
May 22, 2009 TR THG 2009-05-22.v1

Page 1 of 39

Usage of NCL, GrADS, PyHDF, GDL and GDAL to Access HDF Files

Choonghwan Lee (clee83@hdfgroup.org)
MuQun Yang (myang6@hdfgroup.org)

The HDF Group

This document explains how to access and visualize HDF4 and/or HDF5 files using five
freely available software packages.

1 Prerequisite

This document assumes that users have a basic knowledge of the following data formats and the
corresponding software packages:

 HDF4 (1)

 HDF5 (2)

 HDF-EOS2 (3)

 netCDF-4 (4)

2 Introduction

In this document we describe how to use NCL (5), GrADS (6), PyHDF (7), GDL (8), and GDAL (9) to
access HDF files. We use NASA HDF files to show the procedures for accessing or visualizing the data
with these open source packages. For the general usages of these packages, please refer to their
user’s guides, (10), (11) and (12), or websites. An evaluation of these packages can be found in the
document An Evaluation of HDF Support for NCL, GrADS, PyHDF, GDL, and GDAL (13).

3 Environment

An Intel x86-based system running GNU/Linux was used to run all five packages. The packages were
linked with HDF4.2r3, HDF5 1.8, and netCDF-4. We used GCC 3.4.6 to build the libraries and packages.
For PyHDF, Python 2.5.2 was used.

4 Sample Files

One HDF4 file and two HDF-EOS2 files were used to demonstrate how to access or visualize HDF data
with these packages. These files are used to store data from the NASA Special Sensor
Microwave/Imager (SSMI) Sensor (14) and the Advanced Microwave Scanning Radiometer for the
EOS (AMSR-E) satellite system (15). Table 1 shows the instrument names, formats and other
information about these HDF4/HDF-EOS2 files. We also converted HDF-EOS2 files to netCDF-4 classic

mailto:clee83@hdfgroup.org
mailto:myang6@hdfgroup.org

May 22, 2009 TR THG 2009-05-22.v1

Page 2 of 39

model–compliant and netCDF-4-compliant HDF5 files. In this document, we mainly refer to the
instrument and the description of physical variables when specifying a file or a field in a file. However,
the file names may be referred to in the code examples that appear throughout this document.

Instrument SSMI AMSR-E AMSR-E

Description of
Physical
Variables

Ocean Wind Fields Rainfall Accumulations Brightness Temperature, Sea
Ice Concentration, Snow
Depth over Sea Ice

Data Format HDF4 HDF-EOS2 Grid HDF-EOS2 Grid

Variations 1. netCDF-4-compliant
HDF5
2. netCDF-4 classic model–
compliant HDF5

1. netCDF-4 classic model–
compliant HDF5

Projection Geographic Geographic Polar Stereographic
Table 1. Data files

4.1 SSMI – Ocean Wind Fields

The first file stores the NASA SSMI ocean wind fields data. In this document, we will use the two
variables u10m and v10m that represent the U component and the V component of the wind field. Both
variables have three dimensions: time (from January 2005 to December 2005), longitude, and
latitude.

The file name is atlas.ssmi.ver02.level3.5_5day.s950103.hdf. The original file cannot be obtained.
Users can download a similar HDF4 file from ftp://podaac.jpl.nasa.gov/pub/ocean_wind/
ssmi/atlas_ssmi_ver10/data/level3.5_5day/1995/atlas.ssmi.ver10.level3.5_5day.s19950101.hdf.

4.2 AMSR-E – Rainfall Accumulations

The second file (AE_RnGd) stores the NASA AMSR-E data that describes the monthly average rainfall
accumulation over ocean and land in July 2007.

4.2.1 HDF-EOS2

The format of the original file is HDF-EOS2. The original file name is
AMSR_E_L3_RainGrid_B05_200707.hdf. Users can download this file from
ftp://n4ftl01u.ecs.nasa.gov/SAN/AMSA/AE_RnGd.001/2007.07.01/AMSR_E_L3_RainGrid_B05_20070
7.hdf.

We changed the extension from hdf to he2 when we accessed this file via NCL.

4.2.2 NetCDF-4-compliant HDF5

We used the HDF4-to-HDF5 Conversion tool (16) to convert the AMSR-E HDF-EOS2 file to a netCDF-4-
compliant HDF5 file. The converted file was renamed to either AMSR_E_L3_RainGrid_B05_200707.h5
or AMSR_E_L3_RainGrid_B05_200707.nc, as required by the software package processing it.

4.2.3 NetCDF-4 Classic Model–compliant HDF5

Since the netCDF-4 classic model (17) has more restrictions than the general netCDF-4 model, two
steps are needed to create a netCDF-4 classic model–compliant HDF5 file. The first step is to create a

ftp://podaac.jpl.nasa.gov/pub/ocean_wind/ ssmi/atlas_ssmi_ver10/data/level3.5_5day/1995/atlas.ssmi.ver10.level3.5_5day.s19950101.hdf
ftp://podaac.jpl.nasa.gov/pub/ocean_wind/ ssmi/atlas_ssmi_ver10/data/level3.5_5day/1995/atlas.ssmi.ver10.level3.5_5day.s19950101.hdf
ftp://n4ftl01u.ecs.nasa.gov/SAN/AMSA/AE_RnGd.001/2007.07.01/AMSR_E_L3_RainGrid_B05_200707.hdf
ftp://n4ftl01u.ecs.nasa.gov/SAN/AMSA/AE_RnGd.001/2007.07.01/AMSR_E_L3_RainGrid_B05_200707.hdf

May 22, 2009 TR THG 2009-05-22.v1

Page 3 of 39

netCDF-4-compliant HDF5 file as addressed in the previous section. The second step is to follow the
procedure explained in Appendix 11.1.1. The file is called
AMSR_E_L3_RainGrid_B05_200707_flatten.nc.

