUBROUTINE h5pget_buffer_f(plist_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id ! Dataset transfer
 ! property list identifier
 INTEGER(HSIZE_T), INTENT(OUT) :: size ! Conversion buffer size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_buffer_f

History:
Release C

1.6.0 The return type changed from hsize_t to size_t.

1.4.0 The return type changed to hsize_t.

H5Pget_buffer HDF5 Reference Manual

334

Name:H5Pget_cache
Signature:

herr_tH5Pget_cache(hid_t plist_id, int *mdc_nelmts, size_t *rdcc_nelmts, size_t
*rdcc_nbytes, double *rdcc_w0)

Purpose:
Queries the raw data chunk cache parameters.

Description:
H5Pget_cache retrieves the maximum possible number of elements in the raw data chunk cache, the
maximum possible number of bytes in the raw data chunk cache, and the preemption policy value.

Any (or all) arguments may be null pointers, in which case the corresponding datum is not returned.

Note that the *mdc_nelmts parameter is not longer used.
Parameters:

hid_tplist_id IN: Identifier of the file access property list.

int *mdc_nelmts IN/OUT: No longer used.

size_t*rdcc_nelmts IN/OUT: Number of elements (objects) in the raw data chunk cache.

size_t*rdcc_nbytes IN/OUT: Total size of the raw data chunk cache, in bytes.

double*rdcc_w0 IN/OUT: Preemption policy.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_cache_f

SUBROUTINE h5pget_cache_f(prp_id, mdc_nelmts, rdcc_nelmts, rdcc_nbytes,
 rdcc_w0, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: mdc_nelmts ! Number of elements (objects)
 ! in the meta data cache
 INTEGER(SIZE_T), INTENT(OUT) :: rdcc_nelmts ! Number of elements (objects)
 ! in the meta data cache
 INTEGER(SIZE_T), INTENT(OUT) :: rdcc_nbytes ! Total size of the raw data
 ! chunk cache, in bytes
 REAL, INTENT(OUT) :: rdcc_w0 ! Preemption policy
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_cache_f

History:
Release C

1.8.0 Use of the mdc_nelmts parameter discontinued.
Metadata cache configuration is managed with H5Pset_mdc_config and
H5Pget_mdc_config.

1.6.0 The rdcc_nbytes and rdcc_nelmts parameters changed from type int to
size_t.

HDF5 Reference Manual H5Pget_cache

335

Name:H5Pget_char_encoding
Signature:

herr_tH5Pget_char_encoding(hid_t plist_id, H5T_cset_t encoding)
Purpose:

Retrieves the character encoding used to create a string.
Description:

H5Pget_char_encoding retrieves the character encoding used to encode strings or object names that
are created with the property list plist_id.

Valid values for encoding are defined in H5Tpublic.h and include the following:

H5T_CSET_ASCII US ASCII

H5T_CSET_UTF8 UTF-8 Unicode encoding
Parameters:

hid_tplist_id IN: Property list identifier

H5T_cset_tencoding OUT: String encoding character set
Returns:

Returns a non-negative valule if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_char_encoding_f

SUBROUTINE h5pget_char_encoding_f(plist_id, encoding, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id
 ! Property list identifier
 INTEGER, INTENT(OUT) :: encoding ! Valid values for encoding are:
 ! H5T_CSET_ASCII_F -> US ASCII
 ! H5T_CSET_UTF8_F -> UTF-8 Unicode encoding
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_char_encoding_f

History:
Release C

1.8.0 Function introduced in this release.

H5Pget_char_encoding HDF5 Reference Manual

336

Name:H5Pget_chunk
Signature:

int H5Pget_chunk(hid_t plist, int max_ndims, hsize_t * dims)
Purpose:

Retrieves the size of chunks for the raw data of a chunked layout dataset.
Description:

H5Pget_chunk retrieves the size of chunks for the raw data of a chunked layout dataset. This function
is only valid for dataset creation property lists. At most, max_ndims elements of dims will be
initialized.

Parameters:
hid_tplist IN: Identifier of property list to query.

int max_ndims IN: Size of the dims array.

hsize_t *dims OUT: Array to store the chunk dimensions.
Returns:

Returns chunk dimensionality if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_chunk_f

SUBROUTINE h5pget_chunk_f(prp_id, ndims, dims, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: ndims ! Number of chunk dimensions
 ! to return
 INTEGER(HSIZE_T), DIMENSION(ndims), INTENT(OUT) :: dims
 ! Array containing sizes of
 ! chunk dimensions
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! chunk rank on success
 ! and -1 on failure
END SUBROUTINE h5pget_chunk_f

HDF5 Reference Manual H5Pget_chunk

337

Last modified: 8 May 2009

Name:H5Pget_chunk_cache
Signature:

herr_tH5Pget_chunk_cache(hid_t dapl_id, size_t *rdcc_nslots, size_t *rdcc_nbytes,
double *rdcc_w0)

Purpose:
Retrieves the raw data chunk cache parameters.

Description:
H5Pget_chunk_cache retrieves the number of chunk slots in the raw data chunk cache hash table ,
the maximum possible number of bytes in the raw data chunk cache, and the preemption policy value.

These values are retrieved from a dataset access property list. If the values have not been set on the
property list, then values returned will be the corresponding values from a default file access property list.

Any (or all) pointer arguments may be null pointers, in which case the corresponding datua is not
returned.

Parameters:
hid_tplist_id IN: Dataset access property list identifier.

size_t *rdcc_nslots OUT: Number of chunk slots in the raw data chunk cache hash
table.

size_t *rdcc_nbytes OUT: Total size of the raw data chunk cache, in bytes.

double *rdcc_w0 OUT: Preemption policy.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Example Usage:

The following code retrieves the chunk cache settings on the dataset access property list dapl_id into
local variables:

size_t nslots, nbytes;
double w0;
status = H5Pget_chunk_cache(dapl_id, &nslots, &nbytes, &w0);

Fortran90 Interface: h5pget_chunk_cache_f
 SUBROUTINE h5pget_chunk_cache_f(dapl_id, rdcc_nslots, rdcc_nbytes, rdcc_w0, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dapl_id ! Dataset access property list identifier.
 INTEGER(SIZE_T), INTENT(OUT) :: rdcc_nslots ! Number of chunk slots in the raw data chunk
 ! cache hash table.
 INTEGER(SIZE_T), INTENT(OUT) :: rdcc_nbytes ! Total size of the raw data chunk cache, in bytes.
 REAL, INTENT(OUT) :: rdcc_w0 ! Preemption policy.
 INTEGER, INTENT(OUT) :: hdferr ! error code
 ! 0 on success and -1 on failure
 END SUBROUTINE h5pget_chunk_cache_f

See Also:
H5Pset_chunk_cache

History:
Release Change

1.8.3 C function introduced in this release.

H5Pget_chunk_cache HDF5 Reference Manual

338

Name:H5Pget_class
Signature:

H5P_class_tH5Pget_class(hid_t plist)
Purpose:

Returns the property list class for a property list.
Description:

H5Pget_class returns the property list class for the property list identified by the plist parameter.
Valid property list classes are defined in the description of H5Pcreate.

Parameters:
hid_tplist IN: Identifier of property list to query.

Returns:
Returns a property list class if successful. Otherwise returns H5P_NO_CLASS (-1).

Fortran90 Interface: h5pget_class_f
SUBROUTINE h5pget_class_f(prp_id, classtype, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: classtype ! The type of the property list
 ! to be created
 ! Possible values are:
 ! H5P_NO_CLASS
 ! H5P_FILE_CREATE_F
 ! H5P_FILE_ACCESS_F
 ! H5PE_DATASET_CREATE_F
 ! H5P_DATASET_XFER_F
 ! H5P_MOUNT_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_class_f

HDF5 Reference Manual H5Pget_class

339

Name:H5Pget_class_name
Purpose:

Retrieves the name of a class.
Signature:

char * H5Pget_class_name(hid_t pcid)
Description:

H5Pget_class_name retrieves the name of a generic property list class. The pointer to the name must
be freed by the user after each successful call.

Parameters:
hid_tpcid IN: Identifier of the property class to query

Returns:
Success: a pointer to an allocated string containing the class name
Failure: NULL

Fortran90 Interface: h5pget_class_name_f
SUBROUTINE h5pget_class_name_f(prp_id, name, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier to
 ! query
 CHARACTER(LEN=*), INTENT(INOUT) :: name ! Buffer to retrieve class name
 INTEGER, INTENT(OUT) :: hdferr ! Error code, possible values:
 ! Success: Actual length of the
 ! class name
 ! If provided buffer "name" is
 ! smaller, than name will be
 ! truncated to fit into
 ! provided user buffer
 ! Failure: -1
END SUBROUTINE h5pget_class_name_f

H5Pget_class_name HDF5 Reference Manual

340

Name:H5Pget_class_parent
Signature:

hid_tH5Pget_class_parent(hid_t pcid)
Purpose:

Retrieves the parent class of a property class.
Description:

H5Pget_class_parent retrieves an identifier for the parent class of a property class.
Parameters:

hid_tpcid IN: Identifier of the property class to query
Returns:

Success: a valid parent class object identifier
Failure: a negative value

Fortran90 Interface: h5pget_class_parent_f
SUBROUTINE h5pget_class_parent_f(prp_id, parent_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(HID_T), INTENT(OUT) :: parent_id ! Parent class property list
 ! identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_class_parent_f

HDF5 Reference Manual H5Pget_class_parent

341

Last modified: 17 August 2010

Name:H5Pget_copy_object
Signature:

herr_tH5Pget_copy_object(hid_t ocp_plist_id, unsigned *copy_options)
Purpose:

Retrieves the properties to be used when an object is copied.
Description:

H5Pget_copy_object retrieves the properties currently specified in the object copy property list
ocp_plist_id, which will be invoked when a new copy is made of an existing object.

copy_options is a bit map indicating the flags, or properties, governing object copying that are set in
the property list ocp_plist_id.

The available flags are described in H5Pset_copy_object.
Parameters:

hid_tocp_plist_id IN: Object copy property list identifier

unsigned *copy_options OUT: Copy option(s) set in the object copy property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_copy_object_f

 SUBROUTINE h5pget_copy_object_f(ocp_plist_id, copy_options, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: ocp_plist_id
 ! Object copy property list identifier
 INTEGER, INTENT(OUT) :: copy_options ! Valid copy options returned are:
 ! H5O_COPY_SHALLOW_HIERARCHY_F
 ! H5O_COPY_EXPAND_SOFT_LINK_F
 ! H5O_COPY_EXPAND_EXT_LINK_F
 ! H5O_COPY_EXPAND_REFERENCE_F
 ! H5O_COPY_WITHOUT_ATTR_FLAG_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code

History:
Release C

1.8.0 Function introduced in this release.

1.8.3 Fortran subroutine introduced in this release.

H5Pget_copy_object HDF5 Reference Manual

342

Last modified: 17 August 2010

Name:H5Pget_create_intermediate_group
Signature:

herr_tH5Pget_create_intermediate_group(hid_t lcpl_id, unsigned
*crt_intermed_group)

Purpose:
Determines whether property is set to enable creating missing intermediate groups.

Description:
H5Pget_create_intermediate_group determines whether the link creation property list
lcpl_id is set to allow functions that create objects in groups different from the current working group
to create intermediate groups that may be missing in the path of a new or moved object.

Functions that create objects in or move objects to a group other than the current working group make use
of this property. H5Gcreate_anon and H5Lmove are examles of such functions.

If crt_intermed_group is true, missing intermediate groups will be created; if
crt_intermed_group is false, missing intermediate groups will not be created.

Parameters:
hid_t lcpl_id IN: Link creation property list identifier

unsigned *crt_intermed_group OUT: Flag specifying whether to create intermediate groups
upon creation of an object

Returns:
Returns a non-negative valule if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_create_intermediate_group

343

Name:H5Pget_data_transform
Signature:

ssize_tH5Pget_data_transform (hid_t plist_id, char *expression, size_t size)
Purpose:

Retrieves a data transform expression.
Description:

H5Pget_data_transform retrieves the data transform expression previously set in the dataset
transfer property list plist_id by H5Pset_data_transform.

H5Pget_data_transform can be used to both retrieve the transform expression and to query its size.

If expression is non-NULL, up to size bytes of the data transform expression are written to the
buffer. If expression is NULL, size is ignored and the function does not write anything to the
buffer. The function always returns the size of the data transform expression.

If 0 is returned for the size of the expression, no data transform expression exists for the property list.

If an error occurs, the buffer pointed to by expression is unchanged and the function returns a
negative value.

Parameters:
hid_tplist_id IN: Identifier of the property list or class

char *expression OUT: Pointer to memory where the transform expression will be
copied

size_tsize IN: Number of bytes of the transform expression to copy to
Returns:

Success: size of the transform expression.
Failure: a negative value.

Fortran90 Interface: h5pget_data_transform_f

SUBROUTINE h5pget_data_transform_f(plist_id, expression, hdferr, size)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id
 ! Identifier of the property list or class
 CHARACTER(LEN=*), INTENT(OUT) :: expression
 ! Buffer to hold transform expression
 INTEGER(SIZE_T), INTENT(OUT), OPTIONAL :: size
 ! Registered size for transform expression
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_data_transform_f

History:
Release C

1.8.0 Function introduced in this release.

H5Pget_data_transform HDF5 Reference Manual

344

Name:H5Pget_driver
Signature:

hid_tH5Pget_driver(hid_t plist_id)
Purpose:

Returns low-lever driver identifier.
Description:

H5Pget_driver returns the identifier of the low-level file driver associated with the file access
property list or data transfer property list plist_id.

Valid driver identifiers with the standard HDF5 library distribution include the following:

 H5FD_CORE
 H5FD_DIRECT
 H5FD_FAMILY
 H5FD_LOG
 H5FD_MPIO
 H5FD_MULTI
 H5FD_SEC2
 H5FD_STDIO
 H5FD_WINDOWS (Windows only)

If a user defines and registers custom drivers or if additional drivers are defined in an HDF5 distribution,
this list will be longer.

The Windows driver, H5FD_WINDOWS, is available only on Windows systems.

The returned driver identifier is only valid as long as the file driver remains registered.
Parameters:

hid_tplist_id IN: File access or data transfer property list identifier.
Returns:

Returns a valid low-level driver identifier if successful. Otherwise returns a negative value.
Fortran90 Interface: h5pget_driver_f

SUBROUTINE h5pget_driver_f(prp_id, driver, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: driver ! Low-level file driver identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_driver_f

History:
Release C

1.4.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_driver

345

Name:H5Pget_driver_info
Signature:

void *H5Pget_driver_info(hid_t plist_id)
Purpose:

Returns a pointer to file driver information.
Description:

H5Pget_driver_info returns a pointer to file driver-specific information for the low-level driver
associated with the file access or data transfer property list plist_id.

The pointer returned by this function points to an “uncopied” struct. Driver-specific versions of that struct
are defined for each low-level driver in the relevant source code file H5FD*.c. For example, the struct
used for the MULTI driver is H5FD_multi_fapl_t defined in H5FDmulti.c.

If no driver-specific properties have been registered, H5Pget_driver_info returns NULL.
Note:

H5Pget_driver_info and H5Pset_driver are used only when creating a virtual file driver
(VFD) in the virtual file layer (VFL). For further information, see “Virtual File Layer” and “List of VFL
Functions” in the HDF5 Technical Notes.

Parameters:
hid_tplist_id

IN: File access or data transfer property list identifier.
Returns:

Returns a pointer to a struct containing low-level driver information. Otherwise returns NULL.

NULL is also returned if no driver-specific properties have been registered. No error is pushed on the
stack in this case.

Non-C API(s):
None.

History:
Release C

1.8.2 Function publicized in this release; previous releases described this function only
in the virtual file driver documentation.

H5Pget_driver HDF5 Reference Manual

346

Name:H5Pget_dxpl_mpio
Signature:

herr_tH5Pget_dxpl_mpio(hid_t dxpl_id, H5FD_mpio_xfer_t *xfer_mode)
Purpose:

Returns the data transfer mode.
Description:

H5Pget_dxpl_mpio queries the data transfer mode currently set in the data transfer property list
dxpl_id.

Upon return, xfer_mode contains the data transfer mode, if it is non-null.

H5Pget_dxpl_mpio is not a collective function.
Parameters:

hid_tdxpl_id IN: Data transfer property list identifier.

H5FD_mpio_xfer_t *xfer_mode OUT: Data transfer mode.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface: h5pget_dxpl_mpio_f

SUBROUTINE h5pget_dxpl_mpio_f(prp_id, data_xfer_mode, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: data_xfer_mode ! Data transfer mode
 ! Possible values are:
 ! H5FD_MPIO_INDEPENDENT_F
 ! H5FD_MPIO_COLLECTIVE_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_dxpl_mpio_f

History:
Release C

1.4.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_dxpl_mpio

347

Name:H5Pget_dxpl_multi
Signature:

herr_tH5Pget_dxpl_multi(hid_t dxpl_id, const hid_t *memb_dxpl)

Purpose:
Returns multi-file data transfer property list information.

Description:
H5Pget_dxpl_multi returns the data transfer property list information for the multi-file driver.

Parameters:
hid_tdxpl_id, IN: Data transfer property list identifier.

const hid_t *memb_dxpl OUT: Array of data access property lists.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.4.0 Function introduced in this release.

H5Pget_dxpl_multi HDF5 Reference Manual

348

Name:H5Pget_edc_check
Signature:

H5Z_EDC_tH5Pget_edc_check(hid_t plist)
Purpose:

Determines whether error-detection is enabled for dataset reads.
Description:

H5Pget_edc_check queries the dataset transfer property list plist to determine whether error
detection is enabled for data read operations.

Parameters:
hid_tplist IN: Dataset transfer property list identifier.

Returns:
Returns H5Z_ENABLE_EDC or H5Z_DISABLE_EDC if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_edc_check_f
SUBROUTINE h5pget_edc_check_f(prp_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Dataset transfer property list
 ! identifier
 INTEGER, INTENT(OUT) :: flag ! EDC flag; possible values
 ! H5Z_DISABLE_EDC_F
 ! H5Z_ENABLE_EDC_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_edc_check_f

History:
Release C

1.6.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_edc_check

349

Last modified: 8 May 2009

Name:H5Pget_elink_acc_flags
Signature:

herr_tH5Pget_elink_acc_flags(hid_t lapl_id, unsigned *flags)
Purpose:

Retrieves the external link traversal file access flag from the specified link access property list.
Description:

H5Pget_elink_acc_flags retrieves the file access flag used to open an external link target file
from the specified link access property list.

The value returned, if it is not H5F_ACC_DEFAULT will override the default access flag, which is the
access flag used to open the parent file.

Parameters:
hid_t lapl_id IN: Link access property list identifier

unsigned *flags OUT: File access flag for link traversal.

Valid values include:

H5F_ACC_RDWR Files opened through external links will be opened
with write access.

H5F_ACC_RDONLY Files opened through external links will be opened
with read-only access.

H5F_ACC_DEFAULT Files opened through external links will be opened
with the same access flag as the parent file.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Example Usage:
The following code retrieves the external link access flag settings on the link access property list
lapl_id into a local variable:

unsigned acc_flags;
status = H5Pget_elink_acc_flags(lapl_id, &acc_flags);

See Also:
H5Pset_elink_acc_flags

History:
Release Change

1.8.3 C function introduced in this release.

H5Pget_elink_acc_flags HDF5 Reference Manual

350

Last modified: 17 August 2009

Name:H5Pget_elink_cb
Signature:

herr_tH5Pget_elink_cb(hid_t lapl_id, H5L_elink_traverse_t *func, void **op_data)
Purpose:

Retrieves the external link traversal callback function from the specified link access property list.
Description:

H5Pget_elink_cb retrieves the user-defined external link traversal callback function defined in the
specified link access property list.

The callback function may adjust the file access property list and file access flag to use when opening a
file through an external link. The callback will be executed by the HDF5 Library immediately before
opening the target file.

Parameters:
hid_t lapl_id IN: Link access property list identifier.

H5L_elink_traverse_t *func OUT: User-defined external link traversal callback function.

void **op_data OUT: User-defined input data for the callback function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Failure Modes:

H5Pget_elink_cb will fail if the link access property list identifier, lapl_id, is invalid.

An invalid function pointer or data pointer, func or op_data respectively, may cause a segmentation
fault or an invalid memory access.

Example Usage:
The following code retrieves the external link callback settings on the link access property list lapl_id
into local variables:

H5L_elink_traverse_t elink_callback_func;
void *elink_callback_udata;
status = H5Pget_elink_cb(lapl_id, &elink_callback_func, &elink_callback_udata);

See Also:
H5Pset_elink_cb

H5Pset_elink_fapl, H5Pset_elink_acc_flags, H5Lcreate_external

H5Fopen for discussion of H5F_ACC_RDWR and H5F_ACC_RDONLY file access flags

H5L_elink_traverse_t
History:

Release Change

1.8.3 C function introduced in this release.

HDF5 Reference Manual H5Pget_elink_cb

351

Name:H5Pget_elink_fapl
Signature:

hid_tH5Pget_elink_fapl(hid_t lapl_id)
Purpose:

Retrieves the file access property list identifier associated with the link access property list.
Description:

H5Pget_elink_fapl retrieves the file access property list identifier that is set for the link access
property list identifier, lapl_id. The library uses this file access property list identifier to open the
target file for the external link access.

When no such identifier is set, this routine returns H5P_DEFAULT.

See also H5Pset_elink_fapl and H5Lcreate_external.
Parameters:

hid_t lapl_id IN: Link access property list identifier.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.2 Function introduced in this release.

H5Pget_elink_fapl HDF5 Reference Manual

352

Name:H5Pget_elink_prefix
Signature:

ssize_tH5Pget_elink_prefix(hid_t lapl_id, char *prefix, size_t size)
Purpose:

Retrieves prefix applied to external link paths.
Description:

H5Pget_elink_prefix retrieves the prefix applied to the path of any external links traversed.

When an external link is traversed, the prefix is retrieved from the link access property list lapl_id,
returned in the user-allocated buffer pointed to by prefix, and prepended to the filename stored in the
external link.

The size in bytes of the prefix, including the NULL terminator, is specified in size. If size is unknown,
a preliminary H5Pget_elink_prefix call with the pointer prefix set to NULL will return the size
of the prefix without the NULL terminator.

Parameters:
hid_t lapl_id IN: Link access property list identifier

char *prefix OUT: Prefix applied to external link paths

size_tsize IN: Size of prefix, including null terminator
Returns:

If successful, returns a non-negative value specifying the size in bytes of the prefix without the NULL
terminator; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_elink_prefix

353

Name:H5Pget_est_link_info
Signature:

herr_tH5Pget_est_link_info(hid_t gcpl_id, unsigned *est_num_entries, unsigned
*est_name_len)

Purpose:
Queries data required to estimate required local heap or object header size.

Description:
H5Pget_est_link_info queries a group creation property list, gcpl_id, for its “estimated number
of links” and “estimated average name length” settings.

The estimated number of links anticipated to be inserted into a group created with this property list is
returned in est_num_entries.

The estimated average length of the anticipated link names is returned in est_name_len.

The values for these two settings are multiplied to compute the initial local heap size (for old-style
groups, if the local heap size hint is not set) or the initial object header size for (new-style compact
groups; see “Group implementations in HDF5”). Accurately setting these parameters will help reduce
wasted file space.

A value of 0 (zero) in est_num_entries will prevent a group from being created in the compact
format.

See “Group implementations in HDF5” in the H5G API introduction for a discussion of the available
types of HDF5 group structures.

Parameters:
hid_tgcpl_id IN: Group creation property list identifier

unsigned *est_num_entries OUT: Estimated number of links to be inserted into group

unsigned *est_name_len OUT: Estimated average length of link names
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_est_link_info_f

SUBROUTINE h5pget_est_link_info_f(gcpl_id,est_num_entries, est_name_len,hdferr)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: gcpl_id ! Group creation property list id
 INTEGER, INTENT(OUT) :: est_num_entries ! Estimated number of links to be
 ! inserted into group
 INTEGER, INTENT(OUT) :: est_name_len ! Estimated average length of link
 ! names
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_est_link_info_f

History:
Release C

1.8.0 Function introduced in this release.

H5Pget_est_link_info HDF5 Reference Manual

354

Name:H5Pget_external
Signature:

herr_tH5Pget_external(hid_t plist, unsigned idx, size_t name_size, char *name, off_t
*offset, hsize_t *size)

Purpose:
Returns information about an external file.

Description:
H5Pget_external returns information about an external file. The external file is specified by its
index, idx, which is a number from zero to N-1, where N is the value returned by
H5Pget_external_count. At most name_size characters are copied into the name array. If the
external file name is longer than name_size with the null terminator, the return value is not null
terminated (similar to strncpy()).

If name_size is zero or name is the null pointer, the external file name is not returned. If offset or
size are null pointers then the corresponding information is not returned.

Parameters:
hid_tplist IN: Identifier of a dataset creation property list.

unsignedidx IN: External file index.

size_tname_size IN: Maximum length of name array.

char *name OUT: Name of the external file.

off_t *offset OUT: Pointer to a location to return an offset value.

hsize_t*size OUT: Pointer to a location to return the size of the external file data.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_external_f

SUBROUTINE h5pget_external_f(prp_id, idx, name_size, name, offset,bytes, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: idx ! External file index.
 INTEGER(SIZE_T), INTENT(IN) :: name_size ! Maximum length of name array
 CHARACTER(LEN=*), INTENT(OUT) :: name ! Name of an external file
 INTEGER, INTENT(OUT) :: offset ! Offset, in bytes, from the
 ! beginning of the file to the
 ! location in the file where
 ! the data starts.
 INTEGER(HSIZE_T), INTENT(OUT) :: bytes ! Number of bytes reserved in
 ! the file for the data
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_external_f

History:
Release C

1.6.4 idx parameter type changed to unsigned.

HDF5 Reference Manual H5Pget_external

355

Name:H5Pget_external_count
Signature:

int H5Pget_external_count(hid_t plist)
Purpose:

Returns the number of external files for a dataset.
Description:

H5Pget_external_count returns the number of external files for the specified dataset.
Parameters:

hid_tplist IN: Identifier of a dataset creation property list.
Returns:

Returns the number of external files if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_external_count_f

SUBROUTINE h5pget_external_count_f (prp_id, count, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: count ! Number of external files for
 ! the specified dataset
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_external_count_f

H5Pget_external_count HDF5 Reference Manual

356

Name:H5Pget_family_offset
Signature:

herr_tH5Pget_family_offset (hid_t fapl_id, hsize_t *offset)
Purpose:

Retrieves a data offset from the file access property list.
Description:

H5Pget_family_offset retrieves the value of offset from the file access property list fapl_id
so that the user application can retrieve a file handle for low-level access to a particular member of a
family of files. The file handle is retrieved with a separate call to H5Fget_vfd_handle (or, in special
circumstances, to H5FDget_vfd_handle; see Virtual File Layer and List of VFL Functions in HDF5
Technical Notes).

The data offset returned in offset is the offset of the data in the HDF5 file that is stored on disk in the
selected member file in a family of files.

Use of this function is only appropriate for an HDF5 file written as a family of files with the FAMILY file
driver.

Parameters:
hid_t fapl_id IN: File access property list identifier.

hsize_t *offset OUT: Offset in bytes within the HDF5 file.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.6.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_family_offset

357

Name:H5Pget_fapl_core
Signature:

herr_tH5Pget_fapl_core(hid_t fapl_id, size_t *increment, hbool_t *backing_store)
Purpose:

Queries core file driver properties.
Description:

H5Pget_fapl_core queries the H5FD_CORE driver properties as set by H5Pset_fapl_core.
Parameters:

hid_t fapl_id IN: File access property list identifier.

size_t *increment OUT: Size, in bytes, of memory increments.

hbool_t *backing_store OUT: Boolean flag indicating whether to write the file contents to
disk when the file is closed.

Returns:
Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5pget_fapl_core_f
SUBROUTINE h5pget_fapl_core_f(prp_id, increment, backing_store, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(SIZE_T), INTENT(OUT) :: increment ! File block size in bytes
 LOGICAL, INTENT(OUT) :: backing_store ! Flag to indicate that entire
 ! file contents are flushed to
 ! a file with the same name as
 ! this core file
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_fapl_core_f

History:
Release C Fortran90

1.6.0 The backing_store parameter type changed from
INTEGER to LOGICAL to better match the C API

1.4.0 Function introduced
in this release.

H5Pget_fapl_core HDF5 Reference Manual

358

Name:H5Pget_fapl_direct
Signature:

herr_tH5Pget_fapl_direct(hid_t fapl_id, size_t *alignment, size_t *block_size, size_t
*cbuf_size)

Purpose:
Retrieves direct I/O driver settings.

Description:
H5Pget_fapl_direct retrieves the required memory alignment (alignment), file system block
size (block_size), and copy buffer size (cbuf_size) settings for the direct I/O driver,
H5FD_DIRECT, from the file access property list fapl_id.

See H5Pset_fapl_direct for discussion of these values, requirements, and important
considerations.

Parameters:
hid_t fapl_id IN: File access property list identifier

size_t *alignment OUT: Required memory alignment boundary

size_t *block_size OUT: File system block size

size_t *cbuf_size OUT: Copy buffer size
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

SUBROUTINE H5Pget_fapl_direct_f(fapl_id, alignment, block_size, cbuf_size, &
 hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: fapl_id ! File access property list identifier
 INTEGER(SIZE_T), INTENT(OUT) :: alignment
 ! Required memory alignment boundary!
 INTEGER(SIZE_T), INTENT(OUT) :: block_size
 ! File system block size
 INTEGER(SIZE_T), INTENT(OUT) :: cbuf_size
 ! Copy buffer size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE H5Pget_fapl_direct_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_fapl_direct

359

Name:H5Pget_fapl_family
Signature:

herr_tH5Pget_fapl_family (hid_t fapl_id, hsize_t *memb_size, hid_t *memb_fapl_id)
Purpose:

Returns file access property list information.
Description:

H5Pget_fapl_family returns file access property list for use with the family driver. This
information is returned through the output parameters.

Parameters:
hid_t fapl_id IN: File access property list identifier.

hsize_t *memb_size OUT: Size in bytes of each file member.

hid_t *memb_fapl_id OUT: Identifier of file access property list for each family
member.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_fapl_family_f
SUBROUTINE h5pget_fapl_family_f(prp_id, imemb_size, memb_plist, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(HSIZE_T), INTENT(OUT) :: memb_size ! Logical size, in bytes,
 ! of each family member
 INTEGER(HID_T), INTENT(OUT) :: memb_plist ! Identifier of the file
 ! access property list to be
 ! used for each family member
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_fapl_family_f

History:
Release C

1.4.0 Function introduced in this release.

H5Pget_fapl_family HDF5 Reference Manual

360

Last modified: 15 May 2009

Name:H5Pget_fapl_mpio
Signature:

herr_tH5Pget_fapl_mpio(hid_t fapl_id, MPI_Comm *comm, MPI_Info *info)
Purpose:

Returns MPI communicator information.
Description:

If the file access property list is set to the H5FD_MPIO driver, H5Pget_fapl_mpio returns duplicates
of the stored MPI communicator and Info object through the comm and info pointers, if those values are
non-null.

Since the MPI communicator and Info object are duplicates of the stored information, future
modifications to the access property list will not affect them. It is the responsibility of the application to
free these objects.

Parameters:
hid_t fapl_id IN: File access property list identifier

MPI_Comm *comm OUT: MPI-2 communicator

MPI_Info *info OUT: MPI-2 Info object
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface: h5pget_fapl_mpio_f

SUBROUTINE h5pget_fapl_mpio_f(prp_id, comm, info, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: comm ! Buffer to return communicator
 INTEGER, INTENT(IN) :: info ! Buffer to return info object as
 ! defined in MPI_FILE_OPEN of MPI-2
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_fapl_mpio_f

History:
Release Change

1.4.5 Handling of the MPI Communicator and Info object changed at this release. A
duplicate of each of these objects is now returned instead of pointers to each
object.

1.4.0 C function introduced in this release.

HDF5 Reference Manual H5Pget_fapl_mpio

361

Name:H5Pget_fapl_mpiposix
Signature:

herr_tH5Pget_fapl_mpiposix(hid_t fapl_id, MPI_Comm *comm, hbool_t
*use_gpfs_hints)

Purpose:
Returns MPI communicator information.

Description:
If the file access property list is set to the H5FD_MPIO driver, H5Pget_fapl_mpiposix returns the
MPI communicator through the comm pointer, if those values are non-null.

comm is not copied, so it is valid only until the file access property list is either modified or closed.

use_gpfs_hints specifies whether to attempt to use GPFS hints when accessing this file. A value of
TRUE (or 1) indicates that the hints are being used, where possible. A value of FALSE (or 0) indicates
that the hints are not being used.

Parameters:
hid_t fapl_id IN: File access property list identifier.

MPI_Comm *comm OUT: MPI-2 communicator.

hbool_t *use_gpfs_hints OUT: Use of GPFS hints.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface: h5pget_fapl_mpiposix_f

SUBROUTINE h5pget_fapl_mpiposix_f(prp_id, comm, use_gpfs, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: comm ! Buffer to return communicator
 LOGICAL, INTENT(OUT) :: use_gpfs
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5pget_fapl_mpiposix_f

History:
Release C Fortran90

1.6.1 Fortran subroutine introduced in this
release.

1.6.0 use_gpfs_hints parameter
added.

1.6.0 Function introduced in this release.

H5Pget_fapl_mpiposix HDF5 Reference Manual

362

Name:H5Pget_fapl_multi
Signature:

herr_tH5Pget_fapl_multi(hid_t fapl_id, const H5FD_mem_t *memb_map, const hid_t
*memb_fapl, const char **memb_name, const haddr_t *memb_addr, hbool_t *relax)

Purpose:
Returns information about the multi-file access property list.

Description:
H5Pget_fapl_multi returns information about the multi-file access property list.

Parameters:
hid_t fapl_id IN: File access property list identifier.

const H5FD_mem_t *memb_map OUT: Maps memory usage types to other memory usage types.

const hid_t *memb_fapl OUT: Property list for each memory usage type.

const char **memb_name OUT: Name generator for names of member files.

const haddr_t *memb_addr OUT: The offsets within the virtual address space, from 0 (zero)
to HADDR_MAX, at which each type of data storage begins.

hbool_t *relax OUT: Allows read-only access to incomplete file sets when
TRUE.

Returns:
Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5pget_fapl_multi_f
SUBROUTINE h5pget_fapl_multi_f(prp_id, memb_map, memb_fapl, memb_name,
 memb_addr, relax, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T),INTENT(IN) :: prp_id ! Property list identifier

 INTEGER,DIMENSION(0:H5FD_MEM_NTYPES_F-1),INTENT(OUT) :: memb_map
 INTEGER(HID_T),DIMENSION(0:H5FD_MEM_NTYPES_F-1),INTENT(OUT) :: memb_fapl
 CHARACTER(LEN=*),DIMENSION(0:H5FD_MEM_NTYPES_F-1),INTENT(OUT) :: memb_name
 REAL, DIMENSION(0:H5FD_MEM_NTYPES_F-1), INTENT(OUT) :: memb_addr
 ! Numbers in the interval [0,1) (e.g. 0.0 0.1 0.5 0.2 0.3 0.4)
 ! real address in the file will be calculated as X*HADDR_MAX

 LOGICAL, INTENT(OUT) :: relax
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_fapl_multi_f

History:
Release C

1.4.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_fapl_multi

363

Name:H5Pget_fclose_degree
Signature:

herr_tH5Pget_fclose_degree(hid_t fapl_id, H5F_close_degree_t *fc_degree)
Purpose:

Returns the file close degree.
Description:

H5Pget_fclose_degree returns the current setting of the file close degree property fc_degree in
the file access property list fapl_id.

The value of fc_degree determines how aggressively H5Fclose deals with objects within a file that
remain open when H5Fclose is called to close that file. fc_degree can have any one of four valid
values as described in H5Pset_fclose_degree.

Parameters:
hid_t fapl_id IN: File access property list identifier.

H5F_close_degree_t *fc_degree OUT: Pointer to a location to which to return the file close
degree property, the value of fc_degree.

Returns:
Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5pget_fclose_degree_f
SUBROUTINE h5pget_fclose_degree_f(fapl_id, degree, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: fapl_id ! File access property list identifier
 INTEGER, INTENT(OUT) :: degree ! Info about file close behavior
 ! Possible values:
 ! H5F_CLOSE_DEFAULT_F
 ! H5F_CLOSE_WEAK_F
 ! H5F_CLOSE_SEMI_F
 ! H5F_CLOSE_STRONG_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_fclose_degree_f

History:
Release C

1.6.0 Function introduced in this release.

H5Pget_fclose_degree HDF5 Reference Manual

364

Name:H5Pget_fill_time
Signature:

herr_tH5Pget_fill_time(hid_t plist_id, H5D_fill_time_t *fill_time)
Purpose:

Retrieves the time when fill value are written to a dataset.
Description:

H5Pget_fill_time examines the dataset creation property list plist_id to determine when fill
values are to be written to a dataset.

Valid values returned in fill_time are as follows:

H5D_FILL_TIME_IFSET Fill values are written to the dataset when storage space is allocated
only if there is a user-defined fill value, i.e., one set with
H5Pset_fill_value. (Default)

H5D_FILL_TIME_ALLOC Fill values are written to the dataset when storage space is allocated.

H5D_FILL_TIME_NEVER Fill values are never written to the dataset.
Note:

H5Pget_fill_time is designed to work in coordination with the dataset fill value and dataset storage
allocation time properties, retrieved with the functions H5Pget_fill_value and
H5Pget_alloc_time.

Parameters:
hid_tplist_id IN: Dataset creation property list identifier.

H5D_fill_time_t *fill_time OUT: Setting for the timing of writing fill values to the dataset.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_fill_time_f

SUBROUTINE h5pget_fill_time_f(plist_id, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id ! Dataset creation property
 ! list identifier
 INTEGER(HSIZE_T), INTENT(OUT) :: flag ! Fill time flag
 ! Possible values are:
 ! H5D_FILL_TIME_ERROR_F
 ! H5D_FILL_TIME_ALLOC_F
 ! H5D_FILL_TIME_NEVER_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_fill_time_f

History:
Release C

1.6.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_fill_time

365

Name:H5Pget_fill_value
Signature:

herr_tH5Pget_fill_value(hid_t plist_id, hid_t type_id, void *value)
Purpose:

Retrieves a dataset fill value.
Description:

H5Pget_fill_value returns the dataset fill value defined in the dataset creation property list
plist_id.

The fill value is returned through the value pointer and will be converted to the datatype specified by
type_id. This datatype may differ from the fill value datatype in the property list, but the HDF5 library
must be able to convert between the two datatypes.

If the fill value is undefined, i.e., set to NULL in the property list, H5Pget_fill_value will return an
error. H5Pfill_value_defined should be used to check for this condition before
H5Pget_fill_value is called.

Memory must be allocated by the calling application.
Note:

H5Pget_fill_value is designed to coordinate with the dataset storage allocation time and fill value
write time properties, which can be retrieved with the functions H5Pget_alloc_time and
H5Pget_fill_time, respectively.

Parameters:
hid_tplist_id IN: Dataset creation property list identifier.

hid_t type_id, IN: Datatype identifier for the value passed via value.

void *value OUT: Pointer to buffer to contain the returned fill value.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_fill_value_f

SUBROUTINE h5pget_fill_value_f(prp_id, type_id, fillvalue, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier of fill
 ! value datatype (in memory)
 TYPE(VOID), INTENT(IN) :: fillvalue ! Fillvalue
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure

END SUBROUTINE h5pget_fill_value_f

H5Pget_fill_value HDF5 Reference Manual

366

Name:H5Pget_filter
Signatures:

H5Z_filter_tH5Pget_filter(hid_t plist, unsigned int idx,
unsigned int *flags, size_t *cd_nelmts, unsigned int *cd_values,
size_tnamelen, char name[])

[1]

H5Z_filter_tH5Pget_filter(hid_t plist_id, unsigned idx,
unsigned int *flags, size_t *cd_nelmts, unsigned cd_values[],
size_tnamelen, char name[], unsigned *filter_config)

[2]

Purpose:
Returns information about a filter in a pipeline.

Description:
H5Pget_filter is a macro that is mapped to either H5Pget_filter1 or H5Pget_filter2,
depending on the needs of the application.

Such macros are provided to facilitate application compatibility. For example:

The H5Pget_filter macro will be mapped to H5Pget_filter1 and will use the
H5Pget_filter1 syntax (first signature above) if an application is coded for HDF5 Release
1.6.x.

◊

The H5Pget_filter macro mapped to H5Pget_filter2 and will use the
H5Pget_filter2 syntax (second signature above) if an application is coded for HDF5
Release 1.8.x.

◊

Macro use and mappings are fully described in “API Compatibility Macros in HDF5” we urge you to read
that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Pget_filter is mapped to the most recent version of the function, currently
H5Pget_filter2. If the library and/or application is compiled for Release 1.6 emulation,
H5Pget_filter will be mapped to H5Pget_filter1. Function-specific flags are available to
override these settings on a function-by-function basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Pget_filter mapping

Global settings

No compatibility flag H5Pget_filter2

Enable deprecated symbols H5Pget_filter2

Disable deprecated symbols H5Pget_filter2

Emulate Release 1.6 interface H5Pget_filter1

HDF5 Reference Manual H5Pget_filter

367

Function-level macros

H5Pget_filter_vers = 2 H5Pget_filter2

H5Pget_filter_vers = 1 H5Pget_filter1

Interface history: Signature [1] above is the original H5Pget_filter interface and the only
interface available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now
deprecated but will remain directly callable as H5Pget_filter1.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Pget_filter2.

See “API Compatibility Macros in HDF5” for circumstances under which either of these functions might
not be available in an installed instance of the HDF5 Library.

Fortran90 Interface: h5pget_filter_f
SUBROUTINE h5pget_filter_f(prp_id, filter_number, flags, cd_nelmts,
 cd_values, namelen, name, filter_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: filter_number ! Sequence number within the filter
 ! pipeline of the filter for which
 ! information is sought
 INTEGER, DIMENSION(*), INTENT(OUT) :: cd_values
 ! Auxiliary data for the filter
 INTEGER, INTENT(OUT) :: flags ! Bit vector specifying certain
 ! general properties of the filter
 INTEGER(SIZE_T), INTENT(INOUT) :: cd_nelmts
 ! Number of elements in cd_values
 INTEGER(SIZE_T), INTENT(IN) :: namelen ! Anticipated number of characters
 ! in name
 CHARACTER(LEN=*), INTENT(OUT) :: name ! Name of the filter
 INTEGER, INTENT(OUT) :: filter_id ! Filter identification number
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_filter_f

History:
Release C

1.8.0 The function H5Pget_filter renamed to H5Pget_filter1 and deprecated
in this release.
The macro H5Pget_filter and the function H5Pget_filter2 introduced
in this release.

H5Pget_filter HDF5 Reference Manual

368

Last modified: 10 June 2010

Name:H5Pget_filter1
Signature:

H5Z_filter_tH5Pget_filter1(hid_t plist_id, unsigned int idx, unsigned int *flags, size_t
*cd_nelmts, unsigned int *cd_values, size_t namelen, char name[])

Purpose:
Returns information about a filter in a pipeline.

Notice:
This function is renamed from H5Pget_filter and deprecated in favor of the function
H5Pget_filter2 or the new macro H5Pget_filter.

Description:
H5Pget_filter1 returns information about a filter, specified by its filter number, in a filter pipeline,
specified by the property list with which it is associated.

plist_id must be a dataset or group creation property list.

idx is a value between zero and N-1, as described in H5Pget_nfilters. The function will return a
negative value if the filter number is out of range.

The structure of the flags argument is discussed in H5Pset_filter.

On input, cd_nelmts indicates the number of entries in the cd_values array, as allocated by the
caller; on return,cd_nelmts contains the number of values defined by the filter.

If name is a pointer to an array of at least namelen bytes, the filter name will be copied into that array.
The name will be null terminated if namelen is large enough. The filter name returned will be the name
appearing in the file, the name registered for the filter, or an empty string.

Parameters:
hid_tplist_id IN: Dataset or group creation property list identifier.

int idx IN: Sequence number within the filter pipeline of the filter for which
information is sought.

unsigned int *flags OUT: Bit vector specifying certain general properties of the filter.

size_t *cd_nelmts IN/OUT: Number of elements in cd_values.

unsigned int
*cd_values

OUT: Auxiliary data for the filter.

size_tnamelen IN: Anticipated number of characters in name.

charname[] OUT: Name of the filter.

HDF5 Reference Manual H5Pget_filter1

369

Returns:
Returns the filter identifier if successful:

H5Z_FILTER_DEFLATE Data compression filter, employing the
gzip algorithm

H5Z_FILTER_SHUFFLE Data shuffling filter

H5Z_FILTER_FLETCHER32 Error detection filter, employing the
Fletcher32 checksum algorithm

H5Z_FILTER_SZIP Data compression filter, employing the
SZIP algorithm

H5Z_FILTER_NBIT Data compression filter, employing the
N-bit algorithm

H5Z_FILTER_SCALEOFFSET Data compression filter, employing the
scale-offset algorithm

Otherwise returns a negative value.
Fortran90 Interface: h5pget_filter_f

SUBROUTINE h5pget_filter_f(prp_id, filter_number, flags, cd_nelmts,
 cd_values, namelen, name, filter_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: filter_number ! Sequence number within the filter
 ! pipeline of the filter for which
 ! information is sought
 INTEGER, DIMENSION(*), INTENT(OUT) :: cd_values
 ! Auxiliary data for the filter
 INTEGER, INTENT(OUT) :: flags ! Bit vector specifying certain
 ! general properties of the filter
 INTEGER(SIZE_T), INTENT(INOUT) :: cd_nelmts
 ! Number of elements in cd_values
 INTEGER(SIZE_T), INTENT(IN) :: namelen ! Anticipated number of characters
 ! in name
 CHARACTER(LEN=*), INTENT(OUT) :: name ! Name of the filter
 INTEGER, INTENT(OUT) :: filter_id ! Filter identification number
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_filter_f

History:
Release Change

1.6.4 filter parameter type changed to unsigned.

1.8.0 N-bit and scale-offset filters added.

1.8.0 Function H5Pget_filter renamed to H5Pget_filter1 and deprecated in
this release.

1.8.5 Function extended to work with group creation property lists.

H5Pget_filter1 HDF5 Reference Manual

370

Last modified: 10 June 2010

Name:H5Pget_filter2
Signature:

H5Z_filter_tH5Pget_filter2(hid_t plist_id, unsigned idx, unsigned int *flags, size_t
*cd_nelmts, unsigned cd_values[], size_t namelen, char name[], unsigned
*filter_config)

Purpose:
Returns information about a filter in a pipeline.

Description:
H5Pget_filter2 returns information about a filter, specified by its filter number, in a filter pipeline,
specified by the property list with which it is associated.

plist_id must be a dataset or group creation property list.

idx is a value between zero and N-1, as described in H5Pget_nfilters. The function will return a
negative value if the filter number is out of range.

The structure of the flags argument is discussed in H5Pset_filter.

On input, cd_nelmts indicates the number of entries in the cd_values array, as allocated by the
caller; on return,cd_nelmts contains the number of values defined by the filter.

If name is a pointer to an array of at least namelen bytes, the filter name will be copied into that array.
The name will be null terminated if namelen is large enough. The filter name returned will be the name
appearing in the file, the name registered for the filter, or an empty string.

filter_config is the bit field described in H5Zget_filter_info.
Parameters:

hid_tplist_id IN: Dataset or group creation property list identifier.

int idx IN: Sequence number within the filter pipeline of the filter for
which information is sought.

unsigned int *flags OUT: Bit vector specifying certain general properties of the
filter.

size_t *cd_nelmts IN/OUT: Number of elements in cd_values.

unsigned int *cd_values OUT: Auxiliary data for the filter.

size_tnamelen IN: Anticipated number of characters in name.

charname[] OUT: Name of the filter.

unsigned int *filter_config OUT: Bit field, as described in H5Zget_filter_info.

HDF5 Reference Manual H5Pget_filter2

371

Returns:
Returns the filter identifier if successful:

H5Z_FILTER_DEFLATE Data compression filter, employing the
gzip algorithm

H5Z_FILTER_SHUFFLE Data shuffling filter

H5Z_FILTER_FLETCHER32 Error detection filter, employing the
Fletcher32 checksum algorithm

H5Z_FILTER_SZIP Data compression filter, employing the
SZIP algorithm

H5Z_FILTER_NBIT Data compression filter, employing the
N-bit algorithm

H5Z_FILTER_SCALEOFFSET Data compression filter, employing the
scale-offset algorithm

Otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release Change

1.8.0 Function introduced in this release.

1.8.5 Function extended to work with group creation property lists.

H5Pget_filter2 HDF5 Reference Manual

372

Name:H5Pget_filter_by_id
Signatures:

herr_tH5Pget_filter_by_id(hid_t plist_id, H5Z_filter_t
filter_id, unsigned int *flags, size_t *cd_nelmts, unsigned int
cd_values[], size_t namelen, char name[])

[1]

herr_tH5Pget_filter_by_id(hid_t plist_id, H5Z_filter_t
filter_id, unsigned int *flags, size_t *cd_nelmts, unsigned int
cd_values[], size_t namelen, char name[], unsigned int
*filter_config)

[2]

Purpose:
Returns information about the specified filter.

Description:
H5Pget_filter_by_id is a macro that is mapped to either H5Pget_filter_by_id1 or
H5Pget_filter_by_id2, depending on the needs of the application.

Such macros are provided to facilitate application compatibility. For example:

The H5Pget_filter_by_id macro will be mapped to H5Pget_filter_by_id1 and will
use the H5Pget_filter_by_id1 syntax (first signature above) if an application is coded for
HDF5 Release 1.6.x.

◊

The H5Pget_filter_by_id macro mapped to H5Pget_filter_by_id2 and will use the
H5Pget_filter_by_id2 syntax (second signature above) if an application is coded for
HDF5 Release 1.8.x.

◊

Macro use and mappings are fully described in “API Compatibility Macros in HDF5” we urge you to read
that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Pget_filter_by_id is mapped to the most recent version of the function, currently
H5Pget_filter_by_id2. If the library and/or application is compiled for Release 1.6 emulation,
H5Pget_filter_by_id will be mapped to H5Pget_filter_by_id1. Function-specific flags are
available to override these settings on a function-by-function basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Pget_filter_by_id mapping

Global settings

No compatibility flag H5Pget_filter_by_id2

Enable deprecated symbols H5Pget_filter_by_id2

Disable deprecated symbols H5Pget_filter_by_id2

Emulate Release 1.6 interface H5Pget_filter_by_id1

HDF5 Reference Manual H5Pget_filter_by_id

373

Function-level macros

H5Pget_filter_by_id_vers = 2 H5Pget_filter_by_id2

H5Pget_filter_by_id_vers = 1 H5Pget_filter_by_id1

Interface history: Signature [1] above is the original H5Pget_filter_by_id interface and the only
interface available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now
deprecated but will remain directly callable as H5Pget_filter_by_id1.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Pget_filter_by_id2.

See “API Compatibility Macros in HDF5” for circumstances under which either of these functions might
not be available in an installed instance of the HDF5 Library.

Fortran90 Interface: h5pget_filter_by_id_f
SUBROUTINE h5pget_filter_by_id_f(prp_id, filter_id, flags, cd_nelmts,
 cd_values, namelen, name, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: filter_id ! Filter identifier
 INTEGER(SIZE_T), INTENT(INOUT) :: cd_nelmts
 ! Number of elements in cd_values
 INTEGER, DIMENSION(*), INTENT(OUT) :: cd_values
 ! Auxiliary data for the filter
 INTEGER, INTENT(OUT) :: flags ! Bit vector specifying certain
 ! general properties of the filter
 INTEGER(SIZE_T), INTENT(IN) :: namelen ! Anticipated number of characters
 ! in name
 CHARACTER(LEN=*), INTENT(OUT) :: name ! Name of the filter
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_filter_by_id_f

History:
Release C

1.8.0 The function H5Pget_filter_by_id renamed to
H5Pget_filter_by_id1 and deprecated in this release.
The macro H5Pget_filter_by_id and the function
H5Pget_filter_by_id2 introduced in this release.

H5Pget_filter_by_id HDF5 Reference Manual

374

Last modified: 14 June 2009

Name:H5Pget_filter_by_id1
Signature:

herr_tH5Pget_filter_by_id1(hid_t plist_id, H5Z_filter_t filter_id, unsigned int
*flags, size_t *cd_nelmts, unsigned int cd_values[], size_t namelen, char name[])

Purpose:
Returns information about the specified filter.

Notice:
This function is renamed from H5Pget_filter_by_id and deprecated in favor of the function
H5Pget_filter_by_id2 or the new macro H5Pget_filter_by_id.

Description:
H5Pget_filter_by_id1 returns information about the filter specified in filter_id, a filter
identifier.

plist_id must be a dataset or group creation property list and filter_id must be in the associated
filter pipeline.

The filter_id and flags parameters are used in the same manner as described in the discussion of
H5Pset_filter.

Aside from the fact that they are used for output, the parameters cd_nelmts and cd_values[] are
used in the same manner as described in the discussion of H5Pset_filter. On input, the cd_nelmts
parameter indicates the number of entries in the cd_values[] array allocated by the calling program;
on exit it contains the number of values defined by the filter.

On input, the namelen parameter indicates the number of characters allocated for the filter name by the
calling program in the array name[]. On exit name[] contains the name of the filter with one character
of the name in each element of the array.

If the filter specified in filter_id is not set for the property list, an error will be returned and
H5Pget_filter_by_id1 will fail.

Parameters:
hid_tplist_id IN: Dataset or group creation property list identifier.

H5Z_filter_tfilter_id IN: Filter identifier.

unsigned int *flags OUT: Bit vector specifying certain general properties of the filter.

size_t *cd_nelmts IN/OUT: Number of elements in cd_values.

unsigned int *cd_values OUT: Auxiliary data for the filter.

size_tnamelen IN: Length of filter name and number of elements in name[].

charname[] OUT: Name of filter.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Pget_filter_by_id1

375

Fortran90 Interface: h5pget_filter_by_id_f
See the H5Pget_filter_by_id macro description.

History:
Release Change

1.6.0 Function introduced in this release.

1.8.0 Function H5Tget_filter_by_id renamed to H5Tget_filter_by_id1
and deprecated in this release.

1.8.5 Function extended to work with group creation property lists.

H5Pget_filter_by_id1 HDF5 Reference Manual

376

Last modified: 14 June 2010

Name:H5Pget_filter_by_id2
Signature:

herr_tH5Pget_filter_by_id2(hid_t plist_id, H5Z_filter_t filter_id, unsigned int
*flags, size_t *cd_nelmts, unsigned int cd_values[], size_t namelen, char name[], unsigned
int *filter_config)

Purpose:
Returns information about the specified filter.

Description:
H5Pget_filter_by_id2 returns information about the filter specified in filter_id, a filter
identifier.

plist_id must be a dataset or group creation property list and filter_id must be in the associated
filter pipeline.

The filter_id and flags parameters are used in the same manner as described in the discussion of
H5Pset_filter.

Aside from the fact that they are used for output, the parameters cd_nelmts and cd_values[] are
used in the same manner as described in the discussion of H5Pset_filter. On input, the cd_nelmts
parameter indicates the number of entries in the cd_values[] array allocated by the calling program;
on exit it contains the number of values defined by the filter.

On input, the namelen parameter indicates the number of characters allocated for the filter name by the
calling program in the array name[]. On exit name[] contains the name of the filter with one character
of the name in each element of the array.

filter_config is the bit field described in H5Zget_filter_info.

If the filter specified in filter_id is not set for the property list, an error will be returned and
H5Pget_filter_by_id2 will fail.

Parameters:
hid_tplist_id IN: Dataset or group creation property list identifier.

H5Z_filter_tfilter_id IN: Filter identifier.

unsigned int *flags OUT: Bit vector specifying certain general properties of the
filter.

size_t *cd_nelmts IN/OUT: Number of elements in cd_values.

unsigned int *cd_values OUT: Auxiliary data for the filter.

size_tnamelen IN: Length of filter name and number of elements in name[].

charname[] OUT: Name of filter.

unsigned int *filter_config OUT: Bit field, as described in H5Zget_filter_info.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Pget_filter_by_id2

377

Fortran90 Interface: h5pget_filter_by_id_f
See the H5Pget_filter_by_id macro description.

History:
Release Change

1.8.0 Function introduced in this release.

1.8.5 Function extended to work with group creation property lists.

H5Pget_filter_by_id2 HDF5 Reference Manual

378

Name:H5Pget_gc_references
Signature:

herr_tH5Pget_gc_references(hid_t plist, unsigned *gc_ref)
Purpose:

Returns garbage collecting references setting.
Description:

H5Pget_gc_references returns the current setting for the garbage collection references property
from the specified file access property list. The garbage collection references property is set by
H5Pset_gc_references.

Parameters:
hid_tplist IN: File access property list identifier.

unsignedgc_ref OUT: Flag returning the state of reference garbage collection. A returned value
of 1 indicates that garbage collection is on while 0 indicates that garbage
collection is off.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_gc_references_f
SUBROUTINE h5pget_gc_references_f (prp_id, gc_reference, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: gc_reference ! The flag for garbage collecting
 ! references for the file
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_gc_references_f

HDF5 Reference Manual H5Pget_gc_references

379

Name:H5Pget_hyper_vector_size
Signature:

herr_tH5Pget_hyper_vector_size(hid_t dxpl_id, size_t *vector_size)
Purpose:

Retrieves number of I/O vectors to be read/written in hyperslab I/O.
Description:

H5Pset_hyper_vector_size retrieves the number of I/O vectors to be accumulated in memory
before being issued to the lower levels of the HDF5 library for reading or writing the actual data.

The number of I/O vectors set in the dataset transfer property list dxpl_id is returned in
vector_size. Unless the default value is in use, vector_size was previously set with a call to
H5Pset_hyper_vector_size.

Parameters:
hid_tdxpl_id IN: Dataset transfer property list identifier.

size_t *vector_size OUT: Number of I/O vectors to accumulate in memory for I/O operations.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_hyper_vector_size_f

SUBROUTINE h5pget_hyper_vector_size_f(plist_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id ! Dataset transfer property list
 ! identifier
 INTEGER(SIZE_T), INTENT(OUT) :: size ! Vector size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_hyper_vector_size_f

History:
Release C

1.6.0 Function introduced in this release.

H5Pget_hyper_vector_size HDF5 Reference Manual

380

Name:H5Pget_istore_k
Signature:

herr_tH5Pget_istore_k(hid_t plist, unsigned * ik)
Purpose:

Queries the 1/2 rank of an indexed storage B-tree.
Description:

H5Pget_istore_k queries the 1/2 rank of an indexed storage B-tree. The argument ik may be the
null pointer (NULL). This function is only valid for file creation property lists.

See H5Pset_istore_k for details.
Parameters:

hid_tplist IN: Identifier of property list to query.

unsigned *ik OUT: Pointer to location to return the chunked storage B-tree 1/2 rank.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_istore_k_f

SUBROUTINE h5pget_istore_k_f(prp_id, ik, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: ik ! 1/2 rank of chunked storage B-tree
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_istore_k_f

History:
Release C

1.6.4 ik parameter type changed to unsigned.

HDF5 Reference Manual H5Pget_istore_k

381

Name:H5Pget_layout
Signature:

H5D_layout_tH5Pget_layout(hid_t plist)
Purpose:

Returns the layout of the raw data for a dataset.
Description:

H5Pget_layout returns the layout of the raw data for a dataset. This function is only valid for dataset
creation property lists.

Note that a compact storage layout may affect writing data to the dataset with parallel applications. See
note in H5Dwrite documentation for details.

Parameters:
hid_tplist IN: Identifier for property list to query.

Returns:
Returns the layout type (a non-negative value) of a dataset creation property list if successful. Valid return
values are:

H5D_COMPACT
Raw data is stored in the object header in the file.

H5D_CONTIGUOUS
Raw data is stored separately from the object header in one contiguous chunk in the file.

H5D_CHUNKED
Raw data is stored separately from the object header in chunks in separate locations in the
file.

Otherwise, returns a negative value indicating failure.
Fortran90 Interface: h5pget_layout_f

SUBROUTINE h5pget_layout_f (prp_id, layout, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: layout ! Type of storage layout for raw data
 ! possible values are:
 ! H5D_COMPACT_F
 ! H5D_CONTIGUOUS_F
 ! H5D_CHUNKED_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_layout_f

H5Pget_layout HDF5 Reference Manual

382

Last modified: 5 January 2011

Name:H5Pget_libver_bounds
Signature:

herr_tH5Pget_libver_bounds(hid_t fapl_id, H5F_libver_t *libver_low, H5F_libver_t
*libver_high)

Purpose:
Retrieves library version bounds settings that indirectly control the format versions used when creating
objects.

Description:
H5Pget_libver_bounds retrieves the lower and upper bounds on the HDF5 Library versions that
indirectly determine the object formats versions used when creating objects in the file.

This property is retrieved from the file access property list specified by fapl_id.
Parameters:

hid_t fapl_id IN: File access property list identifier

H5F_libver_t *libver_low OUT: The earliest version of the library that will be used for writing
objects. The library version indirectly specifies the earliest object
format version that can be used when creating objects in the file.

Valid values of libver_low are as follows:

H5F_LIBVER_EARLIEST

H5F_LIBVER_18

H5F_LIBVER_LATEST

H5F_libver_t *libver_high OUT: The latest version of the library that will be used for writing
objects. The library version indirectly specifies the latest object
format version that can be used when creating objects in the file.

Valid values of libver_high are as follows:

H5F_LIBVER_18

H5F_LIBVER_LATEST

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

1.8.6 H5F_LIBVER_18 version boundary setting added in this release.

HDF5 Reference Manual H5Pget_libver_bounds

383

Name:H5Pget_link_creation_order
Signature:

herr_tH5Pget_link_creation_order(hid_t gcpl_id, unsigned *crt_order_flags)
Purpose:

Queries whether link creation order is tracked and/or indexed in a group.
Description:

H5Pget_link_creation_order queries the group creation property list, gcpl_id, and returns a
flag indicating whether link creation order is tracked and/or indexed in a group.

See H5Pset_link_creation_order for a list of valid creation order flags, as passed in
crt_order_flags, and their meanings.

Parameters:
hid_tgcpl_id IN: Group creation property list identifier

unsigned *crt_order_flags OUT: Creation order flag(s)
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_link_creation_order_f

SUBROUTINE h5pget_link_creation_order_f(gcpl_id, crt_order_flags, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: gcpl_id ! Group creation property list id
 INTEGER, INTENT(OUT) :: crt_order_flags ! Creation order flag(s)
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_link_creation_order_f

History:
Release C

1.8.0 Function introduced in this release.

H5Pget_link_creation_order HDF5 Reference Manual

384

Name:H5Pget_link_phase_change
Signature:

herr_tH5Pget_link_phase_change(hid_t gcpl_id, unsigned *max_compact, unsigned
*min_dense)

Purpose:
Queries the settings for conversion between compact and dense groups.

Description:
H5Pget_link_phase_change queries the maximum number of entries for a compact group and the
minimum number links to require before converting a group to a dense form.

In the compact format, links are stored as messages in the group’s header. In the dense format, links are
stored in a fractal heap and indexed with a version 2 B-tree.

max_compact is the maximum number of links to store as header messages in the group header before
converting the group to the dense format. Groups that are in the compact format and exceed this number
of links are automatically converted to the dense format.

min_dense is the minimum number of links to store in the dense format. Groups which are in dense
format and in which the number of links falls below this number are automatically converted back to the
compact format.

In the compact format, links are stored as messages in the group’s header. In the dense format, links are
stored in a fractal heap and indexed with a version 2 B-tree.

See H5Pset_link_phase_change for a discussion of traditional, compact, and dense group storage.
Parameters:

hid_tgcpl_id IN: Group creation property list identifier

unsigned *max_compact OUT: Maximum number of links for compact storage

unsigned *min_dense OUT: Minimum number of links for dense storage
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

SUBROUTINE h5pset_link_phase_change_f(gcpl_id, max_compact, min_dense, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: gcpl_id
 ! Group creation property list identifier
 INTEGER, INTENT(IN) :: max_compact
 ! Maximum number of attributes to be stored
 ! in compact storage
 INTEGER, INTENT(IN) :: min_dense
 ! Minimum number of attributes to be stored
 ! in dense storage
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_link_phase_change_f

HDF5 Reference Manual H5Pget_link_phase_change

385

History:
Release C

1.8.0 Function introduced in this release.

H5Pget_link_phase_change HDF5 Reference Manual

386

Name:H5Pget_local_heap_size_hint
Signature:

herr_tH5Pget_local_heap_size_hint(hid_t gcpl_id, size_t *size_hint)
Purpose:

Retrieves the anticipated size of the local heap for original-style groups.
Description:

H5Pget_local_heap_size_hint queries the group creation property list, gcpl_id, for the
anticipated size of the local heap, size_hint, for original-style groups, i.e., for groups of the style used
prior to HDF5 Release 1.8.0.

See H5Pset_local_heap_size_hint for further discussion.
Parameters:

hid_tgcpl_id IN: Group creation property list identifier

size_t *size_hint OUT: Anticipated size of local heap
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

SUBROUTINE h5pget_local_heap_size_hint_f(gcpl_id, size_hint, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: gcpl_id
 ! Group creation property list identifier
 INTEGER(SIZE_T), INTENT(OUT) :: size_hint
 ! Hint for size of local heap
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_local_heap_size_hint_f

History:
Release Change

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_local_heap_size_hint

387

Name:H5Pget_mdc_config
Signature:

herr_tH5Pget_mdc_config(hid_t plist_id, H5AC_cache_config_t *config_ptr)
Purpose:

Get the current initial metadata cache configuration from the indicated File Access Property List.
Description:

H5Pget_mdc_config gets the initial metadata cache configuration contained in a file access property
list and loads it into the instance of H5AC_cache_config_t pointed to by the config_ptr
parameter. This configuration is used when the file is opened.

Note that the version field of *config_ptr must be initialized; this allows the library to support old
versions of the H5AC_cache_config_t structure.

See the overview of the metadata cache in the special topics section of the user guide for details on the
configuration data returned. If you haven't read and understood that documentation, the results of this call
will not make much sense.

Parameters:
hid_tplist_id IN: Identifier of the file access property list.

H5AC_cache_config_t *config_ptr IN/OUT: Pointer to the instance of
H5AC_cache_config_t in which the current metadata
cache configuration is to be reported. The fields of this
structure are discussed below:

General configuration section:

int version IN: Integer field indicating the the version of the
H5AC_cache_config_t in use. This field should be set to
H5AC__CURR_CACHE_CONFIG_VERSION (defined
in H5ACpublic.h).

hbool_trpt_fcn_enabled OUT: Boolean flag indicating whether the adaptive
cache resize report function is enabled. This field should
almost always be set to FALSE. Since resize algorithm
activity is reported via stdout, it MUST be set to FALSE
on Windows machines.

The report function is not supported code, and can be
expected to change between versions of the library. Use
it at your own risk.

hbool_topen_trace_file OUT: Boolean field indicating whether the
trace_file_name field should be used to open a
trace file for the cache. This field will always be set to
FALSE in this context.

hbool_tclose_trace_file OUT: Boolean field indicating whether the current trace
file (if any) should be closed. This field will always be
set to FALSE in this context.

char *trace_file_name OUT: Full path name of the trace file to be opened if the
open_trace_file field is TRUE. This field will
always be set to the empty string in this context.

H5Pget_mdc_config HDF5 Reference Manual

388

hbool_tevictions_enabled OUT: Boolean flag indicating whether metadata cache
entry evictions will be enabled when the file is opened /
created.

hbool_tset_initial_size OUT: Boolean flag indicating whether the cache should
be created with a user specified initial maximum size.

size_tinitial_size OUT: Initial maximum size of the cache in bytes, if
applicable.

doublemin_clean_fraction OUT: Float value specifing the minimum fraction of the
cache that must be kept either clean or empty when
possible.

size_tmax_size OUT: Upper bound (in bytes) on the range of values that
the adaptive cache resize code can select as the
maximum cache size.

size_tmin_size OUT: Lower bound (in bytes) on the range of values that
the adaptive cache resize code can select as the
maximum cache size.

int epoch_length OUT: Number of cache accesses between runs of the
adaptive cache resize code.

Increment configuration section:

enum H5C_cache_incr_modeincr_mode OUT: Enumerated value indicating the operational mode
of the automatic cache size increase code. At present,
only the following values are legal:

H5C_incr__off: Automatic cache size increase is
disabled.

H5C_incr__threshold: Automatic cache size increase is
enabled using the hit rate threshold algorithm.

doublelower_hr_threshold OUT: Hit rate threshold used in the hit rate threshold
cache size increase algorithm.

doubleincrement OUT: The factor by which the current maximum cache
size is multiplied to obtain an initial new maximum
cache size if a size increase is triggered in the hit rate
threshold cache size increase algorithm.

hbool_tapply_max_increment OUT: Boolean flag indicating whether an upper limit
will be applied to the size of cache size increases.

size_tmax_increment OUT: The maximum number of bytes by which the
maximum cache size can be increased in a single step --
if applicable.

enum H5C_cache_flash_incr_mode
flash_incr_mode

OUT: Enumerated value indicating the operational mode
of the flash cache size increase code. At present, only the
following values are legal:

H5C_flash_incr__off: Flash cache size increase is
disabled.

HDF5 Reference Manual H5Pget_mdc_config

389

H5C_flash_incr__add_space: Flash cache size increase
is enabled using the add space algorithm.

doubleflash_threshold OUT: The factor by which the current maximum cache
size is multiplied to obtain the minimum size entry /
entry size increase which may trigger a flash cache size
increase.

doubleflash_multiple OUT: The factor by which the size of the triggering
entry / entry size increase is multiplied to obtain the
initial cache size increment. This increment may be
reduced to reflect existing free space in the cache and the
max_size field above.

Decrement configuration section:

enum H5C_cache_decr_modedecr_mode OUT: Enumerated value indicating the operational mode
of the automatic cache size decrease code. At present,
the following values are legal:

H5C_decr__off: Automatic cache size decrease is
disabled, and the remaining decrement fields are
ignored.

