
A High Level Interface to the HDF5 File
Format

Release 717

Daniel B. Michelson and Anders Henja

August 8, 2000

Swedish Meteorological and Hydrological Institute (SMHI)
SE-601 76 Norrköping, Sweden
E-mail: Daniel.Michelson@smhi.se

Copyright c 2000 by the Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden.

All Rights Reserved

By obtaining, using, and/or copying this software and/or its associated documentation, you agree that you have read,
understood, and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and its documentation, without fee, is hereby granted,
provided that the above copyright notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Swedish Meteorological and Hydrological Institute
or SMHI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

SMHI DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL SMHI BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Copyright Notice and Statement for NCSA Hierarchical Data Format (HDF) Software Library and Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities Copyright 1998, 1999, 2000 by the Board
of Trustees of the University of Illinois. All rights reserved.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-
Champaign (UIUC), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), Los
Alamos National Laboratory (LANL), Jean-loup Gailly and Mark Adler (gzip library).

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (in-
cluding commercial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following
disclaimer in the documentation and/or materials provided with the distribution.

3. In addition, redistributions of modified forms of the source or binary code must carry prominent notices stating that
the original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked, but not required,
to acknowledge that it was developed by the National Center for Supercomputing Applications at the University of
Illinois at Urbana-Champaign and to credit the contributors.

5. Neither the name of the University nor the names of the Contributors may be used to endorse or promote products
derived from this software without specific prior written permission from the University or the Contributors.

6. THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY AND THE CONTRIBUTORS ”AS IS” WITH NO
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall the University or the Con-
tributors be liable for any damages suffered by the users arising out of the use of this software, even if advised of the
possibility of such damage.

Abstract

HL-HDF is a high level interface to the Heirarchical Data Format, version 5, developed and maintained by the HDF
group at the National Center for Supercomputing Applications (NCSA), at the University of Illinois at Urbana-
Champaign. HDF5 is a file format designed for maximum flexibility and efficiency and it makes use of modern
software technology. HDF5 sports such fundamental characteristics as platform independence and efficient built-in
compression, and it can be used to store virtually any kind of scientific data. HL-HDF is designed to focus on selected
HDF5 functionality and make it available to users at a high level of abstraction to make data management easier. This
documentation contains an introduction to HL-HDF, compilation and installation instructions, and it describes how
HL-HDF interacts with HDF5. A library reference provides information on how to use the software and assistance on
creating user-defined data representations is also presented. A few example programs are provided as well. Finally, an
interface between HL-HDF and the Python programming language is presented and documented.

CONTENTS

1 The W5 of HL-HDF 1
1.1 What? . 1
1.2 Why? . 1
1.3 Where? . 2
1.4 When? . 2
1.5 Who? . 2

2 Compilation and Installation 5
2.1 Requirements . 5
2.2 Compilation . 6
2.3 Testing . 7
2.4 Installation . 8
2.5 Platform Notes . 8

3 Fundamentals 11
3.1 The Heirarchy . 11
3.2 HL-HDF Building Blocks . 12
3.3 C Header Definitions . 13

4 Library Reference 17
4.1 General functions . 17
4.2 Read functions . 23
4.3 Write functions . 25
4.4 Deprecated . 31

5 Creating your own HDF5 product 37

6 Example Programs 43
6.1 hlenc . 43
6.2 hldec . 43
6.3 hllist . 44

7 Python Interface - PyHL 45
7.1 Compilation and installation . 45
7.2 Create module pyhl . 45
7.3 Library Reference . 45
7.4 Examples . 47

i

ii

CHAPTER

ONE

The W5 of HL-HDF

1.1 What?

HL-HDF is a high level interface to the Heirachical Data Format, version 5, developed and maintained by the National
Center for Supercomputing Applications (NCSA), at the University of Illinois at Urbana-Champaign. HDF5 is a file
format designed for a maximum of flexibility and efficiency and it makes use of modern software technology. Briefly,
HDF5 has the following characteristics:

Platform independence. For example, an array of native floating point values written on one platform will be
automatically identified, byte-swapped if necessary, and returned as an array of native floating point values on
another platform.

Built-in compression using the free ZLIB compression library. ZLIB is well-known as the compression used in
the gzip package and it is robust and efficient.

Flexible. HDF5 offers the ability to store virtually any kind of scientific data.

The HDF5 project URL is http://hdf.ncsa.uiuc.edu/HDF5/ and links are available to source code, software and copious
documentation.

HL-HDF is designed to focus on selected HDF5 functionality and make it available to users at a high level of abstrac-
tion, the idea being to make the management of their data easier. A strong effort has been made to ensure that this
functionality, although a limited subset of HDF5 functionality, provides a general and flexible set of tools for manag-
ing arbitrary data. Like HDF5, HL-HDF is meant to be used on different computer platforms. In practise this means
different flavours of UNIX and NT. HDF5 may work on other systems, like the Mac, DOS and VMS, but NCSA does
not support them (yet) which means that HL-HDF does not support them either. This is not to say that they will not
work on these platforms, however.

Binary tools available with HDF5 will work with files written with HL-HDF. For example, ‘h5dump’ can be used to
determine the contents of an HDF5 file written with HL-HDF. A few test programs are included with HL-HDF which
can read/write raw data to/from HDF5 files. These test programs may be useful to users who do not wish to write their
own routines using the functionality available in HL-HDF, but would prefer to rely on a simpler encoder and decoder.
These programs can also be used as examples of how to write routines using HL-HDF.

HL-HDF is free software and it may be used used by anyone according to SMHI’s and NCSA’s copyright statements
containined in this document. Users are encouraged to report their feedback to the author, and to contribute to its
development.

1.2 Why?

This software is designed to facilitate the management of scientific data from multiple sources. The integration of
observations from various observational systems such as weather stations, satellites and radars is an area which is

1

receiving increased attention. An increasing amount of work is also being carried out on integrating such observations
with information from numerical models, and in assimilating the observations into the models. Unfortunately, most
types of data are stored in different file formats and little effort has been made to facilitate the exchange of data
between disciplines such as meteorology, hydrology and oceanography. Since SMHI is the national agency responsible
for operational activities in all three of these disciplines, it would obviously be beneficial to these operations if a
rationalization of data management procedures can be realized. This is the reason why the HL-HDF software has been
developed.

Another important reason why HL-HDF has been developed is that it facilitates the management of multi-source data
for pure research and development activities. This is due to the software’s flexibility which provides a platform for
managing virtually any variable and combination of variables imaginable.

Due to HDF5’s platform independent nature, its use can even be considered for exchange between organizations,
either domestically or internationally. Its built-in compression is efficient which increases the potential amount of data
available in archives and helps make them more useful.

Why “release 717”? The European Co-Operation in the Field of Scientific and Technical Research (COST) has
recently launched a new Concerted Research Action number 717 called “Use of Radar Observations in Hydrological
and NWP Models”. Since COST 717 deals with integrating data from multiple sources in ways which HL-HDF is
designed to facilitate, SMHI has committed HL-HDF as a contribution to this Action. Hence the release version 717. . .

1.3 Where?

HL-HDF has been developed for use in three general areas:

1. General purpose research and development.

2. Data management. HL-HDF can be used wherever there are requirements put on managing scientific data,
whether it be with a small amount of data by a single person or with a comprehensive archive by a large
organization.

3. Data exchange. HL-HDF can be used almost anywhere data exchange is required. This can be within an
organization or between organizations, either domestically or internationally.

1.4 When?

HL-HDF has been developed during the first half of 2000 on a small budget as a one-off pilot project. This means that
there is no ongoing project group and no official support. The objective has been to develop HL-HDF and then release
it for anyone to use as he or she pleases. Feedback is naturally welcome to the e-mail address on this document’s front
page, and we hope to be able to incorporate improvements as best we can.

The timing of HL-HDF has been fortunate. Had we gotten underway earlier, we probably would have chosen HDF4.
Had we waited until later, then several of our applications may have chosen inferiour file formats. It feels as though
this work has been done in the right place at the right time.

1.5 Who?

Who can use HL-HDF? Anyone who works with scientific data can use HL-HDF, whether it be research and develop-
ment with a limited amount of data or management of vast volumes of data in operational environments.

Who has worked on this project? The programming has been performed by Anders Henja from Adcore, Norrköping.
Daniel Michelson has coordinated the project. Mike Folk and Quincey Koziol of the HDF group at the NCSA have

2 Chapter 1. The W5 of HL-HDF

also been very helpful. An “ad hoc reference group” has followed the project’s progress. This group consists of the
following people:

Øystein Godøy The Norwegian Meteorological Institute
Harri Hohti Finnish Meteorological Institute
Otto Hyvärinen Finnish Meteorological Institute
Pirkko Pylkkö Finnish Meteorological Institute
Per Kållberg European Centre for Medium Range Weather Forecasting and SMHI
Hans Alexandersson SMHI
Bengt Carlsson SMHI
Adam Dybbroe SMHI
Jörgen Sahlberg SMHI

1.5. Who? 3

4

CHAPTER

TWO

Compilation and Installation

2.1 Requirements

The Heirarchical Data Format, version 5, must be built and accessible. Source code and prebuilt releases of HDF5
are available from the National Centre for Supercomputing Applications at ftp://hdf.ncsa.uiuc.edu/HDF5/. Follow the
documentation from NCSA if you plan on building HDF5 yourself.

An extremely important requirement is that an ANSI-compliant C compiler be used. Some native compilers cannot
handle ANSI C and HL-HDF will therefore not build.

UNIX

A number of GNU tools are required, or at least highly recommended, in order to build HL-HDF. These tools are:
gzip (including zlib), version 1.1.0 or higher
tar
make, GNU Make version 3.7x or higher (or compatible)
all of which are available from http://www.gnu.org/. GNU C (and Fortran) compilers can also be retrieved from this
site.

