
Happendable

June 26, 1998 2-325

HDF Reference Manual

Happendable

intn Happendable(int32 h_id)

h_id IN: Access identifier returned by Hstartwrite

Purpose Specifies that the specified element can be appended to

Return value Returns SUCCEED (or 0) if data element can be appended and FAIL (or -1)
otherwise.

Description If a data element is at the end of a file Happendable allows Hwrite to append
data to it, converting it to linked-block element only when necessary.

Hcache National Center for Supercomputing Applications

2-326 June 26, 1998

Hcache

intn Hcache(int32 file_id, intn cache_switch)

file_id IN: File identifier returned by Hopen

cache_switch IN: Flag to enable or disable caching

Purpose Enables low-level caching for the specified file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If file_id is set to CACHE_ALL_FILES, then the value of cache_switch is used to
modify the default file cache setting.

Valid values for cache_switch are: TRUE (or 1) to enable caching and FALSE (or
0) to disable caching.

Hdeldd

June 26, 1998 2-327

HDF Reference Manual

Hdeldd

intn Hdeldd(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File identifier returned by Hopen

tag IN: Tag of data descriptor to be deleted

ref IN: Reference number of data descriptor to be deleted

Purpose Deletes a tag and reference number from the data descriptor list.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Once the data descriptor is removed, the data in the data object becomes
inaccessible and is marked as such. To remove inaccessible data from an HDF
file, use the utility hdfpack .

Hdeldd only deletes the specified tag and reference number from the data
descriptor list. Data objects containing the deleted tag and reference number
are not automatically updated. For example, if the tag and reference number
deleted from the descriptor list referenced an object in a vgroup, the tag and
reference number will still exist in the vgroup even though the data is
inaccessible.

Hendaccess National Center for Supercomputing Applications

2-328 June 26, 1998

Hendaccess

intn Hendaccess(int32 h_id)

h_id IN: Access identifier returned by Hstartread, Hstartwrite , or
Hnextread

Purpose Terminates access to a data object by disposing of the access identifier.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The number of active access identifiers is limited to MAX_ACC as defined in the
hlimits.h header file. Because of this restriction, it is very important to call
Hendaccess immediately following the last operation on a data element.

When developing new interfaces, a common mistake is to omit calling
Hendaccess for all of the elements accessed. When this happens, Hclose will
return FAIL , and a dump of the error stack will report the number of active
access identifiers. Refer to the Reference Manual page on HEprint .

This is a difficult problem to debug because the low levels of the HDF library
cannot determine who and where an access identifier was originated. As a
result, there is no automated method of determining which access identifiers
have yet to be released.

Hendbitaccess

June 26, 1998 2-329

HDF Reference Manual

Hendbitaccess

intn Hendbitaccess(int32 h_id, intn flushbit)

h_id IN: Identifier of the bit-access element to be disposed of

flushbit IN: Specifies how the leftover bits are to be flushed

Purpose Disposes of the specified bit-access file element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description If called after a bit-write operation, Hendbitaccess flushes all buffered bits to
the dataset, then calls Hendaccess.

“Leftover bits” are bits that have been buffered, but are fewer than the number
of bits defined by BITNUM, which is usually set to 8.

Valid codes for flushbit are: 0 for flush with zeros, 1 for flush with ones and -1
for dispose of leftover bits

Hexist National Center for Supercomputing Applications

2-330 June 26, 1998

Hexist

intn Hexist(int32 h_id, uint16 search_tag, uint16 search_ref)

h_id IN: Access identifier returned by Hstartread, Hstartwrite , or
Hnextread

search_tag IN: Tag of the object to be searched for

search_ref IN: Reference number of the object to be searched for

Purpose Locates an object in an HDF file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Simple interface to Hfind that determines if a given tag/reference number pair
exists in a file. Wildcards apply.

Hfind performs all validity checking; this is just a very simple wrapper around
it.

