
RFC:	Metadata	Cache	Image	

John	Mainzer	

	

HDF5	metadata	is	typically	small,	and	scattered	throughout	the	HDF5	file.		While	small,	
widely	 scattered	 I/Os	 are	 not	 a	 significant	 issue	 on	 small	 machines	 with	 local	 file	
systems,	they	are	a	major	performance	concern	on	large	HPC	systems.		The	metadata	
cache	does	 a	 reasonably	 good	 job	of	minimizing	 such	 I/Os	during	normal	 operation.		
However,	the	cache	must	still	be	populated	at	file	open,	and	flushed	at	file	close.		Thus	
the	metadata	I/O	overhead	of	simply	opening	and	closing	HDF5	files	on	such	systems	is	
a	concern.	

This	RFC	proposes	writing	the	contents	of	the	metadata	cache	to	file	in	a	single	block	
on	file	close,	and	then	populating	the	cache	with	the	contents	of	this	block	on	file	open	
–	thus	avoiding	the	many	small	I/Os	that	would	otherwise	be	required	on	file	open	and	
close.		

	
	

1. Introduction					
For	historical	reasons,	elements	of	metadata	in	HDF5	are	of	no	fixed	size,	and	may	be	arbitrarily	large.		
Most	entries	are	small,	and	 thus	HDF5	generates	numerous	small	metadata	 reads	and	writes.	 	The	
metadata	cache	minimizes	this	number,	but	enough	are	still	 issued	to	cause	problems	on	large	HPC	
systems.	In	particular,	such	reads	and	writes	are	currently	unavoidable	at	file	open	and	close,	as	the	
metadata	cache	must	be	populated	on	 file	open,	and	 (if	 the	 file	has	been	modified)	 flushed	on	 file	
close.	

This	RFC	explores	the	notion	of	avoiding	small	metadata	writes	on	file	close	by	writing	the	contents	of	
the	metadata	cache	to	file	in	a	single	block.		On	file	open,	this	block	would	be	read	immediately,	and	
used	 to	 populate	 the	metadata	 cache	before	 any	metadata	 access	 requests	 are	 received	 from	 the	
library.	 	 If	 the	 access	 pattern	 after	 the	 file	 open	 is	 similar	 to	 that	 just	 before	 the	 file	 close,	 this	
approach	could	avoid	the	majority	of	metadata	I/O	on	file	open	as	well.	

The	 immediate	 impetus	 for	 this	RFC	 is	a	use	case	 in	which	many	processes	 in	an	HPC	environment	
access	a	single	HDF5	file	in	a	round	robin.		Specifically,	each	process	opens	the	file,	writes	to	it,	closes	
it,	and	then	passes	control	of	the	file	to	the	next	process.		As	the	HDF5	file	is	opened	and	closed	many	
times	during	processing,	reduction	of	file	open/close	overhead	is	a	major	concern.		

2. Cycle	of	Operation	
To	 clarify	 the	 proposed	 enhancement	 (now	 largely	 implemented),	 consider	 the	 following	 cycle	 of	
operation.	

If	 a	metadata	 cache	 image	 is	 desired,	 the	 HDF5	 file	 is	 opened	 (or	 created)	 with	 a	 new	 FAPL	 (File	
Access	Property	List)	property	indicating	that	the	contents	of	the	metadata	cache	should	be	written	

to	an	 image	on	file	close,	 instead	of	 the	usual	processing	 in	which	dirty	entries	are	written	back	to	
their	assigned	locations	in	the	file	and	clean	entries	are	simply	discarded.			

This	new	FAPL	entry	has	no	effect	until	file	close,	at	which	point	processing	proceeds	as	follows:	

1. The	metadata	cache	serializes	all	entries	in	the	cache	so	as	to	fix	all	entry	file	locations	and	
sizes.	

2. The	metadata	cache	scans	each	entry	in	the	cache,	and	determines	which	entries	will	be	
included	in	the	metadata	cache	image.		For	each	such	entry,	it	makes	note	of	the	following	
information:		

• Its	position	in	the	LRU	list	if	it	is	on	that	list.		

• Whether	it	is	dirty.		

• If	the	entry	is	a	child	in	a	flush	dependency	relationship,	the	address(s)	of	the	
parent(s).			

• If	the	entry	is	a	parent	in	a	flush	dependency	relationship,	how	many	children	it	has.	

At	a	minimum,	the	superblock	and	the	metadata	supporting	superblock	extension	messages	
must	be	excluded	from	the	cache	image,	as	the	HDF5	file	cannot	be	opened	if	these	pieces	of	
metadata	are	not	in	the	expected	locations.			In	principle,	all	other	metadata	can	be	included	
in	the	cache	image.	

3. The	metadata	cache	allocates	a	buffer	large	enough	for	serialized	representations	of	all	
entries	in	the	cache	that	have	been	selected	for	inclusion	in	the	metadata	cache	image,	along	
with	additional	information	indicating	the	address,	length,	assigned	ring,	and	type	of	each	
entry,	and	also	the	information	collected	in	item	2	above.		This	buffer	must	also	be	large	
enough	to	contain	the	current	adaptive	cache	resizing	configuration	and	status	if	desired.	

4. The	metadata	cache	creates	a	super	block	extension	message	indicating	that	the	contents	of	
the	metadata	cache	has	been	written	to	a	cache	image.		Note	that	at	this	point,	the	message	
will	not	contain	the	correct	base	address	and	length	of	the	metadata	cache	image.	

5. The	metadata	cache	allocates	space	for	the	metadata	cache	image	at	the	end	of	the	HDF5	file.		
This	space	is	the	same	size	as	the	buffer	allocated	in	3	above.	

6. The	metadata	cache	updates	the	super	block	extension	message	created	in	4	above	to	contain	
the	base	address	and	length	of	the	metadata	cache	image.	

7. The	metadata	cache	is	then	flushed	as	usual,	with	the	proviso	that	all	entries	selected	for	
inclusion	in	the	metadata	cache	image	are	written	to	the	buffer	(annotated	with	base	address,	
length,	type,	etc.).		Super	block	related	entries	(and	all	other	entries	excluded	from	the	cache	
image)	must	be	written	to	file	in	their	usual	places,	as	they	will	needed	for	file	open,	

8. After	the	flush	and	if	so	directed,	the	metadata	cache	writes	the	current	adaptive	cache	
resizing	status	to	the	buffer	(this	is	not	implemented	at	present).	

9. Finally,	the	metadata	cache	writes	the	cache	image	buffer	to	its	allocated	space	in	the	HDF5	
file,	and	frees	the	buffer.	

10. File	close	then	proceeds	as	normal.		

Note	that	the	above	cycle	of	operation	is	simplified	conceptual	overview.		Deltas	of	particular	interest	
are	discussed	in	the	implementation	details	section.	

File	open	proceeds	as	usual	up	to	the	point	at	which	the	super	block	extensions	are	read.			

If	 the	 version	of	 the	 library	 that	 is	 used	 to	open	 the	 file	does	not	understand	 the	metadata	 cache	
image	super	block	extension,	it	must	refuse	to	open	the	file.	

If	 the	 library	does	understand	the	metadata	cache	 image	super	block	extension,	 it	must	advise	 the	
metadata	 cache	 of	 the	 existence,	 base	 address,	 and	 size	 of	 the	 cache	 image,	 and	 then	 delete	 the	
metadata	cache	image	superblock	extension	message	if	the	file	has	been	opened	read/write.			

Once	so	advised,	the	metadata	cache	must	proceed	as	follows	prior	to	the	first	entry	protect	(or	just	
prior	to	file	close,	if	the	file	is	closed	without	any	further	activity):	

1. Allocate	a	buffer	for	the	cache	image,	and	load	the	cache	image	from	file.	

2. Scan	the	metadata	cache	image,	and	create	a	“prefetched”	cache	entry	for	each	entry	in	the	
image.	 	Note	that	these	entries	are	be	different	from	metadata	cache	entries	 in	the	existing	
cache,	in	that	they	contain	only	the	on	disk	image	of	the	entry,	not	the	in	core	representation	
that	is	created	when	an	entry	is	loaded	from	disk	at	the	request	of	a	cache	client.		Call	these	
entries	prefetched	entries.	 	Mark	each	new	entry	with	 the	address,	 length,	 ring,	 type,	dirty	
flag,	 order	 in	 the	 LRU	 (if	 defined),	 flush	 dependency	 parents	 (if	 any),	 and	 number	 of	 flush	
dependency	 children	 (if	 any)	 recorded	 in	 the	 metadata	 cache	 image	 block.	 	 Place	 all	 the	
serialized	entries	in	a	linked	list	for	ease	of	scanning.		Call	this	list	the	prefetched	entries	list.	

3. Scan	the	prefetched	entries	list,	insert	all	entries	in	the	index,	and	insert	all	dirty	entries	in	the	
slist.	 	Recall	 that	 the	metadata	cache	uses	a	 skip	 list	 to	maintain	a	 list	of	all	dirty	entries	 in	
increasing	address	order.		On	cache	flush,	it	uses	this	list	to	write	entries	in	increasing	address	
order	to	the	extent	permitted	by	flush	dependencies.			