4.3 AMSR-E – Brightness Temperature, Sea Ice Concentration, Snow Depth over Sea Ice

The third file (AE_SI12) contains several fields that represent brightness temperatures, sea ice
concentration, and snow depth over sea ice. This file is also from AMSR-E (18). Unlike the other two
files, the polar stereographic projection is used.

4.3.1 HDF-EOS2

The original file is an HDF-EOS2 file and the filename is AMSR_E_L3_SeaIce12km_B02_20020619.hdf.
Users can download this file from
ftp://n4ftl01u.ecs.nasa.gov/SAN/AMSA/AE_SI12.001/2002.06.19/AMSR_E_L3_SeaIce12km_B02_200
20619.hdf.

4.3.2 NetCDF-4 Classic Model–compliant HDF5

To create the netCDF-4 classic model–compliant HDF5 file, one needs to follow the same procedure
described in Section 4.2.3. The converted file name is
AMSR_E_L3_SeaIce12km_B02_20020619_flatten.nc.

5 NCL

5.1 Overview

The NCAR Command Language (NCL) is an interpreted language designed for scientific data analysis
and visualization. In this section, we explain how to install NCL, read HDF4 and HDF5 files, and
visualize them.

5.2 Installation

Although NCL is free, registration is required to download it. One can find information regarding
registration, downloading, and installation from http://www.ncl.ucar.edu/Download/. We used NCL
5.0.0.

NCAR distributes precompiled NCL binaries for several widely used platforms including AIX, IRIX,
Linux, Mac OSX, Solaris, and cygwin. We used their Linux distribution, and it worked without any
problems. Source code is also available, and building NCL from source code is documented at
http://www.ncl.ucar.edu/Download/build_from_src.shtml.

5.3 How to Use

5.3.1 Introduction

The following code shows a typical way to use NCL to visualize a variable in a file. This code needs to
be typed at the prompt that NCL shows.

load "$NCARG_ROOT/lib/ncarg/nclex/gsun/gsn_code.ncl"

ftp://n4ftl01u.ecs.nasa.gov/SAN/AMSA/AE_SI12.001/2002.06.19/AMSR_E_L3_SeaIce12km_B02_20020619.hdf
ftp://n4ftl01u.ecs.nasa.gov/SAN/AMSA/AE_SI12.001/2002.06.19/AMSR_E_L3_SeaIce12km_B02_20020619.hdf
http://www.ncl.ucar.edu/Download/
http://www.ncl.ucar.edu/Download/build_from_src.shtml

May 22, 2009 TR THG 2009-05-22.v1

Page 4 of 39

begin
 file1 = addfile("filename", "r")
 variable1 = file1->var1(:,:)
 variable2 = file1->var2(0,:,:)

 variable1@_FillValue = -1

 xwks1 = gsn_open_wks("pdf","outputfile")

 resources1 = True
 resources1@tiMainFont = 21

 plot1 = gsn_csm_vector_map_ce(xwks1,variable1,variable2,resources1)
end

Figure 1. A typical NCL code to read and plot data

The first line starting with load loads an NCL module that defines functions used in this NCL code.

An NCL code starts with the keyword begin and ends with the keyword end. The addfile() function is
used to open a file. Two arguments need to be provided for this function. The first argument provides
the file name and the second argument provides the file access mode, in this case, r, which
represents read-only mode. This function returns the file descriptor, in this case, file1.

The file descriptor can be used to refer to a variable in the file. When referring to a variable, one can
use NCL’s subscript feature to select a specific portion of a variable. The explanation of subscripts
used in NCL can be found in the “Subscript” section of NCL Language Reference Guide: Variables (19).

As shown in Figure 1, the entire data of data field var1, denoted as var1(:,:), are represented as an
NCL variable, variable1. A subset of a data field var2, denoted as var2(0,:,:), is represented as NCL
variable, variable2. The subsection of the first dimension of var2 is one element, the first element
of this dimension. The subsections of the second and third dimensions include the whole sections of
these dimensions.

NCL tries to read dimensions, units, and fill values from variable attributes. When a variable does not
have attributes, users need to manually provide the fill value for better visualization. To set the fill
value -1 for variable1, for example, one can write a statement as variable1@_FillValue = -1. When
two-dimensional dimension scales are associated with a variable, users need to write additional
statements such as variable1@lon2d = lon, assuming that a variable, lon, contains longitude values.

To draw a plot, one needs to call gsn_open_wks() first to get a workstation descriptor. A workstation
is an instance of an output device such as a screen or a file. The name of the descriptor in this
example is xwks1 as shown in Figure 1. One of its arguments determines whether NCL draws a plot on
the screen, or creates a file such as PDF or PostScript.

Users can customize a plot by setting attributes of a resource object created by assigning True. A
resource object in NCL means configuration settings of a plot such as vector shapes, font sizes and
colors of a plot. For example, the statement resources1@tiMainFont = 21 specifies that the font size
of the main title is 21. For more information, refer to
http://www.ncl.ucar.edu/Document/Graphics/Resources/index.shtml.

http://www.ncl.ucar.edu/Document/Graphics/Resources/index.shtml

May 22, 2009 TR THG 2009-05-22.v1

Page 5 of 39

With a workstation and a resource object, one can draw a plot of variables by calling NCL APIs such as
gsn_csm_vector_map_ce() or gsn_csm_contour_map_ce(). In this example, gsn_csm_vector_map_ce() is
called. Since this example generates a vector plot with varible1 as one component of the vector and
variable2 as another component of the vector, both variable1 and variable2 should be passed as
parameters to gsn_csm_vector_map_ce(). For a contour plot, only one variable should be passed to
the function gsn_csm_contour_map_ce().

5.3.2 Handle an HDF4 or HDF5 file

The extension of the file name passed to addfile() function is important because NCL detects the file
format based on the extension. To open an HDF-EOS2 file whose extension is .hdf, for example, one
needs to rename the actual file name or append .he2 to the argument.

