A High Level Interface to the HDF5 File

Format
Release 717

Daniel B. Michelson and Anders Henja

August 8, 2000

Swedish Meteorological and Hydrological Institute (SMHI)
SE-601 76 Norrkoping, Sweden
E-mail: Daniel.Michelson@smhi.se

Copyright (© 2000 by the Swedish Meteorological and Hydrological Institute (SMHI), Norrkodping, Sweden.
All Rights Reserved

By obtaining, using, and/or copying this software and/or its associated documentation, you agree that you have read,
understood, and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and its documentation, without fee, is hereby granted,
provided that the above copyright notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Swedish Meteorological and Hydrological Institute
or SMHI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

SMHI DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL SMHI BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Copyright Notice and Statement for NCSA Hierarchical Data Format (HDF) Software Library and Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities Copyright 1998, 1999, 2000 by the Board
of Trustees of the University of Illinois. All rights reserved.

Contributors. National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana
Champaign (UIUC), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), Los
Alamos National Laboratory (LANL), Jean-loup Gailly and Mark Adler (gzip library).

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (in-
cluding commercial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of conditions, and the following
disclaimer in the documentation and/or materials provided with the distribution.

3. Inaddition, redistributions of modified forms of the source or binary code must carry prominent notices stating that
the original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked, but not required,
to acknowledge that it was developed by the National Center for Supercomputing Applications at the University of
[llinois at Urbana-Champaign and to credit the contributors.

5. Neither the name of the University nor the names of the Contributors may be used to endorse or promote products
derived from this software without specific prior written permission from the University or the Contributors.

6. THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY AND THE CONTRIBUTORS "AS IS” WITH NO
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall the University or the Con-
tributors be liable for any damages suffered by the users arising out of the use of this software, even if advised of the
possibility of such damage.

Abstract

HL-HDF is a high level interface to the Heirarchical Data Format, version 5, developed and maintained by the HDF
group at the National Center for Supercomputing Applications (NCSA), at the University of Illinois at Urbana
Champaign. HDF5 is a file format designed for maximum flexibility and efficiency and it makes use of modern
software technology. HDF5 sports such fundamental characteristics as platform independence and efficient built-in
compression, and it can be used to store virtually any kind of scientific data. HL-HDF is designed to focus on selected
HDF5 functionality and make it available to users at a high level of abstraction to make data management easier. This
documentation contains an introduction to HL-HDF, compilation and installation instructions, and it describes how
HL-HDF interacts with HDF5. A library reference providesinformation on how to use the software and assistance on
creating user-defined data representationsis also presented. A few example programs are provided aswell. Finaly, an
interface between HL-HDF and the Python programming language is presented and documented.

TheWS5 of HL-HDF

11 Wha?.
12 Why?
13 Where?
1.4 When?
15 Who?,

Compilation and I nstallation

21 Requirements.,
22 Compilation
23 Testing
24 Instdlation L
25 PlafoomNotes

Fundamentals

31 TheHeirachy
3.2 HL-HDFBuildingBlocks
3.3 CHeader Definitions

Library Reference

41 Generd functions.
42 Readfunctions
43 Writefunctions
44 Deprecated

Creating your own HDF5 product

Example Programs

61 hlenc
62 hidec
6.3 hilist

Python Interface - PyHL
7.1 Compilation and installation

7.2 Createmodule _pyhl
7.3 LibrayReference
74 Examples.

CONTENTS

NNNRFP PP

0 00 ~NO 01O

11

........................... 11
........................... 12
........................... 13

17

........................... 17
........................... 23
........................... 25
........................... 31

37

CHAPTER
ONE

The W5 of HL-HDF

1.1 What?

HL-HDF isahigh level interfaceto the Heirachical Data Format, version 5, developed and maintained by the National
Center for Supercomputing Applications (NCSA), at the University of Illinois at Urbana-Champaign. HDF5 is afile
format designed for a maximum of flexibility and efficiency and it makes use of modern software technology. Briefly,
HDF5 has the following characteristics:

e Platform independence. For example, an array of native floating point values written on one platform will be
automatically identified, byte-swapped if necessary, and returned as an array of native floating point values on
another platform.

¢ Built-in compression using the free ZLIB compression library. ZLIB iswell-known as the compression used in
the gzip package and it is robust and efficient.

e Flexible. HDF5 offersthe ability to store virtually any kind of scientific data.

The HDF5 project URL is http://hdf.ncsa.uiuc.edu/HDF5/ and links are available to source code, software and copious
documentation.

HL-HDF is designed to focus on selected HDF5 functionality and make it available to users at a high level of abstrac-
tion, the idea being to make the management of their data easier. A strong effort has been made to ensure that this
functionality, although a limited subset of HDF5 functionality, provides a general and flexible set of tools for manag-
ing arbitrary data. Like HDF5, HL-HDF is meant to be used on different computer platforms. In practise this means
different flavours of UNIX and NT. HDF5 may work on other systems, like the Mac, DOS and VMS, but NCSA does
not support them (yet) which means that HL-HDF does not support them either. Thisis not to say that they will not
work on these platforms, however.

Binary tools available with HDF5 will work with files written with HL-HDF. For example, ‘h5dump’ can be used to
determine the contents of an HDF5 file written with HL-HDF. A few test programs are included with HL-HDF which
can read/write raw data to/from HDF5 files. These test programs may be useful to users who do not wish to write their
own routines using the functionality available in HL-HDF, but would prefer to rely on asimpler encoder and decoder.
These programs can aso be used as examples of how to write routines using HL-HDF.

HL-HDF is free software and it may be used used by anyone according to SMHI’s and NCSA's copyright statements
containined in this document. Users are encouraged to report their feedback to the author, and to contribute to its
development.

1.2 Why?

This software is designed to facilitate the management of scientific data from multiple sources. The integration of
observations from various observational systems such as weather stations, satellites and radars is an area which is

receiving increased attention. Anincreasing amount of work isalso being carried out on integrating such observations
with information from numerical models, and in assimilating the observations into the models. Unfortunately, most
types of data are stored in different file formats and little effort has been made to facilitate the exchange of data
between di sciplines such as meteorol ogy, hydrology and oceanography. Since SMHI isthe national agency responsible
for operational activities in al three of these disciplines, it would obviously be beneficial to these operations if a
rationalization of data management procedures can be realized. Thisisthe reason why the HL-HDF software has been
developed.

Another important reason why HL-HDF has been developed is that it facilitates the management of multi-source data
for pure research and development activities. This is due to the software’s flexibility which provides a platform for
managing virtually any variable and combination of variables imaginable.

Due to HDF5's platform independent nature, its use can even be considered for exchange between organizations,
either domestically or internationally. Its built-in compression is efficient which increases the potential amount of data
availablein archives and helps make them more useful.

Why “release 717"? The European Co-Operation in the Field of Scientific and Technical Research (COST) has
recently launched a new Concerted Research Action number 717 called “Use of Radar Observations in Hydrological
and NWP Models’. Since COST 717 deals with integrating data from multiple sources in ways which HL-HDF is
designed to facilitate, SMHI has committed HL-HDF as a contribution to this Action. Hencethereleaseversion 717. ..

1.3 Where?

HL-HDF has been developed for use in three genera areas:

1. General purpose research and development.

2. Data management. HL-HDF can be used wherever there are requirements put on managing scientific data,
whether it be with a small amount of data by a single person or with a comprehensive archive by a large
organization.

3. Data exchange. HL-HDF can be used ailmost anywhere data exchange is required. This can be within an
organization or between organizations, either domestically or internationally.

1.4 When?

HL-HDF has been developed during the first half of 2000 on asmall budget as a one-off pilot project. This means that
there is no ongoing project group and no official support. The objective has been to develop HL-HDF and then release
it for anyone to use as he or she pleases. Feedback is naturally welcome to the e-mail address on this document’sfront
page, and we hope to be able to incorporate improvements as best we can.

The timing of HL-HDF has been fortunate. Had we gotten underway earlier, we probably would have chosen HDF4.
Had we waited until later, then several of our applications may have chosen inferiour file formats. It feels as though
thiswork has been done in the right place at the right time.

1.5 Who?

Who can use HL-HDF? Anyone who works with scientific data can use HL-HDF, whether it be research and devel op-
ment with alimited amount of data or management of vast volumes of datain operational environments.

Who has worked on this project? The programming has been performed by Anders Henja from Adcore, Norrkdping.
Daniel Michelson has coordinated the project. Mike Folk and Quincey Koziol of the HDF group at the NCSA have

2 Chapter 1. The W5 of HL-HDF

also been very helpful. An “ad hoc reference group” has followed the project’s progress. This group consists of the
following people:

@ystein Goday The Norwegian Meteorological Institute

Harri Hohti Finnish Meteorological Ingtitute

Otto Hyvarinen Finnish Meteorological Institute

Pirkko Pylkko Finnish Meteorological Institute

Per Kallberg European Centre for Medium Range Wesather Forecasting and SMHI
Hans Alexandersson SMHI

Bengt Carlsson SMHI

Adam Dybbroe SMHI

Jorgen Sahlberg SMHI

1.5. Who? 3

CHAPTER
TWO

Compilation and Installation

2.1 Requirements

The Heirarchical Data Format, version 5, must be built and accessible. Source code and prebuilt releases of HDF5
are available from the National Centre for Supercomputing Applications at ftp://ndf.ncsa.uiuc.edu/HDF5/. Follow the
documentation from NCSA if you plan on building HDF5 yourself.

An extremely important requirement is that an ANSI-compliant C compiler be used. Some native compilers cannot
handle ANSI C and HL-HDF will therefore not build.

UNIX

A number of GNU tools are required, or at least highly recommended, in order to build HL-HDF. Thesetools are:
gzi p (including zlib), version 1.1.0 or higher

tar

make, GNU Make version 3.7x or higher (or compatible)

all of which are available from http://www.gnu.org/. GNU C (and Fortran) compilers can also be retrieved from this
site.

In order for gzi p to work, the ZLIB compression library must be compiled and installed. ZLIB is available at
http://www.cdrom.com/publ/infozip/zlib/.

Windows NT

The free WiZ package, available from http://www.cdrom.com/pub/infozip/WiZ.html, or the proprietary WinZip package,
available from http://iwww.winzip.com/, should be installed and accessible. If you choose to link in the pre-compiled
HDF?5 libs, then you'll have to use the Microsoft Visual C++ compiler, since thisis what was used to build the HDF5
package.

Mac

No support yet.

VMS

No support yet.