H5C_decr__threshold: Automatic cache size decrease is
enabled using the hit rate threshold algorithm.

H5C_decr__age_out: Automatic cache size decrease is
enabled using the ageout algorithm.

H5C_decr__age_out_with_threshold: Automatic cache
size decrease is enabled using the ageout with hit rate
threshold algorithm

doubleupper_hr_threshold OUT: Upper hit rate threshold. This value is only used if
the decr_mode is either H5C_decr__threshold or
H5C_decr__age_out_with_threshold.

doubledecrement OUT: Factor by which the current max cache size is
multiplied to obtain an initial value for the new cache
size when cache size reduction is triggered in the hit rate
threshold cache size reduction algorithm.

hbool_tapply_max_decrement OUT: Boolean flag indicating whether an upper limit
should be applied to the size of cache size decreases.

size_tmax_decrement OUT: The maximum number of bytes by which cache
size can be decreased if any single step, if applicable.

int epochs_before_eviction OUT: The minimum number of epochs that an entry
must reside unaccessed in cache before being evicted
under either of the ageout cache size reduction
algorithms.

hbool_tapply_empty_reserve OUT: Boolean flag indicating whether an empty reserve
should be maintained under either of the ageout cache
size reduction algorithms.

doubleempty_reserve

H5Pget_mdc_config HDF5 Reference Manual

390

OUT: Empty reserve for use with the ageout cache size
reduction algorithms, if applicable.

Parallel configuration section:

int dirty_bytes_threshold OUT: Threshold number of bytes of dirty metadata
generation for triggering synchronizations of the
metadata caches serving the target file in the parallel
case.

Synchronization occurs whenever the number of bytes of
dirty metadata created since the last synchronization
exceeds this limit.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Pget_mdc_config

391

Name:H5Pget_meta_block_size
Signature:

herr_tH5Pget_meta_block_size(hid_t fapl_id, hsize_t *size)
Purpose:

Returns the current metadata block size setting.
Description:

H5Pget_meta_block_size returns the current minimum size, in bytes, of new metadata block
allocations. This setting is retrieved from the file access property list fapl_id.

This value is set by H5Pset_meta_block_size and is retrieved from the file access property list fapl_id.
Parameters:

hid_t fapl_id IN: File access property list identifier.

hsize_t *size OUT: Minimum size, in bytes, of metadata block allocations.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface: h5pget_meta_block_size_f

SUBROUTINE h5pget_meta_block_size_f(plist_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id ! File access property list
 ! identifier
 INTEGER(HSIZE_T), INTENT(OUT) :: size ! Metadata block size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_meta_block_size_f

History:
Release C

1.4.0 Function introduced in this release.

H5Pget_meta_block_size HDF5 Reference Manual

392

Name:H5Pget_multi_type
Signature:

herr_tH5Pget_multi_type (hid_t fapl_id, H5FD_mem_t *type)
Purpose:

Retrieves type of data property for MULTI driver.
Description:

H5Pget_multi_type retrieves the type of data setting from the file access or data transfer property
list fapl_id. This enables a user application to specify the type of data the application wishes to access
so that the application can retrieve a file handle for low-level access to the particular member of a set of
MULTI files in which that type of data is stored. The file handle is retrieved with a separate call to
H5Fget_vfd_handle (or, in special circumstances, to H5FDget_vfd_handle; see Virtual File
Layer and List of VFL Functions in HDF5 Technical Notes).

The type of data returned in type will be one of those listed in the discussion of the type parameter in
the the description of the function H5Pset_multi_type.

Use of this function is only appropriate for an HDF5 file written as a set of files with the MULTI file
driver.

Parameters:
hid_t fapl_id IN: File access property list or data transfer property list identifier.

H5FD_mem_t *type OUT: Type of data.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.6.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_multi_type

393

Name:H5Pget_nfilters
Signature:

int H5Pget_nfilters(hid_t plist)
Purpose:

Returns the number of filters in the pipeline.
Description:

H5Pget_nfilters returns the number of filters defined in the filter pipeline associated with the
property list plist.

In each pipeline, the filters are numbered from 0 through N-1, where N is the value returned by this
function. During output to the file, the filters are applied in increasing order; during input from the file,
they are applied in decreasing order.

H5Pget_nfilters returns the number of filters in the pipeline, including zero (0) if there are none.
Note:

This function currently supports only the permanent filter pipeline; plist_id must be a dataset creation
property list.

Parameters:
hid_tplist IN: Property list identifier.

Returns:
Returns the number of filters in the pipeline if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_nfilters_f
SUBROUTINE h5pget_nfilters_f(prp_id, nfilters, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Dataset creation property
 ! list identifier
 INTEGER, INTENT(OUT) :: nfilters ! The number of filters in
 ! the pipeline
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_nfilters_f

H5Pget_nfilters HDF5 Reference Manual

394

Name:H5Pget_nlinks
Signature:

herr_tH5Pget_nlinks(hid_t lapl_id, size_t *nlinks)
Purpose:

Retrieves the maximum number of link traversals.
Description:

H5Pget_nlinks retrieves the maximum number of soft or user-defined link traversals allowed,
nlinks, before the library assumes it has found a cycle and aborts the traversal. This value is retrieved
from the link access property list lapl_id.

The limit on the number soft or user-defined link traversals is designed to terminate link traversal if one
or more links form a cycle. User control is provided because some files may have legitimate paths formed
of large numbers of soft or user-defined links. This property can be used to allow traversal of as many
links as desired.

Parameters:
hid_t fapl_id IN: File access property list identifier

size_t *nlinks OUT: Maximum number of links to traverse
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_nlinks_f

SUBROUTINE h5pget_nlinks_f(lapl_id, nlinks, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: lapl_id
 ! File access property list identifier
 INTEGER(SIZE_T), INTENT(OUT) :: nlinks
 ! Maximum number of links to traverse
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_nlinks_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_nlinks

395

Name:H5Pget_nprops
Signature:

int H5Pget_nprops(hid_t id, size_t *nprops)
Purpose:

Queries number of properties in property list or class.
Description:

H5Pget_nprops retrieves the number of properties in a property list or class. If a property class
identifier is given, the number of registered properties in the class is returned in nprops. If a property
list identifier is given, the current number of properties in the list is returned in nprops.

Parameters:
hid_t id IN: Identifier of property object to query

size_t *nprops OUT: Number of properties in object
Returns:

Success: a non-negative value
Failure: a negative value

Fortran90 Interface: h5pget_nprops_f
SUBROUTINE h5pget_nprops_f(prp_id, nprops, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(SIZE_T), INTENT(OUT) :: nprops ! Number of properties
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_nprops_f

H5Pget_nprops HDF5 Reference Manual

396

Name:H5Pget_obj_track_times
Signature:

herr_tH5Pget_obj_track_times(hid_t ocpl_id, hbool_t *track_times)
Purpose:

Determines whether times associated with an object are being recorded.
Description:

H5get_obj_track_times queries the object creation property list, ocpl_id, to determine whether
object times are being recorded.

If track_times is returned as TRUE, times are being recorded; if track_times is returned as
FALSE, times are not being recorded.

Time data can be retrieved with H5Oget_info, which will return it in the H5O_info_t struct.

If times are not tracked, they will be reported as follows when queried:
 12:00 AM UDT, Jan. 1, 1970

See H5Pset_obj_track_times for further discussion.
Parameters:

hid_tocpl_id IN: Object creation property list identifier

hbool_t *track_times OUT: Boolean value, TRUE or FALSE, specifying whether object times
are being recorded

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_obj_track_times_f
SUBROUTINE h5pget_obj_track_times_f(plist_id, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id
 ! Dataset creation property
 ! list identifier
 LOGICAL, INTENT(OUT) :: flag ! Object timestamp setting
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_obj_track_times_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_obj_track_time

397

Name:H5Pget_preserve
Signature:

int H5Pget_preserve(hid_t plist)
Purpose:

Checks status of the dataset transfer property list.
Notice:

This function is deprecated as it is no longer useful; compound datatype field preservation is now core
functionality in the HDF5 Library.

Description:
H5Pget_preserve checks the status of the dataset transfer property list.

Parameters:
hid_tplist IN: Identifier for the dataset transfer property list.

Returns:
Returns TRUE or FALSE if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_preserve_f
SUBROUTINE h5pget_preserve_f(prp_id, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Dataset transfer property
 ! list identifier
 LOGICAL, INTENT(OUT) :: flag ! Status of for the dataset
 ! transfer property list
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_preserve_f

History:
Release Fortran90

1.6.0 The flag parameter was changed from INTEGER to LOGICAL to better match
the C API.

H5Pget_preserve HDF5 Reference Manual

398

Name:H5Pget_shared_mesg_index
Signature:

herr_tH5Pget_shared_mesg_index(hid_t fcpl_id, unsigned index_num, unsigned
*mesg_type_flags, unsigned *min_mesg_size)

Purpose:
Retrieves the configuration settings for a shared message index.

Description:
H5Pget_shared_mesg_index retrieves the message type and minimum message size settings from
the file creation property list fcpl_id for the shared object header message index specified by
index_num.

index_num specifies the index. index_num is zero-indexed, so in a file with three indexes, they will
be numbered 0, 1, and 2.

mesg_type_flags and min_mesg_size will contain, respectively, the types of messages and the
minimum size, in bytes, of messages that can be stored in this index.

Valid message types are described in H5Pset_shared_mesg_index.
Parameters:

hid_t fcpl_id IN: File creation property list identifier.

unsignedindex_num IN: Index being configured.

unsigned *mesg_type_flags OUT: Types of messages that may be stored in this index.

unsigned *min_mesg_size OUT: Minimum message size.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_shared_mesg_index

399

Name:H5Pget_shared_mesg_nindexes
Signature:

herr_tH5Pget_shared_mesg_nindexes(hid_t fcpl_id, unsigned *nindexes)
Purpose:

Retrieves number of shared object header message indexes in file creation property list.
Description:

H5Pget_shared_mesg_nindexes retrieves the number of shared object header message indexes in
the specified file creation property list fcpl_id.

If the value of nindexes is 0 (zero), shared object header messages are disabled in files created with
this property list.

Parameters:
hid_t fcpl_id IN: File creation property list

unsigned *nindexes OUT: Number of shared object header message indexes available in files
created with this property list

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

H5Pget_shared_mesg_nindexes HDF5 Reference Manual

400

Name:H5Pget_shared_mesg_phase_change
Signature:

herr_tH5Pget_shared_mesg_phase_change(hid_t fcpl_id, unsigned *max_list, unsigned
*min_btree)

Purpose:
Retrieves shared object header message phase change information.

Description:
H5Pget_shared_mesg_phase_change retrieves the threshold values for storage of shared object
header message indexes in a file. These phase change thresholds determine the point at which the index
storage mechanism changes from a more compact list format to a more performance-oriented B-tree
format, and vice-versa.

By default, a shared object header message index is initially stored as a compact list. When the number of
messages in an index exceeds the specified max_list threshold, storage switches to a B-tree format for
impoved performance. If the number of messages subsequently falls below the min_btree threshold,
the index will revert to the list format.

If max_compact is set to 0 (zero), shared object header message indexes in the file will always be
stored as B-trees.

fcpl_id specifies the file creation property list.
Parameters:

hid_t fcpl_id IN: File creation property list identifier

unsigned *max_compact OUT: Threshold above which storage of a shared object header message
index shifts from list to B-tree

unsigned *min_btree OUT: Threshold below which storage of a shared object header message
index reverts to list format

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pget_shared_mesg_phase_change

401

Name:H5Pget_sieve_buf_size
Last modified: 14 April 2010

Signature:
herr_tH5Pget_sieve_buf_size(hid_t fapl_id, size_t *size)

Purpose:
Returns maximum data sieve buffer size.

Description:
H5Pget_sieve_buf_size retrieves, size, the current maximum size of the data sieve buffer.

This value is set by H5Pset_sieve_buf_size and is retrieved from the file access property list
fapl_id.

Parameters:
hid_t fapl_id IN: File access property list identifier.

size_t *size IN: Maximum size, in bytes, of data sieve buffer.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface: h5pget_sieve_buf_size_f

SUBROUTINE h5pget_sieve_buf_size_f(plist_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id ! File access property list
 ! identifier
 INTEGER(SIZE_T), INTENT(OUT) :: size ! Sieve buffer size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_sieve_buf_size_f

History:
Release C

1.6.0 The size parameter has changed from type hsize_t to size_t.

1.4.0 Function introduced in this release.

H5Pget_sieve_buf_size HDF5 Reference Manual

402

Name:H5Pget_size
Signature:

int H5Pget_size(hid_t id, const char *name, size_t *size)
Purpose:

Queries the size of a property value in bytes.
Description:

H5Pget_size retrieves the size of a property's value in bytes. This function operates on both property
lists and property classes

Zero-sized properties are allowed and return 0.
Parameters:

hid_t id IN: Identifier of property object to query

const char *name IN: Name of property to query

size_t *size OUT: Size of property in bytes
Returns:

Success: a non-negative value
Failure: a negative value

Fortran90 Interface: h5pget_size_f
SUBROUTINE h5pget_size_f(prp_id, name, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of property to query
 INTEGER(SIZE_T), INTENT(OUT) :: size ! Size in bytes
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_size_f

HDF5 Reference Manual H5Pget_size

403

Name:H5Pget_sizes
Signature:

herr_tH5Pget_sizes(hid_t plist, size_t * sizeof_addr, size_t * sizeof_size)
Purpose:

Retrieves the size of the offsets and lengths used in an HDF5 file.
Description:

H5Pget_sizes retrieves the size of the offsets and lengths used in an HDF5 file. This function is only
valid for file creation property lists.

Parameters:
hid_tplist IN: Identifier of property list to query.

size_t *size OUT: Pointer to location to return offset size in bytes.

size_t *size OUT: Pointer to location to return length size in bytes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_sizes_f

SUBROUTINE h5pget_sizes_f(prp_id, sizeof_addr, sizeof_size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(SIZE_T), DIMENSION(:), INTENT(OUT) :: sizeof_addr
 ! Size of an object address in bytes
 INTEGER(SIZE_T), DIMENSION(:), INTENT(OUT) :: sizeof_size
 ! Size of an object in bytes
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_sizes_f

H5Pget_sizes HDF5 Reference Manual

404

Name:H5Pget_small_data_block_size
Signature:

herr_tH5Pget_small_data_block_size(hid_t fapl_id, hsize_t *size)
Purpose:

Retrieves the current small data block size setting.
Description:

H5Pget_small_data_block_size retrieves the current setting for the size of the small data block.

If the returned value is zero (0), the small data block mechanism has been disabled for the file.
Parameters:

hid_t fapl_id IN: File access property list identifier.

hsize_t *size OUT: Maximum size, in bytes, of the small data block.
Returns:

Returns a non-negative value if successful; otherwise a negative value.
Fortran90 Interface: h5pget_small_data_block_size_f

SUBROUTINE h5pget_small_data_block_size_f(plist_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id ! File access property list
 ! identifier
 INTEGER(HSIZE_T), INTENT(OUT) :: size ! Small raw data block size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_small_data_block_size_f

History:
Release C

1.4.4 Function introduced in this release.

HDF5 Reference Manual H5Pget_small_data_block_size

405

Name:H5Pget_sym_k
Signature:

herr_tH5Pget_sym_k(hid_t plist, unsigned * ik, unsigned * lk)
Purpose:

Retrieves the size of the symbol table B-tree 1/2 rank and the symbol table leaf node 1/2 size.
Description:

H5Pget_sym_k retrieves the size of the symbol table B-tree 1/2 rank and the symbol table leaf node 1/2
size. This function is only valid for file creation property lists. If a parameter valued is set to NULL, that
parameter is not retrieved. See the description for H5Pset_sym_k for more information.

Parameters:
hid_tplist IN: Property list to query.

unsigned *ik OUT: Pointer to location to return the symbol table's B-tree 1/2 rank.

unsigned *size OUT: Pointer to location to return the symbol table's leaf node 1/2 size.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_sym_k_f

SUBROUTINE h5pget_sym_k_f(prp_id, ik, lk, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: ik ! Symbol table tree rank
 INTEGER, INTENT(OUT) :: lk ! Symbol table node size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_sym_k_f

History:
Release C

1.6.4 ik parameter type changed to unsigned

1.6.0 The ik parameter has changed from type int to unsigned

H5Pget_sym_k HDF5 Reference Manual

406

Name:H5Pget_type_conv_cb
Signature:

herr_tH5Pget_type_conv_cb(hid_t plist, H5T_conv_except_func_t *func, void **op_data)
Purpose:

Gets user-defined datatype conversion callback function.
Description:

H5Pget_type_conv_cb gets the user-defined datatype conversion callback function func in the
dataset transfer property list plist.

The parameter op_data is a pointer to user-defined input data for the callback function.

The callback function func defines the actions an application is to take when there is an exception
during datatype conversion.

Please refer to the function H5Pset_type_conv_cb for more details.
Parameters:

hid_tplist IN: Dataset transfer property list identifier.

H5T_conv_except_func_t *func OUT: User-defined type conversion callback function.

void **op_data OUT: User-defined input data for the callback function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.

HDF5 Reference Manual H5Pget_type_conv_cb

407

Name:H5Pget_userblock
Signature:

herr_tH5Pget_userblock(hid_t plist, hsize_t * size)
Purpose:

Retrieves the size of a user block.
Description:

H5Pget_userblock retrieves the size of a user block in a file creation property list.
Parameters:

hid_tplist IN: Identifier for property list to query.

hsize_t *size OUT: Pointer to location to return user-block size.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_userblock_f

SUBROUTINE h5pget_userblock_f(prp_id, block_size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(HSIZE_T), DIMENSION(:), INTENT(OUT) :: block_size
 ! Size of the user-block in bytes
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_userblock_f

H5Pget_userblock HDF5 Reference Manual

408

Name:H5Pget_version
Signature:

herr_tH5Pget_version(hid_t plist, unsigned * super, unsigned * freelist, unsigned *
stab, unsigned * shhdr)

Purpose:
Retrieves the version information of various objects for a file creation property list.

Description:
H5Pget_version retrieves the version information of various objects for a file creation property list.
Any pointer parameters which are passed as NULL are not queried.

Parameters:
hid_tplist IN: Identifier of the file creation property list.

unsigned *super OUT: Pointer to location to return super block version number.

unsigned *freelist OUT: Pointer to location to return global freelist version number.

unsigned *stab OUT: Pointer to location to return symbol table version number.

unsigned *shhdr OUT: Pointer to location to return shared object header version number.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pget_version_f

SUBROUTINE h5pget_version_f(prp_id, boot, freelist, &
 stab, shhdr, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, DIMENSION(:), INTENT(OUT) :: boot ! Array to put boot block
 ! version number
 INTEGER, DIMENSION(:), INTENT(OUT) :: freelist
 ! Array to put global
 ! freelist version number
 INTEGER, DIMENSION(:), INTENT(OUT) :: stab ! Array to put symbol table
 ! version number
 INTEGER, DIMENSION(:), INTENT(OUT) :: shhdr ! Array to put shared object
 ! header version number
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_version_f

History:
Release C

1.6.4 boot, freelist, stab, shhdr parameter types changed to unsigned.

HDF5 Reference Manual H5Pget_version

409

Name:H5Pget_vlen_mem_manager
Signature:

herr_tH5Pget_vlen_mem_manager(hid_t plist, H5MM_allocate_t *alloc, void
**alloc_info, H5MM_free_t *free, void **free_info)

Purpose:
Gets the memory manager for variable-length datatype allocation in H5Dread and
H5Dvlen_reclaim.

Description:
H5Pget_vlen_mem_manager is the companion function to H5Pset_vlen_mem_manager,
returning the parameters set by that function.

Parameters:
hid_tplist IN: Identifier for the dataset transfer property list.

H5MM_allocate_talloc OUT: User's allocate routine, or NULL for system malloc.

void *alloc_info OUT: Extra parameter for user's allocation routine.
Contents are ignored if preceding parameter is NULL.

H5MM_free_tfree OUT: User's free routine, or NULL for system free.

void *free_info OUT: Extra parameter for user's free routine.
Contents are ignored if preceding parameter is NULL.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

H5Pget_vlen_mem_manager HDF5 Reference Manual

410

Name:H5Pinsert
Signatures:

herr_tH5Pinsert(hid_t plid, const char *name, size_t size,
void *value, H5P_prp_set_func_tset, H5P_prp_get_func_tget,
H5P_prp_delete_func_tdelete, H5P_prp_copy_func_t copy,
H5P_prp_close_func_tclose)

[1]

herr_tH5Pinsert(hid_t plid, const char *name, size_t size,
void *value, H5P_prp_set_func_tset, H5P_prp_get_func_tget,
H5P_prp_delete_func_tdelete, H5P_prp_copy_func_t copy,
H5P_prp_compare_func_tcompare, H5P_prp_close_func_tclose)

[2]

Purpose:
Registers a temporary property with a property list.

Description:
H5Pinsert is a macro that is mapped to either H5Pinsert1 or H5Pinsert2, depending on the
needs of the application.

Such macros are provided to facilitate application compatibility. For example:

The H5Pinsert macro will be mapped to H5Pinsert1 and will use the H5Pinsert1
syntax (first signature above) if an application is coded for HDF5 Release 1.6.x.

◊

The H5Pinsert macro mapped to H5Pinsert2 and will use the H5Pinsert2 syntax
(second signature above) if an application is coded for HDF5 Release 1.8.x.

◊

Macro use and mappings are fully described in “API Compatibility Macros in HDF5” we urge you to read
that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Pinsert is mapped to the most recent version of the function, currently H5Pinsert2. If the
library and/or application is compiled for Release 1.6 emulation, H5Pinsert will be mapped to
H5Pinsert1. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Pinsert mapping

Global settings

No compatibility flag H5Pinsert2

Enable deprecated symbols H5Pinsert2

Disable deprecated symbols H5Pinsert2

Emulate Release 1.6 interface H5Pinsert1

HDF5 Reference Manual H5Pinsert

411

Function-level macros

H5Pinsert_vers = 2 H5Pinsert2

H5Pinsert_vers = 1 H5Pinsert1

Interface history: Signature [1] above is the original H5Pinsert interface and the only interface
available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now deprecated
but will remain directly callable as H5Pinsert1.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Pinsert2.

See “API Compatibility Macros in HDF5” for circumstances under which either of these functions might
not be available in an installed instance of the HDF5 Library.

Fortran90 Interface: h5pinsert_f
SUBROUTINE h5pinsert_f
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist ! Property list class identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of property to insert
 INTEGER(SIZE_T), INTENT(IN) :: size ! Size of the property value
 TYPE, INTENT(IN) :: value ! Property value
 ! Supported types are:
 ! INTEGER
 ! REAL
 ! DOUBLE PRECISION
 ! CHARACTER(LEN=*)
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pinsert_f

History:
Release C

1.8.0 The function H5Pinsert renamed to H5Pinsert1 and deprecated in this
release.
The macro H5Pinsert and the function H5Pinsert2 introduced in this
release.

H5Pinsert HDF5 Reference Manual

412

Name:H5Pinsert1
Signature:

herr_tH5Pinsert1(hid_t plid, const char *name, size_t size, void *value, H5P_prp_set_func_t
set, H5P_prp_get_func_tget, H5P_prp_delete_func_tdelete, H5P_prp_copy_func_t copy,
H5P_prp_close_func_tclose)

Purpose:
Registers a temporary property with a property list.

Notice:
This function is renamed from H5Pinsert and deprecated in favor of the function H5Pinsert2 or the
new macro H5Pinsert.

Description:
H5Pinsert1 create a new property in a property list. The property will exist only in this property list
and copies made from it.

The initial property value must be provided in value and the property value will be set accordingly.

The name of the property must not already exist in this list, or this routine will fail.

The set and get callback routines may be set to NULL if they are not needed.

Zero-sized properties are allowed and do not store any data in the property list. The default value of a
zero-size property may be set to NULL. They may be used to indicate the presence or absence of a
particular piece of information.

The set routine is called before a new value is copied into the property. The H5P_prp_set_func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_set_func_t)(hid_t prop_id, const char *name, size_t size, void
*new_value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being modified

const char *name IN: The name of the property being modified

size_tsize IN: The size of the property in bytes

void **new_value IN: Pointer to new value pointer for the property being modified
The set routine may modify the value pointer to be set and those changes will be used when setting the
property's value. If the set routine returns a negative value, the new property value is not copied into the
property and the set routine returns an error value. The set routine will be called for the initial value.

Note: The set callback function may be useful to range check the value being set for the property or
may perform some transformation or translation of the value set. The get callback would then reverse
the transformation or translation. A single get or set callback could handle multiple properties by
performing different actions based on the property name or other properties in the property list.

The get routine is called when a value is retrieved from a property value. The H5P_prp_get_func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_get_func_t)(hid_t prop_id, const char *name, size_t size, void
*value);

HDF5 Reference Manual H5Pinsert1

413

The parameters to the above callback function are:

hid_tprop_id
IN: The identifier of the property list being
queried

const char *name IN: The name of the property being queried

size_tsize IN: The size of the property in bytes

void *value IN: The value of the property being returned
The get routine may modify the value to be returned from the query and those changes will be
preserved. If the get routine returns a negative value, the query routine returns an error value.

The delete routine is called when a property is being deleted from a property list. The
H5P_prp_delete_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_delete_func_t)(hid_t prop_id, const char *name, size_t
size, void *value);

The parameters to the above callback function are:

hid_tprop_id IN: The identifier of the property list the property is being deleted from

const char *name IN: The name of the property in the list

size_tsize IN: The size of the property in bytes

void * value IN: The value for the property being deleted
The delete routine may modify the value passed in, but the value is not used by the library when the
delete routine returns. If the delete routine returns a negative value, the property list delete routine
returns an error value but the property is still deleted.

The copy routine is called when a new property list with this property is being created through a copy
operation. The H5P_prp_copy_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_copy_func_t)(const char *name, size_t size, void *value);

The parameters to the above callback function are:

const char *name IN: The name of the property being copied

size_tsize IN: The size of the property in bytes

void * value IN/OUT: The value for the property being copied
The copy routine may modify the value to be set and those changes will be stored as the new value of the
property. If the copy routine returns a negative value, the new property value is not copied into the
property and the copy routine returns an error value.

The close routine is called when a property list with this property is being closed. The
H5P_prp_close_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_close_func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being closed

const char *name IN: The name of the property in the list

H5Pinsert1 HDF5 Reference Manual

414

size_t size IN: The size of the property in bytes

void *value IN: The value for the property being closed
The close routine may modify the value passed in, the value is not used by the library when the close
routine returns. If the close routine returns a negative value, the property list close routine returns an
error value but the property list is still closed.

Note: There is no create callback routine for temporary property list objects; the initial value is
assumed to have any necessary setup already performed on it.

Parameters:
hid_tplid IN: Property list identifier to create temporary property within

const char *name IN: Name of property to create

size_tsize IN: Size of property in bytes

void *value IN: Initial value for the property

H5P_prp_set_func_tset IN: Callback routine called before a new value is copied into the
property's value

H5P_prp_get_func_tget IN: Callback routine called when a property value is retrieved
from the property

H5P_prp_delete_func_tdelete IN: Callback routine called when a property is deleted from a
property list

H5P_prp_copy_func_tcopy IN: Callback routine called when a property is copied from an
existing property list

H5P_prp_close_func_tclose IN: Callback routine called when a property list is being closed
and the property value will be disposed of

Returns:
Success: a non-negative value
Failure: a negative value

Fortran90 Interface: h5pinsert_f
SUBROUTINE h5pinsert_f
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist ! Property list class identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of property to insert
 INTEGER(SIZE_T), INTENT(IN) :: size ! Size of the property value
 TYPE, INTENT(IN) :: value ! Property value
 ! Supported types are:
 ! INTEGER
 ! REAL
 ! DOUBLE PRECISION
 ! CHARACTER(LEN=*)
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pinsert_f

History:
Release C

1.8.0 Function H5Pinsert renamed to H5Pinsert1 and deprecated in this release.

HDF5 Reference Manual H5Pinsert1

415

Name:H5Pinsert2
Signature:

herr_tH5Pinsert2(hid_t plid, const char *name, size_t size, void *value, H5P_prp_set_func_t
set, H5P_prp_get_func_tget, H5P_prp_delete_func_tdelete, H5P_prp_copy_func_t copy,
H5P_prp_compare_func_tcompare, H5P_prp_close_func_tclose)

Purpose:
Registers a temporary property with a property list.

Description:
H5Pinsert2 create a new property in a property list. The property will exist only in this property list
and copies made from it.

The initial property value must be provided in value and the property value will be set accordingly.

The name of the property must not already exist in this list, or this routine will fail.

The set and get callback routines may be set to NULL if they are not needed.

Zero-sized properties are allowed and do not store any data in the property list. The default value of a
zero-size property may be set to NULL. They may be used to indicate the presence or absence of a
particular piece of information.

The set routine is called before a new value is copied into the property. The H5P_prp_set_func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_set_func_t)(hid_t prop_id, const char *name, size_t size, void
*new_value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being modified

const char *name IN: The name of the property being modified

size_tsize IN: The size of the property in bytes

void **new_value IN: Pointer to new value pointer for the property being modified
The set routine may modify the value pointer to be set and those changes will be used when setting the
property's value. If the set routine returns a negative value, the new property value is not copied into the
property and the set routine returns an error value. The set routine will be called for the initial value.

Note: The set callback function may be useful to range check the value being set for the property or
may perform some transformation or translation of the value set. The get callback would then reverse
the transformation or translation. A single get or set callback could handle multiple properties by
performing different actions based on the property name or other properties in the property list.

The get routine is called when a value is retrieved from a property value. The H5P_prp_get_func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_get_func_t)(hid_t prop_id, const char *name, size_t size, void
*value);

The parameters to the above callback function are:

H5Pinsert2 HDF5 Reference Manual

416

hid_tprop_id
IN: The identifier of the property list being
queried

const char *name IN: The name of the property being queried

size_tsize IN: The size of the property in bytes

void *value IN: The value of the property being returned
The get routine may modify the value to be returned from the query and those changes will be
preserved. If the get routine returns a negative value, the query routine returns an error value.

The delete routine is called when a property is being deleted from a property list. The
H5P_prp_delete_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_delete_func_t)(hid_t prop_id, const char *name, size_t
size, void *value);

The parameters to the above callback function are:

hid_tprop_id IN: The identifier of the property list the property is being deleted from

const char *name IN: The name of the property in the list

size_tsize IN: The size of the property in bytes

void * value IN: The value for the property being deleted
The delete routine may modify the value passed in, but the value is not used by the library when the
delete routine returns. If the delete routine returns a negative value, the property list delete routine
returns an error value but the property is still deleted.

The copy routine is called when a new property list with this property is being created through a copy
operation. The H5P_prp_copy_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_copy_func_t)(const char *name, size_t size, void *value);

The parameters to the above callback function are:

const char *name IN: The name of the property being copied

size_tsize IN: The size of the property in bytes

void * value IN/OUT: The value for the property being copied
The copy routine may modify the value to be set and those changes will be stored as the new value of the
property. If the copy routine returns a negative value, the new property value is not copied into the
property and the copy routine returns an error value.

The compare routine is called when a property list with this property is compared to another property
list with the same property. The H5P_prp_compare_func_t callback function is defined as follows:

typedef int (*H5P_prp_compare_func_t)(const void *value1, const void *value2, size_t
size); The parameters to the callback function are defined as follows:

const void *value1 IN: The value of the first property to compare

const void *value2 IN: The value of the second property to compare

size_tsize IN: The size of the property in bytes

HDF5 Reference Manual H5Pinsert2

417

The compare routine may not modify the values. The compare routine should return a positive value if
value1 is greater than value2, a negative value if value2 is greater than value1 and zero if
value1 and value2 are equal.

The close routine is called when a property list with this property is being closed. The
H5P_prp_close_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_close_func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being closed

const char *name IN: The name of the property in the list

size_t size IN: The size of the property in bytes

void *value IN: The value for the property being closed
The close routine may modify the value passed in, the value is not used by the library when the close
routine returns. If the close routine returns a negative value, the property list close routine returns an
error value but the property list is still closed.

Note: There is no create callback routine for temporary property list objects; the initial value is
assumed to have any necessary setup already performed on it.

Parameters:
hid_tplid IN: Property list identifier to create temporary property within

const char *name IN: Name of property to create

size_tsize IN: Size of property in bytes

void *value IN: Initial value for the property

H5P_prp_set_func_tset IN: Callback routine called before a new value is copied into the
property's value

H5P_prp_get_func_tget IN: Callback routine called when a property value is retrieved
from the property

H5P_prp_delete_func_tdelete IN: Callback routine called when a property is deleted from a
property list

H5P_prp_copy_func_tcopy IN: Callback routine called when a property is copied from an
existing property list

H5P_prp_compare_func_tcompare IN: Callback routine called when a property is compared with
another property list

H5P_prp_close_func_tclose IN: Callback routine called when a property list is being closed
and the property value will be disposed of

Returns:
Success: a non-negative value
Failure: a negative value

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

H5Pinsert2 HDF5 Reference Manual

418

Last modified: 20 April 2009

Name:H5Pisa_class
Signature:

htri_t H5Pisa_class(hid_t plist, hid_t pclass)
Purpose:

Determines whether a property list is a member of a class.
Description:

H5Pisa_class checks to determine whether the property list plist is a member of the property list
class pclass.

Parameters:
hid_tplist IN: Property list identifier

hid_t pclass IN: Property list class identifier
Returns:

Returns a positive value if true or zero if false; returns a negative value on failure.
See Also:

H5Pcreate
Fortran90 Interface: h5pisa_class_f

SUBROUTINE h5pisa_class_f(plist, pclass, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist ! Property list identifier
 INTEGER(HID_T), INTENT(IN) :: pclass ! Class identifier
 LOGICAL, INTENT(OUT) :: flag ! Logical flag
 ! .TRUE. if a member
 ! .FALSE. otherwise
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pisa_class_f

HDF5 Reference Manual H5Pisa_class

419

Name:H5Piterate
Purpose:

Iterates over properties in a property class or list.
Signature:

int H5Piterate(hid_t id, int * idx, H5P_iterate_t iter_func, void * iter_data)
Description:

H5Piterate iterates over the properties in the property object specified in id, which may be either a property
list or a property class, performing a specified operation on each property in turn.

For each property in the object, iter_func and the additional information specified below are passed to the
H5P_iterate_t operator function.

The iteration begins with the idx-th property in the object; the next element to be processed by the operator is
returned in idx. If idx is NULL, the iterator starts at the first property; since no stopping point is returned in this
case, the iterator cannot be restarted if one of the calls to its operator returns non-zero.

The prototype for the H5P_iterate_t operator is as follows:

typedef herr_t (*H5P_iterate_t)(hid_t id, const char *name, void *iter_data)
The operation receives the property list or class identifier for the object being iterated over, id, the name of the
current property within the object, name, and the pointer to the operator data passed in to H5Piterate,
iter_data.

The valid return values from an operator are as follows:

Zero Causes the iterator to continue, returning zero when all properties have been processed

Positive Causes the iterator to immediately return that positive value, indicating short-circuit success.
The iterator can be restarted at the index of the next property

NegativeCauses the iterator to immediately return that value, indicating failure. The iterator can be
restarted at the index of the next property

H5Piterate assumes that the properties in the object identified by id remain unchanged through the iteration.
If the membership changes during the iteration, the function's behavior is undefined.
Parameters:

hid_t id IN: Identifier of property object to iterate over

int * idx IN/OUT: Index of the property to begin with

H5P_iterate_titer_func
IN: Function pointer to function to be called with each property
iterated over

void * iter_data IN/OUT: Pointer to iteration data from user
Returns:

Success: the return value of the last call to iter_func if it was non-zero; zero if all properties have
been processed
Failure: a negative value

Fortran90 Interface:
None.

H5Piterate HDF5 Reference Manual

420

Last modified: 10 June 2010

Name:H5Pmodify_filter
Signature:

herr_tH5Pmodify_filter(hid_t plist_id, H5Z_filter_t filter_id, unsigned int flags,
size_tcd_nelmts, const unsigned int cd_values[])

Purpose:
Modifies a filter in the filter pipeline.

Description:
H5Pmodify_filter modifies the specified filter_id in the filter pipeline. plist_id must be a
dataset or group creation property list.

The filter_id, flags cd_nelmts[], and cd_values parameters are used in the same manner
and accept the same values as described in the discussion of H5Pset_filter.

Parameters:
hid_tplist_id IN: Dataset or group creation property list identifier.

H5Z_filter_tfilter_id IN: Filter to be modified.

unsigned intflags IN: Bit vector specifying certain general properties of the
filter.

size_tcd_nelmts IN: Number of elements in cd_values.

const unsigned intcd_values[] IN: Auxiliary data for the filter.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pmodify_filter_f

SUBROUTINE h5pmodify_filter_f(prp_id, filter, flags, cd_nelmts, &
 cd_values, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: filter ! Filter to be modified
 INTEGER, INTENT(IN) :: flags ! Bit vector specifying certain
 ! general properties of the filter
 INTEGER(SIZE_T), INTENT(IN) :: cd_nelmts ! Number of elements in cd_values
 INTEGER, DIMENSION(*), INTENT(IN) :: cd_values
 ! Auxiliary data for the filter
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pmodify_filter_f

History:
Release Change

1.6.0 Function introduced in this release.

1.8.5 Function extended to work with group creation property lists.

HDF5 Reference Manual H5Pmodify_filter

421

Name:H5Pregister
Signatures:

herr_tH5Pregister(hid_t class, const char * name, size_tsize, void
* default, H5P_prp_create_func_t create, H5P_prp_set_func_t set,
H5P_prp_get_func_tget, H5P_prp_delete_func_tdelete,
H5P_prp_copy_func_tcopy, H5P_prp_close_func_tclose)

[1]

herr_tH5Pregister(hid_t class, const char * name, size_tsize,
void * default, H5P_prp_create_func_t create,
H5P_prp_set_func_tset, H5P_prp_get_func_tget,
H5P_prp_delete_func_tdelete, H5P_prp_copy_func_t copy,
H5P_prp_compare_func_tcompare, H5P_prp_close_func_tclose)

[2]

Purpose:
Returns information about the specified filter.

Description:
H5Pregister is a macro that is mapped to either H5Pregister1 or H5Pregister2, depending on
the needs of the application.

Such macros are provided to facilitate application compatibility. For example:

The H5Pregister macro will be mapped to H5Pregister1 and will use the
H5Pregister1 syntax (first signature above) if an application is coded for HDF5 Release
1.6.x.

◊

The H5Pregister macro mapped to H5Pregister2 and will use the H5Pregister2
syntax (second signature above) if an application is coded for HDF5 Release 1.8.x.

◊

Macro use and mappings are fully described in “API Compatibility Macros in HDF5” we urge you to read
that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Pregister is mapped to the most recent version of the function, currently H5Pregister2.
If the library and/or application is compiled for Release 1.6 emulation, H5Pregister will be mapped to
H5Pregister1. Function-specific flags are available to override these settings on a
function-by-function basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Pregister mapping

Global settings

No compatibility flag H5Pregister2

Enable deprecated symbols H5Pregister2

Disable deprecated symbols H5Pregister2

Emulate Release 1.6 interface H5Pregister1

H5Pregister HDF5 Reference Manual

422

Function-level macros

H5Pregister_vers = 2 H5Pregister2

H5Pregister_vers = 1 H5Pregister1

Interface history: Signature [1] above is the original H5Pregister interface and the only interface
available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now deprecated
but will remain directly callable as H5Pregister1.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Pregister2.

See “API Compatibility Macros in HDF5” for circumstances under which either of these functions might
not be available in an installed instance of the HDF5 Library.

Fortran90 Interface: h5pregister_f
SUBROUTINE h5pregister_f
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: class ! Property list class identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of property to register
 INTEGER(SIZE_T), INTENT(IN) :: size ! Size of the property value
 TYPE, INTENT(IN) :: value ! Property value
 ! Supported types are:
 ! INTEGER
 ! REAL
 ! DOUBLE PRECISION
 ! CHARACTER(LEN=*)
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pregister_f

History:
Release C

1.8.0 The function H5Pregister renamed to H5Pregister1 and deprecated in
this release.
The macro H5Pregister and the function H5Pregister2 introduced in this
release.

HDF5 Reference Manual H5Pregister

423

Name:H5Pregister1
Signature:

herr_tH5Pregister1(hid_t class, const char * name, size_tsize, void * default,
H5P_prp_create_func_tcreate, H5P_prp_set_func_t set, H5P_prp_get_func_tget,
H5P_prp_delete_func_tdelete, H5P_prp_copy_func_t copy, H5P_prp_close_func_tclose)

Purpose:
Registers a permanent property with a property list class.

Notice:
This function is renamed from H5Pregister and deprecated in favor of the function H5Pregister2
and or the new macro H5Pregister.

Description:
H5Pregister1 registers a new property with a property list class. The property will exist in all
property list objects of class created after this routine finishes. The name of the property must not
already exist, or this routine will fail. The default property value must be provided and all new property
lists created with this property will have the property value set to the default value. Any of the callback
routines may be set to NULL if they are not needed.

Zero-sized properties are allowed and do not store any data in the property list. These may be used as
flags to indicate the presence or absence of a particular piece of information. The default pointer for a
zero-sized property may be set to NULL. The property create and close callbacks are called for
zero-sized properties, but the set and get callbacks are never called.

The create routine is called when a new property list with this property is being created. The
H5P_prp_create_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_create_func_t)(const char *name, size_t size, void
*initial_value); The parameters to this callback function are defined as follows:

const char *name IN: The name of the property being modified

size_tsize IN: The size of the property in bytes

void
*initial_value

IN/OUT: The default value for the property being created, which will
be passed to H5Pregister1

The create routine may modify the value to be set and those changes will be stored as the initial value
of the property. If the create routine returns a negative value, the new property value is not copied into
the property and the create routine returns an error value.

H5Pregister1 HDF5 Reference Manual

424

The set routine is called before a new value is copied into the property. The H5P_prp_set_func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_set_func_t)(hid_tprop_id, const char *name, size_t size, void
*new_value); The parameters to this callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being modified

const char *name IN: The name of the property being modified

size_tsize IN: The size of the property in bytes

void **new_value IN/OUT: Pointer to new value pointer for the property being modified
The set routine may modify the value pointer to be set and those changes will be used when setting the
property's value. If the set routine returns a negative value, the new property value is not copied into the
property and the set routine returns an error value. The set routine will not be called for the initial
value, only the create routine will be called.

Note: The set callback function may be useful to range check the value being set for the property or
may perform some transformation or translation of the value set. The get callback would then reverse
the transformation or translation. A single get or set callback could handle multiple properties by
performing different actions based on the property name or other properties in the property list.

The get routine is called when a value is retrieved from a property value. The H5P_prp_get_func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_get_func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

hid_tprop_id
IN: The identifier of the property list being
queried

const char *name IN: The name of the property being queried

size_tsize IN: The size of the property in bytes

void * value
IN/OUT: The value of the property being
returned

The get routine may modify the value to be returned from the query and those changes will be returned
to the calling routine. If the set routine returns a negative value, the query routine returns an error value.

The delete routine is called when a property is being deleted from a property list. The
H5P_prp_delete_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_delete_func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list the property is being deleted from

const char *name IN: The name of the property in the list

size_tsize IN: The size of the property in bytes

void * value IN: The value for the property being deleted

HDF5 Reference Manual H5Pregister1

425

The delete routine may modify the value passed in, but the value is not used by the library when the
delete routine returns. If the delete routine returns a negative value, the property list delete routine
returns an error value but the property is still deleted.

The copy routine is called when a new property list with this property is being created through a copy
operation. The H5P_prp_copy_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_copy_func_t)(const char *name, size_t size, void *value); The
parameters to the callback function are defined as follows:

const char *name IN: The name of the property being copied

size_tsize IN: The size of the property in bytes

void *value IN/OUT: The value for the property being copied
The copy routine may modify the value to be set and those changes will be stored as the new value of the
property. If the copy routine returns a negative value, the new property value is not copied into the
property and the copy routine returns an error value.

The close routine is called when a property list with this property is being closed. The
H5P_prp_close_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_close_func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being closed

const char *name IN: The name of the property in the list

size_tsize IN: The size of the property in bytes

void *value IN: The value for the property being closed
The close routine may modify the value passed in, but the value is not used by the library when the
close routine returns. If the close routine returns a negative value, the property list close routine
returns an error value but the property list is still closed.

Parameters:
hid_tclass IN: Property list class to register permanent property within

const char *name IN: Name of property to register

size_tsize IN: Size of property in bytes

void * default IN: Default value for property in newly created property lists

H5P_prp_create_func_tcreate IN: Callback routine called when a property list is being created
and the property value will be initialized

H5P_prp_set_func_tset IN: Callback routine called before a new value is copied into
the property's value

H5P_prp_get_func_tget IN: Callback routine called when a property value is retrieved
from the property

H5P_prp_delete_func_tdelete IN: Callback routine called when a property is deleted from a
property list

H5P_prp_copy_func_tcopy IN: Callback routine called when a property is copied from a
property list

H5P_prp_close_func_tclose IN: Callback routine called when a property list is being closed
and the property value will be disposed of

H5Pregister1 HDF5 Reference Manual

426

Returns:
Success: a non-negative value
Failure: a negative value

Fortran90 Interface: h5pregister_f
SUBROUTINE h5pregister_f
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: class ! Property list class identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of property to register
 INTEGER(SIZE_T), INTENT(IN) :: size ! Size of the property value
 TYPE, INTENT(IN) :: value ! Property value
 ! Supported types are:
 ! INTEGER
 ! REAL
 ! DOUBLE PRECISION
 ! CHARACTER(LEN=*)
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pregister_f

History:
Release C

1.8.0 Function H5Pregister renamed to H5Pregister1 and deprecated in this
release.

HDF5 Reference Manual H5Pregister1

427

Name:H5Pregister2
Signature:

herr_tH5Pregister2(hid_t class, const char * name, size_tsize, void * default,
H5P_prp_create_func_tcreate, H5P_prp_set_func_t set, H5P_prp_get_func_tget,
H5P_prp_delete_func_tdelete, H5P_prp_copy_func_t copy, H5P_prp_compare_func_tcompare,
H5P_prp_close_func_tclose)

Purpose:
Registers a permanent property with a property list class.

Description:
H5Pregister2 registers a new property with a property list class. The property will exist in all
property list objects of class created after this routine finishes. The name of the property must not
already exist, or this routine will fail. The default property value must be provided and all new property
lists created with this property will have the property value set to the default value. Any of the callback
routines may be set to NULL if they are not needed.

Zero-sized properties are allowed and do not store any data in the property list. These may be used as
flags to indicate the presence or absence of a particular piece of information. The default pointer for a
zero-sized property may be set to NULL. The property create and close callbacks are called for
zero-sized properties, but the set and get callbacks are never called.

The create routine is called when a new property list with this property is being created. The
H5P_prp_create_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_create_func_t)(const char *name, size_t size, void
*initial_value); The parameters to this callback function are defined as follows:

const char *name IN: The name of the property being modified

size_tsize IN: The size of the property in bytes

void
*initial_value

IN/OUT: The default value for the property being created, which will
be passed to H5Pregister2

The create routine may modify the value to be set and those changes will be stored as the initial value
of the property. If the create routine returns a negative value, the new property value is not copied into
the property and the create routine returns an error value.

The set routine is called before a new value is copied into the property. The H5P_prp_set_func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_set_func_t)(hid_tprop_id, const char *name, size_t size, void
*new_value); The parameters to this callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being modified

const char *name IN: The name of the property being modified

size_tsize IN: The size of the property in bytes

void **new_value IN/OUT: Pointer to new value pointer for the property being modified

H5Pregister2 HDF5 Reference Manual

428

The set routine may modify the value pointer to be set and those changes will be used when setting the
property's value. If the set routine returns a negative value, the new property value is not copied into the
property and the set routine returns an error value. The set routine will not be called for the initial
value, only the create routine will be called.

Note: The set callback function may be useful to range check the value being set for the property or
may perform some transformation or translation of the value set. The get callback would then reverse
the transformation or translation. A single get or set callback could handle multiple properties by
performing different actions based on the property name or other properties in the property list.

The get routine is called when a value is retrieved from a property value. The H5P_prp_get_func_t
callback function is defined as follows:

typedef herr_t (*H5P_prp_get_func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

hid_tprop_id
IN: The identifier of the property list being
queried

const char *name IN: The name of the property being queried

size_tsize IN: The size of the property in bytes

void * value
IN/OUT: The value of the property being
returned

The get routine may modify the value to be returned from the query and those changes will be returned
to the calling routine. If the set routine returns a negative value, the query routine returns an error value.

The delete routine is called when a property is being deleted from a property list. The
H5P_prp_delete_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_delete_func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list the property is being deleted from

const char *name IN: The name of the property in the list

size_tsize IN: The size of the property in bytes

void * value IN: The value for the property being deleted
The delete routine may modify the value passed in, but the value is not used by the library when the
delete routine returns. If the delete routine returns a negative value, the property list delete routine
returns an error value but the property is still deleted.

HDF5 Reference Manual H5Pregister2

429

The copy routine is called when a new property list with this property is being created through a copy
operation. The H5P_prp_copy_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_copy_func_t)(const char *name, size_t size, void *value); The
parameters to the callback function are defined as follows:

const char *name IN: The name of the property being copied

size_tsize IN: The size of the property in bytes

void *value IN/OUT: The value for the property being copied
The copy routine may modify the value to be set and those changes will be stored as the new value of the
property. If the copy routine returns a negative value, the new property value is not copied into the
property and the copy routine returns an error value.

The compare routine is called when a property list with this property is compared to another property
list with the same property. The H5P_prp_compare_func_t callback function is defined as follows:

typedef int (*H5P_prp_compare_func_t)(const void *value1, const void *value2, size_t
size); The parameters to the callback function are defined as follows:

const void *value1 IN: The value of the first property to compare

const void *value2 IN: The value of the second property to compare

size_tsize IN: The size of the property in bytes
The compare routine may not modify the values. The compare routine should return a positive value if
value1 is greater than value2, a negative value if value2 is greater than value1 and zero if
value1 and value2 are equal.

The close routine is called when a property list with this property is being closed. The
H5P_prp_close_func_t callback function is defined as follows:

typedef herr_t (*H5P_prp_close_func_t)(hid_t prop_id, const char *name, size_t size, void
*value); The parameters to the callback function are defined as follows:

hid_tprop_id IN: The identifier of the property list being closed

const char *name IN: The name of the property in the list

size_tsize IN: The size of the property in bytes

void *value IN: The value for the property being closed
The close routine may modify the value passed in, but the value is not used by the library when the
close routine returns. If the close routine returns a negative value, the property list close routine
returns an error value but the property list is still closed.

H5Pregister2 HDF5 Reference Manual

430

Parameters:
hid_tclass IN: Property list class to register permanent property within

const char *name IN: Name of property to register

size_tsize IN: Size of property in bytes

void * default IN: Default value for property in newly created property lists

H5P_prp_create_func_tcreate IN: Callback routine called when a property list is being
created and the property value will be initialized

H5P_prp_set_func_tset IN: Callback routine called before a new value is copied into
the property's value

H5P_prp_get_func_tget IN: Callback routine called when a property value is retrieved
from the property

H5P_prp_delete_func_tdelete IN: Callback routine called when a property is deleted from a
property list

H5P_prp_copy_func_tcopy IN: Callback routine called when a property is copied from a
property list

H5P_prp_compare_func_tcompare IN: Callback routine called when a property is compared with
another property list

H5P_prp_close_func_tclose IN: Callback routine called when a property list is being closed
and the property value will be disposed of

Returns:
Success: a non-negative value
Failure: a negative value

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pregister2

431

Name:H5Premove
Signature:

herr_tH5Premove(hid_t plid; const char *name)
Purpose:

Removes a property from a property list.
Description:

H5Premove removes a property from a property list.

Both properties which were in existence when the property list was created (i.e. properties registered with
H5Pregister) and properties added to the list after it was created (i.e. added with H5Pinsert1) may
be removed from a property list. Properties do not need to be removed from a property list before the list
itself is closed; they will be released automatically when H5Pclose is called.

If a close callback exists for the removed property, it will be called before the property is released.
Parameters:

hid_tplid IN: Identifier of the property list to modify

const char *name IN: Name of property to remove
Returns:

Success: a non-negative value
Failure: a negative value

Fortran90 Interface: h5premove_f
SUBROUTINE h5premove_f(plid, name, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plid ! Property list identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of property to remove
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5premove_f

H5Premove HDF5 Reference Manual

432

Last modified: 10 June 2010

Name:H5Premove_filter
Signature:

herr_tH5Premove_filter(hid_t plist_id, H5Z_filter_t filter)
Purpose:

Delete one or more filters in the filter pipeline.
Description:

H5Premove_filter removes the specified filter from the filter pipeline in the dataset or group
creation property list plist_id.

The filter parameter specifies the filter to be removed. Valid values for use in filter are as follows:

H5Z_FILTER_ALL Removes all filters from the filter
pipeline.

H5Z_FILTER_DEFLATE Data compression filter, employing the
gzip algorithm

H5Z_FILTER_SHUFFLE Data shuffling filter

H5Z_FILTER_FLETCHER32 Error detection filter, employing the
Fletcher32 checksum algorithm

H5Z_FILTER_SZIP Data compression filter, employing the
SZIP algorithm

H5Z_FILTER_NBIT Data compression filter, employing the
N-Bit algorithm

H5Z_FILTER_SCALEOFFSET Data compression filter, employing the
scale-offset algorithm

Additionally, user-defined filters can be removed with this routine by passing the filter identifier with
which they were registered with the HDF5 Library.

Attempting to remove a filter that is not in the filter pipeline is an error.
Parameters:

hid_tplist_id
IN: Dataset or group creation property list identifier.

H5Z_filter_tfilter
IN: Filter to be deleted.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Premove_filter

433

Fortran90 Interface: h5premove_filter_f
SUBROUTINE h5premove_filter_f(prp_id, filter, hdferr)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: filter ! Filter to be removed
 ! Valid values are:
 ! H5Z_FILTER_ALL_F
 ! H5Z_FILTER_DEFLATE_F
 ! H5Z_FILTER_SHUFFLE_F
 ! H5Z_FILTER_FLETCHER32_F
 ! H5Z_FILTER_SZIP_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success, -1 on failure
END SUBROUTINE h5premove_filter_f

History:
Release Changes

1.6.3 Function introduced in this release.
Fortran subroutine introduced in this release.

1.8.5 Function extended to work with group creation property lists.

H5Premove_filter HDF5 Reference Manual

434

Name:H5Pset
Signature:

herr_tH5Pset(hid_t plid, const char *name, void *value))
Purpose:

Sets a property list value.
Description:

H5Pset sets a new value for a property in a property list. If there is a set callback routine registered for
this property, the value will be passed to that routine and any changes to the value will be used when
setting the property value. The information pointed to by the value pointer (possibly modified by the
set callback) is copied into the property list value and may be changed by the application making the
H5Pset call without affecting the property value.

The property name must exist or this routine will fail.

If the set callback routine returns an error, the property value will not be modified.

This routine may not be called for zero-sized properties and will return an error in that case.
Parameters:

hid_tplid; IN: Property list identifier to modify

const char *name; IN: Name of property to modify

void *value; IN: Pointer to value to set the property to
Returns:

Success: a non-negative value
Failure: a negative value

Fortran90 Interface: h5pset_f
SUBROUTINE h5pset_f(plid, name, value, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plid ! Property list identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of property to set
 TYPE, INTENT(IN) :: value ! Property value
 ! Supported types are:
 ! INTEGER
 ! REAL
 ! DOUBLE PRECISION
 ! CHARACTER(LEN=*)
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_f

HDF5 Reference Manual H5Pset

435

Name:H5Pset_alignment
Signature:

herr_tH5Pset_alignment(hid_t plist, hsize_t threshold, hsize_t alignment)
Purpose:

Sets alignment properties of a file access property list.
Description:

H5Pset_alignment sets the alignment properties of a file access property list so that any file object
greater than or equal in size to threshold bytes will be aligned on an address which is a multiple of
alignment. The addresses are relative to the end of the user block; the alignment is calculated by
subtracting the user block size from the absolute file address and then adjusting the address to be a
multiple of alignment.

Default values for threshold and alignment are one, implying no alignment. Generally the default
values will result in the best performance for single-process access to the file. For MPI IO and other
parallel systems, choose an alignment which is a multiple of the disk block size.

Parameters:
hid_tplist IN: Identifier for a file access property list.

hsize_tthreshold IN: Threshold value. Note that setting the threshold value to 0 (zero) has the
effect of a special case, forcing everything to be aligned.

hsize_talignment IN: Alignment value.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_alignment_f

SUBROUTINE h5pset_alignment_f(prp_id, threshold, alignment, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(HSIZE_T), INTENT(IN) :: threshold ! Threshold value
 INTEGER(HSIZE_T), INTENT(IN) :: alignment ! Alignment value
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_alignment_f

H5Pset_alignment HDF5 Reference Manual

436

Name:H5Pset_alloc_time
Signature:

herr_tH5Pset_alloc_time(hid_t plist_id, H5D_alloc_time_t alloc_time)
Purpose:

Sets the timing for storage space allocation.
Description:

H5Pset_alloc_time sets up the timing for the allocation of storage space for a dataset's raw data.
This property is set in the dataset creation property list plist_id.

Timing is specified in alloc_time with one of the following values:

H5D_ALLOC_TIME_DEFAULT Allocate dataset storage space at the default time.
(Defaults differ by storage method.)

H5D_ALLOC_TIME_EARLY Allocate all space when the dataset is created.
(Default for compact datasets.)

H5D_ALLOC_TIME_INCR Allocate space incrementally, as data is written to the dataset.
(Default for chunked storage datasets.)
Chunked datasets: Storage space allocation for each chunk is
deferred until data is written to the chunk.

♦

Contiguous datasets: Incremental storage space allocation for
contiguous data is treated as late allocation.

♦

Compact datasets: Incremental allocation is not allowed with
compact datasets; H5Pset_alloc_time will return an error.

♦

H5D_ALLOC_TIME_LATE Allocate all space when data is first written to the dataset.
(Default for contiguous datasets.)

Note:
H5Pset_alloc_time is designed to work in concert with the dataset fill value and fill value write
time properties, set with the functions H5Pset_fill_value and H5Pset_fill_time.

See H5Dcreate for further cross-references.
Parameters:

hid_tplist_id IN: Dataset creation property list identifier.

H5D_alloc_time_talloc_time IN: When to allocate dataset storage space.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Pset_alloc_time

437

Fortran90 Interface: h5pset_alloc_time_f
SUBROUTINE h5pset_alloc_time_f(plist_id, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id ! Dataset creation property
 ! list identifier
 INTEGER(HSIZE_T), INTENT(IN) :: flag ! Allocation time flag
 ! Possible values are:
 ! H5D_ALLOC_TIME_ERROR_F
 ! H5D_ALLOC_TIME_DEFAULT_F
 ! H5D_ALLOC_TIME_EARLY_F
 ! H5D_ALLOC_TIME_LATE_F
 ! H5D_ALLOC_TIME_INCR_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_alloc_time_f

History:
Release C

1.6.0 Function introduced in this release.

H5Pset_alloc_time HDF5 Reference Manual

438

Name:H5Pset_attr_creation_order
Signature:

herr_tH5Pset_attr_creation_order(hid_t ocpl_id, unsigned crt_order_flags)
Purpose:

Sets tracking and indexing of attribute creation order.
Description:

H5Pset_attr_creation_order sets flags specifying whether to track and index attribute creation
order on an object.

ocpl_id is a dataset or group creation property list identifier. The term ocpl, for object creation
property list, is used when different types of objects may be involved.

crt_order_flags contains flags with the following meanings:

H5P_CRT_ORDER_TRACKED Attribute creation order is tracked but not necessarily
indexed.

H5P_CRT_ORDER_INDEXED Attribute creation order is indexed (requires
H5P_CRT_ORDER_TRACKED).

Default behavior is that attribute creation order is neither tracked nor indexed.
Parameters:

hid_tocpl_id IN: Object creation property list identifier

unsignedcrt_order_flags IN: Flags specifying whether to track and index attribute creation
order
Default: No flag set; attribute creation order is neither tracked not
indexed.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pget_attr_creation_order_f
SUBROUTINE h5pget_attr_creation_order_f(ocpl_id, crt_order_flags, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: ocpl_id
 ! Object (group or dataset) creation property
 ! list identifier
 INTEGER, INTENT(OUT) :: crt_order_flags
 ! Flags specifying whether to track
 ! and index attribute creation order
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pget_attr_creation_order_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_attr_creation_order

439

Name:H5Pset_attr_phase_change
Signature:

herr_tH5Pset_attr_phase_change(hid_t ocpl_id, unsigned max_compact, unsigned
min_dense)

Purpose:
Sets attribute storage phase change thresholds.

Description:
H5Pset_attr_phase_change sets threshold values for attribute storage on an object. These
thresholds determine the point at which attribute storage changes from compact storage (i.e., storage in
the object header) to dense storage (i.e., storage in a heap and indexed with a B-tree).

In the general case, attributes are initially kept in compact storage. When the number of attributes exceeds
max_compact, attribute storage switches to dense storage. If the number of attributes subsequently falls
below min_dense, the attributes are returned to compact storage.

If max_compact is set to 0 (zero), dense storage always used.

ocpl_id is a dataset or group creation property list identifier. The term ocpl, for object creation
property list, is used when different types of objects may be involved.

Parameters:
hid_tocpl_id IN: Object (group or dataset) creation property list identifier

unsignedmax_compact IN: Maximum number of attributes to be stored in compact storage
(Default: 8)

unsignedmin_dense IN: Minimum number of attributes to be stored in dense storage
(Default: 6)

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_attr_phase_change_f
SUBROUTINE h5pset_attr_phase_change_f(ocpl_id, max_compact, min_dense, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: ocpl_id
 ! Object (dataset or group) creation property
 ! list identifier
 INTEGER, INTENT(IN) :: max_compact
 ! Maximum number of attributes to be stored in
 ! compact storage (Default: 8)
 INTEGER, INTENT(IN) :: min_dense
 ! Minimum number of attributes to be stored in
 ! dense storage (Default: 6)
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_attr_phase_change_f

History:
Release C

1.8.0 Function introduced in this release.

H5Pset_attr_phase_change HDF5 Reference Manual

440

Name:H5Pset_btree_ratios
Signature:

herr_tH5Pset_btree_ratios(hid_t plist, double left, double middle, double right)
Purpose:

Sets B-tree split ratios for a dataset transfer property list.
Description:

H5Pset_btree_ratios sets the B-tree split ratios for a dataset transfer property list. The split ratios
determine what percent of children go in the first node when a node splits.

The ratio left is used when the splitting node is the left-most node at its level in the tree; the ratio
right is used when the splitting node is the right-most node at its level; and the ratio middle is used
for all other cases.

A node which is the only node at its level in the tree uses the ratio right when it splits.

All ratios are real numbers between 0 and 1, inclusive.
Parameters:

hid_tplist IN: The dataset transfer property list identifier.

doubleleft IN: The B-tree split ratio for left-most nodes.

doubleright IN: The B-tree split ratio for right-most nodes and lone nodes.

doublemiddle IN: The B-tree split ratio for all other nodes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_btree_ratios_f

SUBROUTINE h5pset_btree_ratios_f(prp_id, left, middle, right, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id
 ! Property list identifier
 REAL, INTENT(IN) :: left ! The B-tree split ratio for left-most nodes
 REAL, INTENT(IN) :: middle ! The B-tree split ratio for all other nodes
 REAL, INTENT(IN) :: right ! The B-tree split ratio for right-most
 ! nodes and lone nodes.
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_btree_ratios_f

HDF5 Reference Manual H5Pset_btree_ratios

441

Name:H5Pset_buffer
Signature:

herr_tH5Pset_buffer(hid_t plist, hsize_t size, void *tconv, void *bkg)
Purpose:

Sets type conversion and background buffers.
Description:

Given a dataset transfer property list, H5Pset_buffer sets the maximum size for the type conversion
buffer and background buffer and optionally supplies pointers to application-allocated buffers. If the
buffer size is smaller than the entire amount of data being transferred between the application and the file,
and a type conversion buffer or background buffer is required, then strip mining will be used.

Note that there are minimum size requirements for the buffer. Strip mining can only break the data up
along the first dimension, so the buffer must be large enough to accommodate a complete slice that
encompasses all of the remaining dimensions. For example, when strip mining a 100x200x300 hyperslab
of a simple data space, the buffer must be large enough to hold 1x200x300 data elements. When strip
mining a 100x200x300x150 hyperslab of a simple data space, the buffer must be large enough to hold
1x200x300x150 data elements.

If tconv and/or bkg are null pointers, then buffers will be allocated and freed during the data transfer.

The default value for the maximum buffer is 1 Mb.
Parameters:

hid_tplist IN: Identifier for the dataset transfer property list.

hsize_tsize IN: Size, in bytes, of the type conversion and background buffers.

void tconv IN: Pointer to application-allocated type conversion buffer.

voidbkg IN: Pointer to application-allocated background buffer.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_buffer_f

SUBROUTINE h5pset_buffer_f(plist_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id ! Dataset transfer property
 ! list identifier
 INTEGER(HSIZE_T), INTENT(IN) :: size ! Conversion buffer size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_buffer_f

History:
Release C

1.6.0 The size parameter has changed from type hsize_t to size_t.

1.4.0 The size parameter has changed to type hsize_t.

H5Pset_buffer HDF5 Reference Manual

442

Last modified: 15 April 2009

Name:H5Pset_cache
Signature:

herr_tH5Pset_cache(hid_t plist_id, int mdc_nelmts, size_t rdcc_nelmts, size_t
rdcc_nbytes, double rdcc_w0)

Purpose:
Sets the raw data chunk cache parameters.

Description:
H5Pset_cache sets the number of elements, the total number of bytes, and the preemption policy value
in the raw data chunk cache.

The plist_id is a file access property list.

The number of elements (objects) in the raw data chunk cache is rdcc_nelmts. The total size of the raw
data chunk cache and the preemption policy are rdcc_nbytes and rdcc_w0, respectively.

Any (or all) of the H5Pget_cache pointer arguments may be null pointers.

The rdcc_w0 value should be between 0 and 1 inclusive and indicates how much chunks that have been
fully read are favored for preemption. A value of zero means fully read chunks are treated no differently
than other chunks (the preemption is strictly LRU) while a value of one means fully read chunks are
always preempted before other chunks.

The *mdc_nelmts parameter is no longer used; any value passed in that parameter is ignored.
Note:

Raw dataset chunk caching is not currently supported when using the MPI I/O and MPI POSIX file
drivers in read/write mode; see H5Pset_fapl_mpio and H5Pset_fapl_mpiposix, respectively.
When using one of these file drivers, all calls to H5Dread and H5Dwrite will access the disk directly,
and H5Pset_cache will have no effect on performance.

Raw dataset chunk caching is supported when these drivers are used in read-only mode.
Parameters:

hid_tplist_id IN: Identifier of the file access property list.

int mdc_nelmts IN: No longer used; any value passed is ignored.

size_trdcc_nelmts IN: Number of elements (objects) in the raw data chunk cache.

size_trdcc_nbytes IN: Total size of the raw data chunk cache, in bytes.

doublerdcc_w0 IN: Preemption policy.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_cache_f

SUBROUTINE h5pset_cache_f(prp_id, mdc_nelmts,rdcc_nelmts, rdcc_nbytes, rdcc_w0, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: mdc_nelmts ! Number of elements (objects)
 ! in the meta data cache
 INTEGER(SIZE_T), INTENT(IN) :: rdcc_nelmts ! Number of elements (objects)
 ! in the meta data cache
 INTEGER(SIZE_T), INTENT(IN) :: rdcc_nbytes ! Total size of the raw data
 ! chunk cache, in bytes
 REAL, INTENT(IN) :: rdcc_w0 ! Preemption policy

HDF5 Reference Manual H5Pset_cache

443

 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_cache_f

History:
Release Change

1.8.0 In C, use of the mdc_nelmts parameter discontinued.
Metadata cache configuration is managed with H5Pset_mdc_config and
H5Pget_mdc_config.

1.6.1 Fortran rdcc_nbytes parameter type changed to INTEGER(SIZE_T).

1.6.0 In C, the rdcc_nbytes and rdcc_nelmts parameters changed from type
int to size_t.

H5Pset_cache HDF5 Reference Manual

444

Name:H5Pset_char_encoding
Signature:

herr_tH5Pset_char_encoding(hid_t plist_id, H5T_cset_t encoding)
Purpose:

Sets the character encoding used to encode a string.
Description:

H5Pset_char_encoding sets the character encoding used to encode strings or object names that are
created with the property list plist_id.

Valid values for encoding are defined in H5Tpublic.h and include the following:

H5T_CSET_ASCII US ASCII

H5T_CSET_UTF8 UTF-8 Unicode encoding
Parameters:

hid_tplist_id IN: Property list identifier

H5T_cset_tencoding IN: String encoding character set
Returns:

Returns a non-negative valule if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_char_encoding_f

SUBROUTINE h5pset_char_encoding_f(plist_id, encoding, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id
 ! Property list identifier
 INTEGER, INTENT(IN) :: encoding ! String encoding character set:
 ! H5T_CSET_ASCII_F -> US ASCII
 ! H5T_CSET_UTF8_F -> UTF-8 Unicode encoding
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_char_encoding_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_char_encoding

445

Name:H5Pset_chunk
Signature:

herr_tH5Pset_chunk(hid_t plist, int ndims, const hsize_t *dim)
Purpose:

Sets the size of the chunks used to store a chunked layout dataset.
Description:

H5Pset_chunk sets the size of the chunks used to store a chunked layout dataset. This function is only
valid for dataset creation property lists.

The ndims parameter currently must be the same size as the rank of the dataset.

The values of the dim array define the size of the chunks to store the dataset's raw data. The unit of
measure for dim values is dataset elements.

As a side-effect of this function, the layout of the dataset is changed to H5D_CHUNKED, if it is not
already so set. (See H5Pset_layout.)

Note regarding fixed-size datasets:
Chunk size cannot exceed the size of a fixed-size dataset. For example, a dataset consisting of a 5x4
fixed-size array cannot be defined with 10x10 chunks.