Hfidinquire

June 26, 1998 2-331

HDF Reference Manual

Hfidinquire

intn Hfidinquire(int32 file_id, char *filename, intn *access, intn *attach)

file_id IN: File identifier returned by Hopen

filename OUT: Complete path and filename for the file

access OUT: Access mode file is opened with

attach OUT: Number of access identifiers attached to the file

Purpose Returns file information through a reference of its file identifier.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Gets the complete path name, access mode, and number of access identifiers
associated with a file. The filename parameter is a pointer to a character pointer
which will be modified when the function returns. Upon completion, filename
is set to point to the file name in internal storage. All output parameters must
be non-null pointers.

Hfind National Center for Supercomputing Applications

2-332 June 26, 1998

Hfind

intn Hfind(int32 file_id, uint16 search_tag, uint16 search_ref, uint16 *find_tag, uint16 *find_ref, int32
* find_offset, int32 *find_length, intn direction)

file_id IN: File identifier returned by Hopen

search_tag IN: The tag to search for or DFTAG_WILDCARD

search_ref IN: Reference number to search for or DFREF_WILDCARD

find_tag IN/OUT: If (* find_tag == 0) and (*find_ref == 0) then start the search from
either the beginning or the end of the file. If the object is found, the
tags of the object will be returned here.

find_ref IN/OUT: If (* find_tag == 0) and (*find_ref == 0) then start the search from
either the beginning or the end of the file. If the object is found, the
reference numbers of the object will be returned here.

find_offset OUT: Offset of the data element found

find_length OUT: Length of the data element found

direction IN: Direction to search in DF_FORWARD searches forward from the current
location, and DF_BACKWARD searches backward from the current
location

Purpose Locates the next object to be searched for in an HDF file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Hfind searches for the next data element that matches the specified tag and
reference number. Wildcards apply. If direction is DF_FORWARD, searching is
forward from the current position in the file, otherwise DF_BACKWARD specifies
backward searches from the current position in the file.

If find_tag and find_ref are both set to 0, this indicates the beginning of a
search, and the search will start from the beginning of the file if the direction is
DF_FORWARD and from the end of the file if the direction is DF_BACKWARD.

Hgetbit

June 26, 1998 2-333

HDF Reference Manual

Hgetbit

intn Hgetbit(int32 h_id)

h_id IN: Bit-access element identifier

Purpose Reads one bit from the specified bit-access element.

Return value Returns the bit read (or 0 or 1) if successful and FAIL (or -1) otherwise.

Description This function is a wrapper for Hbitread .

Hgetelement National Center for Supercomputing Applications

2-334 June 26, 1998

Hgetelement

int32 Hgetelement(int32 file_id, uint16 tag, uint16 ref, uint8 *data)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element to be read

ref IN: Reference number of the data element to be read

data OUT: Buffer the element will be read into

Purpose Reads the data element for the specified tag and reference number and writes it
to the data buffer.

Return value Returns the number of bytes read if successful and FAIL (or -1) otherwise.

Description It is assumed that the space allocated for the buffer is large enough to hold the
data.

Hinquire

June 26, 1998 2-335

HDF Reference Manual

Hinquire

intn Hinquire(int32 h_id, int32 *file_id, uint16 *tag, uint16 *ref, int32 *length, int32 *offset, int32
*position, int16 *access, int16 *special)

h_id IN: Access identifier returned by Hstartread, Hstartwrite , or
Hnextread

file_id OUT: File identifier returned by Hopen

tag OUT: Tag of the element pointed to

ref OUT: Reference number of the element pointed to

length OUT: Length of the element pointed to

offset OUT: Offset of the element in the file

position OUT: Current position within the data element

access OUT: The access type for this data element

special OUT: Special code

Purpose Returns access information about a data element.

Return value Returns SUCCEED (or 0) if the access identifier points to a valid data element
and FAIL (or -1) otherwise.

Description If h_id is a valid access identifier the access type (read or write) is set
regardless of whether or not the return value is FAIL (or -1). If h_id is invalid,
the function returns FAIL (or -1) and the access type is set to zero. To avoid
excess information, pass NULL for any unnecessary pointer.

Hlength National Center for Supercomputing Applications

2-336 June 26, 1998

Hlength

int32 Hlength(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element

ref IN: Reference number of the data element

Purpose Returns the length of a data object specified by the tag and reference number.