2.2 Compilation

Make sure that all the requirements presented in the previous Section are met.

UNIX

Thefirst step is to unpack the distribution. For ths purposes of this documentation, the path ‘/usr/local/src’ will be the
root of the installation. Unpack the distribution with

lusr/local/src %tar xvzf hlhdf_r717.tgz

Thiswill create adirectory called ‘hihdf’ and the distribution will be placed init. If the above argumentsfail, then you
have not used GNU tar.

HL-HDF has a conf i gur e script to determine paths to compilers, headers and libraries. In short it tries to find
everything HL-HDF needsto be built.

Execute the ‘configure’ script. The most relevant arguments are:

- - prefi x=PATH Set the root of the installation path. Defaults to ‘ /usr/local/hihdf’.
--with-zlib=INC LIB Use GNU ZLIB compression headerslocated at | NC and library located at LI B.
--w t h- hdf 5=I NC, LI B Use the HDF5 headerslocated at | NC and libraries located at L1 B.

--w t h- pyt hon=yes| no Configure in Python support. Default isyes. Enables building a Python interface.
--with-fortran=yes| no Configurewith Fortran. Default isno. Useful if integrating with F77 code.

There are afew more arguments and they are listed by executing

lusr/local/src/hlhdf %./configure -help

If ‘configure’ fails, which is unlikely, then you may be in trouble. See Section 2.5 for platform-specific notes. The
bottom line is that you may have to make some manual adjustments to your configuration files.

If configuration has been carried out without any problems then you' re ready to build HL-HDF with:

fusr/local/src/hl hdf % nake

Thiswill generate the library ‘libhlhdf.a’ located in the ‘ /usr/local/src/hihdf/hihdf’ directory.

Windows NT

Unpack the distribution using WiZ or WinZip. The following build instructions apply to the Microsoft Visual C++ 6.0
compiler.

1. Start anew project by selecting “File - New - Projects - Win32 Static Library”. Add appropriate Project name
(hlhdf) and Location in this same window. No precompiled headers or MFC support is needed.
2. Tools - Options - Directories. Make sure you add the path to the HDF5 header files.

3. Project - Add to Project - Files. Go to where the source and header files for HL-HDF are located and add them
al.

4. Project - Settings - C/C++. Set appropriate warning level and optimization.
5. Build - Build hihdf.lib

6 Chapter 2. Compilation and Installation

This should generate the file ‘ hindf.lib’ in the ‘Debug’ directory.

2.3 Testing

UNIX

An optiona testing of the HL-HDF library may be performed by compiling a test program located in the
‘lusr/local/src/hindfitest’ directory.

Simply moveto this directory and type

[fusr/local/src/hl hdf/test % nake

which should build the test program ‘testRaveObject’. This program can be used to test read or test write an artificial
image along with a number of different kinds of header parameters. To test the reading, execute

/usr/local/src/hl hdf/test %testRaveCbject read

and an ASCII representation of the contents of ‘rave_image_file.hdf" will be written to st dout .

To test writing, execute

/usr/local/src/hlhdf/test %testRaveChject wite

and and an ASCI| representation of the contents of ‘rave_image_file.hdf will be written to st dout and thefile itself
will be re-written.

Alternatively, if ‘rave_image_file.hdf' doesn’t exist, execute the test program with thewr i t e argument first to create
thefile, and then r ead it to examine its contents.

If this test program works, then you can be confident that the HL-HDF library works! (The above use of “rave’ in
the test program and file refers to Radar Analysis and Visualization Environment software, which is freely available
software maintained by SMHI).

Windows NT

Testing involves creating a new project in Microsoft Visual C++. This same strategy should be applied when building
the ‘hlenc’, ‘hidec’ and ‘hllist’ binaries.

1. Start anew project by selecting “File - New - Projects - Win32 Console Application”. Add appropriate Project
name (test) and Location in this same window. Then select “An empty project”.

2. Tools - Options - Directories. Add paths to the HL-HDF header files and the newly build library ‘hihdf.lib’.
Make sure the paths to the HDF5 headers and library are there as well.

3. Project - Add to Project - Files. Go to where ‘test_raveobject.c’ islocated and add it.
4. Project - Settings - C/C++. Set appropriate warning level and optimization.

5. Project - Settings - Link - Object/library modules. Add * hihdf.lib hdf5.lib zlib.lib" in this order to the beginning of
thislist.

6. Build - Build test.exe

2.3. Testing 7

7. Open a DOS console and change to the directory containing ‘test.exe’. Executet est writ e to create an
HDF test file. Executet est r ead to query the contents of thisfile. If thisworks, then you can be confident
that your HL-HDF library works.

2.4 Installation

UNIX

Execute

fusr/local/src/hlhdf % make install

and the header files, libraries, binaries, scripts and an MK-file will be installed to the ‘include’, ‘lib’, ‘bin’ and ‘ mkf’
directories located under the path specified by the pr ef i x variable which was used when HL-HDF was build. HL-
HDF is complete when this has been carried out. For information on how to compile and install the Python interface,
see Chapter 7.2

Windows NT

A specific installation has not been defined. 1t isup to the user to place the headers, library, and binariesin appropriate
locations.

2.5 Platform Notes

HL-HDF has been built on a number of systems, most of which are different flavours of UNIX. Unfortunately HDF5
is not available for any form of VMS or other arcane operating system such as DOS. What follows is a collection of
platform-specific notes.

If the pre-compiled binaries are installed, the file * mkf/hldef.mk’ has to be modified manually to point to the locations
of the HDF5 installation, the ZLIB installation, the compiler, etc.

Red Hat Linux 6.2

Platform: Linux 2.2.14-5.0 #1 Tue Mar 7 21:07:39 EST 2000 i686 unknown
C Compiler: egcs-2.91.66

Notes: gcc should be at least version 2.8.1 when using HDF5 1.2.2. HL-HDF was developed using Red Hat 5.2 with
gcc version 2.7.2.3 and HDF5 1.2.0.

Sun

Platform: SunOS 5.7 Generic sundu sparc SUNW,UItra-5_10
C Compiler: Sun WorkShop Compiler C Version 4
Notes: Debugging platform (Purify).

8 Chapter 2. Compilation and Installation

DEC Alpha

Platform: OSF1 V4.0 878 apha
C Compiler: DEC C V5.6-071 on Digital UNIX V4.0 (Rev. 878)

HP-UX

Platform: HP-UX B.10.20 E 9000/778
C Compiler: HP, native C-compiler with ANSI support.

Notes: It is absolutely vital that the C compiler be ANSI-compliant. Some native HP compilers are not and this may
cause the compilation of HL-HDF to fail. A PyHL binary distribution was not built on this platform.

SGI

Platform: IRIX64 6.5 07151439 |P27
C Compiler: MIPSpro Compilers. Version 7.2.1.3m

Notes: When using the configure script, the linker options -Bstatic and -Bdynamic are valid. Compiling the
‘_pyhimodule.so’ module failed however. It might be necessary to remove the $LD_FORCE_STATIC) and
HLD_FORCE_SHARE) arguments from the LIBRARIES variable in the PyHL ‘Makefile’. Otherwise, the SGI com-
piler is very sensitive to the cleanliness of the code and requires tons of argumentsto shut up:

CFLAGS= -wof f 1174, 1429, 1209, 1196, 1685 -woff 799, 803,835 -W, -woff, 47, -woff, 84, -
wof f, 85, -wof f, 134

Add these argumentsto the end of your CFLAGS variable. Thislist may not be complete.
Notes: FMI is gratefully acknowledged for letting use one of their machines.

Cray T3E

Platform: sn6326 2.0.4.90 unicosmk CRAY T3E
C Compiler: Cray Standard C Version 6.3.0.2
Notes: A PyHL binary distribution was not built on this platform.

Cray C90

Platform: sn4004 9.0.2.8 r00.13 CRAY C90
C Compiler: Cray Standard C Version 4.0.4.0
Notes: A PyHL binary distribution was not built on this platform.

Windows NT

Platform: Intel Pentium Il with NT 4.00.1381
C Compiler: Microsoft Visual C++ 6.0

2.5. Platform Notes 9

Notes: In order to compile the ‘hlenc’, ‘hidec’ and ‘hllist’ binaries, the file ‘getopt.c’ must be compiled in with the
project(s). A PyHL binary distribution was not built on this platform.

10 Chapter 2. Compilation and Installation

CHAPTER
THREE

Fundamentals

This Chapter presents HL-HDF's building blocks so that the user will have a knowledge of the proper terminology
prior to working hands-on with the library. To make the most of the functionality in HL-HDF, users should have a
working knowledge of the C programming language.

This documentation is designed to be complimentary to the official HDF5 documentation and users should refer to the
official set for more detail on HDF5's internal mechanisms.

3.1 The Heirarchy

The“H” in HDF standsfor “Heirarchical” and this describes how HDF files are structured. An HDF file can be likened
to afile system. At theroot of the file system isa period (“.”) or aslash (“/") and the file may consist of an arbitrary
number of levels of data, like subdirectories in a file system. For example, if a NOAA satellite image containing
severa spectral bands of data are stored in this manner, one way of doing so could look like this:

/ NOAA 14/

/ NOAA 14/info

/ NOAA 14/i nf o/ xsi ze
/ NOAA 14/ i nfol ysi ze
/ NOAA 14/ Channel 1/
/ NOAA 14/ Channel 2/
/ NOAA 14/ Channel 3/

wherei nf 0 isan object containing header information. The same strategy could be used to store several polar scans
of weather radar data, for example.

Alternatively, a numerical weather prediction model state could be represented in part using GRIB descriptors like
this:

/ Level 0/

/ Level 0/ Type 105/

/ Level 0O/ Type 105/ Parameter 11/
/ Level 0/ Type 102/

/ Level 31/

/ Level 31/ Type 109/

/ Level 31/ Type 109/ Parameter 11/

Or, why not a point from a weather station containing wind speed and direction values:

11

/WO 02064/
/ WO 02064/ dd/
/WO 02064/ ff/
/ WO 02036/

3.2 HL-HDF Building Blocks

HL-HDF provides a number of building blocks which are defined in detail in the header file ‘vhihdf.h'.

Datatype

A Dat at ype is a data representation consisting of atomic data types such as a string, byte, integer, floating point
value of agiven word size, or intheform of aC st r uct containing combinations of atomic types. A Dat at ype is
used to describe the characteristics of one’s data, and a number of Dat at ypes may collectively constitute a header.
Every Dat at ype is given a name which is stored in a string; this string is used to represent the Dat at ype in the
HDF file.