4. Scan	the	prefetched	entries	list	to	set	up	the	flush	dependencies	specified.		Pin	all	entries	that	
are	 parents	 in	 flush	 dependency	 relationships,	 moving	 these	 entries	 from	 the	 prefetched	
entries	 list	 to	 the	pinned	entries	 list.	 	Note	that	when	this	operation	 is	complete,	all	entries	
remaining	 in	the	prefetched	entries	 list	that	were	not	manually	pinned	should	be	annotated	
with	 their	 order	 in	 the	 LRU.	 	Note	 also	 that	 the	 flush	 dependencies	 created	will	 be	 slightly	
different	that	the	usual	flush	dependencies,	in	that	the	metadata	cache	must	decide	when	to	
create	and	destroy	them,	instead	of	delegating	this	issue	to	the	clients.		For	clarity,	call	these	
flush	 dependencies	 “reloaded	 flush	 dependencies”,	 to	 distinguish	 them	 from	 the	 flush	
dependencies	created	and	managed	by	cache	clients.	

5. Scan	 the	 remaining	entries	 in	 the	prefetched	entries	 list,	 and	 insert	 them	 in	 the	 LRU	 in	 the	
indicated	order.		At	this	point	the	prefetched	entries	list	should	be	empty.	

6. If	 it	 is	 included,	 read	 the	 adaptive	 cache	 resizing	 data	 from	 the	 cache	 image	 buffer,	 and	
configure	the	metadata	cache	to	recreate	the	configuration	and	status	recorded.		This	is	not	
implemented	at	present.	

7. Free	the	buffer	containing	the	metadata	cache	image,	and	release	the	file	space	it	resided	in.	

As	 before,	 the	 above	 is	 a	 simplified	 conceptual	 overview	 of	 the	 actual	 processing.	 	 See	 the	
implementation	details	section	for	expansions	on	points	of	interest.	

Note	 that	 the	 existence	 in	 the	metadata	 cache	of	 prefetched	 entries	modifies	 the	 behavior	 of	 the	
cache	as	described	below:	

1. If	a	cache	client	requests	a	prefetched	entry,	the	cache	skips	the	usual	read	of	the	serialized	
version	 of	 the	 entry	 from	 file,	 and	 instead	 passes	 the	 prefetched	 entry	 image	 to	 the	 client	
deserialize	callback,	and	replaces	the	prefetched	entry	with	the	regular	entry	returned	by	that	
callback.		If	the	prefetched	entry	is	a	child	in	a	reloaded	flush	dependency,	that	dependency	is	
destroyed	before	the	call	to	the	deseriailize	callback.		If	the	prefetched	entry	is	a	parent	in	one	

or	more	reloaded	flush	dependencies,	those	relationships	are	transferred	to	the	regular	entry	
returned	by	the	deserialize	callback.	

2. If	a	prefetched	entry	is	flushed	prior	to	any	request	by	a	cache	client,	the	image	of	the	entry	is	
simply	written	to	file	and	marked	clean	without	any	call	to	any	client	callback.	

3. If	 a	 prefetched	 entry	 is	 evicted	 prior	 to	 any	 request	 for	 it	 by	 a	 cache	 client,	 the	 eviction	 is	
performed	without	any	call	 to	any	client	callback.	 	 If	 the	entry	 is	a	child	 in	a	 reloaded	 flush	
dependency,	this	dependency	is	destroyed	just	prior	to	the	eviction.		Note	that	the	prefetched	
entry	 cannot	be	a	parent	 in	a	 reloaded	 flush	dependency,	as	parents	 in	 flush	dependencies	
cannot	be	evicted	until	all	of	their	children	have	been	evicted	–	at	which	point	the	entry	is	no	
longer	a	parent	in	a	flush	dependency.	

Note	that	we	have	not	discussed	any	provision	for	controlling	the	size	of	the	metadata	cache	image.		
Such	 a	 facility	 is	 superfluous,	 as	 the	 size	 of	 the	metadata	 cache	 image	 is	 implied	by	 the	metadata	
cache	size,	and	there	are	already	facilities	to	control	the	size	of	the	metadata	cache.			

A	more	important	issue	is	how	to	prevent	entries	that	haven’t	been	used	in	many	open/close	cycles	
from	accumulating	in	the	cache	image,	and	increasing	the	image	store	/	load	overhead.		This	can	be	
done	by	allowing	specification	of	a	maximum	number	of	file	open/close	cycles	during	which	a	given	
prefetched	entry	may	appear	 in	subsequent	cache	 images.	 	As	shall	be	seen,	we	have	 included	API	
and	 file	 format	 changes	 required	 to	 implement	 this	 limit.	 	 However	 the	 supporting	 code	 is	 not	
implemented	as	of	this	writing.		

In	 the	 parallel	 case,	 the	 cache	 image	 is	 created	 and	 written	 by	 process	 0	 only,	 and	 contains	 the	
contents	 and	 (if	 so	 directed)	 adaptive	 cache	 resizing	 status	 of	 that	 cache.	 	 This	 image	 is	 read	 by	
process	 0	 only	 on	 file	 open,	 and	 then	 broadcast	 to	 all	 other	 processes.	 	 With	 these	 exceptions,	
changes	to	processing	are	the	same	as	outlined	above.	

As	the	metadata	cache	image	enhancement	observes	flush	dependencies,	it	should	be	transparent	to	
SWMR.			

Finally,	 note	 the	 proposed	 store	 and	 restore	 of	 metadata	 cache	 adaptive	 resize	 status.	 	 When	
implemented,	 this	 will	 have	 the	 effect	 of	 allowing	 the	metadata	 cache	 to	 adapt	 to	 the	 stream	 of	
cache	 accesses	 across	 the	 sequence	 of	 processes	 that	 open	 and	 close	 the	 file.	 	 Assuming	 that	 the	
pattern	of	cache	accesses	is	relatively	homogeneous	across	processes,	this	should	allow	the	metadata	
cache	 (and	 the	metadata	 cache	 image)	 to	adapt	 in	 size	 to	hold	 the	 current	working	 set	–	with	 the	
implied	reduction	in	metadata	I/O.	

3. Additions	to	the	API	

3.1 Property	List	Operations	

If	a	metadata	cache	image	is	desired,	it	must	be	requested	at	file	open	or	file	create	in	the	FAPL	(File	
Access	Property	List).	

The	signatures	for	the	calls	for	getting	and	setting	this	property	are:	

	

herr_t H5Pset_mdc_image_config(hid_t plist_id,	
 H5AC_cache_image_config_t * config_ptr);	
	
herr_t H5Pget_mdc_image_config(hid_t plist_id, 	
 H5AC_cache_image_config_t * config_ptr);		

	

Where	H5AC_cache_image_config_t	is	defined	as	follows:	

	

typedef struct H5AC_cache_image_config_t {	
 int32_t version;	
 hbool_t generate_image;	
 hbool_t save_resize_status;
 int32_t entry_ageout;	
} H5AC_cache_image_config_t;	
	

The	version	 field	 should	be	 set	 to	H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION,	 and	 the	
generate_image	field	should	be	set	to	either	TRUE	or	FALSE	depending	on	whether	a	cache	image	is	
desired.		The	save_resize_status	and	entry_ageout	fields	are	ignored	at	present.			

When	 implemented,	 the	 save_resize_status	 field	 will	 control	 whether	 the	 adaptive	 resize	
configuration	and	status	are	stored	 in	the	cache	 image,	and	restored	when	the	file	 is	opened.	 	The	
default	value	is	FALSE.	

The	entry_ageout	field	will	allow	the	user	to	specify	the	number	of	times	a	cache	entry	can	appear	in	
subsequent	 cache	 images	 (created	 in	 subsequent	 file	 closes)	without	 being	 accessed.	 	 The	 default	
value	 is	 -1,	 which	 indicates	 that	 the	 entry	 may	 appear	 in	 an	 indefinitely	 long	 sequence	 of	 cache	
images.	 	When	 implemented,	 this	 feature	 should	allow	 the	user	avoid	 the	case	 in	which	 the	cache	
image	 fills	 up	 with	 infrequently	 used	 entries	 over	 a	 long	 sequence	 of	 close	 /	 open	 cycles.	 	 The	
maximum	value	of	this	field	is	100.	

While	 it	 is	 an	obvious	error	 to	 request	 a	 cache	 image	when	opening	 the	 file	 read	only,	 it	 is	 not	 in	
general	possible	 to	test	 for	 this	error	 in	 the	 	H5Pset_mdc_image_config()	 call.	 	Rather	than	fail	 the	
subsequent	file	open,	we	have	elected	to	resolve	the	issue	by	silently	ignoring	the	file	image	request	
in	this	case.		

