
Metadata Cache Issues under SWMR and their
Solutions

Dana Robinson

Quincey Koziol

HDF5

RFC THG 2013-11-17

Document Version 3

The HDF5 Library contains a cache that provides more efficient access to HDF5 file
metadata. Although helpful in most instances, this cache can cause problems when the
single-writer/multiple-reader (SWMR) data access pattern is used to access an HDF5 file.
Additionally, there are even deeper I/O issues that can affect HDF5 file metadata
operations. This document describes the cache-oriented problems that the HDF5 Library
must overcome in order to implement the SWMR feature as well as our solutions.

Page 2 of 16

Copyright 2013-4 by The HDF Group.

All rights reserved.

For more information about The HDF Group, see www.hdfgroup.org.

http://www.hdfgroup.org/

Metadata Cache Issues under SWMR and their Solutions Contents

Page 3 of 16

Contents

1. Introduction .. 4

2. SWMR Semantics .. 6

3. HDF5 Metadata and Basic Metadata Cache Operations .. 7
3.1. Metadata and Stored Objects .. 7
3.2. Normal Operations ... 7
3.3. Corking ... 8
3.4. Aggregation .. 8

4. Problems That Affect SWMR ... 9
4.1. Flush Ordering .. 9
4.2. Torn Writes .. 9

5. Solutions .. 11
5.1. Flush Dependencies ... 11
5.2. Chunk Proxies ... 11
5.3. Read Retries ... 12
5.4. Prevention of Non-checksummed Metadata Use .. 13
5.5. Disable Metadata Accumulator ... 13

6. Revision History .. 14

7. Acknowledgements ... 15

8. References .. 16

Metadata Cache Issues under SWMR and their Solutions Introduction

Page 4 of 16

1. Introduction
The single-writer/multiple-reader (SWMR) feature of the HDF5 Library will allow concurrent reading of
an HDF5 file by multiple reader processes while a writer process modifies the file. This feature will be
implemented without requiring file locking or inter-process communication (IPC).

Figure 1-1: The SWMR feature as implemented in HDF5.

Although conceptually simple, SWMR is challenging to implement. The primary problem is that, in a
SWMR situation, the true state of the central HDF5 file is spread across two locations: the on-storage
HDF5 file and the writer process' in-memory state, including the cache layers. Unlike simple "flat" text or
binary files, HDF5 files have a complex internal structure, and errors in this structure can result in
broken, unreadable files. Correct reader operation requires being able to see a valid HDF5 file at all
times, and this may not be true if crucial structural information has not yet been propagated to disk by
the writer.

In the HDF5 Library, all internal structure (metadata) objects are accessed via a central metadata cache.
It is in this caching layer that most of the changes for SWMR must be made. The operation of this
caching layer and the changes that are being made to enable the SWMR feature are the subject of this
document.

Intended Audience and Assumptions

This document is primarily intended to help early adopters and funders of the SWMR feature
understand the metadata cache implications of the SWMR feature. The knowledge presented here will
help convey the scope of the work required for a correct implementation. Readers are assumed to have
a basic understanding of cache operations and HDF5.

Metadata Cache Issues under SWMR and their Solutions Introduction

Page 5 of 16

Note

This document applies to the SWMR branch of HDF5 Library development1, which is based on the future
1.10.x version of the library. The current 1.8.x branch of the library is unable to support SWMR due to a
lack of checksum-containing metadata structures for key functions (described below).

1
 Current public Subversion repository: http://svn.hdfgroup.uiuc.edu/hdf5/branches/revise_chksum_retry/.

http://svn.hdfgroup.uiuc.edu/hdf5/branches/revise_chksum_retry/

Metadata Cache Issues under SWMR and their Solutions SWMR Semantics

Page 6 of 16

2. SWMR Semantics
We define SWMR semantics as a single writer process writing to a single HDF5 file while one or more
reader processes concurrently read from the file with no required file locking or inter-process
communication between the writer and readers. All processes access the file over a common file
system. At this time, there are no constraints on which processes must open or close the file first.
Processes simply need to use the H5F_ACC_SWMR_WRITE/READ flag when creating or opening the file.
This will change in the future when we implement access blocking in the library.

More precisely, the future full semantics of SWMR operations will be:

 Multiple readers can open the same file for reading when no writer has the file open for writing.

