
February 26, 2014 RFC THG 2013-11-18.v5

RFC: Improvements for SWMR File Access and Dataset Append

Vailin Choi

This RFC describes the changes to the HDF5 library that improve the SWMR (Single-
writer/multiple-read) file access model and provide better support for dataset append
operation.

1 Introduction

The modifications described in this RFC cover improvements to two areas in the HDF5 library:

 The process in enabling SWMR writing for an open HDF5 file

o A new public routine H5Fstart_swrm_write() to simplify the steps in setting up and
enabling a file for SWMR writing

 The flush behavior when appending to a dataset and when flushing an HDF5 object

o Two new public routines H5Pget/set_append_flush() to control when a dataset flush
will occur during an append operation and to invoke an application callback function

o Two new public routines H5Pget/set_object_flush_cb() to invoke an application
callback function when an object flush occurs

2 Enhancement to SWMR file access

The SWMR file access model follows the standard HDF5 model: the writer and readers will need to
indicate SWMR access using file access flags with the H5Fcreate and H5Fopen calls. To switch to
SWMR-safe operations after creating/opening a file, a writer application has to close and reopen the
file with SWMR access flags. To improve usability for the writer applications, the library will provide a
new public routine, H5Fstart_swmr_write, to activate SWMR writing mode for an opened file.

The HDF5 library will use the file consistency flags in the file’s superblock data structure (status_flags
field in struct H5F_super_t) to mark a file as safe for SWMR writing. The marking will be removed
upon file closing. Once the file is marked as SWMR-safe, a user cannot switch back to the previous
mode. Also, a user cannot activate SWMR writing mode more than once for an opened file.

2.1 H5Fstart_swmr_write

Name:
H5Fstart_swmr_write

Signature:
herr_t H5Fstart_swmr_write(hid_t file_id)

February 26, 2014 RFC THG 2013-11-18.v5

Page 2 of 12

Purpose:
Enables SWMR writing mode for a file.

Description:
H5Fstart_swmr_write will activate SWMR writing mode for a file associated with file_id.
This routine will prepare and ensure the file is safe for SWMR writing as follows:

 Check that the file is open with write access (H5F_ACC_RDWR).

 Check that the file is open with the latest library format to ensure data structures with
check-summed metadata are used.

 Check that the file is not already marked in SWMR writing mode.

 Enable reading retries for check-summed metadata to remedy possible checksum failures
from reading inconsistent metadata on a system that is not atomic.

 Turn off usage of the library’s accumulator to avoid possible ordering problem on a system
that is not atomic.

 Perform a flush of the file’s data buffers and metadata to set a consistent state for starting
SWMR write operations.

Library objects are groups, datasets, and committed datatypes. For the current
implementation, groups and datasets can remain open when activating SWMR writing mode,
but not committed datatypes. Attributes attached to objects cannot remain open either.

Parameters:

hid_t file_id

IN: A file identifier.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Example Usage:
The example below illustrates the usage of this routine to activate SWMR writing mode for an

opened file.

/*
 * The writer process
 */
/* Create a copy of the file access property list */
fapl_id = H5Pcreate(H5P_FILE_ACCESS);

/* Set to use the latest library format */
H5Pset_libver_bounds(fapl_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST);

/* Create a file with the latest library format */
file_id = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
:
:
:
/* Perform operations that are not SWMR-safe. */
:
:

February 26, 2014 RFC THG 2013-11-18.v5

Page 3 of 12

:
/* Start a concurrent SWMR reader process (see coding below) at this point
 will fail because the file is not marked as SWMR-safe */

/* Enable SWMR writing mode */
H5Fstart_swmr_write(file_id);

/* Start a concurrent SWMR reader process (see coding below) at this point
 will succeed because the file is marked as SWMR-safe */

/* Perform SWMR-safe operations */
:
:
:
/* Close the file */
H5Fclose(file_id);

/* Close the property list */
H5Pclose(fapl_id);

/*
 * The SWMR reader process
 */
read_file_id = H5Fopen(filename, H5F_ACC_RDONLY|H5F_ACC_SWMR_READ, fapl_id);

/* Perform reading operations */
:
:
:
/* Close the file */
H5Fclose(read_file_id);

3 Support for dataset append operation and object flush

The dataset append operation for SWMR write usually consists of extending the dataset’s dataspace
in a particular dimension and writes data elements to the newly extended region in the dataset. The
high-level public routine H5DOappend condenses such dataspace and dataset write operations into a
single function, thus eliminating much application code.