It	 is	 also	 an	 error	 to	 request	 a	 cache	 image	 on	 a	 file	 that	 does	 not	 support	 superblock	 extension	
messages	(i.e.	superblock	version	less	than	2).		As	above,	it	is	not	always	possible	to	detect	this	error	
in	the	H5Pset_mdc_image_config()	call,	and	thus	we	fail	silently	in	this	case	as	well.	

Finally,	at	present,	creation	of	a	cache	image	is	not	supported	in	the	parallel	case.		In	this	case	as	well,	
requests	for	a	cache	image	will	fail	silently.	

3.2 Cache	Image	Information	Call	

As	some	tools	need	to	know	whether	a	cache	image	exists,	we	have	also	added	the	following	call	to	
provide	the	needed	information:	

herr_t H5Fget_mdc_image_info(hid_t file_id, haddr_t *image_addr, hsize_t *image_len);	
	

Where	 file_id	 is	 the	 id	 of	 the	 open	 HDF5	 file.	 	 On	 return,	 *image_addr	 	 and	 *image_len	 should	
contain	 the	 offset	 and	 length	 of	 the	 cache	 image	 if	 it	 exists,	 or	HADDR_UNDEF	 and	 zero	 if	 no	 file	
image	exists.			

When	a	hdf5	file	is	opened	R/W,	any	metadata	cache	image	will	be	read	and	deleted	from	the	file	on	
the	 first	metadata	cache	access	 (or,	 if	persistent	 free	 space	managers	are	enabled,	on	 the	 first	 file	
space	allocation	/	de-allocation,	or	read	of	free	space	manager	status,	whichever	comes	first).			

Thus,	if	the	file	is	opened	R/W,	this	function	should	be	called	immediately	after	file	open	and	before	
any	 other	 operation.	 	 If	 H5Fget_mdc_image_info()	 is	 called	 after	 the	 cache	 image	 is	 loaded,	 the	
function	will	correctly	 report	 that	no	cache	 image	exists,	as	 image	will	have	already	been	read	and	
deleted	from	the	file.	

In	the	R/O	case,	the	function	may	be	called	at	any	time,	as	any	cache	image	will	not	be	deleted	from	
the	file.	

4. Implementation	Details	

While	the	above	“Cycle	of	Operation”	provides	a	good	conceptual	outline	of	the	proposed	Metadata	
Cache	 Image	 enhancement,	 some	 implementation	 details	 are	 glossed	 over	 in	 that	 section.	 	 These	
details	 are	 addressed	 in	 this	 section.	 	Note	 that	 as	 implementation	 is	 not	 fully	 complete	 as	of	 this	
writing,	some	details	are	still	not	fully	developed.	

4.1 Metadata	Cache	Image	Super	Block	Extension	Message	

The	metadata	cache	image	super	block	extension	message	indicates	the	presence	of	a	cache	image	
by	its	existence	–	thus	it	need	only	contain	the	base	address	and	length	of	the	image.		The	file	format	
is	as	follows:	

	

Name:	Metadata	Cache	Image	Message	

Header	Message	Type:	0x0017		

Length:	Fixed	

Status:	Optional,	may	not	be	repeated.	

Description:	This	message	indicates	the	existence,	location,	and	size	of	a	metadata	cache	image.		It	is	
only	found	in	the	super	block	extension.		Versions	of	the	library	that	do	not	understand	this	message	
must	refuse	to	open	files	in	which	it	appears.		Thus	bits	3	(fail	if	unknown	and	opened	for	write)	and	7	
(fail	if	unknown	always)	in	the	Header	Message	Flags	for	this	message	must	be	set.	

Format	of	Data:	

Metadata	Cache	Image	Message:	

byte	 byte	 byte	 byte	

Version	 No	space	allocated	–	table	alignment	only	

OffsetO	

LengthL	

	

	

4.2 Metadata	Cache	Image	File	Format	

As	currently	implemented,	the	metadata	cache	image	is	a	single	block	of	memory	typically	allocated	
at	the	end	of	the	file.			

As	the	metadata	cache	image	must	contain	a	representation	not	only	of	the	contents	of	the	metadata	
cache,	 but	 also	 its	 current	 adaptive	 resizing	 configuration	 and	 status	 (if	 requested),	 the	 proposed	
format	of	the	image	is	somewhat	complex.		

In	an	attempt	to	make	this	format	more	readable,	it	is	presented	in	hierarchical	format,	with	the	top	
level	 showing	 the	 overall	 format	 of	 the	 image,	 and	with	 two	 sub-formats	 showing	 the	 formats	 of	
cache	entries	and	the	adaptive	cache	resizing	configuration	and	status	respectively.	

The	top	level	format	follows:	

Metadata	Cache	Image:	

byte	 byte	 byte	 byte	

Signature	

Version	 Flags	 No	space	allocated	–	table	alignment	only	

Image	Data	LengthL	

num_entries	

Entry	image	0	

.	

.	

.	

Entry	image	n	

Resize	status	(if	present)	

checksum	

	

The	fields	of	the	top	level	format	described	in	the	following	table.		Recall	that	the	“Entry		image”	and	
“Resize	status”	fields	are	sub-formats	embedded	in	the	Metadata	Cache	Image	format.	

	

Field	Name:	 Description:	

Signature	 Magic	number	 indicating	that	 this	 is	a	metadata	cache	 	 image.	 	Must	be	
set	to	'MDCI'.	

Version	 Version	 of	 the	 Metadata	 Cache	 Image.	 	 At	 present,	 only	 version	 0	 is	
defined.	

Flags	 Flags	indicating	various	properties	of	the	entry:	

								bit	0								Set	if	and	only	if	image	contains	resize	status.	

All	other	bits	reserved.	

Image	Data	LengthL	 Length	of	metadata	cache	image	in	bytes.		Typically,	this	value	will	be	the	
same	 as	 the	 cache	 image	 block	 length	 recorded	 in	 the	 cache	 image	
message.		However	it	may	be	smaller	if	the	cache	image	does	not	fill	the	
entire	cache	image	block.	

num_entries	 The	 number	 of	metadata	 cache	 entries	whose	 images	 are	 stored	 in	 the	

metadata	cache	image.	

Entry	image	n	 Image	of	the	n'th	entry	image	stored	in	the	metadata	cache	image.			

See	“Metadata	Cache	Entry	Image”	below	for	the	details	of	these	fields.	

Resize	status		 Configuration	 and	 status	 of	 the	 adaptive	 metadata	 cache	 resize	
algorithms	on	the	imaged	metadata	cache.			

Note	that	this	field	is	present	if	and	only	if	bit	0	of	the	flags	field	is	set.	

See	“Metadata	Cache	Adaptive	Resize	Status	Image”	below	for	the	details	
of	this	field.	

checksum	 Checksum	of	the	contents	of	the	Metadata	Cache	Image.	

	

The	Metadata	 Cache	 Entry	 Image	 is	 a	 variable	 length	 format,	 each	 instance	 of	which	 contains	 the	
serialized	image	of	an	entry,	along	with	other	data	required	to	reconstruct	the	entry	when	the	cache	
image	is	reloaded.		Note	that	the	variable	length	parts	are	the	list	of	dependency	parent	offsets	and	
the	serialized	entry	image.		The	lengths	of	these	fields	are	indicated	by	the	Dependency	Parent	Count	
and	Length	fields	respectively.	

	

Metadata	Cache	Entry	Image:	

byte	 byte	 byte	 byte	

Signature	

Type	 Flags	 Ring	 Age	

Dependency	Child	Count	 Dirty	Dependency	Child	Count	

Dependency	Parent	Count	 No	space	allocated	

Index	in	LRU	

OffsetO	

LengthL	

Dependency	Parent	OffsetsO	

Entry	

Image	

	

	

Field	Name:	 Description:	

Signature	 Magic	number	indicating	that	this	is	a	metadata	cache	entry	image.		Must	
be	set	to	'MCEI'.	

Type	 Value	of	the	id	field	of	the	instance	of	H5C_class_t	associated	with	the	
entry.		This	field	is	stored	primarily	for	sanity	checking.	

Flags	 Flags	indicating	various	properties	of	the	entry:	

								bit	0								If	set,	entry	is	dirty.	

								bit	1								if	set,	entry	is	in	LRU	

								bit	2								If	set,	entry	is	a	flush	dependency	parent.	

								bit	3								If	set,	entry	is	a	flush	dependency	child.	

All	other	bits	reserved.	

Ring	 Integer	indicating	the	flush	ordering	ring	to	which	this	entry	is	assigned.	

Age	 Number	 of	 times	 that	 a	 prefetched	 entry	 has	 appeared	 in	 subsequent	
cache	images,	or	0	if	the	entry	was	a	created	from	a	regular	entry.	

Dependency	Child	
Count	

If	bit	2	above	is	set,	the	number	of	flush	dependency	children	of	the	entry.		
Otherwise	0.	

Dirty	Dependency	
Child	Count	

If	bit	2	above	is	set,	the	number	of	dirty	flush	dependency	children	of	the	
entry.		Otherwise	0.	

