"""
This example shows how to read and write integer datatypes to an attribute. The
program first writes floats to an attribute with a dataspace of DIM0xDIM1, then
closes the file. Next, it reopens the file, reads back the data, and outputs
it to the screen.
Tested with:
Fedora 18:
HDF5 1.8.9, Python 2.7.3, Numpy 1.7.1, h5py 2.1.3
Fedora 18:
HDF5 1.8.9, Python 3.3.0, Numpy 1.7.1, h5py 2.1.3
Mac OS X 10.6.8:
HDF5 1.8.10, Python 3.2.5, Numpy 1.7.1, h5py 2.1.3
"""
import sys
import numpy as np
import h5py
FILE = "h5ex_t_intatt.h5"
DATASET = "DS1"
ATTRIBUTE = "A1"
# Strings are handled very differently between python2 and python3.
if sys.hexversion >= 0x03000000:
FILE = FILE.encode()
DATASET = DATASET.encode()
ATTRIBUTE = ATTRIBUTE.encode()
DIM0 = 4
DIM1 = 7
DIMS = (DIM0, DIM1)
def run():
# Initialize the data.
wdata = np.zeros((DIM0, DIM1), dtype=np.int64)
for i in range(DIM0):
for j in range(DIM1):
wdata[i][j] = i * j - j
# Create a new file using the default properties.
fid = h5py.h5f.create(FILE)
# Create a dataset with a scalar dataspace.
# The origin C example uses a NULL dataspace, but this does not seem to
# yet be possible in H5PY.
space = h5py.h5s.create(h5py.h5s.SCALAR)
dset = h5py.h5d.create(fid, DATASET, h5py.h5t.STD_I32LE, space)
dset.write(h5py.h5s.ALL, h5py.h5s.ALL, wdata)
del space
# Create the attribute dataspace. Not supplying a maximum size results
# in the maximum size being equal to the current size.
space = h5py.h5s.create_simple(DIMS)
# Create the attribute and write the floating point data to it.
# In this example we will save the data as 64 bit big endian integers.
# The HDF5 library automatically converts between different floating point
# types.
attr = h5py.h5a.create(dset, ATTRIBUTE, h5py.h5t.STD_I64BE, space)
attr.write(wdata)
# Explicitly close and release resources.
del attr
del dset
del space
del fid
# Open file and dataset using the default properties.
fid = h5py.h5f.open(FILE)
dset = h5py.h5d.open(fid, DATASET)
attr = h5py.h5a.open(dset, ATTRIBUTE)
# Get the dataspace and allocate space for the read buffer.
space = attr.get_space()
rdata = np.zeros((DIM0, DIM1), dtype=np.int64)
attr.read(rdata)
# Output the data to the screen.
print("%s:" % ATTRIBUTE)
print(rdata)
if __name__ == "__main__":
run()