When reading HDF-EOS2 fields, users need to be aware of the name mangling that occurs in NCL.
Suppose that RrLandRain is a data field defined under a grid MonthlyRainTotal_GeoGrid; NCL flattens
this structure and appends the grid name to the field name. As a result, the variable name becomes
RrLandRain_MonthlyRainTotal_GeoGrid. To access this data field, users need to refer to this mangled
name, not the pure data field name, RrLandRain.

5.3.3 Examples

In this section, we will explain how to visualize an HDF4 SDS (5.3.3.1), HDF-EOS2 (5.3.3.2, 5.3.3.4) and
netCDF-4 classic model–compliant HDF5 (5.3.3.3, 5.3.3.5).

5.3.3.1 Visualize an HDF4 SDS

Figure 2 shows how to use NCL to read vectors from an HDF4 file and to draw a vector plot. We used
the ocean wind fields data from the SSMI instrument.

load "$NCARG_ROOT/lib/ncarg/nclex/gsun/gsn_code.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin
 cdf_file = addfile("atlas.ssmi.ver02.level3.5_5day.s950103.hdf", "r")
 u = cdf_file->u10m(0,:,:)
v = cdf_file->v10m(0,:,:)

xwks = gsn_open_wks("pdf","ssmi")

 resources = True
 plot = gsn_csm_vector_map_ce(xwks,u,v,resources)
end

Figure 2. NCL code to read and plot data from an HDF4 SDS

The above code reads part of two HDF4 SDSs (u10m and v10m) and draws a vector plot over a
cylindrical equidistant map.

With some additional settings, the plot shown in Figure 3 can be generated. The unabridged code
with the full resources variable setting is provided in Appendix 11.2.1.

May 22, 2009 TR THG 2009-05-22.v1

Page 6 of 39

Figure 3. NCL vector plot from an HDF4 SDS

5.3.3.2 Visualize an HDF-EOS2 File that has 1-D Coordinate Variables

Figure 4 shows code to read an HDF-EOS2 field and draw a contour plot.

load "$NCARG_ROOT/lib/ncarg/nclex/gsun/gsn_code.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin
 cdf_file = addfile("AMSR_E_L3_RainGrid_B05_200707.he2","r")
 rrland = cdf_file->RrLandRain_MonthlyRainTotal_GeoGrid(:,:)
 rrland@_FillValue = -1

 resources = True
 xwks = gsn_open_wks("pdf","AE_RnGd.hdfeos2")
 plot = gsn_csm_contour_map_ce(xwks,rrland,resources)
end

Figure 4. NCL code to read and plot grid data from an HDF-EOS2 file

Due to name mangling, this code uses the mangled name, RrLandRain_MonthlyRainTotal_GeoGrid to
access the data field RrLandRain in the grid MonthlyRainTotal_GeoGrid. Since this field does not have
an attribute that specifies the fill value, this code informs the fill value to draw a more meaningful
plot.

May 22, 2009 TR THG 2009-05-22.v1

Page 7 of 39

gsn_csm_contour_map_ce() draws a contour plot over a cylindrical equidistant map. With several
additional resource settings to specify NCL plot options, we could get the result shown in Figure 5.
The full code is provided in Appendix 11.2.2.

Figure 5. NCL contour plot from an HDF-EOS2 Grid field

5.3.3.3 Visualize a NetCDF-4 Classic Model–compliant HDF5 File that has 1-D Coordinate Variables

If an HDF5 file is netCDF-4 classic model–compliant, one can use NCL to visualize data.

load "$NCARG_ROOT/lib/ncarg/nclex/gsun/gsn_code.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin
 cdf_file = addfile("AMSR_E_L3_RainGrid_B05_200707_flatten.nc","r")
 rrland = cdf_file->RrLandRain(:,:)
 rrland@_FillValue = -1

 resources = True
 xwks = gsn_open_wks("pdf","AE_RnGd.netcdf4")
 plot = gsn_csm_contour_map_ce(xwks,rrland,resources)
end

Figure 6. NCL code to read and plot an HDF5 dataset from a netCDF-4 classic model–compliant HDF5 file

Figure 6 is almost the same as Figure 4 regardless of the file formats. The result is the same as Figure
5. For more information about the netCDF-4 classic model–compliant HDF5 file, refer to Appendix
11.1.1.

5.3.3.4 Visualize an HDF-EOS2 File that has 2-D Coordinate Variables

As we mentioned in Section 4.3, this file uses the north polar stereographic projection that requires
two-dimensional longitude and latitude. This projection requires additional effort.

May 22, 2009 TR THG 2009-05-22.v1

Page 8 of 39

load “$NCARG_ROOT/lib/ncarg/nclex/gsun/gsn_code.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin
 cdf_file = addfile("AMSR_E_L3_SeaIce12km_B02_20020619.he2", "r")
 nh18vday = cdf_file->SI_12km_NH_18V_DAY_NpPolarGrid12km(:,:)
 nh18vday@lon2d = cdf_file->GridLon_NpPolarGrid12km
 nh18vday@lat2d = cdf_file->GridLat_NpPolarGrid12km

 xwks = gsn_open_wks("pdf","AE_SI12.north.dailyavgt")
 plot = gsn_csm_contour_map_polar(xwks,nh18vday,resources)
end

Figure 7. NCL code using two-dimensional longitude and latitude in an HDF-EOS2 file

SI_12km_NH_18V_DAY is an HDF-EOS2 data field defined in this file. GridLon_NpPolarGrid12km and
GridLat_NpPolarGrid12km don’t exist in the file, but NCL generates both of these two-dimensional
geolocation fields, which represent longitude and latitude. Since NCL does not automatically
associate SI_12km_NH_18V_DAY with these two geolocation fields, users should specify the associations
with statements, starting with nh18vday@lat2d and nh18vday@lon2d. NCL will recognize the lat2d and
lon2d attributes and associate the data variable with geolocation variables.

gsn_csm_contour_map_polar() draws a plot over a polar stereographic map, as shown in Figure 8. The
unabridged code is explained in Appendix 11.2.3.