Dependency	Parent	
Count	

If	bit	3	above	is	set,	the	number	of	flush	dependency	parents	of	this	entry.		
Otherwise	0.	

Index	in	LRU	 If	bit	1	above	is	set,	the	index	of	the	entry	in	the	LRU.		Otherwise	0	

Offset	 Address	of	the	metadata	cache	entry	in	the	HDF5	file.	

Length	 Length	of	the	metadata	cache	entry	image	in	bytes.		Also	the	length	of	the	
space	allocated	for	the	entry	in	the	HDF5	file.	

Dependency	 Parent	
Offsets	

If	 bit	 3	 above	 is	 set,	 an	 array	 containing	 the	 offsets	 of	 the	 flush	
dependency	parents	 in	 the	HDF5	 file	of	 length	equal	 to	 the	Dependency	
Parent	Count	above.		Otherwise	no	space	is	allocated	to	this	field.	

Entry	Image	 Serialized	image	of	the	metadata	cache	entry.	

	

Conceptually,	 the	 Metadata	 Cache	 Adaptive	 Resize	 Status	 Image	 contains	 the	 configuration	 and	
current	 status	 of	 the	 adaptive	 metadata	 cache	 resizing	 algorithms	 that	 attempts	 to	 estimate	 the	
current	size	of	the	metadata	working	set,	and	adjust	the	metadata	cache	size	accordingly.		This	data	is	
used	to	reconstruct	this	configuration	and	status	when	the	metadata	cache	image	is	reloaded	on	file	
open.	

As	this	feature	is	not	yet	implemented,	and	as	the	code	in	question	is	fairly	involved,	this	format	will	
almost	certainly	change	as	oversights	and	unnecessary	fields	become	apparent.	 	There	may	also	be	
changes	in	general	organization.			

Notes:		

• The	Metadata	Cache	Adaptive	Resize	Status	 Image	employs	a	number	of	doubles,	which	are	
not	currently	used	in	the	file	format	spec.		On	discussion	with	Quincey,	I	learned	that	macros	
for	 serializing	 and	 deserializing	 doubles	 in	 this	 context	 have	 recently	 been	 developed.	 	 See	
Quincey	for	pointers	when	you	get	close	to	this	element	of	the	implementation.	

	

Metadata	Cache	Adaptive	Resize	Status	Image:	

byte	 byte	 byte	 byte	

Signature	

Version	 incr_mode	 flash_incr_mode	 decr_mode	

flags	 epoch_mkrs_active	

epoch_length	

(8	bytes)	

cache_hits	

(8	bytes)	

cache_accesses	

(8	bytes)	

min_sizeL	

max_sizeL	

max_cache_sizeL	

min_clean_sizeL	

index_len	

index_sizeL	

clean_index_sizeL	

dirty_index_sizeL	

lower_hr_threshold	

(double)	

Increment	

(double)	

max_incrementL	

flash_multiple	

(double)	

flash_threshold	

(double)	

flash_size_increase_thresholdL	

upper_hr_threshold	

(double)	

decrement	

(double)	

max_decrementL	

epochs_before_eviction	

empty_reserve	

(double)	

	

The	following	description	of	the	fields	in	the	“Metadata	Cache	Adaptive	Resize	Status	Image”	consists	
mostly	of	references	to	fields	in	the	metadata	cache	data	structures	from	which	the	fields	are	copied	
and	restored.		These	fields	are	well	documented	in	the	source	code,	and	(in	many	cases)	in	the	user	
level	 documentation	 as	 well.	 	 While	 this	 is	 certainly	 good	 enough	 for	 the	 current	 version	 of	 this	
document,	we	need	to	decide	if	it	is	sufficient	for	the	final	version.	

	

Field	Name:	 Description:	

Signature	 Magic	number	indicating	that	this	is	a	metadata	cache	adaptive	resize	
status	image.		Must	be	set	to	'ARSI'.	

Version	 Version	 of	 the	 Metadata	 Cache	 Adaptive	 Resize	 Status	 Image.	 	 At	
present,	only	version	0	is	defined.	

incr_mode	 Value	of	the	incr_mode	field	of	the	metadata	cache's	instance	of	
H5C_auto_size_ctl_t.	

(cache_ptr->resize_ctl->incr_mode)	

flash_incr_mode	 Value	of	the	flash_incr_mode	field	of	the	metadata	cache's	instance	of	
H5C_auto_size_ctl_t.	

(cache_ptr->resize_ctl->flash_incr_mode)	

decr_mode	 Value	of	the	decr_mode	field	of	the	metadata	cache's	instance	of	
H5C_auto_size_ctl_t.	

(cache_ptr->resize_ctl->decr_mode)	

Flags	 Flags	 indicating	 the	 values	 of	 boolean	 fields	 in	 H5C_t	 (the	 main	
structure	 for	 the	 metadata	 cache),	 and	 in	 the	 instance	 of	
H5C_auto_size_ctl_t	that	appears	in	H5C_t:	

								bit	0								cache_ptr->size_increase_possible	

								bit	1								cache_ptr->flash_size_increase_possible	

								bit	2								cache_ptr->size_decrease_possible	

								bit	3								cache_ptr->resize_enabled	

								bit	4								cache_ptr->cache_full	

								bit	5								cache_ptr->size_decreased	

								bit	6								cache_ptr->resize_ctl->apply_max_incr	

								bit	7								cache_ptr->resize_ctl->apply_max_decr	

								bit	8								cache_ptr->resize_ctl->apply_empty_reserve	

epoch_mkrs_active	 Value	of	the	epoch_markers_active	field	in	H5C_t.	

(cache_ptr->epoch_markers_active)	

epoch_length	 Value	of	the	epoch_length	field	of	the	metadata	cache's	instance	of	
H5C_auto_size_ctl_t.	

(cache_ptr->resize_ctl->epoch_length)	

cache_hits		 Value	of	the	cache_hits	field	in	H5C_t.	

(cache_ptr->cache_hits)	

cache_accesses	 Value	of	the	cache_accesses	field	in	H5C_t.	

(cache_ptr->cache_accesses)	

min_size	 Value	of	the	min_size	field	of	the	metadata	cache's	instance	of	
H5C_auto_size_ctl_t.	

(cache_ptr->resize_ctl->min_size)	

max_size	 Value	of	the	max_size	field	of	the	metadata	cache's	instance	of	
H5C_auto_size_ctl_t.	

(cache_ptr->resize_ctl->max_size)	

max_cache_size	 Value	of	the	max_cache_size	field	in	H5C_t.	

(cache_ptr->max_cache_size)	

min_clean_size	 Value	of	the	min_clean_size	field	in	H5C_t.	

(cache_ptr->min_clean_size)	

index_len	 Value	of	the	index_len	field	in	H5C_t.	

(cache_ptr->index_len)	

index_size	 Value	of	the	index_size	field	in	H5C_t.	

(cache_ptr->index_size)	

clean_index_size	 Value	of	the	clean_index_size	field	in	H5C_t.	

(cache_ptr->clean_index_size)	

dirty_index_size	 Value	of	the	dirty_index_size	field	in	H5C_t.	

(cache_ptr->dirty_index_size)	

lower_hr_threshold	 Value	of	the	lower_hr_threshold	field	of	the	metadata	cache's	
instance	of	H5C_auto_size_ctl_t.	

(cache_ptr->resize_ctl->lower_hr_threshold)	

increment	 Value	of	the	increment	field	of	the	metadata	cache's	instance	of	
H5C_auto_size_ctl_t.		

(cache_ptr->resize_ctl->increment)	

max_increment	 Value	of	the	max_increment	field	of	the	metadata	cache's	instance	of	
H5C_auto_size_ctl_t.		

(cache_ptr->resize_ctl->max_increment)	

flash_multiple	 Value	of	the	flash_multiple	field	of	the	metadata	cache's	instance	of	
H5C_auto_size_ctl_t.	

(cache_ptr->resize_ctl->flash_multiple)	

flash_threshold	 Value	of	the	flash_thresholdfield	of	the	metadata	cache's	instance	of	
H5C_auto_size_ctl_t.	

(cache_ptr->resize_ctl->flash_threshold)	

flash_size_increase_threshold	 Value	of	the	flash_size_increase_threshold	field	H5C_t.	

(cache_ptr->flash_size_increase_threshold).	

upper_hr_threshold	 Value	of	the	upper_hr_threshold	field	of	the	metadata	cache's	
instance	of	H5C_auto_size_ctl_t.	

(cache_ptr->resize_ctl->upper_hr_threshold).	

decrement	 Value	of	the	decrement	field	of	the	metadata	cache's	instance	of	
H5C_auto_size_ctl_t.	

(cache_ptr->resize_ctl->decrement)	

max_decrement	 Value	of	the	max_decrement	field	of	the	metadata	cache's	instance	of	
H5C_auto_size_ctl_t.	

(cache_ptr->resize_ctl->max_decrement)	

epochs_before_eviction	 Value	of	the	epochs_before_eviction	field	of	the	metadata	cache's	
instance	of	H5C_auto_size_ctl_t.	