In order for gzip to work, the ZLIB compression library must be compiled and installed. ZLIB is available at
http://www.cdrom.com/pub/infozip/zlib/.

Windows NT

The free WiZ package, available from http://www.cdrom.com/pub/infozip/WiZ.html, or the proprietary WinZip package,
available from http://www.winzip.com/, should be installed and accessible. If you choose to link in the pre-compiled
HDF5 libs, then you’ll have to use the Microsoft Visual C++ compiler, since this is what was used to build the HDF5
package.

Mac

No support yet.

VMS

No support yet.

5

2.2 Compilation

Make sure that all the requirements presented in the previous Section are met.

UNIX

The first step is to unpack the distribution. For ths purposes of this documentation, the path ‘/usr/local/src’ will be the
root of the installation. Unpack the distribution with

/usr/local/src % tar xvzf hlhdf_r717.tgz

This will create a directory called ‘hlhdf’ and the distribution will be placed in it. If the above arguments fail, then you
have not used GNU tar.

HL-HDF has a configure script to determine paths to compilers, headers and libraries. In short it tries to find
everything HL-HDF needs to be built.

Execute the ‘configure’ script. The most relevant arguments are:

--prefix=PATH Set the root of the installation path. Defaults to ‘/usr/local/hlhdf’.
--with-zlib=INC,LIB Use GNU ZLIB compression headers located at INC and library located at LIB.
--with-hdf5=INC,LIB Use the HDF5 headers located at INC and libraries located at LIB.
--with-python=yes|no Configure in Python support. Default is yes. Enables building a Python interface.
--with-fortran=yes|no Configure with Fortran. Default is no. Useful if integrating with F77 code.

There are a few more arguments and they are listed by executing

/usr/local/src/hlhdf % ./configure -help

If ‘configure’ fails, which is unlikely, then you may be in trouble. See Section 2.5 for platform-specific notes. The
bottom line is that you may have to make some manual adjustments to your configuration files.

If configuration has been carried out without any problems then you’re ready to build HL-HDF with:

/usr/local/src/hlhdf % make

This will generate the library ‘libhlhdf.a’ located in the ‘/usr/local/src/hlhdf/hlhdf’ directory.

Windows NT

Unpack the distribution using WiZ or WinZip. The following build instructions apply to the Microsoft Visual C++ 6.0
compiler.

1. Start a new project by selecting “File - New - Projects - Win32 Static Library”. Add appropriate Project name
(hlhdf) and Location in this same window. No precompiled headers or MFC support is needed.

2. Tools - Options - Directories. Make sure you add the path to the HDF5 header files.

3. Project - Add to Project - Files. Go to where the source and header files for HL-HDF are located and add them
all.

4. Project - Settings - C/C++. Set appropriate warning level and optimization.

5. Build - Build hlhdf.lib

6 Chapter 2. Compilation and Installation

This should generate the file ‘hlhdf.lib’ in the ‘Debug’ directory.

2.3 Testing

UNIX

An optional testing of the HL-HDF library may be performed by compiling a test program located in the
‘/usr/local/src/hlhdf/test’ directory.

Simply move to this directory and type

/usr/local/src/hlhdf/test % make

which should build the test program ‘testRaveObject’. This program can be used to test read or test write an artificial
image along with a number of different kinds of header parameters. To test the reading, execute

/usr/local/src/hlhdf/test % testRaveObject read

and an ASCII representation of the contents of ‘rave image file.hdf’ will be written to stdout.

To test writing, execute

/usr/local/src/hlhdf/test % testRaveObject write

and and an ASCII representation of the contents of ‘rave image file.hdf’ will be written to stdout and the file itself
will be re-written.

Alternatively, if ‘rave image file.hdf’ doesn’t exist, execute the test program with the write argument first to create
the file, and then read it to examine its contents.

If this test program works, then you can be confident that the HL-HDF library works! (The above use of “rave” in
the test program and file refers to Radar Analysis and Visualization Environment software, which is freely available
software maintained by SMHI).

Windows NT

Testing involves creating a new project in Microsoft Visual C++. This same strategy should be applied when building
the ‘hlenc’, ‘hldec’ and ‘hllist’ binaries.

1. Start a new project by selecting “File - New - Projects - Win32 Console Application”. Add appropriate Project
name (test) and Location in this same window. Then select “An empty project”.

2. Tools - Options - Directories. Add paths to the HL-HDF header files and the newly build library ‘hlhdf.lib’.
Make sure the paths to the HDF5 headers and library are there as well.

3. Project - Add to Project - Files. Go to where ‘test raveobject.c’ is located and add it.

4. Project - Settings - C/C++. Set appropriate warning level and optimization.

5. Project - Settings - Link - Object/library modules. Add ‘hlhdf.lib hdf5.lib zlib.lib’ in this order to the beginning of
this list.

6. Build - Build test.exe

2.3. Testing 7

7. Open a DOS console and change to the directory containing ‘test.exe’. Execute test write to create an
HDF test file. Execute test read to query the contents of this file. If this works, then you can be confident
that your HL-HDF library works.

2.4 Installation

UNIX

Execute

/usr/local/src/hlhdf % make install

and the header files, libraries, binaries, scripts and an MK-file will be installed to the ‘include’, ‘lib’, ‘bin’ and ‘mkf’
directories located under the path specified by the prefix variable which was used when HL-HDF was build. HL-
HDF is complete when this has been carried out. For information on how to compile and install the Python interface,
see Chapter 7.2

Windows NT

A specific installation has not been defined. It is up to the user to place the headers, library, and binaries in appropriate
locations.

2.5 Platform Notes

HL-HDF has been built on a number of systems, most of which are different flavours of UNIX. Unfortunately HDF5
is not available for any form of VMS or other arcane operating system such as DOS. What follows is a collection of
platform-specific notes.

If the pre-compiled binaries are installed, the file ‘mkf/hldef.mk’ has to be modified manually to point to the locations
of the HDF5 installation, the ZLIB installation, the compiler, etc.

Red Hat Linux 6.2

Platform: Linux 2.2.14-5.0 #1 Tue Mar 7 21:07:39 EST 2000 i686 unknown

C Compiler: egcs-2.91.66

Notes: gcc should be at least version 2.8.1 when using HDF5 1.2.2. HL-HDF was developed using Red Hat 5.2 with
gcc version 2.7.2.3 and HDF5 1.2.0.

Sun

Platform: SunOS 5.7 Generic sun4u sparc SUNW,Ultra-5 10

C Compiler: Sun WorkShop Compiler C Version 4

Notes: Debugging platform (Purify).

8 Chapter 2. Compilation and Installation

DEC Alpha

Platform: OSF1 V4.0 878 alpha

C Compiler: DEC C V5.6-071 on Digital UNIX V4.0 (Rev. 878)

HP-UX

Platform: HP-UX B.10.20 E 9000/778

C Compiler: HP, native C-compiler with ANSI support.

Notes: It is absolutely vital that the C compiler be ANSI-compliant. Some native HP compilers are not and this may
cause the compilation of HL-HDF to fail. A PyHL binary distribution was not built on this platform.

SGI

Platform: IRIX64 6.5 07151439 IP27

C Compiler: MIPSpro Compilers: Version 7.2.1.3m

Notes: When using the configure script, the linker options -Bstatic and -Bdynamic are valid. Compiling the
‘ pyhlmodule.so’ module failed however. It might be necessary to remove the $(LD FORCE STATIC) and
$(LD FORCE SHARE) arguments from the LIBRARIES variable in the PyHL ‘Makefile’. Otherwise, the SGI com-
piler is very sensitive to the cleanliness of the code and requires tons of arguments to shut up:

CFLAGS= -woff 1174,1429,1209,1196,1685 -woff 799,803,835 -Wl,-woff,47,-woff,84,-
woff,85,-woff,134

Add these arguments to the end of your CFLAGS variable. This list may not be complete.

Notes: FMI is gratefully acknowledged for letting use one of their machines.

Cray T3E

Platform: sn6326 2.0.4.90 unicosmk CRAY T3E

C Compiler: Cray Standard C Version 6.3.0.2

Notes: A PyHL binary distribution was not built on this platform.

Cray C90

Platform: sn4004 9.0.2.8 roo.13 CRAY C90

C Compiler: Cray Standard C Version 4.0.4.0

Notes: A PyHL binary distribution was not built on this platform.

Windows NT

Platform: Intel Pentium II with NT 4.00.1381

C Compiler: Microsoft Visual C++ 6.0

2.5. Platform Notes 9

Notes: In order to compile the ‘hlenc’, ‘hldec’ and ‘hllist’ binaries, the file ‘getopt.c’ must be compiled in with the
project(s). A PyHL binary distribution was not built on this platform.

10 Chapter 2. Compilation and Installation

CHAPTER

THREE

Fundamentals

This Chapter presents HL-HDF’s building blocks so that the user will have a knowledge of the proper terminology
prior to working hands-on with the library. To make the most of the functionality in HL-HDF, users should have a
working knowledge of the C programming language.

This documentation is designed to be complimentary to the official HDF5 documentation and users should refer to the
official set for more detail on HDF5’s internal mechanisms.

3.1 The Heirarchy

The “H” in HDF stands for “Heirarchical” and this describes how HDF files are structured. An HDF file can be likened
to a file system. At the root of the file system is a period (“.”) or a slash (“/”) and the file may consist of an arbitrary
number of levels of data, like subdirectories in a file system. For example, if a NOAA satellite image containing
several spectral bands of data are stored in this manner, one way of doing so could look like this:

.
/NOAA 14/
/NOAA 14/info
/NOAA 14/info/xsize
/NOAA 14/info/ysize
/NOAA 14/Channel 1/
/NOAA 14/Channel 2/
/NOAA 14/Channel 3/

where info is an object containing header information. The same strategy could be used to store several polar scans
of weather radar data, for example.