Attribute

An Attribute contains a string used to identify it, an array with up to four dimensions, and a number of
Dat at ypesdescribingthat At t ri but e.

An Attri but e is an appropriate object for storing point values, for example, and storing time series of them is
enabled inthe At t ri but e object.

Dataset

A Dat aset isahigher level object and contains a string used to identify it, an optional array with between one and
four dimensions, an array of Dat at ypes,and anarray of At t ri but es.

A Dat aset isan appropriate object for storing profile (transect) or image data, and it can be used to store time series
of agiven variable.

Group
A Group isthe highest level object and consists of a string used to identify it and an arbitrary combination of any of

the Dat at ype, At tri but e, Dat aset , and G oup building blocks. The root of any HDF5 file (denoted with “.”
or“/")isdwaysaG oup.

Node

A Node isaterm used in the HL-HDF code to refer to any of the above mentioned building blocks in an HDF5 file.
In other words, any given object in the heirarchy isaNode.

Scalar

A Scal ar isanindividual value.

12 Chapter 3. Fundamentals

Atomic

In HDF5 the predefined datatypes (for example int’, "short’, ...) are referred to as At oni ¢, as opposed to the
Conpound datatypes which are a combination of At oni ¢ datatypes.

3.3 C Header Definitions

The previous section presented the principles of HL-HDF building blocks. This section presents their actual names
and their definitions, along with some fundamentals from HDF5 itself.

hid_t

This variable comes from HDF5 and is a type for managing references to nodes. Each node reference is represented
as an integer and hid_t keepstrack of them.

herr_t

This variable comes from HDF5 and is atype for handling error codes.

hsize_t

This variable comes from HDF5 and represents a native multiple-precision integer.

HL_type

This is an enumeration variable designed to identify the type of a given node. HL_type can be any of following
possible values:

UNDEFI NED_| D=- 1
ATTRI BUTE_| D=0
GROUP_| D=1
DATASET | D=2
TYPE_I D=3

HL_DataType

Thisis an enumeration variable designed to identify the type of datain a given node. HL_DataType can be any of the
following possible values:

DTYPE_UNDEFI NED_| D=-1

HL_SI MPLE=0
HL_ARRAY=1

When new nodes are initiated, they contain HL_DataType=DTYPE_UNDEFINED.

3.3. C Header Definitions 13

HL_NodeMark

Thisis an enumeration variable designed to keep track of the status of a given node. HL_NodeMark can be any of the
following possible values:

NMARK_CRI G NAL=0
NVARK_CHANGED=1
NMARK_SELECT=2

A node with HL_NodeMark=NMARK_CHANGED can be used to mark that it has been modified. A node with
HL_NodeMark=NMARK_SELECT can be used to mark a node for modification.

HL_Node
Thisisasingle node and is defined in the following structure:

typedef struct HL_Node {

HL_Type type; /* the type of node */

char name[256] ; /* the node’s name */

i nt ndins; /* the nunmber of dinensions in the array */
hsize_t dins[4]; /* the dimensions of each of ndins */

unsi gned char* data; /* actual data */

char format[64]; /* the string representation of the data type */
hid_t typeld; /* reference to HDF's internal type nanagenent */
size_t dSize; /* size of one value in data */

HL_Dat aType dataType;/* identifies whether data is single or an array */
hid_t hdfld; /* like typeld: for internal use */

HL_NodeMar k nark; /* is this node marked? */

HL_ConpoundTypeDescri pti on* conpoundDescription; /* a |list of conpound
type descriptions*/
} HL_Node;

HL_NodeList
Thistypeisalist of nodesand is structured like this:
typedef struct {

char filename[256]; /* a file string */
char tnp_nanme[512]; /* tenporary nanes for internal use */

i nt nNodes; /* the nunber of nodes in the list */
i nt nAl |l ocNodes; /* the nunmber of allocated nodes in the list; internal */
HL_Node** nodes; /* the nodes thensel ves */

} HL_Nodeli st;

HL_CompoundTypeAttribute

Thistypeis designed to describe an individual node with acomplicated structure, ie. one which consists of more than
atomic data types. It contains al the information required to interpret the contents of the node:

14 Chapter 3. Fundamentals

typedef struct {
char attrnanme[256]; /* the

size_t offset; /* the
char format[256]; /* the
int ndins; /* the

size_t dins[4]; /* the
} HL_ConpoundTypeAttri bute;

HL_CompoundTypeDescription

Attribute’ s name */

offset to where the data begins */

string representation of the atom c data type */
nunber of dinmensions in the array */

di nensi ons of each of ndins */

Thistypeisalist of HL_CompoundTypeAttributes. The reason why it's called “ Description” is that it acts more like
meta data than actual data, sinceit’sjust a collection of other nodes which may contain data, and is therefore more of
a description than anything else. It is structured like this:

typedef struct {
char typenane[256];
unsi gned | ong obj no[2] ;
size_t size;
int nAttrs;
int nAllocAttrs;

/* the list’'s nane */

/* markers used to tag nodes in the list */
/* size of this data type */

/* the nunber of attributes in the list */
/* the nunber of allocated attributes */

HL_CompoundTypeAttri bute** attrs; /* the attributes thenselves */

} HL_ConpoundTypeDescri pti on;

3.3. C Header Definitions

15

16

CHAPTER
FOUR

Library Reference

What followsisalist of HL-HDF C functions, along with their arguments and descriptions on how to use them. The
functions given in this section are those declared in the header filesin the HL-HDF source. The functions are grouped
according to what they are designed to do.

4.1 General functions

initHIHdf
void initH Hdf ()
Initiates the HL-HDF functions. This call must be made before anything else is done. Returns nothing.
disableErrorReporting
voi d di sabl eErrorReporting()
Deactivates HDF5 debugging. Returns nothing.
enableErrorReporting
voi d enabl eError Reporting()
Activates HDF5 debugging. Returns nothing.
debugHIHdf
voi d debugH Hdf (intflag)
Sets the debug mode. flag can be 0 (no debugging), 1 (debug only HL-HDF), or 2 (debug HL-HDF and HDF5).
Returns nothing.
isHdf5File

i nt isHIf 5Fi | e(constchar* filename)
Checks whether filename is an HDF5 file. Returns 1 if it is and O otherwise.

17

openHIHdfFile

hi d_t openH Hdf Fi | e(const char* filename,const char* how)
Opens an HDF5 file. Arguments:

filename: String containing the files name.

how: What mode that should be used for opening the file, can be'r’ (read only), 'w’ (write only) or 'rw’ (read
and write). Returnsthe hi d_t reference upon success otherwise -1.

createHIHdfFile

hi d_t createH Hdf Fi | e(const char* filename)
Creates an HDF5 file filename, if the file already existsit will be truncated. filename is the name of thefileto be
created. Returnsthe hi d_t reference upon success otherwise -1.

closeHIHdfFile

herr _t cl oseH Hdf Fi | e(hid_t file_id)
Closes the HDF5 file with the hi d_t reference file_id. Returns a value greater or equal to O upon success
otherwise a negative value.

getFixedType

hi d_t get Fi xedType(hid_t type)
Translates from the datatype specified by type to a native datatype. Returns the native datatype hi d_t upon
success, or a negative value on failure.

translateCharToDatatype

hi d_t transl at eChar ToDat at ype(const char* dataType)
Creates an HDF5 datatype hi d_t from the string representation dataType. dataType can be one of: char,
schar,uchar,short,ushort,int,uint,long,ul ong,llong,ullong,fl oat,doubl e, hsi ze,
hssi ze, herr or hbool . Returnsavalue < 0 upon failure, otherwise ahi d_t reference to the new type.

getTypeNameString

char* get TypeNaneSt ri ng(hid_t type)
Translates the HDF5 type type to an HDF5 string representation of the datatype. The returned string can be one
of:
H5T_STD_I 8BE, H5T_STD_I 8LE, H5T_STD_I 16BE, H5T_STD_I 16LE,
H5T_STD_I 32BE, H5T_STD_I 32LE, H5T_STD_Il 64BE, H5T_STD_I 64LE,
H5T_STD_USBE, H5T_STD_U8SLE, H5T_STD_U16BE, H5T_STD_ULG6LE,
H5T_STD_U32BE, H5T_STD_U32LE, H5T_STD_U64BE, H5T_STD_UGALE,
H5T_NATI VE_SCHAR, H5T_NATI VE_UCHAR, H5T_NATI VE_SHORT,
H5T_NATI VE_USHORT, HS5T_NATI VE_I NT, H5T_NATI VE_UI NT,
H5T_NATI VE_LONG, H5T_NATI VE_ULONG H5T_NATI VE_LLONG,
H5T_NATI VE_ULLONG H5T_I| EEE_F32BE, H5T_I| EEE_F32LE,
H5T_| EEE_F64BE, H5T_I| EEE_F64LE, HS5T_NATI VE_FLQAT,
H5T_NATI VE_DOUBLE, H5T_NATI VE_LDOUBLE, H5T_STRI NG or
H5T_COVPOUND.

Returns the string representation upon success, otherwise NULL.

18 Chapter 4. Library Reference

getFormatNameString

char* get For mat NaneSt ri ng(hid_t type)
Trandates the HDF5 type type to a HL-HDF string representation of the datatype. The returned string can be
one of dataType can beone of char ,schar ,uchar,short,ushort,i nt,ui nt,l ong,ul ong,!| | ong,
ul | ong, fl oat, doubl e, hsi ze, hssi ze, herr, hbool , string or conpound. Returns the string
representation upon success, otherwise NULL.

getStringPadName

char* get Stri ngPadNane(hid_t type)
Returns a string representation of the type type's padding. The returned string can be one of
HST_STR_NULLTERMHS5T_STR_NULLPAD,H5T_STR_SPACEPAD or | LLEGAL STRPAD. Returns the
string representation upon success, otherwise NULL.

getStringCsetName

char* get Stri ngCset Nanme(hid_t type)
Returns a string representation of the type type's character set. The returned string can be one of
H5T_CSET_ASCI | or UNKNOWN CHARACTER SET. Returns the string representation upon success, oth-
erwise NULL.

getStringCtypeName

char* get StringC ypeName(hid_t type)
Returns a string representation of the type type's character type. The returned string can be one of H5T_C_S1,
H5T_FORTRAN_S1 or UNKNOWN CHARACTER TYPE. Returns the string representation upon success, oth-
erwise NULL.

whatSizelsHdfFormat

i nt what Si zel sHdf For mat (const char* format)
Calculates the size in bytes that the specified type takes. The attribute format can be one of char, schar,
uchar, short, ushort,int,uint,long,ulong,llong,ullong,float, doubl e, hsi ze, hs-
si ze,herr orhbool . Returnsthe sizein bytesif successful or -1 in case of failure.

isFormatSupported

i nt i sFormat Support ed(const char* format)
Checks wether the string type format is recognized. format can be one of char, schar, uchar, short,
ushort, int, uint,|ong, ulong, |long, ullong, float, doubl e, hsi ze, hssi ze, herr or
hbool . Returns 1 if the format is supported, otherwise O.

newHL_Node

HL_Node* newHL_Node(const char* name)
Defines a new, empty node of undefined type. name is a string used to identify the node.