(cache_ptr->resize_ctl->epochs_before_eviction)	

empty_reserve	 Value	of	the	empty_reserve	field	of	the	metadata	cache's	instance	of	
H5C_auto_size_ctl_t.	

(cache_ptr->resize_ctl->empty_reserve)	

	

4.3 Prefetched	Metadata	Cache	Entries	

For	 current	 purposes,	 a	 prefetched	 metadata	 cache	 entry	 is	 simply	 an	 entry	 that	 appeared	 in	 a	
metadata	cache	image,	that	was	loaded	into	the	cache,	but	has	not	yet	been	used	(i.e.	protected)	by	
the	 library,	 and	 which	 therefore	 contains	 only	 the	 on	 disk	 serialized	 image	 of	 the	 entry.	 	 Earlier	
versions	of	this	document	referred	to	these	entries	as	“serialized	metadata	cache	entries”,	however,	
on	implementation	it	was	observed	that	these	entries	had	to	be	treated	exactly	as	prefetched	entries	
would	 be.	 	 As	 there	 were	 already	 tentative	 plans	 to	 support	 prefetched	 entries,	 it	 seemed	
appropriate	to	change	the	name	so	as	to	facilitate	reuse	of	the	code	with	minimal	confusion.	

The	ideal	way	of	 implementing	prefetched	metadata	cache	entries	would	be	to	alter	our	entry	load	
processing	 so	 that	 every	 entry	would	be	 a	prefetched	entry	when	 it	 is	 first	 loaded	 into	 the	 cache.		
While	 this	would	simplify	 the	management	of	prefetched	entries	greatly,	 sadly	 it	 is	not	practical	as	
the	correct	size	of	 the	serialized	 image	of	an	entry	may	be	unknown	until	after	 the	entry	has	been	
partially	deserialized.	

As	it	is	impractical	to	make	the	prefetched	entry	part	of	the	normal	cycle	of	entry	load,	the	metadata	
cache	has	been	modified	to	support	prefetched	entries	as	a	new	type	of	entry,	that	is	converted	into	
a	normal	entry	the	first	time	it	is	protected	(or	locked,	to	use	the	more	standard	notation).	

Fortunately,	 this	 has	 been	 relatively	 	 straight	 forward,	 requiring	 little	more	 than	 the	 addition	 of	 a	
boolean	 flag	 to	 H5C_cache_entry_t	 to	 indicate	whether	 the	 entry	 is	 prefetched,	 the	 creation	 of	 a	

class	of	prefetched	entries	with	the	associated	callbacks,	and	the	creation	of	a	routine	to	handle	the	
details	of	converting	a	prefetched	entry	into	a	regular	one.		This	routine	is	a	simplified	version	of	the	
load	entry	routine,	with	the	following	deltas:	

• No	file	I/O	

• Destruction	 of	 any	 (reloaded)	 flush	 dependency	 relationships	 in	which	 the	 target	 entry	 is	 a	
child	prior	to	calling	the	deserialize	callback.	

• No	 deserialize	 retries	 allowed	 regardless	 of	 entry	 type	 (since	 the	 size	 of	 serialized	 entry	 is	
known).	

• Replacement	 of	 the	 prefetched	 entry	 with	 the	 regular	 entry	 returned	 by	 the	 deserialize	
callback.	

• Transfer	 of	 any	 (reloaded)	 flush	 dependency	 relationships	 in	 which	 the	 target	 entry	 is	 the	
parent	from	the	prefetched	entry	to	the	new	regular	entry.	

• Discard	of	the	old	prefetched	entry,	with	the	serialized	image	of	the	entry	being	transferred	to	
the	new	regular	entry.	

As	discussed	in	the	Cycle	of	Operation	section	above,	the	code	to	write	entries	to	disk	also	had	to	be	
modified	 to	 handle	 prefetched	 entries.	 	 This	 has	 been	 handled	 through	 a	 combination	 of	
modifications	 to	 H5C_flush_single_entry(),	 and	 the	 above	mentioned	 creation	 of	 a	 client	 class	 for	
prefetched	entries.	

Finally,	there	was	the	matter	of	evicting	a	serialized	entry.		Again,	H5C_flush_single_entry()	has	been	
modified	to	support	this,	and	again,	the	deltas	from	regular	processing	are	small	–	specifically:	

• Destruction	of	any	(reloaded)	flush	dependency	relations	 in	which	the	target	entry	 is	a	child	
prior	to	eviction.		This	is	handled	via	the	notify	callback	in	the	prefetched	entry	class.		Recall	
that	by	the	time	any	entry	is	evicted,	it	may	not	be	a	flush	dependency	parent.	

• Omission	of	any	callbacks	to	the	underlying	class	of	the	prefetched	entry.	

4.3.1 Prefetched	Metadata	Cache	Entries	–	code	overview	

H5C_deserialize_prefetched_entry()	is	the	main	routine	for	converting	prefetched	entries	into	regular	
metadata	cache	entries.		It	is	called	from	H5C_protect()	whenever	a	prefetched	entry	is	found	to	be	
the	target	of	a	protect	call.		When	invoked,	it	proceeds	as	follows:	

1. Destroy	 all	 flush	 dependencies	 in	 which	 the	 target	 prefetched	 entry	 is	 a	 flush	 dependency	
child.		The	client	code	will	reconstruct	these	relationships	if	necessary.	

2. Destroy	 all	 flush	 dependencies	 in	 which	 the	 target	 prefetched	 entry	 is	 a	 flush	 dependency	
parent.		Note	that	in	such	cases,	the	children	must	be	prefetched	entries	as	well.		Make	note	
of	these	flush	dependencies	so	that	they	can	be	reconstructed	with	the	deserialized	version	of	
the	prefetched	entry.	

3. Pass	the	entry	image	buffer	from	the	prefetched	entry	to	the	deserialize	function	appropriate	
to	the	underlying	type	of	the	prefetched	entry.		This	will	result	in	the	creation	of	a	new	cache	
entry	 containing	 a	 deserialized	 version	 of	 the	 prefetched	 entry.	 	 Initialize	 the	 cache	 entry	
fields	of	 this	new	entry,	marking	 it	 dirty	 if	 the	prefetched	entry	 is	dirty	or	 if	 the	deserialize	
processes	dirties	it.		Transfer	the	image	buffer	to	the	new	entry.	

4. Remove	 the	 prefetched	 entry	 from	 the	 cache	 and	 discard	 it	 via	 a	 call	 to	
H5C__flush_single_entry()	 with	 the	 H5C__FLUSH_INVALIDATE_FLAG	 and	 the	

H5C__FLUSH_CLEAR_ONLY_FLAG	 flags	 set.	 	 If	 the	prefetched	entry	 is	 dirty,	 also	pass	 in	 the	
H5C__DEL_FROM_SLIST_ON_DESTROY_FLAG.	

5. Insert	the	deserialized	version	of	the	prefetched	entry	into	the	cache.	

6. Reconstruct	any	flush	dependencies	 in	which	the	prefetched	entry	was	parent,	but	with	the	
deseriailized	entry	replacing	the	prefetched	entry	in	that	role.	

At	this	point,	the	prefetched	entry	has	been	replaced	with	a	regular	entry,	and	processing	proceeds	
as	usual.					

Most	of	the	unusual	details	of	flushing	and	evicting	prefetched	entries	are	handled	by	the	callbacks	
for	the	prefetched	entry	class	–	in	particular,	the	H5C__prefetched_entry_notify()	routine	takes	down	
any	flush	dependency	relationships	in	which	a	prefetched	entry	is	a	child	just	before	eviction	(recall	
that	an	entry	about	to	be	evicted	cannot	have	flush	dependency	children).	

Similarly,	 H5C__prefetched_entry_free_icr()	 frees	 the	 flush	 dependency	 parent	 addresses	 array	 if	
exists,	and	verifies	that	the	image	buffer	is	not	longer	attached	to	the	entry	before	it	frees	its	space.	

All	other	prefetched	entry	callbacks	should	never	be	called.	

4.4 Constructing	the	Metadata	Cache	Image	

The	basic	outline	of	the	construction	of	the	metadata	cache	image	is	given	in	the	Cycle	of	Operation	
section	 above,	 and	 modulo	 some	 minor	 deltas,	 the	 actual	 implementation	 is	 quite	 close	 to	 this	
outline.	

After	 consultation	with	Mark	Miller,	we	went	ahead	with	 the	optimization	of	 retaining	 the	on	disk	
images	of	clean	entries	so	that	they	need	not	be	serialized	again	on	file	close.		Given	recent	concerns	
about	HDF5	library	footprint,	we	should	consider	making	this	user	configurable.	

As	expected,	it	proved	most	convenient	to	delay	construction	of	the	actual	image	until	just	before	the	
final	shutdown	of	the	metadata	cache.		This	allowed	us	to	avoid	making	copies	of	the	on	disk	images	
of	entries,	and	to	minimize	changes	to	the	flush	routines.			