Alternatively, a numerical weather prediction model state could be represented in part using GRIB descriptors like
this:

.
/Level 0/
/Level 0/Type 105/
/Level 0/Type 105/Parameter 11/
/Level 0/Type 102/
/Level 31/
/Level 31/Type 109/
/Level 31/Type 109/Parameter 11/

Or, why not a point from a weather station containing wind speed and direction values:

11

.
/WMO 02064/
/WMO 02064/dd/
/WMO 02064/ff/
/WMO 02036/

3.2 HL-HDF Building Blocks

HL-HDF provides a number of building blocks which are defined in detail in the header file ‘vhlhdf.h’.

Datatype

A Datatype is a data representation consisting of atomic data types such as a string, byte, integer, floating point
value of a given word size, or in the form of a C struct containing combinations of atomic types. A Datatype is
used to describe the characteristics of one’s data, and a number of Datatypes may collectively constitute a header.
Every Datatype is given a name which is stored in a string; this string is used to represent the Datatype in the
HDF file.

Attribute

An Attribute contains a string used to identify it, an array with up to four dimensions, and a number of
Datatypes describing that Attribute.

An Attribute is an appropriate object for storing point values, for example, and storing time series of them is
enabled in the Attribute object.

Dataset

A Dataset is a higher level object and contains a string used to identify it, an optional array with between one and
four dimensions, an array of Datatypes, and an array of Attributes.

A Dataset is an appropriate object for storing profile (transect) or image data, and it can be used to store time series
of a given variable.

Group

A Group is the highest level object and consists of a string used to identify it and an arbitrary combination of any of
the Datatype, Attribute, Dataset, and Group building blocks. The root of any HDF5 file (denoted with “.”
or “/”) is always a Group.

Node

A Node is a term used in the HL-HDF code to refer to any of the above mentioned building blocks in an HDF5 file.
In other words, any given object in the heirarchy is a Node.

Scalar

A Scalar is an individual value.

12 Chapter 3. Fundamentals

Atomic

In HDF5 the predefined datatypes (for example ’int’, ’short’, ...) are referred to as Atomic, as opposed to the
Compound datatypes which are a combination of Atomic datatypes.

3.3 C Header Definitions

The previous section presented the principles of HL-HDF building blocks. This section presents their actual names
and their definitions, along with some fundamentals from HDF5 itself.

hid t

This variable comes from HDF5 and is a type for managing references to nodes. Each node reference is represented
as an integer and hid t keeps track of them.

herr t

This variable comes from HDF5 and is a type for handling error codes.

hsize t

This variable comes from HDF5 and represents a native multiple-precision integer.

HL type

This is an enumeration variable designed to identify the type of a given node. HL type can be any of following
possible values:

UNDEFINED_ID=-1
ATTRIBUTE_ID=0
GROUP_ID=1
DATASET_ID=2
TYPE_ID=3

HL DataType

This is an enumeration variable designed to identify the type of data in a given node. HL DataType can be any of the
following possible values:

DTYPE_UNDEFINED_ID=-1
HL_SIMPLE=0
HL_ARRAY=1

When new nodes are initiated, they contain HL DataType=DTYPE UNDEFINED.

3.3. C Header Definitions 13

HL NodeMark

This is an enumeration variable designed to keep track of the status of a given node. HL NodeMark can be any of the
following possible values:

NMARK_ORIGINAL=0
NMARK_CHANGED=1
NMARK_SELECT=2

A node with HL NodeMark=NMARK CHANGED can be used to mark that it has been modified. A node with
HL NodeMark=NMARK SELECT can be used to mark a node for modification.

HL Node

This is a single node and is defined in the following structure:

typedef struct HL_Node {
HL_Type type; /* the type of node */
char name[256]; /* the node’s name */
int ndims; /* the number of dimensions in the array */
hsize_t dims[4]; /* the dimensions of each of ndims */
unsigned char* data; /* actual data */
char format[64]; /* the string representation of the data type */
hid_t typeId; /* reference to HDF’s internal type management */
size_t dSize; /* size of one value in data */
HL_DataType dataType;/* identifies whether data is single or an array */
hid_t hdfId; /* like typeId: for internal use */
HL_NodeMark mark; /* is this node marked? */
HL_CompoundTypeDescription* compoundDescription; /* a list of compound

type descriptions*/
} HL_Node;

HL NodeList

This type is a list of nodes and is structured like this:

typedef struct {
char filename[256]; /* a file string */
char tmp_name[512]; /* temporary names for internal use */
int nNodes; /* the number of nodes in the list */
int nAllocNodes; /* the number of allocated nodes in the list; internal */
HL_Node** nodes; /* the nodes themselves */

} HL_NodeList;

HL CompoundTypeAttribute

This type is designed to describe an individual node with a complicated structure, ie. one which consists of more than
atomic data types. It contains all the information required to interpret the contents of the node:

14 Chapter 3. Fundamentals

typedef struct {
char attrname[256]; /* the Attribute’s name */
size_t offset; /* the offset to where the data begins */
char format[256]; /* the string representation of the atomic data type */
int ndims; /* the number of dimensions in the array */
size_t dims[4]; /* the dimensions of each of ndims */

} HL_CompoundTypeAttribute;

HL CompoundTypeDescription

This type is a list of HL CompoundTypeAttributes. The reason why it’s called “Description” is that it acts more like
meta data than actual data, since it’s just a collection of other nodes which may contain data, and is therefore more of
a description than anything else. It is structured like this:

typedef struct {
char typename[256]; /* the list’s name */
unsigned long objno[2]; /* markers used to tag nodes in the list */
size_t size; /* size of this data type */
int nAttrs; /* the number of attributes in the list */
int nAllocAttrs; /* the number of allocated attributes */
HL_CompoundTypeAttribute** attrs; /* the attributes themselves */

} HL_CompoundTypeDescription;

3.3. C Header Definitions 15

16

CHAPTER

FOUR

Library Reference

What follows is a list of HL-HDF C functions, along with their arguments and descriptions on how to use them. The
functions given in this section are those declared in the header files in the HL-HDF source. The functions are grouped
according to what they are designed to do.

4.1 General functions

initHlHdf

void initHlHdf()
Initiates the HL-HDF functions. This call must be made before anything else is done. Returns nothing.

disableErrorReporting

void disableErrorReporting()
Deactivates HDF5 debugging. Returns nothing.

enableErrorReporting

void enableErrorReporting()
Activates HDF5 debugging. Returns nothing.

debugHlHdf

void debugHlHdf(int flag)
Sets the debug mode. flag can be 0 (no debugging), 1 (debug only HL-HDF), or 2 (debug HL-HDF and HDF5).
Returns nothing.

isHdf5File

int isHdf5File(const char* filename)
Checks whether filename is an HDF5 file. Returns 1 if it is and 0 otherwise.

17

openHlHdfFile

hid t openHlHdfFile(const char* filename,const char* how)
Opens an HDF5 file. Arguments:

filename: String containing the files name.

how: What mode that should be used for opening the file, can be ’r’ (read only), ’w’ (write only) or ’rw’ (read
and write). Returns the hid t reference upon success otherwise -1.

createHlHdfFile

hid t createHlHdfFile(const char* filename)
Creates an HDF5 file filename, if the file already exists it will be truncated. filename is the name of the file to be
created. Returns the hid t reference upon success otherwise -1.

closeHlHdfFile

herr t closeHlHdfFile(hid t file id)
Closes the HDF5 file with the hid t reference file id. Returns a value greater or equal to 0 upon success
otherwise a negative value.

getFixedType

hid t getFixedType(hid t type)
Translates from the datatype specified by type to a native datatype. Returns the native datatype hid t upon
success, or a negative value on failure.

translateCharToDatatype

hid t translateCharToDatatype(const char* dataType)
Creates an HDF5 datatype hid t from the string representation dataType. dataType can be one of: char,
schar, uchar, short, ushort, int, uint, long, ulong, llong, ullong, float, double, hsize,
hssize, herr or hbool. Returns a value 0 upon failure, otherwise a hid t reference to the new type.

getTypeNameString

char* getTypeNameString(hid t type)
Translates the HDF5 type type to an HDF5 string representation of the datatype. The returned string can be one
of:
H5T STD I8BE, H5T STD I8LE, H5T STD I16BE, H5T STD I16LE,
H5T STD I32BE, H5T STD I32LE, H5T STD I64BE, H5T STD I64LE,
H5T STD U8BE, H5T STD U8LE, H5T STD U16BE, H5T STD U16LE,
H5T STD U32BE, H5T STD U32LE, H5T STD U64BE, H5T STD U64LE,
H5T NATIVE SCHAR, H5T NATIVE UCHAR, H5T NATIVE SHORT,
H5T NATIVE USHORT, H5T NATIVE INT, H5T NATIVE UINT,
H5T NATIVE LONG, H5T NATIVE ULONG, H5T NATIVE LLONG,
H5T NATIVE ULLONG, H5T IEEE F32BE, H5T IEEE F32LE,
H5T IEEE F64BE, H5T IEEE F64LE, H5T NATIVE FLOAT,
H5T NATIVE DOUBLE, H5T NATIVE LDOUBLE, H5T STRING or
H5T COMPOUND.

Returns the string representation upon success, otherwise NULL.