Returns the node if successful or NULL upon failure.

4.1. General functions 19

newHL_NodeList

HL_NodeLi st* newHL_NodelLi st ()
Creates an empty HL node list which can be filled with an arbitrary number of nodes.

Returnsthe node list if successful or NULL upon failure.

freeHL_Node

voi d freeHL_Node(HL_Node* node)
Frees a node from memory. The node is given as the only argument.

Returns nothing.

freeHL_NodeList

voi d freeHL_NodelLi st (HL_NodeList* nodelist)
Frees a complete node list from memory, along with all the nodes contained in it. The node list is given as the
only argument.

Returns nothing.

newHL_Group

HL_Node* newHL_G oup(const char* name)
Creates an empty HL node of Gr oup type. name isastring used to identify the node.

Returns the node if successful or NULL upon failure.

newHL_Attribute

HL_Node* newHL_Attri but e(const char* name)
Creates an empty HL node of At t ri but e type. nameisastring used to identify the node.

Returns the node if successful or NULL upon failure.

newHL_Dataset

HL_Node* newHL _Dat aset (const char* name)
Creates an empty HL node of Dat aset type. nameisastring used to identify the node.

Returns the node if successful or NULL upon failure.

newHL_Datatype

HL_Node* newHL _Dat at ype(const char* name)
Creates an empty HL node of Dat at ype type. name isastring used to identify the node.

Returns the node if successful or NULL upon failure.

20 Chapter 4. Library Reference

newHL_CompoundTypeAttribute

HL_CompoundTypeAttri but e* newHL_ConpoundTypeAttri but e (char*attrname,size_t offset,
char* format,int ndims,size_t* dims)

Createsa compound At t r i but e node. This function is used to read nodes which are not simple atomic types. Itis
designed to hold the At t r i but e in the form of unsi gned char * aong with information on how to interpret its
contents.

Arguments:

attrname: String containing the At t r i but e’sname.

offset: The byte offset in the datawherethe At t r i but e’svalue starts.

format: An atomic type, in character format, describingthe At t ri but e, for example“short ", or “doubl e”.
ndims: Number of dimensionsinthe At t r i but e’sarray.

dims: The dimensions of each of ndims.

Returns the compound node if successful or NULL upon failure.

newHL_CompoundTypeDescription

HL_ConpoundTypeDescri pti on* newHL_ConpoundTypeDescri ption()
Creates alist containing HL_CompoundTypeAttributes.

Returns the compound type list if successful or NULL upon failure.

freeHL_CompoundTypeAttribute

voi d freeHL_ConpoundTypeAttri but e(HL_CompoundTypeAttribute* attr)
Frees a given compound type attribute from memory. The only argument is the HL_CompoundTypeAttributeto
be freed.

Returns nothing.

freeHL_CompoundTypeDescription

voi d freeHL_ConpoundTypeDescri pti on(HL_CompoundTypeDescription* typelist)
Frees the compound type list, along with al its members, from memory. The only argument is the
HL_CompoundTypeDescription to be freed.

Returns nothing.

addNode

i nt addNode(HL_NodeList* nodelist, HL_Node* node)
Appends a node to (the end of) anode list.

Note: If thisoperation is successful the responsibility for releasing the memory of the node node is taken by the
nodelist, so do not release the node afterwards.

Arguments:

nodelist: The node list.

node: The node to append to nodelist.
Returns 1 if successful and O otherwise.

4.1. General functions 21

getNode

HL_Node* get Node(HL_NodeList* nodelist,const char* nodeName)
Provides areference to a node from anode list.

Note: A reference to the node is returned, so do not release the node when finished with the node.
Arguments:

nodelist: The node list.

nodeName: A string identifying the node to extract.

Returns (areference to) the nodeiif it isfound, and NULL if not.

setScalarValue

i nt set Scal ar Val ue(HL_Node* node,size_t sz,unsigned char* value,const char* fmt,hid_t typid)
Writes ascalar valueto anode. Scalar values areindividual atomic words.

Arguments:

node: The node in which to write the value.

sz Size of the datatype.

value: The value to write.

typid: Reference to used datatype. Must be set manually if using a compound data type, otherwise set it to -1.
Returns 1 if successful and O otherwise.

fmt: String representation of the data format, for example“short”, “si gned i nt” or “doubl e”.

setArrayValue

i nt set ArrayVal ue(HL_Node* node,size_t sz,int ndims,hsize_t* dims,unsigned char* value,const char* fmt,hid_t typid)
Writes an array to a node.

Arguments:

node: The nodein which to write the array.

sz. Size of the data type.

ndims: The number of dimensions of the array, which may range from 0 to 4.

dims: The dimensions of each of ndims.

value: The array to write.

fmt: String representation of the data format.

typid: Reference to used datatype. Must be set manually if using a compound data type, otherwise set it to -1.
Returns 1 if successful and 0 otherwise.

extractParentChildName

i nt extract Parent Chi | dNanme(HL_Node* node, char* parent, char* child)
Seperates the last node (the child) in a node name consisting of several nodes (the parent). For example, for

anode name given as/ gr oupl1/ gr oup2/ gr oup3, this function will set / gr oup1/ gr oup2 as the parent
and gr oup3 asthe child.

Arguments:
node: The node under scrutiny.

22 Chapter 4. Library Reference

parent: A string to hold the parent’s node name.
child: A string to hold the child’s node name.
Returns 1 if successful and O otherwise.

commitDatatype

i nt conmit Dat at ype(HL_Node* node,hid_t testStruct_hid)
If a compound type has been created and there is a wish to have this node “named”, then use this function
for marking this node to be committed. See the HDF5 documentation for a more detailed description on what
“committed” means.

Arguments:

node: A Dat at ype nodeto mark.

testSruct_hid: The HDF5 hi d_t reference to the datatype.
Returns 1 if successful and 0 otherwise.

scanNodelList

voi d scanNodeLi st (HL_NodeList* nodelist)
Prints the namesin anode list to the terminal. The only argument is the node list.

Returns nothing.

findCompoundTypeDescription
HL_ConpoundTypeDescri pti on* fi ndConpoundTypeDescri pti on (HL_NodelList* nodelist, unsigned
long objnoO,unsigned long objnol)

Searches anode list (nodelist) for all nodeswith are identified by values objno0 or objnol. Usethisfunctiontoinquire
wether an attribute’'s or dataset’s typeis“ committed”.

Returns an HL_CompoundTypeDescription list if any nodes are found, otherwise NULL.

scanCompoundTypeDescription

voi d scanConpoundTypeDescri pti on(HL_CompoundTypeDescription* typelist)
Prints to the terminal the names of all nodes in the typelist list of compound nodes.

Returns nothing.

4.2 Read functions

readHL_NodeListFrom

HL_NodelLi st* readHL_NodeLi st Fr om(const char* filename, const char* fromPath)
Recursively reads the HDF5 fil e filename from the group fromPath and builds alist of nodeswith corresponding
names. |.e. no data will be read at this step, just the nodetypes and names will be determined. Returns an
HL_NodeLi st pointer upon success, otherwise NULL.

4.2. Read functions 23

readHL_NodeList
HL_NodelLi st* readHL_NodeLi st (const char* filename)
Recursively read the HDF5 file filename from the root group and builds a list of nodes with corresponding
names. |.e. no data will be read at this step, just the nodetypes and names will be determined. Returns an
HL_NodeLi st pointer upon success, otherwise NULL.
selectNode
i nt sel ect Node(HL_NodeList* nodelist, const char* name)
Marks the node with name name in the nodelist for retrival. Returns 1 upon success, otherwise O.
selectAlINodes
i nt sel ect Al | Nodes(HL_NodeList* nodelist)
Marks all nodes in the nodelist for retrival. Returns 1 upon success, otherwise O.
fetchMarkedNodes
i nt fetchMarkedNodes(HL_NodeList* nodelist)
Reads all nodes in the nodelist that has been marked for retrival. Returns 1 upon success, otherwise 0.
fillAttributeNode
int fillAttributeNode(hid_tfile_id, HL_Node* node)
Fills the attribute node node with data and dimensions from the file referenced by file_id. Returns 1 upon
success, otherwise 0.
fillDatasetNode
int fill DatasetNode(hid_tfile_id, HL_Node* node)
Fillsthe dataset node node with data and dimensions from the file referenced by file_id. Returns 1 upon success,
otherwise 0.
fillGroupNode
int fill G oupNode(hid_tfile_id, HL_Node* node)
Fills the group node node with data from the file referenced by file_id. Returns 1 upon success, otherwise 0.
fillTypeNode
int fill TypeNode(hid_tfile_id, HL_Node* node)
Fills the type node node with data from the file referenced by file_id. Returns 1 upon success, otherwise 0.

filNodeWithData

int fill NodeW thDat a(hid_tfile_id, HL_Node* node)
Fills the node node with data from the file referenced by file_id. Returns 1 upon success, otherwise 0.

24 Chapter 4. Library Reference

buildTypeDescriptionFromTypeHid

HL_CompoundTypeDescri pti on* buil dTypeDescri pti onFronmTypeHi d(hid_t type_id)
Builds a compound type description from the type type_id reference.
ReturnsaHL _ConpoundTypeDescri pt i on pointer upon success, otherwise NULL.

4.3 Write functions

commitType

herr _t commi t Type(hid_t loc_id, const char* name, hid_t type_id)
Commits a datatype. See the HDF5 documentation for more detailed descriptions on what “committed” means.

Arguments:

loc_id: Where should the datatype be placed.

name: What should the datatype be called.

type_id: The hi d_t reference to the datatype.