Parameters:
hid_tplist IN: Dataset creation property list identifier.

int ndims IN: The number of dimensions of each chunk.

const hsize_t *dim IN: An array defining the size, in dataset elements, of each chunk.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_chunk_f

SUBROUTINE h5pset_chunk_f(prp_id, ndims, dims, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: ndims ! Number of chunk dimensions
 INTEGER(HSIZE_T), DIMENSION(ndims), INTENT(IN) :: dims
 ! Array containing sizes of
 ! chunk dimensions
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_chunk_f

H5Pset_chunk HDF5 Reference Manual

446

Last modified: 8 May 2009

Name:H5Pset_chunk_cache
Signature:

herr_tH5Pset_chunk_cache(hid_t dapl_id, size_t rdcc_nslots, size_t rdcc_nbytes,
doublerdcc_w0)

Purpose:
Sets the raw data chunk cache parameters.

Motivation:
H5Pset_chunk_cache is used to adjust the chunk cache parameters on a per-dataset basis, as opposed
to a global setting for the file. The optimum chunk cache parameters vary wildly with different data
layout and access patterns, so for optimal performance they must be set individually for each dataset. It
may also be beneficial to reduce the size of the chunk cache for datasets whose performance is not
important in order to save memory space.

Description:
H5Pset_chunk_cache sets the number of elements, the total number of bytes, and the preemption
policy value in the raw data chunk cache on a dataset access property list. After calling this function, the
values set in the property list will override the values in the file's file access property list.

The raw data chunk cache inserts chunks into the cache by first computing a hash value using the address
of a chunk, then using that hash value as the chunk's index into the table of cached chunks. The size of
this hash table, i.e., and the number of possible hash values, is determined by the rdcc_nslots
parameter. If a different chunk in the cache has the same hash value, this causes a collision, which
reduces efficiency. If inserting the chunk into cache would cause the cache to be too big, then the cache is
pruned according to the rdcc_w0 parameter.

Parameters:
hid_tdapl_id IN: Dataset access property list identifier.

size_t rdcc_nslots IN:The number of chunk slots in the raw data chunk cache for this dataset.
Increasing this value reduces the number of cache collisions, but slightly
increases the memory used. Due to the hashing strategy, this value should
ideally be a prime number. As a rule of thumb, this value should be at least 10
times the number of chunks that can fit in rdcc_nbytes bytes. For
maximum performance, this value should be set approximately 100 times that
number of chunks.

The default value is 521. If the value passed is
H5D_CHUNK_CACHE_NSLOTS_DEFAULT, then the property will not be set
on dapl_id and the parameter will come from the file access property list
used to open the file.

size_trdcc_nbytes IN: The total size of the raw data chunk cache for this dataset. In most cases
increasing this number will improve performance, as long as you have enough
free memory.

The default size is 1 MB. If the value passed is
H5D_CHUNK_CACHE_NBYTES_DEFAULT, then the property will not be set
on dapl_id and the parameter will come from the file access property list.

doublerdcc_w0 IN: The chunk preemption policy for this dataset. This must be between 0 and
1 inclusive and indicates the weighting according to which chunks which
have been fully read or written are penalized when determining which chunks

HDF5 Reference Manual H5Pset_chunk_cache

447

to flush from cache. A value of 0 means fully read or written chunks are
treated no differently than other chunks (the preemption is strictly LRU)
while a value of 1 means fully read or written chunks are always preempted
before other chunks. If your application only reads or writes data once, this
can be safely set to 1. Otherwise, this should be set lower, depending on how
often you re-read or re-write the same data.

The default value is 0.75. If the value passed is
H5D_CHUNK_CACHE_W0_DEFAULT, then the property will not be set on
dapl_id and the parameter will come from the file access property list.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Example Usage:
The following code sets the chunk cache to use a hash table with 12421 elements and a maximum size of
16 MB, while using the preemption policy specified for the entire file:

H5Pset_chunk_cache(dapl_id, 12421, 16*1024*1024, H5D_CHUNK_CACHE_W0_DEFAULT);

Fortran90 Interface: h5pset_chunk_cache_f
 SUBROUTINE h5pset_chunk_cache_f(dapl_id, rdcc_nslots, rdcc_nbytes, rdcc_w0, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dapl_id ! Dataset access property list identifier.
 INTEGER(SIZE_T), INTENT(IN) :: rdcc_nslots ! The number of chunk slots in the raw data
 ! chunk cache for this dataset.
 INTEGER(SIZE_T), INTENT(IN) :: rdcc_nbytes ! The total size of the raw data chunk cache
 ! for this dataset.
 REAL, INTENT(IN) :: rdcc_w0 ! The chunk preemption policy for this dataset.
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
 END SUBROUTINE h5pset_chunk_cache_f

See Also:
H5Pget_chunk_cache, H5Pset_cache

History:
Release Change

1.8.3 C function introduced in this release.

H5Pset_chunk_cache HDF5 Reference Manual

448

Last modified: 17 August 2010

Name:H5Pset_copy_object
Signature:

herr_tH5Pset_copy_object(hid_t ocp_plist_id, unsigned copy_options)
Purpose:

Sets properties to be used when an object is copied.
Description:

H5Pset_copy_object sets properties in the object copy property list ocp_plist_id that will be
invoked when a new copy is made of an existing object.

ocp_plist_id is the object copy property list and specifies the properties governing the copying of
the object.

Several flags, described in the following table, are available for inclusion in the object copy property list:

H5O_COPY_SHALLOW_HIERARCHY_FLAG Copy only immediate members of a group.
Default behavior, without flag: Recursively
copy all objects below the group.

H5O_COPY_EXPAND_SOFT_LINK_FLAG Expand soft links into new objects.
Default behavior, without flag: Keep soft
links as they are.

H5O_COPY_EXPAND_EXT_LINK_FLAG Expand external link into new objects.
Default behavior, without flag: Keep
external links as they are.

H5O_COPY_EXPAND_REFERENCE_FLAG Copy objects that are pointed to by
references.
Default behavior, without flag: Update only
the values of object references.

H5O_COPY_WITHOUT_ATTR_FLAG Copy object without copying attributes.
Default behavior, without flag: Copy object
along with all its attributes.

Parameters:
hid_tocp_plist_id IN: Object copy property list identifier

unsigned copy_options IN: Copy option(s) to be set
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_copy_object_f

SUBROUTINE h5pset_copy_object_f(ocp_plist_id, copy_options, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: ocp_plist_id
 ! Object copy property list identifier
 INTEGER, INTENT(IN) :: copy_options
 ! Copy option(s) to be set, valid options are:
 ! H5O_COPY_SHALLOW_HIERARCHY_F
 ! H5O_COPY_EXPAND_SOFT_LINK_F
 ! H5O_COPY_EXPAND_EXT_LINK_F
 ! H5O_COPY_EXPAND_REFERENCE_F
 ! H5O_COPY_WITHOUT_ATTR_FLAG_F

HDF5 Reference Manual H5Pset_copy_object

449

 INTEGER, INTENT(OUT) :: hdferr
 ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_copy_object_f

History:
Release C

1.8.0 Function introduced in this release.

H5Pset_copy_object HDF5 Reference Manual

450

Last modified: 17 August 2010

Name:H5Pset_create_intermediate_group
Signature:

herr_tH5Pset_create_intermediate_group(hid_t lcpl_id, unsigned
crt_intermed_group)

Purpose:
Specifies in property list whether to create missing intermediate groups.

Description:
H5Pset_create_intermediate_group specifies whether to set the link creation property list
lcpl_id so that calls to functions that create objects in groups different from the current working group
will create intermediate groups that may be missing in the path of a new or moved object.

Functions that create objects in or move objects to a group other than the current working group make use
of this property. H5Gcreate_anon and H5Lmove are examles of such functions.

If crt_intermed_group is positive, the H5G_CRT_INTMD_GROUP will be added to lcpl_id (if it
is not already there). Missing intermediate groups will be created upon calls to functions such as those
listed above that use lcpl_id.

If crt_intermed_group is non-positive, the H5G_CRT_INTMD_GROUP, if present, will be removed
from lcpl_id. Missing intermediate groups will not be created upon calls to functions such as those
listed above that use lcpl_id.

Parameters:
hid_t lcpl_id IN: Link creation property list identifier

unsigned crt_intermed_group IN: Flag specifying whether to create intermediate groups upon
the creation of an object

Returns:
Returns a non-negative valule if successful; otherwise returns a negative value.

Example:
The following call sets the link creation property list lcpl_id such that a call to H5Gcreate_anon or
other function using lcpl_id will create any missing groups in the path to the new object:

 herr_t ret_value = H5Pset_create_intermediate_group(lcpl_id, 1)

Fortran90 Interface: h5pset_create_inter_group_f
SUBROUTINE h5pset_create_inter_group_f(lcpl_id, crt_intermed_group, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: lcpl_id
 ! Link creation property list identifier
 INTEGER, INTENT(IN) :: crt_intermed_group
 ! Specifying whether to create intermediate groups
 ! upon the creation of an object
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_create_inter_group_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_create_intermediate_group

451

Name:H5Pset_data_transform
Signature:

herr_tH5Pset_data_transform (hid_t plist_id, const char *expression)
Purpose:

Sets a data transform expression.
Description:

H5Pset_data_transform sets the data transform to be used for reading and writing data. This
function operates on the dataset transfer property lists plist_id.

The expression parameter is a string containing an algebraic expression, such as (5/9.0)*(x-32) or
x*(x-5). When a dataset is read or written with this property list, the transform expression is applied
with the x being replaced by the values in the dataset. When reading data, the values in the file are not
changed and the transformed data is returned to the user.

Data transforms can only be applied to integer or floating-point datasets. Order of operations is obeyed
and the only supported operations are +, -, *, and /. Parentheses can be nested arbitrarily and can be used
to change precedence.

When writing data back to the dataset, the transformed data is written to the file and there is no way to
recover the original values to which the transform was applied.

Parameters:
hid_tplist_id IN: Identifier of the property list or class

const char *expression IN: Pointer to the null-terminated data transform expression
Returns:

Success: a non-negative value
Failure: a negative value

Fortran90 Interface: SUBROUTINE h5pset_data_transform_f
SUBROUTINE h5pset_data_transform_f(plist_id, expression, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id
 ! Identifier of the property list or class
 CHARACTER(LEN=*), INTENT(IN) :: expression
 ! Buffer to hold transform expression
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_data_transform_f

History:
Release C

1.8.0 Function introduced in this release.

H5Pset_data_transform HDF5 Reference Manual

452

Last modified: 15 June 2010

Name:H5Pset_deflate
Signature:

herr_tH5Pset_deflate(hid_t plist_id, uint level)
Purpose:

Sets deflate (GNU gzip) compression method and compression level.
Description:

H5Pset_deflate sets the deflate compression method for a dataset or group creation property list to
H5Z_FILTER_DEFLATE and the compression level to level, which should be a value from zero to
nine, inclusive.

Lower compression levels are faster but result in less compression.

HDF5 relies on GNU gzip for this compression (see zlib).
Parameters:

hid_tplist_id IN: Dataset or group creation property list identifier.

uint level IN: Compression level.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_deflate_f

SUBROUTINE h5pset_deflate_f(prp_id, level, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: level ! Compression level
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_deflate_f

History:
Release Change

1.8.5 Function extended to work with group creation property lists.

HDF5 Reference Manual H5Pset_deflate

453

http://www.zlib.net

Name:H5Pset_driver
Signature:

herr_tH5Pset_driver(hid_t plist_id, hid_t new_driver_id, const void
*new_driver_info)

Purpose:
Sets a file driver.

Description:
H5Pset_driver sets the file driver, new_driver_id, for a file access or data transfer property list,
plist_id, and supplies an optional struct containing the driver-specific properties,
new_driver_info.

The driver properties will be copied into the property list and the reference count on the driver will be
incremented, allowing the caller to close the driver identifier but still use the property list.

Note:
H5Pset_driver and H5Pget_driver_info are used only when creating a virtual file driver
(VFD) in the virtual file layer (VFL). For further information, see “Virtual File Layer” and “List of VFL
Functions” in the HDF5 Technical Notes.

Parameters:
hid_tplist_id

IN: File access or data transfer property list identifier.
hid_tnew_driver_id

IN: Driver identifier.
const void *new_driver_info

IN: Optional struct containing driver properties.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.2 Function publicized in this release; previous releases described this function only
in the virtual file driver documentation.

H5Pset_driver HDF5 Reference Manual

454

Name:H5Pset_dxpl_mpio
Signature:

herr_tH5Pset_dxpl_mpio(hid_t dxpl_id, H5FD_mpio_xfer_t xfer_mode)
Purpose:

Sets data transfer mode.
Description:

H5Pset_dxpl_mpio sets the data transfer property list dxpl_id to use transfer mode xfer_mode.
The property list can then be used to control the I/O transfer mode during data I/O operations.

Valid transfer modes are as follows:

H5FD_MPIO_INDEPENDENT
Use independent I/O access (default).

H5FD_MPIO_COLLECTIVE
Use collective I/O access.

Parameters:
hid_tdxpl_id IN: Data transfer property list identifier.

H5FD_mpio_xfer_txfer_mode IN: Transfer mode.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface:

SUBROUTINE h5pset_dxpl_mpio_f(prp_id, data_xfer_mode, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: data_xfer_mode ! Data transfer mode
 ! Possible values are:
 ! H5FD_MPIO_INDEPENDENT_F
 ! H5FD_MPIO_COLLECTIVE_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_dxpl_mpio_f

History:
Release C

1.4.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_dxpl_mpio

455

Name:H5Pset_dxpl_mpio_chunk_opt
Signature:

herr_tH5Pset_dxpl_mpio_chunk_opt (hid_t dxpl_id, H5FD_mpio_chunk_opt_t opt_mode)
Purpose:

Sets a flag specifying linked-chunk I/O or multi-chunk I/O.
Description:

H5Pset_dxpl_mpio_chunk_opt specifies whether I/O is to be performed as linked-chunk I/O or as
multi-chunk I/O. This function overrides the HDF5 Library's internal algorithm for determining which
mechanism to use.

When an application uses collective I/O with chunked storage, the HDF5 Library normally uses an
internal algorithm to determine whether that I/O activity should be conducted as one linked-chunk I/O or
as multi-chunk I/O. H5Pset_dxpl_mpio_chunk_opt is provided so that an application can override
the library's alogorithm in circumstances where the library might lack the information needed to make an
optimal desision.

H5Pset_dxpl_mpio_chunk_opt works by setting one of the following flags in the parameter
opt_mode:

H5FD_MPIO_CHUNK_ONE_IO Do one link chunked I/O.

H5FD_MPIO_CHUNK_MULTI_IO Do multi-chunked I/O.
This function works by setting a corresponding property in the dataset transfer property list dxpl_id.

The library perform I/O in the specified manner unless it determines that the low-level MPI IO package
does not support the requested behavior; in such cases, the HDF5 Library will internally use independent
I/O.

Use of this function is optional.
Parameters:

hid_tdxpl_id IN: Data transfer property list identifier

H5FD_mpio_chunk_opt_topt_mode IN: Optimization flag specifying linked-chunk I/O or
multi-chunk I/O

Returns:
Returns a non-negative value if successful. Otherwise returns a negative value.

H5Pset_dxpl_mpio_chunk_opt HDF5 Reference Manual

456

Name:H5Pset_dxpl_mpio_chunk_opt_num
Signature:

herr_tH5Pset_dxpl_mpio_chunk_opt_num (hid_t dxpl_id, unsigned
num_chunk_per_proc)

Purpose:
Sets a numeric threshold for linked-chunk I/O.

Description:
H5Pset_dxpl_mpio_chunk_opt_num sets a numeric threshold for the use of linked-chunk I/O.

The library will calculate the average number of chunks selected by each process when doing collective
access with chunked storage. If the number is greater than the threshold set in num_chunk_per_proc,
the library will use linked-chunk I/O; otherwise, a separate I/O process will be invoked for each chunk
(multi-chunk I/O).

Parameters:
hid_tdxpl_id IN: Data transfer property list identifier

unsignednum_proc_per_chunk IN: Numeric threshold for performing linked-chunk I/O
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

HDF5 Reference Manual H5Pset_dxpl_mpio_chunk_opt_num

457

Name:H5Pset_dxpl_mpio_chunk_opt_ratio
Signature:

herr_tH5Pset_dxpl_mpio_chunk_opt_ratio (hid_t dxpl_id, unsigned
percent_proc_per_chunk)

Purpose:
Sets a ratio threshold for collective I/O.

Description:
H5Pset_dxpl_mpio_chunk_opt_ratio sets a threshold for the use of collective I/O based on the
ratio of processes with collective access to a dataset with chunked storage. The decision whether to use
collective I/O is made on a per-chunk basis.

The library will calculate the percentage of the total number of processes, the ratio, that hold selections in
each chunk. If that percentage is greater than the threshold set in percent_proc_per_chunk, the
library will do collective I/O for this chunk; otherwise, independent I/O will be done for the chunk.

Parameters:
hid_tdxpl_id IN: Data transfer property list identifier

unsignedpercent_proc_per_chunk IN: Percent threshold, on the number of processes holding
selections per chunk, for performing linked-chunk I/O

Returns:
Returns a non-negative value if successful. Otherwise returns a negative value.

H5Pset_dxpl_mpio_chunk_opt_ratio HDF5 Reference Manual

458

Name:H5Pset_dxpl_mpio_collective_opt
Signature:

herr_tH5Pset_dxpl_mpio_collective_opt (hid_t dxpl_id, H5FD_mpio_collective_opt_t
opt_mode)

Purpose:
Sets a flag governing the use of independent versus collective I/O.

Description:
H5Pset_dxpl_mpio_collective_opt enables an application to specify that the HDF5 Library
will use independent I/O internally when the dataset transfer property list dxpl_id is set for collective
I/O, i.e., with H5FD_MPIO_COLLECTIVE specified. This allows the application greater control over
low-level I/O while maintaining the collective interface at the application level.

H5Pset_dxpl_mpio_collective_opt works by setting one of the following flags in the
parameter opt_mode:

H5FD_MPIO_COLLECTIVE_IO Use collective I/O. (Default)

H5FD_MPIO_INDIVIDUAL_IO Use independent I/O.
This function should be used only when H5FD_MPIO_COLLECTIVE has been set through
H5Pset_dxpl_mpio. In such situations, normal behavior would be to use low-level collective I/O
functions, but the library will use low-level MPI independent I/O functions when
H5FD_MPIO_INDIVIDUAL_IO is set.

Use of this function is optional.
Parameters:

hid_tdxpl_id IN: Data transfer property list identifier

H5FD_mpio_collective_opt_topt_mode IN: Optimization flag specifying the use of independent or
collective I/O

Returns:
Returns a non-negative value if successful. Otherwise returns a negative value.

HDF5 Reference Manual H5Pset_dxpl_mpio_collective_opt

459

Name:H5Pset_dxpl_multi
Signature:

herr_tH5Pset_dxpl_multi(hid_t dxpl_id, const hid_t *memb_dxpl)
Purpose:

Sets the data transfer property list for the multi-file driver.
Description:

H5Pset_dxpl_multi sets the data transfer property list dxpl_id to use the multi-file driver for each
memory usage type memb_dxpl[].

H5Pset_dxpl_multi can only be used after the member map has been set with
H5Pset_fapl_multi.

Parameters:
hid_tdxpl_id, IN: Data transfer property list identifier.

const hid_t *memb_dxpl IN: Array of data access property lists.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.4.0 Function introduced in this release.

H5Pset_dxpl_multi HDF5 Reference Manual

460

Last modified: 20 May 2010

Name:H5Pset_edc_check
Signature:

herr_tH5Pset_edc_check(hid_t plist, H5Z_EDC_t check)
Purpose:

Sets whether to enable error-detection when reading a dataset.
Description:

H5Pset_edc_check sets the dataset transfer property list plist to enable or disable error detection
when reading data.

Whether error detection is enabled or disabled is specified in the check parameter. Valid values are as
follows:

H5Z_ENABLE_EDC (default)
H5Z_DISABLE_EDC

The error detection algorithm used is the algorithm previously specified in the corresponding dataset
creation property list. Â

This function does not affect the use of error detection when writing data. Â
Note:

The initial error detection implementation, Fletcher32 checksum, supports error detection for chunked
datasets only.

Note:
The Fletcher32 EDC checksum filter, set with H5Pset_fletcher32, was added in HDF5 Release
1.6.0. In the original implementation, however, the checksum value was calculated incorrectly on
little-endian systems. The error was fixed in HDF5 Release 1.6.3.

As a result of this fix, an HDF5 Library of Release 1.6.0 through Release 1.6.2 cannot read a dataset
created or written with Release 1.6.3 or later if the dataset was created with the checksum filter and the
filter is enabled in the reading library. (Libraries of Release 1.6.3 and later understand the earlier error and
comensate appropriately.)

Work-around: An HDF5 Library of Release 1.6.2 or earlier will be able to read a dataset created or
written with the checksum filter by an HDF5 Library of Release 1.6.3 or later if the checksum filter is
disabled for the read operation. This can be accomplished via an H5Pset_edc_check call with the
value H5Z_DISABLE_EDC in the second parameter. This has the obvious drawback that the application
will be unable to verify the checksum, but the data does remain accessible.

Parameters:
hid_tplist IN: Dataset transfer property list identifier.

H5Z_EDC_tcheck IN: Specifies whether error checking is enabled or disabled for dataset read
operations.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Pset_edc_check

461

Fortran90 Interface: h5pset_edc_check_f
SUBROUTINE h5pset_edc_check_f(prp_id, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Dataset transfer property
 ! list identifier
 INTEGER, INTENT(IN) :: flag ! EDC flag; possible values
 ! H5Z_DISABLE_EDC_F
 ! H5Z_ENABLE_EDC_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure

END SUBROUTINE h5pset_edc_check_f

History:
Release Change

1.6.0 Function introduced in this release.

1.6.3 Error in checksum calculation on little-endian systems corrected in this release.

H5Pset_edc_check HDF5 Reference Manual

462

Last modified: 8 May 2009

Name:H5Pset_elink_acc_flags
Signature:

herr_tH5Pset_elink_acc_flags(hid_t lapl_id, unsigned flags)
Purpose:

Sets the external link traversal file access flag in a link access property list.
Motivation:

H5Pset_elink_acc_flags is used to adjust the file access flag used to open files reached through
external links. This may be useful to, for example, prevent modifying files accessed through an external
link. Otherwise, the target file is opened with whatever flag was used to open the parent.

Description:
H5Pset_elink_acc_flags specifies the file access flag to use to open the target file of an external
link. This allows read-only access of files reached through an external link in a file opened with write
access, or vice-versa.

The library will normally use the file access flag used to open the parent file as the file access flag for the
target file. This function provides a way to override that behaviour. The external link traversal callback
function set by H5Pset_elink_cb can override the setting from H5Pset_elink_acc_flags.

Parameters:
hid_t lapl_id IN: Link access property list identifier

unsigned flags IN: The access flag for external link traversal.

Valid values include:

H5F_ACC_RDWR Causes files opened through external links to be
opened with write access.

H5F_ACC_RDONLY Causes files opened through external links to be
opened with read-only access.

H5F_ACC_DEFAULT Removes any external link file access flag setting
from lapl_id, causing the file access flag setting to
be taken from the parent file.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Example Usage:
The following code sets the link access property list lapl_id to open external link target files with
read-only access:

status = H5Pset_elink_acc_flags(lapl_id, H5F_ACC_RDONLY);

See Also:
H5Pget_elink_acc_flags, H5Pset_elink_cb, H5Fopen, H5Lcreate_external

History:
Release Change

1.8.3 C function introduced in this release.

HDF5 Reference Manual H5Pset_elink_acc_flags

463

Last modified: 11 August 2009

Name:H5Pset_elink_cb
Signature:

herr_tH5Pset_elink_cb(hid_t lapl_id, H5L_elink_traverse_t func, void *op_data)
Purpose:

Sets the external link traversal callback function in a link access property list.
Motivation:

H5Pset_elink_cb is used to specify a callback function that is executed by the HDF5 Library when
traversing an external link. This provides a mechanism to set specific access permissions, modify the file
access property list, modify the parent or target file, or take any other user-defined action. This callback
function is used in situations where the HDF5 Library's default behavior is not suitable.

Description:
H5Pset_elink_cb sets a user-defined external link traversal callback function in the link access
property list lapl_id. The callback function func must conform to the prototype specified in
H5L_elink_traverse_t.

The callback function may adjust the file access property list and file access flags to use when opening a
file through an external link. The callback will be executed by the HDF5 Library immediately before
opening the target file.

The callback will be made after the file access property list set by H5Pset_elink_fapl and the file
access flag set by H5Pset_elink_acc_flags are applied, so changes made by this callback
function will take precedence.

Parameters:
hid_t lapl_id IN: Link access property list identifier.

H5L_elink_traverse_t func IN: User-defined external link traversal callback function.

void *op_data IN: User-defined input data for the callback function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Failure Modes:

H5Pset_elink_cb will fail if the link access property list identifier, lapl_id, is invalid or if the
function pointer, func, is NULL.

An invalid function pointer, func, will cause a segmentation fault or other failure when an attempt is
subsequently made to traverse an external link.

Example Usage:
This example defines a callback function that prints the name of the target file every time an external link
is followed, and sets this callback function on lapl_id

herr_t elink_callback(const char *parent_file_name, const char
 *parent_group_name, const char *child_file_name, const char
 *child_object_name, unsigned *acc_flags, hid_t fapl_id, void *op_data) {
 puts(child_file_name);
 return 0;
}

int main(void) {
 hid_t lapl_id = H5Pcreate(H5P_LINK_ACCESS);
 H5Pset_elink_cb(lapl_id, elink_callback, NULL);
 ...
}

H5Pset_elink_cb HDF5 Reference Manual

464

See Also:
H5Pget_elink_cb

H5Pset_elink_fapl, H5Pset_elink_acc_flags, H5Lcreate_external

H5Fopen for discussion of H5F_ACC_RDWR and H5F_ACC_RDONLY file access flags

H5L_elink_traverse_t
History:

Release Change

1.8.3 C function introduced in this release.

HDF5 Reference Manual H5Pset_elink_cb

465

Last modified: 2 April 2009

Name:H5Pset_elink_fapl
Signature:

herr_tH5Pset_elink_fapl(hid_t lapl_id, hid_t fapl_id)
Purpose:

Sets a file access property list for use in accessing a file pointed to by an external link.
Description:

H5Pset_elink_fapl sets the file access property list, fapl_id, to be used when accessing the
target file of an external link associated with lapl_id.

Parameters:
hid_t lapl_id IN: Link access property list identifier

hid_t fapl_id IN: File access property list identifier
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
See Also:

H5Pget_elink_fapl
H5Lcreate_external

Fortran90 Interface:
None.

History:
Release Change

1.9.0 C function introduced in this release.

H5Pset_elink_fapl HDF5 Reference Manual

466

Name:H5Pset_elink_prefix
Signature:

herr_tH5Pset_elink_prefix(hid_t lapl_id, const char *prefix)
Purpose:

Sets prefix to be applied to external link paths.
Description:

H5Pset_elink_prefix sets the prefix to be applied to the path of any external links traversed. The
prefix is prepended to the filename stored in the external link.

The prefix is specified in the user-allocated buffer prefix and set in the link access property list
lapl_id. The buffer should not be freed until the property list has been closed.

Parameters:
hid_t lapl_id IN: Link access property list identifier

const char *prefix IN: Prefix to be applied to external link paths
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_elink_prefix

467

Name:H5Pset_est_link_info
Signature:

herr_tH5Pset_est_link_info(hid_t gcpl_id, unsigned est_num_entries, unsigned
est_name_len)

Purpose:
Sets estimated number of links and length of link names in a group.

Description:
H5Pset_est_link_info inserts two settings into the group creation property list gcpl_id: the
estimated number of links that are expected to be inserted into a group created with the property list and
the estimated average length of those link names.

The estimated number of links is passed in est_num_entries.

The estimated average length of the anticipated link names is passed in est_name_len.

The values for these two settings are multiplied to compute the initial local heap size (for old-style
groups, if the local heap size hint is not set) or the initial object header size for (new-style compact
groups; see “Group implementations in HDF5”). Accurately setting these parameters will help reduce
wasted file space.

If a group is expected to have many links and to be stored in dense format, set est_num_entries to 0
(zero) for maximum efficiency. This will prevent the group from being created in the compact format.

See “Group implementations in HDF5” in the H5G API introduction for a discussion of the available
types of HDF5 group structures.

Parameters:
hid_tgcpl_id IN: Group creation property list identifier

unsignedest_num_entries IN: Estimated number of links to be inserted into group

unsignedest_name_len IN: Estimated average length of link names
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

SUBROUTINE H5Pset_est_link_info_f(gcpl_id, est_num_entries, est_name_len, &
 hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: gcpl_id
 ! Group creation property list identifier
 INTEGER, INTENT(IN) :: est_num_entries
 ! Estimated number of links to be
 ! inserted into group
 INTEGER, INTENT(IN) :: est_name_len
 ! Estimated average length of link names
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE H5Pset_est_link_info_f

H5Pset_est_link_info HDF5 Reference Manual

468

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_est_link_info

469

Name:H5Pset_external
Signature:

herr_tH5Pset_external(hid_t plist, const char *name, off_t offset, hsize_t size)
Purpose:

Adds an external file to the list of external files.
Description:

The first call to H5Pset_external sets the external storage property in the property list, thus
designating that the dataset will be stored in one or more non-HDF5 file(s) external to the HDF5 file. This
call also adds the file name as the first file in the list of external files. Subsequent calls to the function
add the named file as the next file in the list.

If a dataset is split across multiple files, then the files should be defined in order. The total size of the
dataset is the sum of the size arguments for all the external files. If the total size is larger than the size
of a dataset then the dataset can be extended (provided the data space also allows the extending).

The size argument specifies the number of bytes reserved for data in the external file. If size is set to
H5F_UNLIMITED, the external file can be of unlimited size and no more files can be added to the
external files list.

All of the external files for a given dataset must be specified with H5Pset_external before
H5Dcreate is called to create the dataset. If one these files does not exist on the system when
H5Dwrite is called to write data to it, the library will create the file.

Parameters:
hid_tplist IN: Identifier of a dataset creation property list.

const char*name IN: Name of an external file.

off_toffset IN: Offset, in bytes, from the beginning of the file to the location in the file
where the data starts.

hsize_tsize IN: Number of bytes reserved in the file for the data.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_external_f

SUBROUTINE h5pset_external_f(prp_id, name, offset,bytes, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of an external file
 INTEGER, INTENT(IN) :: offset ! Offset, in bytes, from the
 ! beginning of the file to the
 ! location in the file where
 ! the data starts
 INTEGER(HSIZE_T), INTENT(IN) :: bytes ! Number of bytes reserved in
 ! the file for the data
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_external_f

H5Pset_external HDF5 Reference Manual

470

Name:H5Pset_family_offset
Signature:

herr_tH5Pset_family_offset (hid_t fapl_id, hsize_t offset)
Purpose:

Sets offset property for low-level access to a file in a family of files.
Description:

H5Pset_family_offset sets the offset property in the file access property list fapl_id so that the
user application can retrieve a file handle for low-level access to a particular member of a family of files.
The file handle is retrieved with a separate call to H5Fget_vfd_handle (or, in special circumstances,
to H5FDget_vfd_handle; see Virtual File Layer and List of VFL Functions in HDF5 Technical
Notes).

The value of offset is an offset in bytes from the beginning of the HDF5 file, identifying a
user-determined location within the HDF5 file. The file handle the user application is seeking is for the
specific member-file in the associated family of files to which this offset is mapped.

Use of this function is only appropriate for an HDF5 file written as a family of files with the FAMILY file
driver.

Parameters:
hid_t fapl_id IN: File access property list identifier.

hsize_toffset IN: Offset in bytes within the HDF5 file.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_family_offset_f

SUBROUTINE h5pset_family_offset_f(prp_id, offset, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(HSIZE_T), INTENT(IN) :: offset ! Offset in bytes
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure

END SUBROUTINE h5pset_family_offset_f

History:
Release C

1.6.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_family_offset

471

Name:H5Pset_fapl_core
Signature:

herr_tH5Pset_fapl_core(hid_t fapl_id, size_t increment, hbool_t backing_store)
Purpose:

Modifies the file access property list to use the H5FD_CORE driver.
Description:

H5Pset_fapl_core modifies the file access property list to use the H5FD_CORE driver.

The H5FD_CORE driver enables an application to work with a file in memory, speeding reads and writes
as no disk access is made. File contents are stored only in memory until the file is closed. The
backing_store parameter determines whether file contents are ever written to disk.

increment specifies the increment by which allocated memory is to be increased each time more
memory is required.

While using H5Fcreate to create a core file, if the backing_store is set to 1 (TRUE), the file
contents are flushed to a file with the same name as this core file when the file is closed or access to the
file is terminated in memory.

The application is allowed to open an existing file with H5FD_CORE driver. While using H5Fopen to
open an existing file, if the backing_store is set to 1 and the flags for H5Fopen is set to
H5F_ACC_RDWR, any change to the file contents are saved to the file when the file is closed. If
backing_store is set to 0 and the flags for H5Fopen is set to H5F_ACC_RDWR, any change to the
file contents will be lost when the file is closed. If the flags for H5Fopen is set to
H5F_ACC_RDONLY, no change to the file is allowed either in memory or on file.

Note:
Currently this driver cannot create or open family or multi files.

Parameters:
hid_t fapl_id IN: File access property list identifier.

size_tincrement IN: Size, in bytes, of memory increments.

hbool_tbacking_store IN: Boolean flag indicating whether to write the file contents to disk
when the file is closed.

Returns:
Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5pset_fapl_core_f
SUBROUTINE h5pset_fapl_core_f(prp_id, increment, backing_store, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(SIZE_T), INTENT(IN) :: increment ! File block size in bytes
 LOGICAL, INTENT(IN) :: backing_store ! Flag to indicate that entire
 ! file contents are flushed to
 ! a file with the same name as
 ! this core file
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_fapl_core_f

H5Pset_fapl_core HDF5 Reference Manual

472

History:
Release C Fortran90

1.6.0 The backing_store parameter has changed from
INTEGER to LOGICAL to better match the C API.

1.4.0 Function introduced
in this release.

HDF5 Reference Manual H5Pset_fapl_core

473

Name:H5Pset_fapl_direct
Signature:

herr_tH5Pset_fapl_direct(hid_t fapl_id, size_t alignment, size_t block_size, size_t
cbuf_size)

Purpose:
Sets up use of the direct I/O driver.

Description:
H5Pset_fapl_direct sets the file access property list, fapl_id, to use the direct I/O driver,
H5FD_DIRECT. With this driver, data is written to or read from the file synchronously without being
cached by the system.

File systems usually require the data address in memory, the file address, and the size of the data to be
aligned. The HDF5 Library’s direct I/O driver is able to handle unaligned data, though that will consume
some additional memory resources and may slow performance. To get better performance, use the system
function posix_memalign to align the data buffer in memory and the HDF5 function
H5Pset_alignment to align the data in the file. Be aware, however, that aligned data I/O may cause
the HDF5 file to be bigger than the actual data size would otherwise require because the alignment may
leave some holes in the file.

alignment specifies the required alignment boundary in memory.

block_size specifies the file system block size. A value of 0 (zero) means to use HDF5 Library’s
default value of 4KB.

cbuf_size specifies the copy buffer size.
Note:

On an SGI Altix Linux 2.6 system, the memory alignment must be a multiple of 512 bytes, and the file
system block size is 4KB. The maximum size for the copy buffer has to be a multiple of the file system
block size. The HDF5 Library’s default maximum copy buffer size is 16MB. This copy buffer is used by
the library’s internal algorithm to copy data in fragments between an application’s unaligned buffer and
the file. The buffer’s size may affect I/O performance.

Parameters:
hid_t fapl_id IN: File access property list identifier

size_talignment IN: Required memory alignment boundary

size_tblock_size IN: File system block size

size_tcbuf_size IN: Copy buffer size
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_fapl_direct_f

SUBROUTINE h5pset_fapl_direct_f(fapl_id, alignment, block_size, cbuf_size, &
 hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: fapl_id ! File access property list identifier
 INTEGER(SIZE_T), INTENT(IN) :: alignment
 ! Required memory alignment boundary
 INTEGER(SIZE_T), INTENT(IN) :: block_size
 ! File system block size

H5Pset_fapl_direct HDF5 Reference Manual

474

 INTEGER(SIZE_T), INTENT(IN) :: cbuf_size
 ! Copy buffer size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE H5Pset_fapl_direct_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_fapl_direct

475

Name:H5Pset_fapl_family
Signature:

herr_tH5Pset_fapl_family (hid_t fapl_id, hsize_t memb_size, hid_t memb_fapl_id)
Purpose:

Sets the file access property list to use the family driver.
Description:

H5Pset_fapl_family sets the file access property list identifier, fapl_id, to use the family driver.

memb_size is the size in bytes of each file member and is used only when creating a new file.

memb_fapl_id is the identifier of the file access property list to be used for each family member.
Parameters:

hid_t fapl_id IN: File access property list identifier.

hsize_tmemb_size IN: Size in bytes of each file member.

hid_tmemb_fapl_id IN: Identifier of file access property list for each family member.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_fapl_family_f

SUBROUTINE h5pset_fapl_family_f(prp_id, imemb_size, memb_plist, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(HSIZE_T), INTENT(IN) :: memb_size ! Logical size, in bytes,
 ! of each family member
 INTEGER(HID_T), INTENT(IN) :: memb_plist ! Identifier of the file
 ! access property list to be
 ! used for each family member
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_fapl_family_f

History:
Release C

1.4.0 Function introduced in this release.

H5Pset_fapl_family HDF5 Reference Manual

476

Name:H5Pset_fapl_log
Signature:

herr_tH5Pset_fapl_log(hid_t fapl_id, const char *logfile, unsigned int flags, size_t
buf_size)

Purpose:
Sets up the use of the logging driver.

Description:
H5Pset_fapl_log modifies the file access property list to use the logging driver H5FD_LOG.

logfile is the name of the file in which the logging entries are to be recorded.

The actions to be logged are specified in the parameter flags using the pre-defined constants described
in the following table. Multiple flags can be set through the use of an logical OR contained in
parentheses. For example, logging read and write locations would be specified as
(H5FD_LOG_LOC_READ|H5FD_LOG_LOC_WRITE).

Flag Description

H5FD_LOG_LOC_READ Track the location and length of every read, write, or seek operation.

H5FD_LOG_LOC_WRITE

H5FD_LOG_LOC_SEEK

H5FD_LOG_LOC_IO Track all I/O locations and lengths. The logical equivalent of the
following:

(H5FD_LOG_LOC_READ | H5FD_LOG_LOC_WRITE |
H5FD_LOG_LOC_SEEK)

H5FD_LOG_FILE_READ Track the number of times each byte is read or written.

H5FD_LOG_FILE_WRITE

H5FD_LOG_FILE_IO Track the number of times each byte is read and written. The logical
equivalent of the following:

(H5FD_LOG_FILE_READ | H5FD_LOG_FILE_WRITE)

H5FD_LOG_FLAVOR Track the type, or flavor, of information stored at each byte.

H5FD_LOG_NUM_READ Track the total number of read, write, or seek operations that occur.

H5FD_LOG_NUM_WRITE

H5FD_LOG_NUM_SEEK

H5FD_LOG_NUM_IO Track the total number of all types of I/O operations. The logical
equivalent of the following:

(H5FD_LOG_NUM_READ | H5FD_LOG_NUM_WRITE |
H5FD_LOG_NUM_SEEK)

HDF5 Reference Manual H5Pset_fapl_log

477

H5FD_LOG_TIME_OPEN Track the time spent in open, read, write, seek, or close operations.
Not implemented in this release: open and read
Partially implemented: write and seek
Fully implemented: close

H5FD_LOG_TIME_READ

H5FD_LOG_TIME_WRITE

H5FD_LOG_TIME_SEEK

H5FD_LOG_TIME_CLOSE

H5FD_LOG_TIME_IO Track the time spent in each of the above operations. The logical
equivalent of the following:

(H5FD_LOG_TIME_OPEN | H5FD_LOG_TIME_READ |
H5FD_LOG_TIME_WRITE | H5FD_LOG_TIME_SEEK |
H5FD_LOG_TIME_CLOSE)

H5FD_LOG_ALLOC Track the allocation of space in the file.

H5FD_LOG_ALL Track everything. The logical equivalent of the following:

(H5FD_LOG_ALLOC | H5FD_LOG_TIME_IO |
H5FD_LOG_NUM_IO | H5FD_LOG_FLAVOR
|H5FD_LOG_FILE_IO | H5FD_LOG_LOC_IO)

The logging driver can track the number of times each byte in the file is read from or written to (using
H5FD_LOG_FILE_READ and H5FD_LOG_FILE_WRITE) and what kind of data is at that location
(e.g., meta data, raw data; using H5FD_LOG_FLAVOR). This information is tracked in a buffer of size
buf_size, which must be at least the size in bytes of the file to be logged.

Parameters:
hid_t fapl_id IN: File access property list identifier.

char *logfile IN: Name of the log file.

unsigned intflags IN: Flags specifying the types of logging activity.

size_tbuf_size IN: The size of the logging buffer.
Returns:

Returns non-negative if successful. Otherwise returns negative.
Fortran90 Interface:

None.
History:

Release C

1.6.0 The verbosity parameter has been removed.
Two new parameters have been added: flags of type unsigned and buf_size
of type size_t.

1.4.0 Function introduced in this release.

H5Pset_fapl_log HDF5 Reference Manual

478

Last modified: 15 May 2009

Name:H5Pset_fapl_mpio
Signature:

herr_tH5Pset_fapl_mpio(hid_t fapl_id, MPI_Comm comm, MPI_Infoinfo)
Purpose:

Stores MPI IO communicator information to the file access property list.
Description:

H5Pset_fapl_mpio stores the user-supplied MPI IO parameters comm, for communicator, and info,
for information, in the file access property list fapl_id. That property list can then be used to create
and/or open a file.

H5Pset_fapl_mpio is available only in the parallel HDF5 library and is not a collective function.

comm is the MPI communicator to be used for file open, as defined in MPI_FILE_OPEN of MPI-2. This
function makes a duplicate of the communicator, so modifications to comm after this function call returns
have no effect on the file access property list.

info is the MPI Info object to be used for file open, as defined in MPI_FILE_OPEN of MPI-2. This
function makes a duplicate copy of the Info object, so modifications to the Info object after this function
call returns will have no effect on the file access property list.

If the file access property list already contains previously-set communicator and Info values, those values
will be replaced and the old communicator and Info object will be freed.

Note:
Raw dataset chunk caching is not currently supported when using this file driver in read/write mode. All
calls to H5Dread and H5Dwrite will access the disk directly, and H5Pset_cache and
H5Pset_chunk_cache will have no effect on performance.

Raw dataset chunk caching is supported when this driver is used in read-only mode.
Parameters:

hid_t fapl_id IN: File access property list identifier

MPI_Commcomm IN: MPI-2 communicator

MPI_Info info IN: MPI-2 info object
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface: h5pset_fapl_mpio_f

SUBROUTINE h5pset_fapl_mpio_f(prp_id, comm, info, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: comm ! MPI communicator to be used for
 ! file open as defined in
 ! MPI_FILE_OPEN of MPI-2
 INTEGER, INTENT(IN) :: info ! MPI info object to be used for
 ! file open as defined in
 ! MPI_FILE_OPEN of MPI-2
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_fapl_mpio_f

HDF5 Reference Manual H5Pset_fapl_mpio

479

History:
Release Change

1.4.5 Handling of the MPI Communicator and Info object changed at this release. A
duplicate of each of these is now stored in the property list instead of pointers to
each.

1.4.0 C function introduced in this release.

H5Pset_fapl_mpio HDF5 Reference Manual

480

Last modified: 15 April 2009

Name:H5Pset_fapl_mpiposix
Signature:

herr_tH5Pset_fapl_mpiposix(hid_t fapl_id, MPI_Comm comm, hbool_tuse_gpfs_hints
)

Purpose:
Stores MPI IO communicator information to a file access property list.

Description:
H5Pset_fapl_mpiposix stores the user-supplied MPI IO parameter comm, for communicator, in the
file access property list fapl_id. That property list can then be used to create and/or open the file.

H5Pset_fapl_mpiposix is available only in the parallel HDF5 library and is not a collective
function.

comm is the MPI communicator to be used for file open, as defined in MPI_FILE_OPEN of MPI-2. This
function does not create a duplicated communicator. Modifications to comm after this function call
returns may have an undetermined effect on the file access property list. Users should not modify the
communicator while it is defined in a property list.

use_gpfs_hints specifies whether to attempt to use GPFS hints when accessing this file. A value of
TRUE (or 1) indicates that the hints should be used, if possible. A value of FALSE (or 0) indicates that
the hints should not be used.

Available GPFS hints are known to the HFD5 Library and are not user configurable. They may be used
only with GPFS file systems and may improve file access for some applications; the user of a GPFS
system is encouraged to experiment by running an application with and without this parameter set.

Note:
Raw dataset chunk caching is not currently supported when using this file driver in read/write mode. All
calls to H5Dread and H5Dwrite will access the disk directly, and H5Pset_cache and
H5Pset_chunk_cache will have no effect on performance.

Raw dataset chunk caching is supported when this driver is used in read-only mode.
Parameters:

hid_t fapl_id IN: File access property list identifier.

MPI_Commcomm IN: MPI-2 communicator.

hbool_tuse_gpfs_hints IN: Use of GPFS hints.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface: h5pset_fapl_mpiposix_f

SUBROUTINE h5pset_fapl_mpiposix_f(prp_id, comm, use_gpfs, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: comm ! MPI communicator to be used
 ! for file open as defined in
 ! MPI_FILE_OPEN of MPI-2
 LOGICAL, INTENT(IN) :: use_gpfs
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5pset_fapl_mpiposix_f

HDF5 Reference Manual H5Pset_fapl_mpiposix

481

History:
Release Change

1.6.1 Fortran subroutine introduced in this release.

1.6.0 use_gpfs_hints parameter added.

1.6.0 C function introduced in this release.

H5Pset_fapl_mpiposix HDF5 Reference Manual

482

Name:H5Pset_fapl_multi
Signature:

herr_tH5Pset_fapl_multi(hid_t fapl_id, const H5FD_mem_t *memb_map, const hid_t
*memb_fapl, const char * const *memb_name, const haddr_t *memb_addr, hbool_trelax)

Purpose:
Sets up use of the multi-file driver.

Description:
H5Pset_fapl_multi sets the file access property list fapl_id to use the multi-file driver.

The multi-file driver enables different types of HDF5 data and metadata to be written to separate files.
These files are viewed by the HDF5 library and the application as a single virtual HDF5 file with a single
HDF5 file address space. The types of data that can be broken out into separate files include raw data, the
superblock, B-tree data, global heap data, local heap data, and object headers. At the programmer's
discretion, two or more types of data can be written to the same file while other types of data are written
to separate files.

The array memb_map maps memory usage types to other memory usage types and is the mechanism that
allows the caller to specify how many files are created. The array contains H5FD_MEM_NTYPES entries,
which are either the value H5FD_MEM_DEFAULT or a memory usage type. The number of unique values
determines the number of files that are opened.

The array memb_fapl contains a property list for each memory usage type that will be associated with a
file.

The array memb_name should be a name generator (a printf-style format with a %s which will be
replaced with the name passed to H5FDopen, usually from H5Fcreate or H5Fopen).

The array memb_addr specifies the offsets within the virtual address space, from 0 (zero) to
HADDR_MAX, at which each type of data storage begins.

If relax is set to TRUE (or 1), then opening an existing file for read-only access will not fail if some file
members are missing. This allows a file to be accessed in a limited sense if just the meta data is available.

Default values for each of the optional arguments are as follows:

memb_map
The default member map contains the value H5FD_MEM_DEFAULT for each element.

memb_fapl
The default value is H5P_DEFAULT for each element.

memb_name
The default string is %s-X.h5 where X is one of the following letters:
s for H5FD_MEM_SUPER
b for H5FD_MEM_BTREE
r for H5FD_MEM_DRAW
g for H5FD_MEM_GHEAP
l for H5FD_MEM_LHEAP
o for H5FD_MEM_OHDR

HDF5 Reference Manual H5Pset_fapl_multi

483

memb_addr
The default value is HADDR_UNDEF for each element.

Parameters:
hid_t fapl_id IN: File access property list identifier.

const H5FD_mem_t *memb_map IN: Maps memory usage types to other memory usage types.

const hid_t *memb_fapl IN: Property list for each memory usage type.

const char * const *memb_name IN: Name generator for names of member files.

const haddr_t *memb_addr IN: The offsets within the virtual address space, from 0 (zero)
to HADDR_MAX, at which each type of data storage begins.

hbool_trelax IN: Allows read-only access to incomplete file sets when TRUE.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Example:

The following code sample sets up a multi-file access property list that partitions data into meta and raw
files, each being one-half of the address:

 H5FD_mem_t mt, memb_map[H5FD_MEM_NTYPES];
 hid_t memb_fapl[H5FD_MEM_NTYPES];
 const char *memb[H5FD_MEM_NTYPES];
 haddr_t memb_addr[H5FD_MEM_NTYPES];

 // The mapping...
 for (mt=0; mt<H5FD_MEM_NTYPES; mt++) {
 memb_map[mt] = H5FD_MEM_SUPER;
 }
 memb_map[H5FD_MEM_DRAW] = H5FD_MEM_DRAW;

 // Member information
 memb_fapl[H5FD_MEM_SUPER] = H5P_DEFAULT;
 memb_name[H5FD_MEM_SUPER] = "%s.meta";
 memb_addr[H5FD_MEM_SUPER] = 0;

 memb_fapl[H5FD_MEM_DRAW] = H5P_DEFAULT;
 memb_name[H5FD_MEM_DRAW] = "%s.raw";
 memb_addr[H5FD_MEM_DRAW] = HADDR_MAX/2;

 hid_t fapl = H5Pcreate(H5P_FILE_ACCESS);
 H5Pset_fapl_multi(fapl, memb_map, memb_fapl,
 memb_name, memb_addr, TRUE);

Fortran90 Interface: h5pset_fapl_multi_f
SUBROUTINE h5pset_fapl_multi_f(prp_id, memb_map, memb_fapl, memb_name,
 memb_addr, relax, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T),INTENT(IN) :: prp_id ! Property list identifier

 INTEGER,DIMENSION(0:H5FD_MEM_NTYPES_F-1),INTENT(IN) :: memb_map
 INTEGER(HID_T),DIMENSION(0:H5FD_MEM_NTYPES_F-1),INTENT(IN) :: memb_fapl
 CHARACTER(LEN=*),DIMENSION(0:H5FD_MEM_NTYPES_F-1),INTENT(IN) :: memb_name
 REAL, DIMENSION(0:H5FD_MEM_NTYPES_F-1), INTENT(IN) :: memb_addr
 ! Numbers in the interval [0,1) (e.g. 0.0 0.1 0.5 0.2 0.3 0.4)
 ! real address in the file will be calculated as X*HADDR_MAX

H5Pset_fapl_multi HDF5 Reference Manual

484

 LOGICAL, INTENT(IN) :: relax
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_fapl_multi_f

History:
Release C

1.6.3 memb_name parameter type changed to const char* const*.

1.4.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_fapl_multi

485

Name:H5Pset_fapl_sec2
Signature:

herr_tH5Pset_fapl_sec2(hid_t fapl_id)
Purpose:

Sets the sec2 driver.
Description:

H5Pset_fapl_sec2 modifies the file access property list to use the H5FD_SEC2 driver.
Parameters:

hid_t fapl_id IN: File access property list identifier.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface: h5pset_fapl_sec2_f

SUBROUTINE h5pset_fapl_sec2_f(prp_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_fapl_sec2_f

History:
Release C

1.4.0 Function introduced in this release.

H5Pset_fapl_sec2 HDF5 Reference Manual

486

Name:H5Pset_fapl_split
Signature:

herr_tH5Pset_fapl_split(hid_t fapl_id, const char *meta_ext, hid_t meta_plist_id,
const char *raw_ext, hid_t raw_plist_id)

Purpose:
Emulates the old split file driver.

Description:
H5Pset_fapl_split is a compatibility function that enables the multi-file driver to emulate the split
driver from HDF5 Releases 1.0 and 1.2. The split file driver stored metadata and raw data in separate files
but provided no mechanism for separating types of metadata.

fapl_id is a file access property list identifier.

meta_ext is the filename extension for the metadata file. The extension is appended to the name passed
to H5FDopen, usually from H5Fcreate or H5Fopen, to form the name of the metadata file. If the
string %s is used in the extension, it works like the name generator as in H5Pset_fapl_multi.

meta_plist_id is the file access property list identifier for the metadata file.

raw_ext is the filename extension for the raw data file. The extension is appended to the name passed
to H5FDopen, usually from H5Fcreate or H5Fopen, to form the name of the rawdata file. If the
string %s is used in the extension, it works like the name generator as in H5Pset_fapl_multi.

raw_plist_id is the file access property list identifier for the raw data file.

If a user wishes to check to see whether this driver is in use, the user must call H5Pget_driver and
compare the returned value to the string H5FD_MULTI. A positive match will confirm that the multi
driver is in use; HDF5 provides no mechanism to determine whether it was called as the special case
invoked by H5Pset_fapl_split.

Parameters:
hid_t fapl_id, IN: File access property list identifier.

const char *meta_ext, IN: Metadata filename extension.

hid_tmeta_plist_id, IN: File access property list identifier for the metadata file.

const char *raw_ext, IN: Raw data filename extension.

hid_t raw_plist_id IN: File access property list identifier for the raw data file.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Example:

/* Example 1: Both metadata and rawdata files are in the same */
/* directory. Use Station1-m.h5 and Station1-r.h5 as */
/* the metadata and rawdata files. */
hid_t fapl, fid;
fapl = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_split(fapl, "-m.h5", H5P_DEFAULT, "-r.h5", H5P_DEFAULT);
fid=H5Fcreate("Station1",H5F_ACC_TRUNC,H5P_DEFAULT,fapl);

/* Example 2: metadata and rawdata files are in different */
/* directories. Use PointA-m.h5 and /pfs/PointA-r.h5 as */
/* the metadata and rawdata files. */
hid_t fapl, fid;

HDF5 Reference Manual H5Pset_fapl_split

487

fapl = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_split(fapl, "-m.h5", H5P_DEFAULT, "/pfs/%s-r.h5", H5P_DEFAULT);
fid=H5Fcreate("PointA",H5F_ACC_TRUNC,H5P_DEFAULT,fapl);

Fortran90 Interface: h5pset_fapl_split_f
SUBROUTINE h5pset_fapl_split_f(prp_id, meta_ext, meta_plist, raw_ext, &
 raw_plist, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T),INTENT(IN) :: prp_id ! Property list identifier
 CHARACTER(LEN=*),INTENT(IN) :: meta_ext ! Name of the extension for
 ! the metafile filename
 INTEGER(HID_T),INTENT(IN) :: meta_plist ! Identifier of the meta file
 ! access property list
 CHARACTER(LEN=*),INTENT(IN) :: raw_ext ! Name extension for the raw
 ! file filename
 INTEGER(HID_T),INTENT(IN) :: raw_plist ! Identifier of the raw file
 ! access property list
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_fapl_split_f

History:
Release C

1.4.0 Function introduced in this release.

H5Pset_fapl_split HDF5 Reference Manual

488

Name:H5Pset_fapl_stdio
Signature:

herr_tH5Pset_fapl_stdio(hid_t fapl_id)
Purpose:

Sets the standard I/O driver.
Description:

H5Pset_fapl_stdio modifies the file access property list to use the standard I/O driver,
H5FD_STDIO.

Parameters:
hid_t fapl_id IN: File access property list identifier.

Returns:
Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5pset_fapl_stdio_f
SUBROUTINE h5pset_fapl_stdio_f(prp_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_fapl_stdio_f

History:
Release C

1.4.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_fapl_stdio

489

Name:H5Pset_fapl_windows
Signature:

herr_tH5Pset_fapl_windows(hid_t fapl_id)
Purpose:

Sets the Windows I/O driver.
Description:

H5Pset_fapl_windows sets the default HDF5 Windows I/O driver on Windows systems.

Since the HDF5 Library uses this driver, H5FD_WINDOWS, by default on Windows systems, it is not
normally necessary for a user application to call H5Pset_fapl_windows. While it is not
recommended, there may be times when a user chooses to set a different HDF5 driver, such as the
standard I/O driver (H5FD_STDIO) or the sec2 driver (H5FD_SEC2), in a Windows application.
H5Pset_fapl_windows is provided so that the application can return to the Windows I/O driver
when the time comes.

Only the Windows driver is tested on Windows systems; other drivers are used at the application’s and
the user’s risk.

Furthermore, the Windows driver is tested and available only on Windows systems; it is not available on
non-Windows systems.

Parameters:
hid_t fapl_id IN: File access property list identifier

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

H5Pset_fapl_windows HDF5 Reference Manual

490

Name:H5Pset_fclose_degree
Signature:

herr_tH5Pset_fclose_degree(hid_t fapl_id, H5F_close_degree_t fc_degree)
Purpose:

Sets the file close degree.
Description:

H5Pset_fclose_degree sets the file close degree property fc_degree in the file access property
list fapl_id.Â

The value of fc_degree determines how aggressively H5Fclose deals with objects within a file that
remain open when H5Fclose is called to close that file.Â fc_degree can have any one of four valid
values:

Degree name H5Fclose behavior
with no open object in

file

H5Fclose
behavior with open

object(s) in file

H5F_CLOSE_WEAK Actual file is closed. Access to file
identifier is
terminated; actual
file close is delayed
until all objects in
file are closed

H5F_CLOSE_SEMI Actual file is closed. Function returns
FAILURE

H5F_CLOSE_STRONG Actual file is closed. All open objects
remaining in the file
are closed then file is
closed

H5F_CLOSE_DEFAULT The VFL driver chooses the behavior.Â
Currently, all VFL drivers set this value to
H5F_CLOSE_WEAK, except for the MPI-I/O
driver, which sets it to H5F_CLOSE_SEMI.

Parameters:
hid_t fapl_id IN: File access property list identifier.

H5F_close_degree_tfc_degree IN: Pointer to a location containing the file close degree
property, the value of fc_degree.

Returns:
Returns a non-negative value if successful. Otherwise returns a negative value.

Fortran90 Interface: h5pset_fclose_degree_f
SUBROUTINE h5pset_fclose_degree_f(fapl_id, degree, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: fapl_id ! File access property list identifier
 INTEGER, INTENT(IN) :: degree ! Info about file close behavior
 ! Possible values:
 ! H5F_CLOSE_DEFAULT_F
 ! H5F_CLOSE_WEAK_F
 ! H5F_CLOSE_SEMI_F
 ! H5F_CLOSE_STRONG_F

HDF5 Reference Manual H5Pset_fclose_degree

491

 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_fclose_degree_f

History:
Release C

1.6.0 Function introduced in this release.

H5Pset_fclose_degree HDF5 Reference Manual

492

Name:H5Pset_fill_time
Signature:

herr_tH5Pset_fill_time(hid_t plist_id, H5D_fill_time_t fill_time)
Purpose:

Sets the time when fill values are written to a dataset.
Description:

H5Pset_fill_time sets up the timing for writing fill values to a dataset. This property is set in the
dataset creation property list plist_id.

Timing is specified in fill_time with one of the following values:

H5D_FILL_TIME_IFSET Write fill values to the dataset when storage space is allocated only if
there is a user-defined fill value, i.e., one set with H5Pset_fill_value.
 (Default)

H5D_FILL_TIME_ALLOC Write fill values to the dataset when storage space is allocated.

H5D_FILL_TIME_NEVER Never write fill values to the dataset.
Note:

H5Pset_fill_time is designed for coordination with the dataset fill value and dataset storage
allocation time properties, set with the functions H5Pset_fill_value and H5Pset_alloc_time.

See H5Dcreate for further cross-references.
Parameters:

hid_tplist_id IN: Dataset creation property list identifier.

H5D_fill_time_tfill_time IN: When to write fill values to a dataset.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_fill_time_f

SUBROUTINE h5pset_fill_time_f(plist_id, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id ! Dataset creation property
 ! list identifier
 INTEGER(HSIZE_T), INTENT(IN) :: flag ! File time flag
 ! Possible values are:
 ! H5D_FILL_TIME_ERROR_F
 ! H5D_FILL_TIME_ALLOC_F
 ! H5D_FILL_TIME_NEVER_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_fill_time_f

History:
Release C

1.6.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_fill_time

493

Name:H5Pset_fill_value
Signature:

herr_tH5Pset_fill_value(hid_t plist_id, hid_t type_id, const void *value)
Purpose:

Sets the fill value for a dataset.
Description:

H5Pset_fill_value sets the fill value for a dataset in the dataset creation property list.

value is interpreted as being of datatype type_id. This datatype may differ from that of the dataset,
but the HDF5 library must be able to convert value to the dataset datatype when the dataset is created.

The default fill value is 0 (zero), which is interpreted according to the actual dataset datatype.

Setting value to NULL indicates that the fill value is to be undefined.
Notes:

Applications sometimes write data only to portions of an allocated dataset. It is often useful in such cases
to fill the unused space with a known fill value. This function allows the user application to set that fill
value; the functions H5Dfill and H5Pset_fill_time, respectively, provide the ability to apply the fill value
on demand or to set up its automatic application.

A fill value should be defined so that it is appropriate for the application. While the HDF5 default fill
value is 0 (zero), it is often appropriate to use another value. It might be useful, for example, to use a
value that is known to be impossible for the application to legitimately generate.

H5Pset_fill_value is designed to work in concert with H5Pset_alloc_time and
H5Pset_fill_time. H5Pset_alloc_time and H5Pset_fill_time govern the timing of
dataset storage allocation and fill value write operations and can be important in tuning application
performance.

See H5Dcreate for further cross-references.
Parameters:

hid_tplist_id IN: Dataset creation property list identifier.

hid_t type_id, IN: Datatype of value.

const void *value IN: Pointer to buffer containing value to use as fill value.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_fill_value_f

SUBROUTINE h5pset_fill_value_f(prp_id, type_id, fillvalue, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier of fill
 ! value datatype (in memory)
 TYPE(VOID), INTENT(IN) :: fillvalue ! Fillvalue
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_fill_value_f

H5Pset_fill_value HDF5 Reference Manual

494

Last modified: 8 October 2010

Name:H5Pset_filter
Signature:

herr_tH5Pset_filter(hid_t plist_id, H5Z_filter_t filter_id, unsigned int flags, size_t
cd_nelmts, const unsigned int cd_values[])

Purpose:
Adds a filter to the filter pipeline.

Description:
H5Pset_filter adds the specified filter_id and corresponding properties to the end of an output
filter pipeline.

plist_id must be either a dataset creation property list or group creation property list identifier. If
plist_id is a dataset creation property list identifier, the filter is added to the raw data filter pipeline.

If plist_id is a group creation property list identifier, the filter is added to the link filter pipeline,
which filters the fractal heap used to store the most of link metadata in certain types of groups. The only
predefined filters that can be set in a group creation property list are the gzip filter
(H5Z_FILTER_DEFLATE) and the Fletcher32 error detection filter (H5Z_FILTER_FLETCHER32).

The array cd_values contains cd_nelmts integers which are auxiliary data for the filter. The integer
values will be stored in the dataset object header as part of the filter information.

The flags argument is a bit vector with the following fields specifying certain general properties of the
filter:

H5Z_FLAG_OPTIONAL If this bit is set then the filter is optional. If the filter fails (see
below) during an H5Dwrite operation then the filter is just
excluded from the pipeline for the chunk for which it failed;
the filter will not participate in the pipeline during an
H5Dread of the chunk. This is commonly used for
compression filters: if the filter result would be larger than the
input, then the compression filter returns failure and the
uncompressed data is stored in the file.

This flag should not be set for the Fletcher32 checksum filter
as it will bypass the checksum filter without reporting
checksum errors to an application.

H5Z_FLAG_MANDATORY If the filter is required, that is, set to mandatory, and the filter
fails, the library’s behavior depends on whether the chunk
cache is in use:

If the chunk cache is enabled, data chunks will be
flushed to the file during H5Dclose and the library
will return the failure in H5Dclose.

◊

When the chunk cache is disabled or not big enough,
or the chunk is being evicted from the cache, the
failure will happen during H5Dwrite.

◊

In each case, the library will still write to the file all data
chunks that were processed by the filter before the failure
occured.

HDF5 Reference Manual H5Pset_filter

495

For example, assume that an application creates a dataset of
four chunks, the chunk cache is enabled and is big enough to
hold all four chunks, and the filter fails when it tries to write
the fourth chunk. The actual flush of the chunks will happen
during H5Dclose, not H5Dwrite. By the time H5Dclose
fails, the first three chunks will have been written to the file.
Even though H5Dclose fails, all the resources will be
released and the file can be closed properly.

If, however, the filter fails on the second chunk, only the first
chunk will be written to the file as nothing further can be
written once the filter fails.

The filter_id parameter specifies the filter to be set. Valid pre-defined filter identifiers are as
follows:

H5Z_FILTER_DEFLATE Data compression filter, employing the gzip algorithm

H5Z_FILTER_SHUFFLE Data shuffling filter

H5Z_FILTER_FLETCHER32 Error detection filter, employing the Fletcher32 checksum
algorithm

H5Z_FILTER_SZIP Data compression filter, employing the SZIP algorithm

H5Z_FILTER_NBIT Data compression filter, employing the N-Bit algorithm

H5Z_FILTER_SCALEOFFSET Data compression filter, employing the scale-offset
algorithm

Also see H5Pset_edc_check and H5Pset_filter_callback.
Notes:

When a non-empty filter pipeline is used with a group creation property list, the group will be created
with the new group file format (see “Group Implementations in HDF5”). The filters will come into play
only when dense storage is used (see H5Pset_link_phase_change) and will be applied to the
group’s fractal heap. The fractal heap will contain most of the the group’s link metadata, including link
names.

When working with group creation property lists, if you are adding a filter that is not in HDF5’s set of
predefined filters, i.e., a user-defined or third-party filter, you must first determine that the filter will work
for a group. See the discussion of the set local and can apply callback functions in H5Zregister.

If multiple filters are set for a property list, they will be applied to each chunk of raw data for datasets or
each block of the fractal heap for groups in the order in which they were set.

See Also:
For a discussion of optional versus required (mandatory) filter behavior, see “Filter Behavior in HDF5.”

For a discussion of the chunk cache, see H5Pset_cache.

For a discussion of the various types of HDF5 groups, see “Group Implementations in HDF5.”

Related functions: H5Pset_link_phase_change, H5Pset_edc_check,
H5Pset_filter_callback, H5Pset_deflate, H5Pset_shuffle, H5Pset_fletcher32,
H5Pset_szip, H5Pset_nbit, H5Pset_scaleoffset

H5Pset_filter HDF5 Reference Manual

496

Parameters:
hid_tplist_id IN: Dataset or group creation property list identifier.

H5Z_filter_tfilter_id IN: Filter identifier for the filter to be added to the pipeline.

unsigned intflags IN: Bit vector specifying certain general properties of the
filter.

size_tcd_nelmts IN: Number of elements in cd_values.

const unsigned intcd_values[] IN: Auxiliary data for the filter.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_filter_f

SUBROUTINE h5pset_filter_f(prp_id, filter, flags, cd_nelmts, cd_values, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Gropu or dataset creation property
 ! list identifier
 INTEGER, INTENT(IN) :: filter ! Filter to be added to the pipeline
 INTEGER, INTENT(IN) :: flags ! Bit vector specifying certain
 ! general properties of the filter
 INTEGER(SIZE_T), INTENT(IN) :: cd_nelmts
 ! Number of elements in cd_values
 INTEGER, DIMENSION(*), INTENT(IN) :: cd_values
 ! Auxiliary data for the filter
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_filter_f

History:
Release Change

1.6.0 Function introduced in this release.

1.8.5 Function applied to group creation property lists.

HDF5 Reference Manual H5Pset_filter

497

Name:H5Pset_filter_callback
Signature:

herr_tH5Pset_filter_callback(hid_t plist, H5Z_filter_func_t func, void *op_data)
Purpose:

Sets user-defined filter callback function.
Description:

H5Pset_filter_callback sets the user-defined filter callback function func in the dataset transfer
property list plist.

The parameter op_data is a pointer to user-defined input data for the callback function and will be
passed through to the callback function.

The callback function func defines the actions an application is to take when a filter fails. The function
prototype is as follows:

typedef H5Z_cb_return_t (H5Z_filter_func_t) (H5Z_filter_t filter_id, void *buf, size_t
buf_size, void *op_data)

where filter_id indicates which filter has failed, buf and buf_size are used to pass in the failed
data, and op_data is the required input data for this callback function.

Valid callback function return values are H5Z_CB_FAIL and H5Z_CB_CONT. Â
Parameters:

hid_tplist IN: Dataset transfer property list identifier.

H5Z_filter_func_tfunc IN: User-defined filter callback function.

void *op_data IN: User-defined input data for the callback function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.6.0 Function introduced in this release.

H5Pset_filter_callback HDF5 Reference Manual

498

Last modified: 14 June 2010

Name:H5Pset_fletcher32
Signature:

herr_tH5Pset_fletcher32(hid_t plist_id)
Purpose:

Sets up use of the Fletcher32 checksum filter.
Description:

H5Pset_fletcher32 sets the Fletcher32 checksum filter in the dataset or group creation property list
plist_id.

Note:
The Fletcher32 EDC checksum filter was added in HDF5 Release 1.6.0. In the original implementation,
however, the checksum value was calculated incorrectly on little-endian systems. The error was fixed in
HDF5 Release 1.6.3.

As a result of this fix, an HDF5 Library of Release 1.6.0 through Release 1.6.2 cannot read a dataset
created or written with Release 1.6.3 or later if the dataset was created with the checksum filter and the
filter is enabled in the reading library. (Libraries of Release 1.6.3 and later understand the earlier error and
comensate appropriately.)

Work-around: An HDF5 Library of Release 1.6.2 or earlier will be able to read a dataset created or
written with the checksum filter by an HDF5 Library of Release 1.6.3 or later if the checksum filter is
disabled for the read operation. This can be accomplished via a call to H5Pset_edc_check with the
value H5Z_DISABLE_EDC in the second parameter. This has the obvious drawback that the application
will be unable to verify the checksum, but the data does remain accessible.