18 Chapter 4. Library Reference

getFormatNameString

char* getFormatNameString(hid t type)
Translates the HDF5 type type to a HL-HDF string representation of the datatype. The returned string can be
one of dataType can be one of char, schar, uchar, short, ushort, int, uint, long, ulong, llong,
ullong, float, double, hsize, hssize, herr, hbool, string or compound. Returns the string
representation upon success, otherwise NULL.

getStringPadName

char* getStringPadName(hid t type)
Returns a string representation of the type type’s padding. The returned string can be one of
H5T STR NULLTERM,H5T STR NULLPAD,H5T STR SPACEPAD or ILLEGAL STRPAD. Returns the
string representation upon success, otherwise NULL.

getStringCsetName

char* getStringCsetName(hid t type)
Returns a string representation of the type type’s character set. The returned string can be one of
H5T CSET ASCII or UNKNOWN CHARACTER SET. Returns the string representation upon success, oth-
erwise NULL.

getStringCtypeName

char* getStringCtypeName(hid t type)
Returns a string representation of the type type’s character type. The returned string can be one of H5T C S1,
H5T FORTRAN S1 or UNKNOWN CHARACTER TYPE. Returns the string representation upon success, oth-
erwise NULL.

whatSizeIsHdfFormat

int whatSizeIsHdfFormat(const char* format)
Calculates the size in bytes that the specified type takes. The attribute format can be one of char, schar,
uchar, short, ushort, int, uint, long, ulong, llong, ullong, float, double, hsize, hs-
size, herr or hbool. Returns the size in bytes if successful or -1 in case of failure.

isFormatSupported

int isFormatSupported(const char* format)
Checks wether the string type format is recognized. format can be one of char, schar, uchar, short,
ushort, int, uint, long, ulong, llong, ullong, float, double, hsize, hssize, herr or
hbool. Returns 1 if the format is supported, otherwise 0.

newHL Node

HL Node* newHL Node(const char* name)
Defines a new, empty node of undefined type. name is a string used to identify the node.

Returns the node if successful or NULL upon failure.

4.1. General functions 19

newHL NodeList

HL NodeList* newHL NodeList()
Creates an empty HL node list which can be filled with an arbitrary number of nodes.

Returns the node list if successful or NULL upon failure.

freeHL Node

void freeHL Node(HL Node* node)
Frees a node from memory. The node is given as the only argument.

Returns nothing.

freeHL NodeList

void freeHL NodeList(HL NodeList* nodelist)
Frees a complete node list from memory, along with all the nodes contained in it. The node list is given as the
only argument.

Returns nothing.

newHL Group

HL Node* newHL Group(const char* name)
Creates an empty HL node of Group type. name is a string used to identify the node.

Returns the node if successful or NULL upon failure.

newHL Attribute

HL Node* newHL Attribute(const char* name)
Creates an empty HL node of Attribute type. name is a string used to identify the node.

Returns the node if successful or NULL upon failure.

newHL Dataset

HL Node* newHL Dataset(const char* name)
Creates an empty HL node of Dataset type. name is a string used to identify the node.

Returns the node if successful or NULL upon failure.

newHL Datatype

HL Node* newHL Datatype(const char* name)
Creates an empty HL node of Datatype type. name is a string used to identify the node.

Returns the node if successful or NULL upon failure.

20 Chapter 4. Library Reference

newHL CompoundTypeAttribute

HL CompoundTypeAttribute* newHL CompoundTypeAttribute (char*attrname,size t offset,
char* format,int ndims,size t* dims)

Creates a compound Attribute node. This function is used to read nodes which are not simple atomic types. It is
designed to hold the Attribute in the form of unsigned char* along with information on how to interpret its
contents.

Arguments:

attrname: String containing the Attribute’s name.

offset: The byte offset in the data where the Attribute’s value starts.

format: An atomic type, in character format, describing the Attribute, for example “short”, or “double”.

ndims: Number of dimensions in the Attribute’s array.

dims: The dimensions of each of ndims.

Returns the compound node if successful or NULL upon failure.

newHL CompoundTypeDescription

HL CompoundTypeDescription* newHL CompoundTypeDescription()
Creates a list containing HL CompoundTypeAttributes.

Returns the compound type list if successful or NULL upon failure.

freeHL CompoundTypeAttribute

void freeHL CompoundTypeAttribute(HL CompoundTypeAttribute* attr)
Frees a given compound type attribute from memory. The only argument is the HL CompoundTypeAttribute to
be freed.

Returns nothing.

freeHL CompoundTypeDescription

void freeHL CompoundTypeDescription(HL CompoundTypeDescription* typelist)
Frees the compound type list, along with all its members, from memory. The only argument is the
HL CompoundTypeDescription to be freed.

Returns nothing.

addNode

int addNode(HL NodeList* nodelist, HL Node* node)
Appends a node to (the end of) a node list.

Note: If this operation is successful the responsibility for releasing the memory of the node node is taken by the
nodelist, so do not release the node afterwards.

Arguments:

nodelist: The node list.

node: The node to append to nodelist.

Returns 1 if successful and 0 otherwise.

4.1. General functions 21

getNode

HL Node* getNode(HL NodeList* nodelist,const char* nodeName)
Provides a reference to a node from a node list.

Note: A reference to the node is returned, so do not release the node when finished with the node.

Arguments:

nodelist: The node list.

nodeName: A string identifying the node to extract.

Returns (a reference to) the node if it is found, and NULL if not.

setScalarValue

int setScalarValue(HL Node* node,size t sz,unsigned char* value,const char* fmt,hid t typid)
Writes a scalar value to a node. Scalar values are individual atomic words.

Arguments:

node: The node in which to write the value.

sz: Size of the data type.

value: The value to write.

fmt: String representation of the data format, for example “short”, “signed int” or “double”.

typid: Reference to used data type. Must be set manually if using a compound data type, otherwise set it to -1.

Returns 1 if successful and 0 otherwise.

setArrayValue

int setArrayValue(HL Node* node,size t sz,int ndims,hsize t* dims,unsigned char* value,const char* fmt,hid t typid)
Writes an array to a node.

Arguments:

node: The node in which to write the array.

sz: Size of the data type.

ndims: The number of dimensions of the array, which may range from 0 to 4.

dims: The dimensions of each of ndims.

value: The array to write.

fmt: String representation of the data format.

typid: Reference to used data type. Must be set manually if using a compound data type, otherwise set it to -1.

Returns 1 if successful and 0 otherwise.

extractParentChildName

int extractParentChildName(HL Node* node, char* parent, char* child)
Seperates the last node (the child) in a node name consisting of several nodes (the parent). For example, for
a node name given as /group1/group2/group3, this function will set /group1/group2 as the parent
and group3 as the child.

Arguments:

node: The node under scrutiny.

22 Chapter 4. Library Reference

parent: A string to hold the parent’s node name.

child: A string to hold the child’s node name.

Returns 1 if successful and 0 otherwise.

commitDatatype

int commitDatatype(HL Node* node,hid t testStruct hid)
If a compound type has been created and there is a wish to have this node “named”, then use this function
for marking this node to be committed. See the HDF5 documentation for a more detailed description on what
“committed” means.

Arguments:

node: A Datatype node to mark.

testStruct hid: The HDF5 hid t reference to the datatype.

Returns 1 if successful and 0 otherwise.

scanNodeList

void scanNodeList(HL NodeList* nodelist)
Prints the names in a node list to the terminal. The only argument is the node list.

Returns nothing.

findCompoundTypeDescription

HL CompoundTypeDescription* findCompoundTypeDescription (HL NodeList* nodelist, unsigned
long objno0,unsigned long objno1)

Searches a node list (nodelist) for all nodes with are identified by values objno0 or objno1. Use this function to inquire
wether an attribute’s or dataset’s type is “committed”.

Returns an HL CompoundTypeDescription list if any nodes are found, otherwise NULL.

scanCompoundTypeDescription

void scanCompoundTypeDescription(HL CompoundTypeDescription* typelist)
Prints to the terminal the names of all nodes in the typelist list of compound nodes.

Returns nothing.

4.2 Read functions

readHL NodeListFrom

HL NodeList* readHL NodeListFrom(const char* filename, const char* fromPath)
Recursively reads the HDF5 file filename from the group fromPath and builds a list of nodes with corresponding
names. I.e. no data will be read at this step, just the nodetypes and names will be determined. Returns an
HL NodeList pointer upon success, otherwise NULL.

4.2. Read functions 23

readHL NodeList

HL NodeList* readHL NodeList(const char* filename)
Recursively read the HDF5 file filename from the root group and builds a list of nodes with corresponding
names. I.e. no data will be read at this step, just the nodetypes and names will be determined. Returns an
HL NodeList pointer upon success, otherwise NULL.

selectNode

int selectNode(HL NodeList* nodelist, const char* name)
Marks the node with name name in the nodelist for retrival. Returns 1 upon success, otherwise 0.

selectAllNodes

int selectAllNodes(HL NodeList* nodelist)
Marks all nodes in the nodelist for retrival. Returns 1 upon success, otherwise 0.

fetchMarkedNodes

int fetchMarkedNodes(HL NodeList* nodelist)
Reads all nodes in the nodelist that has been marked for retrival. Returns 1 upon success, otherwise 0.

fillAttributeNode

int fillAttributeNode(hid t file id, HL Node* node)
Fills the attribute node node with data and dimensions from the file referenced by file id. Returns 1 upon
success, otherwise 0.

fillDatasetNode

int fillDatasetNode(hid t file id, HL Node* node)
Fills the dataset node node with data and dimensions from the file referenced by file id. Returns 1 upon success,
otherwise 0.

fillGroupNode

int fillGroupNode(hid t file id, HL Node* node)
Fills the group node node with data from the file referenced by file id. Returns 1 upon success, otherwise 0.

fillTypeNode

int fillTypeNode(hid t file id, HL Node* node)
Fills the type node node with data from the file referenced by file id. Returns 1 upon success, otherwise 0.

fillNodeWithData

int fillNodeWithData(hid t file id, HL Node* node)
Fills the node node with data from the file referenced by file id. Returns 1 upon success, otherwise 0.

24 Chapter 4. Library Reference

buildTypeDescriptionFromTypeHid

HL CompoundTypeDescription* buildTypeDescriptionFromTypeHid(hid t type id)
Builds a compound type description from the type type id reference.
Returns a HL CompoundTypeDescription pointer upon success, otherwise NULL.