Returns a negative value upon failure, otherwise the operation was successful.

createStringType

hi d_t createStringType(size_tlength)
CreatesaHDF5 string type of length length. Returns anegativevalue upon failure, otherwiseahi d_t reference
to the datatype.

setTypeSize

herr _t set TypeSi ze(hid_t type_id,size_t theSze)
Changesthe size of the datatype referenced by type_id to the size theSize. Returns anegative value upon failure,
otherwise the operation was successful.

closeType

herr _t cl oseType(hid_t type_id)
Closes the datatype referenced by type_id. Returns a negative value upon failure, otherwise the operation was
successful.

writeScalarDataAttribute

herr _t witeScal arDataAttri bute(hid_tloc_id, hid_t type_id, const char* name, void* buf)
Writes ascalar valueto an HDF5file.

Arguments: loc_id: The group or dataset the attribute should be written to.
type_id: The datatype of the attribute.

name: The name that should be used for the attribute.

buf: The data that should be written.

Returns 0 upon success, otherwise -1.

4.3. Write functions 25

writeScalarDataAttribute_fmt

herr _t witeScal arDataAttribute_fnt (hid_tloc_id, const char* fmt, const char* name, void* buf)
Writes ascalar valueto an HDF5file.

Arguments:

loc_id: The group or dataset the attribute should be written to.

fmt: A string describing the format of the datatype, e.g. char , short , ...
name: The name that should be used for the attribute.

buf: The data that should be written.

Returns 0 upon success, otherwise -1.

writeSimpleDataAttribute

herr_t witeSi npl eDataAttri bute (hid_t loc_id, hid_t type_id, const char* name, int ndims, hsize_t*
dims, void* buf) Writes a simple data attribute value to an HDF5 file.

Arguments:

loc_id: The group or dataset the attribute should be written to.

type_id: The datatype of the attribute.

name: The name that should be used for the attribute.

ndims: The rank of the data to be written, between 0-4.

dims. The dimensions of the data, a pointer to ndims number of hsi ze_t values.

buf: The data that should be written.

Returns 0 upon success, otherwise -1.

writeSimpleDataAttribute_fmt

herr_t witeSi npl eDataAttri bute_fnt (hid_t loc_id, const char* fmt, const char* name, int ndims,
hsize_t* dims, void* buf)

Writes a simple data attribute value to an HDF5 file.

Arguments:

loc_id: The group or dataset the attribute should be written to.

fmt: A string describing the format of the datatype, e.g. char , short , ...

name: The name that should be used for the attribute.

ndims: The rank of the data to be written, between 0-4.

dims. The dimensions of the data, a pointer to ndims number of hsi ze_t values.
buf: The data that should be written.

Returns 0 upon success, otherwise -1.

createSimpleDataset

hi d_t createSi npl eDat aset (hid_tloc_id, hid_t type_id, const char* name, int ndims, hsize_t* dims, void*
buf, int compress)

26 Chapter 4. Library Reference

Creates adataset in an HDF5 file.

Arguments:

loc_id: The group the dataset should be created in.

type_id: The datatype of the dataset.

name: The name that should be used for the dataset.

ndims: The rank of the data to be written.

dims: The dimensions of the data, a pointer to ndims number of hsi ze_t values.

buf : The datato be written in the dataset, if NULL, an empty dataset will be created.

compress. The compression level on the dataset, betwen 0-9 where 0 is no compression and 9 is highest compression.

Returns -1 on failure, otherwise ahi d_t reference to the dataset.

createSimpleDataset_fmt

hi d_t createSi npl eDat aset (hid_t loc_id, const char* fmt, const char* name, int ndims, hsize_t* dims,
void* buf, int compress)

Creates adataset in an HDF5 file.

Arguments:

loc_id: The group the dataset should be created in.

fmt: A string describing the format of the datatype, e.g. char , short, ...

name: The name that should be used for the dataset.

ndims: The rank of the data to be written.

dims: The dimensions of the data, a pointer to ndims number of hsi ze_t values.

buf : The datato be written in the dataset, if NULL, an empty dataset will be created.

compress. The compression level on the dataset, betwen 0-9 where 0 is no compression and 9 is highest compression.

Returns -1 on failure, otherwise ahi d_t reference to the dataset.

closeDataset

herr _t cl oseDat aset (hid_t loc_id)
Closes the dataset referenced by loc_id. Returns a negative value upon failiure, otherwise the operation was
successful.

createCompoundType

hi d_t creat eConpoundType(size_t size)
Creates a compound type with the size size. Returns a negative value upon failiure, otherwise ahi d_t refer-
ence.

addAttributeToCompoundType

herr _t addAttri but eToConpoundType(hid_t loc_id, const char* name, size_t offset,hid_t type_id)
Adds an scalar attribute to a compound type.

4.3. Write functions 27

Arguments:

loc_id: The type the attribute should be appended to,

name: The name of the attribute.

offset: At what offset in the data does this attribute begin.

type_id: The datatype of the attribute.

Returns a negative value upon failure, otherwise the operation was successful.

addAttributeToCompoundType_fmt
herr _t addAttri but eToConpoundType_f nt (hid_t loc_id, const char* name, size_t offset,const char* fmt)
Adds an scalar attribute to a compound type.
Arguments:
loc_id: The type the attribute should be appended to.
name: The name of the attribute.
offset: At what offset in the data does this attribute begin.
fmt: A string describing the format of the datatype, e.g. char , short , ...
Returns a negative value upon failure, otherwise the operation was successful.

addArrayToCompoundType

herr _t addArrayToConpoundType(hid_t loc_id, const char* name, size_t offset, int ndims,size_t* dims,hid_t type_id)
Adds an array attribute to a compound type.

Arguments:

loc_id: The type the attribute should be appended to.

name: The name of the attribute.

offset: At what offset in the data does this attribute begin.

ndims: The rank of the data to be written, between 0-4.

dims: The dimensions of the data, a pointer to ndims number of hsi ze_t values.
type_id: The datatype of the attribute.

Returns a negative value upon failiure, otherwise the operation was successful.

addArrayToCompoundType_fmt

herr _t addArrayToConpoundType_f nt (hid_t loc_id, const char* name, size_t offset, int ndims, size_t*
dims, const char* fmt)

Adds an array attribute to a compound type.

Arguments:

loc_id: The type the attribute should be appended to.

name: The name of the attribute.

offset: At what offset in the data does this attribute begin.

ndims: The rank of the data to be written, between 0-4.

dims. The dimensions of the data, a pointer to ndims number of hsi ze_t values.

28 Chapter 4. Library Reference

fmt: A string describing the format of the datatype, e.g. char , short , ...

Returns a negative value upon failiure, otherwise the operation was successful.

createGroup

hi d_t createG oup(hid_tloc_id, const char* groupname,const char* comment)
Creates agroup in an HDF5 file.

Arguments:

loc_id: The group or file reference the group should be written to.

groupname: The name of the group to be written.

comment: A comment of the group, if NULL, no comment will be added to the group.
Returns a negative value on failure, otherwise ahi d_t reference.

closeGroup

herr _t cl oseG oup(hid_t loc_id)
Closes a group referenced by loc_id. Returns a negative value upon failure, otherwise the operation was suc-
cessful.

doWriteHdf5Attribute

int dowiteHdf 5Attribute (hid_t rootGrp, HL_Node* parentNode, char* parentName, HL_Node*
childNode, char* childName)

Writes an HL _Node attribute to an HDF5 file.

Arguments:

rootGrp: The root group of thefile.

parentNode: The parent node of the attribute to be written.

parentName: The name of the parent node.

childNode: The node to be written.

childName: The attribute’s name.

Returns 1 upon success, otherwise 0.

doWriteHdf5Group

int doWiteHdf 5G oup (hid_t rootGrp, HL_Node* parentNode, char* parentName, HL_Node* childNode,
char* childName)

Writes an HL _Node group to an HDF5 file.

Arguments:

rootGrp: The root group of thefile.

parentNode: The parent node of the group to be written.

parentName: The name of the parent node.

childNode: The node to be written.

4.3. Write functions 29

childName: The group’s name.

Returns 1 upon success, otherwise 0.

doWriteHdf5Dataset

int doWiteHdf 5Dat aset (hid_t rootGrp, HL_Node* parentNode, char* parentName, HL_Node* childNode,
char* childName, int doCompress)

Writes an HL _Node dataset to an HDF5 file.

Arguments:

rootGrp: The root group of thefile.

parentNode: The parent node of the dataset to be written.

parentName: The name of the parent node.

childNode: The node to be written.

childName: The dataset’s name.

doCompress. The compression level on the dataset, betwen 0-9 where 0 is no compression and 9 is highest compres-
sion.

Returns 1 upon success, otherwise 0.

doCommitHdf5Datatype

i nt doConmi t HAf 5Dat at ype (hid_t loc_id, HL_Node* parentNode, char* parentName, HL_Node*
childNode, char* childName)

Creates a“committed” datatype in the HDF5 file.

Arguments:

rootGrp: The root group of thefile.

parentNode: The parent node of the datatype to be written.

parentName: The name of the parent node.

childNode: The node to be written.

childName: The datatype's name.

Returns 1 upon success, otherwise 0.

writeNodeList

i nt witeNodeLi st (HL_NodeList* nodelist, int doCompress)
Writes anodelist in HDF5 format.

Arguments:
nodelist: The nodelist to be written.

doCompress. The compression level that should be used on the datasets, betwen 0-9 where 0 is no compression
and 9 is highest compression.

Returns 1 upon success, otherwise 0.

30 Chapter 4. Library Reference

4.4 Deprecated

Several functions are deprecated and are only provided for backward compatibility with alphaversions of this software
which are actually being used. Avoid using these functions, since they will probably be removed in a future release.

newGroup

NanmeLi st G oup_t* newG oup(NameListGroup_t* parentGroup,const char* name)
Creates anew group named name and attaches this group to the parentGroup. If the parentGroup is NULL, then
the created group will be the root group. Returns the new group upon success or NULL upon failure.

newDataset

NaneLi st Dat aset _t* newDat aset (NameListGroup_t* parentGroup, const char* name)
Creates a new dataset named name and attaches this dataset to the parentGroup. Returns the new dataset upon
success or NULL upon failiure.

newNameListType

NaneLi st Type_t* newNaneLi st Type()
Creates a new type object. Returns the all ocated type upon success or NULL upon failure.

newAttribute

NanelLi st Attribute_t* newAttri bute(constchar* name)
Creates a new attribute with the name name, if nameis NULL, then the attribute will be nameless. Returns the
allocated attribute upon success or NULL upon failure.

newCompoundAttribute

ConpoundAt tri but eDef _t* newConpoundAttri but e(const char* name)
Creates a new compound attribute definition with the name name, if name is NULL, then the attribute will be
nameless. Returns the allocated compound attribute definition upon success or NULL upon failure.

createCompoundFromType

ConmpoundAt tri but eDef _t* creat eConmpoundFr onilype(NameListType_t* inType, char* name)
Translatesan NareLi st Type_t instance to acompound attribute definition instance and then gives the com-
pound attribute definition the name name. Returns the allocated compound attribute definition upon success or
NULL upon failure.

addCompoundAttributeToType

herr _t addConpoundAttri but eToType(NamelListType_t* newType,CompoundAttributeDef_t* compoundAttr)

Adds the compound attribute definition compoundAttr to the name list type newType. Returns avalue > 0 upon
success, otherwise -1.