Parameters:
hid_tplist_id IN: Dataset or group creation property list identifier.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_fletcher32_f
SUBROUTINE h5pset_fletcher32_f(prp_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_fletcher32_f

History:
Release Change

1.6.0 Function introduced in this release.

1.6.3 Error in checksum calculation on little-endian systems corrected in this release.

1.8.5 Function extended to work with group creation property lists.

HDF5 Reference Manual H5Pset_fletcher32

499

Name:H5Pset_gc_references
Signature:

herr_tH5Pset_gc_reference(hid_t plist, unsigned gc_ref)
Purpose:

Sets garbage collecting references flag.
Description:

H5Pset_gc_references sets the flag for garbage collecting references for the file.

Dataset region references and other reference types use space in an HDF5 file's global heap. If garbage
collection is on and the user passes in an uninitialized value in a reference structure, the heap might get
corrupted. When garbage collection is off, however, and the user re-uses a reference, the previous heap
block will be orphaned and not returned to the free heap space.

When garbage collection is on, the user must initialize the reference structures to 0 or risk heap
corruption.

The default value for garbage collecting references is off.
Parameters:

hid_tplist IN: File access property list identifier.

unsignedgc_ref IN: Flag setting reference garbage collection to on (1) or off (0).
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_gc_references_f

SUBROUTINE h5pset_gc_references_f (prp_id, gc_reference, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: gc_reference ! Flag for garbage collecting
 ! references for the file
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_gc_references_f

H5Pset_gc_references HDF5 Reference Manual

500

Name:H5Pset_hyper_vector_size
Signature:

herr_tH5Pset_hyper_vector_size(hid_t dxpl_id, size_t vector_size)
Purpose:

Sets number of I/O vectors to be read/written in hyperslab I/O.
Description:

H5Pset_hyper_vector_size sets the number of I/O vectors to be accumulated in memory before
being issued to the lower levels of the HDF5 library for reading or writing the actual data.

The I/O vectors are hyperslab offset and length pairs and are generated during hyperslab I/O.

The number of I/O vectors is passed in vector_size to be set in the dataset transfer property list
dxpl_id. vector_size must be greater than 1 (one).

H5Pset_hyper_vector_size is an I/O optimization function; increasing vector_size should
provide better performance, but the library will use more memory during hyperslab I/O. The default value
of vector_size is 1024.

Parameters:
hid_tdxpl_id IN: Dataset transfer property list identifier.

size_tvector_size IN: Number of I/O vectors to accumulate in memory for I/O operations.
Must be greater than 1 (one). Default value: 1024.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_hyper_vector_size_f
SUBROUTINE h5pset_hyper_vector_size_f(plist_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id ! Dataset transfer property list
 ! identifier
 INTEGER(SIZE_T), INTENT(IN) :: size ! Vector size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_hyper_vector_size_f

History:
Release C

1.6.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_hyper_vector_size

501

Name:H5Pset_istore_k
Signature:

herr_tH5Pset_istore_k(hid_t plist, unsigned ik)
Purpose:

Sets the size of the parameter used to control the B-trees for indexing chunked datasets.
Description:

H5Pset_istore_k sets the size of the parameter used to control the B-trees for indexing chunked
datasets. This function is only valid for file creation property lists.

ik is one half the rank of a tree that stores chunked raw data. On average, such a tree will be 75% full, or
have an average rank of 1.5 times the value of ik.

Parameters:
hid_tplist IN: Identifier of property list to query.

unsignedik IN: 1/2 rank of chunked storage B-tree.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_istore_k_f

SUBROUTINE h5pset_istore_k_f (prp_id, ik, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: ik ! 1/2 rank of chunked storage B-tree
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_istore_k_f

History:
Release C

1.6.4 ik parameter type changed to unsigned.

H5Pset_istore_k HDF5 Reference Manual

502

Name:H5Pset_layout
Signature:

herr_tH5Pset_layout(hid_t plist, H5D_layout_t layout)
Purpose:

Sets the type of storage used to store the raw data for a dataset.
Description:

H5Pset_layout sets the type of storage used to store the raw data for a dataset. This function is only
valid for dataset creation property lists.

Valid values for layout are:

H5D_COMPACT
Store raw data in the dataset object header in file. This should only be used for datasets
with small amounts of raw data. The raw data size limit is 64K - 16 bytes (65520 bytes).
Attempting to create a dataset which has raw data that is larger than this threshold will
cause the H5Dcreate call to fail.

H5D_CONTIGUOUS
Store raw data separately from the object header in one large chunk in the file.

H5D_CHUNKED
Store raw data separately from the object header as chunks of data in separate locations in
the file.

Note that a compact storage layout may affect writing data to the dataset with parallel applications. See
note in H5Dwrite documentation for details.

Parameters:
hid_tplist IN: Identifier of property list to query.

H5D_layout_tlayout IN: Type of storage layout for raw data.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_layout_f

SUBROUTINE h5pset_layout_f (prp_id, layout, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: layout ! Type of storage layout for raw data
 ! Possible values are:
 ! H5D_COMPACT_F
 ! H5D_CONTIGUOUS_F
 ! H5D_CHUNKED_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_layout_f

HDF5 Reference Manual H5Pset_layout

503

Last modified: 7 January 2011

Name:H5Pset_libver_bounds
Signature:

herr_tH5Pset_libver_bounds(hid_t fapl_id, H5F_libver_t libver_low, H5F_libver_t
libver_high)

Purpose:
Sets bounds on library versions, and indirectly format versions, to be used when creating objects.

Description:
H5Pset_libver_bounds controls the versions of the object formats that will be used when creating
objects in a file. The object format versions are determined indirectly from the HDF5 Library versions
specified in the call.

This property is set in the file access property list specified by fapl_id.

When bounds have been set through an H5Pset_libver_bounds call, a function that creates an
object will fail if the object cannot be created within the boundaries set in libver_low and
libver_high.

Parameters:
hid_t fapl_id IN: File access property list identifier

H5F_libver_tlibver_low IN: The earliest version of the library that will be used for writing
objects, indirectly specifying the earliest object format version that
can be used when creating objects in the file.

Valid values of libver_low are as follows:

H5F_LIBVER_EARLIEST (Default)

H5F_LIBVER_18

H5F_LIBVER_LATEST

Setting libver_low to H5F_LIBVER_EARLIEST will result in
objects being created using the earliest possible format for each
object. Note that earliest possible is different from earliest, as some
features introduced in library versions later than 1.0.0 resulted in
updates to object formats. With
libver_low=H5F_LIBVER_EARLIEST, if the application creates
an object that requires a feature introduced in library versions later
than 1.0.0, the earliest possible version that supports the requested
feature will be used.

Setting libver_low to H5F_LIBVER_LATEST will result in
objects being created using the latest available format for each object.
This setting means that objects will be created with the latest format
versions available (within the range of library versions specified in the
call), and can take advantage of the latest features and performance
enhancements. Objects written with the H5F_LIBVER_LATEST
setting for libver_low may be accessible to a smaller range of
library versions than would be the case if the
H5F_LIBVER_EARLIEST value had been used.

H5Pset_libver_bounds HDF5 Reference Manual

504

Setting libver_low to the intermediate value H5F_LIBVER_18
specifies that created or modifed objects must be readable by the
HDF5 Release 1.8 series but do not need to be readable by earlier
versions.

H5F_libver_tlibver_high IN: The latest version of the library that will be used for writing
objects, indirectly specifying the latest object format version that can
be used when creating objects in the file.

Valid values of libver_high are as follows:

H5F_LIBVER_18

H5F_LIBVER_LATEST (Default)
H5F_LIBVER_18 specifies that objects may be created in a format
used by releases up to and including the HDF5 Release 1.8 series.
Object formats introduced in later releases may not be used.

H5F_LIBVER_LATEST specifies that objects may be created in the
latest format available; there is no requirement that earlier versions of
the HDF5 library be able to read all objects in the file.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_libver_bounds_f
SUBROUTINE h5pset_libver_bounds_f(fapl_id, low, high, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: fapl_id ! File access property list identifier
 INTEGER, INTENT(IN) :: low ! The earliest version of the library that
 ! will be used for writing objects.
 ! Currently, low must be either:
 ! H5F_LIBVER_EARLIEST_F
 ! H5F_LIBVER_LATEST_F
 INTEGER, INTENT(IN) :: high
 ! The latest version of the library that will be
 ! used for writing objects.
 ! Currently, high must set to:
 ! H5F_LIBVER_LATEST_F
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_libver_bounds_f

History:
Release C

1.8.0 Function introduced in this release.

1.8.6 H5F_LIBVER_18 version boundary setting added in this release.

HDF5 Reference Manual H5Pset_libver_bounds

505

Name:H5Pset_link_creation_order
Signature:

herr_tH5Pset_link_creation_order(hid_t gcpl_id, unsigned crt_order_flags)
Purpose:

Sets creation order tracking and indexing for links in a group.
Description:

H5Pset_link_creation_order sets flags in a group creation property list, gcpl_id, for tracking
and/or indexing links on creation order.

The following flags are passed in crt_order_flags:

H5P_CRT_ORDER_TRACKED Specifies to track creation order.

H5P_CRT_ORDER_INDEXED Specifies to index links in the group on creation order.
If only H5P_CRT_ORDER_TRACKED is set, HDF5 will track link creation order in any group created
with the group creation property list gcpl_id. If both H5P_CRT_ORDER_TRACKED and
H5P_CRT_ORDER_INDEXED are set, HDF5 will track link creation order in the group and index links
on that property.

Parameters:
hid_tgcpl_id IN: Group creation property list identifier

unsignedcrt_order_flags IN: Creation order flag(s)
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_link_creation_order_f

SUBROUTINE h5pset_link_creation_order_f(gcpl_id, crt_order_flags, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: gcpl_id ! File access property list identifier
 INTEGER, INTENT(IN) :: crt_order_flags ! Creation order flag(s)
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_link_creation_order_f

History:
Release C

1.8.0 Function introduced in this release.

H5Pset_link_creation_order HDF5 Reference Manual

506

Name:H5Pset_link_phase_change
Signature:

herr_tH5Pset_link_phase_change(hid_t gcpl_id, unsigned max_compact, unsigned
min_dense)

Purpose:
Sets the parameters for conversion between compact and dense groups.

Description:
H5Pset_link_phase_change sets the maximum number of entries for a compact group and the
minimum number of links to allow before converting a dense group to back to the compact format.

max_compact is the maximum number of links to store as header messages in the group header as
before converting the group to the dense format. Groups that are in compact format and in which the
exceed this number of links rises above this threshold are automatically converted to dense format.

min_dense is the minimum number of links to store in the dense format. Groups which are in dense
format and in which the number of links falls below this theshold are automatically converted to compact
format.

See “Group implementations in HDF5” in the H5G API introduction for a discussion of the available
types of HDF5 group structures.

Parameters:
hid_tgcpl_id IN: Group creation property list identifier

unsignedmax_compact IN: Maximum number of links for compact storage
(Default: 8)

unsignedmin_dense IN: Minimum number of links for dense storage
(Default: 6)

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_link_phase_change_f
SUBROUTINE h5pset_link_phase_change_f(gcpl_id, max_compact, min_dense, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: gcpl_id ! Group creation property list id
 INTEGER, INTENT(IN) :: max_compact ! Maximum number of attributes to be
 ! stored in compact storage
 INTEGER, INTENT(IN) :: min_dense ! Minimum number of attributes to be
 ! stored in dense storage
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_link_phase_change_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_link_phase_change

507

Name:H5Pset_local_heap_size_hint
Signature:

herr_tH5Pset_local_heap_size_hint(hid_t gcpl_id, size_t size_hint)
Purpose:

Specifies the anticipated maximum size of a local heap.
Description:

H5Pset_local_heap_size_hint is used with original-style HDF5 groups (see “Motivation”
below) to specify the anticipated maximum local heap size, size_hint, for groups created with the
group creation property list gcpl_id. The HDF5 Library then uses size_hint to allocate contiguous
local heap space in the file for each group created with gcpl_id.

For groups with many members or very few members, an appropriate initial value of size_hint would
be the anticipated number of group members times the average length of group member names, plus a
small margin:

 size_hint = max_number_of_group_members *
 (average_length_of_group_member_link_names + 2)

If it is known that there will be groups with zero members, the use of a group creation property list with
size_hint set to to 1 (one) will guarantee the smallest possible local heap for each of those groups.

Setting size_hint to zero (0) causes the library to make a reasonable estimate for the default local
heap size.

Motivation:
In situations where backward-compatibility is required, specifically, when libraries prior to HDF5
Release 1.8.0 may be used to read the file, groups must be created and maintained in the original style.
This is HDF5’s default behavior. If backward compatibility with pre-1.8.0 libraries is not a concern,
greater efficiencies can be obtained with the new-format compact and indexed groups. See “Group
implementations in HDF5” in the H5G API introduction.

H5Pset_local_heap_size_hint is useful for tuning file size when files contain original-style
groups with either zero members or very large numbers of members.

The original style of HDF5 groups, the only style available prior to HDF5 Release 1.8.0, was well-suited
for moderate-sized groups but was not optimized for either very small or very large groups. This original
style remains the default, but two new group implementations were introduced in HDF5 Release 1.8.0:
compact groups to accomodate zero to small numbers of members and indexed groups for thousands or
tens of thousands of members ... or millions, if that's what your application requires.

The local heap size hint, size_hint, is a performance tuning parameter for original-style groups. As
indicated above, an HDF5 group may have zero, a handful, or tens of thousands of members. Since the
original style of HDF5 groups stores the metadata for all of these group members in a uniform format in a
local heap, the size of that metadata (and hence, the size of the local heap) can vary wildly from group to
group. To intelligently allocate space and to avoid unnecessary fragmentation of the local heap, it can be
valuable to provide the library with a hint as to the local heap’s likely eventual size. This can be
particularly valuable when it is known that a group will eventually have a great many members. It can
also be useful in conserving space in a file when it is known that certain groups will never have any
members.

H5Pset_local_heap_size_hint HDF5 Reference Manual

508

Parameters:
hid_tgcpl_id IN: Group creation property list identifier

size_tsize_hint IN: Anticipated maximum size in bytes of local heap
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_local_heap_size_hint_f

SUBROUTINE h5pset_local_heap_size_hint_f(gcpl_id, size_hint, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: gcpl_id ! Group creation property list id
 INTEGER(SIZE_T), INTENT(IN) :: size_hint ! Hint for size of local heap
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_local_heap_size_hint_f

History:
Release Change

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_local_heap_size_hint

509

Last modified: 18 May 2009

Name:H5Pset_mdc_config
Signature:

herr_tH5Pset_mdc_config(hid_t plist_id, H5AC_cache_config_t *config_ptr)
Purpose:

Set the initial metadata cache configuration in the indicated File Access Property List to the supplied
value.

Description:
H5Pset_mdc_config attempts to set the initial metadata cache configuration to the supplied value. It will
fail if an invalid configuration is detected. This configuration is used when the file is opened.

See the overview of the metadata cache in the special topics section of the user manual for details on what
is being configured. If you haven't read and understood that documentation, you really shouldn't be using
this API call.

Parameters:
hid_tplist_id IN: Identifier of the file access property list.

H5AC_cache_config_t *config_ptr IN: Pointer to the instance of
H5AC_cache_config_t containing the desired
configuration. The fields of this structure are
discussed below:

General configuration section:

int version IN: Integer field indicating the the version of the
H5AC_cache_config_t in use. This field should
be set to
H5AC__CURR_CACHE_CONFIG_VERSION
(defined in H5ACpublic.h).

hbool_trpt_fcn_enabled IN: Boolean flag indicating whether the adaptive
cache resize report function is enabled. This
field should almost always be set to FALSE.
Since resize algorithm activity is reported via
stdout, it MUST be set to FALSE on Windows
machines.

The report function is not supported code, and
can be expected to change between versions of
the library. Use it at your own risk.

hbool_topen_trace_file IN: Boolean field indicating whether the
trace_file_name field should be used to
open a trace file for the cache.

The trace file is a debuging feature that allows
the capture of top level metadata cache requests
for purposes of debugging and/or optimization.
This field should normally be set to FALSE, as
trace file collection imposes considerable
overhead.

H5Pset_mdc_config HDF5 Reference Manual

510

This field should only be set to TRUE when the
trace_file_name contains the full path of
the desired trace file, and either there is no open
trace file on the cache, or the
close_trace_file field is also TRUE.

The trace file feature is unsupported unless used
at the direction of THG. It is intended to allow
THG to collect a trace of cache activity in cases
of occult failures and/or poor performance seen
in the field, so as to aid in reproduction in the
lab. If you use it absent the direction of THG,
you are on your own.

hbool_tclose_trace_file IN: Boolean field indicating whether the current
trace file (if any) should be closed.

See the above comments on the
open_trace_file field. This field should be
set to FALSE unless there is an open trace file
on the cache that you wish to close.

The trace file feature is unsupported unless used
at the direction of THG. It is intended to allow
THG to collect a trace of cache activity in cases
of occult failures and/or poor performance seen
in the field, so as to aid in reproduction in the
lab. If you use it absent the direction of THG,
you are on your own.

char trace_file_name[] IN: Full path of the trace file to be opened if the
open_trace_file field is TRUE.

In the parallel case, an ascii representation of the
MPI rank of the process will be appended to the
file name to yield a unique trace file name for
each process.

The length of the path must not exceed
H5AC__MAX_TRACE_FILE_NAME_LEN
characters.

The trace file feature is unsupported unless used
at the direction of THG. It is intended to allow
THG to collect a trace of cache activity in cases
of occult failures and/or poor performance seen
in the field, so as to aid in reproduction in the
lab. If you use it absent the direction of THG,
you are on your own.

hbool_tevictions_enabled IN: A boolean flag indicating whether evictions
from the metadata cache are enabled. This flag
is initially set to TRUE.

HDF5 Reference Manual H5Pset_mdc_config

511

In rare circumstances, the raw data throughput
requirements may be so high that the user
wishes to postpone metadata writes so as to
reserve I/O throughput for raw data. The
evictions_enabled field exists to allow
this. However, this is an extreme step, and you
have no business doing it unless you have read
the User Guide section on metadata caching, and
have considered all other options carefully.

The evictions_enabled field may not be
set to FALSE unless all adaptive cache resizing
code is disabled via the incr_mode,
flash_incr_mode, and decr_mode fields.

When this flag is set to FALSE, the metadata
cache will not attempt to evict entries to make
space for new entries, and thus will grow
without bound.

Evictions will be re-enabled when this field is
set back to TRUE. This should be done as soon
as possible.

hbool_tset_initial_size IN: Boolean flag indicating whether the cache
should be created with a user specified initial
size.

size_tinitial_size IN: If set_initial_size is TRUE, initial_size must
contains the desired initial size in bytes. This
value must lie in the closed interval [min_size,
max_size]. (see below)

doublemin_clean_fraction IN: This field specifies the minimum fraction of
the cache that must be kept either clean or
empty.

The value must lie in the interval [0.0, 1.0]. 0.01
is a good place to start in the serial case. In the
parallel case, a larger value is needed -- see the
overview of the metadata cache in the “HDF5
Special Topics” section of the HDF5 User’s
Guide for details.

size_tmax_size IN: Upper bound (in bytes) on the range of
values that the adaptive cache resize code can
select as the maximum cache size.

size_tmin_size IN: Lower bound (in bytes) on the range of
values that the adaptive cache resize code can
select as the maximum cache size.

long intepoch_length IN: Number of cache accesses between runs of
the adaptive cache resize code. 50,000 is a good
starting number.

H5Pset_mdc_config HDF5 Reference Manual

512

Increment configuration section:

enum H5C_cache_incr_modeincr_mode
IN: Enumerated value indicating the operational
mode of the automatic cache size increase code.
At present, only two values are legal:

H5C_incr__off: Automatic cache size increase
is disabled, and the remaining increment fields
are ignored.

H5C_incr__threshold: Automatic cache size
increase is enabled using the hit rate threshold
algorithm.

doublelower_hr_threshold IN: Hit rate threshold used by the hit rate
threshold cache size increment algorithm.

When the hit rate over an epoch is below this
threshold and the cache is full, the maximum
size of the cache is multiplied by increment
(below), and then clipped as necessary to stay
within max_size, and possibly max_increment.

This field must lie in the interval [0.0, 1.0]. 0.8
or 0.9 is a good place to start.

doubleincrement IN: Factor by which the hit rate threshold cache
size increment algorithm multiplies the current
cache max size to obtain a tentative new cache
size.

The actual cache size increase will be clipped to
satisfy the max_size specified in the general
configuration, and possibly max_increment
below.

The parameter must be greater than or equal to
1.0 -- 2.0 is a reasonable value.

If you set it to 1.0, you will effectively disable
cache size increases.

HDF5 Reference Manual H5Pset_mdc_config

513

hbool_tapply_max_increment IN: Boolean flag indicating whether an upper
limit should be applied to the size of cache size
increases.

size_tmax_increment IN: Maximum number of bytes by which cache
size can be increased in a single step -- if
applicable.

enum H5C_cache_flash_incr_modeflash_incr_mode IN: Enumerated value indicating the operational
mode of the flash cache size increase code. At
present, only the following values are legal:

H5C_flash_incr__off: Flash cache size increase
is disabled.

H5C_flash_incr__add_space: Flash cache size
increase is enabled using the add space
algorithm.

doubleflash_threshold IN: The factor by which the current maximum
cache size is multiplied to obtain the minimum
size entry / entry size increase which may trigger
a flash cache size increase.

At present, this value must lie in the range [0.1,
1.0].

doubleflash_multiple IN: The factor by which the size of the
triggering entry / entry size increase is
multiplied to obtain the initial cache size
increment. This increment may be reduced to
reflect existing free space in the cache and the
max_size field above.

At present, this field must lie in the range [0.1,
10.0].

H5Pset_mdc_config HDF5 Reference Manual

514

Decrement configuration section:

enum H5C_cache_decr_modedecr_mode IN: Enumerated value indicating the operational
mode of the automatic cache size decrease code.
At present, the following values are legal:

H5C_decr__off: Automatic cache size decrease
is disabled.

H5C_decr__threshold: Automatic cache size
decrease is enabled using the hit rate threshold
algorithm.

H5C_decr__age_out: Automatic cache size
decrease is enabled using the ageout algorithm.

H5C_decr__age_out_with_threshold: Automatic
cache size decrease is enabled using the ageout
with hit rate threshold algorithm

doubleupper_hr_threshold IN: Hit rate threshold for the hit rate threshold
and ageout with hit rate threshold cache size
decrement algorithms.

When decr_mode is H5C_decr__threshold, and
the hit rate over a given epoch exceeds the
supplied threshold, the current maximum cache
size is multiplied by decrement to obtain a
tentative new (and smaller) maximum cache
size.

When decr_mode is
H5C_decr__age_out_with_threshold, there is no
attempt to find and evict aged out entries unless
the hit rate in the previous epoch exceeded the
supplied threshold.

This field must lie in the interval [0.0, 1.0].

For H5C_incr__threshold, .9995 or .99995 is a
good place to start.

For H5C_decr__age_out_with_threshold, .999
might be more useful.

doubledecrement IN: In the hit rate threshold cache size decrease
algorithm, this parameter contains the factor by
which the current max cache size is multiplied to
produce a tentative new cache size.

The actual cache size decrease will be clipped to
satisfy the min_size specified in the general
configuration, and possibly max_decrement

HDF5 Reference Manual H5Pset_mdc_config

515

below.

The parameter must be be in the interval [0.0,
1.0].

If you set it to 1.0, you will effectively disable
cache size decreases. 0.9 is a reasonable starting
point.

hbool_tapply_max_decrement IN: Boolean flag indicating whether an upper
limit should be applied to the size of cache size
decreases.

size_tmax_decrement IN: Maximum number of bytes by which the
maximum cache size can be decreased in any
single step -- if applicable.

int epochs_before_eviction IN: In the ageout based cache size reduction
algorithms, this field contains the minimum
number of epochs an entry must remain
unaccessed in cache before the cache size
reduction algorithm tries to evict it. 3 is a
reasonable value.

hbool_tapply_empty_reserve IN: Boolean flag indicating whether the ageout
based decrement algorithms will maintain a
empty reserve when decreasing cache size.

doubleempty_reserve IN: Empty reserve as a fraction of maximum
cache size if applicable.

When so directed, the ageout based algorithms
will not decrease the maximum cache size
unless the empty reserve can be met.

The parameter must lie in the interval [0.0, 1.0].
0.1 or 0.05 is a good place to start.

H5Pset_mdc_config HDF5 Reference Manual

516

Parallel configuration section:

int dirty_bytes_threshold IN: Threshold number of bytes of dirty metadata
generation for triggering synchronizations of the
metadata caches serving the target file in the
parallel case.

Synchronization occurs whenever the number of
bytes of dirty metadata created since the last
synchronization exceeds this limit.

This field only applies to the parallel case.
While it is ignored elsewhere, it can still draw a
value out of bounds error.

It must be consistant across all caches on any
given file.

By default, this field is set to 256 KB. It
shouldn't be more than half the current max
cache size times the min clean fraction.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Pset_mdc_config

517

Name:H5Pset_meta_block_size
Signature:

herr_tH5Pset_meta_block_size(hid_t fapl_id, hsize_t size)
Purpose:

Sets the minimum metadata block size.
Description:

H5Pset_meta_block_size sets the minimum size, in bytes, of metadata block allocations when
H5FD_FEAT_AGGREGATE_METADATA is set by a VFL driver.

Each raw metadata block is initially allocated to be of the given size. Specific metadata objects (e.g.,
object headers, local heaps, B-trees) are then sub-allocated from this block.

The default setting is 2048 bytes, meaning that the library will attempt to aggregate metadata in at least
2K blocks in the file. Setting the value to 0 (zero) with this function will turn off metadata aggregation,
even if the VFL driver attempts to use the metadata aggregation strategy.

Metadata aggregation reduces the number of small data objects in the file that would otherwise be
required for metadata. The aggregated block of metadata is usually written in a single write action and
always in a contiguous block, potentially significantly improving library and application performance.

Parameters:
hid_t fapl_id IN: File access property list identifier.

hsize_tsize IN: Minimum size, in bytes, of metadata block allocations.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface: h5pset_meta_block_size_f

SUBROUTINE h5pset_meta_block_size_f(plist_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id ! File access property list
 ! identifier
 INTEGER(HSIZE_T), INTENT(IN) :: size ! Metadata block size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_meta_block_size_f

History:
Release C

1.4.0 Function introduced in this release.

H5Pset_meta_block_size HDF5 Reference Manual

518

Name:H5Pset_multi_type
Signature:

herr_tH5Pset_multi_type (hid_t fapl_id, H5FD_mem_t type)
Purpose:

Specifies type of data to be accessed via the MULTI driver, enabling more direct access.
Description:

H5Pset_multi_type sets the type of data property in the file access property list fapl_id.

This setting enables a user application to specify the type of data the application wishes to access so that
the application can retrieve a file handle for low-level access to the particular member of a set of MULTI
files in which that type of data is stored. The file handle is retrieved with a separate call to
H5Fget_vfd_handle (or, in special circumstances, to H5FDget_vfd_handle; see Virtual File
Layer and List of VFL Functions in HDF5 Technical Notes).

The type of data specified in type may be one of the following:

H5FD_MEM_SUPER Super block data

H5FD_MEM_BTREE B-tree data

H5FD_MEM_DRAW Dataset raw data

H5FD_MEM_GHEAP Global heap data

H5FD_MEM_LHEAP Local Heap data

H5FD_MEM_OHDR Object header data
This function is for use only when accessing an HDF5 file written as a set of files with the MULTI file
driver.

Parameters:
hid_t fapl_id IN: File access property list identifier.

H5FD_mem_ttype IN: Type of data to be accessed.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release Change

1.6.0 C function introduced in this release.

HDF5 Reference Manual H5Pset_multi_type

519

Last modified: 9 November 2010

Name:H5Pset_nbit
Signature:

herr_tH5Pset_nbit(hid_t plist_id)
Purpose:

Sets up the use of the N-Bit filter.
Description:

H5Pset_nbit sets the N-Bit filter, H5Z_FILTER_NBIT, in the dataset creation property list
plist_id.

The HDF5 user can create an N-Bit datatype by writing codes like:

hid_t nbit_datatype = H5Tcopy(H5T_STD_I32LE);
H5Tset_precision(nbit_datatype, 16);
H5Tset_offset(nbit_datatype, 4);

In memory, one value of the N-Bit datatype in the above example will be stored on a little-endian
machine like this:

byte 3 byte 2 byte 1 byte 0

???????? ????SPPP PPPPPPPP PPPP????

Note: S - sign bit, P - significant bit, ? - padding bit; For signed integer, the sign bit is included in the
precision.
When data of the above datatype are stored on disk using N-bit filter, all padding bits are chopped off and
only significant bits are stored. So, the values on disk will be something like:

1st value 2nd value

SPPPPPPPPPPPPPPPSPPPPPPPPPPPPPPP...
The N-Bit filter is used effectively for compressing data of an N-Bit datatype as well as a compound and
an array datatype with N-Bit fields. However, the datatype classes of the N-Bit datatype or the N-Bit field
of the compound datatype or the array datatype are limited to integer or floating-point.

The N-Bit filter supports complex situations where a compound datatype contains member(s) of
compound datatype or an array datatype that has compound datatype as the base type. However, it does
not support the situation where an array datatype has variable-length or variable-length string as its base
datatype. But the filter does support the situation where variable-length or variable-length string is a
member of a compound datatype.

For all other HDF5 datatypes such as time, string, bitfield, opaque, reference, enum, and variable length,
the N-Bit filter allows them to pass through like an no-op.

Like other I/O filters supported by the HDF5 library, application using the N-Bit filter must store data
with chunked storage.

By nature, the N-Bit filter should not be used together with other I/O filters.

H5Pset_nbit HDF5 Reference Manual

520

Parameters:
hid_tplist_id IN: Dataset creation property list identifier.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release Change

1.8.0 C function introduced in this release.

HDF5 Reference Manual H5Pset_nbit

521

Name:H5Pset_nlinks
Signature:

herr_tH5Pset_nlinks(hid_t lapl_id, size_t nlinks)
Purpose:

Sets maximum number of soft or user-defined link traversals.
Description:

H5Pset_nlinks sets the maximum number of soft or user-defined link traversals allowed, nlinks,
before the library assumes it has found a cycle and aborts the traversal. This value is set in the link access
property list lapl_id.

The limit on the number soft or user-defined link traversals is designed to terminate link traversal if one
or more links form a cycle. User control is provided because some files may have legitimate paths formed
of large numbers of soft or user-defined links. This property can be used to allow traversal of as many
links as desired.

Parameters:
hid_t lapl_id IN: File access property list identifier

size_tnlinks IN: Maximum number of links to traverse
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_nlinks_f

SUBROUTINE h5pset_nlinks_f(lapl_id, nlinks, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: lapl_id ! File access property list identifier
 INTEGER(SIZE_T), INTENT(IN) :: nlinks ! Maximum number of links to traverse
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_nlinks_f

History:
Release C

1.8.0 Function introduced in this release.

H5Pset_nlinks HDF5 Reference Manual

522

Name:H5Pset_obj_track_times
Signature:

herr_tH5Pset_obj_track_times(hid_t ocpl_id, hbool_t track_times)
Purpose:

Sets the recording of times associated with an object.
Description:

H5Pset_obj_track_times sets a property in the object creation property list, ocpl_id, that
governs the recording of times associated with an object.

If track_times is TRUE, the following times will be recorded:

Birth time The time the object was created

Access time The last time that metadata or raw data was read from the
object

Modification time The last time data for this object was changed
(by writing raw data to a dataset or inserting, modifying, or
deleting a link in a group)

Change time The last time metadata for this object was written
(by adding, modifying, or deleting an attribute on an object;
extending the size of a dataset; et cetera)

If track_times is FALSE, time data will not be recorded.

Time data can be retrieved with H5Oget_info, which will return it in the H5O_info_t struct.

If times are not tracked, they will be reported as follows when queried:
 12:00 AM UDT, Jan. 1, 1970
That date and time are commonly used to represent the beginning of the UNIX epoch.

Parameters:
hid_tocpl_id IN: Object creation property list identifier

hbool_ttrack_times IN: Boolean value, TRUE or FALSE, specifying whether object times are
to be tracked

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_obj_track_times_f
SUBROUTINE h5pset_obj_track_times_f(plist_id, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id
 ! Dataset creation property
 ! list identifier
 LOGICAL, INTENT(IN) :: flag ! Object timestamp setting
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_obj_track_times_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_obj_track_time

523

Name:H5Pset_preserve
Signature:

herr_tH5Pset_preserve(hid_t plist, hbool_t status)
Purpose:

Sets the dataset transfer property list status to 1 (TRUE) or 0 (FALSE).
Notice:

This function is deprecated as it no longer has any effect; compound datatype field preservation is now
core functionality in the HDF5 Library.

Description:
H5Pset_preserve sets the dataset transfer property list status to 1 (TRUE) or 0 (FALSE).

When reading or writing compound datatypes and the destination is partially initialized and the read/write
is intended to initialize the other members, one must set this property to TRUE. Otherwise the I/O
pipeline treats the destination datapoints as completely uninitialized.

Parameters:
hid_tplist IN: Identifier for the dataset transfer property list.

hbool_tstatus IN: Status of for the dataset transfer property list (TRUE/FALSE).
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_preserve_f

SUBROUTINE h5pset_preserve_f(prp_id, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Dataset transfer property
 ! list identifier
 LOGICAL, INTENT(IN) :: flag ! Status for the dataset
 ! transfer property list
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_preserve_f

History:
Release Fortran90

1.6.0 The flag parameter has changed from INTEGER to LOGICAL to better match
the C API.

H5Pset_preserve HDF5 Reference Manual

524

Last modified: 9 November 2010

Name:H5Pset_scaleoffset
Signature:

herr_tH5Pset_scaleoffset(hid_t plist_id, H5Z_SO_scale_type_t scale_type, int
scale_factor)

Purpose:
Sets up the use of the scale-offset filter.

Description:
H5Pset_scaleoffset sets the scale-offset filter, H5Z_FILTER_SCALEOFFSET, for a dataset.

Generally speaking, scale-offset compression performs a scale and/or offset operation on each data value
and truncates the resulting value to a minimum number of bits (MinBits) before storing it. The current
scale-offset filter supports integer and floating-point datatypes.

For an integer datatype, the parameter scale_type should be set to H5Z_SO_INT (2). The
parameter scale_factor denotes MinBits. If the user sets it to H5Z_SO_INT_MINBITS_DEFAULT
(0), the filter will calculate MinBits. If scale_factor is set to a positive integer, the filter does not
do any calculation and just uses the number as MinBits. However, if the user gives a MinBits that is less
than what would be generated by the filter, the compression will be lossy. Also, the MinBits supplied by
the user cannot exceed the number of bits to store one value of the dataset datatype.

For a floating-point datatype, the filter adopts the GRiB data packing mechanism, which offers two
alternate methods: E-scaling and D-scaling. Both methods are lossy compression. If the parameter
scale_type is set to H5Z_SO_FLOAT_DSCALE (0), the filter will use the D-scaling method; if it is
set to H5Z_SO_FLOAT_ESCALE (1), the filter will use the E-scaling method. Since only the
D-scaling method is implemented, scale_type should be set to H5Z_SO_FLOAT_DSCALE or 0.

When the D-scaling method is used, the original data is "D" scaled — multiplied by 10 to the power of
scale_factor, and the "significant" part of the value is moved to the left of the decimal point. Care
should be taken in setting the decimal scale_factor so that the integer part will have enough
precision to contain the appropriate informationof the data value. For example, if scale_factor is set
to 2, the number 104.561 will be 10456.1 after "D" scaling. The last digit 1 is not "significant" and is
thrown off in the process of rounding. The user should make sure that after "D" scaling and rounding, the
data values are within the range that can be represented by the integer (same size as the floating-point
type).

Valid values for scale_type are as follows:

H5Z_SO_FLOAT_DSCALE (0) Floating-point type, using variable MinBits
method

H5Z_SO_FLOAT_ESCALE (1) Floating-point type, using fixed MinBits
method

H5Z_SO_INT (2) Integer type

HDF5 Reference Manual H5Pset_scaleoffset

525

The meaning of scale_factor varies according to the value assigned to scale_type:

scale_type value scale_factor description

H5Z_SO_FLOAT_DSCALE Denotes the decimal scale factor for D-scaling and
can be positive, negative or zero. This is the current
implementation of the library.

H5Z_SO_FLOAT_ESCALE Denotes MinBits for E-scaling and must be a
positive integer. This is not currently implemented
by the library.

H5Z_SO_INT Denotes MinBits and it should be a positive integer
or H5Z_SO_INT_MINBITS_DEFAULT (0). If
it is less than 0, the library will reset it to 0 since it
is not implemented.

Like other I/O filters supported by the HDF5 library, an application using the scale-offset filter must store
data with chunked storage.

Parameters:
hid_tplist_id IN: Dataset creation property list identifier.

H5Z_SO_scale_type_tscale_type IN: Flag indicating compression method.

int scale_factor IN: Parameter related to scale. Must be non-negative.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release Change

1.8.0 C function introduced in this release.

H5Pset_scaleoffset HDF5 Reference Manual

526

Name:H5Pset_shared_mesg_index
Signature:

herr_tH5Pset_shared_mesg_index(hid_t fcpl_id, unsigned index_num, unsigned
mesg_type_flags, unsigned min_mesg_size)

Purpose:
Configures the specified shared object header message index.

Description:
H5Pset_shared_mesg_index is used to configure the specified shared object header message
index, setting the types of messages that may be stored in the index and the minimum size of each
message.

fcpl_id specifies the file creation property list.

index_num specifies the index to be configured. index_num is zero-indexed, so in a file with three
indexes, they will be numbered 0, 1, and 2.

mesg_type_flags and min_mesg_size specify, respectively, the types and minimum size of
messages that can be stored in this index.

Valid message types are as follows:

H5O_SHMESG_NONE_FLAG No shared messages

H5O_SHMESG_SDSPACE_FLAG Simple dataspace message

H5O_SHMESG_DTYPE_FLAG Datatype message

H5O_SHMESG_FILL_FLAG Fill value message

H5O_SHMESG_PLINE_FLAG Filter pipeline message

H5O_SHMESG_ATTR_FLAG Attribute message

H5O_SHMESG_ALL_FLAG All message types; i.e., equivalent to the following:
(H5O_SHMESG_SDSPACE_FLAG |
H5O_SHMESG_DTYPE_FLAG |
H5O_SHMESG_FILL_FLAG |
H5O_SHMESG_PLINE_FLAG |
H5O_SHMESG_ATTR_FLAG)

Parameters:
hid_t fcpl_id IN: File creation property list identifier.

unsignedindex_num IN: Index being configured.

unsignedmesg_type_flags IN: Types of messages that should be stored in this index.

unsignedmin_mesg_size IN: Minimum message size.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

HDF5 Reference Manual H5Pset_shared_mesg_index

527

Fortran90 Interface: h5pset_shared_mesg_index_f
SUBROUTINE h5pset_shared_mesg_index_f(fcpl_id, index_num, mesg_type_flags, &
 min_mesg_size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: fcpl_id ! File creation property list
 INTEGER, INTENT(IN) :: index_num ! Index being configured.
 INTEGER, INTENT(IN) :: mesg_type_flags ! Types of messages that should be
 ! stored in this index.
 INTEGER, INTENT(IN) :: min_mesg_size ! Minimum message size.
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_shared_mesg_index_f

History:
Release C

1.8.0 Function introduced in this release.

H5Pset_shared_mesg_index HDF5 Reference Manual

528

Name:H5Pset_shared_mesg_nindexes
Signature:

herr_tH5Pset_shared_mesg_nindexes(hid_t plist_id, unsigned nindexes)
Purpose:

Sets number of shared object header message indexes.
Description:

H5Pset_shared_mesg_nindexes sets the number of shared object header message indexes in the
specified file creation property list.

This setting determines the number of shared object header message indexes that will be available in files
created with this property list. These indexes can then be configured with
H5Pset_shared_mesg_index.

If nindexes is set to 0 (zero), shared object header messages are disabled in files created with this
property list.

Parameters:
hid_tplist_id IN: File creation property list

unsignednindexes IN: Number of shared object header message indexes to be available in files
created with this property list

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_shared_mesg_nindexes_f
SUBROUTINE h5pset_shared_mesg_nindexes_f(plist_id, nindexes, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id ! File creation property list
 INTEGER, INTENT(IN) :: nindexes ! Number of shared object header message
 ! indexes available in files created
 ! WITH this property list
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_shared_mesg_nindexes_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_shared_mesg_nindexes

529

Name:H5Pset_shared_mesg_phase_change
Signature:

herr_tH5Pset_shared_mesg_phase_change(hid_t fcpl_id, unsigned max_list, unsigned
min_btree)

Purpose:
Sets shared object header message storage phase change thresholds.

Description:
H5Pset_shared_mesg_phase_change sets threshold values for storage of shared object header
message indexes in a file. These phase change thresholds determine the point at which the index storage
mechanism changes from a more compact list format to a more performance-oriented B-tree format, and
vice-versa.

By default, a shared object header message index is initially stored as a compact list. When the number of
messages in an index exceeds the threshold value of max_list, storage switches to a B-tree for
impoved performance. If the number of messages subsequently falls below the min_btree threshold,
the index will revert to the list format.

If max_compact is set to 0 (zero), shared object header message indexes in the file will be created as
B-trees and will never revert to lists.

fcpl_id specifies the file creation property list.
Parameters:

hid_t fcpl_id IN: File creation property list identifier

unsignedmax_list IN: Threshold above which storage of a shared object header message index
shifts from list to B-tree

unsignedmin_btree IN: Threshold below which storage of a shared object header message index
reverts to list format

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

H5Pset_shared_mesg_phase_change HDF5 Reference Manual

530

Name:H5Pset_shuffle
Signature:

herr_tH5Pset_shuffle(hid_t plist_id)
Purpose:

Sets up use of the shuffle filter.
Description:

H5Pset_shuffle sets the shuffle filter, H5Z_FILTER_SHUFFLE, in the dataset creation property list
plist_id. Â

The shuffle filter de-interlaces a block of data by reordering the bytes. All the bytes from one consistent
byte position of each data element are placed together in one block; all bytes from a second consistent
byte position of each data element are placed together a second block; etc. For example, given three data
elements of a 4-byte datatype stored as 012301230123, shuffling will re-order data as
000111222333. This can be a valuable step in an effective compression algorithm because the bytes in
each byte position are often closely related to each other and putting them together can increase the
compression ratio.

As implied above, the primary value of the shuffle filter lies in its coordinated use with a compression
filter; it does not provide data compression when used alone. When the shuffle filter is applied to a dataset
immediately prior to the use of a compression filter, the compression ratio achieved is often superior to
that achieved by the use of a compression filter without the shuffle filter.

Parameters:
hid_tplist_id IN: Dataset creation property list identifier.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5pset_shuffle_f
SUBROUTINE h5pset_shuffle_f(prp_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_shuffle_f

History:
Release C

1.6.0 Function introduced in this release.

HDF5 Reference Manual H5Pset_shuffle

531

Last modified: 14 April 2010

Name:H5Pset_sieve_buf_size
Signature:

herr_tH5Pset_sieve_buf_size(hid_t fapl_id, size_t size)
Purpose:

Sets the maximum size of the data sieve buffer.
Description:

H5Pset_sieve_buf_size sets size, the maximum size in bytes of the data sieve buffer, which is
used by file drivers that are capable of using data sieving.

The data sieve buffer is used when performing I/O on datasets in the file. Using a buffer which is large
enough to hold several pieces of the dataset being read in for hyperslab selections boosts performance by
quite a bit.

The default value is set to 64KB, indicating that file I/O for raw data reads and writes will occur in at
least 64KB blocks. Setting the value to 0 with this API function will turn off the data sieving, even if the
VFL driver attempts to use that strategy.

Parameters:
hid_t fapl_id IN: File access property list identifier.

size_tsize IN: Maximum size, in bytes, of data sieve buffer.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.
Fortran90 Interface: h5pset_sieve_buf_size_f

SUBROUTINE h5pset_sieve_buf_size_f(plist_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id ! File access property list
 ! identifier
 INTEGER(SIZE_T), INTENT(IN) :: size ! Sieve buffer size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_sieve_buf_size_f

History:
Release C

1.6.0 The size parameter has changed from type hsize_t to size_t.

1.4.0 Function introduced in this release.

H5Pset_sieve_buf_size HDF5 Reference Manual

532

Name:H5Pset_sizes
Signature:

herr_tH5Pset_sizes(hid_t plist, size_t sizeof_addr, size_t sizeof_size)
Purpose:

Sets the byte size of the offsets and lengths used to address objects in an HDF5 file.
Description:

H5Pset_sizes sets the byte size of the offsets and lengths used to address objects in an HDF5 file.
This function is only valid for file creation property lists. Passing in a value of 0 for one of the
sizeof_... parameters retains the current value. The default value for both values is the same as
sizeof(hsize_t) in the library (normally 8 bytes). Valid values currently are 2, 4, 8 and 16.

Parameters:
hid_tplist IN: Identifier of property list to modify.

size_tsizeof_addr IN: Size of an object offset in bytes.

size_tsizeof_size IN: Size of an object length in bytes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_sizes_f

SUBROUTINE h5pset_sizes_f (prp_id, sizeof_addr, sizeof_size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(SIZE_T), INTENT(IN) :: sizeof_addr ! Size of an object offset
 ! in bytes
 INTEGER(SIZE_T), INTENT(IN) :: sizeof_size ! Size of an object length
 ! in bytes
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_sizes_f

HDF5 Reference Manual H5Pset_sizes

533

Name:H5Pset_small_data_block_size
Signature:

herr_tH5Pset_small_data_block_size(hid_t fapl_id, hsize_t size)
Purpose:

Sets the size of a contiguous block reserved for small data.
Description:

H5Pset_small_data_block_size reserves blocks of size bytes for the contiguous storage of the
raw data portion of small datasets. The HDF5 library then writes the raw data from small datasets to this
reserved space, thus reducing unnecessary discontinuities within blocks of meta data and improving I/O
performance.

A small data block is actually allocated the first time a qualifying small dataset is written to the file.
Space for the raw data portion of this small dataset is suballocated within the small data block. The raw
data from each subsequent small dataset is also written to the small data block until it is filled; additional
small data blocks are allocated as required.

The HDF5 library employs an algorithm that determines whether I/O performance is likely to benefit
from the use of this mechanism with each dataset as storage space is allocated in the file. A larger size
will result in this mechanism being employed with larger datasets.

The small data block size is set as an allocation property in the file access property list identified by
fapl_id.

Setting size to zero (0) disables the small data block mechanism.
Parameters:

hid_t fapl_id IN: File access property list identifier.

hsize_tsize IN: Maximum size, in bytes, of the small data block.
The default size is 2048.

Returns:
Returns a non-negative value if successful; otherwise a negative value.

Fortran90 Interface: h5pset_small_data_block_size_f
SUBROUTINE h5pset_small_data_block_size_f(plist_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: plist_id ! File access
 ! property list identifier
 INTEGER(HSIZE_T), INTENT(IN) :: size ! Small raw data block size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_small_data_block_size_f

History:
Release C

1.4.4 Function introduced in this release.

H5Pset_small_data_block_size HDF5 Reference Manual

534

Name:H5Pset_sym_k
Signature:

herr_tH5Pset_sym_k(hid_t plist, unsigned ik, unsigned lk)
Purpose:

Sets the size of parameters used to control the symbol table nodes.
Description:

H5Pset_sym_k sets the size of parameters used to control the symbol table nodes. This function is only
valid for file creation property lists. Passing in a value of 0 for one of the parameters retains the current
value.

ik is one half the rank of a tree that stores a symbol table for a group. Internal nodes of the symbol table
are on average 75% full. That is, the average rank of the tree is 1.5 times the value of ik.

lk is one half of the number of symbols that can be stored in a symbol table node. A symbol table node is
the leaf of a symbol table tree which is used to store a group. When symbols are inserted randomly into a
group, the group's symbol table nodes are 75% full on average. That is, they contain 1.5 times the number
of symbols specified by lk.

Parameters:
hid_tplist IN: File creation property list identifier.

unsignedik IN: Symbol table tree rank.

unsignedlk IN: Symbol table node size.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_sym_k_f

SUBROUTINE h5pset_sym_k_f (prp_id, ik, lk, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER, INTENT(IN) :: ik ! Symbol table tree rank
 INTEGER, INTENT(IN) :: lk ! Symbol table node size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_sym_k_f

History:
Release C

1.6.4 ik parameter type changed to unsigned.

1.6.0 The ik parameter has changed from type int to unsigned.

HDF5 Reference Manual H5Pset_sym_k

535

Name:H5Pset_szip
Signature:

herr_tH5Pset_szip(hid_t plist, unsigned int options_mask, unsigned int
pixels_per_block)

Purpose:
Sets up use of the SZIP compression filter.

Description:
H5Pset_szip sets an SZIP compression filter, H5Z_FILTER_SZIP, for a dataset. SZIP is a
compression method designed for use with scientific data.

Before proceeding, be aware that there are factors that affect your rights and ability to use SZIP
compression. See the documents at SZIP Compression in HDF5 for important information regarding
terms of use and the SZIP copyright notice, for further discussion of SZIP compression in HDF5, and for
a list of SZIP-related references.

In the text below, the term pixel refers to an HDF5 data element. This terminology derives from SZIP
compression's use with image data, where pixel referred to an image pixel.

The SZIP bits_per_pixel value (see Notes, below) is automatically set, based on the HDF5
datatype. SZIP can be used with atomic datatypes that may have size of 8, 16, 32, or 64 bits. Specifically,
a dataset with a datatype that is 8-, 16-, 32-, or 64-bit signed or unsigned integer; char; or 32- or 64-bit
float can be compressed with SZIP. See Notes, below, for further discussion of the the SZIP
bits_per_pixel setting.

SZIP compression cannot be applied to compound datatypes, array datatypes, variable-length datatypes,
enumerations, or any other user-defined datatypes. If an SZIP filter is set in a dataset creation property list
used to create a dataset containing a non-allowed datatype, the call to H5Dcreate will fail; the conflict
can be detected only when the property list is used.

SZIP options are passed in an options mask, options_mask, as follows.

Option Description
(Mutually exclusive; select one.)

H5_SZIP_EC_OPTION_MASK Selects entropy coding method.

H5_SZIP_NN_OPTION_MASK Selects nearest neighbor coding method.

The following guidelines can be used in determining which option to select:

The entropy coding method, the EC option specified by H5_SZIP_EC_OPTION_MASK, is best
suited for data that has been processed. The EC method works best for small numbers.

◊

The nearest neighbor coding method, the NN option specified by
H5_SZIP_NN_OPTION_MASK, preprocesses the data then the applies EC method as above.

◊

Other factors may affect results, but the above criteria provides a good starting point for optimizing data
compression.

H5Pset_szip HDF5 Reference Manual

536

http://www.hdfgroup.org/doc_resource/SZIP/index.html

SZIP compresses data block by block, with a user-tunable block size. This block size is passed in the
parameter pixels_per_block and must be even and not greater than 32, with typical values being 8,
10, 16, or 32. This parameter affects compression ratio; the more pixel values vary, the smaller this
number should be to achieve better performance.

In HDF5, compression can be applied only to chunked datasets. If pixels_per_block is bigger than
the total number of elements in a dataset chunk, H5Pset_szip will succeed but the subsequent call to
H5Dcreate will fail; the conflict can be detected only when the property list is used.

To achieve optimal performance for SZIP compression, it is recommended that a chunk's fastest-changing
dimension be equal to N times pixels_per_block where N is the maximum number of blocks per
scan line allowed by the SZIP library. In the current version of SZIP, N is set to 128.

SZIP compression is an optional HDF5 filter. See the note below for information regarding its designed
behavior, particularly under circumstances where SZIP is not available to an application.

Parameters:
hid_tplist IN: Dataset creation property list identifier.

unsigned intoptions_mask IN: A bit-mask conveying the desired SZIP options. Valid
values are H5_SZIP_EC_OPTION_MASK and
H5_SZIP_NN_OPTION_MASK.

unsigned intpixels_per_block IN: The number of pixels or data elements in each data
block.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Notes for Users Familiar with SZIP in Other Contexts:
The following notes are of interest primarily to those who have used SZIP compression outside of the
HDF5 context.

In non-HDF5 applications, SZIP typically requires that the user application supply additional parameters:

pixels_in_object, the number of pixels in the object to be compressed◊
bits_per_pixel, the number of bits per pixel◊
pixels_per_scanline, the number of pixels per scan line◊

These values need not be independently supplied in the HDF5 environment as they are derived from the
datatype and dataspace, which are already known. In particular, HDF5 sets pixels_in_object to the
number of elements in a chunk and bits_per_pixel to the size of the element or pixel datatype. The
following algorithm is used to set pixels_per_scanline:

If the size of a chunk's fastest-changing dimension, size, is greater than 4K, set
pixels_per_scanline to 128 times pixels_per_block.

◊

If size is less than 4K but greater than pixels_per_block, set pixels_per_scanline to
the minimum of size and 128 times pixels_per_block.

◊

If size is less than pixels_per_block but greater than the number elements in the chunk, set
pixels_per_scanline to the minimum of the number elements in the chunk and 128 times
pixels_per_block.

◊

HDF5 Reference Manual H5Pset_szip

537

The HDF5 datatype may have precision that is less than the full size of the data element, e.g., an 11-bit
integer can be defined using H5Tset_precision. To a certain extent, SZIP can take advantage of the
precision of the datatype to improve compression:

If the HDF5 datatype size is 24-bit or less and the offset of the bits in the HDF5 datatype is zero
(see H5Tset_offset or H5Tget_offset), the data is the in lowest N bits of the data
element. In this case, the SZIP bits_per_pixel is set to the precision of the HDF5 datatype.

◊

If the offset is not zero, the SZIP bits_per_pixel will be set to the number of bits in the full
size of the data element.

◊

If the HDF5 datatype precision is 25-bit to 32-bit, the SZIP bits_per_pixel will be set to 32.◊
If the HDF5 datatype precision is 33-bit to 64-bit, the SZIP bits_per_pixel will be set to 64.◊

HDF5 always modifies the options mask provided by the user to set up usage of RAW_OPTION_MASK,
ALLOW_K13_OPTION_MASK, and one of LSB_OPTION_MASK or MSB_OPTION_MASK, depending
on endianness of the datatype.

Fortran90 Interface: h5pset_szip_f
SUBROUTINE h5pset_szip_f(prp_id, options_mask, pixels_per_block, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id
 ! Dataset creation property list identifier
 INTEGER, INTENT(IN) :: options_mask
 ! A bit-mask conveying the desired
 ! SZIP options
 ! Current valid values in Fortran are:
 ! H5_SZIP_EC_OM_F
 ! H5_SZIP_NN_OM_F
 INTEGER, INTENT(IN) :: pixels_per_block
 ! The number of pixels or data elements
 ! in each data block
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_szip_f

History:
Release C

1.6.0 Function introduced in this release.

H5Pset_szip HDF5 Reference Manual

538

Last modified: 11 November 2010

Name:H5Pset_type_conv_cb
Signature:

herr_tH5Pset_type_conv_cb(hid_t plist, H5T_conv_except_func_t func, void *op_data)
Purpose:

Sets user-defined datatype conversion callback function.
Description:

H5Pset_type_conv_cb sets the user-defined datatype conversion callback function func in the
dataset transfer property list plist.

The parameter op_data is a pointer to user-defined input data for the callback function and will be
passed through to the callback function.

The callback function func defines the actions an application is to take when there is an exception
during datatype conversion. The function prototype is as follows:

typedef H5T_conv_ret_t (H5T_conv_except_func_t) (H5T_conv_except_t
except_type, hid_t *src_id, hid_t *dst_id, void *src_buf, void *dst_buf, void
*op_data)

where except_type indicates what kind of exception has happened, src_id and dst_id are the
source and destination datatype identifiers, src_buf and dst_buf are the source and destination data
buffer, and op_data is the required input data for this callback function.

Valid values for except_type are as follows:

H5T_CONV_EXCEPT_RANGE_HI
Source value is positive and is too big to the destination. Overflow happens.

H5T_CONV_EXCEPT_RANGE_LOW
Source value is negative and its magnitude is too big to the destination. Overflow
happens.

H5T_CONV_EXCEPT_TRUNCATE
Source is floating-point type and destination is integer. The floating-point number has
fractional part.

H5T_CONV_EXCEPT_PRECISION
Source is integer and destination is floating-point type. The mantissa of floating-point
type is not big enough to hold all the digits of the integer.

H5T_CONV_EXCEPT_PINF
Source is floating-point type and the value is positive infinity.

H5T_CONV_EXCEPT_NINF
Source is floating-point type and the value is negative infinity.

H5T_CONV_EXCEPT_NAN
Source is floating-point type and the value is NaN (not a number, including QNaN and
SNaN).

Valid callback function return values are H5T_CONV_ABORT, H5T_CONV_UNHANDLED and
H5T_CONV_HANDLED.

HDF5 Reference Manual H5Pset_type_conv_cb

539

Parameters:
hid_tplist IN: Dataset transfer property list identifier.

H5T_conv_except_func_tfunc IN: User-defined type conversion callback function.< /td>

void *op_data IN: User-defined input data for the callback function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.

H5Pset_type_conv_cb HDF5 Reference Manual

540

Name:H5Pset_userblock
Signature:

herr_tH5Pset_userblock(hid_t plist, hsize_t size)
Purpose:

Sets user block size.
Description:

H5Pset_userblock sets the user block size of a file creation property list. The default user block size
is 0; it may be set to any power of 2 equal to 512 or greater (512, 1024, 2048, etc.).

Parameters:
hid_tplist IN: Identifier of property list to modify.

hsize_tsize IN: Size of the user-block in bytes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5pset_userblock_f

SUBROUTINE h5pset_userblock_f (prp_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: prp_id ! Property list identifier
 INTEGER(HSIZE_T), INTENT(IN) :: size ! Size of the user-block in bytes
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5pset_userblock_f

HDF5 Reference Manual H5Pset_userblock

541

Name:H5Pset_vlen_mem_manager
Signature:

herr_tH5Pset_vlen_mem_manager(hid_t plist, H5MM_allocate_t alloc, void
*alloc_info, H5MM_free_t free, void *free_info)

Purpose:
Sets the memory manager for variable-length datatype allocation in H5Dread and
H5Dvlen_reclaim.

Description:
H5Pset_vlen_mem_manager sets the memory manager for variable-length datatype allocation in
H5Dread and free in H5Dvlen_reclaim.

The alloc and free parameters identify the memory management routines to be used. If the user has
defined custom memory management routines, alloc and/or free should be set to make those routine
calls (i.e., the name of the routine is used as the value of the parameter); if the user prefers to use the
system's malloc and/or free, the alloc and free parameters, respectively, should be set to NULL

The prototypes for these user-defined functions would appear as follows:
 typedef void *(*H5MM_allocate_t)(size_t size, void *alloc_info) ;
 typedef void (*H5MM_free_t)(void *mem, void *free_info) ;

The alloc_info and free_info parameters can be used to pass along any required information to
the user's memory management routines.

In summary, if the user has defined custom memory management routines, the name(s) of the routines are
passed in the alloc and free parameters and the custom routines' parameters are passed in the
alloc_info and free_info parameters. If the user wishes to use the system malloc and free
functions, the alloc and/or free parameters are set to NULL and the alloc_info and free_info
parameters are ignored.

Parameters:
hid_tplist IN: Identifier for the dataset transfer property list.

H5MM_allocate_talloc IN: User's allocate routine, or NULL for system malloc.

void *alloc_info IN: Extra parameter for user's allocation routine.
Contents are ignored if preceding parameter is NULL.

H5MM_free_tfree IN: User's free routine, or NULL for system free.

void *free_info IN: Extra parameter for user's free routine.
Contents are ignored if preceding parameter is NULL.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

H5Pset_vlen_mem_manager HDF5 Reference Manual

542

Name:H5Punregister
Signature:

herr_tH5Punregister(H5P_class_t class, const char *name)
Purpose:

Removes a property from a property list class.
Description:

H5Punregister removes a property from a property list class.

Future property lists created of that class will not contain this property; existing property lists containing
this property are not affected.

Parameters:
H5P_class_tclass IN: Property list class from which to remove permanent property

const char *name IN: Name of property to remove
Returns:

Success: a non-negative value
Failure: a negative value

Fortran90 Interface: h5punregister_f
SUBROUTINE h5punregister_f(class, name, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: class ! Property list class identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of property to remove
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5punregister_f

HDF5 Reference Manual H5Punregister

543

HDF5 Reference Manual

544

H5R: Reference Interface

Reference API Functions

The Reference interface allows the user to create references to specific objects and data regions in an HDF5 file.
In the following lists, italic type indicates a configurable macro.

The C Interfaces:

H5Rcreate•
H5Rdereference•

H5Rget_obj_type•
H5Rget_obj_type1 *•
H5Rget_obj_type2•

H5Rget_region•
H5Rget_name•

* Use of this function is deprecated in Release 1.8.0.
Alphabetical Listing

H5Rcreate•
H5Rdereference•
H5Rget_name•

H5Rget_obj_type•
H5Rget_obj_type1 *•
H5Rget_obj_type2•

H5Rget_region•

The FORTRAN90 Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

h5rcreate_f•
h5rdereference_f•

h5rget_region_f•
h5rget_object_type_f•

h5rget_name_f•

HDF5 Reference Manual

545

HDF5 Reference Manual

546

Name:H5Rcreate
Signature:

herr_tH5Rcreate(void *ref, hid_t loc_id, const char *name, H5R_type_t ref_type, hid_t
space_id)

Purpose:
Creates a reference.

Description:
H5Rcreate creates the reference, ref, of the type specified in ref_type, pointing to the object
name located at loc_id.

The HDF5 library maps the void type specified above for ref to the type specified in ref_type, which
will be one of those appearing in the first column of the following table. The second column of the table
lists the HDF5 constant associated with each reference type.

hdset_reg_ref_t H5R_DATASET_REGIONDataset region reference

hobj_ref_t H5R_OBJECT Object reference
The parameters loc_id and name are used to locate the object.

The parameter space_id identifies the dataset region that a dataset region reference points to. This
parameter is used only with dataset region references and should be set to -1 if the reference is an object
reference, H5R_OBJECT.

Parameters:
void *ref OUT: Reference created by the function call.

hid_t loc_id IN: Location identifier used to locate the object being pointed to.

const char *name IN: Name of object at location loc_id.

H5R_type_tref_type IN: Type of reference.

hid_tspace_id IN: Dataspace identifier with selection. Used only for dataset region
references; pass as -1 if reference is an object reference, i.e., of type
H5R_OBJECT.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5rcreate_f

To create an object reference
SUBROUTINE h5rcreate_f(loc_id, name, ref, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! Location identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the object at location
 ! specified by loc_id identifier
 TYPE(hobj_ref_t_f), INTENT(OUT) :: ref ! Object reference
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure

END SUBROUTINE h5rcreate_f

HDF5 Reference Manual H5Rcreate

547

To create a region reference
SUBROUTINE h5rcreate_f(loc_id, name, space_id, ref, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! Location identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the dataset at location
 ! specified by loc_id identifier
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataset's dataspace identifier
 TYPE(hdset_reg_ref_t_f), INTENT(OUT) :: ref ! Dataset region reference
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure

END SUBROUTINE h5rcreate_f

H5Rcreate HDF5 Reference Manual

548

Name:H5Rdereference
Signature:

hid_tH5Rdereference(hid_t obj_id, H5R_type_t ref_type, void *ref)
Purpose:

Opens the HDF5 object referenced.
Description:

Given a reference, ref, to an object or a region in an object, H5Rdereference opens that object and
returns an identifier.

The parameter obj_id must be a valid identifier for an object in the HDF5 file containing the referenced
object, including the file identifier.

The parameter ref_type specifies the reference type of the reference ref. ref_type may contain
either of the following values:

H5R_OBJECT (0)◊
H5R_DATASET_REGION (1)◊

Parameters:
hid_tobj_id IN: Valid identifier for the file containing the referenced object or any

object in that file.

H5R_type_tref_type IN: The reference type of ref.

void *ref IN: Reference to open.
Returns:

Returns identifier of referenced object if successful; otherwise returns a negative value.
Fortran90 Interface: h5rdereference_f

To dereference an object
SUBROUTINE h5rdereference_f(obj_id, ref, ref_obj_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id ! Valid identifier
 ! in file
 TYPE(hobj_ref_t_f), INTENT(IN) :: ref ! Object reference
 INTEGER(HID_T), INTENT(OUT) :: ref_obj_id ! Identifier of
 ! referenced object
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure

END SUBROUTINE h5rdereference_f

To dereference a region
SUBROUTINE h5rdereference_f(obj_id, ref, ref_obj_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id ! Valid identifier
 ! in file
 TYPE(hdset_reg_ref_t_f), INTENT(IN) :: ref ! Object reference
 INTEGER(HID_T), INTENT(OUT) :: ref_obj_id ! Identifier of
 ! referenced object
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure

END SUBROUTINE h5rdereference_f

HDF5 Reference Manual H5Rdereference

549

Name:H5Rget_name
Signature:

ssize_tH5Rget_name(hid_t loc_id, H5R_type_t ref_type, void *ref, char *name, size_t size
)

Purpose:
Retrieves a name of a referenced object.

Description:
H5Rget_name retrieves a name for the object identified by ref.

loc_id is the identifier for the dataset containing the reference or for the group containing that dataset.

H5R_type_t is the reference type of ref. Valid values include the following:

H5R_OBJECT Object reference

H5R_DATASET_REGION Dataset region reference
ref is the reference for which the target object’s name is sought.

If ref is an object reference, name will be returned with the name of the referenced object. If ref is a
dataset region reference, name will contain the name of the object containing the referenced region.

Up to size characters of the name are returned in name; additional characters, if any, are not returned to
the user application.

If the length of the name, which determines the required value of size, is unknown, a preliminary
H5Rget_name call can be made. The return value of this call will be the size of the object name. That
value can then be assigned to size for a second H5Rget_name call, which will retrieve the actual
name.

If there is no name associated with the object identifier or if the name is NULL, H5Rget_name returns 0
(zero).

Note that an object in an HDF5 file may have multiple paths if there are multiple links pointing to it. This
function may return any one of these paths.

Parameters:
hid_t loc_id IN: Identifier for the dataset containing the reference or for the group that

dataset is in.

H5R_type_tref_type IN: Type of reference.

void *ref IN: An object or dataset region reference.

char *name OUT: A name associated with the referenced object or dataset region.

size_tsize IN: The size of the name buffer.
Returns:

Returns the length of the name if successful, returning 0 (zero) if no name is associated with the
identifier. Otherwise returns a negative value.

H5Rget_name HDF5 Reference Manual

550

Fortran90 Interface: h5rget_name_object_f or h5rget_name_region_f

To get name of an object reference
SUBROUTINE h5rget_name_object_f(loc_id, ref, name, hdferr, size)

 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id
 ! Identifier for the dataset containing the reference
 ! or for the group that dataset is in.
 TYPE(hobj_ref_t_f), INTENT(IN) :: ref
 ! Object reference
 INTEGER(SIZE_T), OPTIONAL, INTENT(OUT) :: size
 ! The size of the name buffer,
 ! returning 0 (zero) if no name is associated with the
 ! identifier
 CHARACTER(LEN=*), INTENT(OUT) :: name
 ! A name associated with the referenced object or
 ! dataset region.
 INTEGER, INTENT(OUT) :: hdferr
 ! Error code
 ! 0 on success and -1 on failure
 INTEGER(HADDR_T) :: ref_f
 ! Local buffer to pass reference
END SUBROUTINE h5rget_name_object_f

To get name of a region reference
SUBROUTINE h5rget_name_region_f(loc_id, ref, name, hdferr, size)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! Identifier for the dataset containing
 ! the reference
 ! or for the group that dataset is in.
 TYPE(hdset_reg_ref_t_f), INTENT(IN) :: ref
 ! Object reference
 INTEGER(SIZE_T), OPTIONAL, INTENT(OUT) :: size
 ! The size of the name buffer,
 ! returning 0 (zero) if no name is
 ! associated with the identifier.
 CHARACTER(LEN=*), INTENT(OUT) :: name ! A name associated with the
 ! referenced object or dataset region.
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5rget_name_region_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Rget_name

551

Name:H5Rget_obj_type
Signature:

H5G_obj_tH5Rget_obj_type(hid_t loc_id, H5R_type_t ref_type, void *ref)
herr_tH5Rget_obj_type(hid_t loc_id, H5R_type_t ref_type, void *ref, H5O_type_t
*obj_type)

Purpose:
Retrieves the type of object that an object reference points to.

Description:
H5Rget_obj_type is a macro that is mapped to either H5Rget_obj_type1 or
H5Rget_obj_type2, depending on the needs of the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Rget_obj_type is mapped to the most recent version of the function, currently
H5Rget_obj_type2. If the library and/or application is compiled for Release 1.6 emulation,
H5Rget_obj_type will be mapped to H5Rget_obj_type1. Function-specific flags are available to
override these settings on a function-by-function basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Rget_obj_type
mapping

Global settings

No compatibility flag H5Rget_obj_type2

Enable deprecated symbols H5Rget_obj_type2

Disable deprecated symbols H5Rget_obj_type2

Emulate Release 1.6 interface H5Rget_obj_type1

Function-level macros

H5Rget_obj_type_vers = 2 H5Rget_obj_type2

H5Rget_obj_type_vers = 1 H5Rget_obj_type1

Fortran90 Interface: h5rget_object_type_f
SUBROUTINE h5rget_object_type_f(dset_id, ref, obj_type, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dset_id ! Dataset identifier
 TYPE(hobj_ref_t_f), INTENT(IN) :: ref ! Object reference
 INTEGER, INTENT(OUT) :: obj_type ! Object type
 ! H5G_UNKNOWN_F (-1)
 ! H5G_LINK_F 0
 ! H5G_GROUP_F 1
 ! H5G_DATASET_F 2
 ! H5G_TYPE_F 3

H5Rget_obj_type HDF5 Reference Manual

552

 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure

END SUBROUTINE h5rget_object_type_f

History:
Release C

1.8.0 The function H5Rget_obj_type renamed to H5Rget_obj_type1 and
deprecated in this release.
The macro H5Rget_obj_type and the function H5Rget_obj_type2
introduced in this release.