4.3 Write functions

commitType

herr t commitType(hid t loc id, const char* name, hid t type id)
Commits a datatype. See the HDF5 documentation for more detailed descriptions on what “committed” means.

Arguments:

loc id: Where should the datatype be placed.

name: What should the datatype be called.

type id: The hid t reference to the datatype.

Returns a negative value upon failure, otherwise the operation was successful.

createStringType

hid t createStringType(size t length)
Creates a HDF5 string type of length length. Returns a negative value upon failure, otherwise a hid t reference
to the datatype.

setTypeSize

herr t setTypeSize(hid t type id,size t theSize)
Changes the size of the datatype referenced by type id to the size theSize. Returns a negative value upon failure,
otherwise the operation was successful.

closeType

herr t closeType(hid t type id)
Closes the datatype referenced by type id. Returns a negative value upon failure, otherwise the operation was
successful.

writeScalarDataAttribute

herr t writeScalarDataAttribute(hid t loc id, hid t type id, const char* name, void* buf)
Writes a scalar value to an HDF5 file.

Arguments: loc id: The group or dataset the attribute should be written to.

type id: The datatype of the attribute.

name: The name that should be used for the attribute.

buf : The data that should be written.

Returns 0 upon success, otherwise -1.

4.3. Write functions 25

writeScalarDataAttribute fmt

herr t writeScalarDataAttribute fmt(hid t loc id, const char* fmt, const char* name, void* buf)
Writes a scalar value to an HDF5 file.

Arguments:

loc id: The group or dataset the attribute should be written to.

fmt: A string describing the format of the datatype, e.g. char, short, ...

name: The name that should be used for the attribute.

buf : The data that should be written.

Returns 0 upon success, otherwise -1.

writeSimpleDataAttribute

herr t writeSimpleDataAttribute (hid t loc id, hid t type id, const char* name, int ndims, hsize t*
dims, void* buf) Writes a simple data attribute value to an HDF5 file.

Arguments:

loc id: The group or dataset the attribute should be written to.

type id: The datatype of the attribute.

name: The name that should be used for the attribute.

ndims: The rank of the data to be written, between 0-4.

dims: The dimensions of the data, a pointer to ndims number of hsize t values.

buf : The data that should be written.

Returns 0 upon success, otherwise -1.

writeSimpleDataAttribute fmt

herr t writeSimpleDataAttribute fmt (hid t loc id, const char* fmt, const char* name, int ndims,
hsize t* dims, void* buf)

Writes a simple data attribute value to an HDF5 file.

Arguments:

loc id: The group or dataset the attribute should be written to.

fmt: A string describing the format of the datatype, e.g. char, short, ...

name: The name that should be used for the attribute.

ndims: The rank of the data to be written, between 0-4.

dims: The dimensions of the data, a pointer to ndims number of hsize t values.

buf : The data that should be written.

Returns 0 upon success, otherwise -1.

createSimpleDataset

hid t createSimpleDataset (hid t loc id, hid t type id, const char* name, int ndims, hsize t* dims, void*
buf, int compress)

26 Chapter 4. Library Reference

Creates a dataset in an HDF5 file.

Arguments:

loc id: The group the dataset should be created in.

type id: The datatype of the dataset.

name: The name that should be used for the dataset.

ndims: The rank of the data to be written.

dims: The dimensions of the data, a pointer to ndims number of hsize t values.

buf : The data to be written in the dataset, if NULL, an empty dataset will be created.

compress: The compression level on the dataset, betwen 0-9 where 0 is no compression and 9 is highest compression.

Returns -1 on failure, otherwise a hid t reference to the dataset.

createSimpleDataset fmt

hid t createSimpleDataset (hid t loc id, const char* fmt, const char* name, int ndims, hsize t* dims,
void* buf, int compress)

Creates a dataset in an HDF5 file.

Arguments:

loc id: The group the dataset should be created in.

fmt: A string describing the format of the datatype, e.g. char, short, ...

name: The name that should be used for the dataset.

ndims: The rank of the data to be written.

dims: The dimensions of the data, a pointer to ndims number of hsize t values.

buf : The data to be written in the dataset, if NULL, an empty dataset will be created.

compress: The compression level on the dataset, betwen 0-9 where 0 is no compression and 9 is highest compression.

Returns -1 on failure, otherwise a hid t reference to the dataset.

closeDataset

herr t closeDataset(hid t loc id)
Closes the dataset referenced by loc id. Returns a negative value upon failiure, otherwise the operation was
successful.

createCompoundType

hid t createCompoundType(size t size)
Creates a compound type with the size size. Returns a negative value upon failiure, otherwise a hid t refer-
ence.

addAttributeToCompoundType

herr t addAttributeToCompoundType(hid t loc id, const char* name, size t offset,hid t type id)
Adds an scalar attribute to a compound type.

4.3. Write functions 27

Arguments:

loc id: The type the attribute should be appended to,

name: The name of the attribute.

offset: At what offset in the data does this attribute begin.

type id: The datatype of the attribute.

Returns a negative value upon failure, otherwise the operation was successful.

addAttributeToCompoundType fmt

herr t addAttributeToCompoundType fmt(hid t loc id, const char* name, size t offset,const char* fmt)
Adds an scalar attribute to a compound type.

Arguments:

loc id: The type the attribute should be appended to.

name: The name of the attribute.

offset: At what offset in the data does this attribute begin.

fmt: A string describing the format of the datatype, e.g. char, short, ...

Returns a negative value upon failure, otherwise the operation was successful.

addArrayToCompoundType

herr t addArrayToCompoundType(hid t loc id, const char* name, size t offset, int ndims,size t* dims,hid t type id)
Adds an array attribute to a compound type.

Arguments:

loc id: The type the attribute should be appended to.

name: The name of the attribute.

offset: At what offset in the data does this attribute begin.

ndims: The rank of the data to be written, between 0-4.

dims: The dimensions of the data, a pointer to ndims number of hsize t values.

type id: The datatype of the attribute.

Returns a negative value upon failiure, otherwise the operation was successful.

addArrayToCompoundType fmt

herr t addArrayToCompoundType fmt (hid t loc id, const char* name, size t offset, int ndims, size t*
dims, const char* fmt)

Adds an array attribute to a compound type.

Arguments:

loc id: The type the attribute should be appended to.

name: The name of the attribute.

offset: At what offset in the data does this attribute begin.

ndims: The rank of the data to be written, between 0-4.

dims: The dimensions of the data, a pointer to ndims number of hsize t values.

28 Chapter 4. Library Reference

fmt: A string describing the format of the datatype, e.g. char, short, ...

Returns a negative value upon failiure, otherwise the operation was successful.

createGroup

hid t createGroup(hid t loc id, const char* groupname,const char* comment)
Creates a group in an HDF5 file.

Arguments:

loc id: The group or file reference the group should be written to.

groupname: The name of the group to be written.

comment: A comment of the group, if NULL, no comment will be added to the group.

Returns a negative value on failure, otherwise a hid t reference.

closeGroup

herr t closeGroup(hid t loc id)
Closes a group referenced by loc id. Returns a negative value upon failure, otherwise the operation was suc-
cessful.

doWriteHdf5Attribute

int doWriteHdf5Attribute (hid t rootGrp, HL Node* parentNode, char* parentName, HL Node*
childNode, char* childName)

Writes an HL Node attribute to an HDF5 file.

Arguments:

rootGrp: The root group of the file.

parentNode: The parent node of the attribute to be written.

parentName: The name of the parent node.

childNode: The node to be written.

childName: The attribute’s name.

Returns 1 upon success, otherwise 0.

doWriteHdf5Group

int doWriteHdf5Group (hid t rootGrp, HL Node* parentNode, char* parentName, HL Node* childNode,
char* childName)

Writes an HL Node group to an HDF5 file.

Arguments:

rootGrp: The root group of the file.

parentNode: The parent node of the group to be written.

parentName: The name of the parent node.

childNode: The node to be written.

4.3. Write functions 29

childName: The group’s name.

Returns 1 upon success, otherwise 0.

doWriteHdf5Dataset

int doWriteHdf5Dataset (hid t rootGrp, HL Node* parentNode, char* parentName, HL Node* childNode,
char* childName, int doCompress)

Writes an HL Node dataset to an HDF5 file.

Arguments:

rootGrp: The root group of the file.

parentNode: The parent node of the dataset to be written.

parentName: The name of the parent node.

childNode: The node to be written.

childName: The dataset’s name.

doCompress: The compression level on the dataset, betwen 0-9 where 0 is no compression and 9 is highest compres-
sion.

Returns 1 upon success, otherwise 0.

doCommitHdf5Datatype

int doCommitHdf5Datatype (hid t loc id, HL Node* parentNode, char* parentName, HL Node*
childNode, char* childName)

Creates a “committed” datatype in the HDF5 file.

Arguments:

rootGrp: The root group of the file.

parentNode: The parent node of the datatype to be written.

parentName: The name of the parent node.

childNode: The node to be written.

childName: The datatype’s name.

Returns 1 upon success, otherwise 0.

writeNodeList

int writeNodeList(HL NodeList* nodelist, int doCompress)
Writes a nodelist in HDF5 format.

Arguments:

nodelist: The nodelist to be written.

doCompress: The compression level that should be used on the datasets, betwen 0-9 where 0 is no compression
and 9 is highest compression.

Returns 1 upon success, otherwise 0.