May 22, 2009 TR THG 2009-05-22.v1

Page 9 of 39

Figure 8. NCL contour plot over a polar stereographic map

5.3.3.5 Visualize a NetCDF-4 Classic Model–compliant HDF5 File that has 2-D Coordinate Variables

This section explains how to draw a plot when an HDF5 file has two-dimensional longitude and
latitude. To accomplish this, the file must have two additional datasets representing longitude and
latitude. In Figure 9, lon and lat are variables containing real coordinate values.

load “$NCARG_ROOT/lib/ncarg/nclex/gsun/gsn_code.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin
 cdf_file = addfile("AMSR_E_L3_SeaIce12km_B02_20020619_flatten.nc", "r")
 nh18vday = cdf_file->SI_12km_NH_18V_DAY(:,:)

May 22, 2009 TR THG 2009-05-22.v1

Page 10 of 39

 nh18vday@lat2d = cdf_file->lat
 nh18vday@lon2d = cdf_file->lon

 xwks = gsn_open_wks("pdf","AE_SI12.north.dailyavgt")
 plot = gsn_csm_contour_map_polar(xwks,nh18vday,resources)
end

Figure 9. NCL code using two-dimensional longitude and latitude in a netCDF-4 classic model–compliant HDF5
file

Basically, Figure 9 is the same as Figure 7 except that the code in Figure 9 uses both lon and lat,
which exist in the HDF5 file. The data variable and the two coordinate variables should have the same
number of elements because coordinate variables provide longitude and latitude for each element in
the data variable. Since we can provide arbitrary longitude and latitude values with this method, we
believe that NCL can draw a plot from all kinds of projections.

6 GrADS

6.1 Overview

The Grid Analysis and Display System (GrADS) is an interactive desktop tool that is used for easy
access, manipulation, and visualization of earth science data. In this section we explain how to read
and visualize HDF4 and HDF5 files.

6.2 Installation

Since GrADS does not support netCDF-4, GrADS cannot read netCDF-4-compliant HDF5 files. With
some undocumented hacks, users can make GrADS link with netCDF-4 rather than netCDF-3. For this
netCDF-4 hack, users cannot use the precompiled binary. This hack is explained in Appendix 11.1.2.

6.3 How to Use

6.3.1 Introduction

Three methods are provided to read netCDF or HDF4 SDS files: sdfopen, xdfopen, and open.

After reading a file, data can be manipulated and visualized in many ways using the display
command. One can change visualization settings using set lon, set lat, set gxout, and so on. Like
NCL, GrADS can both draw plots on the screen and export them to a file.

6.3.1.1 sdfopen

The sdfopen command accepts the actual file name. Then, GrADS recognizes longitude and latitude
from attributes and reads all values from the data fields. GrADS can recognize missing values from
attributes and can detect date and time from human-readable strings such as “hours since 1995-01-
01 00:00:00”.

This method is the most convenient, but the target file should conform to COARDS conventions (20).
For example, HDF-EOS2 grid files cannot be opened using sdfopen because the values of longitude
and latitude are not explicitly defined.

May 22, 2009 TR THG 2009-05-22.v1

Page 11 of 39

6.3.1.2 xdfopen

When a file does not conform to COARDS conventions, one can use the xdfopen command. This
command requires a user-defined description file. The xdfopen command receives the description file
name as an argument. Note that xdfopen does not receive the actual data file name because that is
specified in the description file.

Figure 10 shows part of a typical description file used by the xdfopen command to open an HDF-EOS2
grid file.

DSET filename
XDEF XDim:grid1 72 LINEAR 2.5 5
YDEF YDim:grid1 28 LINEAR -67.5 5
VARS 1
var1=>variable1
ENDVARS

Figure 10. A typical description file to read an HDF-EOS2 grid file

The first line of the description file specifies the actual HDF-EOS2 file name. Then, XDEF and YDEF
define longitude and latitude, respectively. Both XDEF and YDEF receive five arguments. The first
argument is the actual dimension name in the file. The HDF-EOS2 grid file does not store latitude and
longitude as variables. It only defines dimension names, which are normally XDim and YDim followed
by a colon and the enclosing grid name. These names can be easily fetched with hdp, a command-line
dumper utility of HDF4, or HDFView (21). In this example, XDim:grid1 is the actual dimension name
defined in the file. The second argument specifies the size of the dimension, and users can easily get
this information from hdp or HDFView. This is explained in Appendix 11.1.2.2.

The remaining three arguments, LINEAR 2.5 5, mean that the longitude starts from 2.5 degrees and
the values increase by a step size of 5. Since these arguments are not explicitly defined in the file,
users need to get these values from the projection code and related attributes inside the HDF-EOS2
file.

If longitude and latitude values are not linear, one needs to use LEVELS followed by a list of actual
values instead of LINEAR. In addition, using XDEF and YDEF is not proper if longitude and latitude are
two-dimensional. This is explained in Section 6.3.2.4.

The remaining part defines variables. The line starting with var1 defines one variable, variable1,
from a field, var1, in the file. One should be aware that defining XDEF and YDEF correctly is crucial to
drawing correct plots because GrADS retrieves each element of variable1 from user-defined XDEF and
YDEF options.

6.3.1.3 open

If a file does not conform to COARDS conventions and xdfopen fails, one can use the open command.
Like xdfopen, open also requires a description file. The description file is very similar although the
description file for open requires more settings. Since the open command supports the PDEF option,
two-dimensional longitude and latitude can be handled. The detailed explanation and an example are
provided in Section 6.3.2.4.1.

May 22, 2009 TR THG 2009-05-22.v1

Page 12 of 39

6.3.2 Examples

In this section, we explain how to visualize an HDF4 SDS (6.3.2.1), HDF-EOS2 (6.3.2.2, 6.3.2.4) and
netCDF-4 classic model–compliant HDF5 (6.3.2.3, 6.3.2.5).