 No reader can open the file for reading when a non-SWMR writer is accessing the same file for
writing.

 No writer can open the file for writing when reader(s) are accessing the same file for reading.

 No writer can open the file for writing when a writer already holds the file open for writing.

 Multiple readers can open the same file for “reading and SWMR-read” when a writer opens the
file for “writing and SWMR-write”.

 Non-SWMR readers will not be able to open a file opened for SWMR writing.

Note that these policies are not enforced by the SWMR prototype HDF5 Library at this time. It is up to
the user to avoid violating them.

In theory, it would be ideal if the file system guaranteed write ordering and atomicity, though recent
changes to the cache (described below) relax these requirements. A write ordering guarantee ensures
that writes A, B, and C will always be read as ABC by a reader and not in some other order such as BAC.
Many network file systems, particularly NFS, do not guarantee write ordering. A write atomicity
guarantee ensures that data written by a single write() call will be written to disk as a unit, so a partial
write will never be encountered by a reader. Many file/operating systems are not atomic at the write
call level but are instead atomic at some other level such as the disk page size.

Metadata Cache Issues under SWMR and their Solutions HDF5 Metadata and Basic Metadata Cache Operations

Page 7 of 16

3. HDF5 Metadata and Basic Metadata Cache Operations

3.1. Metadata and Stored Objects

In addition to the primary data stored by the user, an HDF5 file contains file metadata that is used to
organize, locate/index, and describe the contents of the file. File metadata serves many purposes
including chunk index structures, symbol tables representing groups and links, and object headers that
describe the stored data (examples are modification times and number of elements). This file metadata
is largely invisible to the user and should not be confused with user metadata, which is stored as
attributes attached to HDF5 file objects such as groups and datasets.

The HDF5 file format document is available on the web2,3 and describes the metadata structures used in
the file. Although this is a very low-level document intended for developers, it does give a rough idea of
what file metadata objects look like.

3.2. Normal Operations

The metadata cache sits between the core object manipulation
(logical) parts of the library and the I/O layer. See the figure to the
right. All file object reads and writes occur via the cache. The cache
cannot be disabled; the logical library code never reads metadata
directly from the disk. The metadata cache is one of two key caches in
the library; the other is the chunk cache which is independent and
managed separately (though there are some associations under
SWMR, via chunk proxies, see page 11).

As an example, when a chunk index node is required by the library, a
request for the node is sent to the cache, which either returns the
node immediately if it is contained in the cache or reads it into the
cache from disk and then returns the node if it has not been
previously cached. Writing is handled similarly. The metadata cache is
aware of both the type of each metadata object and the higher-level
object to which it belongs. This is tracked via tags attached to each
metadata object. Cache objects are evicted and, if dirty, flushed using
a modified least recently used (LRU) algorithm. It is very important to
understand that the HDF5 Library and thus the cache are not

2
 Current 1.8.x format: http://www.hdfgroup.org/HDF5/doc/H5.format.html

3
 Future 1.10.x format (supported under SWMR):

http://www.hdfgroup.org/HDF5/doc_test/revise_chunks/H5.format.html (this is a temporary location).

Figure 3-1: Position of the
metadata cache in the
HDF5 Library.

http://www.hdfgroup.org/HDF5/doc/H5.format.html
http://www.hdfgroup.org/HDF5/doc_test/revise_chunks/H5.format.html

Metadata Cache Issues under SWMR and their Solutions HDF5 Metadata and Basic Metadata Cache Operations

Page 8 of 16

asynchronous in any way. The cache does not operate on a background thread. Instead cache
operations like flush passes are triggered by conditions such as the current free space in the cache on
cache access. These cache operations then run to completion before processing resumes.

Various metadata cache parameters can be adjusted via the public H5Pset_mdc_config() API call.
This function takes an input H5AC_cache_config_t structure that contains many members. Most of
these parameters are relatively unimportant for SWMR aside from eviction control, discussed below in
the corking section.

3.3. Corking

Evictions from the metadata cache can be prevented via the internal
H5C_set_evictions_enabled() function, which is known as corking the cache. When evictions are
disabled, the metadata cache will grow in size until it runs out of available memory. Control over cache
corking allows advanced users control when objects become visible in the file and to avoid some of the
extra flush overhead imparted by SWMR. This feature is can be enabled by the H5Pset_mdc_config()
API function by setting the passed-in H5AC_cache_config_t struct's evictions_enabled member
to FALSE. In the future, a more fine-grained public H5Ocork() API function that operates at the object
(dataset, group) level will be implemented.