HDF5 Reference Manual H5Rget_obj_type

553

Name:H5Rget_obj_type1
Signature:

H5G_obj_tH5Rget_obj_type1(hid_t loc_id, H5R_type_t ref_type, void *ref)
Purpose:

Retrieves the type of object that an object reference points to.
Notice:

This function has been renamed from H5Rget_obj_type and is deprecated in favor of the macro
H5Rget_obj_type or the function H5Rget_obj_type2.

Description:
Given an object reference, ref, H5Rget_obj_type1 returns the type of the referenced object.

A reference type is the type of reference, either an object reference or a dataset region reference. An
object reference points to an HDF5 object while a dataset region reference points to a defined region
within a dataset.

The referenced object is the object the reference points to. The referenced object type, or the type of the
referenced object, is the type of the object that the reference points to.

The location identifier, loc_id, is the identifier for either the dataset containing the object reference or
the group containing that dataset.

Valid reference types, to pass in as ref_type, include the following:

H5R_OBJECT Object reference

H5R_DATASET_REGION Dataset region reference
If the application does not already know the object reference type, that can be determined with three
preliminary calls:

Call H5Dget_type on the dataset containing the reference to get a datatype identifier for the
dataset’s datatype.

◊

Using that datatype identifier, H5Tget_class returns a datatype class.◊
If the datatype class is H5T_REFERENCE, H5Tequal can then be used to determine whether
the reference’s datatype is H5T_STD_REF_OBJ or H5T_STD_REF_DSETREG:

If the datatype is H5T_STD_REF_OBJ, the reference object type is H5R_OBJECT.⋅
If the datatype is H5T_STD_REF_DSETREG, the reference object type is
H5R_DATASET_REGION.

⋅

◊

When the function completes successfully, it returns one of the following valid object type values
(defined in H5Gpublic.h):

H5G_LINK Object is a symbolic link.

H5G_GROUP Object is a group.

H5G_DATASET Object is a dataset.

H5G_TYPE Object is a named datatype.

H5Rget_obj_type1 HDF5 Reference Manual

554

Parameters:
hid_t loc_id IN: The dataset containing the reference object or the group containing

that dataset.

H5R_type_tref_type IN: Type of reference to query.

void *ref IN: Reference to query.
Returns:

Returns a valid object type if successful; otherwise returns H5G_UNKNOWN.
Fortran90 Interface: h5rget_object_type_f

See the H5Rget_obj_type macro description.
History:

Release C

1.6.0 Function introduced in this release.

1.8.0 Function H5Rget_obj_type renamed to H5Rget_obj_type1 and
deprecated in this release.

HDF5 Reference Manual H5Rget_obj_type1

555

Name:H5Rget_obj_type2
Signature:

herr_tH5Rget_obj_type2(hid_t loc_id, H5R_type_t ref_type, void *ref, H5O_type_t
*obj_type)

Purpose:
Retrieves the type of object that an object reference points to.

Description:
Given an object reference, ref, H5Rget_obj_type2 retrieves the type of the referenced object in
obj_type.

A reference type is the type of reference, either an object reference or a dataset region reference. An
object reference points to an HDF5 object while a dataset region reference points to a defined region
within a dataset.

The referenced object is the object the reference points to. The referenced object type, or the type of the
referenced object, is the type of the object that the reference points to.

The location identifier, loc_id, is the identifier for either the dataset containing the object reference or
the group containing that dataset.

Valid reference types, to pass in as ref_type, include the following:

H5R_OBJECT Object reference

H5R_DATASET_REGION Dataset region reference
If the application does not already know the object reference type, that can be determined with three
preliminary calls:

Call H5Dget_type on the dataset containing the reference to get a datatype identifier for the
dataset’s datatype.

◊

Using that datatype identifier, H5Tget_class returns a datatype class.◊
If the datatype class is H5T_REFERENCE, H5Tequal can then be used to determine whether
the reference’s datatype is H5T_STD_REF_OBJ or H5T_STD_REF_DSETREG:

If the datatype is H5T_STD_REF_OBJ, the reference object type is H5R_OBJECT.⋅
If the datatype is H5T_STD_REF_DSETREG, the reference object type is
H5R_DATASET_REGION.

⋅

◊

When the function completes successfully, it returns one of the following valid object type values
(defined in H5Opublic.h):

H5O_TYPE_GROUP Object is a group.

H5O_TYPE_DATASET Object is a dataset.

H5O_TYPE_NAMED_DATATYPEObject is a named datatype.
Parameters:

hid_t loc_id IN: The dataset containing the reference object or the group containing
that dataset.

H5R_type_tref_type IN: Type of reference to query.

void *ref IN: Reference to query.

H5O_type_t *obj_type OUT: Type of referenced object.

H5Rget_obj_type2 HDF5 Reference Manual

556

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5rget_object_type_f
See the H5Rget_obj_type macro description.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Rget_obj_type2

557

Last modified: 30 April 2009

Name:H5Rget_region
Signature:

hid_tH5Rget_region(hid_t loc_id, H5R_type_t ref_type, void *ref)
Purpose:

Sets up a dataspace and selection as specified by a region reference.
Description:

H5Rget_region creates a copy of the dataspace of the dataset pointed to by a region reference, ref,
and defines a selection matching the selection pointed to by ref within the dataspace copy.

loc_id is used to identify the file containing the referenced region; it can be a file identifier or an
identifier for any object in the file.

The parameter ref_type specifies the reference type of ref and must contain the following value:

H5R_DATASET_REGION (1)◊
Parameters:

hid_t loc_id IN: File identifier or identifier for any object in the file containing the
referenced region

H5R_type_tref_type IN: Reference type of ref, which must be H5R_DATASET_REGION

void *ref IN: Region reference to open
Returns:

Returns a valid dataspace identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5rget_region_f

SUBROUTINE h5rget_region_f(obj_id, ref, space_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id ! Object identifier
 TYPE(hdset_reg_ref_t_f), INTENT(IN) :: ref ! Dataset region reference
 INTEGER(HID_T), INTENT(OUT) :: space_id ! Space identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure

END SUBROUTINE h5rget_region_f

H5Rget_region HDF5 Reference Manual

558

H5S: Dataspace Interface

Dataspace Object API Functions

These functions create and manipulate the dataspace in which to store the elements of a dataset.

The C Interfaces:

H5Screate•
H5Scopy•
H5Sclose•
H5Sdecode•
H5Sencode•
H5Screate_simple•
H5Sis_simple•
H5Soffset_simple•
H5Sget_simple_extent_dims•
H5Sget_simple_extent_ndims•

H5Sget_simple_extent_npoints•
H5Sget_simple_extent_type•
H5Sextent_copy•
H5Sextent_equal•
H5Sset_extent_simple•
H5Sset_extent_none•
H5Sget_select_type•
H5Sget_select_npoints•
H5Sget_select_hyper_nblocks•
H5Sget_select_hyper_blocklist•

H5Sget_select_elem_npoints•
H5Sget_select_elem_pointlist•
H5Sget_select_bounds•
H5Sselect_elements•
H5Sselect_all•
H5Sselect_none•
H5Sselect_valid•
H5Sselect_hyperslab•

Alphabetical Listing
H5Sclose•
H5Scopy•
H5Screate•
H5Screate_simple•
H5Sdecode•
H5Sencode•
H5Sextent_copy•
H5Sextent_equal•
H5Sget_select_bounds•
H5Sget_select_elem_npoints•

H5Sget_select_elem_pointlist•
H5Sget_select_hyper_blocklist•
H5Sget_select_hyper_nblocks•
H5Sget_select_npoints•
H5Sget_select_type•
H5Sget_simple_extent_dims•
H5Sget_simple_extent_ndims•
H5Sget_simple_extent_npoints•
H5Sget_simple_extent_type•
H5Sis_simple•

H5Soffset_simple•
H5Sselect_all•
H5Sselect_elements•
H5Sselect_hyperslab•
H5Sselect_none•
H5Sselect_valid•
H5Sset_extent_none•
H5Sset_extent_simple•

The FORTRAN90 Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

h5screate_f•
h5scopy_f•
h5sclose_f•
H5Sdecode_f•
H5Sencode_f•
h5screate_simple_f•
h5sis_simple_f•
h5soffset_simple_f•
h5sget_simple_extent_dims_f•
h5sget_simple_extent_ndims_f•

h5sget_simple_extent_npoints_f•
h5sget_simple_extent_type_f•
h5sextent_copy_f•
H5Sextent_equal_f•
h5sset_extent_simple_f•
h5sset_extent_none_f•
h5sget_select_type_f•
h5sget_select_npoints_f•
h5sget_select_hyper_nblocks_f•
h5sget_select_hyper_blocklist_f•

h5sget_select_elem_npoints_f•
h5sget_select_elem_pointlist_f•
h5sselect_elements_f•
h5sselect_all_f•
h5sselect_none_f•
h5sselect_valid_f•
h5sselect_hyperslab_f•

HDF5 Reference Manual

559

HDF5 Reference Manual

560

Last modified: 17 August 2010

Name:H5Sclose
Signature:

herr_tH5Sclose(hid_t space_id)
Purpose:

Releases and terminates access to a dataspace.
Description:

H5Sclose releases a dataspace. Further access through the dataspace identifier is illegal. Failure to
release a dataspace with this call will result in resource leaks.

Parameters:
hid_tspace_id IN: Identifier of dataspace to release.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5sclose_f
SUBROUTINE h5sclose_f(space_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sclose_f

HDF5 Reference Manual H5Sclose

561

Last modified: 17 August 2010

Name:H5Scopy
Signature:

hid_tH5Scopy(hid_t space_id)
Purpose:

Creates an exact copy of a dataspace.
Description:

H5Scopy creates a new dataspace which is an exact copy of the dataspace identified by space_id. The
dataspace identifier returned from this function should be released with H5Sclose or resource leaks will
occur.

Parameters:
hid_tspace_id IN: Identifier of dataspace to copy.

Returns:
Returns a dataspace identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5scopy_f
SUBROUTINE h5scopy_f(space_id, new_space_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER(HID_T), INTENT(OUT) :: new_space_id ! Identifier of dataspace copy
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5scopy_f

H5Scopy HDF5 Reference Manual

562

Last modified: 17 August 2010

Name:H5Screate
Signature:

hid_tH5Screate(H5S_class_t type)
Purpose:

Creates a new dataspace of a specified type.
Description:

H5Screate creates a new dataspace of a particular type. Currently supported types are as follows:
H5S_SCALAR
H5S_SIMPLE
H5S_NULL

Further dataspace types may be added later.

A scalar dataspace, H5S_SCALAR, has a single element, though that element may be of a complex
datatype, such as a compound or array datatype. By convention, the rank of a scalar dataspace is always 0
(zero); think of it geometrically as a single, dimensionless point, though that point can be complex.

A simple dataspace, H5S_SIMPLE, consists of a regular array of elements.

A null dataspace, H5S_NULL, has no data elements.
Parameters:

H5S_class_ttype IN: Type of dataspace to be created.
Returns:

Returns a dataspace identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5screate_f

SUBROUTINE h5screate_f(classtype, space_id, hdferr)
 IMPLICIT NONE
 INTEGER, INTENT(IN) :: classtype ! The type of the dataspace
 ! to be created. Possible values
 ! are:
 ! H5S_SCALAR_F
 ! H5S_SIMPLE_F
 ! H5S_NULL_F (Not yet implemented)
 INTEGER(HID_T), INTENT(OUT) :: space_id ! Dataspace identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5screate_f

HDF5 Reference Manual H5Screate

563

Last modified: 1 February 2011

Name:H5Screate_simple
Signature:

hid_tH5Screate_simple(int rank, const hsize_t *current_dims, const hsize_t *
maximum_dims)

Purpose:
Creates a new simple dataspace and opens it for access.

Description:
H5Screate_simple creates a new simple dataspace and opens it for access, returning a dataspace
identifier.

rank is the number of dimensions used in the dataspace.

current_dims is a one-dimensional array of size rank specifying the size of each dimension of the
dataset. maximum_dims is an array of the same size specifying the upper limit on the size of each
dimension. maximum_dims may be the null pointer, in which case the upper limit is the same as
current_dims.

If an element of maximum_dims is H5S_UNLIMITED, the maximum size of the corresponding
dimension is unlimited. Otherwise, no element of maximum_dims should be smaller than the
corresponding element of current_dims.

Note that any dataset with an unlimited dimension must also be chunked; see H5Pset_chunk.
Similarly, a dataset must be chunked if current_dims does not equal maximum_dims.

The dataspace identifier returned from this function must be released with H5Sclose or resource leaks
will occur.

Parameters:
int rank IN: Number of dimensions of dataspace.

const hsize_t *current_dims IN: Array specifying the size of each dimension.

const hsize_t *maximum_dims IN: Array specifying the maximum size of each dimension.
Returns:

Returns a dataspace identifier if successful; otherwise returns a negative value.
See Also:

H5Pset_chunk
H5Dset_extent

Fortran90 Interface: h5screate_simple_f
SUBROUTINE h5screate_simple_f(rank, dims, space_id, hdferr, maxdims)
 IMPLICIT NONE
 INTEGER, INTENT(IN) :: rank ! Number of dataspace dimensions
 INTEGER(HSIZE_T), INTENT(IN) :: dims(*) ! Array with current dimension sizes
 INTEGER(HID_T), INTENT(OUT) :: space_id ! Dataspace identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
 INTEGER(HSIZE_T), OPTIONAL, INTENT(IN) :: maxdims(*)
 ! Array with the maximum
 ! dimension sizes
END SUBROUTINE h5screate_simple_f

H5Screate_simple HDF5 Reference Manual

564

Name:H5Sdecode
Signature:

hid_tH5Sdecode (unsigned char *buf)
Purpose:

Decode a binary object description of data space and return a new object handle.
Description:

Given an object description of data space in binary in a buffer, H5Sdecode reconstructs the HDF5 data
type object and returns a new object handle for it. The binary description of the object is encoded by
H5Sencode. User is responsible for passing in the right buffer. The types of data space we address in
this function are null, scalar, and simple space. For simple data space, the information of selection, for
example, hyperslab selection, is also encoded and decoded. Complex data space has not been
implemented in the library.

Parameters:
unsigned char *buf IN: Buffer for the data space object to be decoded.

Returns:
Returns an object ID(non-negative) if successful; otherwise returns a negative value.

Fortran90 Interface: h5sdecode_f
SUBROUTINE h5sdecode_f(buf, obj_id, hdferr)
 IMPLICIT NONE
 CHARACTER(LEN=*), INTENT(IN) :: buf ! Buffer of data space object to
 ! be decoded.
 INTEGER(HID_T), INTENT(OUT) :: obj_id ! Object ID
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sdecode_f

HDF5 Reference Manual H5Sdecode

565

Name:H5Sencode
Signature:

herr_tH5Sencode(hid_t obj_id, unsigned char *buf, size_t *nalloc)
Purpose:

Encode a data space object description into a binary buffer.
Description:

Given the data space ID, H5Sencode converts a data space description into binary form in a buffer.
Using this binary form in the buffer, a data space object can be reconstructed using H5Sdecode to return
a new object handle(hid_t) for this data space.

A preliminary H5Sencode call can be made to find out the size of the buffer needed. This value is
returned as nalloc. That value can then be assigned to nalloc for a second H5Sencode call, which
will retrieve the actual encoded object.

If the library finds out nalloc is not big enough for the object, it simply returns the size of the buffer
needed through nalloc without encoding the provided buffer.

The types of data space we address in this function are null, scalar, and simple space. For simple data
space, the information of selection, for example, hyperslab selection, is also encoded and decoded.
Complex data space has not been implemented in the library.

Parameters:
hid_tobj_id IN: Identifier of the object to be encoded.

unsigned char *buf IN/OUT: Buffer for the object to be encoded into. If the provided buffer is
NULL, only the size of buffer needed is returned through nalloc.

size_t *nalloc IN: The size of the allocated buffer.
OUT: The size of the buffer needed.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5sencode_f
SUBROUTINE h5sencode_f(obj_id, buf, nalloc, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id ! Identifier of the object to be encoded
 CHARACTER(LEN=*), INTENT(OUT) :: buf ! Buffer of object to be encoded into
 INTEGER(SIZE_T), INTENT(INOUT) :: nalloc
 ! Size of the allocated buffer
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sencode_f

H5Sencode HDF5 Reference Manual

566

Name:H5Sextent_copy
Signature:

herr_tH5Sextent_copy(hid_t dest_space_id, hid_t source_space_id)
Purpose:

Copies the extent of a dataspace.
Description:

H5Sextent_copy copies the extent from source_space_id to dest_space_id. This action
may change the type of the dataspace.

Parameters:
hid_tdest_space_id IN: The identifier for the dataspace to which the extent is copied.

hid_tsource_space_id IN: The identifier for the dataspace from which the extent is copied.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5sextent_copy_f

SUBROUTINE h5sextent_copy_f(dest_space_id, source_space_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dest_space_id ! Identifier of destination
 ! dataspace
 INTEGER(HID_T), INTENT(IN) :: source_space_id ! Identifier of source
 ! dataspace
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sextent_copy_f

HDF5 Reference Manual H5Sextent_copy

567

Last modified: 17 August 2010

Name:H5Sextent_equal
Signature:

htri_t H5Sextent_equal(hid_t space1_id, hid_t space2_id)
Purpose:

Determines whether two dataspace extents are equal.
Description:

H5Sextent_equal determines whether the dataspace extents of two dataspaces, space1_id and
space2_id, are equal.

Parameters:
hid_tspace1_id IN: First dataspace identifier.

hid_tspace2_id IN: Second dataspace identifier.
Returns:

Returns TRUE if equal, FALSE if unequal, if successful; otherwise returns a negative value.
Fortran90 Interface: h5sextent_equal_f

SUBROUTINE h5sextent_equal_f(space1_id, space2_id, equal, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space1_id ! First dataspace identifier
 INTEGER(HID_T), INTENT(IN) :: space2_id ! Second dataspace identifier
 LOGICAL, INTENT(OUT) :: Equal ! .TRUE. if equal, .FALSE. if unequal
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sextent_equal_f

H5Sextent_equal HDF5 Reference Manual

568

Name:H5Sget_select_bounds
Signature:

herr_tH5Sget_select_bounds(hid_t space_id, hsize_t *start, hsize_t *end)
Purpose:

Gets the bounding box containing the current selection.
Description:

H5Sget_select_bounds retrieves the coordinates of the bounding box containing the current
selection and places them into user-supplied buffers.

The start and end buffers must be large enough to hold the dataspace rank number of coordinates.

The bounding box exactly contains the selection. I.e., if a 2-dimensional element selection is currently
defined as containing the points (4,5), (6,8), and (10,7), then the bounding box will be (4, 5), (10, 8).

The bounding box calculation includes the current offset of the selection within the dataspace extent.

Calling this function on a none selection will return FAIL.
Parameters:

hid_tspace_id IN: Identifier of dataspace to query.

hsize_t *start OUT: Starting coordinates of the bounding box.

hsize_t *end OUT: Ending coordinates of the bounding box, i.e., the coordinates of the
diagonally opposite corner.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
SUBROUTINE h5sget_select_bounds_f(space_id, start, end, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id
 ! Dataspace identifier
 INTEGER(HSIZE_T), DIMENSION(*), INTENT(OUT) :: start
 ! Starting coordinates of the bounding box
 INTEGER(HSIZE_T), DIMENSION(*), INTENT(OUT) :: end
 ! Ending coordinates of the bounding box,
 ! i.e., the coordinates of the diagonally
 ! opposite corner
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5sget_select_bounds_f

History:
Release C

1.6.0 The start and end parameters have changed from type hsize_t * to hssize_t *.

HDF5 Reference Manual H5Sget_select_bounds

569

Name:H5Sget_select_elem_npoints
Signature:

hssize_tH5Sget_select_elem_npoints(hid_t space_id)
Purpose:

Gets the number of element points in the current selection.
Description:

H5Sget_select_elem_npoints returns the number of element points in the current dataspace
selection.

Parameters:
hid_tspace_id IN: Identifier of dataspace to query.

Returns:
Returns the number of element points in the current dataspace selection if successful. Otherwise returns a
negative value.

Fortran90 Interface: h5sget_select_elem_npoints_f
SUBROUTINE h5sget_select_elem_npoints_f(space_id, num_points, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER, INTENT(OUT) :: num_points ! Number of points in
 ! the current elements selection
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5sget_select_elem_npoints_f

H5Sget_select_elem_npoints HDF5 Reference Manual

570

Name:H5Sget_select_elem_pointlist
Signature:

herr_tH5Sget_select_elem_pointlist(hid_t space_id, hsize_t startpoint, hsize_t
numpoints, hsize_t *buf)

Purpose:
Gets the list of element points currently selected.

Description:
H5Sget_select_elem_pointlist returns the list of element points in the current dataspace
selection. Starting with the startpoint-th point in the list of points, numpoints points are put into
the user's buffer. If the user's buffer fills up before numpoints points are inserted, the buffer will
contain only as many points as fit.

The element point coordinates have the same dimensionality (rank) as the dataspace they are located
within. The list of element points is formatted as follows:
 <coordinate>, followed by
 the next coordinate,
 etc.
until all of the selected element points have been listed.

The points are returned in the order they will be iterated through when the selection is read/written
from/to disk.

Parameters:
hid_tspace_id IN: Dataspace identifier of selection to query.

hsize_t startpoint IN: Element point to start with.

hsize_tnumpoints IN: Number of element points to get.

hsize_t *buf OUT: List of element points selected.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5sget_select_elem_pointlist_f

SUBROUTINE h5sget_select_elem_pointlist_f(space_id, startpoint, num_points,
 buf, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER(HSIZE_T), INTENT(IN) :: startpoint ! Element point to start with
 INTEGER, INTENT(OUT) :: num_points ! Number of points to get in
 ! the current element selection
 INTEGER(HSIZE_T), DIMENSION(*), INTENT(OUT) :: buf
 ! List of points selected
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5sget_select_elem_pointlist_f

HDF5 Reference Manual H5Sget_select_elem_pointlist

571

Name:H5Sget_select_hyper_blocklist
Signature:

herr_tH5Sget_select_hyper_blocklist(hid_t space_id, hsize_t startblock, hsize_t
numblocks, hsize_t *buf)

Purpose:
Gets the list of hyperslab blocks currently selected.

Description:
H5Sget_select_hyper_blocklist returns a list of the hyperslab blocks currently selected.
Starting with the startblock-th block in the list of blocks, numblocks blocks are put into the user's
buffer. If the user's buffer fills up before numblocks blocks are inserted, the buffer will contain only as
many blocks as fit.

The block coordinates have the same dimensionality (rank) as the dataspace they are located within. The
list of blocks is formatted as follows:
 <"start" coordinate>, immediately followed by
 <"opposite" corner coordinate>, followed by
 the next "start" and "opposite" coordinates,
 etc.
until all of the selected blocks have been listed.

No guarantee is implied as the order in which blocks are listed.
Parameters:

hid_tspace_id IN: Dataspace identifier of selection to query.

hsize_t startblock IN: Hyperslab block to start with.

hsize_tnumblocks IN: Number of hyperslab blocks to get.

hsize_t *buf OUT: List of hyperslab blocks selected.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5sget_select_hyper_blocklist_f

SUBROUTINE h5sget_select_hyper_blocklist_f(space_id, startblock, num_blocks,
 buf, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER(HSIZE_T), INTENT(IN) :: startblock ! Hyperslab block to start with
 ! NOTE: numbering starts at 0
 INTEGER, INTENT(OUT) :: num_blocks ! Number of hyperslab blocks to
 ! get in the current hyperslab
 ! selection
 INTEGER(HSIZE_T), DIMENSION(*), INTENT(OUT) :: buf
 ! List of hyperslab blocks selected
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5sget_select_hyper_blocklist_f

H5Sget_select_hyper_blocklist HDF5 Reference Manual

572

Name:H5Sget_select_hyper_nblocks
Signature:

hssize_tH5Sget_select_hyper_nblocks(hid_t space_id)
Purpose:

Get number of hyperslab blocks.
Description:

H5Sget_select_hyper_nblocks returns the number of hyperslab blocks in the current dataspace
selection.

Parameters:
hid_tspace_id IN: Identifier of dataspace to query.

Returns:
Returns the number of hyperslab blocks in the current dataspace selection if successful. Otherwise returns
a negative value.

Fortran90 Interface: h5sget_select_hyper_nblocks_f
SUBROUTINE h5sget_select_hyper_nblocks_f(space_id, num_blocks, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER, INTENT(OUT) :: num_blocks ! Number of hyperslab blocks in
 ! the current hyperslab selection
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5sget_select_hyper_nblocks_f

HDF5 Reference Manual H5Sget_select_hyper_nblocks

573

Last modified: 17 August 2010

Name:H5Sget_select_npoints
Signature:

hssize_tH5Sget_select_npoints(hid_t space_id)
Purpose:

Determines the number of elements in a dataspace selection.
Description:

H5Sget_select_npoints determines the number of elements in the current selection of a dataspace.
Parameters:

hid_tspace_id IN: Dataspace identifier.
Returns:

Returns the number of elements in the selection if successful; otherwise returns a negative value.
Fortran90 Interface: h5sget_select_npoints_f

SUBROUTINE h5sget_select_npoints_f(space_id, npoints, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER(HSSIZE_T), INTENT(OUT) :: npoints ! Number of elements in the
 ! selection
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sget_select_npoints_f

H5Sget_select_npoints HDF5 Reference Manual

574

Last modified: 17 August 2010

Name:H5Sget_select_type
Signature:

H5S_sel_typeH5Sget_select_type(hid_t space_id)
Purpose:

Determines the type of the dataspace selection.
Description:

H5Sget_select_type retrieves the type of selection currently defined for the dataspace space_id.
Parameters:

hid_tspace_id IN: Dataspace identifier.
Returns:

Returns the dataspace selection type, a value of the enumerated datatype H5S_sel_type, if successful.
Valid return values are as follows:

H5S_SEL_NONE No selection is defined.

H5S_SEL_POINTS A sequence of points is selected.

H5S_SEL_HYPERSLABS A hyperslab or compound hyperslab is selected.

H5S_SEL_ALL The entire dataset is selected.

Otherwise returns a negative value.
Fortran90 Interface: h5sget_select_type_f

SUBROUTINE h5sget_select_type_f(space_id, type, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER, INTENT(OUT) :: type ! Selection type
 ! Valid values are:
 ! H5S_SEL_ERROR_F
 ! H5S_SEL_NONE_F
 ! H5S_SEL_POINTS_F
 ! H5S_SEL_HYPERSLABS_F
 ! H5S_SEL_ALL_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5sget_select_type_f

History:
Release C

1.6.0 Function introduced in this release.

HDF5 Reference Manual H5Sget_select_type

575

Name:H5Sget_simple_extent_dims
Signature:

int H5Sget_simple_extent_dims(hid_t space_id, hsize_t *dims, hsize_t *maxdims)
Purpose:

Retrieves dataspace dimension size and maximum size.
Description:

H5Sget_simple_extent_dims returns the size and maximum sizes of each dimension of a
dataspace through the dims and maxdims parameters.

Either or both of dims and maxdims may be NULL.

If a value in the returned array maxdims is H5S_UNLIMITED (-1), the maximum size of that dimension
is unlimited.

Parameters:
hid_tspace_id IN: Identifier of the dataspace object to query

hsize_t *dims OUT: Pointer to array to store the size of each dimension.

hsize_t *maxdims OUT: Pointer to array to store the maximum size of each dimension.
Returns:

Returns the number of dimensions in the dataspace if successful; otherwise returns a negative value.
Fortran90 Interface: h5sget_simple_extent_dims_f

SUBROUTINE h5sget_simple_extent_dims_f(space_id, dims, maxdims, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER(HSIZE_T), DIMENSION(*), INTENT(OUT) :: dims
 ! Array to store dimension sizes
 INTEGER(HSIZE_T), DIMENSION(*), INTENT(OUT) :: maxdims
 ! Array to store max dimension sizes
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! Dataspace rank on success
 ! and -1 on failure
END SUBROUTINE h5sget_simple_extent_dims_f

H5Sget_simple_extent_dims HDF5 Reference Manual

576

Last modified: 17 August 2010

Name:H5Sget_simple_extent_ndims
Signature:

int H5Sget_simple_extent_ndims(hid_t space_id)
Purpose:

Determines the dimensionality of a dataspace.
Description:

H5Sget_simple_extent_ndims determines the dimensionality (or rank) of a dataspace.
Parameters:

hid_tspace_id IN: Identifier of the dataspace
Returns:

Returns the number of dimensions in the dataspace if successful; otherwise returns a negative value.
Fortran90 Interface: h5sget_simple_extent_ndims_f

SUBROUTINE h5sget_simple_extent_ndims_f(space_id, rank, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER, INTENT(OUT) :: rank ! Number of dimensions
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sget_simple_extent_ndims_f

HDF5 Reference Manual H5Sget_simple_extent_ndims

577

Last modified: 17 August 2010

Name:H5Sget_simple_extent_npoints
Signature:

hssize_tH5Sget_simple_extent_npoints(hid_t space_id)
Purpose:

Determines the number of elements in a dataspace.
Description:

H5Sget_simple_extent_npoints determines the number of elements in a dataspace. For
example, a simple 3-dimensional dataspace with dimensions 2, 3, and 4 would have 24 elements.

Parameters:
hid_tspace_id IN: Identifier of the dataspace object to query

Returns:
Returns the number of elements in the dataspace if successful; otherwise returns 0.

Fortran90 Interface: h5sget_simple_extent_npoints_f
SUBROUTINE h5sget_simple_extent_npoints_f(space_id, npoints, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER(HSIZE_T), INTENT(OUT) :: npoints ! Number of elements in dataspace
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sget_simple_extent_npoints_f

H5Sget_simple_extent_npoints HDF5 Reference Manual

578

Last modified: 17 August 2010

Name:H5Sget_simple_extent_type
Signature:

H5S_class_tH5Sget_simple_extent_type(hid_t space_id)
Purpose:

Determines the current class of a dataspace.
Description:

H5Sget_simple_extent_type queries a dataspace to determine the current class of a dataspace.

The function returns a class name, one of the following: H5S_SCALAR, H5S_SIMPLE, or H5S_NONE.
Parameters:

hid_tspace_id IN: Dataspace identifier.
Returns:

Returns a dataspace class name if successful; otherwise H5S_NO_CLASS (-1).
Fortran90 Interface: h5sget_simple_extent_type_f

SUBROUTINE h5sget_simple_extent_type_f(space_id, classtype, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER, INTENT(OUT) :: classtype ! Class type
 ! Possible values are:
 ! H5S_NO_CLASS_F
 ! H5S_SCALAR_F
 ! H5S_SIMPLE_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sget_simple_extent_type_f

HDF5 Reference Manual H5Sget_simple_extent_type

579

Last modified: 17 August 2010

Name:H5Sis_simple
Signature:

htri_t H5Sis_simple(hid_t space_id)
Purpose:

Determines whether a dataspace is a simple dataspace.
Description:

H5Sis_simple determines whether a dataspace is a simple dataspace. [Currently, all dataspace objects
are simple dataspaces; complex dataspace support will be added in the future.]

Parameters:
hid_tspace_id IN: Identifier of the dataspace to query

Returns:
When successful, returns a positive value, for TRUE, or 0 (zero), for FALSE. Otherwise returns a
negative value.

Fortran90 Interface: h5sis_simple_f
SUBROUTINE h5sis_simple_f(space_id, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 LOGICAL, INTENT(OUT) :: flag ! Flag, indicates if dataspace
 ! is simple or not:
 ! TRUE or FALSE
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sis_simple_f

H5Sis_simple HDF5 Reference Manual

580

Name:H5Soffset_simple
Signature:

herr_tH5Soffset_simple(hid_t space_id, const hssize_t *offset)
Purpose:

Sets the offset of a simple dataspace.
Description:

H5Soffset_simple sets the offset of a simple dataspace space_id. The offset array must be the
same number of elements as the number of dimensions for the dataspace. If the offset array is set to
NULL, the offset for the dataspace is reset to 0.

This function allows the same shaped selection to be moved to different locations within a dataspace
without requiring it to be redefined.

Parameters:
hid_tspace_id IN: The identifier for the dataspace object to reset.

const hssize_t *offset IN: The offset at which to position the selection.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5soffset_simple_f

SUBROUTINE h5soffset_simple_f(space_id, offset, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER(HSSIZE_T), DIMENSION(*), INTENT(IN) :: offset
 ! The offset at which to position
 ! the selection
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5soffset_simple_f

HDF5 Reference Manual H5Soffset_simple

581

Last modified: 6 April 2009

Name:H5Sselect_all
Signature:

herr_tH5Sselect_all(hid_t dspace_id)
Purpose:

Selects an entire dataspace.
Description:

H5Sselect_all selects the entire extent of the dataspace dspace_id.

More specifically, H5Sselect_all sets the selection type to H5S_SEL_ALL, which specifies the
entire dataspace anywhere it is applied.

Parameters:
hid_tdspace_id IN: The identifier for the dataspace for which the selection is being made.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

See Also:
H5Sget_select_type

Fortran90 Interface: h5sselect_all_f
SUBROUTINE h5sselect_all_f(dspace_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dspace_id ! Dataspace identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sselect_all_f

H5Sselect_all HDF5 Reference Manual

582

Last modified: 17 August 2010

Name:H5Sselect_elements
Signature:

herr_tH5Sselect_elements(hid_t space_id, H5S_seloper_t op, size_tnum_elements, const
hsize_t *coord)

Purpose:
Selects array elements to be included in the selection for a dataspace.

Description:
H5Sselect_elements selects array elements to be included in the selection for the space_id
dataspace. This is referred to as a point selection.

The number of elements selected is set in the num_elements parameter.

The coord parameter is a pointer to a buffer containing a serialized 2-dimensional array of size
num_elements by the rank of the dataspace. The array lists dataset elements in the point selection; that
is, it’s a list of of zero-based values specifying the coordinates in the dataset of the selected elements. The
order of the element coordinates in the coord array specifies the order in which the array elements are
iterated through when I/O is performed. Duplicate coordinate locations are not checked for. See below for
examples of the mapping between the serialized contents of the buffer and the point selection array that it
represents.

The selection operator op determines how the new selection is to be combined with the previously
existing selection for the dataspace. The following operators are supported:

H5S_SELECT_SET Replaces the existing selection with the parameters from this
call. Overlapping blocks are not supported with this operator.
Adds the new selection to the existing selection.

H5S_SELECT_APPEND Adds the new selection following the last element of the
existing selection.

H5S_SELECT_PREPEND Adds the new selection preceding the first element of the
existing selection.

Mapping the serialized coord buffer to a 2-dimensional point selection array: To illustrate the
construction of the contents of the coord buffer, consider two simple examples: a selection of 5 points in
a 1-dimensional array and a selection of 3 points in a 4-dimensional array.

In the 1D case, we will be selecting five points and a 1D dataspace has rank 1, so the selection will be
described in a 5-by-1 array. To select the 1st, 14th, 17th, 23rd, 8th elements of the dataset, the selection
array would be as follows (remembering that point coordinates are zero-based):

 0
 13
 16
 22
 7

This point selection array will be serialized in the coord buffer as:

 0 13 16 22 7

HDF5 Reference Manual H5Sselect_elements

583

In the 4D case, we will be selecting three points and a 4D dataspace has rank 4, so the selection will be
described in a 3-by-4 array. To select the points (1,1,1,1), (14,6,12,18), and (8,22,30,22), the point
selection array would be as follows:

 0 0 0 0
 13 5 11 17
 7 21 29 21

This point selection array will be serialized in the coord buffer as:

 0 0 0 0 13 5 11 17 7 21 29 21

Parameters:
hid_tspace_id IN: Identifier of the dataspace.

H5S_seloper_top IN: Operator specifying how the new selection is to be combined with the
existing selection for the dataspace.

size_tnum_elements IN: Number of elements to be selected.

const hsize_t *coord IN: A pointer to a buffer containing a serialized copy of a 2-dimensional
array of zero-based values specifying the coordinates of the elements in
the point selection.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5sselect_elements_f
SUBROUTINE h5sselect_elements_f(space_id, operator, rank, num_elements,
 coord, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER, INTENT(IN) :: operator ! Flag, valid values are:
 ! H5S_SELECT_SET_F
 ! H5S_SELECT_APPEND_F
 ! H5S_SELECT_PREPEND_F
 INTEGER, INTENT(IN) :: rank ! Number of dataspace
 ! dimensions
 INTEGER(SIZE_T), INTENT(IN) :: num_elements
 ! Number of elements to be
 ! selected
 INTEGER(HSIZE_T), DIMENSION(rank,num_elements), INTENT(IN) :: coord
 ! A 1-based array containing the
 ! coordinates of the selected
 ! elements
 ! NOTE: Reversed dimension declaration
 ! compared to the C specification
 ! of coord(num_elements, rank)
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sselect_elements_f

History:
Release Change

1.6.4 C coord parameter type changed to const hsize_t.
Fortran coord parameter type changed to INTEGER(HSIZE_T).

H5Sselect_elements HDF5 Reference Manual

584

Name:H5Sselect_hyperslab
Signature:

herr_tH5Sselect_hyperslab(hid_t space_id, H5S_seloper_t op, const hsize_t *start, const
hsize_t *stride, const hsize_t *count, const hsize_t *block)

Purpose:
Selects a hyperslab region to add to the current selected region.

Description:
H5Sselect_hyperslab selects a hyperslab region to add to the current selected region for the
dataspace specified by space_id.

The start, stride, count, and block arrays must be the same size as the rank of the dataspace. For
example, if the dataspace is 4-dimensional, each of these parameters must be a 1-dimensional array of
size 4.

The selection operator op determines how the new selection is to be combined with the already existing
selection for the dataspace. The following operators are supported:

H5S_SELECT_SET Replaces the existing selection with the parameters from this call.
Overlapping blocks are not supported with this operator.

H5S_SELECT_OR Adds the new selection to the existing selection. (Binary OR)

H5S_SELECT_AND Retains only the overlapping portions of the new selection and the
existing selection. (Binary AND)

H5S_SELECT_XOR Retains only the elements that are members of the new selection or
the existing selection, excluding elements that are members of both
selections. (Binary exclusive-OR, XOR)

H5S_SELECT_NOTB Retains only elements of the existing selection that are not in the
new selection.

H5S_SELECT_NOTA Retains only elements of the new selection that are not in the
existing selection.

The start array specifies the offset of the starting element of the specified hyperslab.

The stride array chooses array locations from the dataspace with each value in the stride array
determining how many elements to move in each dimension. Setting a value in the stride array to 1
moves to each element in that dimension of the dataspace; setting a value of 2 in allocation in the
stride array moves to every other element in that dimension of the dataspace. In other words, the
stride determines the number of elements to move from the start location in each dimension. Stride
values of 0 are not allowed. If the stride parameter is NULL, a contiguous hyperslab is selected (as if
each value in the stride array were set to 1).

The count array determines how many blocks to select from the dataspace, in each dimension.

The block array determines the size of the element block selected from the dataspace. If the block
parameter is set to NULL, the block size defaults to a single element in each dimension (as if each value in
the block array were set to 1).

HDF5 Reference Manual H5Sselect_hyperslab

585

For example, consider a 2-dimensional dataspace with hyperslab selection settings as follows: the start
offset is specified as [1,1], stride is [4,4], count is [3,7], and block is [2,2]. In C, these settings will
specify a hyperslab consisting of 21 2x2 blocks of array elements starting with location (1,1) with the
selected blocks at locations (1,1), (5,1), (9,1), (1,5), (5,5), etc.; in Fortran, they will specify a hyperslab
consisting of 21 2x2 blocks of array elements starting with location (2,2) with the selected blocks at
locations (2,2), (6,2), (10,2), (2,6), (6,6), etc.

Regions selected with this function call default to C order iteration when I/O is performed.
Parameters:

hid_tspace_id IN: Identifier of dataspace selection to modify

H5S_seloper_top IN: Operation to perform on current selection.

const hsize_t *start IN: Offset of start of hyperslab

const hsize_t *count IN: Number of blocks included in hyperslab.

const hsize_t *stride IN: Hyperslab stride.

const hsize_t *block IN: Size of block in hyperslab.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5sselect_hyperslab_f

SUBROUTINE h5sselect_hyperslab_f(space_id, operator, start, count,
 hdferr, stride, block)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER, INTENT(IN) :: op ! Flag, valid values are:
 ! H5S_SELECT_SET_F
 ! H5S_SELECT_OR_F
 INTEGER(HSIZE_T), DIMENSION(*), INTENT(IN) :: start
 ! Offset of start of hyperslab
 INTEGER(HSIZE_T), DIMENSION(*), INTENT(IN) :: count
 ! Number of blocks to select
 ! from dataspace
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
 INTEGER(HSIZE_T), DIMENSION(*), OPTIONAL, INTENT(IN) :: stride
 ! Array of how many elements to
 ! move in each direction
 INTEGER(HSIZE_T), DIMENSION(*), OPTIONAL, INTENT(IN) :: block
 ! Size of the element block
END SUBROUTINE h5sselect_hyperslab_f

History:
Release C Fortran90

1.6.4 start[] parameter type
changed to const hsize_t.

start parameter type changed to
INTEGER(HSIZE_T).

H5Sselect_hyperslab HDF5 Reference Manual

586

Name:H5Sselect_none
Signature:

herr_tH5Sselect_none(hid_t space_id)
Purpose:

Resets the selection region to include no elements.
Description:

H5Sselect_none resets the selection region for the dataspace space_id to include no elements.
Parameters:

hid_tspace_id IN: The identifier for the dataspace in which the selection is being reset.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5sselect_none_f

SUBROUTINE h5sselect_none_f(space_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sselect_none_f

HDF5 Reference Manual H5Sselect_none

587

Last modified: 17 August 2010

Name:H5Sselect_valid
Signature:

htri_t H5Sselect_valid(hid_t space_id)
Purpose:

Verifies that the selection is within the extent of the dataspace.
Description:

H5Sselect_valid verifies that the selection for the dataspace space_id is within the extent of the
dataspace if the current offset for the dataspace is used.

Parameters:
hid_tspace_id IN: Identifier for the dataspace being queried.

Returns:
Returns a positive value, for TRUE, if the selection is contained within the extent or 0 (zero), for FALSE,
if it is not. Returns a negative value on error conditions such as the selection or extent not being defined.

Fortran90 Interface: h5sselect_valid_f
SUBROUTINE h5sselect_valid_f(space_id, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 LOGICAL, INTENT(OUT) :: flag ! TRUE if the selection is
 ! contained within the extent,
 ! FALSE otherwise.
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sselect_valid_f

H5Sselect_valid HDF5 Reference Manual

588

Last modified: 17 August 2010

Name:H5Sset_extent_none
Signature:

herr_tH5Sset_extent_none(hid_t space_id)
Purpose:

Removes the extent from a dataspace.
Description:

H5Sset_extent_none removes the extent from a dataspace and sets the type to H5S_NO_CLASS.
Parameters:

hid_tspace_id IN: The identifier for the dataspace from which the extent is to be removed.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5sset_extent_none_f

SUBROUTINE h5sset_extent_none_f(space_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sset_extent_none_f

HDF5 Reference Manual H5Sset_extent_none

589

Last modified: 16 November 2010

Name:H5Sset_extent_simple
Signature:

herr_tH5Sset_extent_simple(hid_t space_id, int rank, const hsize_t *current_size,
const hsize_t *maximum_size)

Purpose:
Sets or resets the size of an existing dataspace.

Description:
H5Sset_extent_simple sets or resets the size of an existing dataspace.

rank is the dimensionality, or number of dimensions, of the dataspace.

current_size is an array of size rank which contains the new size of each dimension in the
dataspace. maximum_size is an array of size rank which contains the maximum size of each
dimension in the dataspace.

Any previous extent is removed from the dataspace, the dataspace type is set to H5S_SIMPLE, and the
extent is set as specified.

Note that a dataset must be chunked if current_size does not equal maximum_size.
Parameters:

hid_tspace_id IN: Dataspace identifier.

int rank IN: Rank, or dimensionality, of the dataspace.

const hsize_t *current_size IN: Array containing current size of dataspace.

const hsize_t *maximum_size IN: Array containing maximum size of dataspace.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5sset_extent_simple_f

SUBROUTINE h5sset_extent_simple_f(space_id, rank, current_size,
 maximum_size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: space_id ! Dataspace identifier
 INTEGER, INTENT(IN) :: rank ! Dataspace rank
 INTEGER(HSIZE_T), DIMENSION(rank), INTENT(IN) :: current_size
 ! Array with the new sizes
 ! of dimensions
 INTEGER(HSIZE_T), DIMENSION(rank), INTENT(IN) ::
 ! Array with the new maximum
 ! sizes of dimensions
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5sset_extent_simple_f

H5Sset_extent_simple HDF5 Reference Manual

590

H5T: Datatype Interface

Datatype Object API Functions

These functions create and manipulate the datatype which describes elements of a dataset.
In the following lists, italic type indicates a configurable macro.

The C Interfaces:

General Datatype Operations
H5Tcreate•
H5Topen•
H5Topen1 *•
H5Topen2•
H5Tcommit•
H5Tcommit1 *•
H5Tcommit2•
H5Tcommit_anon•
H5Tcommitted•
H5Tcopy•
H5Tequal•
H5Tlock•
H5Tget_class•
H5Tget_create_plist•
H5Tget_size•
H5Tget_super•
H5Tget_native_type•
H5Tdetect_class•
H5Tclose

Conversion Functions

•

H5Tconvert•
H5Tfind•
H5Tcompiler_conv•
H5Tregister•
H5Tunregister•
H5Tdecode•
H5Tencode•

Atomic Datatype Properties
H5Tset_size•
H5Tget_order•
H5Tset_order•
H5Tget_precision•
H5Tset_precision•
H5Tget_offset•
H5Tset_offset•
H5Tget_pad•
H5Tset_pad•
H5Tget_sign•
H5Tset_sign•
H5Tget_fields•
H5Tset_fields•
H5Tget_ebias•
H5Tset_ebias•
H5Tget_norm•
H5Tset_norm•
H5Tget_inpad•
H5Tset_inpad•
H5Tget_cset•
H5Tset_cset•
H5Tget_strpad•
H5Tset_strpad

Array Datatypes

•

H5Tarray_create•
H5Tarray_create1 *•
H5Tarray_create2•
H5Tget_array_ndims•
H5Tget_array_dims•
H5Tget_array_dims1 *•
H5Tget_array_dims2•

Compound Datatype Properties
H5Tget_nmembers•
H5Tget_member_class•
H5Tget_member_name•
H5Tget_member_index•
H5Tget_member_offset•
H5Tget_member_type•
H5Tinsert•
H5Tpack

Variable-length Datatypes

•

H5Tvlen_create•
H5Tis_variable_str

Opaque Datatypes

•

H5Tset_tag•
H5Tget_tag

Enumeration Datatypes

•

H5Tenum_create•
H5Tenum_insert•
H5Tenum_nameof•
H5Tenum_valueof•
H5Tget_member_value•
H5Tget_nmembers•
H5Tget_member_name•
H5Tget_member_index

 * Use of these functions
 is deprecated in
 Release 1.8.0.

•

HDF5 Reference Manual

591

Alphabetical Listing
H5Tarray_create•
H5Tarray_create1 *•
H5Tarray_create2•
H5Tclose•
H5Tcommit•
H5Tcommit1 *•
H5Tcommit2•
H5Tcommit_anon•
H5Tcommitted•
H5Tcompiler_conv•
H5Tconvert•
H5Tcopy•
H5Tcreate•
H5Tdecode•
H5Tdetect_class•
H5Tencode•
H5Tenum_create•
H5Tenum_insert•
H5Tenum_nameof•
H5Tenum_valueof•
H5Tequal•
H5Tfind•
H5Tget_array_dims•
H5Tget_array_dims1 *•
H5Tget_array_dims2•

H5Tget_array_ndims•
H5Tget_class•
H5Tget_create_plist•
H5Tget_cset•
H5Tget_ebias•
H5Tget_fields•
H5Tget_inpad•
H5Tget_member_class•
H5Tget_member_index•
H5Tget_member_name•
H5Tget_member_offset•
H5Tget_member_type•
H5Tget_member_value•
H5Tget_native_type•
H5Tget_nmembers•
H5Tget_norm•
H5Tget_offset•
H5Tget_order•
H5Tget_pad•
H5Tget_precision•
H5Tget_sign•
H5Tget_size•
H5Tget_strpad•
H5Tget_super•
H5Tget_tag•

H5Tinsert•
H5Tis_variable_str•
H5Tlock•
H5Topen•
H5Topen1 *•
H5Topen2•
H5Tpack•
H5Tregister•
H5Tset_cset•
H5Tset_ebias•
H5Tset_fields•
H5Tset_inpad•
H5Tset_norm•
H5Tset_offset•
H5Tset_order•
H5Tset_pad•
H5Tset_precision•
H5Tset_sign•
H5Tset_size•
H5Tset_strpad•
H5Tset_tag•
H5Tunregister•
H5Tvlen_create•

HDF5 Reference Manual

592

The FORTRAN90 Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.
General Datatype Operations

h5tcreate_f•
h5tdecode_f•
h5tencode_f•
h5topen_f•
h5tcommit_f•
h5tcommit_anon_f•
h5tcommitted_f•
H5tcompiler_conv_f•
h5tcopy_f•
h5tequal_f•
h5tget_create_plist_f•
h5tget_class_f•
h5tget_size_f•
h5tget_super_f•
h5tclose_f

Enumeration Datatypes

•

h5tenum_create_f•
h5tenum_insert_f•
h5tenum_nameof_f•
h5tenum_valueof_f•
h5tget_member_value_f•
h5tget_native_type_f•
h5tget_nmembers_f•
h5tget_member_name_f•
h5tget_member_index_f•

Atomic Datatype Properties
h5tset_size_f•
h5tget_order_f•
h5tset_order_f•
h5tget_precision_f•
h5tset_precision_f•
h5tget_offset_f•
h5tset_offset_f•
h5tget_pad_f•
h5tset_pad_f•
h5tget_sign_f•
h5tset_sign_f•
h5tget_fields_f•
h5tset_fields_f•
h5tget_ebiass_f•
h5tset_ebiass_f•
h5tget_norm_f•
h5tset_norm_f•
h5tget_inpad_f•
h5tset_inpad_f•
h5tget_cset_f•
h5tset_cset_f•
h5tget_strpad_f•
h5tset_strpad_f•

Array Datatypes
h5tarray_create_f•
h5tget_array_ndims_f•
h5tget_array_dims_f

Compound Datatype Properties

•

h5tget_nmembers_f•
h5tget_member_class_f•
h5tget_member_name_f•
h5tget_member_index_f•
h5tget_member_offset_f•
h5tget_member_type_f•
h5tinsert_f•
h5tpack_f

Variable-length Datatypes

•

h5tvlen_create_f•
h5tis_variable_str_f

Opaque Datatypes

•

h5tset_tag_f•
h5tget_tag_f•

The Datatype interface, H5T, provides a mechanism to describe the storage format of individual data points of a
data set and is hopefully designed in such a way as to allow new features to be easily added without disrupting
applications that use the data type interface. A dataset (the H5D interface) is composed of a collection or raw data
points of homogeneous type organized according to the data space (the H5S interface).

A datatype is a collection of datatype properties, all of which can be stored on disk, and which when taken as a
whole, provide complete information for data conversion to or from that datatype. The interface provides
functions to set and query properties of a datatype.

A data point is an instance of a datatype, which is an instance of a type class. We have defined a set of type
classes and properties which can be extended at a later time. The atomic type classes are those which describe
types which cannot be decomposed at the datatype interface level; all other classes are compound.

See The Datatype Interface (H5T) in the HDF5 User's Guide for further information, including a complete list of
all supported datatypes.

HDF5 Reference Manual

593

HDF5 Reference Manual

594

Name:H5Tarray_create
Signatures:

hid_tH5Tarray_create(hid_t base_type_id, int rank,
const hsize_tdims[/*rank*/], const int perm[/*rank*/])

[1]

hid_tH5Tarray_create(hid_t base_typ_id, unsigned rank,
const hsize_tdims[/*rank*/],)

[2]

Purpose:
Creates an array datatype object.

Description:
H5Tarray_create is a macro that is mapped to either H5Tarray_create1 or
H5Tarray_create2, depending on the needs of the application.

Such macros are provided to facilitate application compatibility. For example:

The H5Tarray_create macro will be mapped to H5Tarray_create1 and will use the
H5Tarray_create1 syntax (first signature above) if an application is coded for HDF5
Release 1.6.x.

◊

The H5Tarray_create macro mapped to H5Tarray_create2 and will use the
H5Tarray_create2 syntax (second signature above) if an application is coded for HDF5
Release 1.8.x.

◊

Macro use and mappings are fully described in “API Compatibility Macros in HDF5”; we urge you to
read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Tarray_create is mapped to the most recent version of the function, currently
H5Tarray_create2. If the library and/or application is compiled for Release 1.6 emulation,
H5Tarray_create will be mapped to H5Tarray_create1. Function-specific flags are available to
override these settings on a function-by-function basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Tarray_create mapping

Global settings

No compatibility flag H5Tarray_create2

Enable deprecated symbols H5Tarray_create2

Disable deprecated symbols H5Tarray_create2

Emulate Release 1.6 interface H5Tarray_create1

Function-level macros

H5Tarray_create_vers = 2 H5Tarray_create2

H5Tarray_create_vers = 1 H5Tarray_create1

HDF5 Reference Manual H5Tarray_create

595

Interface history: Signature [1] above is the original H5Tarray_create interface and the only
interface available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now
deprecated but will remain directly callable as H5Tarray_create1.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Tarray_create2.

See “API Compatibility Macros in HDF5” for circumstances under which either of these functions might
not be available in an installed instance of the HDF5 Library.

Fortran90 Interface: h5tarray_create_f
SUBROUTINE h5tarray_create_f(base_id, rank, dims, type_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: base_id ! Identifier of array base datatype
 INTEGER, INTENT(IN) :: rank ! Rank of the array
 INTEGER(HSIZE_T), DIMENSION(*), INTENT(IN) :: dims
 ! Sizes of each array dimension
 INTEGER(HID_T), INTENT(OUT) :: type_id ! Identifier of the array datatype
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tarray_create_f

History:
Release C

1.8.0 The function H5Tarray_create renamed to H5Tarray_create1 and
deprecated in this release.
The macro H5Tarray_create and the function H5Tarray_create2
introduced in this release.

H5Tarray_create HDF5 Reference Manual

596

Name:H5Tarray_create1
Signature:

hid_tH5Tarray_create1(hid_t base_type_id, int rank, const hsize_tdims[/*rank*/],
const intperm[/*rank*/])

Purpose:
Creates an array datatype object.

Notice:
This function is renamed from H5Tarray_create and deprecated in favor of the function
H5Tarray_create2 or the new macro H5Tarray_create.

Description:
H5Tarray_create1 creates a new array datatype object.

base_type_id is the datatype of every element of the array, i.e., of the number at each position in the
array.

rank is the number of dimensions and the size of each dimension is specified in the array dims. The
value of rank is currently limited to H5S_MAX_RANK and must be greater than 0 (zero). All dimension
sizes specified in dims must be greater than 0 (zero).

The array perm is designed to contain the dimension permutation, i.e. C versus FORTRAN array order.
(The parameterperm is currently unused and is not yet implemented.)

Parameters:
hid_tbase_type_id IN: Datatype identifier for the array base datatype.

int rank IN: Rank of the array.

const hsize_tdims[/*rank*/] IN: Size of each array dimension.

const intperm[/*rank*/] IN: Dimension permutation. (Currently not implemented.)
Returns:

Returns a valid datatype identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5tarray_create_f

SUBROUTINE h5tarray_create_f(base_id, rank, dims, type_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: base_id ! Identifier of array base datatype
 INTEGER, INTENT(IN) :: rank ! Rank of the array
 INTEGER(HSIZE_T), DIMENSION(*), INTENT(IN) :: dims
 ! Sizes of each array dimension
 INTEGER(HID_T), INTENT(OUT) :: type_id ! Identifier of the array datatype
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tarray_create_f

History:
Release C

1.4.0 Function introduced in this release.

1.8.0 Function H5Tarray_create renamed to H5Tarray_create1 and
deprecated in this release.

HDF5 Reference Manual H5Tarray_create1

597

Last modified: 9 April 2009

Name:H5Tarray_create2
Signature:

hid_tH5Tarray_create2(hid_t base_type_id, unsigned rank, const hsize_t
dims[/*rank*/],)

Purpose:
Creates an array datatype object.

Description:
H5Tarray_create2 creates a new array datatype object.

base_type_id is the datatype of every element of the array, i.e., of the number at each position in the
array.

rank is the number of dimensions and the size of each dimension is specified in the array dims. The
value of rank is currently limited to H5S_MAX_RANK and must be greater than 0 (zero). All dimension
sizes specified in dims must be greater than 0 (zero).

Parameters:
hid_tbase_type_id IN: Datatype identifier for the array base datatype.

unsignedrank IN: Rank of the array.

const hsize_tdims[/*rank*/] IN: Size of each array dimension.
Returns:

Returns a valid datatype identifier if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release Change

1.8.0 C function introduced in this release.

H5Tarray_create2 HDF5 Reference Manual

598

Last modified: 18 August 2010

Name:H5Tclose
Signature:

herr_tH5Tclose(hid_t dtype_id)
Purpose:

Releases a datatype.
Description:

H5Tclose releases a datatype. Further access through the datatype identifier is illegal. Failure to release
a datatype with this call will result in resource leaks.

Parameters:
hid_tdtype_id IN: Identifier of datatype to release.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5tclose_f
SUBROUTINE h5tclose_f(type_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tclose_f

HDF5 Reference Manual H5Tclose

599

Name:H5Tcommit
Signature:

herr_tH5Tcommit(hid_t loc_id, const char *name, hid_t dtype_id)
herr_tH5Tcommit(hid_t loc_id, const char *name, hid_t dtype_id, hid_t lcpl_id, hid_t
tcpl_id, hid_t tapl_id)

Purpose:
Commits a transient datatype, linking it into the file and creating a new named datatype.

Description:
H5Tcommit is a macro that is mapped to either H5Tcommit1 or H5Tcommit2, depending on the
needs of the application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Tcommit is mapped to the most recent version of the function, currently H5Tcommit2. If the
library and/or application is compiled for Release 1.6 emulation, H5Tcommit will be mapped to
H5Tcommit1. Function-specific flags are available to override these settings on a function-by-function
basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Tcommit mapping

Global settings

No compatibility flag H5Tcommit2

Enable deprecated symbols H5Tcommit2

Disable deprecated symbols H5Tcommit2

Emulate Release 1.6 interface H5Tcommit1

Function-level macros

H5Tcommit_vers = 2 H5Tcommit2

H5Tcommit_vers = 1 H5Tcommit1

Fortran90 Interface: h5tcommit_f
SUBROUTINE h5tcommit_f(loc_id, name, type_id, hdferr, &
 lcpl_id, tcpl_id, tapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Datatype name within file or group
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: lcpl_id
 ! Link creation property list
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: tcpl_id
 ! Datatype creation property list

H5Tcommit HDF5 Reference Manual

600

 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: tapl_id
 ! Datatype access property list
END SUBROUTINE h5tcommit_f

History:
Release C

1.8.0 The function H5Tcommit renamed to H5Tcommit1 and deprecated in this
release.
The macro H5Tcommit and the function H5Tcommit2 introduced in this
release.

HDF5 Reference Manual H5Tcommit

601

Last modified: 21 October 2010

Name:H5Tcommit1
Signature:

herr_tH5Tcommit1(hid_t loc_id, const char * name, hid_tdtype_id)
Purpose:

Commits a transient datatype to a file, creating a new named datatype.
Notice:

This function is deprecated in favor of the function H5Tcommit2.
Description:

H5Tcommit1 commits the transient datatype (not immutable) to a file, turning it into a named datatype.

The datatype dtype_id is committed as a named datatype at the location loc_id, which is either a file
or group identifier, with the name name.

name can be a relative path based at loc_id or an absolute path from the root of the file. Use of this
function requires that any intermediate groups specified in the path already exist.

As is the case for any object in a group, the length of the name of a named datatype is not limited.

See H5Tcommit_anon for a discussion of the differences between H5Tcommit and
H5Tcommit_anon.

Parameters:
hid_t loc_id IN: File or group identifier

const char *name IN: Name given to committed datatype

hid_tdtype_id IN: Identifier of datatype to be committed and, upon function’s return,
identifier for the committed datatype

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: See listing under H5Tcommit.
History:

Release C

1.8.0 The function H5Tcommit renamed to H5Tcommit1 and deprecated in this
release.

H5Tcommit1 HDF5 Reference Manual

602

Last modified: 21 October 2010

Name:H5Tcommit2
Signature:

herr_tH5Tcommit2(hid_t loc_id, const char *name, hid_t dtype_id, hid_t lcpl_id, hid_t
tcpl_id, hid_t tapl_id)

Purpose:
Commits a transient datatype, linking it into the file and creating a new named datatype.

Description:
H5Tcommit2 saves a transient datatype as an immutable named datatype in a file. The datatype
specified by dtype_id is committed to the file with the name name at the location specified by
loc_id and with the datatype creation and access property lists tcpl_id and tapl_id, respectively.

loc_id may be a file identifier, or a group identifier within that file. name may be either an absolute
path in the file or a relative path from loc_id naming the newly-commited datatype.

The link creation property list, lcpl_id, governs creation of the link(s) by which the new named
datatype is accessed and the creation of any intermediate groups that may be missing.

Once commited, this datatype may be used to define the datatype of any other dataset or attribute in the
file.

Parameters:
hid_t loc_id IN: Location identifier

const char *name IN: Name given to committed datatype

hid_tdtype_id IN: Identifier of datatype to be committed and, upon function’s return, identifier
for the committed datatype

hid_t lcpl_id IN: Link creation property list

hid_t tcpl_id IN: Datatype creation property list

hid_t tapl_id IN: Datatype access property list
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Tcommit.
History:

Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Tcommit2

603

Last modified: 18 May 2009

Name:H5Tcommit_anon
Signature:

herr_tH5Tcommit_anon(hid_t loc_id, hid_t dtype_id, hid_t tcpl_id, hid_t tapl_id)
Purpose:

Commits a transient datatype to a file, creating a new named datatype, but does not link it into the file
structure.

Description:
H5Tcommit_anon commits a transient datatype (not immutable) to a file, turning it into a named
datatype with the specified creation and property lists. With default property lists, H5P_DEFAULT,
H5Tcommit_anon provides similar functionality to that of H5Tcommit, with the differences described
below.

The datatype access property list identifier, tapl_id, is provided for future functionality and is not used
at this time. This parameter should always be passed as the value H5P_DEFAULT.

Note that H5Tcommit_anon does not link this newly-committed datatype into the file. After the
H5Tcommit_anon call, the datatype identifier dtype_id must be linked into the HDF5 file structure
with H5Lcreate_hard or it will be deleted from the file when the file is closed.

The differences between this function and H5Tcommit are as follows:

H5Tcommit_anon explicitly includes property lists, which provides for greater control of the
creation process and of the properties of the new named datatype. H5Tcommit always uses
default properties.

◊

H5Tcommit_anon neither provides the new named datatype’s name nor links it into the HDF5
file structure; those actions must be performed separately through a call to H5Lcreate_hard,
which offers greater control over linking.

◊

Parameters:
hid_t loc_id IN: A file or group identifier specifying the file in which the new named datatype

is to be created.

hid_tdtype_id IN: A datatype identifier.

hid_t tcpl_id IN: A datatype creation property list identifier.
(H5P_DEFAULT for the default property list.)

hid_t tapl_id IN: A datatype access property list identifier.
Currently unused; should always be passed as the valueH5P_DEFAULT.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5tcommit_anon_f
SUBROUTINE h5tcommit_anon_f(loc_id, dtype_id, hdferr, tcpl_id, tapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! A file or group identifier specifying
 ! the file in which the new named
 ! datatype is to be created.
 INTEGER(HID_T), INTENT(IN) :: dtype_id
 ! Datatype identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure

H5Tcommit_anon HDF5 Reference Manual

604

 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: tcpl_id
 ! A datatype creation property
 ! list identifier.
 ! H5P_DEFAULT_F = default property list
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: tapl_id
 ! A datatype access property list id
END SUBROUTINE h5tcommit_anon_f

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Tcommit_anon

605

Name:H5Tcommitted
Signature:

htri_tH5Tcommitted(hid_t dtype_id)
Purpose:

Determines whether a datatype is a named type or a transient type.
Description:

H5Tcommitted queries a type to determine whether the type specified by the dtype_id identifier is a
named type or a transient type. If this function returns a positive value, then the type is named (that is, it
has been committed, perhaps by some other application). Datasets which return committed datatypes with
H5Dget_type() are able to share the datatype with other datasets in the same file.

Parameters:
hid_tdtype_id IN: Datatype identifier.

Returns:
When successful, returns a positive value, for TRUE, if the datatype has been committed, or 0 (zero), for
FALSE, if the datatype has not been committed. Otherwise returns a negative value.

Fortran90 Interface: h5tcommitted_f
SUBROUTINE h5tcommitted_f(dtype_id, committed, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dtype_id
 ! A datatype identifier
 LOGICAL, INTENT(OUT) :: committed ! .TRUE., if the datatype committed
 ! .FALSE., if the datatype not committed.
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tcommitted_f

H5Tcommitted HDF5 Reference Manual

606

Name:H5Tcompiler_conv
Signature:

htri_t H5Tcompiler_conv(hid_t src_id, hid_t dst_id)
Purpose:

Check whether the libraryÂ�s default conversion is hard conversion.
Description:

H5Tcompiler_conv finds out whether the libraryÂ�s conversion function from type src_id to type
dst_id is a compiler (hard) conversion. A compiler conversion uses compilerÂ�s casting; a library
(soft) conversion uses the libraryÂ�s own conversion function.

Parameters:
hid_tsrc_id IN: Identifier for the source datatype.

hid_tdst_id IN: Identifier for the destination datatype.
Returns:

Returns TRUE for compiler conversion, FALSE for library conversion, FAIL for the functionÂ�s failure.
Fortran90 Interface: h5tcompiler_conv_f

SUBROUTINE h5tcompiler_conv_f(src_id, dst_id, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: src_id ! Id for the source datatype.
 INTEGER(HID_T), INTENT(IN) :: dst_id ! Id for the destination datatype.
 LOGICAL, INTENT(OUT) :: flag ! .TRUE. for compiler conversion,
 ! .FALSE. for library conversion
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5tcompiler_conv_f

HDF5 Reference Manual H5Tcompiler_conv

607

Last modified: 18 August 2010

Name:H5Tconvert
Signature:

herr_tH5Tconvert(hid_t src_id, hid_t dst_id, size_t nelmts, void *buf, void *background,
hid_tplist_id)

Purpose:
Converts data from between specified datatypes.

Description:
H5Tconvert converts nelmts elements from the type specified by the src_id identifier to type
dst_id. The source elements are packed in buf and on return the destination will be packed in buf.
That is, the conversion is performed in place. The optional background buffer is an array of nelmts
values of destination type which are merged with the converted values to fill in cracks (for instance,
background might be an array of structs with the a and b fields already initialized and the conversion
of buf supplies the c and d field values).

The parameter plist_id contains the dataset transfer property list identifier which is passed to the
conversion functions. As of Release 1.2, this parameter is only used to pass along the variable-length
datatype custom allocation information.

Parameters:
hid_tsrc_id IN: Identifier for the source datatype.

hid_tdst_id IN: Identifier for the destination datatype.

size_tnelmts IN: Size of array buf.

void *buf IN/OUT: Array containing pre- and post-conversion values.

void *background IN: Optional background buffer.

hid_tplist_id IN: Dataset transfer property list identifier.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.6.3 nelmts parameter type changed to size_t.

1.4.0 nelmts parameter type changed to hsize_t.

H5Tconvert HDF5 Reference Manual

608

Last modified: 18 August 2010

Name:H5Tcopy
Signature:

hid_tH5Tcopy(hid_t dtype_id)
Purpose:

Copies an existing datatype.
Description:

H5Tcopy copies an existing datatype. The returned type is always transient and unlocked.

The dtype_id argument can be either a datatype identifier, a predefined datatype (defined in
H5Tpublic.h), or a dataset identifier. If dtype_id is a dataset identifier instead of a datatype
identifier, then this function returns a transient, modifiable datatype which is a copy of the dataset's
datatype.

The datatype identifier returned should be released with H5Tclose or resource leaks will occur.
Parameters:

hid_tdtype_id IN: Identifier of datatype to copy. Can be a datatype identifier, a predefined
datatype (defined in H5Tpublic.h), or a dataset identifier.

Returns:
Returns a datatype identifier if successful; otherwise returns a negative value

Fortran90 Interface: h5tcopy_f
SUBROUTINE h5tcopy_f(type_id, new_type_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER(HID_T), INTENT(OUT) :: new_type_id ! Identifier of datatype's copy
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tcopy_f

HDF5 Reference Manual H5Tcopy

609

Last modified: 18 August 2010

Name:H5Tcreate
Signature:

hid_tH5Tcreate(H5T_class_t class, size_tsize)
Purpose:

Creates a new datatype.
Description:

H5Tcreate creates a new datatype of the specified class with the specified number of bytes.

The following datatype classes are supported with this function:

H5T_COMPOUND◊
H5T_OPAQUE◊
H5T_ENUM◊

Use H5Tcopy to create integer or floating-point datatypes.

The datatype identifier returned from this function should be released with H5Tclose or resource leaks
will result.