30 Chapter 4. Library Reference

4.4 Deprecated

Several functions are deprecated and are only provided for backward compatibility with alpha versions of this software
which are actually being used. Avoid using these functions, since they will probably be removed in a future release.

newGroup

NameListGroup t* newGroup(NameListGroup t* parentGroup,const char* name)
Creates a new group named name and attaches this group to the parentGroup. If the parentGroup is NULL, then
the created group will be the root group. Returns the new group upon success or NULL upon failure.

newDataset

NameListDataset t* newDataset(NameListGroup t* parentGroup, const char* name)
Creates a new dataset named name and attaches this dataset to the parentGroup. Returns the new dataset upon
success or NULL upon failiure.

newNameListType

NameListType t* newNameListType()
Creates a new type object. Returns the allocated type upon success or NULL upon failure.

newAttribute

NameListAttribute t* newAttribute(const char* name)
Creates a new attribute with the name name, if name is NULL, then the attribute will be nameless. Returns the
allocated attribute upon success or NULL upon failure.

newCompoundAttribute

CompoundAttributeDef t* newCompoundAttribute(const char* name)
Creates a new compound attribute definition with the name name, if name is NULL, then the attribute will be
nameless. Returns the allocated compound attribute definition upon success or NULL upon failure.

createCompoundFromType

CompoundAttributeDef t* createCompoundFromType(NameListType t* inType, char* name)
Translates an NameListType t instance to a compound attribute definition instance and then gives the com-
pound attribute definition the name name. Returns the allocated compound attribute definition upon success or
NULL upon failure.

addCompoundAttributeToType

herr t addCompoundAttributeToType(NameListType t* newType,CompoundAttributeDef t* compoundAttr)
Adds the compound attribute definition compoundAttr to the name list type newType. Returns a value 0 upon
success, otherwise -1.

4.4. Deprecated 31

addAttributeToGroup

herr t addAttributeToGroup(NameListGroup t* group, NameListAttribute t* attr)
Adds the attribute attr to the group group. Returns 0 upon success otherwise -1.

addAttributeToDataset

herr t addAttributeToDataset(NameListDataset t* dset, NameListAttribute t* attr)
Adds the attribute attr to the dataset dset. Returns 0 upon success otherwise -1.

freeCompoundAttribute

void freeCompoundAttribute(CompoundAttributeDef t* attr)
Deallocates the compound attribute definition attr. Returns nothing.

freeAttribute

void freeAttribute(NameListAttribute t* attr)
Deallocates the attribute attr. Returns nothing.

freeNameListType

void freeNameListType(NameListType t* type)
Deallocates the name list type type. Returns nothing.

freeInternalDataset

void freeInternalDataset(NameListDataset t* dset)
Deallocates the internals for the dataset dset. Returns nothing.

freeDataset

void freeDataset(NameListDataset t* dset)
Deallocates the dataset dset. Returns nothing.

addTypeToLocalGroup

herr t addTypeToLocalGroup(NameListGroup t* group, NameListType t* type)
Adds the type type to the local list of types in the group group. Returns a value 0 upon success otherwise -1.

addTypeToGlobalGroup

herr t addTypeToGlobalGroup(NameListGroup t* group, NameListType t* type)
Adds the type type to the global list of types in the group group. Returns a value 0 upon success otherwise -1.

32 Chapter 4. Library Reference

doesTypeExistInGlobalGroup

int doesTypeExistInGlobalGroup(NameListGroup t* grp,unsigned long* objno)
Searches the global list of types in the group grp if any occurence of the objno exists.

Arguments:

grp: The group that should be searched in.

objno: An list of two unsigned long’s.

Returns the index number in the global list if an occurance was found otherwise -1.

doesTypeExistInLocalGroup

int doesTypeExistInLocalGroup(NameListGroup t* grp,unsigned long* objno)
Searches the local list of types in the group grp if any occurence of the objno exists.

Arguments:

grp: The group that should be searched in.

objno: A list of two unsigned long’s.

Returns the index number in the local list if an occurance was found otherwise -1.

removeTypeFromLocalGroup

NameListType t* removeTypeFromLocalGroup(NameListGroup t* group,unsigned long* objno)
Removes the type with a matching objno from the group group’s list of local types and returns the type.

Arguments:

group: The group that should be searched.

objno: A list of two unsigned long’s.

Returns the type with a matching object number if it was found, otherwise NULL

removeTypeFromGlobalGroup

NameListType t* removeTypeFromGlobalGroup(NameListGroup t* group,unsigned long* objno)
Removes the type with a matching objno from the group group’s list of global types and returns the type.

Arguments:

group: The group that should be searched.

objno: A list of two unsigned long’s.

Returns the type with a matching object number if it was found, otherwise NULL

displayDataBuffer

void displayDataBuffer (unsigned char* data, const char*fmt, int ndims, hsize t* dims, size t typeSize, int
offs, int addNewline)

Displays the data in a format similar to the one produced when using h5dump distributed with the HDF5 distribution.

Arguments:

data: A pointer to the data.

fmt: The hlhdf string representation of the dataformat.

4.4. Deprecated 33

ndims: The rank of the data.

dims: The dimensions of the data.

typeSize: The size of each value.

offs: The number of blanks that should be padded before the data.

addNewline: If a linebreak should be added or not, 1 means add linebreak.

Returns nothing.

displayCompoundDataset

void displayCompoundDataset(unsigned char* data,NameListType t* type,int ndims, hsize t* dims, int offs)
Displays a compound dataset in a format similar to the one produced when using h5dump distributed with the
HDF5 distribution.

Arguments:

data: The data pointer.

type: The compound type definition.

ndims: The rank of the data.

dims: The dimensions of the data.

offs: The number of blanks that should be padded before the data.

Returns nothing

displayCompoundAttributeDef

void displayCompoundAttributeDef(CompoundAttributeDef t* def,int offs)
Displays one attribute in a compound attribute in a format similar to the one produced when using h5dump
distributed with the HDF5 distribution.

Arguments:

def : The compound attribute definition.

offs: The number of blanks that should be padded before the data.

Returns nothing

displayType

void displayType(NameListType t* type, int offs)
Displays one datatype in a format similar to the one produced when using h5dump distributed with the HDF5
distribution.

Arguments:

type: The datatype to display.

offs: The number of blanks that should be padded before the data.

Returns nothing.

34 Chapter 4. Library Reference

displayAttribute

void displayAttribute(NameListAttribute t* attr,int offs)
Displays one attribute in a format similar to the one produced when using h5dump distributed with the HDF5
distribution.

Arguments:

attr: The attribute to display.

offs: The number of blanks that should be padded before the data.

Returns nothing.

displayDataset

void displayDataset(NameListDataset t* dset, int offs)
Displays one dataset in a format similar to the one produced when using h5dump distributed with the HDF5
distribution.

Arguments:

dset: The dataset to display.

offs: The number of blanks that should be padded before the data.

Returns nothing.

displayGroup

void displayGroup(NameListGroup t* grp,int offs)
Displays one group in a format similar to the one produced when using h5dump distributed with the HDF5
distribution. This function will recursively go through all sub-groups belonging to this group.

Arguments:

grp: The group to display.

offs: The number of blanks that should be padded before the data.

Returns nothing.

readHlHdfFile

NameListGroup t* readHlHdfFile(const char* filename)
Recursively reads a complete HDF5 file with name filename and builds a complete tree structure. Returns a
pointer to a NameListGroup t instance upon success, otherwise NULL.

readHlHdfFileFrom

NameListGroup t* readHlHdfFileFrom(const char* filename, const char* from)
Recursively reads an HDF5 file with name filename from the group from and builds a complete tree structure.
Returns a pointer to a NameListGroup t instance upon success, otherwise NULL.

read hlhdf free

void read hlhdf free(NameListGroup t* group)
Frees a HDF5 tree structure that has been read by using either readHlHdfFile or readHlHdfFileFrom. Be
aware that this function must be used if one of the two functions above was used since it knows how the tree
structure was built. Returns nothing.

4.4. Deprecated 35

36

CHAPTER

FIVE

Creating your own HDF5 product

When creating your own HDF5 product, there are two header files that should be included, read vhlhdf.h and
write vhlhdf.h.

When compiling a binary, there are three libraries that must be linked in; these are libhlhdf.a, libhdf5.a and libz.a. It
is also possible to link the shared library libhdf5.so instead of libhdf5.a.

The HL-HDF package was installed with a hldef.mk file that can be included in your own Makefile in order to get
the correct paths to both the zlib and the hdf5 library. It also contains information on which C-compiler the HL-HDF
package was compiled with and some other goodies.

A simple Makefile could look like this:

37

include /usr/local/hlhdf/mkf/hldef.mk

HLHDF_INCDIR = -I/usr/local/hlhdf/include
HLHDF_LIBDIR = -L/usr/local/hlhdf/lib

CFLAGS = $(OPTS) $(DEFS) -I. $(ZLIB_INCDIR) $(HDF5_INCDIR) \
$(HLHDF_INCDIR)

LDFLAGS = -L. $(ZLIB_LIBDIR) $(HDF5_LIBDIR) $(HLHDF_LIBDIR)

LIBS = -lhlhdf -lhdf5 -lz -lm

TARGET=myTestProgram
SOURCES=test_program.c
OBJECTS=$(SOURCES:.c=.o)

all: $(TARGET)

$(TARGET): $(OBJECTS)
$(CC) -o $@ $(LDFLAGS) $(OBJECTS) $(LIBS)

clean:
@\rm -f *.o *˜ so_locations core

distclean: clean
@\rm -f $(TARGET)

distribution:
@echo "Would bring the latest revision upto date"

install:
@$(HL_INSTALL) -f -o -C $(TARGET) ${MY_BIN_PATH}/$(TARGET)

Now, when the Makefile has been created, it might be a good idea to write your own HDF5 product. The following
example will create a dataset with a two-dimensional array of integers, and two attributes connected to this dataset. It
will also create a group containing one attribute.