To provide flexibility for a user to manage the flush behavior of dataset elements during the append
operation via H5DOappend, the following routines are provided to trigger actions on appends and
flushes:

1) H5Pget/set_append_flush() for a dataset access property list

2) H5Pget/set_object_flush_cb() for a file access property list

Note that these routines will apply for both SWMR and non-SWMR access.

February 26, 2014 RFC THG 2013-11-18.v5

Page 4 of 12

3.1 H5DOappend

Name:
H5DOappend

Signature:
herr_t H5DOappend(hid_t dset_id, hid_t dxpl_id, unsigned index, size_t
num_elem, hid_t memtype, const void *buffer)

Purpose:
Appends data to a dataset along a specified dimension.

Description:
The H5DOappend routine extends a dataset by num_elem number of elements along a
dimension specified by a dimension index and writes buffer of elements to the
dataset. Dimension index is 0-based. Elements’ type is described by memtype.

This routine combines calling H5Dset_extent, H5Sselect_hyperslab and H5Dwrite into a
single, routine that simplifies application development for the common case of appending
elements to an existing dataset.

For multi-dimensional dataset, appending to one dimension will write a contiguous hyperslab
over the other dimensions. For example, if a 3-D dataset has dimension sizes (3, 5, 8),
extending the 0th dimension (currently of size 3) by 3 will append 3*5*8 = 120 elements
(which must be pointed to by the buffer parameter) to the dataset, making its final
dimension sizes (6, 5, 8).

If a dataset has more than one unlimited dimension, any of those dimensions may be
appended to, although only along one dimension per call to H5DOappend.

Parameters:

hid_t dset_id
hid_t dxpl_id
unsigned index
size_t num_elem
hid_t memtype
void *buffer

IN: Dataset identifier.
IN: Dataset transfer property list identifier.
IN: Dimension number (0-based)
IN: Number of elements to add along the dimension
IN: Memory type identifier
IN: Data buffer

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.
Example Usage:

The example below for H5Pset_append_flush illustrates the usage of this public routine to
append to a dataset.

3.2 H5Pset_append_flush

Name:
H5Pset_append_flush

Signature:

February 26, 2014 RFC THG 2013-11-18.v5

Page 5 of 12

herr_t H5Pset_append_flush (hid_t dapl_id, int ndims, const hsize_t
boundary[], H5D_append_cb_t func, void *user_data)

Purpose:
Sets two actions to perform when the size of a dataset’s dimension being appended reaches a
specified boundary.

Description:
H5Pset_append_flush sets the following two actions to perform for a dataset associated
with the dataset access property list dapl_id:

1) Call the callback function func set in the property list

2) Flush the dataset associated with the dataset access property list

While a user is appending data to a dataset via H5DOappend and the dataset’s newly
extended dimension size hits a specified boundary, the library will first perform action #1
listed above. Upon return from the callback function, the library will then perform the above
action #2 and return to the user. If no boundary is hit or set, the two actions above are not
invoked.

The specified boundary is indicated by the parameter boundary. It is a 1-dimensional array
with ndims elements, which should be the same as the rank of the dataset’s dataspace. While
appending to a dataset along a particular dimension index via H5DOappend, the library
determines a boundary is reached when the resulted dimension size is divisible by
boundary[index]. A zero value for boundary[index] indicates no boundary is set for that
dimension index.