Return value Returns the length of data element if found and FAIL (or -1) otherwise.

Description Hlength calls Hstartread, HQuerylength, and Hendaccess to determine the
length of a data element. Hlength uses Hstartread to obtain an access
identifier for the specified data object.

Hlength will return the correct data length for linked-block elements, however
it is important to remember that the data in linked-block elements is not stored
contiguously.

Hnewref

June 26, 1998 2-337

HDF Reference Manual

Hnewref

uint16 Hnewref(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Returns a reference number that can be used with any tag to produce a unique
tag /reference number pair.

Return value Returns the reference number if successful and 0 otherwise.

Description Successive calls to Hnewref will generate reference number values that
increase by one each time until the highest possible reference number has been
returned. At this point, additional calls to Hnewref will return an increasing
sequence of unused reference number values starting from 1.

Hnextread National Center for Supercomputing Applications

2-338 June 26, 1998

Hnextread

intn Hnextread(int32 h_id, uint16 tag, uint16 ref, int origin)

h_id IN: Access identifier returned by Hstartread or previous Hnextread

tag IN: Tag to search for

ref IN: Reference number to search for

origin IN: Position to begin search: DF_START or DF_CURRENT

Purpose Searches for the next data descriptor that matches the specified tag and
reference number.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Wildcards apply. If origin is DF_START, the search will start at the beginning of
the data descriptor list. If origin is DF_CURRENT, the search will begin at the
current position. Searching backwards from the end of a data descriptor list is
not yet implemented.

If the search is successful, the access identifier reflects the new data element,
otherwise it is not modified.

Hnumber/hnumber

June 26, 1998 2-339

HDF Reference Manual

Hnumber/hnumber

int32 Hnumber(int32 file_id, uint16 tag)

file_id IN: File identifier returned by Hopen

tag IN: Tag to be counted

Purpose Returns the number of instances of a tag in a file.

Return value Returns the number of instances of a tag in a file if successful, and FAIL (or -1)
otherwise.

Description Hnumber determines how many objects with the specified tag are in a file. To
determine the total number of objects in a file, set the tag argument to
DFTAG_WILDCARD. Note that a return value of zero is not a fail condition.

FORTRAN integer function hnumber(file_id, tag)

integer file_id, tag

Hoffset National Center for Supercomputing Applications

2-340 June 26, 1998

Hoffset

int32 Hoffset(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element

ref IN: Reference number of the data element

Purpose Returns the offset of a data element in the file.

Return value Returns the offset of the data element if the data element exists and FAIL (or -
1) otherwise.

Description Hoffset calls Hstartread, HQueryoffset, and Hendaccess to determine the
length of a data element. Hoffset uses Hstartread to obtain an access
identifier for the specified data object.

Hoffset will return the correct offset for a linked-block element, however it is
important to remember that the data in linked-block elements is not stored
contiguously. The offset returned by Hoffset only reflects the position of the
first data block.

Hoffset should not be used to determine the offset of an external element. In
this case, Hoffset returns zero, an invalid offset for HDF files.

Hputbit

June 26, 1998 2-341

HDF Reference Manual

Hputbit

intn Hputbit(int32 h_id, intn bit)

h_id IN: Bit-access element identifier

bit IN: Bit to be written

Purpose Writes one bit to the specified bit-access element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This function is a wrapper for Hbitwrite .

Hputelement National Center for Supercomputing Applications

2-342 June 26, 1998

Hputelement

int32 Hputelement(int32 file_id, uint16 tag, uint16 ref, uint8 *data, int32 length)

file_id IN: File identifier returned by Hopen

tag IN: Tag of the data element to add or replace

ref IN: Reference number of the data element to add or replace

data IN: Pointer to data buffer

length IN: Length of data to write

Purpose Writes a data element or replaces an existing data element in a HDF file.

Return value Returns the number of bytes written if successful and FAIL (or -1) otherwise.