6.3.2.1 Visualize an HDF4 SDS

The variable for ocean wind fields from the SSMI instrument has enough metadata for GrADS to
recognize it; it has longitude and latitude dimension scales, unit, and fill value. To read this file,
sdfopen is sufficient.

Since this file has time dimension as well as longitude and latitude, several plots, based on the time
dimension, can be animated. The following is a full list of commands that read the file and draw
animated plots. When GrADS shows the prompt, type these statements:

$ grads
ga> sdfopen atlas.ssmi.ver02.level3.5_5day.s950103.hdf
ga> set lon -180 180
ga> set t 1 73
ga> set looping on
ga> display u10m ; v10m ; sqrt(u10m * u10m + v10m * v10m)

Figure 11. GrADS code to plot an HDF4 SDS

The statements set t 1 73 and set looping on are used for animation. The t implies the time
dimension, and the output will display an animation containing 73 plots. The display command
actually draws an animation. Both u10m and v10m are variable names defined in the file. The last
expression, sqrt(…), is optional; GrADS colorizes the vector according to the value of this field. Figure
12 shows the first frame of the animation.

May 22, 2009 TR THG 2009-05-22.v1

Page 13 of 39

Figure 12. GrADS plot of ocean wind fields on January 3, 1995

6.3.2.2 Visualize an HDF-EOS2 File that has 1-D Coordinate Variables

As explained in Section 6.3.1.1, sdfopen cannot be used to visualize HDF-EOS2 grid data. Users can
use the xdfopen command instead. Figure 13 shows an example of the description file.

DSET AMSR_E_L3_RainGrid_B05_200707.hdf
TITLE AE_RnGd
OPTIONS YREV
XDEF XDim:MonthlyRainTotal_GeoGrid 72 LINEAR 2.5 5
YDEF YDim:MonthlyRainTotal_GeoGrid 28 LINEAR -67.5 5
VARS 1
RrLandRain=>RrLandRain Rain rate derived monthly rain total over land.
ENDVARS

Figure 13. Description file for rainfall accumulation over land in July 2007

As explained in Section 6.3.1.2, HDF-EOS2 files define dimension names. In this example,
XDim:MonthlyRainTotal_GeoGrid is one actual dimension name defined in the file.

OPTIONS YREV indicates that the latitude has the reverse order. LINEAR -67.5 5 in the YDEF statement
means the first data was measured at -67.5 and the next data was measured at -62.5, which means
the location goes from south to north. However, the actual data in the file were measured from north
to south, and this option provides this information.

May 22, 2009 TR THG 2009-05-22.v1

Page 14 of 39

We named this description file AE_RnGd.xdf. Under the GrADS environment, that file name is passed
as the argument to xdfopen, as in the following example.

$ grads
ga> xdfopen AE_RnGd.xdf
ga> set lon -180 180
ga> set gxout shaded
ga> display RrLandRain
ga> draw title Total Rain Rate over Land in July 2007

Figure 14. GrADS code to plot grid data from an HDF-EOS2 file

set gxout shaded makes GrADS draw a shaded plot. The display command shows a visualization,
which is represented in Figure 15.

Figure 15. GrADS plot of rain rate over land in July 2007

6.3.2.3 Visualize a NetCDF-4 Classic Mode–compliant HDF5 File that has 1-D Coordinate Variables

Since the HDF4-to-HDF5 converter calculates and writes longitude and latitude from HDF-EOS2
projection code and related attributes, sdfopen can be used, and tedious tasks specifying XDEF and
YDEF can be avoided.

However, the generated file does not conform to the netCDF-4 classic model due to groups. To
conform to the classic model, the generated file should be manually flattened as we show in
Appendix 11.1.1. After the modification, sdfopen can directly open the netCDF-4-compliant HDF5 file.
Be aware that the current GrADS release cannot handle a netCDF-4 classic model–compliant HDF5
file. Check Appendix 11.1.2 for more details.

$ grads
ga> sdfopen AMSR_E_L3_RainGrid_B05_200707_flatten.nc
ga> set lon -180 180

May 22, 2009 TR THG 2009-05-22.v1

Page 15 of 39

ga> set gxout shaded
ga> display RrLandRain
ga> draw title Total Rain Rate over Land in July 2007

Figure 16. GrADS code to plot an HDF5 dataset from a netCDF-4 classic model–compliant HDF5 file

The visualized plot is the same as in Figure 15.

6.3.2.4 Visualize an HDF-EOS2 File that has 2-D Coordinate Variables

If longitude and latitude values cannot be represented as one-dimensional arrays, XDEF and YDEF are
not enough. Two-dimensional longitude and latitude are supported through the PDEF command.

6.3.2.4.1 Using PDEF BILIN

For the PDEF option, open should be used instead of sdfopen or xdfopen as Section 6.3.1.3 explained.
Figure 17 shows an example of a description file.

DSET AMSR_E_L3_SeaIce12km_B02_20020619.hdf
DTYPE hdfsds
UNDEF 0 _FillValue
PDEF 608 896 BILIN STREAM BINARY bilin_file
XDEF 360 linear -179.5 1
YDEF 180 linear -89.5 1
ZDEF 1 levels 0
TDEF 1 linear 00Z19jun2002 1mo
VARS 1
SI_12km_NH_SNOWDEPTH_5DAY=>snow 0 y,x SI_12 Snow Depth
ENDVARS

Figure 17. Description file for the polar stereographic projection

The description file has UNDEF, ZDEF, TDEF that represent undefined values, Z-axis, and time axis,
respectively, because the open command requires these definitions. In this example, ZDEF and TDEF
are meaningless because the actual data do not have Z-axis and time axis. The fill value is undefined
in the original file. To generate a plot that can correctly describe the distribution the physical field, fill
value is set to 0.