The setting of this property will apply only for a chunked dataset with extendible dataspace. A
dataspace is extendible when it is defined with either one of the following:

 Dataspace with fixed current and maximum dimension sizes

 Dataspace with at least one unlimited dimension for its maximum dimension sizes

When creating or opening a chunked dataset, the library will check whether the boundary as
specified in the access property list is set up properly. The library will fail the dataset create or
open when detecting the following conditions:

 ndims, the number of elements for boundary, is not the same as the rank of the
dataset’s dataspace.

 A non-zero boundary value is specified for a non-extendible dimension.

The callback function func must conform to the prototype defined below:

typedef herr_t (H5D_append_cb_t)(hid_t dataset_id, hsize_t *cur_dims, void
*user_data)

where

dataset_id is the dataset identifier
cur_dims is the dataset’s current dimension sizes when a boundary is hit

February 26, 2014 RFC THG 2013-11-18.v5

Page 6 of 12

user_data is the user-defined input data.

Parameters:

hid_t dapl_id
int ndims
hsize_t *boundary
H5D_append_cb_t func
void *user_data

IN: Dataset access property list identifier.
IN: The number of elements for boundary.
IN: The dimension sizes used to determine the boundary.
IN: The user-defined callback function.
IN: The user-defined input data.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Example Usage:
The example below illustrates the usage of this public routine to manage the flush behavior

while appending to a dataset.

hsize_t dims[2] = {0, 100};
hsize_t max_dims[2] = {H5S_UNLIMITED, 100};
hsize_t boundary_dims[2] = {5, 0};
unsigned counter;
void *buf;
hid_t file_id;
hid_t dataset_id, dapl_id, type;

/* Open the file */
file_id = H5Fopen(FILE, H5F_ACC_RDWR|H5F_ACC_SWMR_WRITE, H5P_DEFAULT);

/* Create a copy of the dataset access property list */
dapl_id = H5Pcreate(H5P_DATASET_ACCESS);

/* Set up the append property values */
/* boundary_dims[0]=5: to invoke callback and flush every 5 lines */
/* boundary_dims[1]=0: no boundary is set for the non-extendible dimension */
/* append_cb: callback function to invoke when hitting boundary (see below) */
/* counter: user data to pass along to the callback function */
H5Pset_append_flush(dapl_id, 2, boundary_dims, append_cb, &counter);

/* DATASET is a 2-dimensional chunked dataset with dataspace:
 dims[] and max_dims[] */
dataset_id = H5Dopen2(file_id, “dataset”, dapl_id);

/* Get the dataset’s datatype */
type = H5Dget_type(dataset_id);

/* Append 50 lines along the unlimited dimension (index = 0) to the dataset */
for(n = 0; n < 50; n++) {

/* Append 1 line to the dataset */
/* Whenever hitting the specified boundary i.e., every 5 lines,
 the library will invoke append_cb() and then flush the dataset. */
H5DOappend(dataset_id, H5P_DEFAULT, 0, 1, type, buf);

}
:

February 26, 2014 RFC THG 2013-11-18.v5

Page 7 of 12

:
:
/* counter will be equal to 10 */
:
:
:

/* The callback function */
static herr_t
append_cb(hid_t dset_id, hsize_t *cur_dims, void *_udata)
{
 unsigned *count = (unsigned *)_udata;
 ++(*count++);
 return 0;
} /* append_cb() */

3.3 H5Pget_append_flush

Name:
H5Pget_append_flush

Signature:
herr_t H5Pget_append_flush (hid_t dapl_id, int ndims, hsize_t boundary[],
H5D_append_cb_t *func, void **user_data)

Purpose:
Retrieves the values of the append property that is set up in the dataset access property list.

Description:
H5Pget_append_flush obtains the following information from the dataset access property
list dapl_id:

 boundary[]—the sizes set up in the access property list that is used to determine
when a dataset dimension size hits the boundary. Only at most ndims boundary sizes
are retrieved, and ndims will not exceed the corresponding value that is set in the
property list.

 func—the user-defined callback function to invoke when a dataset’s appended
dimension size reaches a boundary.

 user_data—the user-defined input data for the callback function.