Parameters:
H5T_class_tclass IN: Class of datatype to create.

size_tsize IN: The number of bytes in the datatype to create.
Returns:

Returns datatype identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5tcreate_f

SUBROUTINE h5tcreate_f(class, size, type_id, hdferr)
 IMPLICIT NONE
 INTEGER, INTENT(IN) :: class ! Datatype class can be one of
 ! H5T_COMPOUND_F (6)
 ! H5T_ENUM_F (8)
 ! H5T_OPAQUE_F (9)
 INTEGER(SIZE_T), INTENT(IN) :: size ! Size of the datatype
 INTEGER(HID_T), INTENT(OUT) :: type_id ! Datatype identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tcreate_f

H5Tcreate HDF5 Reference Manual

610

Name:H5Tdecode
Signature:

hid_tH5Tdecode (unsigned char *buf)
Purpose:

Decode a binary object description of data type and return a new object handle.
Description:

Given an object description of data type in binary in a buffer, H5Tdecode reconstructs the HDF5 data
type object and returns a new object handle for it. The binary description of the object is encoded by
H5Tencode. User is responsible for passing in the right buffer.

Parameters:
unsigned char *buf IN: Buffer for the data type object to be decoded.

Returns:
Returns an object ID(non-negative) if successful; otherwise returns a negative value.

Fortran90 Interface: h5tdecode_f
SUBROUTINE h5tdecode_f(buf, obj_id, hdferr)
 IMPLICIT NONE
 CHARACTER(LEN=*), INTENT(IN) :: buf ! Data space object buffer to be decoded
 INTEGER(HID_T), INTENT(OUT) :: obj_id! Object ID
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tdecode_f

HDF5 Reference Manual H5Tdecode

611

Last modified: 18 August 2010

Name:H5Tdetect_class
Signature:

htri_t H5Tdetect_class(hid_t dtype_id, H5T_class_tdtype_class)
Purpose:

Determines whether a datatype contains any datatypes of the given datatype class.
Description:

H5Tdetect_class determines whether the datatype specified in dtype_id contains any datatypes of
the datatype class specified in dtype_class.

This function is useful primarily in recursively examining all the fields and/or base types of compound,
array, and variable-length datatypes.

Valid class identifiers are as defined in H5Tget_class.
Parameters:

hid_tdtype_id IN: Datatype identifier.

H5T_class_tdtype_class IN: Datatype class.
Returns:

Returns TRUE or FALSE if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.6.0 Function introduced in this release.

H5Tdetect_class HDF5 Reference Manual

612

Name:H5Tencode
Signature:

herr_tH5Tencode(hid_t obj_id, unsigned char *buf, size_t *nalloc)
Purpose:

Encode a data type object description into a binary buffer.
Description:

Given data type ID, H5Tencode converts a data type description into binary form in a buffer. Using this
binary form in the buffer, a data type object can be reconstructed using H5Tdecode to return a new
object handle (hid_t) for this data type.

A preliminary H5Tencode call can be made to find out the size of the buffer needed. This value is
returned as nalloc. That value can then be assigned to nalloc for a second H5Tencode call, which
will retrieve the actual encoded object.

If the library finds out nalloc is not big enough for the object, it simply returns the size of the buffer
needed through nalloc without encoding the provided buffer.

Parameters:
hid_tobj_id IN: Identifier of the object to be encoded.

unsigned char *buf IN/OUT: Buffer for the object to be encoded into. If the provided buffer is
NULL, only the size of buffer needed is returned through nalloc.

size_t *nalloc IN: The size of the allocated buffer.
OUT: The size of the buffer needed.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5tencode_f
SUBROUTINE h5tencode_f(obj_id, buf, nalloc, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: obj_id ! Identifier of the object to be encoded
 CHARACTER(LEN=*), INTENT(OUT) :: buf ! Buffer object to be encoded into
 INTEGER(SIZE_T), INTENT(INOUT) :: nalloc
 ! The size of the allocated buffer
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tencode_f

HDF5 Reference Manual H5Tencode

613

Last modified: 30 September 2010

Name:H5Tenum_create
Signature:

hid_tH5Tenum_create(hid_t dtype_id)
Purpose:

Creates a new enumeration datatype.
Description:

H5Tenum_create creates a new enumeration datatype based on the specified base datatype,
dtype_id, which must be a native integer datatype.

If a particular architecture datatype is required, a little endian or big endian datatype for example, use a
native datatype as the base datatype and use H5Tconvert on values as they are read from or written to a
dataset.

Parameters:
hid_tparent_id IN: Datatype identifier for the base datatype.

Returns:
Returns the datatype identifier for the new enumeration datatype if successful; otherwise returns a
negative value.

Fortran90 Interface: h5tenum_create_f
SUBROUTINE h5tenum_create_f(parent_id, new_type_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: parent_id ! Datatype identifier for
 ! the base datatype
 INTEGER(HID_T), INTENT(OUT) :: new_type_id ! Datatype identifier for the
 ! new enumeration datatype
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tenum_create_f

See Also:
H5Tenum_insert

H5Tenum_create HDF5 Reference Manual

614

Last modified: 30 September 2010

Name:H5Tenum_insert
Signature:

herr_tH5Tenum_insert(hid_t dtype_id, const char *name, void *value)
Purpose:

Inserts a new enumeration datatype member.
Description:

H5Tenum_insert inserts a new enumeration datatype member into an enumeration datatype.

dtype_id is the enumeration datatype’s base datatype, name is the name of the new member, and
value points to the value of the new member.

dtype_id must be a native integer datatype. If a particular architecture datatype is required, a little
endian or big endian datatype for example, use a native datatype as the base datatype and use
H5Tconvert on values as they are read from or written to a dataset.

name and value must both be unique within dtype_id.

value points to data which is of the datatype defined when the enumeration datatype was created.
Parameters:

hid_tdtype_id IN: Datatype identifier for the base datatype of the enumeration datatype.

const char *name IN: Name of the new member.

void *value IN: Pointer to the value of the new member.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tenum_insert_f

SUBROUTINE h5tenum_insert_f(type_id, name, value, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the new member
 INTEGER, INTENT(IN) :: value ! Value of the new member
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tenum_insert_f

See Also:
H5Tenum_create

HDF5 Reference Manual H5Tenum_insert

615

Name:H5Tenum_nameof
Signature:

herr_tH5Tenum_nameof(hid_t dtype_id, void *value, char *name, size_t size)
Purpose:

Returns the symbol name corresponding to a specified member of an enumeration datatype.
Description:

H5Tenum_nameof finds the symbol name that corresponds to the specified value of the enumeration
datatype dtype_id.

At most size characters of the symbol name are copied into the name buffer. If the entire symbol name
and null terminator do not fit in the name buffer, then as many characters as possible are copied (not null
terminated) and the function fails.

Parameters:
hid_tdtype_id IN: Enumeration datatype identifier.

void *value IN: Value of the enumeration datatype.

char *name OUT: Buffer for output of the symbol name.

size_tsize IN: Anticipated size of the symbol name, in bytes (characters).
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value and, if size allows it, the
first character of name is set to NULL.

Fortran90 Interface: h5tenum_nameof_f
SUBROUTINE h5tenum_nameof_f(type_id, value, namelen, name, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(IN) :: value ! Value of the enumeration datatype
 INTEGER(SIZE_T), INTENT(IN) :: namelen ! Length of the name
 CHARACTER(LEN=*), INTENT(OUT) :: name ! Name of the enumeration datatype
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tenum_nameof_f

H5Tenum_nameof HDF5 Reference Manual

616

Name:H5Tenum_valueof
Signature:

herr_tH5Tenum_valueof(hid_t dtype_id, char *name, void *value)
Purpose:

Returns the value corresponding to a specified member of an enumeration datatype.
Description:

H5Tenum_valueof finds the value that corresponds to the specified name of the enumeration datatype
dtype_id.

The value argument should be at least as large as the value of H5Tget_size(type) in order to hold
the result.

Parameters:
hid_tdtype_id IN: Enumeration datatype identifier.

const char *name IN: Symbol name of the enumeration datatype.

void *value OUT: Buffer for output of the value of the enumeration datatype.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tenum_valueof_f

SUBROUTINE h5tenum_valueof_f(type_id, name, value, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the enumeration datatype
 INTEGER, INTENT(OUT) :: value ! Value of the enumeration datatype
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tenum_valueof_f

HDF5 Reference Manual H5Tenum_valueof

617

Last modified: 18 August 2010

Name:H5Tequal
Signature:

htri_t H5Tequal(hid_t dtype_id1, hid_t dtype_id2)
Purpose:

Determines whether two datatype identifiers refer to the same datatype.
Description:

H5Tequal determines whether two datatype identifiers refer to the same datatype.
Parameters:

hid_tdtype_id1 IN: Identifier of datatype to compare.

hid_tdtype_id2 IN: Identifier of datatype to compare.
Returns:

When successful, returns a positive value, for TRUE, if the datatype identifiers refer to the same datatype,
or 0 (zero), for FALSE. Otherwise returns a negative value.

Fortran90 Interface: h5tequal_f
SUBROUTINE h5tequal_f(type1_id, type2_id, flag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type1_id ! Datatype identifier
 INTEGER(HID_T), INTENT(IN) :: type2_id ! Datatype identifier
 LOGICAL, INTENT(OUT) :: flag ! TRUE/FALSE flag to indicate
 ! if two datatypes are equal
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tequal_f

H5Tequal HDF5 Reference Manual

618

Name:H5Tfind
Signature:

H5T_conv_tH5Tfind(hid_t src_id, hid_t dst_id, H5T_cdata_t **pcdata)
Purpose:

Finds a conversion function.
Description:

H5Tfind finds a conversion function that can handle a conversion from type src_id to type dst_id.
The pcdata argument is a pointer to a pointer to type conversion data which was created and initialized
by the soft type conversion function of this path when the conversion function was installed on the path.

Parameters:
hid_tsrc_id IN: Identifier for the source datatype.

hid_tdst_id IN: Identifier for the destination datatype.

H5T_cdata_t **pcdata OUT: Pointer to type conversion data.
Returns:

Returns a pointer to a suitable conversion function if successful. Otherwise returns NULL.
Fortran90 Interface:

None.

HDF5 Reference Manual H5Tfind

619

Name:H5Tget_array_dims
Signatures:

int H5Tget_array_dims(hid_t adtype_id, hsize_t dims[],
int perm[])

[1]

int H5Tget_array_dims(hid_t adtype_id, hsize_t dims[]) [2]
Purpose:

Retrieves sizes of array dimensions.
Description:

H5Tget_array_dims is a macro that is mapped to either H5Tget_array_dims1 or
H5Tget_array_dims2, depending on the needs of the application.

Such macros are provided to facilitate application compatibility. For example:

The H5Tget_array_dims macro will be mapped to H5Tget_array_dims1 and will use
the H5Tget_array_dims1 syntax (first signature above) if an application is coded for HDF5
Release 1.6.x.

◊

The H5Tget_array_dims macro mapped to H5Tget_array_dims2 and will use the
H5Tget_array_dims2 syntax (second signature above) if an application is coded for HDF5
Release 1.8.x.

◊

Macro use and mappings are fully described in “API Compatibility Macros in HDF5”; we urge you to
read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Tget_array_dims is mapped to the most recent version of the function, currently
H5Tget_array_dims2. If the library and/or application is compiled for Release 1.6 emulation,
H5Tget_array_dims will be mapped to H5Tget_array_dims1. Function-specific flags are
available to override these settings on a function-by-function basis when the application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Tget_array_dims mapping

Global settings

No compatibility flag H5Tget_array_dims2

Enable deprecated symbols H5Tget_array_dims2

Disable deprecated symbols H5Tget_array_dims2

Emulate Release 1.6 interface H5Tget_array_dims1

Function-level macros

H5Tget_array_dims_vers = 2 H5Tget_array_dims2

H5Tget_array_dims_vers = 1 H5Tget_array_dims1

H5Tget_array_dims HDF5 Reference Manual

620

Interface history: Signature [1] above is the original H5Tget_array_dims interface and the only
interface available prior to HDF5 Release 1.8.0. This signature and the corresponding function are now
deprecated but will remain directly callable as H5Tget_array_dims1.

Signature [2] above was introduced with HDF5 Release 1.8.0 and is the recommended and default
interface. It is directly callable as H5Tget_array_dims2.

See “API Compatibility Macros in HDF5” for circumstances under which either of these functions might
not be available in an installed instance of the HDF5 Library.

Fortran90 Interface: h5tarray_create_f
SUBROUTINE h5tarray_create_f(base_id, rank, dims, type_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: base_id ! Identifier of array base datatype
 INTEGER, INTENT(IN) :: rank ! Rank of the array
 INTEGER(HSIZE_T), DIMENSION(*), INTENT(IN) :: dims
 ! Sizes of each array dimension
 INTEGER(HID_T), INTENT(OUT) :: type_id ! Identifier of the array datatype
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tarray_create_f

History:
Release C

1.8.0 The function H5Tget_array_dims renamed to H5Tget_array_dims1 and
deprecated in this release.
The macro H5Tget_array_dims and the function H5Tget_array_dims2
introduced in this release.

HDF5 Reference Manual H5Tget_array_dims

621

Name:H5Tget_array_dims1
Signature:

int H5Tget_array_dims1(hid_t adtype_id, hsize_t dims[], int perm[])
Purpose:

Retrieves sizes of array dimensions.
Notice:

This function is renamed from H5Tget_array_dims and deprecated in favor of the function
H5Tget_array_dims2 or the new macro H5Tget_array_dims.

Description:
H5Tget_array_dims1 returns the sizes of the dimensions and the dimension permutations of the
specified array datatype object.

The sizes of the dimensions are returned in the array dims.

The parameter perm is not used.
Parameters:

hid_tadtype_id IN: Datatype identifier of array object.

hsize_tdims[] OUT: Sizes of array dimensions.

int perm[] OUT: Dimension permutations.
(This parameter is not used.)

Returns:
Returns the non-negative number of dimensions of the array type if successful; otherwise returns a
negative value.

Fortran90 Interface: h5tget_array_dims_f
SUBROUTINE h5tget_array_dims_f(type_id, dims, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Identifier of the array datatype
 INTEGER(HSIZE_T), DIMENSION(*), INTENT(OUT) :: dims
 ! Buffer to store array datatype
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_array_dims_f

History:
Release C

1.4.0 Function introduced in this release.

1.8.0 The function H5Tget_array_dims renamed to H5Tget_array_dims1 and
deprecated in this release.

H5Tget_array_dims1 HDF5 Reference Manual

622

Name:H5Tget_array_dims2
Signature:

int H5Tget_array_dims2(hid_t adtype_id, hsize_t dims[])
Purpose:

Retrieves sizes of array dimensions.
Description:

H5Tget_array_dims2 returns the sizes of the dimensions of the specified array datatype object.

The sizes of the dimensions are returned in the array dims.
Parameters:

hid_tadtype_id IN: Datatype identifier of array object.

hsize_tdims[] OUT: Sizes of array dimensions.
Returns:

Returns the non-negative number of dimensions of the array type if successful; otherwise returns a
negative value.

Fortran90 Interface:
None.

History:
Release C

1.8.0 Function introduced in this release.

HDF5 Reference Manual H5Tget_array_dims2

623

Name:H5Tget_array_ndims
Signature:

int H5Tget_array_ndims(hid_t adtype_id)
Purpose:

Returns the rank of an array datatype.
Description:

H5Tget_array_ndims returns the rank, the number of dimensions, of an array datatype object.
Parameters:

hid_tadtype_id IN: Datatype identifier of array object.
Returns:

Returns the rank of the array if successful; otherwise returns a negative value.
Fortran90 Interface: h5tget_array_ndims_f

SUBROUTINE h5tget_array_ndims_f(type_id, ndims, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Identifier of the array datatype
 INTEGER, INTENT(OUT) :: ndims ! Number of array dimensions
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_array_ndims_f

History:
Release C

1.4.0 Function introduced in this release.

H5Tget_array_ndims HDF5 Reference Manual

624

Last modified: 18 August 2010

Name:H5Tget_class
Signature:

H5T_class_tH5Tget_class(hid_t dtype_id)
Purpose:

Returns the datatype class identifier.
Description:

H5Tget_class returns the datatype class identifier.

Valid class identifiers, as defined in H5Tpublic.h, are:

H5T_INTEGER◊
H5T_FLOAT◊
H5T_STRING◊
H5T_BITFIELD◊
H5T_OPAQUE◊
H5T_COMPOUND◊
H5T_REFERENCE◊
H5T_ENUM◊
H5T_VLEN◊
H5T_ARRAY◊

Note that the library returns H5T_STRING for both fixed-length and variable-length strings.

Unsupported datatype: The time datatype class, H5T_TIME, is not supported. If H5T_TIME is used, the
resulting data will be readable and modifiable only on the originating computing platform; it will not be
portable to other platforms.

Parameters:
hid_tdtype_id IN: Identifier of datatype to query.

Returns:
Returns datatype class identifier if successful; otherwise H5T_NO_CLASS (-1).

Fortran90 Interface: h5tget_class_f
SUBROUTINE h5tget_class_f(type_id, class, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(OUT) :: class ! Datatype class, possible values are:
 ! H5T_NO_CLASS_F
 ! H5T_INTEGER_F
 ! H5T_FLOAT_F

 ! H5T_STRING_F
 ! H5T_BITFIELD_F
 ! H5T_OPAQUE_F
 ! H5T_COMPOUND_F
 ! H5T_REFERENCE_F
 ! H5T_ENUM_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tget_class_f

HDF5 Reference Manual H5Tget_class

625

Name:H5Tget_create_plist
Signature:

hid_tH5Tget_create_plist(hid_t dtype_id)
Purpose:

Returns a copy of a datatype creation property list.
Description:

H5Tget_create_plist returns a property list identifier for the datatype creation property list
associated with the datatype specified by dtype_id.

The creation property list identifier should be released with H5Pclose.
Parameter:

hid_tdtype_id IN: Datatype identifier.
Returns:

Returns a datatype property list identifier if successful; otherwise returns a negative value.
Fortran90 Interface: h5tget_create_plist_f

SUBROUTINE h5tget_create_plist_f(dtype_id, dtpl_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dtype_id ! Datatype identifier
 INTEGER(HID_T), INTENT(OUT) :: dtpl_id ! Datatype property list identifier.
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5tget_create_plist_f

History:
Release C

1.8.0 Function introduced in this release.

H5Tget_create_plist HDF5 Reference Manual

626

Last modified: 18 August 2010

Name:H5Tget_cset
Signature:

H5T_cset_tH5Tget_cset(hid_t dtype_id)
Purpose:

Retrieves the character set type of a string datatype.
Description:

H5Tget_cset retrieves the character set type of a string datatype. Valid character set types are:
H5T_CSET_ASCII (0) Character set is US ASCII.

H5T_CSET_UTF8 (1) Character set is UTF-8, enabling Unicode encoding.
Parameters:

hid_tdtype_id IN: Identifier of datatype to query.
Returns:

Returns a valid character set type if successful; otherwise H5T_CSET_ERROR (-1).
Fortran90 Interface: h5tget_cset_f

SUBROUTINE h5tget_cset_f(type_id, cset, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(OUT) :: cset ! Character set type of a string
 ! datatype
 ! Possible values are:
 ! H5T_CSET_ASCII_F = 0
 ! H5T_CSET_UTF8_F = 1
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_cset_f

History:
Release Change

1.8.0 UTF-8 Unicode encoding introduced in this release.

HDF5 Reference Manual H5Tget_cset

627

Last modified: 18 August 2010

Name:H5Tget_ebias
Signature:

size_tH5Tget_ebias(hid_t dtype_id)
Purpose:

Retrieves the exponent bias of a floating-point type.
Description:

H5Tget_ebias retrieves the exponent bias of a floating-point type.
Parameters:

hid_tdtype_id IN: Identifier of datatype to query.
Returns:

Returns the bias if successful; otherwise 0.
Fortran90 Interface: h5tget_ebias_f

SUBROUTINE h5tget_ebias_f(type_id, ebias, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER(SIZE_T), INTENT(OUT) :: ebias ! Datatype exponent bias
 ! of a floating-point type
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_ebias_f

H5Tget_ebias HDF5 Reference Manual

628

Name:H5Tget_fields
Signature:

herr_tH5Tget_fields(hid_t dtype_id, size_t *spos, size_t *epos, size_t *esize, size_t
*mpos, size_t *msize)

Purpose:
Retrieves floating point datatype bit field information.

Description:
H5Tget_fields retrieves information about the locations of the various bit fields of a floating point
datatype. The field positions are bit positions in the significant region of the datatype. Bits are numbered
with the least significant bit number zero. Any (or even all) of the arguments can be null pointers.

Parameters:
hid_tdtype_id IN: Identifier of datatype to query.

size_t *spos OUT: Pointer to location to return floating-point sign bit.

size_t *epos OUT: Pointer to location to return exponent bit-position.

size_t *esize OUT: Pointer to location to return size of exponent in bits.

size_t *mpos OUT: Pointer to location to return mantissa bit-position.

size_t *msize OUT: Pointer to location to return size of mantissa in bits.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tget_fields_f

SUBROUTINE h5tget_fields_f(type_id, spos, epos, esize, mpos, msize, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER(SIZE_T), INTENT(OUT) :: spos ! sign bit-position
 INTEGER(SIZE_T), INTENT(OUT) :: epos ! exponent bit-position
 INTEGER(SIZE_T), INTENT(OUT) :: esize ! size of exponent in bits
 INTEGER(SIZE_T), INTENT(OUT) :: mpos ! mantissa bit-position
 INTEGER(SIZE_T), INTENT(OUT) :: msize ! size of mantissa in bits
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_fields_f

HDF5 Reference Manual H5Tget_fields

629

Last modified: 18 August 2010

Name:H5Tget_inpad
Signature:

H5T_pad_tH5Tget_inpad(hid_t dtype_id)
Purpose:

Retrieves the internal padding type for unused bits in floating-point datatypes.
Description:

H5Tget_inpad retrieves the internal padding type for unused bits in floating-point datatypes. Valid
padding types are:

H5T_PAD_ZERO (0)
Set background to zeros.

H5T_PAD_ONE (1)
Set background to ones.

H5T_PAD_BACKGROUND (2)
Leave background alone.

Parameters:
hid_tdtype_id IN: Identifier of datatype to query.

Returns:
Returns a valid padding type if successful; otherwise H5T_PAD_ERROR (-1).

Fortran90 Interface: h5tget_inpad_f
SUBROUTINE h5tget_inpad_f(type_id, padtype, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(OUT) :: padtype ! Padding type for unused bits
 ! in floating-point datatypes
 ! Possible values of padding type are:
 ! H5T_PAD_ZERO_F = 0
 ! H5T_PAD_ONE_F = 1
 ! H5T_PAD_BACKGROUND_F = 2
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_inpad_f

H5Tget_inpad HDF5 Reference Manual

630

Name:H5Tget_member_class
Signature:

H5T_class_tH5Tget_member_class(hid_t cdtype_id, unsigned member_no)
Purpose:

Returns datatype class of compound datatype member.
Description:

Given a compound datatype, cdtype_id, the function H5Tget_member_class returns the datatype
class of the compound datatype member specified by member_no.

Valid class identifiers are as defined in H5Tget_class.
Parameters:

hid_tcdtype_id IN: Datatype identifier of compound object.

unsignedmember_no IN: Compound object member number.
Returns:

Returns the datatype class, a non-negative value, if successful; otherwise returns a negative value.
Fortran90 Interface: h5tget_member_class_f

SUBROUTINE h5tget_member_class_f(type_id, member_no, class, hdferr)
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(IN) :: member_no ! Member number
 INTEGER, INTENT(OUT) :: class ! Member class
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_member_class_f

History:
Release C

1.6.4 membno parameter type changed to unsigned.

HDF5 Reference Manual H5Tget_member_class

631

Last modified: 18 August 2010

Name:H5Tget_member_index
Signature:

int H5Tget_member_index(hid_t dtype_id, const char * field_name)
Purpose:

Retrieves the index of a compound or enumeration datatype member.
Description:

H5Tget_member_index retrieves the index of a field of a compound datatype or an element of an
enumeration datatype.

The name of the target field or element is specified in field_name.

Fields are stored in no particular order with index values of 0 through N-1, where N is the value returned
by H5Tget_nmembers.

Parameters:
hid_tdtype_id IN: Identifier of datatype to query.

const char *field_name IN: Name of the field or member whose index is to be retrieved.
Returns:

Returns a valid field or member index if successful; otherwise returns a negative value.
Fortran90 Interface: h5tget_member_index_f

SUBROUTINE h5tget_member_index_f(type_id, name, index, hdferr)
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Member name
 INTEGER, INTENT(OUT) :: index ! Member index
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_member_index_f

History:
Release C Fortran90

1.4.5 Function introduced in this release.

1.4.4 Function introduced in this release.

H5Tget_member_index HDF5 Reference Manual

632

Last modified: 18 August 2010

Name:H5Tget_member_name
Signature:

char * H5Tget_member_name(hid_t dtype_id, unsigned field_idx)
Purpose:

Retrieves the name of a compound or enumeration datatype member.
Description:

H5Tget_member_name retrieves the name of a field of a compound datatype or an element of an
enumeration datatype.

The index of the target field or element is specified in field_idx. Compound datatype fields and
enumeration datatype elements are stored in no particular order with index values of 0 through N-1, where
N is the value returned by H5Tget_nmembers.

A buffer to receive the name of the field is allocated with malloc() and the caller is responsible for
freeing the memory used.

Parameters:
hid_t tdype_id IN: Identifier of datatype to query.

unsignedfield_idx IN: Zero-based index of the field or element whose name is to be retrieved.
Returns:

Returns a valid pointer to a string allocated with malloc() if successful; otherwise returns NULL.
Fortran90 Interface: h5tget_member_name_f

SUBROUTINE h5tget_member_name_f(type_id,index, member_name, namelen, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(IN) :: index ! Field index (0-based) of
 ! the field name to retrieve
 CHARACTER(LEN=*), INTENT(OUT) :: member_name ! Name of a field of
 ! a compound datatype
 INTEGER, INTENT(OUT) :: namelen ! Length of the name
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_member_name_f

History:
Release C

1.6.4 membno parameter type changed to unsigned.

HDF5 Reference Manual H5Tget_member_name

633

Last modified: 18 August 2010

Name:H5Tget_member_offset
Signature:

size_tH5Tget_member_offset(hid_t dtype_id, unsigned memb_no)
Purpose:

Retrieves the offset of a field of a compound datatype.
Description:

H5Tget_member_offset retrieves the byte offset of the beginning of a field within a compound
datatype with respect to the beginning of the compound data type datum.

Parameters:
hid_tdtype_id IN: Identifier of datatype to query.

unsignedmemb_no IN: Number of the field whose offset is requested.
Returns:

Returns the byte offset of the field if successful; otherwise returns 0 (zero). Note that zero is a valid offset
and that this function will fail only if a call to H5Tget_member_class() fails with the same
arguments.

Fortran90 Interface: h5tget_member_offset_f
SUBROUTINE h5tget_member_offset_f(type_id, member_no, offset, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(IN) :: member_no ! Number of the field
 ! whose offset is requested
 INTEGER(SIZE_T), INTENT(OUT) :: offset ! Byte offset of the the
 ! beginning of the field
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_member_offset_f

History:
Release C

1.6.4 membno parameter type changed to unsigned.

H5Tget_member_offset HDF5 Reference Manual

634

Last modified: 18 August 2010

Name:H5Tget_member_type
Signature:

hid_tH5Tget_member_type(hid_t dtype_id, unsigned field_idx)
Purpose:

Returns the datatype of the specified member.
Description:

H5Tget_member_type returns the datatype of the specified member. The caller should invoke
H5Tclose() to release resources associated with the type.

Parameters:
hid_tdtype_id IN: Identifier of datatype to query.

unsignedfield_idx IN: Field index (0-based) of the field type to
retrieve.

Returns:
Returns the identifier of a copy of the datatype of the field if successful; otherwise returns a negative
value.

Fortran90 Interface: h5tget_member_type_f
SUBROUTINE h5tget_member_type_f(type_id, field_idx, datatype, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(IN) :: field_idx ! Field index (0-based) of the
 ! field type to retrieve
 INTEGER(HID_T), INTENT(OUT) :: datatype ! Identifier of a copy of
 ! the datatype of the field
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_member_type_f

History:
Release C

1.6.4 membno parameter type changed to unsigned.

HDF5 Reference Manual H5Tget_member_type

635

Name:H5Tget_member_value
Signature:

herr_tH5Tget_member_value(hid_t dtype_id unsigned memb_no, void *value)
Purpose:

Returns the value of an enumeration datatype member.
Description:

H5Tget_member_value returns the value of the enumeration datatype member memb_no.

The member value is returned in a user-supplied buffer pointed to by value.
Parameters:

hid_tdtype_id IN: Datatype identifier for the enumeration datatype.

unsignedmemb_no IN: Number of the enumeration datatype member.

void *value OUT: Pointer to a buffer for output of the value of the enumeration datatype
member.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5tget_member_value_f
SUBROUTINE h5tget_member_value_f(type_id, member_no, value, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(IN) :: member_no ! Number of the enumeration
 ! datatype member
 INTEGER, INTENT(OUT) :: value ! Value of the enumeration datatype
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_member_value_f

History:
Release C

1.6.4 membno parameter type changed to unsigned.

H5Tget_member_value HDF5 Reference Manual

636

Last modified: 18 August 2010

Name:H5Tget_native_type
Signature:

hid_tH5Tget_native_type(hid_t dtype_id, H5T_direction_t direction)
Purpose:

Returns the native datatype of a specified datatype.
Description:

H5Tget_native_type returns the equivalent native datatype for the datatype specified in
dtype_id.

H5Tget_native_type is a high-level function designed primarily to facilitate use of the H5Dread
function, for which users otherwise must undertake a multi-step process to determine the native datatype
of a dataset prior to reading it into memory. This function can be used for the following purposes:

To determine the native datatype of an atomic datatype◊
To determine the base datatype of an array, enumerated, or variable-length datatype◊
To determine the native atomic datatypes of the individual components of a compound datatype◊

For example, if dtype_id is a compound datatype, the returned datatype identifier will be for a similar
compound datatype with each element converted to the corresponding native datatype; nested compound
datatypes will be unwound. If dtype_id is an array, the returned datatype identifier will be for the
native datatype of a single array element.

H5Tget_native_type selects the first matching native datatype from the following list:

 H5T_NATIVE_CHAR
 H5T_NATIVE_SHORT
 H5T_NATIVE_INT
 H5T_NATIVE_LONG
 H5T_NATIVE_LLONG

 H5T_NATIVE_UCHAR
 H5T_NATIVE_USHORT
 H5T_NATIVE_UINT
 H5T_NATIVE_ULONG
 H5T_NATIVE_ULLONG

 H5T_NATIVE_FLOAT
 H5T_NATIVE_DOUBLE
 H5T_NATIVE_LDOUBLE

 H5T_NATIVE_B8
 H5T_NATIVE_B16
 H5T_NATIVE_B32
 H5T_NATIVE_B64

The direction parameter indicates the order in which the library searches for a native datatype match.
Valid values for direction are as follows:

H5T_DIR_ASCEND Searches the above list in ascending size of the datatype,
i.e., from top to bottom. (Default)

H5T_DIR_DESCEND Searches the above list in descending size of the datatype,
i.e., from bottom to top.

HDF5 Reference Manual H5Tget_native_type

637

H5Tget_native_type is designed primarily for use with integer, floating point, and bitfield
datatypes. String, time, opaque, and reference datatypes are returned as a copy of dtype_id. See above
for compound, array, enumerated, and variable-length datatypes.

The identifier returned by H5Tget_native_type should eventually be closed by calling H5Tclose
to release resources.

Parameters:
hid_tdtype_id IN: Datatype identifier for the dataset datatype.

H5T_direction_tdirection IN: Direction of search.
Returns:

Returns the native datatype identifier for the specified dataset datatype if successful; otherwise returns a
negative value.

Fortran90 Interface: h5tget_native_type_f
SUBROUTINE h5tget_native_type_f(dtype_id, direction, native_dtype_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: dtype_id
 ! Datatype identifier
 INTEGER, INTENT(IN) :: direction ! Direction of search:
 ! H5T_DIR_ASCEND_F = 1 in inscendent order
 ! H5T_DIR_DESCEND_F= 2 in descendent order
 INTEGER(HID_T), INTENT(OUT) :: native_dtype_id
 ! The native datatype identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code:
 ! 0 on success and -1 on failure
END SUBROUTINE h5tget_native_type_f

History:
Release C

1.6.0 Function introduced in this release.

H5Tget_native_type HDF5 Reference Manual

638

Last modified: 18 August 2010

Name:H5Tget_nmembers
Signature:

int H5Tget_nmembers(hid_t dtype_id)
Purpose:

Retrieves the number of elements in a compound or enumeration datatype.
Description:

H5Tget_nmembers retrieves the number of fields in a compound datatype or the number of members
of an enumeration datatype.

Parameters:
hid_tdtype_id IN: Identifier of datatype to query.

Returns:
Returns the number of elements if successful; otherwise returns a negative value.

Fortran90 Interface: h5tget_nmembers_f
SUBROUTINE h5tget_nmembers_f(type_id, num_members, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(OUT) :: num_members ! Number of fields in a
 ! compound datatype
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_nmembers_f

HDF5 Reference Manual H5Tget_nmembers

639

Last modified: 18 August 2010

Name:H5Tget_norm
Signature:

H5T_norm_tH5Tget_norm(hid_t dtype_id)
Purpose:

Retrieves mantissa normalization of a floating-point datatype.
Description:

H5Tget_norm retrieves the mantissa normalization of a floating-point datatype. Valid normalization
types are:

H5T_NORM_IMPLIED (0)
MSB of mantissa is not stored, always 1

H5T_NORM_MSBSET (1)
MSB of mantissa is always 1

H5T_NORM_NONE (2)
Mantissa is not normalized

Parameters:
hid_tdtype_id IN: Identifier of datatype to query.

Returns:
Returns a valid normalization type if successful; otherwise H5T_NORM_ERROR (-1).

Fortran90 Interface: h5tget_norm_f
SUBROUTINE h5tget_norm_f(type_id, norm, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id
 ! Datatype identifier
 INTEGER, INTENT(OUT) :: norm ! Mantissa normalization of a
 ! floating-point datatype
 ! Valid normalization types are:
 ! H5T_NORM_IMPLIED_F(0)
 ! MSB of mantissa is not
 ! stored, always 1
 ! H5T_NORM_MSBSET_F(1)
 ! MSB of mantissa is always 1
 ! H5T_NORM_NONE_F(2)
 ! Mantissa is not normalized
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_norm_f

H5Tget_norm HDF5 Reference Manual

640

Last modified: 18 August 2010

Name:H5Tget_offset
Signature:

int H5Tget_offset(hid_t dtype_id)
Purpose:

Retrieves the bit offset of the first significant bit.
Description:

H5Tget_offset retrieves the bit offset of the first significant bit. The significant bits of an atomic
datum can be offset from the beginning of the memory for that datum by an amount of padding. The
`offset' property specifies the number of bits of padding that appear to the "right of" the value. That is, if
we have a 32-bit datum with 16-bits of precision having the value 0x1122 then it will be laid out in
memory as (from small byte address toward larger byte addresses):

Byte Position
Big-Endian

Offset=0
Big-Endian
Offset=16

Little-Endian
Offset=0

Little-Endian
Offset=16

0: [pad] [0x11] [0x22] [pad]

1: [pad] [0x22] [0x11] [pad]

2: [0x11] [pad] [pad] [0x22]

3: [0x22] [pad] [pad] [0x11]

Parameters:
hid_tdtype_id IN: Identifier of datatype to query.

Returns:
Returns an offset value if successful; otherwise returns a negative value.

Fortran90 Interface: h5tget_offset_f
SUBROUTINE h5tget_offset_f(type_id, offset, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER(SIZE_T), INTENT(OUT) :: offset ! Datatype bit offset of the
 ! first significant bit
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_offset_f

HDF5 Reference Manual H5Tget_offset

641

Last modified: 24 September 2010

Name:H5Tget_order
Signature:

H5T_order_tH5Tget_order(hid_t dtype_id)
Purpose:

Returns the byte order of an atomic datatype.
Description:

H5Tget_order returns the byte order of an atomic datatype.

Possible return values are:

H5T_ORDER_LE (0)
Little-endian byte order

H5T_ORDER_BE (1)
Big-endian byte order

H5T_ORDER_VAX (2)
VAX mixed byte order

H5T_ORDER_MIXED (3)
Mixed byte order among members of a compound datatype (see below)

H5T_ORDER_NONE (4)
No particular order (fixed-length strings, object and region references)

Members of a compound datatype need not have the same byte order. If members of a compound
datatype have more than one of little endian, big endian, or VAX byte order, H5Tget_order will return
H5T_ORDER_MIXED for the compound datatype. A byte order of H5T_ORDER_NONE will, however, be
ignored; for example, if one or more members of a compound datatype have byte order
H5T_ORDER_NONE but all other members have byte order H5T_ORDER_LE, H5Tget_order will
return H5T_ORDER_LE for the compound datatype.

Parameters:
hid_tdtype_id IN: Identifier of datatype to query.

Returns:
Returns a byte order constant if successful; otherwise H5T_ORDER_ERROR (-1).

Fortran90 Interface: h5tget_order_f
SUBROUTINE h5tget_order_f(type_id, order, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(OUT) :: order ! Datatype byte order
 ! Possible values are:
 ! H5T_ORDER_LE_F
 ! H5T_ORDER_BE_F
 ! H5T_ORDER_VAX_F
 ! H5T_ORDER_MIXED_F
 ! (not implemented)
 ! H5T_ORDER_NONE_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tget_order_f

History:
Release Change

1.8.6 Function modified to work with all datatypes.
H5T_ORDER_MIXED added to H5T_order_t.

H5Tget_order HDF5 Reference Manual

642

Name:H5Tget_pad
Signature:

herr_tH5Tget_pad(hid_t dtype_id, H5T_pad_t * lsb, H5T_pad_t * msb)
Purpose:

Retrieves the padding type of the least and most-significant bit padding.
Description:

H5Tget_pad retrieves the padding type of the least and most-significant bit padding. Valid types are:
H5T_PAD_ZERO (0)

Set background to zeros.
H5T_PAD_ONE (1)

Set background to ones.
H5T_PAD_BACKGROUND (2)

Leave background alone.
Parameters:

hid_tdtype_id IN: Identifier of datatype to query.

H5T_pad_t *lsb OUT: Pointer to location to return least-significant bit padding type.

H5T_pad_t *msb OUT: Pointer to location to return most-significant bit padding type.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tget_pad_f

SUBROUTINE h5tget_pad_f(type_id, lsbpad, msbpad, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(OUT) :: lsbpad ! Padding type of the
 ! least significant bit
 INTEGER, INTENT(OUT) :: msbpad ! Padding type of the
 ! most significant bit
 ! Possible values of
 ! padding type are:
 ! H5T_PAD_ZERO_F = 0
 ! H5T_PAD_ONE_F = 1
 ! H5T_PAD_BACKGROUND_F = 2
 ! H5T_PAD_ERROR_F = -1
 ! H5T_PAD_NPAD_F = 3
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_pad_f

HDF5 Reference Manual H5Tget_pad

643

Last modified: 18 August 2010

Name:H5Tget_precision
Signature:

size_tH5Tget_precision(hid_t dtype_id)
Purpose:

Returns the precision of an atomic datatype.
Description:

H5Tget_precision returns the precision of an atomic datatype. The precision is the number of
significant bits which, unless padding is present, is 8 times larger than the value returned by
H5Tget_size.

Parameters:
hid_tdtype_id IN: Identifier of datatype to query.

Returns:
Returns the number of significant bits if successful; otherwise 0.

Fortran90 Interface: h5tget_precision_f
SUBROUTINE h5tget_precision_f(type_id, precision, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER(SIZE_T), INTENT(OUT) :: precision ! Datatype precision
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_precision_f

H5Tget_precision HDF5 Reference Manual

644

Last modified: 18 August 2010

Name:H5Tget_sign
Signature:

H5T_sign_tH5Tget_sign(hid_t dtype_id)
Purpose:

Retrieves the sign type for an integer type.
Description:

H5Tget_sign retrieves the sign type for an integer type. Valid types are:
H5T_SGN_NONE (0)

Unsigned integer type.
H5T_SGN_2 (1)

Two's complement signed integer type.
Parameters:

hid_tdtype_id IN: Identifier of datatype to query.
Returns:

Returns a valid sign type if successful; otherwise H5T_SGN_ERROR (-1).
Fortran90 Interface: h5tget_sign_f

SUBROUTINE h5tget_sign_f(type_id, sign, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(OUT) :: sign ! Sign type for an integer type
 ! Possible values are:
 ! Unsigned integer type
 ! H5T_SGN_NONE_F = 0
 ! Two's complement signed
 ! integer type
 ! H5T_SGN_2_F = 1
 ! or error value
 ! H5T_SGN_ERROR_F = -1
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tget_sign_f

HDF5 Reference Manual H5Tget_sign

645

Last modified: 18 August 2010

Name:H5Tget_size
Signature:

size_tH5Tget_size(hid_t dtype_id)
Purpose:

Returns the size of a datatype.
Description:

H5Tget_size returns the size of a datatype in bytes.
Parameters:

hid_tdtype_id IN: Identifier of datatype to query.
Returns:

Returns the size of the datatype in bytes if successful; otherwise 0.
Fortran90 Interface: h5tget_size_f

SUBROUTINE h5tget_size_f(type_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER(SIZE_T), INTENT(OUT) :: size ! Datatype size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tget_size_f

H5Tget_size HDF5 Reference Manual

646

Last modified: 18 August 2010

Name:H5Tget_strpad
Signature:

H5T_str_tH5Tget_strpad(hid_t dtype_id)
Purpose:

Retrieves the storage mechanism for a string datatype.
Description:

H5Tget_strpad retrieves the storage mechanism for a string datatype, as defined in
H5Tset_strpad.

Parameters:
hid_tdtype_id IN: Identifier of datatype to query.

Returns:
Returns a valid string storage mechanism if successful; otherwise H5T_STR_ERROR (-1).

Fortran90 Interface: h5tget_strpad_f
SUBROUTINE h5tget_strpad_f(type_id, strpad, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id
 ! Datatype identifier
 INTEGER, INTENT(OUT) :: strpad ! String padding method for a string datatype
 ! Possible values of padding type are:
 ! Pad with zeros (as C does):
 ! H5T_STR_NULLPAD_F(0)
 ! Pad with spaces (as FORTRAN does):
 ! H5T_STR_SPACEPAD_F(1)
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tget_strpad_f

HDF5 Reference Manual H5Tget_strpad

647

Last modified: 18 August 2010

Name:H5Tget_super
Signature:

hid_tH5Tget_super(hid_t dtype_id)
Purpose:

Returns the base datatype from which a datatype is derived.
Description:

H5Tget_super returns the base datatype from which the datatype dtype_id is derived.

In the case of an enumeration type, the return value is an integer type.
Parameters:

hid_tdtype_id IN: Datatype identifier for the derived datatype.
Returns:

Returns the datatype identifier for the base datatype if successful; otherwise returns a negative value.
Fortran90 Interface: h5tget_super_f

SUBROUTINE h5tget_super_f(type_id, base_type_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER(HID_T), INTENT(OUT) :: type_id ! Base datatype identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tget_super_f

H5Tget_super HDF5 Reference Manual

648

Last modified: 18 August 2010

Name:H5Tget_tag
Signature:

char *H5Tget_tag(hid_t dtype_id)
Purpose:

Gets the tag associated with an opaque datatype.
Description:

H5Tget_tag returns the tag associated with the opaque datatype dtype_id.

The tag is returned via a pointer to an allocated string, which the caller must free.
Parameters:

hid_tdtype_id IN: Datatype identifier for the opaque datatype.
Returns:

Returns a pointer to an allocated string if successful; otherwise returns NULL.
Fortran90 Interface: h5tget_tag_f

SUBROUTINE h5tget_tag_f(type_id, tag,taglen, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 CHARACTER(LEN=*), INTENT(OUT) :: tag ! Unique ASCII string with which the
 ! opaque datatype is to be tagged
 INTEGER, INTENT(OUT) :: taglen ! Length of tag
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tget_tag_f

HDF5 Reference Manual H5Tget_tag

649

Last modified: 18 August 2010

Name:H5Tinsert
Signature:

herr_tH5Tinsert(hid_t dtype_id, const char * name, size_toffset, hid_t field_id)
Purpose:

Adds a new member to a compound datatype.
Description:

H5Tinsert adds another member to the compound datatype dtype_id. The new member has a name
which must be unique within the compound datatype. The offset argument defines the start of the
member in an instance of the compound datatype, and field_id is the datatype identifier of the new
member.

Note: Members of a compound datatype do not have to be atomic datatypes; a compound datatype can
have a member which is a compound datatype.

Parameters:
hid_tdtype_id IN: Identifier of compound datatype to modify.

const char *name IN: Name of the field to insert.

size_toffset IN: Offset in memory structure of the field to insert.

hid_t field_id IN: Datatype identifier of the field to insert.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tinsert_f

SUBROUTINE h5tinsert_f(type_id, name, offset, field_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Name of the field to insert
 INTEGER(SIZE_T), INTENT(IN) :: offset ! Offset in memory structure
 ! of the field to insert
 INTEGER(HID_T), INTENT(IN) :: field_id ! Datatype identifier of the
 ! new member
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tinsert_f

H5Tinsert HDF5 Reference Manual

650

Last modified: 18 August 2010

Name:H5Tis_variable_str
Signature:

htri_t H5Tis_variable_str(hid_t dtype_id)
Purpose:

Determines whether datatype is a variable-length string.
Description:

H5Tis_variable_str determines whether the datatype identified in dtype_id is a variable-length
string.

This function can be used to distinguish between fixed and variable-length string datatypes.
Parameters:

hid_tdtype_id IN: Datatype identifier.
Returns:

Returns TRUE or FALSE if successful; otherwise returns a negative value.
Fortran90 Interface: h5tis_variable_str_f

SUBROUTINE h5tis_variable_str_f(type_id, status, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 LOGICAL, INTENT(OUT) :: status ! Logical flag:
 ! .TRUE. if datatype is a
 ! variable string
 ! .FALSE. otherwise
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tis_variable_str_f

History:
Release C

1.6.0 Function introduced in this release.

HDF5 Reference Manual H5Tis_variable_str

651

Last modified: 18 August 2010

Name:H5Tlock
Signature:

herr_tH5Tlock(hid_t dtype_id)
Purpose:

Locks a datatype.
Description:

H5Tlock locks the datatype specified by the dtype_id identifier, making it read-only and
non-destructible. This is normally done by the library for predefined datatypes so the application does not
inadvertently change or delete a predefined type. Once a datatype is locked it can never be unlocked.

Parameters:
hid_tdtype_id IN: Identifier of datatype to lock.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface:
None.

H5Tlock HDF5 Reference Manual

652

Name:H5Topen
Signature:

hid_tH5Topen(hid_t loc_id, const char * name)
hid_tH5Topen(hid_t loc_id, const char * name, hid_ttapl_id)

Purpose:
Opens a named datatype.

Description:
H5Topen is a macro that is mapped to either H5Topen1 or H5Topen2, depending on the needs of the
application.

Such macros are provided to facilitate application compatibility. Their use and mappings are fully
described in “API Compatibility Macros in HDF5”; we urge you to read that document closely.

When both the HDF5 Library and the application are built and installed with no specific compatibility
flags, H5Topen is mapped to the most recent version of the function, currently H5Topen2. If the library
and/or application is compiled for Release 1.6 emulation, H5Topen will be mapped to H5Topen1.
Function-specific flags are available to override these settings on a function-by-function basis when the
application is compiled.

Specific compile-time compatibility flags and the resulting mappings are as follows:

Compatibility setting H5Topen mapping

Global settings

No compatibility flag H5Topen2

Enable deprecated symbols H5Topen2

Disable deprecated symbols H5Topen2

Emulate Release 1.6 interface H5Topen1

Function-level macros

H5Topen_vers = 2 H5Topen2

H5Topen_vers = 1 H5Topen1

Fortran90 Interface: h5topen_f
SUBROUTINE h5topen_f(loc_id, name, type_id, hdferr, tapl_id)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: loc_id ! File or group identifier
 CHARACTER(LEN=*), INTENT(IN) :: name ! Datatype name within file or group
 INTEGER(HID_T), INTENT(OUT) :: type_id ! Datatype identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
 INTEGER(HID_T), OPTIONAL, INTENT(IN) :: tapl_id
 ! Datatype access property list id
END SUBROUTINE h5topen_f

HDF5 Reference Manual H5Topen

653

History:
Release C

1.8.0 The function H5Topen renamed to H5Topen1 and deprecated in this release.
The macro H5Topen and the function H5Topen2 introduced in this release.

H5Topen HDF5 Reference Manual

654

Name:H5Topen1
Signature:

hid_tH5Topen1(hid_t loc_id, const char * name)
Purpose:

Opens a named datatype.
Notice:

This function is deprecated in favor of the function H5Topen2.
Description:

H5Topen1 opens a named datatype at the location specified by loc_id and returns an identifier for the
datatype. loc_id is either a file or group identifier. The identifier should eventually be closed by calling
H5Tclose to release resources.

Parameters:
hid_t loc_id IN: A file or group identifier.

const char *name IN: A datatype name, defined within the file or group identified by loc_id.
Returns:

Returns a named datatype identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Topen.
History:

Release C

1.8.0 The function H5Topen renamed to H5Topen1 and deprecated in this release.

HDF5 Reference Manual H5Topen1

655

Name:H5Topen2
Signature:

hid_tH5Topen2(hid_t loc_id, const char * name, hid_ttapl_id)
Purpose:

Opens a named datatype.
Description:

H5Topen2 opens a named datatype at the location specified by loc_id and returns an identifier for the
datatype. loc_id is either a file or group identifier. The identifier should eventually be closed by calling
H5Tclose to release resources.

The named datatype is opened with the datatype access property list tapl_id.
Parameters:

hid_t loc_id IN: A file or group identifier.

const char *name IN: A datatype name, defined within the file or group identified by loc_id.

hid_t tapl_id IN: Datatype access property list identifier.
Returns:

Returns a named datatype identifier if successful; otherwise returns a negative value.
Fortran90 Interface: See listing under H5Topen.
History:

Release C

1.8.0 Function introduced in this release.

H5Topen2 HDF5 Reference Manual

656

Last modified: 18 August 2010

Name:H5Tpack
Signature:

herr_tH5Tpack(hid_t dtype_id)
Purpose:

Recursively removes padding from within a compound datatype.
Description:

H5Tpack recursively removes padding from within a compound datatype to make it more efficient
(space-wise) to store that data.

Parameters:
hid_tdtype_id IN: Identifier of datatype to modify.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5tpack_f
SUBROUTINE h5tpack_f(type_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tpack_f

HDF5 Reference Manual H5Tpack

657

Last modified: 19 August 2010

Name:H5Tregister
Signature:

herr_tH5Tregister(H5T_pers_t type, const char * name, hid_tsrc_id, hid_t dst_id,
H5T_conv_tfunc)

Purpose:
Registers a conversion function.

Description:
H5Tregister registers a hard or soft conversion function for a datatype conversion path.

The parameter type indicates whether a conversion function is hard (H5T_PERS_HARD) or soft
(H5T_PERS_SOFT). User-defined functions employing compiler casting are designated as hard; other
user-defined conversion functions registered with the HDF5 Library (with H5Tregister) are
designated as soft. The HDF5 Library also has its own hard and soft conversion functions.

A conversion path can have only one hard function. When type is H5T_PERS_HARD, func replaces
any previous hard function. If type is H5T_PERS_HARD and func is the null pointer, then any hard
function registered for this path is removed.

When type is H5T_PERS_SOFT, H5Tregister adds the function to the end of the master soft list
and replaces the soft function in all applicable existing conversion paths. Soft functions are used when
determining which conversion function is appropriate for this path.

The name is used only for debugging and should be a short identifier for the function.

The path is specified by the source and destination datatypes src_id and dst_id. For soft conversion
functions, only the class of these types is important.

The type of the conversion function pointer is declared as:

typedef herr_t (*H5T_conv_t) (hid_t src_id,
hid_t dst_id,
H5T_cdata_t *cdata,
size_t nelmts,
size_t buf_stride,
size_t bkg_stride,
void *buf,
void *bkg,
hid_t dset_xfer_plist)

The H5T_cdata_t struct is declared as:

typedef struct *H5T_cdata_t (H5T_cmd_t command,
H5T_bkg_t need_bkg,
hbool_t *recalc,
void *priv)

The H5T_conv_t parameters and the elements of the H5T_cdata_t struct are described more fully in
the “Data Conversion.”

H5Tregister HDF5 Reference Manual

658

Parameters:
H5T_pers_ttype IN: Conversion function type:

H5T_PERS_HARD for hard conversion functions or
H5T_PERS_SOFT for soft conversion functions.

const char *name IN: Name displayed in diagnostic output.

hid_tsrc_id IN: Identifier of source datatype.

hid_tdst_id IN: Identifier of destination datatype.

H5T_conv_tfunc IN: Function to convert between source and destination datatypes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.6.3 The following change occurred in the H5Tconv_t function:
nelmts parameter type changed to size_t.

HDF5 Reference Manual H5Tregister

659

Last modified: 19 August 2010

Name:H5Tset_cset
Signature:

herr_tH5Tset_cset(hid_t dtype_id, H5T_cset_t cset)
Purpose:

Sets character set to be used.
Description:

H5Tset_cset sets the character set to be used.

HDF5 is able to distinguish between character sets of different nationalities and to convert between them
to the extent possible. Valid character set types are:

H5T_CSET_ASCII (0) Character set is US ASCII.

H5T_CSET_UTF8 (1) Character set is UTF-8, enabling UTF-8 Unicode encoding.
Parameters:

hid_tdtype_id IN: Identifier of datatype to modify.

H5T_cset_tcset IN: Character set type.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tset_cset_f

SUBROUTINE h5tset_cset_f(type_id, cset, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id
 ! Datatype identifier
 INTEGER, INTENT(IN) :: cset ! Character set type of a string datatype
 ! Possible values are:
 ! H5T_CSET_ASCII_F = 0
 ! H5T_CSET_UTF8_F = 1
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tset_cset_f

History:
Release Change

1.8.0 UTF-8 Unicode encoding introduced in this release.

H5Tset_cset HDF5 Reference Manual

660

Last modified: 19 August 2010

Name:H5Tset_ebias
Signature:

herr_tH5Tset_ebias(hid_t dtype_id, size_t ebias)
Purpose:

Sets the exponent bias of a floating-point type.
Description:

H5Tset_ebias sets the exponent bias of a floating-point type.
Parameters:

hid_tdtype_id IN: Identifier of datatype to set.

size_tebias IN: Exponent bias value.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tset_ebias_f

SUBROUTINE h5tset_ebias_f(type_id, ebias, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER(SIZE_T), INTENT(IN) :: ebias ! Datatype exponent bias
 ! of a floating-point type,
 ! which cannot be 0
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tset_ebias_f

HDF5 Reference Manual H5Tset_ebias

661

Last modified: 19 August 2010

Name:H5Tset_fields
Signature:

herr_tH5Tset_fields(hid_t dtype_id, size_t spos, size_t epos, size_tesize, size_t mpos,
size_tmsize)

Purpose:
Sets locations and sizes of floating point bit fields.

Description:
H5Tset_fields sets the locations and sizes of the various floating-point bit fields. The field positions
are bit positions in the significant region of the datatype. Bits are numbered with the least significant bit
number zero.

Fields are not allowed to extend beyond the number of bits of precision, nor are they allowed to overlap
with one another.

Parameters:
hid_tdtype_id IN: Identifier of datatype to set.

size_tspos IN: Sign position, i.e., the bit offset of the floating-point sign bit.

size_tepos IN: Exponent bit position.

size_tesize IN: Size of exponent in bits.

size_tmpos IN: Mantissa bit position.

size_tmsize IN: Size of mantissa in bits.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tset_fields_f

SUBROUTINE h5tset_fields_f(type_id, spos, epos, esize, mpos, msize, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER(SIZE_T), INTENT(IN) :: spos ! sign bit-position
 INTEGER(SIZE_T), INTENT(IN) :: epos ! exponent bit-position
 INTEGER(SIZE_T), INTENT(IN) :: esize ! size of exponent in bits
 INTEGER(SIZE_T), INTENT(IN) :: mpos ! mantissa bit-position
 INTEGER(SIZE_T), INTENT(IN) :: msize ! size of mantissa in bits
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tset_fields_f

H5Tset_fields HDF5 Reference Manual

662

Name:H5Tset_inpad
Signature:

herr_tH5Tset_inpad(hid_t dtype_id, H5T_pad_t inpad)
Purpose:

Fills unused internal floating point bits.
Description:

If any internal bits of a floating point type are unused (that is, those significant bits which are not part of
the sign, exponent, or mantissa), then H5Tset_inpad will be filled according to the value of the
padding value property inpad. Valid padding types are:

H5T_PAD_ZERO (0)
Set background to zeros.

H5T_PAD_ONE (1)
Set background to ones.

H5T_PAD_BACKGROUND (2)
Leave background alone.

Parameters:
hid_tdtype_id Identifier of datatype to modify.

H5T_pad_tpad Padding type.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tset_inpad_f

SUBROUTINE h5tset_inpad_f(type_id, padtype, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id
 ! Datatype identifier
 INTEGER, INTENT(IN) :: padtype ! Padding type for unused bits
 ! in floating-point datatypes.
 ! Possible values of padding type are:
 ! H5T_PAD_ZERO_F = 0
 ! H5T_PAD_ONE_F = 1
 ! H5T_PAD_BACKGROUND_F = 2
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tset_inpad_f

HDF5 Reference Manual H5Tset_inpad

663

Last modified: 19 August 2010

Name:H5Tset_norm
Signature:

herr_tH5Tset_norm(hid_t dtype_id, H5T_norm_t norm)
Purpose:

Sets the mantissa normalization of a floating-point datatype.
Description:

H5Tset_norm sets the mantissa normalization of a floating-point datatype. Valid normalization types
are:

H5T_NORM_IMPLIED (0)
MSB of mantissa is not stored, always 1.

H5T_NORM_MSBSET (1)
MSB of mantissa is always 1.

H5T_NORM_NONE (2)
Mantissa is not normalized.

Parameters:
hid_tdtype_id IN: Identifier of datatype to set.

H5T_norm_tnorm IN: Mantissa normalization type.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tset_norm_f

SUBROUTINE h5tset_norm_f(type_id, norm, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id
 ! Datatype identifier
 INTEGER, INTENT(IN) :: norm ! Mantissa normalization of a
 ! floating-point datatype
 ! Valid normalization types are:
 ! H5T_NORM_IMPLIED_F(0)
 ! MSB of mantissa is not stored,
 ! always 1
 ! H5T_NORM_MSBSET_F(1)
 ! MSB of mantissa is always 1
 ! H5T_NORM_NONE_F(2)
 ! Mantissa is not normalized
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tset_norm_f

H5Tset_norm HDF5 Reference Manual

664

Last modified: 19 August 2010

Name:H5Tset_offset
Signature:

herr_tH5Tset_offset(hid_t dtype_id, size_t offset)
Purpose:

Sets the bit offset of the first significant bit.
Description:

H5Tset_offset sets the bit offset of the first significant bit. The significant bits of an atomic datum
can be offset from the beginning of the memory for that datum by an amount of padding. The offset
property specifies the number of bits of padding that appear “to the right of” the value. That is, if we have
a 32-bit datum with 16-bits of precision having the value 0x1122, then it will be laid out in memory as
(from small byte address toward larger byte addresses):

Byte Position
Big-Endian

Offset=0
Big-Endian
Offset=16

Little-Endian
Offset=0

Little-Endian
Offset=16

0 [pad] [0x11] [0x22] [pad]

1 [pad] [0x22] [0x11] [pad]

2 [0x11] [pad] [pad] [0x22]

3 [0x22] [pad] [pad] [0x11]

If the offset is incremented then the total size is incremented also if necessary to prevent significant bits
of the value from hanging over the edge of the datatype.

The offset of an H5T_STRING cannot be set to anything but zero.
Parameters:

hid_tdtype_id IN: Identifier of datatype to set.

size_toffset IN: Offset of first significant bit.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tset_offset_f

SUBROUTINE h5tset_offset_f(type_id, offset, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER(SIZE_T), INTENT(IN) :: offset ! Datatype bit offset of
 ! the first significant bit
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tset_offset_f

HDF5 Reference Manual H5Tset_offset

665

Last modified: 24 September 2010

Name:H5Tset_order
Signature:

herr_tH5Tset_order(hid_t dtype_id, H5T_order_t order)
Purpose:

Sets the byte order of a datatype.
Description:

H5Tset_order sets the byte order of a datatype.

Byte order can currently be set to any of the following:

H5T_ORDER_LE (0)
Little-endian byte order

H5T_ORDER_BE (1)
Big-endian byte order

H5T_ORDER_VAX (2)
VAX mixed byte order

H5T_ORDER_MIXED (3) is a valid value for order only when returned by the function
H5Tget_order; it cannot be set with H5Tset_order.

H5T_ORDER_NONE (4) is a valid value for order, but it has no effect. It is valid only for fixed-length
strings and object and region references and specifies “no particular order.”

The byte order of a derived datatype is initially the same as that of the parent type, but can be changed
with H5Tset_order.

This function cannot be used with a datatype after it has been committed.

Special considerations:
ENUM datatypes: Byte order must be set before any member on an ENUM is defined.

Compound datatypes: Byte order is set individually on each member of a compound datatype; members
of a compound datatype need not have the same byte order.

Opaque datatypes: Byte order can be set but has no effect.
Parameters:

hid_tdtype_id IN: Identifier of datatype to set.

H5T_order_torder IN: Byte order constant.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

H5Tset_order HDF5 Reference Manual

666

Fortran90 Interface: h5tset_order_f
SUBROUTINE h5tset_order_f(type_id, order, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(IN) :: order ! Datatype byte order
 ! Possible values are:
 ! H5T_ORDER_LE_F
 ! H5T_ORDER_BE_F
 ! H5T_ORDER_VAX_F
 ! H5T_ORDER_NONE_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tset_order_f

History:
Release Change

1.8.6 Function modified to work with all datatypes.
H5T_ORDER_MIXED added to H5T_order_t.

HDF5 Reference Manual H5Tset_order

667

Last modified: 19 August 2010

Name:H5Tset_pad
Signature:

herr_tH5Tset_pad(hid_t dtype_id, H5T_pad_t lsb, H5T_pad_t msb)
Purpose:

Sets the least and most-significant bits padding types.
Description:

H5Tset_pad sets the least and most-significant bits padding types.
H5T_PAD_ZERO (0)

Set background to zeros.
H5T_PAD_ONE (1)

Set background to ones.
H5T_PAD_BACKGROUND (2)

Leave background alone.
Parameters:

hid_tdtype_id IN: Identifier of datatype to set.

H5T_pad_tlsb IN: Padding type for least-significant bits.

H5T_pad_tmsb IN: Padding type for most-significant bits.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tset_pad_f

SUBROUTINE h5tset_pad_f(type_id, lsbpad, msbpad, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER, INTENT(IN) :: lsbpad ! Padding type of the
 ! least significant bit
 INTEGER, INTENT(IN) :: msbpad ! Padding type of the
 ! most significant bit
 ! Possible values of padding
 ! type are:
 ! H5T_PAD_ZERO_F = 0
 ! H5T_PAD_ONE_F = 1
 ! H5T_PAD_BACKGROUND_F = 2
 ! H5T_PAD_ERROR_F = -1
 ! H5T_PAD_NPAD_F = 3
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tset_pad_f

H5Tset_pad HDF5 Reference Manual

668

Last modified: 19 August 2010

Name:H5Tset_precision
Signature:

herr_tH5Tset_precision(hid_t dtype_id, size_tprecision)
Purpose:

Sets the precision of an atomic datatype.
Description:

H5Tset_precision sets the precision of an atomic datatype. The precision is the number of
significant bits which, unless padding is present, is 8 times larger than the value returned by
H5Tget_size.

If the precision is increased then the offset is decreased and then the size is increased to insure that
significant bits do not "hang over" the edge of the datatype.

Changing the precision of an H5T_STRING automatically changes the size as well. The precision must
be a multiple of 8.

When decreasing the precision of a floating point type, set the locations and sizes of the sign, mantissa,
and exponent fields first.

Parameters:
hid_tdtype_id IN: Identifier of datatype to set.

size_tprecision IN: Number of bits of precision for datatype.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tset_precision_f

SUBROUTINE h5tset_precision_f(type_id, precision, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER(SIZE_T), INTENT(IN) :: precision ! Datatype precision
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tset_precision_f

HDF5 Reference Manual H5Tset_precision

669

Last modified: 19 August 2010

Name:H5Tset_sign
Signature:

herr_tH5Tset_sign(hid_t dtype_id, H5T_sign_t sign)
Purpose:

Sets the sign property for an integer type.
Description:

H5Tset_sign sets the sign property for an integer type:
H5T_SGN_NONE (0) Unsigned integer type

H5T_SGN_2 (1) Two's complement signed integer type
Parameters:

hid_tdtype_id IN: Identifier of datatype to set.

H5T_sign_tsign IN: Sign type.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tset_sign_f

SUBROUTINE h5tset_sign_f(type_id, sign, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id
 ! Datatype identifier
 INTEGER, INTENT(IN) :: sign ! Sign type for an integer type
 ! Possible values are:
 ! Unsigned integer type
 ! H5T_SGN_NONE_F = 0
 ! Two's complement signed integer type
 ! H5T_SGN_2_F = 1
 ! or error value
 ! H5T_SGN_ERROR_F=-1
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tset_sign_f

H5Tset_sign HDF5 Reference Manual

670

Last modified: 19 August 2010

Name:H5Tset_size
Signature:

herr_tH5Tset_size(hid_t dtype_id, size_tsize)
Purpose:

Sets the total size for an atomic datatype.
Description:

H5Tset_size sets the total size in bytes, size, for a datatype.

If the datatype is atomic and size is decreased so that the significant bits of the datatype extend beyond
the edge of the new size, then the offset property is decreased toward zero. If the offset becomes
zero and the significant bits of the datatype still hang over the edge of the new size, then the number of
significant bits is decreased.

The size set for a string should include space for the null-terminator character, otherwise it will not be
stored on (or retrieved from) disk. Adjusting the size of a string automatically sets the precision to
8*size.

A compound datatype may increase or decrease in size as long as its member field is not trailed.

All datatypes must have a positive size.
Parameters:

hid_tdtype_id IN: Identifier of datatype to change size.

size_tsize IN: Size in bytes to modify datatype.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tset_size_f

SUBROUTINE h5tset_size_f(type_id, size, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 INTEGER(SIZE_T), INTENT(IN) :: size ! Datatype size
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success and -1 on failure
END SUBROUTINE h5tset_size_f

HDF5 Reference Manual H5Tset_size

671

Last modified: 19 August 2010

Name:H5Tset_strpad
Signature:

herr_tH5Tset_strpad(hid_t dtype_id, H5T_str_t strpad)
Purpose:

Defines the storage mechanism for character strings.
Description:

H5Tset_strpad defines the storage mechanism for the string.

The method used to store character strings differs with the programming language:

C usually null terminates strings while◊
Fortran left-justifies and space-pads strings.◊

Valid string padding values, as passed in the parameter strpad, are as follows:

H5T_STR_NULLTERM (0)
Null terminate (as C does).

H5T_STR_NULLPAD (1)
Pad with zeros.

H5T_STR_SPACEPAD (2)
Pad with spaces (as FORTRAN does).

When converting from a longer string to a shorter string, the behavior is as follows. If the short string is
H5T_STR_NULLPAD or H5T_STR_SPACEPAD, then the string is simply truncated. If the short string is
H5T_STR_NULLTERM, it is truncated and a null terminator is appended.

When converting from a shorter string to a longer string, the long string is padded on the end by
appending nulls or spaces.

Parameters:
hid_tdtype_id IN: Identifier of datatype to modify.

H5T_str_tstrpad IN: String padding type.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tset_strpad_f

SUBROUTINE h5tset_strpad_f(type_id, strpad, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id
 ! Datatype identifier
 INTEGER, INTENT(IN) :: strpad ! String padding method for a string datatype
 ! Possible values of padding type are:
 ! Pad with zeros (as C does):
 ! H5T_STR_NULLPAD_F(0)
 ! Pad with spaces (as FORTRAN does):
 ! H5T_STR_SPACEPAD_F(1)
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tset_strpad_f

H5Tset_strpad HDF5 Reference Manual

672

Name:H5Tset_tag
Signature:

herr_tH5Tset_tag(hid_t dtype_id const char *tag)
Purpose:

Tags an opaque datatype.
Description:

H5Tset_tag tags an opaque datatype dtype_id with a descriptive ASCII identifier, tag.

tag is intended to provide a concise description; the maximum size is hard-coded in the HDF5 Library as
256 bytes (H5T_OPAQUE_TAG_MAX).

Parameters:
hid_tdtype_id IN: Datatype identifier for the opaque datatype to be tagged.

const char *tag IN: Descriptive ASCII string with which the opaque datatype is to be tagged.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface: h5tset_tag_f

SUBROUTINE h5tset_tag_f(type_id, tag, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier
 CHARACTER(LEN=*), INTENT(IN) :: tag ! Unique ASCII string with which the
 ! opaque datatype is to be tagged
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tset_tag_f

History:
Release C

1.6.5 The H5T_OPAQUE_TAG_MAX macro constant, specifying the maximum size of
an opaque datatype tag, was added in H5Tpublic.h.

HDF5 Reference Manual H5Tset_tag

673

Last modified: 19 August 2010

Name:H5Tunregister
Signature:

herr_tH5Tunregister(H5T_pers_t type, const char *name, hid_tsrc_id, hid_t dst_id,
H5T_conv_tfunc)

Purpose:
Removes a conversion function.

Description:
H5Tunregister removes a conversion function matching criteria such as soft or hard conversion,
source and destination types, and the conversion function.

If a user is trying to remove a conversion function he registered, all parameters can be used. If he is trying
to remove a library’s default conversion function, there is no guarantee the name and func parameters
will match the user’s chosen values. Passing in some values may cause this function to fail. A good
practice is to pass in NULL as their values.

All parameters are optional. The missing parameters will be used to generalize the search criteria.

The conversion function pointer type declaration is described in H5Tregister.
Parameters:

H5T_pers_ttype IN: Conversion function type:
H5T_PERS_HARD for hard conversion functions or
H5T_PERS_SOFT for soft conversion functions.

const char *name IN: Name displayed in diagnostic output.

hid_tsrc_id IN: Identifier of source datatype.

hid_tdst_id IN: Identifier of destination datatype.