PDEF BILIN provides a way for GrADS to obtain geolocation information as lon2d and lat2d do in NCL
(Section 5.3.3.4). However, the geolocation information should be stored in an additional file, and the
file name is passed as an argument to PDEF BILIN. In this example, bilin_file is the name of the
additional file. This additional file specifies the horizontal array indices of the data field measured at
each grid point defined by XDEF and YDEF.

In Figure 17, XDEF and YDEF define a 360 × 180 horizontal grid. Shown in Figure 18(a), each grid point
is represented as a rectangle; the latitude and longitude at each grid point are also specified. Figure
18(b) shows the data array index with the corresponding latitude and longitude, which can be
obtained from the EOS2 file. The data array index for each grid point shown in Figure 18(a) needs to
be mapped from the information shown in Figure 18(b). For example, the rectangle at the third
column and the second row (88.5˚S, 177.5˚W) represents the location of the data element of which
the index is [2][4](Figure 18(b)). The data array index for each grid point defined by XDEF and YDEF is
then stored in the bilin_file. GrADS draws the plot based on the array index.

May 22, 2009 TR THG 2009-05-22.v1

Page 16 of 39

(a) Part of geolocations defined by XDEF and YDEF

(b) Part of geolocations where elements of the data field were measured

Figure 18. Geolocations defined by XDEF and YDEF, and geolocations where data were measured

Calculating array indices may not be straightforward for some projections. If the file is an HDF-EOS2
grid file, however, users can exploit the HDF-EOS2 API function GDll2ij(). This function accepts the
projection code, related parameters, and longitude and latitude, and it returns indices for the X
dimension and Y dimension corresponding to the given longitude and latitude. Among the API inputs,
the projection code and related parameters are defined in the HDF-EOS2 file. Longitude and latitude

87.5˚S

89.5˚S

88.5˚S

179.5˚W 178.5˚W 177.5˚W

XDEF

YD
EF

…

87.5˚S

89.5˚S

88.5˚S

179.5˚W 178.5˚W 177.5˚W

X dimension (longitude)

Y
d

im
en

si
o

n
 (l

at
it

u
d

e)

88.0˚S

89.0˚S

179.0˚W 178.0˚W …

[0][0] [0][1] [0][2] [0][3] [0][4]

[1][0] [1][1] [1][2] [1][3] [1][4]

[2][0] [2][1] [2][2] [2][3] [2][4]

[3][0] [3][1] [3][2] [3][3] [3][4]

[4][0] [4][1] [4][2] [4][3] [4][4]

May 22, 2009 TR THG 2009-05-22.v1

Page 17 of 39

are defined by XDEF and YDEF in the description file. Given the XDEF and YDEF defined in Figure 17,
Figure 19 shows the pseudo-code used to generate the file that BILIN accepts.

i = array[180 * 360]
j = array[180 * 360]
for lon = -89.5 (step 1, iterates 180 times)
 for lat = -179.5 (step 1, iterates 360 times)
 (ival, jval) = GDll2ij(projection, related params, lon, lat)
 i.add(ival)
 j.add(jval)
write_to_file i
write_to_file j
write_to_file 0 /* wind rotation */

Figure 19. Pseudo-code generating the file that BILIN requires

This generated file is the bilin file described previously. With the generated file, the description file
can correctly associate scientific data with coordinate variables. Type the following commands at the
GrADS prompt in order to draw a shaded plot with the description file for a polar stereographic
projection.

$ grads
ga> open AE_SI12.bilin.xdf
ga> set lon -180 180
ga> set lat 30 90
ga> set mproj nps
ga> set gxout shaded
ga> display snow
ga> draw title Five-day Snow Depth at June 19 2002

Figure 20. GrADS code using two-dimensional longitude and latitude

set mproj nps indicates that the plot is drawn over a north polar stereographic map. GrADS 2.0a2
gave an error saying that HDF SDS was not fully implemented. This problem disappeared in GrADS
2.0a3, and we could draw the Snow Depth image shown in Figure 21.

May 22, 2009 TR THG 2009-05-22.v1

Page 18 of 39

Figure 21. GrADS plot over a polar stereographic map

We believe GrADS can handle all types of projections in HDF-EOS2 grid, as long as the user provides
the file that BILIN needs. For swath, this can be more difficult because HDF-EOS2 does not have a
function similar to GDll2ij() to calculate the index for swath data. Users need to interpolate EOS
Swath to regular gridded data to obtain the array index for each grid point. The discussion of this
topic is beyond the scope of this document.

For more information about using the BILIN option to draw a plot with GrADS, please read Appendix
11.1.2.2.

May 22, 2009 TR THG 2009-05-22.v1

Page 19 of 39

6.3.2.4.2 A Possible Alternative Method

Besides BILIN, GrADS provides a convenient method to generate plots for files having the north polar
stereographic projection or the south polar stereographic projection. Several parameters are
required by GrADS to generate plots for files having these projections.

However, this method may not be straightforward for handling HDF-EOS2 files because HDF-EOS2
and GrADS use polar stereographic projection differently. As of this writing, the authors still cannot
draw the correct plot with this method.

6.3.2.5 Visualize a NetCDF-4 Classic Model–compliant HDF5 File that has 2-D Coordinate Variables

This case is very similar to the case described in Section 6.3.2.4.1 because PDEF BILIN is not format-
dependent. The file that the BILIN option requires is exactly the same as the one used in Section
6.3.2.4.1. However, the description file needs to be slightly changed as shown in Figure 22.

DSET AMSR_E_L3_SeaIce12km_B02_20020619.hdf
DTYPE netcdf
UNDEF 0 _FillValue
PDEF 608 896 BILIN STREAM BINARY bilin_file
XDEF 360 linear -179.5 1
YDEF 180 linear -89.5 1
ZDEF 1 levels 0
TDEF 1 linear 00Z19jun2002 1mo
VARS 1
SI_12km_NH_SNOWDEPTH_5DAY=>snow 0 y,x SI_12 Snow Depth
ENDVARS

Figure 22. Description file for the polar stereographic projection

Compared with Figure 17, only DTYPE is different. Opening this description file with the open
command produces the same plot as shown in Figure 21.