4.4. Deprecated 31

addAttributeToGroup
herr _t addAttri but eToG oup(NameListGroup_t* group, NameListAttribute_t* attr)
Adds the attribute attr to the group group. Returns 0 upon success otherwise -1.
addAttributeToDataset
herr _t addAttri but eToDat aset (NameListDataset_t* dset, NameListAttribute_t* attr)
Adds the attribute attr to the dataset dset. Returns O upon success otherwise -1.
freeCompoundAttribute
voi d freeConpoundAttri but e(CompoundAttributeDef_t* attr)
Deall ocates the compound attribute definition attr. Returns nothing.
freeAttribute
voi d freeAttribut e(NameListAttribute t* attr)
Deallocates the attribute attr. Returns nothing.
freeNamelListType
voi d freeNaneLi st Type(NameListType_t* type)
Deallocates the name list type type. Returns nothing.
freelnternalDataset
voi d freel nternal Dat aset (NameListDataset_t* dset)
Deallocates the internal s for the dataset dset. Returns nothing.
freeDataset
voi d freeDat aset (NameListDataset_t* dset)
Deallocates the dataset dset. Returns nothing.
addTypeToLocalGroup
herr _t addTypeToLocal G oup(NameListGroup_t* group, NameListType_t* type)
Adds the type type to the local list of typesin the group group. Returns avalue > 0 upon success otherwise - 1.
addTypeToGlobalGroup

herr _t addTypeTod obal G- oup(NameListGroup_t* group, NameListType_t* type)
Addsthe typetypeto the global list of typesin the group group. Returns avalue > 0 upon success otherwise - 1.

32 Chapter 4. Library Reference

doesTypeExistinGlobalGroup

i nt doesTypeExi st nd obal G oup(NameListGroup_t* grp,unsigned long* objno)
Searches the global list of typesin the group grp if any occurence of the objno exists.

Arguments:

grp: The group that should be searched in.

objno: Anlist of twounsi gned | ong’s.

Returns the index number in the global list if an occurance was found otherwise -1.

doesTypeEXxistinLocalGroup

i nt doesTypeExi stlnLocal G oup(NameListGroup_t* grp,unsigned long* objno)
Searchesthe local list of typesin the group grp if any occurence of the objno exists.

Arguments:

orp: The group that should be searched in.

objno: A list of two unsi gned | ong’s.

Returns the index number in the local list if an occurance was found otherwise - 1.

removeTypeFromLocalGroup

NaneLi st Type_t* renmoveTypeFronlLocal G oup(NameListGroup_t* group,unsigned long* objno)
Removes the type with a matching objno from the group group’slist of local types and returns the type.

Arguments:

group: The group that should be searched.

objno: A list of twounsi gned | ong’s.

Returns the type with a matching object number if it was found, otherwise NULL

removeTypeFromGlobalGroup

NaneLi st Type_t* renmoveTypeFr ond obal G oup(NameListGroup_t* group,unsigned long* objno)
Removes the type with a matching objno from the group group’slist of global types and returns the type.

Arguments:

group: The group that should be searched.

objno: A list of twounsi gned | ong’s.

Returns the type with a matching object number if it was found, otherwise NULL

displayDataBuffer

voi d di spl ayDat aBuf f er (unsigned char* data, const char*fmt, int ndims, hsize_t* dims, size_t typeSze, int
offs, int addNewline)

Displaysthe datain aformat similar to the one produced when using h5dump distributed with the HDF5 distribution.
Arguments:

data: A pointer to the data.

fmt: The hlhdf string representation of the dataformat.

4.4. Deprecated 33

ndims: The rank of the data.

dims: The dimensions of the data

typeSze: The size of each value.

offs: The number of blanks that should be padded before the data.
addNewline: If alinebreak should be added or not, 1 means add linebreak.
Returns nothing.

displayCompoundDataset

voi d di spl ayConpoundDat aset (unsigned char* data,NameListType_t* type,int ndims, hsize_t* dims, int offs)
Displays a compound dataset in a format similar to the one produced when using h5dump distributed with the
HDF5 distribution.

Arguments:

data: The data pointer.

type: The compound type definition.

ndims: The rank of the data.

dims: The dimensions of the data.

offs: The number of blanks that should be padded before the data.
Returns nothing

displayCompoundAttributeDef

voi d di spl ayConpoundAt tri but eDef (CompoundAttributeDef_t* def,int offs)
Displays one attribute in a compound attribute in a format similar to the one produced when using h5dump
distributed with the HDF5 distribution.

Arguments:

def: The compound attribute definition.

offs: The number of blanks that should be padded before the data.
Returns nothing

displayType

voi d di spl ay Type(NameListType_t* type, int offs)
Displays one datatype in aformat similar to the one produced when using hSdump distributed with the HDF5
distribution.

Arguments:

type: The datatype to display.

offs: The number of blanks that should be padded before the data.
Returns nothing.

34 Chapter 4. Library Reference

displayAttribute

voi d di spl ayAttri but e(NameListAttribute_t* attr,int offs)
Displays one attribute in aformat similar to the one produced when using hs5dump distributed with the HDF5
distribution.

Arguments:

attr: The attribute to display.

offs: The number of blanks that should be padded before the data.
Returns nothing.

displayDataset

voi d di spl ayDat aset (NameListDataset_t* dset, int offs)
Displays one dataset in a format similar to the one produced when using h5dump distributed with the HDF5
distribution.

Arguments:

dset: The dataset to display.

offs: The number of blanks that should be padded before the data.
Returns nothing.

displayGroup

voi d di spl ayG oup(NameListGroup_t* grp,int offs)
Displays one group in a format similar to the one produced when using h5dump distributed with the HDF5
distribution. This function will recursively go through all sub-groups belonging to this group.

Arguments:

grp: The group to display.

offs: The number of blanks that should be padded before the data.
Returns nothing.

readHIHdfFile

NaneLi st Group_t * readH Hdf Fi | e(const char* filename)
Recursively reads a complete HDF5 file with name filename and builds a complete tree structure. Returns a
pointer to aNameLi st G oup_t instance upon success, otherwise NULL.

readHIHdfFileFrom

NaneLi st G oup_t* readH Hdf Fi | eFr om(const char* filename, const char* from)
Recursively reads an HDF5 file with name filename from the group from and builds a complete tree structure.
Returns apointer to aNameLi st G- oup_t instance upon success, otherwise NULL.

read_hlhdf_free

voi d read_hl hdf _f r ee(NameListGroup_t* group)
Frees a HDF5 tree structure that has been read by using either readHIHdfFile or readHIHdfFileFrom. Be
aware that this function must be used if one of the two functions above was used since it knows how the tree
structure was built. Returns nothing.

4.4. Deprecated 35

36

CHAPTER
FIVE

Creating your own HDF5 product

When creating your own HDF5 product, there are two header files that should be included, read_vhlhdf.h and
write_vhlhdf.h.

When compiling a binary, there are three libraries that must be linked in; these are libhlhdf.a, libhdf5.a and libz.a. It
isalso possibleto link the shared library libhdf5.s0 instead of libhdf5.a.

The HL-HDF package was installed with a hldef.mk file that can be included in your own Makefile in order to get
the correct paths to both the zlib and the hdf5 library. It aso contains information on which C-compiler the HL-HDF
package was compiled with and some other goodies.

A simple Makefile could look like this:

37

i nclude /usr/ |l ocal/hl hdf/nkf/hl def. nk

HLHDF_I NCDI R = -1/usr /| ocal / hl hdf/incl ude
HLHDF_LIBDIR = -L/usr/local/hlhdf/lib
CFLAGS = $(OPTS) $(DEFS) -1. $(ZLIB_INCDI R) $(HDF5_I NCDIR) \

$(HLHDF_| NCDI R)
LDFLAGS = -L. $(ZLIB_LIBDIR) $(HDF5_LIBDI R) $(HLHDF_LI BDI R)
LIBS = -l hl hdf -1hdf5 -1z -Im
TARGET=nyTest Pr ogr am
SOURCES=t est _program c
OBJECTS=$(SOURCES: . c=. 0)
al I : $(TARGET)

$(TARGET) : $(OBJECTS)
$(CO) -0 $@$(LDFLAGS) $(OBJECTS) $(LIBS)

cl ean:
@rm-f *.0 *" so_locations core

di stcl ean: cl ean
@rm -f $(TARGET)

di stribution:
@cho "Wuld bring the |atest revision upto date"

install:
@(HL_INSTALL) -f -0 -C $(TARGET) ${Mv_BI N PATH}/ $(TARGET)

Now, when the Makefile has been created, it might be a good idea to write your own HDF5 product. The following
example will create a dataset with atwo-dimensional array of integers, and two attributes connected to this dataset. It
will also create a group containing one attribute.