H5T_conv_tfunc IN: Function to convert between source and destination datatypes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release C

1.6.3 The following change occurred in the H5Tconv_t function:
nelmts parameter type changed to size_t.

H5Tunregister HDF5 Reference Manual

674

Last modified: 19 August 2010

Name:H5Tvlen_create
Signature:

hid_tH5Tvlen_create(hid_t base_type_id)
Purpose:

Creates a new variable-length datatype.
Description:

H5Tvlen_create creates a new variable-length (VL) datatype.

The base datatype will be the datatype that the sequence is composed of, characters for character strings,
vertex coordinates for polygon lists, etc. The base type specified for the VL datatype can be of any HDF5
datatype, including another VL datatype, a compound datatype or an atomic datatype.

When necessary, use H5Tget_super to determine the base type of the VL datatype.

The datatype identifier returned from this function should be released with H5Tclose or resource leaks
will result.

Parameters:
hid_tbase_type_id IN: Base type of datatype to create.

See Also:
H5Dget_vlen_buf_size
H5Dvlen_reclaim

Returns:
Returns datatype identifier if successful; otherwise returns a negative value.

Fortran90 Interface: h5tvlen_create_f
SUBROUTINE h5tvlen_create_f(type_id, vltype_id, hdferr)
 IMPLICIT NONE
 INTEGER(HID_T), INTENT(IN) :: type_id ! Datatype identifier of base type
 ! Base type can only be atomic
 INTEGER(HID_T), INTENT(OUT) :: vltype_id ! VL datatype identifier
 INTEGER, INTENT(OUT) :: hdferr ! Error code
END SUBROUTINE h5tvlen_create_f

History:
Release Fortran90

1.4.5 Function introduced in this release.

HDF5 Reference Manual H5Tvlen_create

675

HDF5 Reference Manual

676

H5Z: Filter and Compression Interface

Filter and Compression API Functions

These functions enable the user to configure new filters for the local environment.

H5Zfilter_avail•
H5Zget_filter_info•

H5Zregister• H5Zunregister•

The FORTRAN90 Interfaces:
In general, each FORTRAN90 subroutine performs exactly the same task as the corresponding C function.

h5zfilter_avail_f• h5zget_filter_info_f• h5zunregister_f•
HDF5 supports a filter pipeline that provides the capability for standard and customized raw data processing
during I/O operations. HDF5 is distributed with a small set of standard filters such as compression (gzip, SZIP,
and a shuffling algorithm) and error checking (Fletcher32 checksum). For further flexibility, the library allows a
user application to extend the pipeline through the creation and registration of customized filters.

The flexibility of the filter pipeline implementation enables the definition of additional filters by a user
application. A filter

is associated with a dataset when the dataset is created,•
can be used only with chunked data
(i.e., datasets stored in the H5D_CHUNKED storage layout), and

•

is applied independently to each chunk of the dataset.•

The HDF5 library does not support filters for contiguous datasets because of the difficulty of implementing
random access for partial I/O. Compact dataset filters are not supported because it would not produce significant
results.

Filter identifiers for the filters distributed with the HDF5 Library are as follows:

H5Z_FILTER_DEFLATE The gzip compression, or deflation, filter

H5Z_FILTER_SZIP The SZIP compression filter

H5Z_FILTER_NBIT The N-bit compression filter

H5Z_FILTER_SCALEOFFSET The scale-offset compression filter

H5Z_FILTER_SHUFFLE The shuffle algorithm filter

H5Z_FILTER_FLETCHER32 The Fletcher32 checksum, or error checking, filter
Custom filters that have been registered with the library will have additional unique identifiers.

See The Dataset Interface (H5D) in the HDF5 User's Guide for further information regarding data compression.

HDF5 Reference Manual

677

HDF5 Reference Manual

678

Name:H5Zfilter_avail
Signature:

htri_t H5Zfilter_avail(H5Z_filter_t filter)
Purpose:

Determines whether a filter is available.
Description:

H5Zfilter_avail determines whether the filter specified in filter is available to the application.
Parameters:

H5Z_filter_tfilter IN: Filter identifier. See the introduction to this section of the reference
manual for a list of valid filter identifiers.

Returns:
Returns a Boolean value (TRUE/FALSE) if successful; otherwise returns a negative value.

Fortran90 Interface: h5zfilter_avail_f
SUBROUTINE h5zfilter_avail_f(filter, status, hdferr)
 IMPLICIT NONE
 INTEGER, INTENT(IN) :: filter ! Filter
 ! Valid values are:
 ! H5Z_FILTER_DEFLATE_F
 ! H5Z_FILTER_SHUFFLE_F
 ! H5Z_FILTER_FLETCHER32_F
 ! H5Z_FILTER_SZIP_F
 LOGICAL, INTENT(OUT) :: status ! Flag indicating whether
 ! filter is available:
 ! .TRUE.
 ! .FALSE.
END SUBROUTINE h5zfilter_avail_f

History:
Release C

1.6.0 Function introduced in this release.

HDF5 Reference Manual H5Zfilter_avail

679

Name:H5Zget_filter_info
Signature:

herr_tH5Zget_filter_info(H5Z_filter_t filter, unsigned int *filter_config)
Purpose:

Retrieves information about a filter.
Description:

H5Zget_filter_info retrieves information about a filter. At present, this means that the function
retrieves a filter's configuration flags, indicating whether the filter is configured to decode data, to encode
data, neither, or both.

If filter_config is not set to NULL prior to the function call, the returned parameter contains a bit
field specifying the available filter configuration. The configuration flag values can then be determined
through a series of bitwise AND operations, as described below.

Valid filter configuration flags include the following:

H5Z_FILTER_CONFIG_ENCODE_ENABLED Encoding is enabled for this filter.
In Fortran,
H5Z_FILTER_ENCODE_ENABLED_F.

H5Z_FILTER_CONFIG_DECODE_ENABLED Decoding is enabled for this filter.
In Fortran,
H5Z_FILTER_DECODE_ENABLED_F.

(These flags are defined for C in the HDF5 Library source code file H5Zpublic.h.)

A bitwise AND of the returned filter_config and a valid filter configuration flag will reveal whether
the related configuration option is available. For example, if the value of
 H5Z_FILTER_CONFIG_ENCODE_ENABLED & filter_config
is true, i.e., greater than 0 (zero), the queried filter is configured to encode data; if the value is FALSE,
i.e., equal to 0 (zero), the filter is not so configured.

If a filter is not encode-enabled, the corresponding H5Pset_* function will return an error if the filter is
added to a dataset creation property list (which is required if the filter is to be used to encode that dataset).
For example, if the H5Z_FILTER_CONFIG_ENCODE_ENABLED flag is not returned for the SZIP filter,
H5Z_FILTER_SZIP, a call to H5Pset_szip will fail.

If a filter is not decode-enabled, the application will not be able to read an existing file encoded with that
filter.

This function should be called, and the returned filter_config analyzed, before calling any other
function, such as H5Pset_szip, that might require a particular filter configuration.

Parameters:
H5Z_filter_tfilter

IN: Identifier of the filter to query. See the introduction to this section of the reference manual for
a list of valid filter identifiers.

unsigned int *filter_config
OUT: A bit field encoding the returned filter information

H5Zget_filter_info HDF5 Reference Manual

680

Returns:
Returns a non-negative value on success, a negative value on failure.

Fortran90 Interface:
SUBROUTINE h5zget_filter_info_f(filter, config_flags, hdferr)

 IMPLICIT NONE
 INTEGER, INTENT(IN) :: filter ! Filter, may be one of the
 ! following:
 ! H5Z_FILTER_DEFLATE_F
 ! H5Z_FILTER_SHUFFLE_F
 ! H5Z_FILTER_FLETCHER32_F
 ! H5Z_FILTER_SZIP_F
 INTEGER, INTENT(OUT) :: config_flags ! Bit field indicating whether
 ! a filter's encoder and/or
 ! decoder are available
 INTEGER, INTENT(OUT) :: hdferr ! Error code

END SUBROUTINE h5zfilter_avail_f

History:
Release C

1.6.3 Function introduced in this release.
Fortran subroutine introduced in this release.

HDF5 Reference Manual H5Zget_filter_info

681

Last modified: 4 January 2011

Name:H5Zregister
Signature:

herr_tH5Zregister(const H5Z_class_t *filter_class))
Purpose:

Registers new filter.
Description:

H5Zregister registers a new filter with the HDF5 library.

Making a new filter available to an application is a two-step process. The first step is to write the three
filter callback functions described below: can_apply, set_local, and filter. This call to
H5Zregister, registering the filter with the library, is the second step. The can_apply and
set_local fields can be set to NULL if they are not required for the filter being registered.

H5Zregister accepts a single parameter, a pointer to a buffer for the filter_class data structure.
That data structure must conform to one of the following definitions:

 typedef struct H5Z_class1_t {
 H5Z_filter_t id;
 const char *name;
 H5Z_can_apply_func_t can_apply;
 H5Z_set_local_func_t set_local;
 H5Z_func_t filter;
 } H5Z_class1_t;

 typedef struct H5Z_class2_t {
 int version;
 H5Z_filter_t id;
 unsigned encoder_present;
 unsigned decoder_present;
 const char *name;
 H5Z_can_apply_func_t can_apply;
 H5Z_set_local_func_t set_local;
 H5Z_func_t filter;
 } H5Z_class2_t;

version is a libray-defined value reporting the version number of the H5Z_class_t struct. This currently
must be set to H5Z_CLASS_T_VERS.

id is the identifier for the new filter. This is a user-defined value between H5Z_FILTER_RESERVED
and H5Z_FILTER_MAX. These values are defined in the HDF5 source file H5Zpublic.h, but the
symbols H5Z_FILTER_RESERVED and H5Z_FILTER_MAX should always be used instead of the
literal values.

encoder_present is a library-defined value indicating whether the filter’s encoding capability is
available to the application.

decoder_present is a library-defined value indicating whether the filter’s encoding capability is
available to the application.

H5Zregister HDF5 Reference Manual

682

name is a descriptive comment used for debugging, may contain a descriptive name for the filter, and
may be the null pointer.

can_apply, described in detail below, is a user-defined callback function which determines whether the
combination of the dataset creation property list values, the datatype, and the dataspace represent a valid
combination to apply this filter to.

set_local, described in detail below, is a user-defined callback function which sets any parameters
that are specific to this dataset, based on the combination of the dataset creation property list values, the
datatype, and the dataspace.

filter, described in detail below, is a user-defined callback function which performs the action of the
filter.

The statistics associated with a filter are not reset by this function; they accumulate over the life of the
library.

H5Z_class_t is a macro which maps to either H5Z_class1_t or H5Z_class2_t, depending on
the needs of the application. To affect only this macro, H5Z_class_t_vers may be defined to either 1
or 2. Otherwise, it will behave in the same manner as other API compatibility macros. See “API
Compatibility Macros in HDF5” for more information. H5Z_class1_t matches the H5Z_class_t
structure that is used in the 1.6.x versions of the HDF5 library.

H5Zregister will automatically detect which structure type has been passed in, regardless of the mapping
of the H5Z_class_t macro. However, the application must make sure that the fields are filled in
according to the correct structure definition if the macro is used to declare the structure.

The callback functions
Before H5Zregister can link a filter into an application, three callback functions must be defined as
described in the HDF5 Library header file H5Zpublic.h.

When a filter is applied to the fractal heap for a group (e.g., when compressing group metadata) and if the
can apply and set local callback functions have been defined for that filter, HDF5 passes the value -1 for
all parameters for those callback functions. This is done to ensure that the filter will not be applied to
groups if it relies on these parameters, as they are not applicable to group fractal heaps; to operate on
group fractal heaps, a filter must be capable of operating on an opaque block of binary data.

The can apply callback function is defined as follows:

typedef htri_t (*H5Z_can_apply_func_t) (hid_t dcpl_id, hid_t type_id, hid_t space_id)

Before a dataset is created, the can apply callbacks for any filters used in the dataset creation property list
are called with the dataset's dataset creation property list, dcpl_id, the dataset's datatype, type_id,
and a dataspace describing a chunk, space_id, (for chunked dataset storage).

This callback must determine whether the combination of the dataset creation property list settings, the
datatype, and the dataspace represent a valid combination to which to apply this filter. For example, an
invalid combination may involve the filter not operating correctly on certain datatypes, on certain
datatype sizes, or on certain sizes of the chunk dataspace. If this filter is enabled through
H5Pset_filter as optional and the can apply function returns FALSE, the library will skip the filter in
the filter pipeline.

HDF5 Reference Manual H5Zregister

683

This callback can be the NULL pointer, in which case the library will assume that the filter can be applied
to a dataset with any combination of dataset creation property list values, datatypes, and dataspaces.

The can apply callback function must return a positive value for a valid combination, zero for an invalid
combination, and a negative value for an error.

The set local callback function is defined as follows:

typedef herr_t (*H5Z_set_local_func_t) (hid_t dcpl_id, hid_t type_id, hid_t space_id)

After the can apply callbacks are checked for a new dataset, the set local callback functions for any filters
used in the dataset creation property list are called. These callbacks receive dcpl_id, the dataset's
private copy of the dataset creation property list passed in to H5Dcreate (i.e. not the actual property list
passed in to H5Dcreate); type_id, the datatype identifier passed in to H5Dcreate, which is not
copied and should not be modified; and space_id, a dataspace describing the chunk (for chunked
dataset storage), which should also not be modified.

The set local callback must set any filter parameters that are specific to this dataset, based on the
combination of the dataset creation property list values, the datatype, and the dataspace. For example,
some filters perform different actions based on different datatypes, datatype sizes, numbers of
dimensions, or dataspace sizes.

The set local callback may be the NULL pointer, in which case, the library will assume that there are no
dataset-specific settings for this filter.

The set local callback function must return a non-negative value on success and a negative value for an
error.

The filter operation callback function, defining the filter's operation on the data, is defined as follows:

typedef size_t (*H5Z_func_t) (unsigned intflags, size_t cd_nelmts, const unsigned int
cd_values[], size_t nbytes, size_t *buf_size, void **buf)

The parameters flags, cd_nelmts, and cd_values are the same as for the function
H5Pset_filter. The one exception is that an additional flag, H5Z_FLAG_REVERSE, is set when the
filter is called as part of the input pipeline.

The parameter *buf points to the input buffer which has a size of *buf_size bytes, nbytes of which
are valid data.

The filter should perform the transformation in place if possible. If the transformation cannot be done in
place, then the filter should allocate a new buffer with malloc() and assign it to *buf, assigning the
allocated size of that buffer to *buf_size. The old buffer should be freed by calling free().

If successful, the filter operation callback function returns the number of valid bytes of data contained in
*buf. In the case of failure, the return value is 0 (zero) and all pointer arguments are left unchanged.

H5Zregister HDF5 Reference Manual

684

Parameters:
const H5Z_class_t *filter_class IN: A pointer to a buffer for the struct containing

filter-definition information.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Fortran90 Interface:

None.
History:

Release Change

1.6.0 This function was substantially revised in Release 1.6.0 with a new
H5Z_class_t struct and new set local and can apply callback functions.

1.8.0 The fields version, encoder_present, and decoder_present were
added to the H5Z_class_t struct in this release.

1.8.3 H5Z_class_t renamed to H5Z_class2_t, H5Z_class1_t structure
introduced for backwards compatibility with release 1.6.x, and H5Z_class_t
macro introduced in this release. Function modified to accept either structure type.

1.8.5 Semantics of the can apply and set local callback functions changed to
accommodate the use of filters with group fractal heaps.

1.8.6 Return type for the can apply callback function, H5Z_can_apply_func_t,
changed to htri_t.

HDF5 Reference Manual H5Zregister

685

Name:H5Zunregister
Signature:

herr_tH5Zunregister(H5Z_filter_t filter)
Purpose:

Unregisters a filter.
Description:

H5Zunregister unregisters the filter specified in filter. Â

After a call to H5Zunregister, the filter specified in filter will no longer be available to the
application.

Parameters:
H5Z_filter_tfilter IN: Identifier of the filter to be unregistered. See the introduction to this

section of the reference manual for a list of identifiers for standard filters
distributed with the HDF5 Library.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Fortran90 Interface: h5zunregister_f
SUBROUTINE h5zunregister_f(filter, hdferr)
 IMPLICIT NONE
 INTEGER, INTENT(IN) :: filter ! Filter; one of the possible values:
 ! H5Z_FILTER_DEFLATE_F
 ! H5Z_FILTER_SHUFFLE_F
 ! H5Z_FILTER_FLETCHER32_F
 ! H5Z_FILTER_SZIP_F
 INTEGER, INTENT(OUT) :: hdferr ! Error code
 ! 0 on success, and -1 on failure
END SUBROUTINE h5zunregister_f

History:
Release C

1.6.0 Function introduced in this release.

H5Zunregister HDF5 Reference Manual

686

HDF5 Tools

HDF5 Tool Interfaces

HDF5-related tools are available to assist the user in a variety of activities, including examining or managing
HDF5 files, converting raw data between HDF5 and other special-purpose formats, moving data and files between
the HDF4 and HDF5 formats, measuring HDF5 library performance, and managing HDF5 library and application
compilation, installation and configuration. Unless otherwise specified below, these tools are distributed and
installed with HDF5.

User utilities:
h5dump -- Enables a user to examine the contents of an HDF5 file and dump those contents to an
ASCII file.

♦

h5ls -- Lists specified features of HDF5 file contents.♦
h5diff and ph5diff -- Compare two HDF5 files and report the differences.♦
h5repack -- Copies an HDF5 file to a new file with or without compression and/or chunking.♦
h5repart -- Repartitions a file, creating a family of files.♦
h5jam -- Adds a user block to the front of an HDF5 file .♦
h5unjam -- Splits an existing user block from an HDF5 file, placing it in a separate file.♦
h5copy -- Copies HDF5 objects from a file to a new file♦
h5mkgrp -- Creates a new HDF5 group in a file♦
h5stat -- Reports statistics regarding an HDF5 file and the objects in the file.♦
h5check -- Verifies that an HDF5 file is validly encoded.♦
h5perf -- Measures Parallel HDF5 performance.♦
h5perf_serial -- Measures HDF5 serial performance.♦

•

Configuration and library management utilities:
h5redeploy -- Updates HDF5 compiler tools after an HDF5 software installation in a new
location.

♦

h5cc and h5pcc -- Simplify the compilation of HDF5 programs written in C.♦
h5fc and h5pfc -- Simplify the compilation of HDF5 programs written in Fortran90.♦
h5c++ -- Simplifies the compilation of HDF5 programs written in C++.♦

•

Java-based tools for HDF5 for viewing, manipulating, and generating HDF4 and HDF5 files:
(Distributed separately; external link is http://www.hdfgroup.org/hdf-java-html/)

HDFview -- a browser that works with both HDF4 and HDF5 files and can be used to transfer
data between the two formats

♦

Java interfaces for both the HDF4 and HDF5 libraries♦
Other HDF4- and HDF5-related products♦

•

Data conversion utilities:
h5import -- Imports data into an existing or new HDF5 file.♦
gif2h5 -- Converts a GIF file to an HDF5 file.♦
h52gif -- Converts images in an HDF5 file to a GIF file.♦

•

HDF5 Reference Manual

687

http://www.hdfgroup.org/hdf-java-html/

HDF5/HDF4 conversion tools:
(Distributed separately; external link is http://www.hdfgroup.org/h4toh5/.)

H4toH5 Conversion Library -- Provides APIs for use in tools that perform customized
conversions of HDF4 files to HDF5 files.

♦

h5toh4 -- Converts an HDF5 file to an HDF4 file.♦
h4toh5 -- Converts an HDF4 file to an HDF5 file.♦

•

Other tools, including third-party and commercial utilities and applications:
(Distributed separately; external link is http://www.hdfgroup.org/tools5.html.)

•

HDF5 Tools HDF5 Reference Manual

688

http://www.hdfgroup.org/h4toh5/
http://www.hdfgroup.org/h4toh5/
http://www.hdfgroup.org/tools5.html

Last modified: 16 June 2010

Tool Name:h5dump
Syntax:

h5dump [OPTIONS] file
Purpose:

Displays HDF5 file contents.
Description:

h5dump enables the user to examine the contents of an HDF5 file and dump those contents, in human
readable form, to an ASCII file.

h5dump dumps HDF5 file content to standard output. It can display the contents of the entire HDF5 file
or selected objects, which can be groups, datasets, a subset of a dataset, links, attributes, or datatypes.

The --header option displays object header information only.

Names are the absolute names of the objects. h5dump displays objects in the order same as the command
order. If a name does not start with a slash, h5dump begins searching for the specified object starting at
the root group.

If an object is hard linked with multiple names, h5dump displays the content of the object in the first
occurrence. Only the link information is displayed in later occurrences.

h5dump assigns a name for any unnamed datatype in the form of #oid1:oid2, where oid1 and oid2 are
the object identifiers assigned by the library. The unnamed types are displayed within the root group.

Datatypes are displayed with standard type names. For example, if a dataset is created with
H5T_NATIVE_INT type and the standard type name for integer on that machine is H5T_STD_I32BE,
h5dump displays H5T_STD_I32BE as the type of the dataset.

h5dump can also dump a subset of a dataset. This feature operates in much the same way as hyperslabs
in HDF5; the parameters specified on the command line are passed to the function
H5Sselect_hyperslab and the resulting selection is displayed.

The h5dump output is described in detail in the DDL for HDF5, the Data Description Language
document.

Note: It is not permissible to specify multiple attributes, datasets, datatypes, groups, or soft links with one
flag. For example, one may not issue the command

WRONG: h5dump -a /attr1 /attr2 foo.h5 to display both /attr1 and /attr2. One
must issue the following command:

CORRECT: h5dump -a /attr1 -a /attr2 foo.h5

It is possible to select the file driver with which to open the HDF5 file by using the --filedriver (-f)
command-line option. Acceptable values for the --filedriver option are: "sec2", "family", "split", and
"multi". If the file driver flag is not specified, then the file will be opened with each driver in turn and in
the order specified above until one driver succeeds in opening the file.

One byte integer type data is displayed in decimal by default. When displayed in ASCII, a non-printable
code is displayed in 3 octal digits preceeded by a back-slash unless there is a C language escape sequence

HDF5 Reference Manual h5dump

689

for it. For example, CR and LF are printed as \r and \n. Though the NUL code is represented as \0 in C, it
is printed as \000 to avoid ambiguity as illustrated in the following 1 byte char data (since this is not a
string, embedded NUL is possible).

 141 142 143 000 060 061 062 012
 a b c \0 0 1 2 \n

h5dump prints them as "abc\000012\n". But if h5dump prints NUL as \0, the output is "abc\0012\n"
which is ambiguous.

XML Output:
With the --xml option, h5dump generates XML output. This output contains a complete description of
the file, marked up in XML. The XML conforms to the HDF5 Document Type Definition (DTD)
available at http://www.hdfgroup.org/DTDs/HDF5-File.dtd.

The XML output is suitable for use with other tools, including the HDF5 Java Tools.
Options and Parameters:

-h or --help Print a usage message and exit.

-n or --contents Print a list of the file contents and exit.

-B or --bootblock Print the content of the boot block.

-H or --header Print the header only; no data is displayed.

-A or --onlyattr Print the header and value of attributes; data of datasets is
not displayed.

-i or --object-ids Print the object ids.

-r or --string Print 1-byte integer datasets as ASCII.

-e or --escape Escape non-printing characters.

-V or --version Print version number and exit.

-a P or --attribute=P Print the specified attribute.

-d P or --dataset=P Print the specified dataset.

-y or --noindex Do not print array indices with data.

-p or --properties Print information regarding dataset properties, including
filters, storage layout, fill value, and allocation time.
The filter output lists any filters used with a dataset,
including the type of filter, its name, and any filter
parameters.
The storage layout output specifies the dataset layout
(chunked, compact, or contiguous), the size in bytes of the
dataset on disk, and, if a compression filter is associated
with the dataset, the compression ratio. The compression
ratio is computed as
(uncompressed size)/(compressed size).
The fill value output includes the fill value datatype and
value.
The allocation time output displays the allocation time as
specified with H5Pset_alloc_time.

-f D or --filedriver=D Specify which driver to open the file with.

-g P or --group=P Print the specified group and all members.

-l P or --soft-link=P Print the value(s) of the specified soft link.

-o F or --output=F Output raw data into file F.

h5dump HDF5 Reference Manual

690

http://www.hdfgroup.org/DTDs/HDF5-File.dtd
http://www.hdfgroup.org/hdf-java-html

-b B or --binary=B Output dataset to a binary file using the datatype specified
by B.
B must have one of the following values:

LE Little-endian
BE Big-endian
MEMORY Memory datatype
FILE File datatype

Recommended usage is with the -d and -o options.

-t P or --datatype=P Print the specified named datatype.

-w N or --width=N Set the number of columns of output. A value of 0 (zero)
sets the number of columns to the maximum (65535).
Default width is 80 columns.

-m T or --format=T Set the floating point output format.
T is a string defining the floating point format, e.g.,
'%.3f'.

-q Q or --sort_by=Q Sort groups and attributes by the specified index type, Q.
Valid values of Q are as follows:

name Alpha-numeric index by name
(Default)

creation_order Index by creation order

-z Z or --sort_order=Z Sort groups and attributes in the specified order, Z. Valid
values of Z are as follows:

ascending Sort in ascending order (Default)
descending Sort in descending order

-M L or --packedbits=L Print packed bits as unsigned integers, using the mask
format L for an integer dataset specified with option -d. L
is a list of offset,length values, separated by commas. offset
is the beginning bit in the data value and length is the
number of bits in the mask.

-R or --region Print dataset pointed by region references.

-x or --xml Output XML using XML schema (default) instead of DDL.

-u or --use-dtd Output XML using XML DTD instead of DDL.

-D U or --xml-dtd=U In XML output, refer to the DTD or schema at U instead of
the default schema/DTD.

-X S or --xml-dns=S In XML output, (XML Schema) use qualified names in the
XML:
 ":": no namespace, default: "hdf5:"

-s START or --start=START Offset of start of subsetting selection.
Default: the beginning of the dataset.

-S STRIDE or --stride=STRIDE Hyperslab stride.
Default: 1 in all dimensions.

-c COUNT or --count=COUNT Number of blocks to include in the selection.
Default: 1 in all dimensions.

HDF5 Reference Manual h5dump

691

-k BLOCK or --block=BLOCK Size of block in hyperslab.
Default: 1 in all dimensions.

-- Indicates that the following argument is not an option. E.g.,
to dump a file called `-f', use h5dump -- -f. (This option
is necessary only when the name of the file to be examined
starts with a dash (-), which could confuse the tool’s
command-line parser.)

file The file to be examined.

The option parameters listed above are defined as follows:
D which file driver to use in opening the file. Acceptable values are "sec2",

"family", "split", and "multi". Without the file driver flag, the file will be opened
with each driver in turn and in the order specified above until one driver
succeeds in opening the file.

P The full path from the root group to the object

F A filename

N An integer greater than 1

START, STRIDE,
COUNT, BLOCK

A list of integers, the number of which is equal to the number of dimensions in
the dataspace being queried

U A URI (as defined in [IETF RFC 2396], updated by [IETF RFC 2732]) that
refers to the DTD to be used to validate the XML

B The form of binary output:
MEMORY for a memory type
FILE for the file type
LE or BE for pre-existing little- or big-endian types

Subsetting parameters can also be expressed in a convenient compact form, as follows:
--dataset="/foo/mydataset[START;STRIDE;COUNT;BLOCK]"

Until the last parameter value used, all of the semicolons (;) are required, even when a parameter value is
not specified. Example:

--dataset="/foo/mydataset[START;;COUNT]"
--dataset="/foo/mydataset[START]"

When not specified, default parameter values are used.
Exit Status:

0 Succeeded.

>0 An error occurred.
Examples:

Dump the group /GroupFoo/GroupBar in the file quux.h5:
 h5dump -g /GroupFoo/GroupBar quux.h5

1.

Dump the dataset Fnord, which is in the group /GroupFoo/GroupBar in the file quux.h5:
 h5dump -d /GroupFoo/GroupBar/Fnord quux.h5

2.

Dump the attribute metadata of the dataset Fnord, which is in the group /GroupFoo/GroupBar
in the file quux.h5:
 h5dump -a /GroupFoo/GroupBar/Fnord/metadata quux.h5

3.

h5dump HDF5 Reference Manual

692

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt

Dump the attribute metadata which is an attribute of the root group in the file quux.h5:
 h5dump -a /metadata quux.h5

4.

Produce an XML listing of the file bobo.h5, saving the listing in the file bobo.h5.xml:
 h5dump --xml bobo.h5 > bobo.h5.xml

5.

Dump a subset of the dataset /GroupFoo/databar/ in the file quux.h5:
 h5dump -d /GroupFoo/databar --start="1,1" --stride="2,3"
 --count="3,19" --block="1,1" quux.h5

6.

The same example, using the short form to specify the subsetting parameters:
 h5dump -d "/GroupFoo/databar[1,1;2,3;3,19;1,1]" quux.h5

7.

Dump a binary copy of the dataset /GroupD/FreshData/ in the file quux.h5, with data written in
little-endian form, to the output file FreshDataD.bin:
 h5dump -d "/GroupD/FreshData" -b LE
 -o "FreshDataD.bin" quux.h5

8.

Display two sets of packed bits (bits 0-1 and bits 4-6) in the dataset /dset of the file quux.h5:
 h5dump -d /dset -M 0,1,4,3 quux.h5

9.

Current Status:
The current version of h5dump displays the following information:

Group
group attribute (see Attribute)⋅
group member⋅

◊

Dataset
dataset attribute (see Attribute)⋅
dataset type (see Datatype)⋅
dataset space (see Dataspace)⋅
dataset data⋅

◊

Attribute
attribute type (see Datatype)⋅
attribute space (see Dataspace)⋅
attribute data⋅

◊

Datatype
integer type
- H5T_STD_I8BE, H5T_STD_I8LE, H5T_STD_I16BE, ...
- packed bits display
 - integer types only
 - limited to first 8 bits
 - applied globally to all integer values, including inside compound types

⋅

bitfield type⋅
floating point type
- H5T_IEEE_F32BE, H5T_IEEE_F32LE, H5T_IEEE_F64BE, ...

⋅

string type⋅
compound type
- named, unnamed and transient compound type
- integer, floating or string type member

⋅

opaque types⋅

◊

HDF5 Reference Manual h5dump

693

reference type
- object references
- data regions

⋅

enum type⋅
variable-length datatypes
- atomic types only
- scalar or single dimensional array of variable-length types supported

⋅

Dataspace
scalar and simple space⋅

◊

Soft link◊
Hard link◊
Loop detection◊

See Also:
HDF5 Data Description Language syntax at DDL for HDF5♦
HDF5 XML Schema at http://www.hdfgroup.org/DTDs/HDF5-File.xsd♦
HDF5 XML information at http://www.hdfgroup.org/HDF5/XML/♦

History:
Release Command Line Tool

1.6.5 The following options added in this release:
-n or --contents
-e or --escape
-y or --noindex
-p or --properties
-b or --binary

1.8.0 The following options added in this release:
-q or --sort_by
-z or --sort_order

1.8.1 Compression ratio added to output of -p or --properties option in this
release.

1.8.4 Region reference display, -R or --region option, added in this release.

1.8.5 Bitfield display fixed in this release.
Packed Bits data display, -M or --packedbits option, added in this release.

h5dump HDF5 Reference Manual

694

http://www.hdfgroup.org/DTDs/HDF5-File.xsd
http://www.hdfgroup.org/HDF5/XML

Last modified: 28 May 2010

Tool Name:h5ls
Syntax:

h5ls [OPTIONS] file[/OBJECT] [file[/OBJECT]...]
Purpose:

Prints information about one or more HDF5 files or objects.
Description:

h5ls prints selected information about specified HDF5 file(s) and/or object(s) in the specified format. In
some cases, information regarding symbolic links is also provided.

Options and Parameters:
-h or -? or --help Print a usage message and exit.

-a or --address Print addresses for raw data.

-d or --data Print the values of datasets.

-e or --errors Show all HDF5 error reporting.

-f or --full Print full path names instead of base names.

-g or --group Show information about a group, not its contents.

-l or --label Label members of compound datasets.

-r or --recursive List all groups recursively, avoiding cycles.

-s or --string Print 1-bytes integer datasets as ASCII.

-S or --simple Use a machine-readable output format.

-wN or --width=N Set the number of columns of output.

-v or --verbose Generate more verbose output.

-V or --version Print version number and exit.

--vfd=DRIVER Use the specified virtual file drver. Valid values for DRIVER
include:

 sec2
 family
 multi
 split
 mpio
 mpiposix

-x or --hexdump Show raw data in hexadecimal format.

file The file name may include a printf(3C) integer format such as
%05d to open a file family.

objects Each object consists of an HDF5 file name optionally followed by a
slash and an object name within the file (if no object is specified
within the file then the contents of the root group are displayed). The
file name may include a printf(3C) integer format such as %05d
to open a file family.

Exit Status:
0 Succeeded.

>0 An error occurred.

HDF5 Reference Manual h5ls

695

Last modified: 24 September 2010

Tool Name:h5diff
Syntax:

h5diff [OPTIONS] file1 file2 [object1 [object2]]
ph5diff [OPTIONS] file1 file2 [object1 [object2]]

Purpose:
Compare two HDF5 files and report the differences.

Description:
h5diff and ph5diff are command line tools that compare two HDF5 files, file1 and file2, and report
the differences between them. h5diff is for serial use while ph5diff is for use in parallel
environments.

Optionally, h5diff and ph5diff will compare two objects within these files. If only one object,
object1, is specified, h5diff will compare object1 in file1 with object1 in file2. If two objects, object1
and object2, are specified, h5diff will compare object1 in file1 with object2 in file2.

object1 and object2 can be groups, datasets, named datatypes, or symbolic links (soft links or external
links) and must be expressed as absolute paths from the respective file’s root group.

If these objects are groups, h5diff first compares the names of member objects (the relative
path from the specified group) and generates a report of objects that appear in only one group or
in both groups. Common objects are then compared recursively.

◊

If these objects are datasets, array rank and dimensions, datatypes, and data values are compared.◊
If these objects are named datatypes, the comparison is based on the return value of H5Tequal.◊
If these objects are symbolic links, the paths to the target objects are compared.
(The option --follow-symlinks overrides the default behavior when symbolic links are
compared.)

◊

h5diff and ph5diff have the following output modes:

Normal mode Prints the number of differences found and where they occurred.

Report mode -r Prints the above plus the differences.

Verbose mode -v Prints all of the above plus a list of objects and warnings.

Quiet mode -q Prints no output.
(h5diff always returns an exit code of 1 when differences are
found.)

h5diff and NaNs:
h5diff detects when a value in a dataset is a NaN (a "not a number" value), but does not differentiate
among various types of NaNs. Thus, when one NaN is compared with another NaN, h5diff treats them
as equal; when a NaN is compared with a valid number, h5diff treats them as not equal.

Note that NaN detection is computationally expensive and slows h5diff performance dramatically. If
you do not have NaNs in your files, or do not care about NaNs, use the -N option to turn off NaN
detection. Similarly, if h5diff -N produces unexpected differences, running h5diff without -N
should reveal whether any of the differences are associated with NaN values.

Difference between h5diff and ph5diff:
With the following exception, h5diff and ph5diff behave identically. With ph5diff, the
comparison of objects is shared across multiple processors, with the comparison of each pair of objects

h5diff HDF5 Reference Manual

696

assigned to a single processor. This work assignment means that ph5diff will not speed up the
comparison of any given pair of datasets, as the comparison of the pair will still occur on a single
processor.

Options and Parameters:
-h or --help Print help message.

-V or --version Print version number and exit.

-r or --report Report mode — Print the differences.

-v or --verbose Verbose mode — Print the differences, a list of objects, and warnings.

-q or --quiet Quiet mode — Do not print output.

--follow-symlinks Follow symbolic links (soft links and external links) and compare the
links’ target objects.

If symbolic link(s) with the same name exist in the files being
compared, then determine whether the target of each link is an
existing object (dataset, group, or named datatype) or the link is a
dangling link (a soft or external link pointing to a target object that
does not exist).

If both symbolic links are dangling links, they are treated as
being the same; by default, h5diff returns an exit code of 0.
If, however, --no-dangling-links is used with
--follow-symlinks, this situation is treated as an error
and h5diff returns an exit code of 2.

◊

If only one of the two links is a dangling link, they are treated
as being different and h5diff returns an exit code of 1. If,
however, --no-dangling-links is used with
--follow-symlinks, this situation is treated as an error
and h5diff returns an exit code of 2.

◊

If both symbolic links point to existing objects, h5diff
compares the two objects.

◊

If any symbolic link specified in the call to h5diff does not exist,
h5diff treats it as an error and returns an exit code of 2.

--no-dangling-links Must be used with the --follow-symlinks option; otherwise,
h5diff shows error message and returns an exit code of 2.

Check for symbolic links (soft links or external links) that do not
resolve to an existing object (dataset, group, or named datatype). If a
dangling link is found, this situation is treated as an error and h5diff
returns an exit code of 2.

-N or --nan Disables NaN detection; see “h5diff and NaNs” above.

-n count or
 --count=count

Print difference up to count differences, then stop. count must be a
positive integer.

-d delta or
 --delta=delta

Print only differences that are greater than the limit delta. delta must
be a positive number. The comparison criterion is whether the
absolute value of the difference of two corresponding values is greater
than delta (i.e., |a–b| > delta, where a is a value in file1 and b
is a value in file2).

-p relative or
 --relative=relative

Print only differences that are greater than a relative error. relative
must be a positive number. The comparison criterion is whether the

HDF5 Reference Manual h5diff

697

absolute value of the difference between 1 and the ratio of two
corresponding values is greater than relative (that is,
|1–(b/a)| > relative where a is a value in file1 and b is the
corresponding value in file2).

--use-system-epsilon Return a difference if and only if the difference between two data
values exceeds the system value for epsilon. That is, if a is a data
value in one dataset, b is the corresponding data value in the dataset
with which the first dataset is being compared, and epsilon is the
system epsilon, return a difference if and only if |a-b| >
epsilon.
Default: Without this option, h5diff checks for strict equality.

--exclude-path "path" Exclude the specified path to an object when comparing files or
groups. If a group is excluded, all member objects will also be
excluded.

The specified path is excluded wherever it occurs. This flexibility
enables the same option to exclude either objects that exist only in one
file or common objects that are known to differ.

When comparing files, path is the absolute path to the excluded
object; when comparing groups, path is similar to the relative path
from the group to the excluded object. This path can be taken from the
first section of the output of the --verbose option. For example, if
you are comparing the group /groupA in two files and you want to
exclude /groupA/groupB/groupC in both files, the exclude
option would read as follows:

--exclude-path "/groupB/groupC"

If there are multiple paths to an object, only the specified path(s) will
be excluded; the comparison will include any path not explicitly
excluded.

This option can be used repeatedly to exclude multiple paths.

file1 file2 The HDF5 files to be compared.

object1 object2 Specific object(s) within the files to be compared, expressed as
absolute paths from the respective file’s root group.

Exit Status:
0 No differences were found.

1 Some differences were found.

>1 An error occurred.
Examples:

Compare the object /a/b in file1 with the object /a/c in file2:
 h5diff file1 file2 /a/b /a/c

Compare the object /a/b in file1 with the same object in file2:
 h5diff file1 file2 /a/b

Compare all objects in both files:
 h5diff file1 file2

h5diff HDF5 Reference Manual

698

History:
Release Change

1.6.0 h5diff introduced in this release.

1.8.0 ph5diff introduced in this release.
h5diff command line syntax changed in this release.

1.8.2 and 1.6.8 Return value on failure changed in this release.

1.8.4 and 1.6.10 --use-system-epsilon option added in this release.

1.8.5 --follow-symlinks option added in this release.
--no-dangling-links option added in this release.

1.8.6 --exclude-path option added in this release.

HDF5 Reference Manual h5diff

699

Tool Name:h5repack
Syntax:

h5repack [OPTIONS] in_file out_file
h5repack -i in_file -o out_file [OPTIONS]

Purpose:
Copies an HDF5 file to a new file with or without compression and/or chunking.

Description:
h5repack is a command line tool that applies HDF5 filters to an input file in_file, saving the output in a
new output file, out_file.

Options and Parameters:
-i in_file

Input HDF5 file
-o out_file

Output HDF5 file
-h or --help

Print help message.
-v or --verbose

Print verbose output.
-V or --version

Print version number.
-n or --native

Use native HDF5 datatypes when repacking.
(Default behavior is to use original file datatypes.)
Note that this is a change in default behavior; prior to Release 1.6.6, h5repack generated files
only with native datatypes.

-L or --latest
Use latest version of the HDF5 file format.

-c max_compact_links or --compact=max_compact_links
Set the maximum number of links, max_compact_links, that can be stored in a group header
message (compact format).

-d min_indexed_links or --indexed=min_indexed_links
Set the minimum number of links, min_indexed_links, in the indexed format.

max_compact_links and min_indexed_links are closely related and the first must be equal to or
greater than the second. In the general case, however, performance will suffer, possibly
dramatically, if they are equal; performance can be improved by tuning the gap between the two
values to minimize unnecessary thrashing between the compact storage and indexed storage
modes as group size waxes and wanes. The relationship between max_compact_links and
min_indexed_links is most important when group sizes are highly dynamic; that relationship is
much less important in files with a stable structure. Compact mode is space and
performance-efficient when groups have small numbers of members; indexed mode requires
slightly more storage space, but provides increasingly better performance as the number of
members in each group increases.

-m number or --threshold=number
Apply filter(s) only to objects whose size in bytes is equal to or greater than number. If no size is
specified, a threshold of 1024 bytes is assumed.

-s min_size[:header_type] or --ssize=min_size[:header_type]
Set the minimum size of optionally specified types of shared object header messages.

h5repack HDF5 Reference Manual

700

min_size is the minimum size, in bytes, of a shared object header message. Header messages
smaller than the specified size will not be shared.

header_type specifies the type(s) of header message that this minimum size is to be applied to.
Valid values of header_type are any of the following:
 dspace for dataspace header messages
 dtype for datatype header messages
 fill for fill values
 pline for property list header messages
 attr for attribute header messages
If header_type is not specified, min_size will be applied to all header messages.

-f filter or --filter=filter
Filter type

filter is a string of the following format:

list_of_objects : name_of_filter[=filter_parameters]

list_of_objects is a comma separated list of object names meaning apply the filter(s) only
to those objects. If no object names are specified, the filter is applied to all objects.

name_of_filter can be one of the following:
GZIP, to apply the HDF5 GZIP filter (GZIP compression)
SZIP, to apply the HDF5 SZIP filter (SZIP compression)
SHUF, to apply the HDF5 shuffle filter
FLET, to apply the HDF5 checksum filter
NBIT, to apply the HDF5 N-bit filter
SOFF, to apply the HDF5 scale/offset filter
NONE, to remove any filter(s)

filter_parameters conveys optional compression information:
GZIP=deflation_level from 1-9
SZIP=pixels_per_block,coding_method

 pixels_per_block is a even number in the range 2-32.
 coding_method is EC or NN.

SHUF (no parameter)
FLET (no parameter)
NBIT (no parameter)
SOFF=scale_factor,scale_type

 scale_factor is an integer.
 scale_type is either IN or DS.

NONE (no parameter)
-l layout or --layout=layout

Layout type

layout is a string of the following format:

list_of_objects : layout_type[=layout_parameters]

list_of_objects is a comma separated list of object names, meaning that layout
information is supplied for those objects. If no object names are specified, the layout is

HDF5 Reference Manual h5repack

701

applied to all objects.

layout_type can be one of the following:
CHUNK, to apply chunking layout
COMPA, to apply compact layout
CONTI, to apply continuous layout

layout_parameters is present only in the CHUNK case and specifies the chunk size of each
dimension in the following format with no intervening spaces:

dim_1 × dim_2 × ... dim_n
-e file

File containing the -f and -l options (only filter and layout flags)
in_file

Input HDF5 file
out_file

Output HDF5 file
Exit Status:

0 Succeeded.

>0 An error occurred.
Examples:

h5repack -f GZIP=1 -v file1 file2
Applies GZIP compression to all objects in file1 and saves the output in file2. Prints
verbose output.

1.

h5repack -f dset1:SZIP=8,NN file1 file2
Applies SZIP compression only to object dset1.

2.

h5repack -l dset1,dset2:CHUNK=20x10 file1 file2
Applies chunked layout to objects dset1 and dset2.

3.

History:
Release Command Line Tool

1.6.2 h5repack introduced in this release.

1.8.0 h5repack command line syntax changed in this release.

1.8.1 Original syntax restored; both the new and the original syntax are now supported.

h5repack HDF5 Reference Manual

702

Tool Name:h5repart
Syntax:

h5repart [-v] [-V] [-[b|m]N[g|m|k]] [-family_to_sec2] source_file dest_file
Purpose:

Repartitions a file or family of files.
Description:

h5repart joins a family of files into a single file, or copies one family of files to another while
changing the size of the family members. h5repart can also be used to copy a single file to a single file
with holes. At this stage, h5repart can not split a single non-family file into a family of file(s).

To convert a family of file(s) to a single non-family file (sec2 file), the option -family_to_sec2 has
to be used.

Sizes associated with the -b and -m options may be suffixed with g for gigabytes, m for megabytes, or k
for kilobytes.

File family names include an integer printf format such as %d.
Options and Parameters:

-v Produce verbose output.

-V Print a version number and exit.

-bN The I/O block size, defaults to 1kB

-mN The destination member size or 1GB

-family_to_sec2 Convert file driver from family to sec2

source_file The name of the source file

dest_file The name of the destination files
Exit Status:

0 Succeeded.

>0 An error occurred.

HDF5 Reference Manual h5repart

703

Tool Name:h5jam/h5unjam
Syntax:

h5jam -u user_block -i in_file.h5 [-o out_file.h5] [--clobber]
h5jam -h

h5unjam -i in_file.h5 [-u user_block | --delete] [-o out_file.h5]
h5unjam -h

Purpose:
Adds user block to front of an HDF5 file, to create a new concatenated file.
Splits user block and HDF5 file into two files: user block data and HDF5 data.

Description:
h5jam concatenates a user_block file and an HDF5 file to create an HDF5 file with a user block.
The user block can be either binary or text. The output file is padded so that the HDF5 header begins on
byte 512, 1024, etc.. (See the HDF5 File Format.)

If out_file.h5 is given, a new file is created with the user_block followed by the contents of
in_file.h5. In this case, infile.h5 is unchanged.

If out_file.h5 is not specified, the user_block is added to in_file.h5.

If in_file.h5 already has a user block, the contents of user_block will be added to the end of the
existing user block, and the file shifted to the next boundary. If --clobber is set, any existing user
block will be overwritten.

h5unjam splits an HDF5 file, writing the user block to a file or to stdout and the HDF5 file to an HDF5
file with a header at byte zero (0, i.e., with no user block).

If out_file.h5 is given, a new file is created with the contents of in_file.h5 without the user
block. In this case, infile.h5 is unchanged.

If out_file.h5 is not specified, the user_block is removed and in_file.h5 is rewritten,
starting at byte 0.

If user_block is set, the user block will be written to user_block. If user_block is not set, the
user block, if any, will be written to stdout. If --delete is selected, the user block will not be written.

Examples:
Create new file, newfile.h5, with the text in file mytext.txt as the user block for the HDF5 file
file.h5.

 h5jam -u mytext.txt -i file.h5 -o newfile.h5

Add text in file mytext.txt to front of HDF5 dataset, file.h5.

 h5jam -u mytext.txt -i file.h5

Overwrite the user block, if any, in file.h5 with the contents of mytext.txt.

 h5jam -u mytext.txt -i file.h5 --clobber

h5jam and h5unjam HDF5 Reference Manual

704

For an HDF5 file, with_ub.h5, with a user block, extract the user block to user_block.txt and
the HDF5 portion of the file to wo_ub.h5.

 h5unjam -i with_ub.h5 -u user_block.txt -o wo_ub.h5

Exit Status:
0 Succeeded.

>0 An error occurred.
Caveats:

These tools copy all the data sequentially in the file(s) to new offsets. For a large file, this copy will take a
long time.

The most efficient way to create a user block is to create the file with a user block (see
H5Pset_user_block), and write the user block data into that space from a program.

The user block is completely opaque to the HDF5 library and to the h5jam and h5unjam tools. The
user block is simply read or written as a string of bytes, which could be text or any kind of binary data; it
is up to the user to know what the contents of the user block means and how to process it.

When the user block is extracted, all the data is written to the output, including any padding or unwritten
data.

This tool moves the HDF5 portion of the file through byte copies; i.e., it does not read or interpret the
HDF5 objects.

HDF5 Reference Manual h5jam and h5unjam

705

Last modified: 5 October 2010

Tool Name:h5copy
Syntax:

h5copy [OPTIONS] [OBJECTS]
Purpose:

Copy an object from one HDF5 file to another HDF5 file.
Description:

h5copy copies an HDF5 object (a dataset, named datatype, or group) from an input HDF5 file to an
output HDF5 file. The output file may or may not already exist. If a group is specified as the input object,
any objects in that group will be recursively copied.

Arguments:

Options and Parameters:
-h or --help

Print a usage message and exit.
-v or --verbose

Produce verbose output, printing information regarding the specified options and objects.
-V or --Version

Print version information.
-p or --parents

Create parent or intermediate groups as required. (There is no error if they already exist.)
-f flag_type or --flag=flag_type

Specify one or more of several copy options; flag_type may be one of the following strings or
a logical AND of two or more:

shallow Copy only immediate members of a group.
(Default: Recursively copy all objects below the group.)

soft Expand soft links to copy target objects.
(Default: Keep soft links as they are.)

ext Expand external links to copy external objects.
(Default: Keep external links as they are.)

ref Copy references and any referenced objects, i.e., objects that the
references point to.

Referenced objects are copied in addition to the objects specified on the
command line and reference datasets are populated with correct reference
values. Copies of referenced datasets outside the copy range specified on
the command line will normally have a different name from the original.

(Default:Without this option, reference value(s) in any reference datasets
are set to NULL and referenced objects are not copied unless they are
otherwise within the copy range specified on the command line.)

attr Copy objects without copying attributes.
(Default: Copy objects and all attributes.)

allflags Switch each setting above from the default to the setting described in this
table.
Equivalent to logical AND of all flags above.

h5copy HDF5 Reference Manual

706

Objects (all required):
-i input_file or --input=input_file

Input HDF5 file name
-o output_file or --output=output_file

Output HDF5 file name (existing or non-existing)
-s source_object or --source=source_object

Input HDF5 object name within the input file
-d destination_object or --destination=destination_object

Output HDF5 object name within the output file

Exit Status:
0 Succeeded.

>0 An error occurred.
Example Usage

In verbose mode, create a new file, test1.out.h5, containing the object array in the root group,
copied from the existing file test1.h5 and object array.

 h5copy -v -i "test1.h5" -o "test1.out.h5" -s "/array" -d "/array

In verbose mode and using the flag shallow to prevent recursion in the file hierarchy, create a new file,
test1.out.h5, containing the object array in the root group, copied from the existing file
test1.h5 and object array.

 h5copy -v -f shallow -i "test1.h5" -s "/array" -o test1.out.h5" -d "/array"

History:
Release Command Line Tool

1.8.0 Tool introduced in this release.

HDF5 Reference Manual h5copy

707

Tool Name:h5mkgrp
Syntax:

h5mkgrp [OPTIONS] file_name group_name...
Purpose:

Creates new group(s) in an HDF5 file.
Description:

h5mkgrp creates one or more new groups in an HDF5 file.

Options and Parameters:

file_name
Name of HDF5 file within which new group is to be created.

group_name
Name of group to be created; specified as full path name from the root group, i.e., starting with a
slash (/).

Options:
-h, --help

Print a usage message and exit.
-l, --latest

Use latest version of file format to create new group.
-p, --parents

Create parent or intervening groups as needed. Issue no error if intervening groups or new group
already exist.

-v, --verbose
Print verbose output, including information about file, group(s), and options.

-V, --version
Print tool version number then exit. Tool version number is that of the corresponding HDF5
Library.

Exit Status:
0 Succeeded.

>0 An error occurred.
Example Usage

Create a new group, new_group, within the existing group /a/b in the file HDF5_file.

 h5mkgrp "HDF5_file" "/a/b/new_group"

Create a new group, new_group, within the group /a/b in the file HDF5_file. Create the groups a
and b if they do not already exist. Issue no error if the intervening groups or the new group already exist.

 h5mkgrp -p "HDF5_file" "/a/b/new_group"

Create the new groups /a/b/new_c and /a/x/new_4 in the file HDF5_file. The groups /a/b
and /a/x must already exist.

 h5mkgrp -p "HDF5_file" "/a/b/new_c" "/a/x/new_4"

h5mkgrp HDF5 Reference Manual

708

History:
Release Command Line Tool

1.8.0 Tool introduced in this release.

HDF5 Reference Manual h5mkgrp

709

Tool Name:h5import
Syntax:

h5import infile in_options [infile in_options ...] -o outfile
h5import infile in_options [infile in_options ...] -outfile outfile
h5import -h
h5import -help

Purpose:
Imports data into an existing or new HDF5 file.

Description:
h5import converts data from one or more ASCII or binary files, infile, into the same number of
HDF5 datasets in the existing or new HDF5 file, outfile. Data conversion is performed in accordance
with the user-specified type and storage properties specified in in_options.

The primary objective of h5import is to import floating point or integer data. The utility's design
allows for future versions that accept ASCII text files and store the contents as a compact array of
one-dimensional strings, but that capability is not implemented in HDF5 Release 1.6.

Input data and options:
Input data can be provided in one of the following forms:

As an ASCII, or plain-text, file containing either floating point or integer data◊
As a binary file containing either 32-bit or 64-bit native floating point data◊
As a binary file containing native integer data, signed or unsigned and 8-bit, 16-bit, 32-bit, or
64-bit.

◊

As an ASCII, or plain-text, file containing text data. (This feature is not implemented in HDF5
Release 1.6.)

◊

Each input file, infile, contains a single n-dimensional array of values of one of the above types
expressed in the order of fastest-changing dimensions first.

Floating point data in an ASCII input file may be expressed either in the fixed-point form (e.g., 323.56) or
in scientific notation (e.g., 3.23E+02) in an ASCII input file.

Each input file can be associated with options specifying the datatype and storage properties. These
options can be specified either as command line arguments or in a configuration file. Note that exactly
one of these approaches must be used with a single input file.

Command line arguments, best used with simple input files, can be used to specify the class, size,
dimensions of the input data and a path identifying the output dataset.

The recommended means of specifying input data options is in a configuration file; this is also the only
means of specifying advanced storage features. See further discussion in "The configuration file" below.

The only required option for input data is dimension sizes; defaults are available for all others.

h5import will accept up to 30 input files in a single call. Other considerations, such as the maximum
length of a command line, may impose a more stringent limitation.

h5import HDF5 Reference Manual

710

Output data and options:
The name of the output file is specified following the -o or -output option in outfile. The data
from each input file is stored as a separate dataset in this output file. outfile may be an existing file. If
it does not yet exist, h5import will create it.

Output dataset information and storage properties can be specified only by means of a configuration file.

Dataset path If the groups in the path leading to the dataset do not exist, h5import
will create them.
If no group is specified, the dataset will be created as a member of the
root group.
If no dataset name is specified, the default name is dataset0 for the
first input dataset, dataset1 for the second input dataset,
dataset2 for the third input dataset, etc.
h5import does not overwrite a pre-existing dataset of the specified
or default name. When an existing dataset of a conflicting name is
encountered, h5import quits with an error; the current input file and
any subsequent input files are not processed.

Output type Datatype parameters for output data

 Output data class Signed or unsigned integer or floating point

 Output data size 8-, 16-, 32-, or 64-bit integer
32- or 64-bit floating point

 Output architecture IEEE
STD
NATIVE (Default)
Other architectures are included in the h5import design but are not
implemented in this release.

 Output byte order Little- or big-endian.
Relevant only if output architecture is IEEE, UNIX, or STD; fixed for
other architectures.

Dataset layout and storage
 properties

Denote how raw data is to be organized on the disk. If none of the
following are specified, the default configuration is contiguous layout
and with no compression.

 Layout Contiguous (Default)
Chunked

 External storage Allows raw data to be stored in a non-HDF5 file or in an external
HDF5 file.
Requires contiguous layout.

 Compressed Sets the type of compression and the level to which the dataset must be
compressed.
Requires chunked layout.

 Extendable Allows the dimensions of the dataset increase over time and/or to be
unlimited.
Requires chunked layout.

 Compressed and
 extendable

Requires chunked layout.

HDF5 Reference Manual h5import

711

Command-line arguments:
The h5import syntax for the command-line arguments, in_options, is as follows:

h5import infile -d dim_list [-p pathname] [-t input_class] [-s
input_size] [infile ...] -o outfile
or
h5import infile -dims dim_list [-path pathname] [-type input_class]
[-size input_size] [infile ...] -outfile outfile
or
h5import infile -c config_file [infile ...] -outfile outfile

Note the following: If the -c config_file option is used with an input file, no other argument can be
used with that input file. If the -c config_file option is not used with an input data file, the -d
dim_list argument (or -dims dim_list) must be used and any combination of the remaining
options may be used. Any arguments used must appear in exactly the order used in the syntax declarations
immediately above.

The configuration file:
A configuration file is specified with the -c config_file option:

h5import infile -c config_file [infile -c config_file2 ...] -outfile
outfile

The configuration file is an ASCII file and must be organized as "Configuration_Keyword Value" pairs,
with one pair on each line. For example, the line indicating that the input data class (configuration
keyword INPUT-CLASS) is floating point in a text file (value TEXTFP) would appear as follows:
 INPUT-CLASS TEXTFP

A configuration file may have the following keywords each followed by one of the following defined
values. One entry for each of the first two keywords, RANK and DIMENSION-SIZES, is required; all
other keywords are optional.

Keyword
Value

Description

RANK The number of dimensions in the dataset. (Required)

rank An integer specifying the number of dimensions in the dataset.
Example: 4 for a 4-dimensional dataset.

DIMENSION-SIZES Sizes of the dataset dimensions. (Required)

dim_sizes A string of space-separated integers specifying the sizes of the
dimensions in the dataset. The number of sizes in this entry must
match the value in the RANK entry. The fastest-changing
dimension must be listed first.
Example: 4 3 4 38 for a 38x4x3x4 dataset.

h5import HDF5 Reference Manual

712

PATH Path of the output dataset.

path The full HDF5 pathname identifying the output dataset relative to
the root group within the output file.
I.e., path is a string consisting of optional group names, each
followed by a slash, and ending with a dataset name. If the groups
in the path do no exist, they will be created.
If PATH is not specified, the output dataset is stored as a member
of the root group and the default dataset name is dataset0 for
the first input dataset, dataset1 for the second input dataset,
dataset2 for the third input dataset, etc.
Note that h5import does not overwrite a pre-existing dataset of
the specified or default name. When an existing dataset of a
conflicting name is encountered, h5import quits with an error;
the current input file and any subsequent input files are not
processed.
Example: The configuration file entry

PATH grp1/grp2/dataset1

indicates that the output dataset dataset1 will be written in the
group grp2/ which is in the group grp1/, a member of the root
group in the output file.

INPUT-CLASS A string denoting the type of input data.

 TEXTIN Input is signed integer data in an ASCII file.

 TEXTUIN Input is unsigned integer data in an ASCII file.

 TEXTFP Input is floating point data in either fixed-point notation (e.g.,
325.34) or scientific notation (e.g., 3.2534E+02) in an ASCII file.

 IN Input is signed integer data in a binary file.

 UIN Input is unsigned integer data in a binary file.

 FP Input is floating point data in a binary file. (Default)

 STR Input is character data in an ASCII file. With this value, the
configuration keywords RANK, DIMENSION-SIZES,
OUTPUT-CLASS, OUTPUT-SIZE, OUTPUT-ARCHITECTURE,
and OUTPUT-BYTE-ORDER will be ignored.
(Not implemented in this release.)

INPUT-SIZE An integer denoting the size of the input data, in bits.

 8
 16
 32
 64

For signed and unsigned integer data: TEXTIN, TEXTUIN, IN, or
UIN. (Default: 32)

 32
 64

For floating point data: TEXTFP or FP. (Default: 32)

HDF5 Reference Manual h5import

713

OUTPUT-CLASS A string denoting the type of output data.

 IN Output is signed integer data.
(Default if INPUT-CLASS is IN or TEXTIN)

 UIN Output is unsigned integer data.
(Default if INPUT-CLASS is UIN or TEXTUIN)

 FP Output is floating point data.
(Default if INPUT-CLASS is not specified or is FP or TEXTFP)

 STR Output is character data, to be written as a 1-dimensional array of
strings.
(Default if INPUT-CLASS is STR)
(Not implemented in this release.)

OUTPUT-SIZE An integer denoting the size of the output data, in bits.

 8
 16
 32
 64

For signed and unsigned integer data: IN or UIN. (Default: Same
as INPUT-SIZE, else 32)

 32
 64

For floating point data: FP. (Default: Same as INPUT-SIZE, else
32)

OUTPUT-ARCHITECTURE A string denoting the type of output architecture.

 NATIVE
 STD
 IEEE
 INTEL *
 CRAY *
 MIPS *
 ALPHA *
 UNIX *

See the "Predefined Atomic Types" section in the "HDF5
Datatypes" chapter of the HDF5 User's Guide for a discussion of
these architectures.
Values marked with an asterisk (*) are not implemented in this
release.
(Default: NATIVE)

OUTPUT-BYTE-ORDER A string denoting the output byte order. This entry is ignored if the
OUTPUT-ARCHITECTURE is not specified or if it is not specified
as IEEE, UNIX, or STD.

 BE Big-endian. (Default)

 LE Little-endian.

h5import HDF5 Reference Manual

714

The following options are disabled by default, making the default storage properties no chunking, no
compression, no external storage, and no extensible dimensions.

CHUNKED-DIMENSION-SIZES Dimension sizes of the chunk for chunked output data.

chunk_dims A string of space-separated integers specifying the dimension sizes
of the chunk for chunked output data. The number of dimensions
must correspond to the value of RANK.
The presence of this field indicates that the output dataset is to be
stored in chunked layout; if this configuration field is absent, the
dataset will be stored in contiguous layout.

COMPRESSION-TYPE Type of compression to be used with chunked storage. Requires
that CHUNKED-DIMENSION-SIZES be specified.

 GZIP Gzip compression.
Other compression algorithms are not implemented in this release
of h5import.

COMPRESSION-PARAM Compression level. Required if COMPRESSION-TYPE is
specified.

 1 through 9 Gzip compression levels: 1 will result in the fastest compression
while 9 will result in the best compression ratio.
(Default: 6. The default gzip compression level is 6; not all
compression methods will have a default level.)

EXTERNAL-STORAGE Name of an external file in which to create the output dataset.
Cannot be used with CHUNKED-DIMENSIONS-SIZES,
COMPRESSION-TYPE, OR MAXIMUM-DIMENSIONS.

external_file A string specifying the name of an external file.

MAXIMUM-DIMENSIONS Maximum sizes of all dimensions. Requires that
CHUNKED-DIMENSION-SIZES be specified.

max_dims A string of space-separated integers specifying the maximum size
of each dimension of the output dataset. A value of -1 for any
dimension implies unlimited size for that particular dimension.
The number of dimensions must correspond to the value of RANK.

HDF5 Reference Manual h5import

715

Options and Parameters:
infile(s) Name of the Input file(s).

in_options Input options. Note that while only the -dims argument is required,
arguments must used in the order in which they are listed below.

-d dim_list

-dims dim_list Input data dimensions. dim_list is a string of comma-separated
numbers with no spaces describing the dimensions of the input data.
For example, a 50 x 100 2-dimensional array would be specified as
-dims 50,100.
Required argument: if no configuration file is used, this
command-line argument is mandatory.

-p pathname

-pathname pathname pathname is a string consisting of one or more strings separated by
slashes (/) specifying the path of the dataset in the output file. If the
groups in the path do no exist, they will be created.
Optional argument: if not specified, the default path is dataset1
for the first input dataset, dataset2 for the second input dataset,
dataset3 for the third input dataset, etc.
h5import does not overwrite a pre-existing dataset of the specified
or default name. When an existing dataset of a conflicting name is
encountered, h5import quits with an error; the current input file
and any subsequent input files are not processed.

-t input_class

-type input_class input_class specifies the class of the input data and determines
the class of the output data.
Valid values are as defined in the Keyword/Values table in the
section "The configuration file" above.
Optional argument: if not specified, the default value is FP.

-s input_size

-size input_size input_size specifies the size in bits of the input data and
determines the size of the output data.
Valid values for signed or unsigned integers are 8, 16, 32, and 64.
Valid values for floating point data are 32 and 64.
Optional argument: if not specified, the default value is 32.

-c config_file config_file specifies a configuration file.
This argument replaces all other arguments except infile and -o
outfile

-h

-help Prints the h5import usage summary:
h5import -h[elp], OR
h5import <infile> <options> [<infile>
<options>...] -o[utfile] <outfile>
Then exits.

outfile Name of the HDF5 output file.
Exit Status:

0 Succeeded.

>0 An error occurred.

h5import HDF5 Reference Manual

716

Examples:
Using command-line arguments:
h5import infile -dims 2,3,4 -type TEXTIN -size 32 -o out1

This command creates a file out1 containing a single 2x3x4 32-bit integer dataset. Since no
pathname is specified, the dataset is stored in out1 as /dataset1.

h5import infile -dims 20,50 -path bin1/dset1 -type FP -size 64 -o out2

This command creates a file out2 containing a single a 20x50 64-bit floating point dataset. The
dataset is stored in out2 as /bin1/dset1.

Sample configuration files:
The following configuration file specifies the following:
– The input data is a 5x2x4 floating point array in an ASCII file.
– The output dataset will be saved in chunked layout, with chunk dimension sizes of 2x2x2.
– The output datatype will be 64-bit floating point, little-endian, IEEE.
– The output dataset will be stored in outfile at /work/h5/pkamat/First-set.
– The maximum dimension sizes of the output dataset will be 8x8x(unlimited).

 PATH work/h5/pkamat/First-set
 INPUT-CLASS TEXTFP
 RANK 3
 DIMENSION-SIZES 5 2 4
 OUTPUT-CLASS FP
 OUTPUT-SIZE 64
 OUTPUT-ARCHITECTURE IEEE
 OUTPUT-BYTE-ORDER LE
 CHUNKED-DIMENSION-SIZES 2 2 2
 MAXIMUM-DIMENSIONS 8 8 -1

The next configuration file specifies the following:
– The input data is a 6x3x5x2x4 integer array in a binary file.
– The output dataset will be saved in chunked layout, with chunk dimension sizes of 2x2x2x2x2.
– The output datatype will be 32-bit integer in NATIVE format (as the output architecture is not
specified).
– The output dataset will be compressed using Gzip compression with a compression level of 7.
– The output dataset will be stored in outfile at /Second-set.

 PATH Second-set
 INPUT-CLASS IN
 RANK 5
 DIMENSION-SIZES 6 3 5 2 4
 OUTPUT-CLASS IN
 OUTPUT-SIZE 32
 CHUNKED-DIMENSION-SIZES 2 2 2 2 2
 COMPRESSION-TYPE GZIP
 COMPRESSION-PARAM 7

History:
Release Command Line Tool

1.6.0 Tool introduced in this release.

HDF5 Reference Manual h5import

717

Last modified: 4 January 2011

Tool Name:gif2h5
Syntax:

gif2h5 gif_file h5_file
Purpose:

Converts a GIF file to an HDF5 file.
Description:

gif2h5 accepts as input the GIF file gif_file and produces the HDF5 file h5_file as output.
Options and Parameters:

gif_file The name of the input GIF file

h5_file The name of the output HDF5 file
Exit Status:

0 Succeeded.

> 0 An error occurred.
History:

Release Change

1.8.5 Tool exist status codes updated.

gif2h5 HDF5 Reference Manual

718

Last modified: 4 January 2011

Tool Name:h52gif
Syntax:

h52gif h5_file gif_file -i h5_image [-p h5_palette]
Purpose:

Converts an HDF5 file to a GIF file.
Description:

h52gif accepts as input the HDF5 file h5_file and the names of images and associated palettes within
that file as input and produces the GIF file gif_file, containing those images, as output.

h52gif expects at least one h5_image. You may repeat
-i h5_image [-p h5_palette]

up to 50 times, for a maximum of 50 images.
Options and Parameters:

h5_file The name of the input HDF5 file

gif_file The name of the output GIF file

-i h5_image Image option, specifying the name of an HDF5 image or dataset containing an image
to be converted

-p h5_palette Palette option, specifying the name of an HDF5 dataset containing a palette to be used
in an image conversion

Exit Status:
0 Succeeded.

> 0 An error occurred.
History:

Release Change

1.8.5 Tool exist status codes updated.

HDF5 Reference Manual h52gif

719

Last modified: 20 January 2011

Tool Name:h5toh4
Syntax:

h5toh4 -h
h5toh4 h5file h4file
h5toh4 h5file
h5toh4 -m h5file1 h5file2 h5file3 ...

Purpose:
Converts an HDF5 file into an HDF4 file.

Description:
h5toh4 is an HDF5 utility which reads an HDF5 file, h5file, and converts all supported objects and
pathways to produce an HDF4 file, h4file. If h4file already exists, it will be replaced.

If only one file name is given, the name must end in .h5 and is assumed to represent the HDF5 input file.
h5toh4 replaces the .h5 suffix with .hdf to form the name of the resulting HDF4 file and proceeds as
above. If a file with the name of the intended HDF4 file already exists, h5toh4 exits with an error
without changing the contents of any file.

The -m option allows multiple HDF5 file arguments. Each file name is treated the same as the single file
name case above.

The -h option causes the following syntax summary to be displayed:

 h5toh4 file.h5 file.hdf
 h5toh4 file.h5
 h5toh4 -m file1.h5 file2.h5 ...

The following HDF5 objects occurring in an HDF5 file are converted to HDF4 objects in the HDF4 file:

HDF5 group objects are converted into HDF4 Vgroup objects. HDF5 hard links and soft links
pointing to objects are converted to HDF4 Vgroup references.