Parameters:

hid_t dapl_id
int ndims
hsize_t *boundary[]
H5D_append_cb_t *func
void **user_data

IN: Dataset access property list identifier.
IN: The number of elements for boundary.
IN: The dimension sizes used to determine the boundary .
IN: The user-defined callback function.
IN: The user-defined input data.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Example Usage:
The example below illustrates the usage of this public routine to obtain the append property

values that is set up in the dataset access property list.

February 26, 2014 RFC THG 2013-11-18.v5

Page 8 of 12

hid_t file_id;
hid_t dapl_id, dataset_id, dapl;
hsize_t dims[2] = {0, 100};
hsize_t max_dims[2] = {H5S_UNLIMITED, 100};
hsize_t boundary_dims[2] = {5, 0};
int counter;
hsize_t ret_boundary[1];
H5D_append_flush_cb_t ret_cb;
void *ret_udata;

/* Open the file */
file_id = H5Fopen(FILE, H5F_ACC_RDWR|H5F_ACC_SWMR_WRITE, H5P_DEFAULT);

/* Create a copy of the dataset access property list */
dapl_id = H5Pcreate(H5P_DATASET_ACCESS);

/* Set up the append property values */
/* boundary_dims[0]=5: to invoke callback and flush every 5 lines */
/* boundary_dims[1]=0: no boundary is set for the non-extendible dimension */
/* append_cb: callback function to invoke when hitting boundary (see below) */
/* counter: user data to pass along to the callback function */
H5Pset_append_flush(dapl_id, 2, boundary_dims, append_cb, &counter);

/* DATASET is a 2-dimensional chunked dataset with dataspace:
 dims[] and max_dims[] */
dataset_id = H5Dopen2(file_id, “dataset”, dapl_id);

/* Get the dataset access property list for DATASET */
dapl = H5Dget_access_plist(dataset_id);

/* Retrieve the append property values for the dataset */
/* Only 1 boundary size is retrieved: ret_boundary[0] is 5 */
/* ret_cb will point to append_cb() */
/* ret_udata will point to counter */
H5Pget_append_flush(dapl, 1, ret_boundary, &ret_cb, &ret_udata);

:
:
:

/* The callback function */
static herr_t
append_cb(hid_t dset_id, hsize_t *cur_dims, void *_udata)
{
 unsigned *count = (unsigned *)_udata;
 ++(*count++);
 return 0;
} /* append_cb() */

February 26, 2014 RFC THG 2013-11-18.v5

Page 9 of 12

3.4 H5Pset_object_flush_cb

Name:
H5Pset_object_flush_cb

Signature:
herr_t H5Pset_object_flush_cb (hid_t fapl_id, H5F_flush_cb_t func, void
*user_data)

Purpose:
Sets a callback function to invoke when an object flush occurs in the file.

Description:
H5Pset_object_flush_cb sets the callback function to invoke in the file access property list
fapl_id whenever an object flush occurs in the file. Library objects are group, dataset, and
committed datatype. When a user flushes an object via
H5Gflush/H5Dflush/H5Tflush/H5Oflush, the library will flush the object, invoke the specified
callback function, and then return to the user.

The callback function func must conform to the prototype defined below:

typedef herr_t (*H5F_flush_cb_t)(hid_t object_id, void *user_data)

where
 object_id is the identifier of the object which has just been flushed
 user_data is the user-defined input data for the callback function

Parameters:

hid_t fapl_id
H5F_flush_cb_t func
void *user_data

IN: Identifier for a file access property list.
IN: The user-defined callback function.
IN: The user-defined input data for the callback function.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Example Usage:
The example below illustrates the usage of this routine to set the callback function to invoke

when an object flush occurs.

hid_t file_id, fapl_id;
hid_t dataset_id, dapl_id;
unsigned counter;

/* Create a copy of the file access property list *
fapl_id = H5Pcreate(H5P_FILE_ACCESS);

/* Set up the object flush property values */
/* flush_cb: callback function to invoke when an object flushes (see below) */
/* counter: user data to pass along to the callback function */
H5Pset_object_flush_cb(fapl_id, flush_cb, &counter);