7 PyHDF

7.1 Overview

PyHDF is a Python interface to the HDF4 library. It covers most functions of Scientific Data Sets (SD
API), Vdatas (VS API), and Vgroups (V API). PyHDF is not merely a wrapper of HDF4 C API. PyHDF
exploits Python features such as the OOP concept and exception handling to make it more
convenient.

At the time this document was written, the latest version was 0.7-3 released in July 2005, and it was
built with HDF4.2r1. However, it worked with HDF4.2r3.

7.2 Installation

Like other Python libraries, this library comes with the setup.py script. Users may need to set
include_dirs and library_dirs for HDF4. Although PyHDF was developed for HDF4.2r1, we could
not find any problems with HDF4.2r3. If HDF4 was not built with SZIP, the libraries option needs to be
changed.

May 22, 2009 TR THG 2009-05-22.v1

Page 20 of 39

PyHDF 0.7-3 requires the Numeric package that the numpy package (22) replaced. PyHDF was
successfully built with Numeric-24-2.

7.3 How to Use

PyHDF is similar to HDF4 C API in that most functions have similar names and functionality. Although
most function names are the same as or similar to corresponding C APIs, they are categorized into a
few classes. For example, the SD API is divided into five Python classes, including SD, SDS, SDim and
SDAttr. Figure 23 shows part of a program that creates a Scientific Data Set.

from pyhdf.SD import *
import Numeric

data = Numeric.array(((1, 2, 3),
 (4, 5, 6)), Numeric.Int16)

Create an HDF file
sd = SD("hello.hdf", SDC.WRITE | SDC.CREATE)

Create a dataset
sds = sd.create("sds1", SDC.INT16, (2, 3))

Fill the dataset with a fill value
sds.setfillvalue(0)

Set dimension names
dim1 = sds.dim(0)
dim1.setname("row")
dim2 = sds.dim(1)
dim2.setname("col")

Assign an attribute to the dataset
sds.units = "miles"

Write data
sds[:] = data

Close the dataset
sds.endaccess()

Flush and close the HDF file
sd.end()

Figure 23. Python code creating an HDF4 SDS with PyHDF interface

The code in Figure 23 creates an HDF4 file and an SDS object in it. This code is straightforward to
those who are familiar with HDF4. As Table 2 shows, many PyHDF interfaces are equivalent to HDF4 C
interfaces.

Table 2. PyHDF API and equivalent HDF4 C API

PyHDF API Equivalent HDF4 C API

SD (constructor) SDstart

SD.create SDcreate

May 22, 2009 TR THG 2009-05-22.v1

Page 21 of 39

SDS.setfillvalue SDsetfillvalue

SDS.dim SDgetdimid

SDim.setname SDsetdimname

SDS.endaccess SDendaccess

SD.end SDend

The statement starting with sd = SD() creates an SD instance, and it is equivalent to the SDstart()
function. The SD class implements functions applied to a file such as creating a file and a global
attribute. The SD interface identifier that the SDstart() API returns does not exist because the SD
class of PyHDF encapsulates the data and possible operations.

The statement starting with sds.units sets an attribute to the specific SDS object. This is equivalent
to the SDsetattr() C function. The next statement, sds[:] = data, writes the actual values to the file
as SDwritedata() does.

Both V API and VS API are divided into a few classes and are encapsulated like SD API. This eliminates
the use of an identifier, and may improve the readability.

8 GDL

8.1 Overview

GNU Data Language (GDL) is a free clone of Interactive Data Language (IDL), which is an interpreted
language used to manipulate scientific data and draw plots. GDL partially supports both HDF4 and
HDF5. Additionally, it supports netCDF.

8.2 Installation

Building GDL from source code requires PLplot (23) and GNU Scientific Library (GSL) (24). In particular,
building PLplot was not easy, and it generated two errors that required manual fixes. First, it could
not detect correct paths for Python executables, libraries and include files. We had to manually
specify them. Second, when installing PLplot, a missing .mod files error occurred. We had to manually
copy three .mod files from the bindings/f95 directory.

Installing GDL requires special attention if HDF4 or HDF5 is built with SZIP. In this case, the configure
script will fail. Users have to patch the configure script to link the HDF4 or HDF5 library with SZIP.

If netCDF-4 built with HDF5 is used, the configure script should be fixed further because GDL
assumes that netCDF does not depend on HDF5, which is no longer true if netCDF-4 is built with
HDF5. In the configure.in file, netCDF-4 rule should be located after HDF5 rule. Also, the user should
add –lhdf5_hl to LIBS for HDF5 rule because netCDF-4 uses them.

Since GDL uses HDF5 1.6 API, H5_USE_16_API should be defined for the preprocessor if it is inked with
HDF5 1.8 or later.

May 22, 2009 TR THG 2009-05-22.v1

Page 22 of 39

8.3 How to Use

Since GDL has only a thin abstraction layer, it exposes format-specific differences to users. For
example, all HDF4-related function names start with HDF while all HDF5-related function names start
with H5. Both HDF4 and HDF5 are partially supported.

8.3.1 Read an HDF4 File

Figure 24 is an example of code that reads data from an HDF4 SDS and stores all values in the tbocean
variable. These statements can be typed under the GDL environment.

FILE_NAME="AMSR_E_L3_RainGrid_B05_200707.hdf"
SDS_NAME="TbOceanRain"

// Open an HDF4 file and an SDS in it
sd_id = HDF_SD_START(FILE_NAME, /read)
sds_index = HDF_SD_NAMETOINDEX(sd_id, SDS_NAME)
sds_id = HDF_SD_SELECT(sd_id, sds_index)

// Read data from the SDS
HDF_SD_GETDATA, sds_id, tbocean

// Close the SDS and the file
HDF_SD_ENDACCESS, sds_id
HDF_SD_END, sd_id

Figure 24. GDL code reading data from an SDS in an HDF4 file

One GDL function is mapped to one HDF4 C API as the above example shows. For example,
HDF_SD_START() is equivalent to SDstart(). For more detailed information, refer to the HDF4
reference manual.