While	the	necessary	data	is	lost	during	the	cache	shutdown	process,	it	is	possible	to	order	the	entries	
in	 the	 image	 so	 as	 to	 ensure	 that	 flush	 dependency	 parents	 appear	 prior	 to	 flush	 dependency	
children.		Thus	this	ordering	is	computed	and	stored	at	file	close	warning	time.		This	used	to	be	done	
by	 noting	 the	 flush	 dependency	 height	 of	 each	 entry,	 and	 then	 ordering	 entries	 in	 the	 image	 in	
decreasing	flush	dependency	height	order.		As	flush	dependency	height	is	no	longer	maintained	in	the	
metadata	cache,	it	has	become	necessary	to	compute	the	flush	dependency	height	of	each	entry	at	
file	close	warning	time	so	as	to	maintain	this	capability.	

It	 has	 also	 been	 necessary	 to	 serialize	 all	 entries	 that	will	 appear	 in	 the	 cache	 image	 at	 file	 close	
warning	time	so	that	the	cache	image	size	can	be	computed	at	this	point,	and	inserted	into	the	cache	
image	superblock	extension	message.	

Since	flush	dependency	relationships,	flush	dependency	heights,	and	locations	in	the	LRU	are	likely	to	
change	 during	 cache	 flush,	 it	 was	 convenient	 to	 define	 the	 H5C_image_entry_t structure (see
H5Cprivate.h), and store all of this data in an array of same at file close warning time. This array is
then used to construct the cache image proper as the metadata cache is being destroyed. As shall be
seen, an array of H5C_image_entry_t is also used for temporary storage of the cache image data during
image reload.

4.5.1 Constructing	the	Metadata	Cache	Image	–	code	overview	

Construction	of	the	metadata	cache	image	is	performed	in	two	phases.	

The	 first	 phase	 is	 triggered	 by	 a	 call	 to	 H5AC_prep_for_file_close()	 from	 either	 H5F_flush()	 or	
H5F_dest()	 just	 before	 the	 first	 call	 to	 H5AC_flush().	 	 H5AC_prep_for_file_close()	 simply	 calls	
H5C_prep_for_file_close(),	which	proceeds	as	follows:	

• If	a	cache	image	exists,	and	has	not	yet	been	loaded,	load	it	now	via	H5C_load_cache_image()	

• If	a	cache	image	has	been	requested:	

1. Create	the	cache	image	superblock	extension	message.		Note	that	this	message	will	have	
invalid	data	at	this	point.	

2. Serialize	the	metadata	cache	via	H5C_serialize_cache()	

3. Scan	the	contents	of	the	metadata	cache,	and	determine	which	entries	will	be	included	in	
the	 cache	 image.	 	 Mark	 these	 entries	 accordingly,	 and	 compute	 the	 size	 of	 the	 cache	
image.		Do	this	via	H5C_prep_for_file_close__scan_entries().	

Note	that	when	entries	marked	as	being	contained	in	the	cache	image	are	flushed,	writes	
of	 their	 images	 to	 disk	 is	 suppressed,	 and	 the	 buffers	 containing	 these	 images	 are	 not	
freed	when	the	entry	is	evicted.		This	is	not	a	memory	leak,	as	pointers	to	these	buffers	are	
included	in	the	array	of	H5C_image_entry_t	discussed	below.	

4. Allocate	space	for	the	cache	image	at	the	end	of	file.		Do	this	allocation	directly	from	the	
VFD,	so	as	to	avoid	changing	the	contents	of	the	free	space	managers.			

Note	that	if	the	alignment	of	the	file	is	greater	than	1,	this	may	return	a	fragment	that	is	
not	 included	in	the	cache	image	block.	 	The	current	 implementation	drops	this	fragment	
on	the	floor.		Eventually,	we	should	fix	this	by	increasing	the	size	of	the	cache	image	block	
to	be	a	multiple	of	 the	 file	 alignment,	 and	modifying	 the	encode	 /	decode	algorithm	 to	
allow	empty	space	at	the	end	of	the	cache	image	block.			

The	Image	Data	Length	field	in	the	cache	image	file	format	exists	to	allow	this.	

5. Update	 the	 cache	 image	 superblock	 extension	 message	 to	 contain	 the	 correct	 base	
address	and	size.	

6. Construct	an	array	of	H5C_image_entry_t,	one	for	each	cache	entry	that	will	appear	in	the	
cache	image.		Load	this	array	will	all	data	required	for	creating	the	cache	image	including	
pointers	to	the	buffers	containing	the	on	disk	images	of	the	entries.	 	Do	this	via	a	call	to	
H5C_prep_for_file_close__setup_image_entries_array().	

7. Sort	 the	 image	entries	array	by	 flush	dependency	height	and	then	 index	 in	 the	LRU.	 	Do	
this	via	H5C_prep_for_file_close__qsort_image_entries_array().	

The	actual	construction	and	write	of	the	cache	image	to	file	 is	done	in	H5C_dest()	–	which	 is	called	
from	 H5AC_dest(),	 which	 in	 turn	 is	 called	 by	 H5F_dest()	 as	 the	 final	 step	 in	 shutting	 down	 the	
metadata	cache.	

After	calling	H5C_flush_invalidate_cache()	which	flushes	any	dirty	entries	remaining	in	the	cache,	and	
then	evicts	all	entries,	H5C_dest()	checks	to	see	if	a	cache	has	been	requested.		If	it	has,	the	function	
proceeds	as	to:	

1. Construct	 a	 buffer	 containing	 the	 image	 of	 the	 cache	 image	 block	 via	
H5C_construct_cache_image_buffer().	

2. Free	 the	 image	 entries	 array	 via	 H5C_free_image_entries_array().	 	 Note	 that	 the	 buffers	
containing	the	on	disk	images	of	the	entries	in	the	cache	image	are	freed	at	this	point.	

3. Write	 the	 cache	 image	 buffer	 to	 file	 via	 a	 call	 to	 H5AC_write_cache_image().	 	 In	 the	 serial	
case,	this	function	simply	writes	the	image	to	file	at	the	appropriate	location.		In	the	parallel	
case,	only	process	0	writes	the	image,	while	all	other	processes	do	nothing.	

4. Free	the	cache	image	buffer.	

4.6 Loading	the	Metadata	Cache	Image	

As	discussed	in	the	“Cycle	of	Operation”	section,	the	metadata	cache	image	is	loaded	into	the	cache	
on	either	 the	 first	protect	 call	 after	 it	 is	 informed	of	 the	existence	of	 the	 image,	or	 just	before	 file	
close	if	there	is	no	activity	on	the	file	after	file	open.	

While	 in	principal	 it	should	be	possible	to	 load	the	cache	 image	as	part	of	 the	file	open	process,	 in	
practice,	 a	 number	 of	 data	 structures	 are	 not	 fully	 setup	 at	 the	 point	 at	 which	 the	 file	 image	 is	
discovered.		Hence	the	delayed	open	was	selected	to	avoid	technical	risk.			

The	significant	deltas	from	the	“Cycle	of	Operation”	section	are:	

• The	use	of	an	array	of	instance	of	H5C_image_entry_t	to	store	the	entry	data	until	 it	can	be	
used	to	construct	prefetched	entries,	which	are	then	inserted	into	the	cache.	

• The	omission	of	the	“prefetched	entries	list”	discussed	in	the	“Cycle	of	Operation”	section.		As	
entries	 in	 the	 metadata	 cache	 image	 are	 sorted	 so	 that	 flush	 dependency	 parents	 always	
appear	before	their	associated	flush	dependency	children,	it	was	possible	to	insert	prefetched	
entries	into	the	cache	as	they	are	reconstructed.	

Note	also	the	discussion	of	the	metadata	cache	image	feature	in	the	parallel	case	below.	

4.6.1	 Loading	the	Metadata	Cache	Image	–	Code	Overview	

The	main	routine	for	loading	the	metadata	cache	image	is	H5C_load_cache_image()	which	(if	a	cache	
image	exists)	 is	called	either	the	first	time	a	cache	entry	is	protected,	or	if	the	file	is	closed	without	
any	operations	on	metadata,	when	the	file	is	closed.	

When	H5C_load_cache_imaage()	is	called,	it	proceeds	as	follows:	

1. Delete	the	cache	image	superblock	extension	message	unless	(for	debugging	purposes)	instructed	
not	to,	and	then	dirty	the	superblock	extension.	

2. Allocate	a	buffer	for	the	cache	image	block,	and	load	the	cache	image	into	it	from	file	via	a	call	to	
H5C_read_cache_image().	

3. Decode	the	cache	image,	and	store	its	contents	into	an	array	of	H5C_image_entry_t.		Do	this	via	a	
call	to	H5C_decode_cache_image_buffer().	

4. Insert	 the	 entries	 from	 the	 cache	 image	 into	 the	 metadata	 cache,	 reconstructing	 flush	
dependencies	 as	 required,	 and	maintaining	 the	original	order	of	 entries	 in	 the	 LRU	 list.	 	 This	 is	
done	via	a	call	to	H5C_reconstruct_cache_contents().			