38

Chapter 5. Creating your own HDF5 product

#i ncl ude <read_vhl hdf. h>
#i ncl ude <wite_vhl hdf. h>

int main(int argc, char** argv)
{

HL_NodelLi st* aLi st =NULL;

HL_Node* aNode=NULL;

int* anArray=NULL;

int anl ntVal ue;

fl oat aFl oat Val ue;

hsize_t dinms[]={10, 10};

int npts=100;

int i;

initH HAf (); /* Initialize the HL-HDF library */
debugH Hdf (2); /* Activate debuggi ng */

if(!(aList = newHL_NodeList())) {
fprintf(stderr,"Failed to allocate nodelist");
goto fail;

}

if(!(anArray = malloc(sizeof(int)*npts))) {
fprintf(stderr,"Failed to allocate nenory for array.");
goto fail;

}

for(i=0;i<npts;i++)
anArray[i]=i;

addNode(aLi st, (aNode
addNode(aLi st, (aNode
anl nt Val ue=10;

newHL_Group("/groupl")));
newHL_Attribute("/groupl/attributel”)));

set Scal ar Val ue(aNode, si zeof (anl nt Val ue), (unsi gned char*) &nl ntVal ue, "int", -1);

addNode(aLi st, (aNode = newHL_Dat aset ("/dataset1")));
set ArrayVal ue(aNode, si zeof (int), 2, di ns, (unsi gned char*)anArray, "int",-1);

addNode(aLi st, (aNode = newHL_Attribute("/datasetl/attribute2")));
anl nt Val ue=20;

set Scal ar Val ue(aNode, si zeof (anl nt Val ue), (unsi gned char*) &nl ntVal ue,"int", -1);

addNode(aLi st, (aNode = newHL_Attri bute("/datasetl/attribute3")));

aFl oat Val ue=99. 99;

set Scal ar Val ue(aNode, si zeof (aFl oat Val ue), (unsi gned char *) &Fl oat Val ue,
"float",-1);

strcpy(aList->filenane,"witten_hdffile.hdf");
wri t eNodelLi st (aLi st, 6);

freeHL_Nodeli st (aLi st);

exit(0);

return 0; /* Wn't cone here */
fail:

freeHL_NodelLi st (aLi st);

exit(1);

return 1; /* Wn't cone here */

}

39

When you have created your own HDF5 product, it might be a good ideato create some code for reading this file and
checking its contents.

#i ncl ude <read_vhl hdf. h>
#i ncl ude <wite_vhl hdf. h>

int main(int argc, char** argv)

{

HL_NodeLi st* aLi st =NULL;

HL_Node* aNode=NULL;

int* anArray=NULL;

i nt anl nt Val ue;

fl oat aFl oat Val ue;

int npts;

int i;

initH HAf (); /* Initialize the HL-HDF library */
debugH Hdf (2); /* Activate debuggi ng */

if(!(aList = readHL_NodeLi st("written_hdffile.hdf"))) {
fprintf(stderr,"Failed to read nodelist\n");
goto fail;

}
sel ect Al l Nodes(aList); [/* Select everything for retrival */
f et chMar kedNodes(aLi st);

i f((aNode = get Node(aList,"/groupl")))
printf ("% exists\n", aNode->nane);

i f((aNode = get Node(aList,"/groupl/attributel”))) {
mencpy(&nl nt Val ue, aNode- >dat a, aNode- >dSi ze) ;
printf("% exists and have val ue %\ n", aNode- >nane, anl nt Val ue) ;

}
i f((aNode = get Node(aList,"/datasetl1"))) {
anArray = (int*)aNode->dat a;
npts = 1;
for(i=0;i<aNode->ndi ns;i++)
npt s*=aNode- >di ns[i];
printf("% exists and has the val ues:\n", aNode->nan®) ;
for(i=0;i<npts;i++) {
printf("%l ", anArray[i]);
i f((i%Node->dinms[0])==0) {
printf("\n");
}
}
printf("\n");
}

continued on next page ...

40

Chapter 5. Creating your own HDF5 product

}

i f((aNode = get Node(aList,"/datasetl/attribute2"))) {
nmencpy(&nl nt Val ue, aNode- >dat a, aNode- >dSi ze) ;
printf("% exists and have the val ue %\ n", aNode- >nane, anl nt Val ue) ;

}

i f((aNode = get Node(aList,"/datasetl/attribute3"))) {
nmencpy(&Fl oat Val ue, aNode- >dat a, aNode- >dSi ze) ;
printf("% exists and have the value %\n", aNode- >nane, aFl oat Val ue) ;

}

freeHL_Nodeli st (aLi st);

exit(0);

return 0; /* Never reached */

fail:

freeHL_Nodeli st (aLi st);

exit(1);

return 1; /* Never reached */

41

42

CHAPTER
SIX

Example Programs

Three example programs have been provided with HL-HDF. Two of them are modelled after the BUFR software de-
veloped and maintained by the EUMETNET Operational Programme for the Exchange of Weather Radar Information
(OPERA). This software has two programs called ‘encbufr’ and ‘ decbufr’ used to encode and decode BUFR messages
to/from an ASCII file containing header information and raw data in a binary file. The third example is modelled
after aprogram called ‘ griblist’” developed by SMHI to query the contents of a GRIB file. GRIB and BUFR are format
standards specified by the World Meteorol ogical Organization.

6.1 hlenc

Encodes raw binary datain one file and an ASCI| file containing header information, into an HDF5 file.
hlenc [—hdv] [—z compron] -i inputprefix -o outputfile

[-h] Prints a help text.

[—d] Prints debugging information.

[-v] Prints the version number.

[—z compressi on] Setsthe compression level, can bein therange 0 to 9 where 0 isno compression and 9 isthe highest
compression.

-i inputprefix Specifies the prefix for the input files, the files that will be read are <inputprefix>.info and
<inputprefix>.data.

-0 outputfile Specifies the name of the HDF5 file to be generated.

The file with extension .info should have the following apperance:
DATATY PE: [ATTRIBUTE or DATASET |
FIELDNAME: [name of thefield, e.g. '/attr1’ |

DATASIZE: [size of the datatype in bytes]

DATAFORMAT: [string representation of the datatype, e.g. int
DIMS: [the dimension of the data embraced by [], e.g. [10,10]

The file with extension .data should contain raw binary data with native byte order.

6.2 hldec

Decodes an HDF5 file into a binary data file and an ASCII info file.
hidec [-hdv] -i inputfile -f fieldname -0 outputpr efix
[—h] Prints an help text.

43

[—d] Prints debugging information.

[-v] Prints the version number.

-i inputfile Specifies the HDF5 file to be decoded.

-f fieldname Specifies the fieldname to be decoded, e.g. ' /dataset1’.

-0 outputprefix Specifies the prefix for the output files, the files that will be generated are <outputprefix>.info and
<outputprefix>.data.

The file with extension .info will get the following apperance:
DATATYPE: [ATTRIBUTE or DATASET]

FIELDNAME: [name of thefield, e.g. '/attr1’ |

DATASIZE: [size of the datatype in bytes]

DATAFORMAT: [string representation of the datatype, e.g. int
DIMS: [the dimension of the data embraced by [], e.g. [10,10]

The file with extension .datawill be saved in byteformat with native byte order.

6.3 hllist

Lists the nodesin an HDF5 file.
hilist [-hdv] hdfsfile

[-h] Prints a help text.

[—d] Prints debugging information.
[-v] Prints the version number.
hdf5file 1sthe HDF5 file to be listed.

44 Chapter 6. Example Programs

CHAPTER
SEVEN

Python Interface - PyHL

PyHL isjust like the HL-HDF library in that it allows the user to work with HDF5 at a high level. PyHL is designed
to work at the highest level of abstraction using the Python programming language, since Python allows the user to
interact directly with HDF5 files. In fact, PyHL is nothing more than a wrapper around HL-HDF but with some
additional functionality which is only available in very high level languages such as Python. Like HL-HDF, it isup to
the user to define appropriate ways of representing data and using the building blocks available in PyHL to store the
datain HDF5.

(PyHL is pronounced “pile”, which is an appropriate description of aheirarchy ...)

7.1 Compilation and installation

The Python programming language, version 1.5.2, is required along with the Nuner i ¢ package. Python isfound at
the Corporation for National Research Initiatives at http://www.python.org/ and Nuner i ¢ isfound at the Source Forge
http://numpy.sourceforge.net/.

7.2 Create module _pyhl

If the configure script was not called with - - wi t h- pyt hon=no the _pyhl module should be compiled together with
the rest of the code. If the configure script was called with - - wi t h- pyt hon=no, then the best thing is to rebuild
the whole HL-HDF package (with - - wi t h- pyt hon=yes) and installation as descriped in Sections 2.2 and 2.4.

NOTE: Python version 1.5.2 is required to compile _pyhl; otherwise there will be unresolved symbols. Also, be
aware that the hdf5 library is linked dynamically which requires that the LD_LI BRARY_PATH contains the path to
where libhdf5.50 has been installed.

7.3 Library Reference

This module defines the 10 access for reading/writing HDF5 files. The module implements two classes for building
an HDF5 file representation. The nodel i st class implements a list that should represent the file itself. The node
class represents the items in the HDF5 file. The nodel i st contain several node’s for building the HDF5 file. You
can use thisinterface to write Python programs that interfact with HDF5 files.

The module defines the following items:

i s_fil e_hdf5(filename)
Checks whether filenameis an HDF5 file. Returns 1 if it is and O otherwise.

45

nodel i st ()
Return anew instance of thenodel i st class.

node(nodetype,nodename)
Return anew instance of thenode. The nodetype can be oneof: ATTRI BUTE_I D, DATASET_I D, GROUP_I D
and TYPE_I D. The nodename is the name of the node, for example/ gr oupl/ gr oup2/ dat aset 1.

ATTRI BUTE_I D
When creating anode and using this value, the node will become an attribute node.

DATASET_I D
When creating anode and using this value, the node will become a dataset node.

GROUP_I D
When creating anode and using this value, the node will become a group node.

TYPE_I D
When creating anode and using this value, the node will become a datatype node.

read_nodel i st (filename[,from])
Read the HDF5 file filename and build anodel i st with all the names. That is the data will not be read, just
the names. If anodelist is built from a group lower down in the hierarchy, then from can be specified. If al goes
well, thenodel i st isreturned, otherwise an exception is thrown.

nodelist

nodel i st instances have the following methods:

write(filename[,compron])
Write the instance to disk in HDF5 format. The default compression value is 6. If another compression level is
wanted, then the value can be between 0 for no compression and 9 for highest compression.

addNode(node)
Adds anode of classnode to the end of the nodelist.

get NodeNares()
Returns a dictionary with all the nodelists node names as keys and the integer values ATTRI BUTE_I D,
DATASET_I D, TYPE_I Dand GROUP_I Dasitems.

sel ect Al'l ()
Marks all nodes in the nodelist for data retrival.

sel ect Node(nhodename)
Marks the node specified by nodename to be retrived.

fetch()
Fetches all nodes in the selected nodelist.

get Node(nodename)
Return the node with name nodename.

node

A node hasthe following methods:

set Scal ar Val ue(itemSze,data,typename,lhid)
Setsa scalar value in the node instance. itemSze is used for specifying the size of the valuein bytes. It is not
necessary to specify unless a compound typeis set. data is the data to be set in the node. typename is the string
representation of the datatype, for examplei nt, stri ng, conpound, ...lhid isthe hi d_t referenceto the
datatype, is not nessecary to specify unless a compound type is set.