38 Chapter 5. Creating your own HDF5 product

#include <read_vhlhdf.h>
#include <write_vhlhdf.h>

int main(int argc, char** argv)
{

HL_NodeList* aList=NULL;
HL_Node* aNode=NULL;
int* anArray=NULL;
int anIntValue;
float aFloatValue;
hsize_t dims[]={10,10};
int npts=100;
int i;

initHlHdf(); /* Initialize the HL-HDF library */
debugHlHdf(2); /* Activate debugging */

if(!(aList = newHL_NodeList())) {
fprintf(stderr,"Failed to allocate nodelist");
goto fail;

}

if(!(anArray = malloc(sizeof(int)*npts))) {
fprintf(stderr,"Failed to allocate memory for array.");
goto fail;

}
for(i=0;i<npts;i++)

anArray[i]=i;

addNode(aList,(aNode = newHL_Group("/group1")));
addNode(aList,(aNode = newHL_Attribute("/group1/attribute1")));
anIntValue=10;
setScalarValue(aNode,sizeof(anIntValue),(unsigned char*)&anIntValue,"int",-1);

addNode(aList,(aNode = newHL_Dataset("/dataset1")));
setArrayValue(aNode,sizeof(int),2,dims,(unsigned char*)anArray,"int",-1);

addNode(aList,(aNode = newHL_Attribute("/dataset1/attribute2")));
anIntValue=20;
setScalarValue(aNode,sizeof(anIntValue),(unsigned char*)&anIntValue,"int",-1);

addNode(aList,(aNode = newHL_Attribute("/dataset1/attribute3")));
aFloatValue=99.99;
setScalarValue(aNode,sizeof(aFloatValue),(unsigned char*)&aFloatValue,

"float",-1);

strcpy(aList->filename,"written_hdffile.hdf");
writeNodeList(aList,6);

freeHL_NodeList(aList);
exit(0);
return 0; /* Won’t come here */

fail:
freeHL_NodeList(aList);
exit(1);
return 1; /* Won’t come here */

}

39

When you have created your own HDF5 product, it might be a good idea to create some code for reading this file and
checking its contents.

#include <read_vhlhdf.h>
#include <write_vhlhdf.h>

int main(int argc, char** argv)
{

HL_NodeList* aList=NULL;
HL_Node* aNode=NULL;
int* anArray=NULL;
int anIntValue;
float aFloatValue;
int npts;
int i;

initHlHdf(); /* Initialize the HL-HDF library */
debugHlHdf(2); /* Activate debugging */

if(!(aList = readHL_NodeList("written_hdffile.hdf"))) {
fprintf(stderr,"Failed to read nodelist\n");
goto fail;

}

selectAllNodes(aList); /* Select everything for retrival */

fetchMarkedNodes(aList);

if((aNode = getNode(aList,"/group1")))
printf("%s exists\n",aNode->name);

if((aNode = getNode(aList,"/group1/attribute1"))) {
memcpy(&anIntValue,aNode->data,aNode->dSize);
printf("%s exists and have value %d\n",aNode->name,anIntValue);

}

if((aNode = getNode(aList,"/dataset1"))) {
anArray = (int*)aNode->data;
npts = 1;
for(i=0;i<aNode->ndims;i++)
npts*=aNode->dims[i];

printf("%s exists and has the values:\n",aNode->name);
for(i=0;i<npts;i++) {
printf("%d ", anArray[i]);
if((i%aNode->dims[0])==0) {

printf("\n");
}

}
printf("\n");

}

continued on next page ...

40 Chapter 5. Creating your own HDF5 product

if((aNode = getNode(aList,"/dataset1/attribute2"))) {
memcpy(&anIntValue,aNode->data,aNode->dSize);
printf("%s exists and have the value %d\n",aNode->name,anIntValue);

}

if((aNode = getNode(aList,"/dataset1/attribute3"))) {
memcpy(&aFloatValue,aNode->data,aNode->dSize);
printf("%s exists and have the value %f\n",aNode->name,aFloatValue);

}
freeHL_NodeList(aList);
exit(0);
return 0; /* Never reached */

fail:
freeHL_NodeList(aList);
exit(1);
return 1; /* Never reached */

}

41

42

CHAPTER

SIX

Example Programs

Three example programs have been provided with HL-HDF. Two of them are modelled after the BUFR software de-
veloped and maintained by the EUMETNET Operational Programme for the Exchange of Weather Radar Information
(OPERA). This software has two programs called ‘encbufr’ and ‘decbufr’ used to encode and decode BUFR messages
to/from an ASCII file containing header information and raw data in a binary file. The third example is modelled
after a program called ‘griblist’ developed by SMHI to query the contents of a GRIB file. GRIB and BUFR are format
standards specified by the World Meteorological Organization.

6.1 hlenc

Encodes raw binary data in one file and an ASCII file containing header information, into an HDF5 file.

hlenc [-hdv] [-z compression] -i inputprefix -o outputfile

[-h] Prints a help text.

[-d] Prints debugging information.

[-v] Prints the version number.

[-z compression] Sets the compression level, can be in the range 0 to 9where 0 is no compression and 9 is the highest
compression.

-i inputprefix Specifies the prefix for the input files, the files that will be read are inputprefix .info and
inputprefix .data.

-o outputfile Specifies the name of the HDF5 file to be generated.

The file with extension .info should have the following apperance:
DATATYPE: [ATTRIBUTE or DATASET]
FIELDNAME: [name of the field, e.g. ’/attr1’]
DATASIZE: [size of the datatype in bytes]
DATAFORMAT: [string representation of the datatype, e.g. int]
DIMS: [the dimension of the data embraced by [], e.g. [10,10]]
The file with extension .data should contain raw binary data with native byte order.

6.2 hldec

Decodes an HDF5 file into a binary data file and an ASCII info file.

hldec [-hdv] -i inputfile -f fieldname -o outputprefix

[-h] Prints an help text.

43

[-d] Prints debugging information.

[-v] Prints the version number.

-i inputfile Specifies the HDF5 file to be decoded.

-f fieldname Specifies the fieldname to be decoded, e.g. ’/dataset1’.

-o outputprefix Specifies the prefix for the output files, the files that will be generated are outputprefix .info and
outputprefix .data.

The file with extension .info will get the following apperance:
DATATYPE: [ATTRIBUTE or DATASET]
FIELDNAME: [name of the field, e.g. ’/attr1’]
DATASIZE: [size of the datatype in bytes]
DATAFORMAT: [string representation of the datatype, e.g. int]
DIMS: [the dimension of the data embraced by [], e.g. [10,10]]
The file with extension .data will be saved in byteformat with native byte order.

6.3 hllist

Lists the nodes in an HDF5 file.

hllist [-hdv] hdf5file

[-h] Prints a help text.

[-d] Prints debugging information.

[-v] Prints the version number.

hdf5file Is the HDF5 file to be listed.

44 Chapter 6. Example Programs

CHAPTER

SEVEN

Python Interface - PyHL

PyHL is just like the HL-HDF library in that it allows the user to work with HDF5 at a high level. PyHL is designed
to work at the highest level of abstraction using the Python programming language, since Python allows the user to
interact directly with HDF5 files. In fact, PyHL is nothing more than a wrapper around HL-HDF but with some
additional functionality which is only available in very high level languages such as Python. Like HL-HDF, it is up to
the user to define appropriate ways of representing data and using the building blocks available in PyHL to store the
data in HDF5.

(PyHL is pronounced “pile”, which is an appropriate description of a heirarchy . . .)

7.1 Compilation and installation

The Python programming language, version 1.5.2, is required along with the Numeric package. Python is found at
the Corporation for National Research Initiatives at http://www.python.org/ and Numeric is found at the Source Forge
http://numpy.sourceforge.net/.

7.2 Create module pyhl

If the configure script was not called with --with-python=no the pyhl module should be compiled together with
the rest of the code. If the configure script was called with --with-python=no, then the best thing is to rebuild
the whole HL-HDF package (with --with-python=yes) and installation as descriped in Sections 2.2 and 2.4.

NOTE: Python version 1.5.2 is required to compile pyhl; otherwise there will be unresolved symbols. Also, be
aware that the hdf5 library is linked dynamically which requires that the LD LIBRARY PATH contains the path to
where libhdf5.so has been installed.

7.3 Library Reference

This module defines the IO access for reading/writing HDF5 files. The module implements two classes for building
an HDF5 file representation. The nodelist class implements a list that should represent the file itself. The node
class represents the items in the HDF5 file. The nodelist contain several node’s for building the HDF5 file. You
can use this interface to write Python programs that interfact with HDF5 files.

The module defines the following items:

is file hdf5(filename)
Checks whether filename is an HDF5 file. Returns 1 if it is and 0 otherwise.

45

nodelist()
Return a new instance of the nodelist class.

node(nodetype,nodename)
Return a new instance of the node. The nodetype can be one of: ATTRIBUTE ID, DATASET ID, GROUP ID
and TYPE ID. The nodename is the name of the node, for example /group1/group2/dataset1.

ATTRIBUTE ID
When creating a node and using this value, the node will become an attribute node.

DATASET ID
When creating a node and using this value, the node will become a dataset node.

GROUP ID
When creating a node and using this value, the node will become a group node.

TYPE ID
When creating a node and using this value, the node will become a datatype node.

read nodelist(filename[,from])
Read the HDF5 file filename and build a nodelist with all the names. That is the data will not be read, just
the names. If a nodelist is built from a group lower down in the hierarchy, then from can be specified. If all goes
well, the nodelist is returned, otherwise an exception is thrown.

nodelist

nodelist instances have the following methods:

write(filename[,compression])
Write the instance to disk in HDF5 format. The default compression value is 6. If another compression level is
wanted, then the value can be between 0 for no compression and 9 for highest compression.

addNode(node)
Adds a node of class node to the end of the nodelist.

getNodeNames()
Returns a dictionary with all the nodelists’ node names as keys and the integer values ATTRIBUTE ID,
DATASET ID, TYPE ID and GROUP ID as items.

selectAll()
Marks all nodes in the nodelist for data retrival.

selectNode(nodename)
Marks the node specified by nodename to be retrived.

fetch()
Fetches all nodes in the selected nodelist.

getNode(nodename)
Return the node with name nodename.

node

A node has the following methods:

setScalarValue(itemSize,data,typename,lhid)
Sets a scalar value in the node instance. itemSize is used for specifying the size of the value in bytes. It is not
necessary to specify unless a compound type is set. data is the data to be set in the node. typename is the string
representation of the datatype, for example int, string, compound, . . . lhid is the hid t reference to the
datatype, is not nessecary to specify unless a compound type is set.