Hread

June 26, 1998 2-343

HDF Reference Manual

Hread

int32 Hread(int32 h_id, int32 length, VOIDP data)

h_id IN: Access identifier returned by Hstartread, Hstartwrite , or
Hnextread

length IN: Length of segment to be read

data OUT: Pointer to the data array to be read

Purpose Reads the next segment in a data element.

Return value Returns the length of segment actually read if successful and FAIL (or -1)
otherwise.

Description Hread begins reading at the current file position, reads the specified number of
bytes, and increments the current file position by one. Calling Hread with the
length = 0 reads the entire data element. To reposition an access identifier
before writing data, use Hseek.

If length is longer than the data element, the read operation is terminated at the
end of the data element, and the number of read bytes is returned. Although
only one access identifier is allowed per data element, it is possible to interlace
reads from multiple data elements in the same file. It is assumed that data is
large enough to hold the specified data length.

Hseek National Center for Supercomputing Applications

2-344 June 26, 1998

Hseek

intn Hseek(int32 h_id, int32 offset, intn origin)

h_id IN: Access identifier returned by Hstartread, Hstartwrite , or
Hnextread

offset IN: Number of bytes to seek to from the origin

origin IN: Position of the offset origin

Purpose Sets the access pointer to an offset within a data element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Sets the seek position for the next Hread or Hwrite operation by moving an
access identifier to the specified position in a data element. The origin and the
offset arguments determine the byte location for the access identifier. If origin
is set to DF_START, the offset is added to the beginning of the data element. If
origin is set to DF_CURRENT, the offset is added to the current position of the
access identifier.

Valid values for origin are: DF_START (the beginning of the file) or DF_CURRENT

(the current position in the file).

This routine fails if the access identifier if h_id is invalid or if the seek position
is outside the range of the data element.

Hsetlength

June 26, 1998 2-345

HDF Reference Manual

Hsetlength

int32 Hsetlength(int32 file_id, int32 length)

file_id IN: File identifier returned by Hopen

length IN: Length of the new element

Purpose Specifies the length of a new HDF element.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description This function can only be used when called after Hstartaccess on a new data
element and before any data is written to that element.

Hshutdown National Center for Supercomputing Applications

2-346 June 26, 1998

Hshutdown

int32 Hshutdown()

Purpose Deallocates buffers previously allocated in other H routines.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description Should only be called by the function HDFend.

Htagnewref

June 26, 1998 2-347

HDF Reference Manual

Htagnewref

int32 Htagnewref(int32 file_id, uint16 tag)

file_id IN: Access identifier returned by Hstartread or Hnextread

tag IN: Tag to be identified with the returned reference number

Purpose Returns a reference number that is unique for the specified file that will
correspond to the specified tag. Creates a new tag/reference number pair.

Return value Returns the reference number if successful and 0 otherwise.

Description Successive calls to Hnewref will generate a increasing sequence of reference
number values until the highest possible reference number value has been
returned. It will then return unused reference number values starting from 1 in
increasing order.

Htrunc National Center for Supercomputing Applications

2-348 June 26, 1998

Htrunc

int32 Htrunc(int32 h_id, int32 trunc_len)

h_id IN: Access identifier returned by Hstartread or Hnextread

trunc_len IN: Length to truncate element

Purpose Truncates the data object specified by the h_id to the length trunc_len.

Return value Returns the length of a data element if found and FAIL (or -1) otherwise.

Description Htrunc does not handle special elements.

Hwrite

June 26, 1998 2-349

HDF Reference Manual

Hwrite

int32 Hwrite(int32 h_id, int32 length, VOIDP data)

h_id IN: Access identifier returned by Hstartwrite

len IN: Length of segment to be written

data IN: Pointer to the data to be written

Purpose Writes the next data segment to a specified data element.

Return value Returns the length of the segment actually written if successful and FAIL (or -
1) otherwise.

Description Hwrite begins writing at the current position of the access identifier, writes the
specified number of bytes, then moves the access identifier to the position
immediately following the last accessed byte. Calling Hwrite with length = 0
results in an error condition. To reposition an access identifier before writing
data, use Hseek.