Very	 simply,	 H5C_reconstruct_cache_contents()	 scans	 through	 the	 entries	 in	 the	 array	 of	
H5C_image_entry_t,	and	performs	the	following	processing	on	each	entry:	

Call	 H5C_reconstruct_cache_entry()	 to	 construct	 a	 prefetched	 entry	 using	 the	 data	 in	 the	
target	instance	of	H5C_image_entry_t.	

a. Insert	the	prefetched	entry	in	the	index.	

b. Update	the	replacement	policy	for	the	insertion.	

c. If	the	cache	entry	is	a	flush	dependency	child,	recreate	the	flush	dependency	relationships	
with	its	parent(s)	

The	prefetched	entries	are	converted	into	regular	entries	when	and	if	they	are	protected.	

5. Free	the	buffer	containing	the	cache	image.	

6. If	directed,	free	the	file	space	allocated	for	the	cache	image.		

4.7 Overall	Control	of	the	Metadata	Cache	Image	Feature	

As	discussed	 in	 the	Cycle	of	Operation	section,	 creation	of	a	metadata	cache	 image	on	 file	 close	 is	
requested	 via	 a	 FAPL	 property	 on	 file	 open.	 	 Similarly,	 decoding	 the	 metadata	 cache	 image	 is	
automatic	 on	 file	 open	 if	 the	 version	of	 the	 library	used	understands	metadata	 cache	 images,	 and	
must	prevent	file	open	if	the	library	doesn't	understand	them.	

Much	of	this	control	uses	existing	facilities,	albeit	with	extensions	as	follows:	

• Definition	of	the	new	FAPL	property.	

• Code	to	create	and	manage	the	Metadata	Cache	Image	super	block	extension	message.	

• Code	to	manage	the	high	level	details	of	the	creation	of	the	metadata	cache	image.		This	was	
implemented	 through	 a	 “prepare	 for	 file	 close”	 call	 to	 the	 metadata	 cache	 that	 is	 issued	
shortly	before	the	first	metadata	cache	flush	in	the	file	close	process.	

• Additions	 to	 the	 cache	 creation	 routine	 that	 checks	 the	 FAPL	 for	 a	metadata	 cache	 image	
request,	and	makes	note	of	it	if	it	exists.	

• Modifications	to	the	superblock	load	code	to	detect	the	presence	of	a	metadata	cache	image	
superblock	extension	message,	and	to	pass	the	contents	of	 the	message	onto	the	metadata	
cache	if	such	a	message	exists.			

• Modifications	to	the	metadata	cache	to	read	the	metadata	cache	image	block	prior	to	the	first	
protect,	or	on	close	warning	if	no	protect	call	occurs	first.	

4.8 Metadata	Cache	Image	in	the	Parallel	Case	

The	parallel	case	is	complicated	by	the	fact	that	while	each	cache	in	each	process	must	contain	the	
same	 dirty	 entries,	 there	 is	 so	 such	 requirement	 on	 clean	 entries.	 	 Further,	 the	 entries	 need	 not	
appear	same	order	on	the	different	LRUs.	

As	 a	 result,	 there	 is	 no	 requirement	 that	 the	 different	 processes	 will	 construct	 the	 same	 cache	
images,	or	even	cache	images	of	the	same	size.	

As	long	as	all	the	cache	images	contain	the	same	dirty	entries	(as	they	must	until	such	time	as	the	age	
out	feature	is	implemented),	this	is	not	a	problem	as	only	process	zero	will	write	a	cache	image.		Thus	
we	need	only	broadcast	the	length	of	the	process	0	cache	image	to	all	processes,	so	that	this	value	
will	 be	used	by	all	 processes	when	allocating	 file	 space	 for	 the	 cache	 image	block,	 and	writing	 the	
cache	image	superblock	extension	message.	

In	the	current	implementation,	all	process	construct	a	cache	image,	but	only	the	process	zero	version	
is	written	to	file.	

On	file	open,	the	cache	image	is	read	by	process	0	only,	and	then	broadcast	to	all	other	processes.	

NOTE:	 The	 collective	 metadata	 write	 code	 was	 recently	 merged	 into	 the	 cache	 image	 branch.		
Unfortunately,	 this	 code	 is	 currently	 incompatible	 with	 cache	 image,	 as	 it	 has	 no	 facility	 for	
suppressing	writes	of	cache	entries	that	are	to	be	included	in	the	cache	image.	 	This	shouldn’t	be	a	

major	problem,	but	pending	resolution	of	this	issue,	the	metadata	cache	image	feature	is	disabled	in	
the	parallel	case.	

4.8.1	 Metadata	Cache	Image	in	the	Parallel	Case	–	Code	Overview	

As	discussed	above,	preparation	for	construction	of	the	cache	image	is	performed	on	receipt	of	the	
file	close	warning.		The	only	change	is	the	broadcast	of	the	process	0	cache	image	size,	which	is	used	
in	 allocation	of	 file	 space	 for	 the	 cache	 image	block,	 and	 in	 the	metadata	 cache	 image	 superblock	
extension	message.		Note	that	at	present,	each	process	constructs	its	own	cache	image,	event	though	
all	but	the	process	0	version	is	discarded.	

At	present,	there	is	no	attempt	to	force	all	processes	to	serialize	dirty	entries	 in	the	same	order	on	
different	processes.	 	As	 long	as	 file	 space	 for	metadata	 is	 allocated	at	 creation	 time,	and	does	not	
move	or	change	size	at	flush	time,	this	should	not	be	an	issue.	

The	actual	reading	and	writing	the	cache	image	is	handled	by	the		

	 H5AC_read_cache_image(),	and		

	 H5AC_write_cache_image()		

routines	respectively.		In	the	serial	case,	H5AC_read_cache_image()	simply	reads	the	image	from	file	
and	loads	it	into	the	supplied	buffer.		H5AC_write_cache_image()	does	the	converse.		Note	that	these	
routines	handle	only	actual	I/O	–	encoding	and	decoding	the	cache	image	is	handled	elsewhere.	

In	the	parallel	case,	both	these	routines	perform	as	per	the	serial	case	if	there	is	only	one	process.	

With	multiple	processes,	H5AC_read_cache_image()	tests	to	see	if	it	is	process	0.			

If	it	is,	it	reads	the	cache	image	block,	broadcasts	it	to	all	other	processes,	and	then	returns	the	image	
to	the	caller.	

If	it	isn’t,	it	simply	waits	for	the	broadcast,	and	then	return	the	broadcast	image	to	the	caller.	

Similarly,	 with	 multiple	 processes,	 H5AC_write_cache_image()	 simply	 suppresses	 the	 cache	 image	
write	to	file	for	all	processes	other	than	process	0.	

4.8.2	 Metadata	Cache	Image	in	the	Parallel	Case	–	Known	Issues	

At	present,	 the	code	to	 read	cache	 images	 in	 the	parallel	case	uses	 the	same	trigger	as	 that	 in	 the	
serial	case	–	typically,	the	cache	image	is	 loaded	on	the	first	metadata	cache	access	after	file	open.		
Since	all	processes	must	participate	 in	 the	 loading	the	cache	 image,	 this	creates	 the	potential	 for	a	
deadlock.		For	example,	suppose	process	1	accesses	the	HDF5	file,	and	sends	a	message	to	process	2,	
which	does	not	access	the	file	until	after	this	message	is	received.	

While	this	potential	deadlock	is	easily	avoided,	the	issue	should	be	resolved.	

5.	Metadata	Cache	Image	Removal	Tool	
The	purpose	of	the	metadata	cache	image	removal	tool	is	to	open	a	HDF5	file	with	a	metadata	cache	
image,	read	that	image	into	the	metadata	cache,	discard	the	image,	flush	all	dirty	entries	in	the	cache	
into	the	file	proper,	and	then	close	the	file.	

From	a	code	perspective,	this	is	trivial,	as	all	that	is	needed	is	to	open	the	target	file	R/W	and	without	
the	metadata	cache	image	FAPL	entry,	and	then	close	it.	

Given	 the	 simplicity	 of	 the	 operation,	 we	 decided	 to	 augment	 an	 existing	 tool	 to	 perform	 this	
function,	rather	than	write	a	new	tool,	with	the	associated	overhead.	 	As	h5clear	has	as	somewhat	

similar	purpose	(clearing	file	consistency	flags	for	files	created	under	SWMR	and	not	closed	properly),	
we	elected	to	augment	this	tool	to	remove	metadata	cache	images	as	well.	

To	this	end,	we	added	support	 for	 the	“–m”	and	“–image”	flags	to	h5clear.	 	When	either	of	 theses	
flags	are	set,	h5clear	will	open	the	supplied	HDF5	file	R/W,	check	to	see	if	it	contains	a	cache	image,	
and	then	close	it.		If	the	file	does	not	contain	a	cache	image,	h5clear	will	generate	a	warning	message	
to	that	effect.	