46 Chapter 7. Python Interface - PyHL

NOTE: If the data to be set is of compound type, then the data should be of string type.

setArrayValue(itemSize,dims,data,typename,lhid)
Sets an array value in the node instance. itemSize is used for specifying the size of the value in bytes. It is not
nessecary to specify unless a compound type is set. dims is a list of dimensions of the data. data is the data to be
set in the node. typename is the string representation of the datatype, for example int, string, compound,
. . . lhid is the hid t reference to the datatype, is not nessecary to specify unless a compound type should be
set.

NOTE: If the data to be set is of compound type, the data should be of string type.

commit(datatype)
Marks a TYPE ID node to be committed. datatype is the hid t reference to the datatype.

name()
Returns the name of the node instance.

dims()
Returns a list of the dimensions of the node instance

format()
Returns the string representation of the node’s datatype.

data()
Returns the data of the node instance.

NOTE: If the data is of compound type, the data will be returned as a string.

7.4 Examples

The creation of HDF5 files with PyHL is quite easy, and there are not to many things one has to know about the HDF5
internals. However, in order to build an HDF5 file, one has to understand that the file should be built sequentialy, i.e.
it is not possible to create a subgroup to a group before the group has been created. Neither is it possible to create an
attribute or a dataset in a group before the group has been created etc. In other words, always create the top nodes
before trying to create nodes under them in the heirarchy.

Another thing to bear in mind is that when the method addNode has been called the nodelist instance will take
control over the node, so it will not be possible to alter the node after a call to addNode has been made.

When working with compound types, remember that the data that is passed to setScalarValue and setArray-
Value must be a Python string. Also when working with compound types, the itemSize and lhid has to be
passed on, otherwise the compound data most likely will be corrupted.

Also when working with compound types, be aware that the hdf5 library has to be linked dynamically, otherwise it
will not be possible to pass the hid t references between the Python modules.

Time to look at some simple examples. Comments will be written in italics and the actual code will be written in bold
face.

Writing a simple HDF5 file

import pyhl

from Numeric import *

Create an empty node list instance
aList = pyhl.nodelist()

Create an group called info
aNode = pyhl.node(pyhl.GROUP ID,”/info”)

7.4. Examples 47

Add the node to the nodelist
Remember that the nodelist takes responsibility
aList.addNode(aNode)

Insert the attribute xscale in the group “/info”
aNode = pyhl.node(pyhl.ATTRIBUTE ID,”/info/xscale”)

Set the value to a double with value 10.0
Note the -1’s that has been used since the data not is compound
aNode.setScalarValue(-1,10.0,”double”,-1)
aList.addNode(aNode)

Similar for yscale,xsize and ysize
aNode = pyhl.node(pyhl.ATTRIBUTE ID,”/info/yscale”)
aNode.setScalarValue(-1,20.0,”double”,-1)
aList.addNode(aNode)
aNode = pyhl.node(pyhl.ATTRIBUTE ID,”/info/xsize”)
aNode.setScalarValue(-1,10,”int”,-1)
aList.addNode(aNode)
aNode = pyhl.node(pyhl.ATTRIBUTE ID,”/info/ysize”)
aNode.setScalarValue(-1,10,”int”,-1)
aList.addNode(aNode)

Add a description
aNode = pyhl.node(pyhl.ATTRIBUTE ID,”/info/description”)
aNode.setScalarValue(-1,”This is a simple example”,”string”,-1)
aList.addNode(aNode)

Add an array of data
myArray = arange(100)
myArray = array(myArray.astype(’i’),’i’)
myArray = reshape(myArray,(10,10))
aNode = pyhl.node(pyhl.DATASET ID,”/data”)

Set the data as an array, note the list with [10,10] which
Indicates that it is an array of 10x10 items
aNode.setArrayValue(-1,[10,10],myArray,”int”,-1)
aList.addNode(aNode)

And now just write the file as “simple test.hdf” with
Compression level 9 (highest compression)
aList.write(“simple test.hdf”,9)

When checking this file with h5dump, the command syntax would be:

prompt% h5dump simple test.hdf

And the result would be:

48 Chapter 7. Python Interface - PyHL

HDF5 "simple_test.hdf" {
GROUP "/" {

DATASET "data" {
DATATYPE { H5T_STD_I32LE }
DATASPACE { SIMPLE (10, 10) / (10, 10) }
DATA {

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99

}
}
GROUP "info" {

ATTRIBUTE "xscale" {
DATATYPE { H5T_IEEE_F64LE }
DATASPACE { SCALAR }
DATA {

10
}

}
ATTRIBUTE "yscale" {

DATATYPE { H5T_IEEE_F64LE }
DATASPACE { SCALAR }
DATA {

20
}

}
ATTRIBUTE "xsize" {

DATATYPE { H5T_STD_I32LE }
DATASPACE { SCALAR }
DATA {

10
}

}
ATTRIBUTE "ysize" {

DATATYPE { H5T_STD_I32LE }
DATASPACE { SCALAR }
DATA {

10
}

}
ATTRIBUTE "description" {

DATATYPE {
{ STRSIZE 25;

STRPAD H5T_STR_NULLTERM;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;

}
}
DATASPACE { SCALAR }
DATA {

"This is a simple example"
}

}
}

}
}

7.4. Examples 49

Writing an HDF5 file containing a compound datatype

This is a bit more complex since it requires the implementation of a Python C-module that contains the datatype
definition, and a couple of methods for converting data to a string and the other way around.

There is a small example located in the ‘hlhdf/pyhl’ directory called ‘rave info type’ which implements a small com-
pound type definition. Basically this module defines an object containing xscale, yscale,xsize and ysize variables. This
module has also got a type class which should be used.

import pyhl
import rave info type

Create the rave info HDF5 type
typedef = rave info type.type()

Create the rave info HDF5 object
obj = rave info type.object()

Set the values
obj.xsize=10
obj.ysize=10
obj.xscale=150.0
obj.yscale=150.0

aList = pyhl.nodelist()

Create a datatype node
aNode = pyhl.node(pyhl.TYPE ID,”/MyDatatype”)

Make the datatype named
aNode.commit(typedef.hid())
aList.addNode(aNode)

Create an attribute containing the compound type
aNode = pyhl.node(pyhl.ATTRIBUTE ID,”/myCompoundAttribute”)

Note that I use both itemSize and lhid
Also note how I translate the compound object to a string
aNode.setScalarValue(typedef.size(),obj.tostring(),”compound”,typedef.hid())
aList.addNode(aNode)

Better create a dataset also with the compound type
obj.xsize=1
obj.ysize=1
aNode = pyhl.node(pyhl.DATASET ID,”/myCompoundDataset”)

I use setArrayValue instead
aNode.setArrayValue(typedef.size(),[1],obj.tostring(),”compound”,typedef.hid())
aList.addNode(aNode)

And finally write the HDF5 file.
aList.write(“compound test.hdf”)

When checking this file with h5dump, the command syntax would be:

prompt% h5dump compound test.hdf

And the result would be:

50 Chapter 7. Python Interface - PyHL

HDF5 "compound_test.hdf" {
GROUP "/" {

ATTRIBUTE "myCompoundAttribute" {
DATATYPE {

H5T_STD_I32LE "xsize";
H5T_STD_I32LE "ysize";
H5T_IEEE_F64LE "xscale";
H5T_IEEE_F64LE "yscale";

}
DATASPACE { SCALAR }
DATA {

{
[10],
[10],
[150],
[150]

}
}

}
DATATYPE "MyDatatype" {

H5T_STD_I32LE "xsize";
H5T_STD_I32LE "ysize";
H5T_IEEE_F64LE "xscale";
H5T_IEEE_F64LE "yscale";

}
DATASET "myCompoundDataset" {

DATATYPE {
"/MyDatatype"

}
DATASPACE { SIMPLE (1) / (1) }
DATA {

{
[1],
[1],
[150],
[150]

}
}

}
}
}

Reading a simple HDF5 file

The following example code will read the /info/xscale, /info/yscale and /data fields from the HDF5 file
‘simple test.hdf’.

import pyhl

Read the file
aList = pyhl.read nodelist(“simple test.hdf”)

Select individual nodes, instead of all of them
aList.selectNode(“/info/xscale”)
aList.selectNode(“/info/yscale”)
aList.selectNode(“/data”)

7.4. Examples 51

Fetch the data for selected nodes
aList.fetch()

Print the data
aNode = aList.getNode(“/info/xscale”)
print “XSCALE=” + ‘aNode.data()‘
aNode = aList.getNode(“/info/yscale”)
print “YSCALE=” + ‘aNode.data()‘
aNode = aList.getNode(“/data”)
print “DATA=” + ‘aNode.data()‘

Reading an HDF5 file containing a compound type

This example shows how an HDF5 file containing a compound type in it can be read. It will read the file “com-
pound test.hdf” that was generated above.

import pyhl
import rave info type

There is no meaning creating the type
obj = rave info type.object()
aList = pyhl.read nodelist(“compound test.hdf”)

Select everything for retrival
aList.selectAll()
aList.fetch()
aNode = aList.getNode(“/myCompoundAttribute”)

Translate from the string representation to object
obj.fromstring(aNode.data())

Display the values
print “XSIZE=”+‘obj.xsize‘
print “YSIZE=”+‘obj.ysize‘
print “XSCALE=”+‘obj.xscale‘
print “YSCALE=”+‘obj.yscale‘

52 Chapter 7. Python Interface - PyHL