/* Open the file */
file_id = H5Fopen(FILE, H5F_ACC_RDWR, H5P_DEFAULT);

February 26, 2014 RFC THG 2013-11-18.v5

Page 10 of 12

/* Create a group */
gid = H5Gcreate2(fid, “group”, H5P_DEFAULT, H5P_DEFAULT_H5P_DEFAULT);

/* Open a dataset */
dataset_id = H5Dopen2(file_id, DATASET, H5P_DEFAULT);

/* The flush will invoke flush_cb() with counter */
H5Dflush(dataset_id);
/* counter will be equal to 1 */
:
:
:
/* The flush will invoke flush_cb() with counter */
H5Gflush(gid);
/* counter will be equal to 2 */
:
:
:

/* The callback function for object flush property */
static herr_t
flush_cb(hid_t obj_id, void *_udata)
{
 unsigned *flush_ct = (unsigned*)_udata;
 ++(*flush_ct);
 return 0;
}

3.5 H5Pget_object_flush_cb

Name:
H5Pset_object_flush_cb

Signature:
herr_t H5Pset_object_flush_cb (hid_t fapl_id, H5F_flush_cb_t *func, void
**user_data)

Purpose:
Retrieves the object flush property values from the file access property list.

Description:
H5Pget_object_flush_cb gets the user-defined callback function that is set in the file access
property list fapl_id and stores in the parameter func. It also obtains the user-defined input
data that is passed along to the callback function in the parameter user_data.

Parameters:

hid_t fapl_id
H5F_flush_cb_t *func
void **user_data

IN: Identifier for a file access property list.
IN: The user-defined callback function.
IN: The user-defined input data for the callback function.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Example Usage:

February 26, 2014 RFC THG 2013-11-18.v5

Page 11 of 12

The example below illustrates the usage of this routine to obtain the object flush property
values.

hid_t fapl_id;
unsigned counter;
H5F_object_flush_t *ret_cb;
unsigned *ret_counter;

/* Create a copy of the file access property list */
fapl_id = H5Pcreate(H5P_FILE_ACCESS);

/* Set up the object flush property values */
/* flush_cb: callback function to invoke when an object flushes (see below) */
/* counter: user data to pass along to the callback function */
H5Pset_object_flush_cb(fapl_id, flush_cb, &counter);

/* Open the file */
file_id = H5Fopen(FILE, H5F_ACC_RDWR, H5P_DEFAULT);

/* Get the file access property list for the file */
fapl = H5Fget_access_plist(file_id);

/* Retrieve the object flush property values for the file */
H5Pget_object_flush_cb(fapl, &ret_cb, &ret_counter);
/* ret_cb will point to flush_cb() */
/* ret_counter will point to counter */
:
:
:

/* The callback function for the object flush property */
static herr_t
flush_cb(hid_t obj_id, void *_udata)
{
 unsigned *flush_ct = (unsigned*)_udata;
 ++(*flush_ct);
 return 0;
}

Acknowledgements

This work was supported by a customer of The HDF Group, Dectris.

Revision History

November 18, 2013: Version 1 circulated for comment within The HDF Group SWMR team.

Jan 2, 2014 Version 2 updated based on implementation.

Jan 7, 2014 Version 3 posted on the SWMR FTP site

Jan 29, 2014 Version 4 added RM entry for H5DOaappend function; posted on SWMR FTP
site

February 26, 2014 RFC THG 2013-11-18.v5

Page 12 of 12

Feb 26, 2014 Version 5 updated to reflect implementation.

References

1. The HDF Group. “RFC: SWMR Requirements and Use Cases,” RFC-THG-2013-02-06.v8,
ftp://ftp.hdfgroup.uiuc.edu/pub/outgoing/SWMR/doc/SWMR%20Use%20Cases-2013-03-13.pdf
March 13, 2013.

ftp://ftp.hdfgroup.uiuc.edu/pub/outgoing/SWMR/doc/SWMR Use Cases-2013-03-13.pdf