46 Chapter 7. Python Interface - PyHL

NOTE: If the data to be set is of compound type, then the data should be of string type.

set Ar r ayVal ue(itemSze,dims,data,typename,lhid)
Sets an array valuein the node instance. itemSzeis used for specifying the size of the value in bytes. It is not
nessecary to specify unless acompound typeis set. dimsisalist of dimensions of the data. data isthe datato be
set in the node. typename is the string representation of the datatype, for examplei nt , st ri ng, conpound,
...lhid isthe hi d_t reference to the datatype, is not nessecary to specify unless a compound type should be
Set.

NOTE: If the data to be set is of compound type, the data should be of string type.

conmi t (datatype)
Marksa TYPE_I D node to be committed. datatypeisthe hi d_t reference to the datatype.

name()
Returns the name of the node instance.

di ns()
Returns alist of the dimensions of the node instance

format ()
Returns the string representation of the node’s datatype.

dat a()
Returns the data of the node instance.

NOTE: If the data is of compound type, the data will be returned as a string.

7.4 Examples

The creation of HDF5 fileswith PyHL is quite easy, and there are not to many things one has to know about the HDF5
internals. However, in order to build an HDF5 file, one has to understand that the file should be built sequentialy, i.e.
it is not possible to create a subgroup to a group before the group has been created. Neither isit possible to create an
attribute or a dataset in a group before the group has been created etc. In other words, always create the top nodes
before trying to create nodes under them in the heirarchy.

Another thing to bear in mind is that when the method addNode has been called the nodel i st instance will take
control over the node, so it will not be possible to ater the node after acall to addNode has been made.

When working with compound types, remember that the datathat is passed to set Scal ar Val ue andset Arr ay-
Val ue must be a Python string. Also when working with compound types, the i t enSi ze and | hi d has to be
passed on, otherwise the compound data most likely will be corrupted.

Also when working with compound types, be aware that the hdf5 library has to be linked dynamically, otherwise it
will not be possible to passthe hi d_t references between the Python modules.

Timeto look at some simple examples. Comments will be written initalics and the actual code will be writtenin bold
face.

Writing a simple HDF5 file

import _pyhl
from Numeric import *

Create an empty node list instance
alList = _pyhl.nodelist()

Create an group called info
aNode = _pyhl.node(_pyhl.GROUP_ID," /info")

7.4. Examples a7

Add the node to the nodelist
Remember that the nodelist takes responsibility
alL ist.addNode(aNode)

Insert the attribute xscale in the group “ /info”
aNode = _pyhl.node(_pyhl. ATTRIBUTE_ID,” /info/xscale”)

Set the value to a double with value 10.0

Note the -1’ s that has been used since the data not is compound
aNode.setScalar Value(-1,10.0," double’ ,-1)

aL ist.addNode(aNode)

Smilar for yscalexsize and ysize

aNode = _pyhl.node(_pyhl. ATTRIBUTE_ID," /infolyscale”)
aNode.setScalar Value(-1,20.0," double’ ,-1)

alL ist.addNode(aNode)

aNode = _pyhl.node(_pyhl. ATTRIBUTE_ID," /info/xsize")
aNode.setScalar Value(-1,10," int” ,-1)

aL ist.addNode(aNode)

aNode = _pyhl.node(_pyhl. ATTRIBUTE_ID," /infolysize")
aNode.setScalar Value(-1,10," int” ,-1)

alL ist.addNode(aNode)

Add a description

aNode = _pyhl.node(_pyhl. ATTRIBUTE_ID," /info/description™)
aNode.setScalar Value(-1," Thisisa simple example’,” string” ,-1)
alL ist.addNode(aNode)

Add an array of data

myArray = arange(100)

myArray = array(myArray.astype(i’),'i’)
myArray = reshape(myArray,(10,10))

aNode = _pyhl.node(_pyhl.DATASET _ID,” /data")

Set the data as an array, note the list with [10,10] which
Indicates that it is an array of 10x10 items
aNode.setArrayValue(-1,[10,10],myArray,” int” ,-1)

aL ist.addNode(aNode)

And now just write the file as* simple_test.hdf” with

Compression level 9 (highest compression)
aList.write(" simple_test.hdf” ,9)

When checking this file with h5dump, the command syntax would be;

pronpt % h5dunp si npl e_t est . hdf

And the result would be:

48

Chapter 7. Python Interface - PyHL

HDF5 "sinple_test. hdf" {
GROUP "/ " {
DATASET "data" {
DATATYPE { H5T_STD | 32LE }
DATASPACE { SIMPLE (10, 10) / (10,
DATA {
o, 1, 2, 3, 4, 5 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18,
20, 21, 22, 23, 24, 25, 26, 27, 28,
30, 31, 32, 33, 34, 35, 36, 37, 38,
40, 41, 42, 43, 44, 45, 46, 47, 48,
50, 51, 52, 53, 54, 55, 56, 57, 58,
60, 61, 62, 63, 64, 65, 66, 67, 68,
70, 71, 72, 73, 74, 75, 76, 77, 78,
80, 81, 82, 83, 84, 85, 86, 87, 88,
90, 91, 92, 93, 94, 95, 96, 97, 98§,
}
}
GROUP "info" {
ATTRI BUTE "xscal e" {
DATATYPE { H5T_I| EEE_F64LE }
DATASPACE { SCALAR }
DATA {
10
}
}

ATTRI BUTE "yscal " {
DATATYPE { H5T_| EEE_F64LE }
DATASPACE { SCALAR }
DATA {
20
}
}

ATTRI BUTE "xsi ze" {
DATATYPE { H5T_STD | 32LE }
DATASPACE { SCALAR }
DATA {
10
}
}

ATTRI BUTE "ysi ze" {
DATATYPE { H5T_STD | 32LE }
DATASPACE { SCALAR }
DATA {
10
}
}

ATTRI BUTE "description" {
DATATYPE {
{ STRSI ZE 25;
STRPAD H5T_STR_NULLTERM
CSET H5T_CSET_ASCI | ;
CTYPE H5T_C SI;
}
}
DATASPACE { SCALAR }
DATA {
"This is a sinple exanple"
}

}

10) }

19,
29,
39,
49,
59,
69,
79,
89,
99

1
7.4. Examples
}

49

Writing an HDF5 file containing a compound datatype

This is a bit more complex since it requires the implementation of a Python C-module that contains the datatype
definition, and a couple of methods for converting data to a string and the other way around.

There isa small example located in the ‘hihdf/pyhl’ directory called ‘rave_info_type’ which implements a small com-
pound type definition. Basically this module defines an object containing xscale, yscale,xsize and ysize variables. This
module has also got atype class which should be used.

import _pyhl
import _rave_info_type

Create the rave info HDF5 type
typedef = _rave_info_type.type()

Create the rave info HDF5 object
obj = _rave_info_type.object()

Set the values
obj.xsize=10
obj.ysize=10
obj.xscale=150.0
obj.yscale=150.0

aList = _pyhl.nodelist()

Create a datatype node
aNode = _pyhl.node(_pyhl.TYPE_ID,”/MyDatatype”)

Make the datatype named
aNode.commit(typedef.hid())
alL ist.addNode(aNode)

Create an attribute containing the compound type
aNode = _pyhl.node(_pyhl. ATTRIBUTE_ID,”/myCompoundAttribute”)

Note that | use both itemSze and Ihid

Also note how | translate the compound object to a string

aNode.setScalar Value(typedef.size(),obj .tostring(),” compound” ,typedef.hid())
alL ist.addNode(aNode)

Better create a dataset also with the compound type

obj.xsize=1

obj.ysize=1

aNode = _pyhl.node(_pyhl.DATASET _ID,”/myCompoundDataset”)

| use setArrayValue instead

aNode.setArrayValue(typedef.size(),[1],0bj .tostring(),” compound” ,typedef.hid())
alL ist.addNode(aNode)

And finally write the HDF5 file.
aList.write(* compound_test.hdf”)

When checking this file with h5dump, the command syntax would be;
pr onpt % h5dunp conpound_t est . hdf

And the result would be:

50 Chapter 7. Python Interface - PyHL

HDF5 "conpound_test. hdf" {

GROUP "/ " {
ATTRI BUTE "nyConpoundAttri bute" {
DATATYPE {

HS5T_STD_I 32LE "xsi ze";
H5T_STD_I 32LE "ysi ze";
H5T_| EEE_F64LE "xscal e";
H5T_| EEE_F64LE "yscal e";

}
DATASPACE { SCALAR }
DATA {
{
[10],
[10],
[150 1,
[150]
}
}

}
DATATYPE " MDat at ype" {

H5T_STD_I 32LE "xsi ze";
H5T_STD_I 32LE "ysi ze";
H5T_| EEE_F64LE "xscal e";
H5T_| EEE_F64LE "yscal e";

}
DATASET " nyConpoundDat aset" {
DATATYPE {
"/ MyDat at ype"
}
DATASPACE { SIMPLE (1) / (1) }
DATA {
{
[1],
[1],
[150],
[150]
}
}
}
}
}

Reading a simple HDF5 file

The following example code will read the /info/xscale, /info/yscale and /data fields from the HDF5 file
‘simple_test.hdf’.

import _pyhl

Read thefile
aList = _pyhl.read_nodelist(* simple_test.hdf”)

Select individual nodes, instead of all of them
al ist.selectNode(* /info/xscal€”)

al ist.selectNode(* /infolyscal€”)

al ist.selectNode(* /data”)

7.4. Examples 51

Fetch the data for selected nodes
aList.fetch()

Print the data

aNode = aL ist.getNode(* /info/xscal€”)
print “XSCALE=" + ‘aNode.data()’
aNode = aL ist.getNode(* /info/yscal€”)
print “YSCALE=" + ‘aNode.data()’
aNode = al ist.getNode(* /data”)

print “DATA=" + ‘aNode.data()'

Reading an HDF5 file containing a compound type

This example shows how an HDF5 file containing a compound type in it can be read. It will read the file “com-
pound_test.hdf” that was generated above.

import _pyhl
import _rave_info_type

There is no meaning creating the type
obj = _rave_info_type.object()
aList = _pyhl.read_nodelist(“ compound_test.hdf”)

Select everything for retrival

aL ist.selectAll()

aList.fetch()

aNode = aL ist.getNode(* /myCompoundAttribute”)

Translate from the string representation to object
obj.fromstring(aNode.data())

Display the values

print “ XSIZE="+'obj.xsize'
print “YSIZE="+'0bj.ysize
print “XSCALE="+'obj.xscale
print “YSCALE="+'obj.yscale

52 Chapter 7. Python Interface - PyHL