3.4. Aggregation

To improve efficiency, the metadata cache supports aggregating small metadata objects into a
contiguous block so that they can be written out using a single write() call. This feature can be
adjusted with the H5Pset_meta_block_size() function. The default size is 2k, and aggregation is
turned on by default.

The I/O subsystem of the library uses pluggable drivers called virtual file drivers (VFDs) as a way of
abstracting low-level I/O operations from the main library logic. Not all of these drivers support
metadata aggregation. Currently, the multi and split VFDs do not support this feature. All of the other
drivers, including the default sec2 VFD, support aggregation.

Metadata Cache Issues under SWMR and their Solutions Problems That Affect SWMR

Page 9 of 16

4. Problems That Affect SWMR

4.1. Flush Ordering

HDF5 metadata objects can refer to other objects in the file by storing, either explicitly or implicitly, the
second object's offset in the file. The first object that stores the offset is termed the metadata parent,
and the object that is referred to is the metadata child (see figure). Note that the child may itself be a
parent of some other object, and this can form long chains of parent-child relationships in the cache.
Parents may also have multiple children. For example, B-trees may have multiple child nodes. Children
may have multiple parents though cycles are not allowed. For SWMR-safe file modifications to work
correctly, metadata children must be written to storage before their parents. If this is not done, a reader
that attempts to resolve a missing child will encounter errors and possibly crash.

Figure 4-1: Parent-child relationships between metadata objects in the HDF5 file.

4.2. Torn Writes

Another potential problem exhibited by the SWMR access pattern is that writes may not be atomic with
respect to the platform's write() call. When this occurs, the higher level write call is split into multiple
lower-level write calls. A logical write() call which has only partially completed due to non-atomicity is
called a torn write. These torn writes can result in a reader seeing a partial data object in the file which
can result in incorrect behavior and crashes.

As an example, on Linux systems the POSIX write() call is only atomic with respect to the disk's page
size, which is typically 4k. This means that a 32k data object may be split into as many as 8 separate
writes, which could be preempted at any point by the OS, allowing a reader to see a subset of the full
32k, with the rest of the object containing garbage data. This is illustrated in the figure below.

Metadata Cache Issues under SWMR and their Solutions Problems That Affect SWMR

Page 10 of 16

Figure 4-2: Graphical depiction of torn writes.

Metadata Cache Issues under SWMR and their Solutions Solutions

Page 11 of 16

5. Solutions

5.1. Flush Dependencies

The metadata cache has been modified so that when a parent file object stores the offset of a second
child object, the child is written before the parent. This ensures that an offset stored in a parent will
always resolve to a correctly stored child object. These parent-child arrangements are called flush
dependencies, and they are tracked in the cache.

Under SWMR, the cache flush algorithm must be modified. When dirty objects are flushed from the
cache, they can only be written out after all children have been flushed. This is accomplished by making
multiple iterations over the dirty objects in the cache, flushing the lowest level children until all dirty
objects have been flushed.

This flush ordering is transparent to the user. It is always in effect when SWMR writes are enabled, and
no special API calls are necessary to enable the feature. Flush ordering is disabled when a file has not
been opened for SWMR writing.

Flush dependencies have not been set up for all data structures at this time. All chunk indexing
structures have been modified, so appending to datasets is currently supported under SWMR. Object
headers and symbol tables have not: creating new file objects under SWMR is not yet supported; this
will be added in future versions of the SWMR prototype.

5.2. Chunk Proxies

Metadata objects can store offsets to raw data as well as metadata. Raw data can be stored in metadata
(as an optimization when data are small), written directly to disk (when unchunked), or written via a
chunk cache (when chunked). The latter poses a problem for SWMR, since this cache is managed
separately from the metadata cache. Without some form of synchronization, metadata that refers to
the offset of a chunk (for example, in a chunk index) could be written to disk before the chunk. A reader
could attempt to load data at this offset, resulting in an error.