6.	Testing	
The	metadata	cache	is	central	to	the	functioning	of	the	HDF5	file,	and	thus	any	bugs	in	the	metadata	
cache	image	facility	will	likely	make	themselves	apparent	quickly	upon	use	of	the	facility.	

The	 basic	 issue	 to	 be	 tested	 is	 whether	 the	 new	 feature	 saves	 and	 restores	 the	 contents	 and	
configuration	of	the	metadata	cache	accurately.	 	This	can	be	broken	down	into	the	following	check	
list:	

1. Does	control	work	correctly	–	specifically:	

A. Is	 the	 new	 FAPL	 property	 recognized	 on	 file	 open,	 and	 does	 it	 result	 in	 a	 notation	 that	 a	
metadata	cache	image	should	be	created	on	file	close?	

B. Is	the	metadata	cache	notified	on	file	open	that	a	metadata	cache	 image	will	be	created	on	
file	close?	(may	not	be	needed)	

C. Is	the	call	to	generate	a	metadata	cache	image	issued	on	file	close?		

D. Do	versions	of	the	library	that	don't	understand	metadata	cache	images	refuse	to	open	files	
that	contain	one?	

E. Does	 the	 version	of	 the	 library	 that	does	understand	metadata	 cache	 images	 recognize	 the	
presence	 of	 same?	 	 Does	 it	 issue	 the	 necessary	 call	 to	 trigger	 load	 of	 the	 image	 into	 the	
metadata	cache?	

2. Is	the	metadata	cache	image	created	correctly?	

A. Are	individual	entries	correctly	serialized?	

B. Are	 all	 entries	 in	 the	 cache	 serialize	with	 the	 appropriate	 annotations	 (flush	 dependencies,	
dirty,	LRU	index,	etc)?		

C. Is	the	adaptive	cache	resizing	configuration	and	status	recorded	correctly?	

D. Is	the	calculation	of	image	size	correct?	

E. Does	the	image	have	the	expected	structure?	

3. Is	the	image	written	to	file	correctly?	

4. Is	the	image	read	from	file	correctly?	

A. Is	the	image	interpreted	correctly?	

I. Are	individual	entries	correctly	read	and	represented	as	serialized	entries?	

II. Is	the	adaptive	cache	resizing	configuration	and	status	restored	correctly?	

III. Are	flush	dependencies	restored	correctly?	

5. Are	prefetched	entries	handled	correctly?	

A. On	protect?	

B. On	flush?	

C. On	eviction?	

6. Are	reloaded	flush	dependencies	on	prefetched	entries	managed	correctly?	

A. On	protect?	

B. On	flush?	

C. On	eviction?	

7. Is	parallel	handled	correctly?	

8. Does	SWMR	work	correctly	with	metadata	cache	images?	

Aside	from	addressing	the	above	questions,	the	test	code	should	fit	into	the	existing	regression	test	
framework,	and	should	piggyback	on	existing	test	code	to	the	extent	reasonably	practical.	

6.1 Testing	–	Current	Status	

With	 the	exception	of	1D,	 section	1	 is	 reasonably	well	 tested	with	control	 flow	 tests	and	API	error	
tests.	 	1D		(rejection	of	files	with	cache	images	by	versions	of	the	library	that	do	not	support	cache	
image)	is	completely	un-tested	at	present.	

Items	 2	 –	 6	 are	 tested	 indirectly	 through	 a	 combination	 of	 functional	 tests	 which	 put	 the	 library	
through	its	paces	with	cache	image	enabled,	and	directly	through	extensive	assertions	in	the	code.		

Items	7	–	8	are	completely	untested.	

6.2 Testing	–	Code	Overview	

At	 present,	 formal	 test	 code	 for	 the	 cache	 image	 feature	 resides	 in	 the	 cache_image	 test	 in		
test/cache_image.c.		This	test	code	can	be	divided	into	the	following	components:	

1. Control	flow	tests:		These	test	verify	that	the	API	calls	controlling	the	creation	of	cache	images	
perform	as	expected.	

2. Smoke	 checks:	 In	 these	 tests,	 we	 create	 increasingly	 complex	 metadata	 cache	 contents	
through	sequences	of	file	opens	and	closes	with	cache	images	passed	from	one	opening	of	the	
file	to	the	next.		While	these	tests	do	not	test	correct	operation	of	the	cache	image	explicitly,	
as	 they	 involve	most	on	disk	data	structures	used	by	HDF5,	and	as	 the	operations	on	 these	
data	structures	would	 likely	 fail	 if	 the	cache	 image	corrupted	 them,	 these	 tests	are	strongly	
indicative	of	the	correctness	of	the	cache	image	implementation.	

3. API	Error	Tests:		These	test	verify	correct	behavior	of	the	cache	image	related	API	calls	when	
passed	invalid	data.	

In	 addition	 to	 these	 formal	 tests,	 there	 are	 also	 significant	 sanity	 checks	 in	 the	 cache	 image	 code	
which	are	directed	at	more	explicit	verification	of	correct	behavior	of	cache	image.		As	these	tests	are	
only	 compiled	 and	 run	 in	 debug	 builds,	 they	 should	 be	 converted	 to	 formal	 tests	 in	
test/cache_image.c.	

At	present,	I	believe	the	most	pressing	deficits	of	the	cache	image	test	code	are:	

1. No	parallel	testing	

2. No	verification	that	older	versions	of	the	library	will	refuse	to	read	files	with	cache	images.	

7.	Closing	Comments	and	Observations	
A	number	 of	 comments	 and	 observations	 have	 come	up	 in	 discussion	 of	 this	work	 that	 should	 be	
recorded.			

1. The	notion	has	been	raised	of	avoiding	metadata	cache	image	related	writes	to	the	superblock	
in	 the	 case	 in	which	 a	 file	with	 a	metadata	 cache	 image	 is	 opened,	 and	 a	metadata	 cache	
image	is	requested	on	file	close.	

This	 is	 certainly	 possible,	 but	 it	 would	 require	 setting	 an	 overlarge	 cache	 image	 so	 that	 it	
would	usually	not	be	necessary	to	move	or	resize	it.			

More	to	the	point,	at	least	in	the	use	case	under	immediate	consideration,	there	will	be	writes	
to	the	super	block	regardless.		Thus	I	don't	see	much	room	for	gain	here.	

2. Given	that	the	immediate	use	case	is	a	write	only	one,	implementation	of	the	alternate	“Strict	
LRU”	replacement	policy	in	the	metadata	cache	may	be	of	value.	

3. Implementation	of	prefetched	entries	 facilitates	broadcasts	of	metadata	cache	entries,	 thus	
allowing	us	 to	 avoid	 the	 scenario	 in	which	 each	process	 reads	 the	 same	piece	of	metadata	
from	file	simultaneously	in	collective	operations.		

	

5. Acknowledgements
TBD	

6. Revision History
	

June	15,	2015:	 First	draft	sent	to	Quincey	for	comment.		

June	18,	2015:	 Second	draft	sent	to	Quincey	for	comment.	

June	23,	2015:	 Minor	cleanups,	draft	sent	to	Mark	for	comment.	

Sept.	29,	2015:	 Updated	document	to	reflect	design	changes	during	implementation	(which	
were	minimal),	and	current	state	of	implementation.			

Oct.	19,	2016	 Updated	document	to	reflect	design	changes	forced	by	free	space	manager	
and	flush	dependency	design	changes.		Also	expanded	design	
documentation.	

Nov.	8,	2016	 Add	save_resize_status	and	entry_timeout	to,	and	delete	max_image_size	
fields	from	H5AC_cache_image_config_t.

Add Flags and Image Data Length fields to the top level cache image file
format.
Added the Age field to the metadata cache image file format.

Further updates to reflect actual state of code and to expand design
documentation.

Made note of the disabling of cache image in the parallel case pending
updates to the collective metadata write code.

March	1,	2017	 Updated	text	to	note	that	a	request	for	creation	of	a	cache	image	on	file	
close	(via	a	call	to	H5Pset_mdc_image_config()) will fail silently if the

subsequent create or open does not refer to a file that uses a superblock that
does not support superblock extension messages.	

March	20,	2017	 In	section	3.1,	added	note	indicating	that	cache	image	creation	is	disabled	in	
parallel,	and	that	requests	for	a	cache	image	in	this	context	will	fail	silently.	

Added	section	3.2	describing	the	H5Fget_cache_image_info()	call.	

March	21,	2017	 Updated	to	section	3.2	to	clarify	the	behavior	of	the	H5Fget_cache_info()	in	
the	R/W	and	R/O	cases.	

March	23,	2017	 Updated	section	5	to	describe	the	functionality	added	to	h5clear	to	allow	it	
to	function	as	the	cache	image	removal	tool.	

April	7,	2017	 Added	section	4.8.2	outlining	a	potential	deadlock	in	the	current	(quite	
limited)	cache	image	support	in	parallel.	

	 	

	