◊

HDF5 dataset objects of integer datatype are converted into HDF4 SDS objects. These datasets
may have up to 32 fixed dimensions. The slowest varying dimension may be extendable. 8-bit,
16-bit, and 32-bit integer datatypes are supported.

◊

HDF5 dataset objects of floating point datatype are converted into HDF4 SDS objects. These
datasets may have up to 32 fixed dimensions. The slowest varying dimension may be extendable.
32-bit and 64-bit floating point datatypes are supported.

◊

HDF5 dataset objects of single dimension and compound datatype are converted into HDF4
Vdata objects. The length of that single dimension may be fixed or extendable. The members of
the compound datatype are constrained to be no more than rank 4.

◊

HDF5 dataset objects of single dimension and fixed length string datatype are converted into
HDF4 Vdata objects. The HDF4 Vdata is a single field whose order is the length of the HDF5
string type. The number of records of the Vdata is the length of the single dimension which may
be fixed or extendable.

◊

Other objects are not converted and are not recorded in the resulting h4file.

Attributes associated with any of the supported HDF5 objects are carried over to the HDF4 objects.
Attributes may be of integer, floating point, or fixed length string datatype and they may have up to 32
fixed dimensions.

h5toh4 HDF5 Reference Manual

720

All datatypes are converted to big-endian. Floating point datatypes are converted to IEEE format.
Note:

The h5toh4 and h4toh5 utilities are no longer part of the HDF5 product; they are distributed
separately through the page Converting between HDF (4.x) and HDF5.

Options and Parameters:
-h Displays a syntax summary.

-m Converts multiple HDF5 files to multiple HDF4 files.

h5file The HDF5 file to be converted.

h4file The HDF4 file to be created.
Exit Status:

0 Succeeded.

> 0 An error occurred.

HDF5 Reference Manual h5toh4

721

http://www.hdfgroup.org/h4toh5/

Last modified: 20 January 2011

Tool Name:h4toh5
Syntax:

h4toh5 -h
h4toh5 h4file h5file
h4toh5 h4file

Purpose:
Converts an HDF4 file to an HDF5 file.

Description:
h4toh5 is a file conversion utility that reads an HDF4 file, h4file (input.hdf for example), and writes
an HDF5 file, h5file (output.h5 for example), containing the same data.

If no output file h5file is specified, h4toh5 uses the input filename to designate the output file, replacing
the extension .hdf with .h5. For example, if the input file scheme3.hdf is specified with no output
filename, h4toh5 will name the output file scheme3.h5.

The -h option causes a syntax summary similar to the following to be displayed:

 h4toh5 inputfile.hdf outputfile.h5
 h4toh5 inputfile.hdf

Each object in the HDF4 file is converted to an equivalent HDF5 object, according to the mapping
described in Mapping HDF4 Objects to HDF5 Objects.

h4toh5 converts the following HDF4 objects:

HDF4 Object Resulting HDF5 Object

SDS Dataset

GR, RI8, and RI24 image Dataset

Vdata Dataset

Vgroup Group

Annotation Attribute

Palette Dataset
Note:

The h4toh5 and h5toh4 utilities are no longer part of the HDF5 product; they are distributed
separately through the page Converting between HDF (4.x) and HDF5.

Options and Parameters:
-h Displays a syntax summary.

h4file The HDF4 file to be converted.

h5file The HDF5 file to be created.
Exit Status:

0 Succeeded.

> 0 An error occurred.

h4toh5 HDF5 Reference Manual

722

http://www.hdfgroup.org/h4toh5/

Last modified: 9 November 2009

Tool Name:h5stat
Syntax:

h5stat [OPTIONS] file
Purpose:

Reports statistics about an HDF5 file and its objects.
Description:

h5stat reports selected statistics regarding an HDF5 file and the objects in that file.
Options and Parameters:

-h or --help Print a usage message and exit.

-V or --version Print version number and exit.

-f or --file Print file information.

-F or --filemetadata Print file space information for file's meta data.

-g or --group Print group information.

-G or --groupmetadata Print file space information for groups' meta data.

-d or --dset Print dataset information.

-D or --dsetmetadata Print file space information for datasets' meta data.

-T or --dtypemetadata Print datasets' datatype meta data.

-A or --attribute Print attribute information.
Exit Status:

0 Succeeded.

>0 An error occurred.
History:

Release Command Line Tool

1.8.0 Tool introduced in this release.

HDF5 Reference Manual h5stat

723

Last modified: 10 November 2010

Tool Name:h5check
Syntax:

h5check [OPTIONS] file
Purpose:

Verifies that an HDF5 file is encoded according to the HDF5 specification.
Motivation:

H5check is a validation tool designed to verify that an HDF5 file is encoded according to the HDF5 File
Format Specification. The purpose is to ensure data model integrity and long-term compatibility between
evolving versions of the HDF5 Library.

Independent Verification Tool: Note that H5check is designed to operate independently of the HDF5
Library:

It verifies the validity of an HDF5 file directly against the HDF5 File Format Specification
without reference to or any use of the HDF5 Library.

◊

H5check is distributed separately; see “HDF5 Tools and Software.”◊
Description:

Given a file, h5check scans through the encoded content, verifying it against the defined library format.
If it finds any non-compliance, h5check prints the error and the reason behind the non-compliance; if
possible, it continues the scanning. If h5check does not find any non-compliance, it prints an approval
statement upon completion.

By default, the file is verified against the latest version of the file format; as of this writing, that is the
format recognized by the HDF5 Release 1.8.x series. A format version can be explicitly specified with the
-fn (or --format=n) option. For example, -f16 (or --format=16) would specify verification
against the format recognized by the HDF5 Release 1.6.x series.

Options:
-h, --help

Print usage message and exit.
-V, --version

Print version number and exit.
-vn, --verbose n

Set verbose mode:
n=0 Terse Indicate only whether file is compliant.

n=1 Normal Print progress and all errors found. (Default)

n=2 Verbose Print all known information; usually used for debugging.
-e, --external

Validate external links existing in the file.
-fn, --format n

Set library release version against which the file is to be validated:
n=16 Validate according to HDF5 Release 1.6.x series.

n=18 Validate according to HDF5 Release 1.8.x series. (Default)
-oa, --object a

Check object header, where a is the address of the object header to be validated.

h5check HDF5 Reference Manual

724

http:../H5.format.html
http:../H5.format.html
http://www.hdfgroup.org/products/hdf5_tools/index.html

Exit Status:
0 Succeeded.

1 Command failures, such as argument errors.

2 Format compliance errors found.
History:

Release Change

1.8.5 Tool first distributed shortly before this release.

HDF5 Reference Manual h5check

725

Tool Name:h5perf
Syntax:

h5perf [-h | --help]
h5perf [options]

Purpose:
Tests Parallel HDF5 performance.

Description:
h5perf is a tool for testing the performance of the Parallel HDF5 Library. The tool can perform testing
with 1-dimensional and 2-dimensional buffers and datasets. For details regarding data organization and
access, see “h5perf, a Parallel File System Benchmarking Tool.”

The following environment variables have the following effects on h5perf behavior:

HDF5_NOCLEANUP If set, h5perf does not remove data files.
(Default: Data files are removed.)

HDF5_MPI_INFO Must be set to a string containing a list of semi-colon separated
key=value pairs for the MPI INFO object.
Example:

HDF5_PARAPREFIX Sets the prefix for parallel output data files.
Options and Parameters:

These terms are used as follows in this section:

file A filename

size A size specifier, expressed as an integer greater than or equal to 0 (zero) followed by a size
indicator:

K for kilobytes (1024 bytes)
M for megabytes (1048576 bytes)
G for gigabytes (1073741824 bytes)

Example: 37M specifies 37 megabytes or 38797312 bytes.

N An integer greater than or equal to 0 (zero)

-h, --help

Prints a usage message and exits.

-a size, --align=size

Specifies the alignment of objects in the HDF5 file.
(Default:1)

-A api_list, --api=api_list

Specifies which APIs to test. api_list is a comma-separated list with the following valid values:
phdf5 Parallel HDF5

mpiio MPI-I/O

posix POSIX
(Default: All APIs)

Example, --api=mpiio,phdf5 specifies that the MPI I/O and Parallel HDF5 APIs are to be
monitored.

h5perf HDF5 Reference Manual

726

http://hdfgroup.org/HDF5/doc_resource/h5perf_parallel/h5perf_parallel.pdf

-B size, --block-size=size

Controls the block size within the transfer buffer.
(Default: Half the number of bytes per process per dataset)

Block size versus transfer buffer size:
The transfer buffer size is the size of a buffer in memory. The data in that buffer is broken into
block size pieces and written to the file.

Transfer buffer size is discussed below with the -x (or --min-xfer-size) and -X (or
--max-xfer-size) options.

The pattern in which the blocks are written to the file is described in the discussion of the -I (or
--interleaved) option.

-c, --chunk

Creates HDF5 datasets in chunked layout.
(Default: Off)

-C, --collective

Use collective I/O for the MPI I/O and Parallel HDF5 APIs.
(Default: Off, i.e., independent I/O)

If this option is set and the MPI-I/O and PHDF5 APIs are in use, all the blocks of every process
will be written at once with an MPI derived type.

-d N, --num-dsetsN

Sets the number of datasets per file.
(Default:1)

-D debug_flags, --debug=debug_flags

Sets the debugging level. debug_flags is a comma-separated list of debugging flags with the
following valid values:

1 Minimal debugging

2 Moderate debugging (“not quite everything”)

3 Extensive debugging (“everything”)

4 All possible debugging (“the kitchen sink”)

r Raw data I/O throughput information

t Times, in additions to throughputs

v Verify data correctness
(Default: No debugging)

Example: --debug=2,r,t specifies to run a moderate level of debugging while collecting raw
data I/O throughput information and verifying the correctness of the data.

Throughput values are computed by dividing the total amount of transferred data (excluding
metadata) over the time spent by the slowest process. Several time counters are defined to measure
the data transfer time and the total elapsed time; the latter includes the time spent during file open
and close operations. A number of iterations can be specified with the option -i (or
--num-iterations) to create the desired population of measurements from which maximum,
minimum, and average values can be obtained.

HDF5 Reference Manual h5perf

727

The timing scheme is the following:

 for each iteration
 initialize elapsed time counter
 initialize data transfer time counter
 for each file
 start and accumulate elapsed time counter
 file open
 start and accumulate data transfer time counter
 access entire file
 stop data transfer time counter
 file close
 stop elapsed time counter
 end file
 save elapsed time counter
 save data transfer time counter
 end iteration

The reported write throughput is based on the accumulated data transfer time, while the write
open-close throughput uses the accumulated elapsed time.

-e size, --num-bytes=size

Specifies the number of bytes per process per dataset.
(Default:256K for 1D, 8K for 2D)

Depending on the selected geometry, each test dataset can be a linear array of size
bytes-per-process * num-processes or a square array of size (bytes-per-process * num-processes) ×
(bytes-per-process * num-processes). The number of processes is set by the -p (or
--min-num-processes) and -P (or --max-num-processes) options.

-F N, --num-files=N

Specifies the number of files.
(Default:1)

-g, --geometry

Selects 2D geometry for testing.
(Default: Off, i.e., 1D geometry)

-i N, --num-iterations=N

Sets the number of iterations to perform.
(Default:1)

h5perf HDF5 Reference Manual

728

-I, --interleaved

Sets interleaved block I/O.
(Default: Contiguous block I/O)

Interleaved and contiguous patterns in 1D geometry:
When a contiguous access pattern is chosen, the dataset is evenly divided into num-processes
regions and each process writes data to its assigned region. When interleaved blocks are written to
a dataset, space for the first block of the first process is allocated in the dataset, then space is
allocated for the first block of the second process, etc., until space is allocated for the first block of
each process, then space is allocated for the second block of the first process, the second block of
the second process, etc.

For example, with a three process run, 512KB bytes-per-process, 256KB transfer buffer size, and
64KB block size, each process must issue two transfer requests to complete access to the dataset.

Contiguous blocks of the first transfer request are written as follows:
 1111----2222----3333----

Interleaved blocks of the first transfer request are written as follows:
 123123123123------------

The actual number of I/O operations involved in a transfer request depends on the access pattern
and communication mode. When using independent I/O with an interleaved access pattern, each
process performs four small non-contiguous I/O operations per transfer request. If collective I/O is
turned on, the combined content of the buffers of the three processes will be written using one
collective I/O operation per transfer request.

For details regarding the impact of performance and access patterns in 2D, see “h5perf, a Parallel
File System Benchmarking Tool.”

-m, --mpi-posix Sets use of MPI-posix driver for HDF5 I/O.
(Default: MPI-I/O driver)

-n, --no-fill Specifies to not write fill values to HDF5 datasets. This
option is supported only in HDF5 Release v1.6 or later.
(Default: Off, i.e., write fill values)

-o file, --output=file Sets the output file for raw data to file.
(Default: None)

-p N, --min-num-processes=N Sets the minimum number of processes to be used.
(Default:1)

-P N, --max-num-processes=N Sets the maximum number of processes to be used.
(Default: All MPI_COMM_WORLD processes)

-T size, --threshold=size Sets the threshold for alignment of objects in the HDF5
file.
(Default:1)

-w, --write-only Performs only write tests, not read tests.
(Default: Read and write tests)

HDF5 Reference Manual h5perf

729

http://hdfgroup.org/HDF5/doc_resource/h5perf_parallel/h5perf_parallel.pdf
http://hdfgroup.org/HDF5/doc_resource/h5perf_parallel/h5perf_parallel.pdf

-x size,
--min-xfer-size=size

Sets the minimum transfer buffer size.
(Default: Half the number of bytes per processor per dataset)

This option and the -Xsize option (or --max-xfer-size=size)
control transfer-buffer-size, the size of the transfer buffer in memory. In
1D geometry, the transfer buffer is a linear array of size
transfer-buffer-size. In 2D geometry, the transfer buffer is a rectangular
array of size block-size × transfer-buffer-size, or transfer-buffer-size ×
block-size if the interleaved access pattern is selected.

-X size,
--max-xfer-size=size

Sets the maximum transfer buffer size.
(Default: The number of bytes per processor per dataset)

Exit Status:
0 Succeeded.

>0 An error occurred.
History:

Release Change

1.6.0 Tool introduced in this release.

1.6.8 and 1.8.0 Option -g, --geometry introduced in this release.

h5perf HDF5 Reference Manual

730

Tool Name:h5perf_serial
Syntax:

h5perf_serial [-h | --help]
h5perf_serial [options]

Purpose:
Tests HDF5 serial performance.

Description:
h5perf_serial provides tools for testing the performance of the HDF5 Library in serial mode.

See “h5perf_serial, a Serial File System Benchmarking Tool” for a complete description of this tool.

The following environment variable can be set to control the specfied aspect of h5perf_serial
behavior:

HDF5_NOCLEANUP If set, h5perf_serial does not remove data files.
(Default: Data files are removed.)

HDF5_PREFIX Sets the prefix for output data files.
Options and Parameters:

The term size specifier is used as follows in this section:
A size specifier is an integer greater than or equal to 0 (zero) followed by a size indicator:

K for kilobytes (1024 bytes)
M for megabytes (1048576 bytes)
G for gigabytes (1073741824 bytes)

Example: 37M specifies 37 megabytes or 38797312 bytes.

-A api_list Specifies which APIs to test. api_list is a comma-separated list with the
following valid values:

hdf5 HDF5 Library APIs

posix POSIX APIs
(Default: All APIs are monitored.)

Example: -A hdf5,posix specifies that the HDF5 and POSIX APIs are to
be monitored.

-c chunk_size_list Specifies chunked storage and defines chunks dimensions and sizes.
(Default: Chunking is off.)

chunk_size_list is a comma-separated list of size specifiers. For example, a
chunk_size_list value of
 2K,4K,6M
specifies that chunking is turned on and that chunk size is 2 kilobytes by 4
kilobytes by 6 megabytes.

-e dataset_size_list Specifies dataset dimensionality and dataset dimension sizes.
(Default dataset size is 100x200, or 100,200.)

dataset_size_list is a comma-separated list of size specifiers, which are defined
above.

HDF5 Reference Manual h5perf_serial

731

http://hdfgroup.org/HDF5/doc_resource/h5perf_serial/h5perf_serial.pdf

For example, a dataset_size_list value of
 2K,4K,6M
specifies a 2 kilobytes by 4 kilobytes by 6 megabytes dataset.

-i iterations Specifies the number of iterations to perform.
(Default: A single iteration, 1, is performed.)

iterations is an integer specifying the number of iterations.

-r access_order Specifies dimension access order.
(Default: 1,2)

access_order is a comma-separated list of integers specifying the order of
access. For example,
 -r 1,3,2
specifies the traversal of dimension 1 first, then dimension 3, and finally
dimension 2.

-t Selects extendable HDF5 dataset dimensions.
(Default: Datasets are fixed size.)

-v file_driver Selects HDF5 driver to be used for HDF5 file access.
(Default: sec2)

Valid values are as follows:
 sec2
 stdio
 core
 split
 multi
 family
 direct

-w Specifies the performance of write tests only, read performance will not be
tested.
(Default: Both write and read tests are performed.)

-x buffer_size_list Specifies transfer buffer dimensions and sizes.
(Default: 10,20)

Exit Status:
0 Succeeded.

>0 An error occurred.
History:

Release Command Line Tool

1.8.1 Tool introduced in this release.

h5perf_serial HDF5 Reference Manual

732

Last modified: 4 January 2011

Tool Name:h5redeploy
Syntax:

h5redeploy [help | -help]
h5redeploy [-echo] [-force] [-prefix=dir] [-tool=tool] [-show]

Purpose:
Updates HDF5 compiler tools after an HDF5 software installation in a new location.

Description:
h5redeploy updates the HDF5 compiler tools after the HDF5 software has been installed in a new
location.

Options and Parameters:
help, -help Prints a help message.

-echo Shows all the shell commands executed.

-force Performs the requested action without offering any prompt requesting confirmation.

-prefix=dir Specifies a new directory in which to find the HDF5 subdirectories lib/ and
include/.
(Default: current working directory)

-tool=tool Specifies the tool to update. tool must be in the current directory and must be writable.
(Default: h5cc)

-show Shows all of the shell commands to be executed without actually executing them.
Exit Status:

0 Succeeded.

> 0 An error occurred.
History:

Release Command Line Tool

1.6.0 Tool introduced in this release.

1.8.5 Tool exist status codes updated.

HDF5 Reference Manual h5redeploy

733

Last modified: 4 January 2011

Tool Name:h5cc and h5pcc
Syntax:

h5cc [OPTIONS] <compile line>
h5pcc [OPTIONS] <compile_line>

Purpose:
Helper scripts to compile HDF5 applications.

Description:
h5cc and h5pcc can be used in much the same way as mpicc by MPICH is used to compile an HDF5
program. These tools take care of specifying on the command line the locations of the HDF5 header files
and libraries. h5cc is for use in serial computing environments; h5pcc is for parallel environments.

h5cc and h5pcc subsume all other compiler scripts in that if you have used a set of scripts to compile
the HDF5 library, then h5cc and h5pcc also use those scripts. For example, when compiling an MPICH
program, you use the mpicc script. If you have built HDF5 using MPICH, then h5cc uses the MPICH
program for compilation.

Some programs use HDF5 in only a few modules. It is not necessary to use h5cc or h5pcc to compile
those modules which do not use HDF5. In fact, since h5cc and h5pcc are only convenience scripts, you
can still compile HDF5 modules in the normal manner, though you will have to specify the HDF5
libraries and include paths yourself. Use the -show option to see the details. For example, running h5cc
for an HDF5 library built using gcc with --disable-shared, zlib and szlib, all installed in
/usr/local/lib would provide this compile command:

gcc -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE -D_LARGEFILE64_SOURCE \
 -D_BSD_SOURCE -L/usr/local/lib /usr/local/lib/libhdf5_hl.a \
 /usr/local/lib/libhdf5.a /usr/local/lib/libsz.a /usr/local/lib/libz.a \
 -lm -W1,-rpath -W1,/usr/local/lib [OPTIONS] <compile line>

An example of how to use h5cc to compile the program hdf_prog, which consists of the modules
prog1.c and prog2.c and uses the HDF5 shared library, would be as follows. h5pcc is used in an
identical manner.

 # h5cc -c prog1.c
 # h5cc -c prog2.c
 # h5cc -shlib -o hdf_prog prog1.o prog2.o

Options and Parameters:
-help Prints a help message.

-echo Show all the shell commands executed.

-prefix=DIR Use the directory DIR to find the HDF5 lib/ and include/ subdirectories.
Default: prefix specified when configuring HDF5.

-show Show the commands without executing them.

-shlib Compile using shared HDF5 libraries.

-noshlib Compile using static HDF5 libraries [default].

<compile line> The normal compile line options for your compiler. h5cc and h5pcc use the the
same compiler you used to compile HDF5. Check your compiler's manual for more
information on which options are needed.

h5cc and h5pcc HDF5 Reference Manual

734

Environment Variables:
When set, these environment variables override some of the built-in h5cc and h5pcc defaults.

HDF5_CC Use a different C compiler.

HDF5_CLINKER Use a different linker.

HDF5_USE_SHLIB=[yes|no] Use shared version of the HDF5 library [default: no].

HDF5_CPPFLAGS Use additional preprocessor flags.

HDF5_CFLAGS Use additional C compiler flags.

HDF5_LDFLAGS Use additional library paths.

HDF5_LIBS Use additional libraries.
The last four of these environment variables have corresponding variables with names ending in BASE
that can also be set by editing their values in the "Things You Can Modify to Override HDF5 Library
Build Components" section of the h5cc and h5pcc scripts.

Note that adding library paths to HDF5_LDFLAGS where another HDF5 version is located may link your
program with that other HDF5 Library version.

Exit Status:
0 Succeeded.

> 0 An error occurred.
History:

Release Change

1.8.5 Tool exist status codes updated.

1.8.6 Four compiler flags and environment variables added in this release.

HDF5 Reference Manual h5cc and h5pcc

735

Last modified: 4 January 2011

Tool Name:h5fc and h5pfc
Syntax:

h5fc [OPTIONS] <compile line>
h5pfc [OPTIONS] <compile_line>

Purpose:
Helper scripts to compile HDF5 Fortran90 applications.

Description:
h5fc and h5pfc can be used in much the same way mpif90 by MPICH is used to compile an HDF5
program. These tools take care of specifying on the command line the locations of the HDF5 header files
and libraries. h5fc is for use in serial computing environments; h5pfc is for parallel environments.

h5fc and h5pfc subsume all other compiler scripts in that if you have used a set of scripts to compile
the HDF5 Fortran library, then h5fc and h5pfc also use those scripts. For example, when compiling an
MPICH program, you use the mpif90 script. If you have built HDF5 using MPICH, then h5fc uses the
MPICH program for compilation.

Some programs use HDF5 in only a few modules. It is not necessary to use h5fc and h5pfc to compile
those modules which do not use HDF5. In fact, since h5fc and h5pfc are only convenience scripts, you
can still compile HDF5 Fortran modules in the normal manner, though you will have to specify the HDF5
libraries and include paths yourself. Use the -show option to see the details.

An example of how to use h5fc to compile the program hdf_prog, which consists of the modules
prog1.f90 and prog2.f90 and uses the HDF5 Fortran library, would be as follows. h5pfc is used
in an identical manner.

 # h5fc -c prog1.f90
 # h5fc -c prog2.f90
 # h5fc -o hdf_prog prog1.o prog2.o

Options and Parameters:
-help Prints a help message.

-echo Show all the shell commands executed.

-prefix=DIR Use the directory DIR to find HDF5 lib/ and include/ subdirectories
Default: prefix specified when configuring HDF5.

-show Show the commands without executing them.

<compile line> The normal compile line options for your compiler. h5fc and h5pfc use the the
same compiler you used to compile HDF5. Check your compiler's manual for more
information on which options are needed.

Environment Variables:
When set, these environment variables override some of the built-in h5fc and h5pfc defaults.
HDF5_FC Use a different Fortran90 compiler.

HDF5_FLINKER Use a different linker.

HDF5_USE_SHLIB=[yes|no] Use shared version of the HDF5 library [default: no].

HDF5_FFLAGS Use additional Fortran compiler flags.

HDF5_LDFLAGS Use additional library paths.

HDF5_LIBS Use additional libraries.

h5fc and h5pfc HDF5 Reference Manual

736

The last three of these environment variables have corresponding variables with names ending in BASE
that can also be set by editing their values in the "Things You Can Modify to Override HDF5 Library
Build Components" section of the h5fc and h5pfc scripts.

Note that adding library paths to HDF5_LDFLAGS where another HDF5 version is located may link your
program with that other HDF5 Library version.

Exit Status:
0 Succeeded.

> 0 An error occurred.
History:

Release Change

1.6.0 Tool introduced in this release.

1.8.5 Tool exist status codes updated.

1.8.6 Three compiler flags and environment variables added in this release.

HDF5 Reference Manual h5fc and h5pfc

737

Last modified: 4 January 2011

Tool Name:h5c++
Syntax:

h5c++ [OPTIONS] <compile line>
Purpose:

Helper script to compile HDF5 C++ applications.
Description:

h5c++ can be used in much the same way MPIch is used to compile an HDF5 program. It takes care of
specifying where the HDF5 header files and libraries are on the command line.

h5c++ supersedes all other compiler scripts in that if you've used one set of compiler scripts to compile
the HDF5 C++ library, then h5c++ uses those same scripts. For example, when compiling an MPIch
program, you use the mpiCC script.

Some programs use HDF5 in only a few modules. It isn't necessary to use h5c++ to compile those
modules which don't use HDF5. In fact, since h5c++ is only a convenience script, you are still able to
compile HDF5 C++ modules in the normal way. In that case, you will have to specify the HDF5 libraries
and include paths yourself. Use the -show option to see the details.

An example of how to use h5c++ to compile the program hdf_prog, which consists of modules
prog1.cpp and prog2.cpp and uses the HDF5 C++ library, would be as follows:

 # h5c++ -c prog1.cpp
 # h5c++ -c prog2.cpp
 # h5c++ -o hdf_prog prog1.o prog2.o

Options and Parameters:
-help Prints a help message.

-echo Show all the shell commands executed.

-prefix=DIR Use the directory DIR to find HDF5 lib/ and include/ subdirectories
Default: prefix specified when configuring HDF5.

-show Show the commands without executing them.

<compile line> The normal compile line options for your compiler. h5c++ uses the same
compiler you used to compile HDF5. Check your compiler's manual for more
information on which options are needed.

Environment Variables:
When set, these environment variables override some of the built-in defaults of h5c++.

HDF5_CXX Use a different C++ compiler.

HDF5_CXXLINKER Use a different linker.

HDF5_CPPFLAGS Use additional preprocessor flags.

HDF5_CXXFLAGS Use additional C++ compiler flags.

HDF5_LDFLAGS Use additional library paths.

HDF5_LIBS Use additional libraries.
The last four of these environment variables have corresponding variables with names ending in BASE
that can also be set by editing their values in the "Things You Can Modify to Override HDF5 Library
Build Components" section of the h5c++ script.

h5c++ HDF5 Reference Manual

738

Note that adding library paths to HDF5_LDFLAGS where another HDF5 version is located may link your
program with that other HDF5 Library version.

Exit Status:
0 Succeeded.

> 0 An error occurred.
History:

Release Command Line Tool

1.6.0 Tool introduced in this release.

1.8.5 Tool exist status codes updated.

1.8.6 Four compiler flags and environment variables added in this release.

HDF5 Reference Manual h5c++

739

HDF5 Reference Manual

740

HDF5 Predefined Datatypes
The following datatypes are predefined in HDF5.

IEEE floating point datatypes

32-bit and 64-bit•
Big-endian and little-endian•

 H5T_IEEE_F32BE
 H5T_IEEE_F32LE
 H5T_IEEE_F64BE
 H5T_IEEE_F64LE

Standard datatypes

Signed integer (2's complement), unsigned integer, and bitfield•
8-bit, 16-bit, 32-bit, and 64-bit•
Big-endian and little-endian•

 H5T_STD_I8BE
 H5T_STD_I8LE
 H5T_STD_I16BE
 H5T_STD_I16LE
 H5T_STD_I32BE
 H5T_STD_I32LE
 H5T_STD_I64BE
 H5T_STD_I64LE

 H5T_STD_U8BE
 H5T_STD_U8LE
 H5T_STD_U16BE
 H5T_STD_U16LE
 H5T_STD_U32BE
 H5T_STD_U32LE
 H5T_STD_U64BE
 H5T_STD_U64LE

 H5T_STD_B8BE
 H5T_STD_B8LE
 H5T_STD_B16BE
 H5T_STD_B16LE
 H5T_STD_B32BE
 H5T_STD_B32LE
 H5T_STD_B64BE
 H5T_STD_B64LE

Object reference or dataset region reference•

 H5T_STD_REF_OBJ
 H5T_STD_REF_DSETREG

UNIX-specific datatypes

32-bit and 64-bit•
Big-endian and little-endian•

 H5T_UNIX_D32BE
 H5T_UNIX_D32LE
 H5T_UNIX_D64BE
 H5T_UNIX_D64LE

C-specific datatype

String datatype in C (size defined in bytes rather than in bits)•

 H5T_C_S1

HDF5 Reference Manual

741

FORTRAN-specific datatype

String datatype in FORTRAN (as defined for the HDF5 C library)•

 H5T_FORTRAN_S1

Intel-specific datatypes

For Intel CPUs•
Little-endian•
Signed integer (2's complement), unsigned integer, bitfield, and IEEE floating point•
8-bit, 16-bit, 32-bit, and 64-bit•

 H5T_INTEL_I8
 H5T_INTEL_I16
 H5T_INTEL_I32
 H5T_INTEL_I64

 H5T_INTEL_U8
 H5T_INTEL_U16
 H5T_INTEL_U32
 H5T_INTEL_U64

 H5T_INTEL_B8
 H5T_INTEL_B16
 H5T_INTEL_B32
 H5T_INTEL_B64

 H5T_INTEL_F32
 H5T_INTEL_F64

DEC Alpha-specific datatypes

For DEC Alpha CPUs•
Little-endian•
Signed integer (2's complement), unsigned integer, bitfield, and IEEE floating point•
8-bit, 16-bit, 32-bit, and 64-bit•

 H5T_ALPHA_I8
 H5T_ALPHA_I16
 H5T_ALPHA_I32
 H5T_ALPHA_I64

 H5T_ALPHA_U8
 H5T_ALPHA_U16
 H5T_ALPHA_U32
 H5T_ALPHA_U64

 H5T_ALPHA_B8
 H5T_ALPHA_B16
 H5T_ALPHA_B32
 H5T_ALPHA_B64

 H5T_ALPHA_F32
 H5T_ALPHA_F64

OpenVMS DEC Alpha-specific datatypes

For OpenVMS on DEC Alpha CPUs•
VAX byte order•
32- and 64-bit floating point•

 H5T_VAX_F32 (Corresponds to F_Floating type)
 H5T_VAX_F64 (Corresponds to G_Floating type)

HDF5 Reference Manual

742

MIPS-specific datatypes

For MIPS CPUs, commonly used in SGI system•
Big-endian•
Signed integer (2's complement), unsigned integer, bitfield, and IEEE floating point•
8-bit, 16-bit, 32-bit, and 64-bit•

 H5T_MIPS_I8
 H5T_MIPS_I16
 H5T_MIPS_I32
 H5T_MIPS_I64

 H5T_MIPS_U8
 H5T_MIPS_U16
 H5T_MIPS_U32
 H5T_MIPS_U64

 H5T_MIPS_B8
 H5T_MIPS_B16
 H5T_MIPS_B32
 H5T_MIPS_B64

 H5T_MIPS_F32
 H5T_MIPS_F64

Predefined native datatypes

These are the datatypes detected by H5detect. Their names differ from other HDF5 datatype names as
follows:

Instead of a class name, precision, and byte order as the last component, they have a C-like
datatype name.

♦

If the datatype begins with U, then it is the unsigned version of the integer datatype; other integer
datatypes are signed.

♦

The datatype LLONG corresponds to C's long_long and LDOUBLE is long_double. These
datatypes might be the same as LONG and DOUBLE, respectively.

♦

 H5T_NATIVE_CHAR
 H5T_NATIVE_SCHAR
 H5T_NATIVE_UCHAR

 H5T_NATIVE_SHORT
 H5T_NATIVE_USHORT

 H5T_NATIVE_INT
 H5T_NATIVE_UINT

 H5T_NATIVE_LONG
 H5T_NATIVE_ULONG
 H5T_NATIVE_LLONG
 H5T_NATIVE_ULLONG

 H5T_NATIVE_FLOAT
 H5T_NATIVE_DOUBLE
 H5T_NATIVE_LDOUBLE

 H5T_NATIVE_B8
 H5T_NATIVE_B16
 H5T_NATIVE_B32
 H5T_NATIVE_B64

 H5T_NATIVE_OPAQUE
 H5T_NATIVE_HADDR
 H5T_NATIVE_HSIZE
 H5T_NATIVE_HSSIZE
 H5T_NATIVE_HERR
 H5T_NATIVE_HBOOL

HDF5 Reference Manual

743

ANSI C9x-specific native integer datatypes

Signed integer (2's complement), unsigned integer, and bitfield•
8-bit, 16-bit, 32-bit, and 64-bit•
LEAST -- storage to use least amount of space
FAST -- storage to maximize performance

•

 H5T_NATIVE_INT8
 H5T_NATIVE_UINT8
 H5T_NATIVE_INT_LEAST8
 H5T_NATIVE_UINT_LEAST8
 H5T_NATIVE_INT_FAST8
 H5T_NATIVE_UINT_FAST8

 H5T_NATIVE_INT16
 H5T_NATIVE_UINT16
 H5T_NATIVE_INT_LEAST16
 H5T_NATIVE_UINT_LEAST16
 H5T_NATIVE_INT_FAST16
 H5T_NATIVE_UINT_FAST16

 H5T_NATIVE_INT32
 H5T_NATIVE_UINT32
 H5T_NATIVE_INT_LEAST32
 H5T_NATIVE_UINT_LEAST32
 H5T_NATIVE_INT_FAST32
 H5T_NATIVE_UINT_FAST32

 H5T_NATIVE_INT64
 H5T_NATIVE_UINT64
 H5T_NATIVE_INT_LEAST64
 H5T_NATIVE_UINT_LEAST64
 H5T_NATIVE_INT_FAST64
 H5T_NATIVE_UINT_FAST64

FORTRAN90 API datatypes

Datatypes defined for the FORTRAN90 APIs•

Native integer, single-precision real, double-precision real, and character•

 H5T_NATIVE_INTEGER
 H5T_NATIVE_REAL
 H5T_NATIVE_DOUBLE
 H5T_NATIVE_CHARACTER

Signed integer (2's complement), unsigned integer, and IEEE floating point•
8-bit, 16-bit, 32-bit, and 64-bit•
Big-endian and little-endian•

 H5T_STD_I8BE
 H5T_STD_I8LE
 H5T_STD_I16BE
 H5T_STD_I16LE
 H5T_STD_I32BE
 H5T_STD_I32LE
 H5T_STD_I64BE
 H5T_STD_I64LE

 H5T_STD_U8BE
 H5T_STD_U8LE
 H5T_STD_U16BE
 H5T_STD_U16LE
 H5T_STD_U32BE
 H5T_STD_U32LE
 H5T_STD_U64BE
 H5T_STD_U64LE

 H5T_IEEE_F32BE
 H5T_IEEE_F32LE
 H5T_IEEE_F64BE
 H5T_IEEE_F64LE

Object reference or dataset region reference•

 H5T_STD_REF_OBJ
 H5T_STD_REF_DSETREG

HDF5 Reference Manual

744

HDF5 Fortran90 Flags, Datatypes and User’s Notes

Fortran90 Datatypes

The Fortran90 HDF5 datatypes are listed in HDF5 Predefined Datatypes

Fortran90 Flags

The Fortran90 HDF5 flags have the same meanings as the C flags defined in the HDF5 Reference Manual and the
HDF5 User's Guide.

File access flags

 H5F_ACC_RDWR_F
 H5F_ACC_RDONLY_F
 H5F_ACC_TRUNC_F

 H5F_ACC_EXCL_F
 H5F_ACC_DEBUG_F

 H5F_SCOPE_LOCAL_F
 H5F_SCOPE_GLOBAL_F

Group management flags

 H5G_UNKNOWN_F
 H5G_LINK_F
 H5G_GROUP_F

 H5G_DATASET_F
 H5G_TYPE_F
 H5G_LINK_ERROR_F

 H5G_LINK_HARD_F
 H5G_LINK_SOFT_F

Dataset format flags

 H5D_COMPACT_F H5D_CONTIGUOUS_F H5D_CHUNKED_F

MPI IO data transfer flags

 H5FD_MPIO_INDEPENDENT_F H5FD_MPIO_COLLECTIVE_F

Error flags

 H5E_NONE_MAJOR_F
 H5E_ARGS_F
 H5E_RESOURCE_F
 H5E_INTERNAL_F
 H5E_FILE_F
 H5E_IO_F
 H5E_FUNC_F
 H5E_ATOM_F

 H5E_CACHE_F
 H5E_BTREE_F
 H5E_SYM_F
 H5E_HEAP_F
 H5E_OHDR_F
 H5E_DATATYPE_F
 H5E_DATASPACE_F
 H5E_DATASET_F

 H5E_STORAGE_F
 H5E_PLIST_F
 H5E_ATTR_F
 H5E_PLINE_F
 H5E_EFL_F
 H5E_REFERENCE_F
 H5E_VFL_F
 H5E_TBBT_F

Object identifier flags

 H5I_FILE_F
 H5I_GROUP_F
 H5I_DATATYPE_F

 H5I_DATASPACE_F
 H5I_DATASET_F
 H5I_ATTR_F

 H5I_BADID_F

HDF5 Reference Manual

745

Property list flags

 H5P_FILE_CREATE_F
 H5P_FILE_ACCESS_F

 H5P_DATASET_CREATE_F
 H5P_DATASET_XFER_F

 H5P_MOUNT_F
 H5P_DEFAULT_F

Reference pointer flags

 H5R_OBJECT_F H5R_DATASET_REGION_F

Dataspace flags

 H5S_SCALAR_F
 H5S_SIMPLE_F

 H5S_SELECT_SET_F
 H5S_SELECT_OR_F

 H5S_UNLIMITED_F
 H5S_ALL_F

Datatype flags

 H5T_NO_CLASS_F
 H5T_INTEGER_F
 H5T_FLOAT_F
 H5T_TIME_F
 H5T_STRING_F
 H5T_BITFIELD_F
 H5T_OPAQUE_F
 H5T_COMPOUND_F
 H5T_REFERENCE_F
 H5T_ENUM_F

 H5T_ORDER_LE_F
 H5T_ORDER_BE_F
 H5T_ORDER_VAX_F
 H5T_PAD_ZERO_F
 H5T_PAD_ONE_F
 H5T_PAD_BACKGROUND_F
 H5T_PAD_ERROR_F
 H5T_SGN_NONE_F
 H5T_SGN_2_F
 H5T_SGN_ERROR_F

 H5T_NORM_IMPLIED_F
 H5T_NORM_MSBSET_F
 H5T_NORM_NONE_F
 H5T_CSET_ASCII_F
 H5T_STR_NULLTERM_F
 H5T_STR_NULLPAD_F
 H5T_STR_SPACEPAD_F
 H5T_STR_ERROR_F

HDF5 Fortran90 User’s Notes

About the source code organization

The Fortran APIs are organized in modules parallel to the HDF5 Interfaces. Each module is in a separate file with
the name H5*ff.f. Corresponding C stubs are in the H5*f.c files. For example, the Fortran File APIs are in
the file H5Fff.f and the corresponding C stubs are in the file H5Ff.c.

Each module contains Fortran definitions of the constants, interfaces to the subroutines if needed, and the
subroutines themselves.

Users must use constant names in their programs instead of the numerical values, as the numerical values are
subject to change without notice.

About the Fortran APIs

The Fortran APIs come in the form of Fortran subroutines with the following characteristics:

Each Fortran subroutine name is derived from the corresponding C function name by adding "_f" to the
name. For example, the name of the C function to create an HDF5 file is H5Fcreate; the corresponding
Fortran subroutine is h5fcreate_f.

•

A description of each implemented Fortran subroutine and its parameters can be found following the
description of the corresponding C function in the HDF5 Reference Manual provided with this release.

•

The parameter list for each Fortran subroutine has two more parameters than the corresponding C
function. These additional parameters hold the return value and an error code. The order of the Fortran

•

HDF5 Reference Manual

746

subroutine parameters may differ from the order of the C function parameters. The Fortran subroutine
parameters are listed in the following order:

Required input parameters♦
Output parameters, including return value and error code♦
Optional input parameters♦

For example, the C function to create a dataset has the following prototype:

 hid_t H5Dcreate(hid_it loc_id, char *name, hid_t type_id,
 hid_t space_id, hid_t creation_prp);

The corresponding Fortran subroutine has the following form:

 SUBROUTINE h5dcreate_f(loc_id, name, type_id, space_id, dset_id,
 hdferr, creation_prp)

The first four parameters of the Fortran subroutine correspond to the C function parameters. The fifth
parameter, dset_id, is an output parameter and contains a valid dataset identifier if the value of the
sixth output parameter hdferr indicates successful completion. (Error code descriptions are provided with
the subroutine descriptions in the Reference Manual.) The seventh input parameter, creation_prp, is
optional, and may be omitted when the default creation property list is used.
Parameters to the Fortran subroutines have one of the following predefined datatypes (see the file
H5fortran_types.f90 for KIND definitions):

INTEGER(HID_T) compares with the hid_t datatype in the HDF5 C APIs.♦
INTEGER(HSIZE_T) compares with hsize_t in the HDF5 C APIs.♦
INTEGER(HSSIZE_T) compares with hssize_t in the HDF5 C APIs.♦
INTEGER(SIZE_T) compares with the C size_t datatype.♦

These integer types usually correspond to 4 or 8 byte integers, depending on the FORTRAN90 compiler
and the corresponding HDF5 C library definitions.

The H5R module defines two types of references:
TYPE(HOBJ_REF_T_F) compares to hobj_ref_t in the HDF5 C API.♦
TYPE(HDSET_REG_REF_T_F) compares to hdset_reg_ref_t in the HDF5 C API.♦

•

Each Fortran application must call the h5open_f subroutine to initialize the Fortran interface and the
HDF5 C Library before calling any HDF5 Fortran subroutine. The application must call the h5close_f
subroutine after all calls to the HDF5 Fortran Library to close the Fortran interface and HDF5 C Library.

•

List of the predefined datatypes can be found in the HDF5 Reference Manual provided with this release.
See HDF5 Predefined Datatypes.

•

When a C application reads data stored from a Fortran program, the data will appear to be transposed due
to the difference in the C and Fortran storage orders. For example, if Fortran writes a 4x6
two-dimensional dataset to the file, a C program will read it as a 6x4 two-dimensional dataset into
memory. The HDF5 C utilities h5dump and h5ls will also display transposed data, if data is written from
a Fortran program.

•

Fortran indices are 1-based.•

Compound datatype datasets can be written or read by atomic fields only.•

HDF5 Reference Manual

747

HDF5 Reference Manual

748

API Compatibility Macros in HDF5

Audience

The target audience for this document has existing applications that use the HDF5 Library, and is considering
moving to HDF5 Release 1.8.0 to take advantage of the latest library features and enhancements.

Compatibility Issues

HDF5 1.8.0 is a major update of the HDF5 Library. Several compatibility issues must be considered when
migrating applications to the HDF5 1.8.0 release.

This document, “API Compatibility Macros in HDF5,” introduces the approach taken by The HDF Group in HDF
Release 1.8.0 to help existing users of HDF5 address compatibility issues in the HDF5 API. The companion
document, New Features in HDF5 Release 1.8.0 and Format Compatibility Considerations, discusses features
introduced in HDF5 Release 1.8.0, the HDF5 API calls associated with those features, and the potential file
format compatibility issues that may result if the new features are used.

Summary and Motivation

In response to new and evolving requirements for the library and data format, several basic functions have
changed since HDF5 was first released. To allow existing applications to continue to compile and run properly, all
versions of these functions have been retained in the later releases of the HDF5 Library.

HDF5 Release 1.8.0 includes a number of new features that will offer many users of HDF5 substantial
performance improvements and expanded capabilities. Many of these features can only be accessed via revised
API calls. Given the scope of the changes, and recognizing the potentially time-consuming task of editing all the
affected calls in user applications, The HDF Group has created a set of macros that can be used to flexibly and
easily map existing API calls to either 1.6.x or 1.8.x (currently 1.8.0) functions. We refer to these as the API
compatibility macros.

The HDF Group generally encourages users to update applications to work with the latest HDF5 library release,
so that all new features and enhancements are available to them. At the same time, The HDF Group understands
that under some circumstances updating applications may not be feasible or necessary. The API compatibility
macros, described in this document, provide a bridge from old APIs to new, and can be particularly helpful in
situations such as these:

Source code is not available - only binaries are available; updating the application is not feasible.•
Source code is available, but there are no resources to update it.•
Source code is available, as are resources to update it, but the old version works quite well so updates are
not a priority. At the same time, it is desirable to take advantage of certain efficiencies in the newer HDF5
release that do not require code changes.

•

Source code is available, as are resources to update it, but the applications are large or complex, and must
continue to run while the code updates are carried out.

•

HDF5 Reference Manual

749

Understanding and Using the Macros

As part of HDF5 release 1.8.0, twenty-three functions that existed in previous versions of the library were updated
with new calling parameters and given new names. The updated versions of the functions have a "2" at the end of
the original function name. The original versions of these functions were retained and renamed to have a "1" at
the end of the original function name. API compatibility macros, with the same names as the original function
names, were created.

Concretely, consider the function H5Acreate in HDF5 releases prior to 1.8.0:

Original function name and signature, in releases prior to 1.8.0:
 hid_t H5Acreate(hid_t loc_id, const char *attr_name, hid_t type_id, hid_t
space_id, hid_t acpl_id)

Updated function and signature, introduced in release 1.8.0:
 hid_t H5Acreate2(hid_t loc_id, const char *attr_name, hid_t type_id, hid_t
space_id, hid_t acpl_id, hid_t aapl_id)

Original function and signature, renamed in release 1.8.0:
 hid_t H5Acreate1(hid_t loc_id, const char *attr_name, hid_t type_id, hid_t
space_id, hid_t acpl_id)

API compatibility macro, introduced in release 1.8.0:
H5Acreate The macro, H5Acreate, will be mapped to either H5Acreate1 or H5Acreate2. The mapping
is determined by a combination of the configuration options use to build the HDF5 Library and compile-time
options used to build the application. The calling parameters used with the H5Acreate compatibility macro
should match the number and type of the function they will be mapped to (H5Acreate1 or H5Acreate2).

The function names ending in "1" or "2" are referred to as version-numbered names, and the corresponding
functions are referred to as version-numbered functions. For new code development, The HDF Group
recommends use of the compatibility macro mapped to the latest version of the function. The original versions of
these functions, with names ending in "1", should be considered deprecated and, in general, should not be used
when developing new code.

Compatibility Macro Mapping Options

To determine the mapping for a given API compatibility macro in a given application, a combination of
user-controlled selections, collectively referred to as the compatibility macro mapping options, is considered in
the following sequence:

What compatibility macro configuration option was used to build the HDF5 Library? We refer to this
selection as the library mapping.

1.

Was a compatibility macro global compile-time option specified when the application was built? We refer
to this (optional) selection as the application mapping. If an application mapping exists, it overrides the
library mapping.

2.

Were any compatibility macro function-level compile-time options specified when the application was
built? We refer to these (optional) selections as function mappings. If function mappings exist, they
override library and application mappings for the relevant API compatibility macros.

3.

The tables that follow summarize the macro mapping behaviors, and the configuration and compile-time options
that control the mappings. The macro H5Gcreate is used to demonstrate mapping behavior.

HDF5 Reference Manual

750

Regardless of the macro mapping options used, the 1.8.x functions will always be available by explicitly calling
the version-numbered functions by their version-numbered names. For example, H5Gcreate2. Through the
compatibility macro mapping options provided, it is possible to disallow calls to the deprecated 1.6.x functions,
such as H5Gcreate1. This capability can be used to guarantee only the most recent versions of the functions are
being called.

Library Mapping Options

When the HDF5 Library is built, configure flags can be used to control the API compatibility macro mapping
behavior exhibited by the library. This behavior can be overridden by application and function mappings. One
configure flag excludes deprecated functions from the HDF5 library, making them unavailable to applications
linked with the library.

Table 1: Library Mapping Options

configure flag
Macros map to release

(version-numbered function;
H5Gcreate shown)

Deprecated functions
available?

(H5Gcreate1)

--with-default-api-version=v18

Also, default behavior if no flag specified.

1.8.x
(H5Gcreate2)

yes

--with-default-api-version=v16
1.6.x

(H5Gcreate1)
yes

--disable-deprecated-symbols
1.8.x

(H5Gcreate2)
no

Refer to the file libhdf5.settings in the directory where the HDF5 library is installed to determine the
configure flags used to build the library. In particular, look for the two lines shown here:

Default Version of Public Symbols: v18
With Deprecated Public Symbols: Yes

Application Mapping Options

When an application using HDF5 APIs is built and linked with the HDF5 Library, compile-time options to h5cc
can be used to control the API compatibility macro mapping behavior exhibited by the application. The
application mapping overrides the behavior specified by the library mapping, and can be overridden on a
function-by-function basis by the function mappings.

If the HDF5 Library was configured with the --disable-deprecated-symbols flag, then the deprecated
functions will not be available, regardless of the application mapping options.

HDF5 Reference Manual

751

Table 2: Application Mapping Options

h5cc option
Macros map to release

(version-numbered function;
H5Gcreate shown)

Deprecated functions
available?

(H5Gcreate1)

Default behavior if no option specified.
1.8.x

(H5Gcreate2)
yes*

*if available in library

-DH5_USE_16_API
1.6.x

(H5Gcreate1)
yes*

*if available in library

-DH5_NO_DEPRECATED_SYMBOLS
1.8.x

(H5Gcreate2)
no

Function Mapping Options

Function mappings are specified when the application is built. These mappings can be used to control the
mapping of the API compatibility macros to underlying functions on a function-by-function basis. The function
mappings override the library and application mappings discussed earlier.

If the HDF5 Library was configured with the --disable-deprecated-symbols flag, or
-DH5_NO_DEPRECATED_SYMBOLS is used to compile the application, then the deprecated functions will not
be available, regardless of the function mapping options.

For every function with multiple available versions, a compile-time version flag can be defined to selectively map
the function macro to the desired version-numbered function. For example, the H5Gcreate can be mapped to
either H5Gcreate1 or H5Gcreate2. When used, the value of the H5Gcreate_vers compile-time version
flag determines which function will be called:

When H5Gcreate_vers is set to 1, the macro H5Gcreate will be mapped to H5Gcreate1.
 h5cc ... -DH5Gcreate_vers=1 ...

•

When H5Gcreate_vers is set to 2, the macro H5Gcreate will be mapped to H5Gcreate2.
 h5cc ... -DH5Gcreate_vers=2 ...

•

When H5Gcreate_vers is not set, the macro H5Gcreate will be mapped to either H5Gcreate1 or
H5Gcreate2, based on the application mapping, if one was specified, or on the library mapping.
 h5cc ...

•

HDF5 Reference Manual

752

As of Release 1.8.0, the API compatibility macros, the function mapping compile-time version flags and values,
and the corresponding version-numbered functions are as indicated:

Table 3: Function Mapping Options

Macro h5cc version flag and value Mapped To function

H5Acreate
-DH5Acreate_vers=1 H5Acreate1

-DH5Acreate_vers=2 H5Acreate2

H5Adelete
-DH5Adelete_vers=1 H5Adelete1

-DH5Adelete_vers=2 H5Adelete2

H5Aiterate
-DH5Aiterate_vers=1 H5Aiterate1

-DH5Aiterate_vers=2 H5Aiterate2

H5Arename
-DH5Arename_vers=1 H5Arename1

-DH5Arename_vers=2 H5Arename2

H5Dcreate
-DH5Dcreate_vers=1 H5Dcreate1

-DH5Dcreate_vers=2 H5Dcreate2

H5Dopen
-DH5Dopen_vers=1 H5Dopen1

-DH5Dopen_vers=2 H5Dopen2

H5Eclear
-DH5Eclear_vers=1 H5Eclear1

-DH5Eclear_vers=2 H5Eclear2

H5Eprint
-DH5Eprint_vers=1 H5Eprint1

-DH5Eprint_vers=2 H5Eprint2

H5Epush
-DH5Epush_vers=1 H5Epush1

-DH5Epush_vers=2 H5Epush2

H5Eset_auto
-DH5Eset_auto_vers=1 H5Eset_auto1

-DH5Eset_auto_vers=2 H5Eset_auto2

H5Eget_auto
-DH5Eget_auto_vers=1 H5Eget_auto1

-DH5Eget_auto_vers=2 H5Eget_auto2

H5Ewalk
-DH5Ewalk_vers=1 H5Ewalk1

-DH5Ewalk_vers=2 H5Ewalk2

H5Gcreate
-DH5Gcreate_vers=1 H5Gcreate1

-DH5Gcreate_vers=2 H5Gcreate2

H5Gopen
-DH5Gopen_vers=1 H5Gopen1

-DH5Gopen_vers=2 H5Gopen2

H5Pget_filter
-DH5Pget_filter_vers=1 H5Pget_filter1

-DH5Pget_filter_vers=2 H5Pget_filter2

HDF5 Reference Manual

753

H5Pget_filter_by_id
-DH5Pget_filter_by_id_vers=1 H5Pget_filter_by_id1

-DH5Pget_filter_by_id_vers=2 H5Pget_filter_by_id2

H5Pinsert
-DH5Pinsert_vers=1 H5Pinsert1

-DH5Pinsert_vers=2 H5Pinsert2

H5Pregister
-DH5Pregister_vers=1 H5Pregister1

-DH5Pregister_vers=2 H5Pregister2

H5Rget_obj_type
-DH5Rget_obj_typevers=1 H5Rget_obj_type1

-DH5Rget_obj_type_vers=2 H5Rget_obj_type2

H5Tarray_create
-DH5Tarray_create_vers=1 H5Tarray_create1

-DH5Tarray_create_vers=2 H5Tarray_create2

H5Tcommit
-DH5Tcommit_vers=1 H5Tcommit1

-DH5Tcommit_vers=2 H5Tcommit2

H5Tget_array_dims
-DH5Tget_array_dims_vers=1 H5Tget_array_dims1

-DH5Tget_array_dims_vers=2 H5Tget_array_dims2

H5Topen
-DH5Topen_vers=1 H5Topen1

-DH5Topen_vers=2 H5Topen2

See the HDF5 Reference Manual for complete descriptions of all API compatibility macros and
version-numbered functions shown in Table 3.

It is possible to specify multiple function mappings for a single application build:

h5cc ... -DH5Gcreate_vers=1 -DH5Dcreate_vers=2... As a result of the function mappings in
this compile example, all occurrences of the macro H5Gcreate will be mapped to H5Gcreate1, and all occurrences
of the macro H5Dcreate will be mapped to H5Dcreate2 for the application being built.

The function mappings can be used to guarantee that a given API compatibility macro will be mapped to the
desired underlying function version regardless of the library or application mappings. In cases where an
application may benefit greatly from features offered by some of the later APIs, or must continue to use some
earlier API versions for compatibility reasons, this fine-grained control may be very important.

As noted earlier, the function mappings can only reference version-numbered functions that are included in the
HDF5 library, as determined by the configure flag used to build the library. For example, if the HDF5 library
being linked with the application was built with the --disable-deprecated-symbols option, version 1 of
the underlying functions would not be available, and the example above that defined H5Gcreate_ver=1 would
not be supported.

The function mappings do not negate any available functions. If H5Gcreate1 is available in the installed
version of the HDF5 Library, and the application was not compiled with the
-DH5_NO_DEPRECATED_SYMBOLS flag, the function H5Gcreate1 will remain available to the application
through its version-numbered name. Similarly, H5Gcreate2 will remain available to the application as
H5Gcreate2. The function mapping version flag H5Gcreate_vers only controls the mapping of the API
compatibility macro H5GCreate to one of the two available functions.

HDF5 Reference Manual

754

Compatibility Macros in HDF5 1.6.8 and Later

A series of similar compatibility macros have been introduced into the release 1.6 series of the library, starting
with release 1.6.8. These macros simply alias the "1" version functions listed above, as well as the typedefs not
listed, to their original non-numbered names.

This allows users to write code that can be used with any version of the library since 1.6.8 and any library
compilation options except H5_NO_DEPRECATED_SYMBOLS, by always using the "1" version of versioned
functions and types. For example, H5Gcreate1 will always be interpreted in exactly the same manner by any
version of the library since 1.6.8.

This can be especially useful in any case where the programmer does not have direct control over global macro
definitions, such as when writing code meant to be copied to multiple applications or when writing code in a
header file.

Common Use Case

A common scenario where the API compatibility macros may be helpful is the migration of an existing
application to HDF5 Release 1.8.0. An incremental migration plan is outlined here:

Build the HDF5 library without specifying any library mapping configure flag. In this default mode,
both 1.6.x and 1.8.x versions of the underlying functions are available, and the API compatibility macros
will be mapped to the 1.8.x version-numbered functions. For example, H5Gcreate will be mapped to
H5Gcreate2.

1.

Compile the application with the -DH5_USE_16_API application mapping option, and link with the
HDF5 library built in step 1. No changes should be required to build the application. The API
compatibility macros, for example H5Gcreate, replace the actual function names that were used in
versions of the library prior to 1.8.0. Because the application mapping overrides the library mapping, the
macros will all be mapped to the 1.6.x versions of the functions.

2.

Remap one API compatibility macro at a time (or sets of macros), to use the 1.8.x versions. At each stage,
use the function mappings to map the macros being worked on to the 1.8.x versions. For example, use the
-DH5Gcreate_vers=2 version flag setting to remap the H5Gcreate macro to H5Gcreate2, the
1.8.x version. During this step, the application code will need to be modified to change the calling
parameters used with the API compatibility macros to match the number and type of the 1.8.x
version-numbered functions. The macro name, for example H5Gcreate, should continue to be used in
the code, to allow for possible re-mappings to later version-numbered functions in a future release.

3.

After all macros have been migrated to the 1.8.x version-numbered functions in step 3, compile the
application without any application or function mappings. This build uses the library mappings set in step
1, and maps API compatibility macros to the 1.8.x versions.

4.

Finally, compile the application with the application mapping -DH5_NO_DEPRECATED_SYMBOLS, and
address any failures to complete the application migration process.

5.

HDF5 Reference Manual

755

HDF5 Reference Manual

756

Collective Calling Requirements
in Parallel HDF5 Applications

Introduction

This is the initial sketch of a document addressing two major topics:

HDF5 functions that must be called collectively and when in a parallel computing environment♦
Properties that must be used in a coordinated manner in a parallel computing environment♦

The notes referenced in parantheses with many function names follow the lists of functions and
properties.

Always collective

The following functions must always be called collectively.

 H5Aclose (2)
 H5Acreate/H5Acreate1/H5Acreate2 (6) (10)
 H5Acreate_by_name (6) (10) (B)
 H5Adelete
 H5Adelete_by_idx (B)
 H5Adelete_by_name (B)
 H5Arename (A)
 H5Arename_by_name (B)
 H5Awrite (3)

 H5Dclose (2)
 H5Dcreate/H5Dcreate1/H5Dcreate2 (6) (10)
 H5Dcreate_anon (6) (10) (B)
 H5Dextend (5) (11)
 H5Dset_extent (5) (11) (A)

 H5Fclose (1)
 H5Fcreate (9) (10)
 H5Fflush
 H5Fmount
 H5Fopen (10)
 H5Freopen
 H5Funmount

 H5Gclose (2)
 H5Gcreate/H5Gcreate1/H5Gcreate2 (9) (10)
 H5Gcreate_anon (9) (10) (B)
 H5Glink
 H5Glink2 (A)
 H5Gmove
 H5Gmove2 (A)
 H5Gset_comment
 H5Gunlink

 H5Idec_ref (7) (A)
 H5Iinc_ref (7) (A)

 H5Lcopy (B)

HDF5 Reference Manual

757

 H5Lcreate_external (9) (B)
 H5Lcreate_hard (9) (B)
 H5Lcreate_soft (9) (B)
 H5Lcreate_ud (9) (B)
 H5Ldelete (B)
 H5Ldelete_by_idx (B)
 H5Lmove (B)

 H5Oclose (2) (B)
 H5Ocopy (B)
 H5Odecr_refcount (B)
 H5Oincr_refcount (B)
 H5Olink (B)
 H5Oset_comment (B)
 H5Oset_comment_by_name (B)

 H5Rcreate

 H5Tclose (4)
 H5Tcommit/H5Tcommit1/H5Tcommit2 (9) (10)
 H5Tcommit_anon (9) (10) (B)

Collective, unless target object will not be modified

The following functions must normally be called collectively. If, however, the target object will not be
modified, they may be called independently.

 H5Aopen (10) (B)
 H5Aopen_by_idx (10) (B)
 H5Aopen_by_name (10) (B)
 H5Aopen_idx (10)
 H5Aopen_name (10)

 H5Dopen/H5Dopen1/H5Dopen2 (10)

 H5Gopen/H5Gopen1/H5Gopen2 (10)

 H5Iget_file_id (B)

 H5Oopen (10) (B)
 H5Oopen_by_addr (10) (B)
 H5Oopen_by_idx (10) (B)

 H5Rdereference

 H5Topen/H5Topen1/H5Topen2 (10)

Properties

The following properties must be set to the same values when they are used in a parallel program.

Dataset creation properties:

 H5Pmodify_filter (B)
 H5Premove_filter (B)
 H5Pset_alloc_time

HDF5 Reference Manual

758

 H5Pset_chunk
 H5Pset_deflate
 H5Pset_external
 H5Pset_fill_time
 H5Pset_fill_value
 H5Pset_filter
 H5Pset_fletcher32 (B)
 H5Pset_layout
 H5Pset_nbit (B)
 H5Pset_shuffle
 H5Pset_szip

Dataset transfer properties:

 H5Pset_btree_ratios
 H5Pset_buffer
 H5Pset_dxpl_mpio
 H5Pset_hyper_cache
 H5Pset_preserve

File access properties:

 H5Pset_alignment
 H5Pset_cache
 H5Pset_fapl_mpio
 H5Pset_fclose_degree
 H5Pset_gc_references
 H5Pset_latest_format (B)
 H5Pset_libver_bounds (B)
 H5Pset_mdc_config (B)
 H5Pset_meta_block_size
 H5Pset_small_data_block_size
 H5Pset_sieve_buf_size

File creation properties:

 H5Pset_istore_k
 H5Pset_shared_mesg_index (B)
 H5Pset_shared_mesg_nindexes (B)
 H5Pset_shared_mesg_phase_change (B)
 H5Pset_sizes
 H5Pset_sym_k
 H5Pset_userblock

Group creation properties:

 H5Pset_est_link_info (B)
 H5Pset_link_creation_order (B)
 H5Pset_link_phase_change (B)
 H5Pset_local_heap_size_hint (B)

HDF5 Reference Manual

759

Link creation properties:

 H5Pset_char_encoding (B)
 H5Pset_create_intermediate_group (B)

Object creation properties:

 H5Pset_attr_phase_change (B)
 H5Pset_attr_creation_order (B)
 H5Pset_obj_track_times (B)

Object copy properties:

 H5Pset_copy_object (B)

Notes

(1) All processes must participate only if this is the last reference to the file identifier.

(2) All processes must participate only if all file identifiers for a file have been closed and this is the
last outstanding object identifier.

(3) Because raw data for an attribute is cached locally, all processes must participate in order to
guarantee that future H5Aread calls return correct results on all processes.

(4) All processes must participate only if the datatype is for a committed datatype, all the file
identifiers for the file have been closed, and this is the last outstanding object identifier.

(5) All processes must participate only if the number of chunks in the dataset actually changes.

(6) All processes must use the same datatype, dataspace, and creation properties.

(7) This function may be called independently if the object identifier does not refer to an object that
was collectively opened.

(9) All processes must use the same creation properties.

(10) All processes must use the same access properties.

(11) All processes must use the same dataspace dimensions

(A) Available only in the HDF5 Release 1.6.x series or later versions of the library.

(B) Available only in the HDF5 Release 1.8.x series or later versions of the library.

HDF5 Reference Manual

760

HDF5 Glossary and Terms

atomic datatype
attribute
chunked layout
chunking
committed datatype
compound datatype
contiguous layout
dataset
dataspace
datatype

atomic
committed
compound
enumeration
named
opaque
variable-length

enumeration datatype
file

group
path
root group
super block

file access mode
group

member
root group

hard link
hyperslab
identifier
link

hard
soft

member
name
named datatype
opaque datatype
path
property list

data transfer
dataset access
dataset creation
file access
file creation

root group
selection

hyperslab
serialization
soft link
storage layout

chunked
chunking
contiguous

super block
variable-length datatype

atomic datatype
A datatype which cannot be decomposed into smaller units at the API level.

attribute
A small dataset that can be used to describe the nature and/or the intended usage of the object it is
attached to.

chunked layout
The storage layout of a chunked dataset.

chunking
A storage layout where a dataset is partitioned into fixed-size multi-dimensional chunks. Chunking tends
to improve performance and facilitates dataset extensibility.

committed datatype
A datatype that is named and stored in a file so that it can be shared. Committed datatypes can be shared.
Committing is permanent; a datatype cannot be changed after being committed. Committed datatypes
used to be called named datatypes.

HDF5 Reference Manual

761

compound datatype
A collection of one or more atomic types or small arrays of such types. Similar to a struct in C or a
common block in Fortran.

contiguous layout
The storage layout of a dataset that is not chunked, so that the entire data portion of the dataset is stored in
a single contiguous block.

data transfer property list
The data transfer property list is used to control various aspects of the I/O, such as caching hints or
collective I/O information.

dataset
A multi-dimensional array of data elements, together with supporting metadata.

dataset access property list
A property list containing information on how a dataset is to be accessed.

dataset creation property list
A property list containing information on how raw data is organized on disk and how the raw data is
compressed.

dataspace
An object that describes the dimensionality of the data array. A dataspace is either a regular
N-dimensional array of data points, called a simple dataspace, or a more general collection of data points
organized in another manner, called a complex dataspace.

datatype
An object that describes the storage format of the individual data points of a data set. There are two
categories of datatypes: atomic and compound datatypes. An atomic type is a type which cannot be
decomposed into smaller units at the API level. A compound datatype is a collection of one or more
atomic types or small arrays of such types.

enumeration datatype
A one-to-one mapping between a set of symbols and a set of integer values, and an order is imposed on
the symbols by their integer values. The symbols are passed between the application and library as
character strings and all the values for a particular enumeration datatype are of the same integer type,
which is not necessarily a native type.

file
A container for storing grouped collections of multi-dimensional arrays containing scientific data.

file access mode
Determines whether an existing file will be overwritten, opened for read-only access, or opened for
read/write access. All newly created files are opened for both reading and writing.

file access property list
File access property lists are used to control different methods of performing I/O on files.

file creation property list
The property list used to control file metadata.

HDF5 Reference Manual

762

group
A structure containing zero or more HDF5 objects, together with supporting metadata. The two primary
HDF5 objects are datasets and groups.

hard link
A direct association between a name and the object where both exist in a single HDF5 address space.

hyperslab
A portion of a dataset. A hyperslab selection can be a logically contiguous collection of points in a
dataspace or a regular pattern of points or blocks in a dataspace.

identifier
A unique entity provided by the HDF5 library and used to access an HDF5 object such as a file, group, or
dataset. In the past, an identifier might have been called a handle.

link
An association between a name and the object in an HDF5 file group.

member
A group or dataset that is in another dataset, dataset A, is a member of dataset A.

name
A slash-separated list of components that uniquely identifies an element of an HDF5 file. A name begins
that begins with a slash is an absolute name which is accessed beginning with the root group of the file;
all other names are relative names and the associated objects are accessed beginning with the current or
specified group.

opaque datatype
A mechanism for describing data which cannot be otherwise described by HDF5. The only properties
associated with opaque types are a size in bytes and an ASCII tag.

path
The slash-separated list of components that forms the name uniquely identifying an element of an HDF5
file.

property list
A collection of name/value pairs that can be passed to other HDF5 functions to control features that are
typically unimportant or whose default values are usually used.

root group
The group that is the entry point to the group graph in an HDF5 file. Every HDF5 file has exactly one
root group.

selection
(1) A subset of a dataset or a dataspace, up to the entire dataset or dataspace. (2) The elements of an array
or dataset that are marked for I/O.

serialization
The flattening of an N-dimensional data object into a 1-dimensional object so that, for example, the data
object can be transmitted over the network as a 1-dimensional bitstream.

HDF5 Reference Manual

763

soft link
An indirect association between a name and an object in an HDF5 file group.

storage layout
The manner in which a dataset is stored, either contiguous or chunked, in the HDF5 file.

super block
A block of data containing the information required to portably access HDF5 files on multiple platforms,
followed by information about the groups and datasets in the file. The super block contains information
about the size of offsets, lengths of objects, the number of entries in group tables, and additional version
information for the file.

variable-length datatype
A sequence of an existing datatype (atomic, variable-length (VL), or compound) which are not fixed in
length from one dataset location to another.

HDF5 Reference Manual

764

	HDF5 Reference Manual
	 HDF5 Copyright Notice and License Terms
	Table of Contents
	 HDF5 API Specification
	 HDF5/H5 API Specification
	 HDF5/H5A API Specification
	 HDF5/H5D API Specification
	 HDF5/H5E API Specification
	 HDF5/H5F API Specification
	 HDF5/H5G API Specification
	 HDF5/H5I API Specification
	 HDF5/H5L API Specification
	 HDF5/H5O API Specification
	 HDF5/H5P API Specification
	 HDF5/H5R API Specification
	 HDF5/H5S API Specification
	 HDF5/H5T API Specification
	 HDF5/H5Z API Specification

	 HDF5/Tools API Specification
	 HDF5/Predefined Datatypes
	 HDF5 Fortran90 Flags and Datatypes
	API Compatibility Macros in HDF5
	 Collective HDF5 Calls in Parallel
	 HDF5 Glossary and Terms