If the space allocated in the data element is smaller than the length of data, the
data is truncated to the length of the data element. Although only one access
identifier is allowed per data element, it is possible to interlace writes to more
than one data element in a file.

National Center for Supercomputing Applications

2-350 June 26, 1998

HDFclose/hdfclose

June 26, 1998 2-351

HDF Reference Manual

HDFclose/hdfclose

intn HDFclose(int32 file_id)

file_id IN: File identifier returned by Hopen

Purpose Closes the access path to the file.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description The file identifier file_id is validated before the file is closed. If the identifier is
valid, the function closes the access path to the file.

If there are still access identifiers attached to the file, the error code
DFE_OPENAID is returned and the file is not closed. This is a common
occurrence when developing new interfaces. See Hendaccess for further
discussion of this problem.

FORTRAN integer function hdfclose(file_id)

integer file_id

HDFopen/hdfopen National Center for Supercomputing Applications

2-352 June 26, 1998

HDFopen/hdfopen

int32 HDFopen(char *filename, intn access, int16 n_dds)

filename IN: Complete path and filename for the file to be opened

access IN: File access code

n_dds IN: Number of data descriptors in a block if a new file is to be created

Purpose Provides an access path to an HDF file by reading all the data descriptor blocks
into memory.

Return value Returns the file identifier if successful and FAIL (or -1) otherwise.

Description If given a new file name, HDFopen will create a new file using the specified
access type and number of data descriptors. If given an existing file name,
HDFopen will open the file using the specified access type and ignore the
n_dds argument.

HDF provides several file access code definitions:

DFACC_READ - Open for read only. If file does not exist, an error condition
results.
DFACC_CREATE - If file exists, delete it, then open a new file for read/write.
DFACC_WRITE - Open for read/write. If file does not exist, create it.

If a file is opened and an attempt is made to reopen the file using
DFACC_CREATE, HDF will issue the error DFE_ALROPEN. If the file is opened with
read only access and an attempt is made to reopen the file for write access
using DFACC_RDWR, DFACC_WRITE, or DFACC_ALL, HDF will attempt to reopen
the file with read and write permissions.

Upon successful exit, the named file is opened with the relevant permissions,
the data descriptors are set up in memory, and the associated file_id is returned.
For new files, the appropriate file headers are also set up.

FORTRAN integer function hdfopen(filename, access, n_dds)

character*(*) filename

integer access, n_dds

HEclear

June 26, 1998 2-353

HDF Reference Manual

HEclear

VOID HEclear()

Purpose Clears all information on reported errors from the error stack.

Return value None.

Description HEpush creates an error stack. HEclear is then used to clear this stack after
any errors are processed.

HEpush National Center for Supercomputing Applications

2-354 June 26, 1998

HEpush

VOID HEpush(int16 error_code, char *funct_name, char *file_name, intn line)

error_code IN: HDF error code corresponding to the error

funct_name IN: Name of function in which the error occurred

file_name IN: Name of file in which the error occurred

line IN: Line number in the file that error occurred

Purpose Pushes a new error onto the error stack.

Return value None.

Description HEpush pushes the file name, function name, line number, and generic
description of the error onto the error stack. HEreport can then be used to give
a more case-specific description of the error.

If the stack is full, the error is ignored. HEpush assumes that the character
strings funct_name and file_name are in semi-permanent storage, so only
pointers to the strings are saved.

HEreport

June 26, 1998 2-355

HDF Reference Manual

HEreport

VOID HEreport(char *format, ...)

format IN: Output string specification

Purpose Adds a text string to the description of the most-recently-reported error (only
one text string per error).

Return value None

Description HEpush places on the error stack the file name, function name, line number,
and a generic description of the error type. HEreport can then be used to give
a more case-specific description of the error. Only one additional annotation
can be attached to each error report.

The format argument must conform to the string specification requirements of
printf .

HEvalue National Center for Supercomputing Applications

2-356 June 26, 1998

HEvalue

int16 HEvalue(int32 level)

level IN: Level of the error stack to be returned

Purpose Returns an error from the specified level of the error stack.

Return value The error code if successful for DFE_NONE otherwise.