The solution to this problem is to create metadata cache objects that represent chunks stored in the
chunk cache (see http://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html for more
information on chunking). These metadata objects are called chunk proxies. They exist only in the cache
and are not propagated to storage. If SWMR writes are enabled, a chunk proxy is created in the
metadata cache whenever a chunk is created in chunk cache. This proxy object acts as a cross-cache
dependency between a metadata cache object and a chunk cache object. Like any other flush
dependency, this prevents the parent such as a B-tree node from being written to disk before the child
(chunk, via the proxy).

http://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html

Metadata Cache Issues under SWMR and their Solutions Solutions

Page 12 of 16

Figure 5-1: Depiction of chunk proxies in the metadata cache. For clarity, only one dependency
relationship is shown in the caches.

5.3. Read Retries

The metadata cache has been modified so that file data objects are re-read from the disk when the
calculated checksum does not match the stored checksum. The number of retries can be set by the user
with the H5Pset_metadata_read_attempts() function. The default for SWMR read access is 100
retries (for non-SWMR access it is 1).

This retry feature (combined with checksummed metadata) is the key behind the SWMR feature's ability
to relax the atomicity and ordering requirements of the file system. File objects that cannot be read due
to torn writes or that do not exist yet due to ordering issues will fail the checksum comparison on read,
prompting a re-read instead of an error or crash. Although failures could still occur in extremely
pathological cases, this largely mitigates the issue.

Retries are transparent to the user. They are in effect by default when SWMR read access is set, and no
special API calls are necessary to enable the feature.

Additionally, there is a new function H5Fget_metadata_retries_info() that will emit the number
of retries for each metadata object type that occurred while the file was open. This will allow
programmers to set an appropriate value for the number of retries and can be useful when diagnosing
problems with excessive retries.

Metadata Cache Issues under SWMR and their Solutions Solutions

Page 13 of 16

5.4. Prevention of Non-checksummed Metadata Use

As mentioned in the previous section, read retries are an important part of ensuring correct behavior
under SWMR. Since this feature requires a data object checksum, writes of non-checksummed data will
be prohibited under SWMR write semantics. This has been partially implemented in the current version
of the SWMR prototype. Version 1 B-tree nodes, which do not contain a checksum, cannot be written to
storage under SWMR write semantics preventing their use. In the future, a more comprehensive
solution will be implemented that enforces a policy concerning non-checksummed data use.

Improper data structure use is prevented by setting the library version bounds on the file access
property list using H5Pset_libver_bounds() with both high and low bounds set to
H5F_LIBVER_LATEST. This will allow the library to use the latest version of the file format, which uses
file data structures that have checksums.

5.5. Disable Metadata Accumulator

The metadata accumulator can violate the ordering constraint of SWMR semantics. The
violations occur when writes are delayed by being held in the cache for aggregation, potentially
causing flush ordering issues. The solution was to switch off the metadata accumulator when
the SWMR flag is set. This is done transparently with no action required by the user.

Metadata Cache Issues under SWMR and their Solutions Revision History

Page 14 of 16

6. Revision History
November 17, 2013: Version 1 circulated for comment within The HDF Group SWMR team.
November 27, 2013: Version 2 incorporated some comments from Vailin; sent to DLS and posted

on FTP.
February 14, 2014 Version 3: document was reformatted.

Metadata Cache Issues under SWMR and their Solutions Acknowledgements

Page 15 of 16

7. Acknowledgements
This work was supported by a customer of The HDF Group, Diamond Light Source.

Metadata Cache Issues under SWMR and their Solutions References

Page 16 of 16

8. References
1) The HDF Group. "HDF5 Single-Write/Multiple-Reader Feature Design and Semantics"
2) The HDF Group. "RFC: Read Attempts for Metadata with Checksum"
3) The HDF Group. "HDF5 User's Guide," http://www.hdfgroup.org/HDF5/doc/UG/index.html
4) The HDF Group. "HDF5 Reference Manual,"

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html
5) The HDF Group. "HDF5 File Format Specification Version 2.0,"

http://www.hdfgroup.org/HDF5/doc/H5.format.html
6) Current SWMR Subversion development branch:

http://svn.hdfgroup.uiuc.edu/hdf5/branches/revise_chksum_retry/

http://www.hdfgroup.org/HDF5/doc/UG/index.html
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html
http://www.hdfgroup.org/HDF5/doc/H5.format.html
http://svn.hdfgroup.uiuc.edu/hdf5/branches/revise_chksum_retry/