8.3.2 Read an HDF5 File

To read an HDF5 file, a different set of functions that resemble HDF5 C API should be used. Figure 25
shows code that opens an HDF5 file and reads all values in a dataset. Although this is equivalent to
Figure 24, the code is very different because the file formats are different.

FILE_NAME="AMSR_E_L3_RainGrid_B05_200707.h5"
DATASET_NAME="/MonthlyRainTotal_GeoGrid/Data Fields/TbOceanRain"

// Open an HDF5 file and a dataset in it
file_id = H5F_OPEN(FILE_NAME)
dset_id = H5D_OPEN(file_id, DATASET_NAME)

// Read data from the dataset
tbocean = H5D_READ(dset_id)
space_id = H5D_GET_SPACE(dset_id)
dimensions = H5S_GET_SIMPLE_EXTENT_DIMS(space_id)

// Close the dataset and the file
H5S_CLOSE, space_id
H5D_CLOSE, dset_id
H5F_CLOSE, file_id

May 22, 2009 TR THG 2009-05-22.v1

Page 23 of 39

Figure 25. GDL code reading data from a dataset in an HDF5 file

Similar to the HDF4 interface, one GDL function is mapped to one HDF5 C API, which means that
users need to know how to use HDF5 C API.

8.3.3 Draw a Plot

IDL provides functions such as MAP_SET for mapping points on the earth’s surface, but GDL does not
implement this, as of June 2008. GDL can draw contours and surfaces, but it lacks the ability to shade
surfaces.

After reading data from a file by using the code shown in either Figure 24 or Figure 25, a contour can
be drawn by the following command:

contour,tbocean

Figure 26 shows the result of the above command.

Figure 26. GDL contour plot of rain rate over land in July 2007

The result is not very readable due to the lack of the earth’s surface and shading.

May 22, 2009 TR THG 2009-05-22.v1

Page 24 of 39

9 GDAL

9.1 Overview

Geospatial Data Abstraction Library (GDAL) is a translator library for raster geospatial data formats.
As the name implies, GDAL has an abstraction layer that hides format-specific details, which means
there is only one GDAL API regardless of file format. For example, one of the following — an HDF4
Vdata, an HDF4 SDS, an HDF4 Vgroup, an HDF5 dataset or an HDF5 group — is mapped to a
GDALDataset object.

9.2 Installation

A compile error occurred while building GDAL 1.5.2, but this is a known problem. A patch (25) is
available, and, we hope this error will not occur in the next release.

GDAL 1.5.2 assumes HDF5 1.6 API; so, H5_USE_16_API should be defined if HDF5 1.8 or later is used.

9.3 How to Use

A GDALDataset object represents one HDF4 or HDF5 object. Although the term may cause confusion
for HDF4 and HDF5 users, it represents HDF4 Vgroups and HDF5 groups as well as HDF4 Vdata, HDF4
SDS and HDF5 datasets.

Since GDAL is written in C++, information provided here will be explained in C++. This section explains
how to call some important functions. A complete program showing all information in a file is
available in Appendix 11.2.4.

Although examples below show how to use GDAL to handle an HDF5 file, handling HDF4 files is very
similar due to GDAL’s abstraction layer.

9.3.1 Open a File or an Object

The GDALOpen() function opens a file as the following example shows.

GDALDataset *ds = (GDALDataset *)
 GDALOpen("hdffile1.h5", GA_ReadOnly);

The first argument specifies an HDF4 or HDF5 file, but it can also represent a specific dataset. For
instance, if the following string is passed as the first argument, GDAL opens the HDF5 dataset
dataset1 in the HDF5 group grid1 in the HDF5 file hdffile1.h5. HDF5:\ specifies that this is an HDF5
file.

"HDF5:\" hdffile1.h5\"://grid1/dataset1"

The above string can be fetched by calling the GetMetadata() method as Section 9.3.3 explains.

9.3.2 Retrieve Attributes

GDALDataset can have metadata as an HDF5 object can have attributes. The GetMetadata() method
returns a list of metadata. Unlike HDF4 and HDF5, GDAL categorizes metadata, and GetMetadata()

May 22, 2009 TR THG 2009-05-22.v1

Page 25 of 39

takes one argument that specifies the domain. Since all attributes in the file are stored in the default
domain, an empty string can be passed as the argument.

char **metadata = poDataset->GetMetadata("");

Each string is formatted as “Name=Value” and null-terminated. If an attribute is not of string type,
values are converted into a string.

9.3.3 Open Child Objects

In GDAL, the list of child objects is merely one category of metadata. GetMetadata(), introduced in
Section 9.3.2, can be used to retrieve the list of child objects. The only difference is that the first
argument should be “SUBDATASETS”. This is a predefined domain for child objects.

char **metadata = poDataset->GetMetadata("SUBDATASETS");

 Assuming that hdffile1.h5 has two datasets in the grid1 group, the returned list looks like the
following.

SUBDATASET_0_NAME=HDF5:"hdffile1.h5"://grid1/dataset1
SUBDATASET_0_DESC=[28x72] //grid1/dataset1 (32-bit floating-point)
SUBDATASET_1_NAME=HDF5:"hdffile1.h5"://grid1/dataset2
SUBDATASET_1_DESC=[28x72] //grid1/dataset2 (32-bit floating-point)

As explained in Section 9.3.1, GDALOpen() can open a specific object if the first argument indicates one
dataset. A value whose name is SUBDATASET_*_NAME can be the first argument.

9.3.4 Read Data

A GDALDataset object corresponding to an HDF4 SDS or an HDF5 dataset contains one GDALRasterBand
object. The GetRasterBand() method returns one GDALRasterBand object.

After getting a GDALRasterBand object, one can read or write values by using the RasterIO() method.
The following is a routine that reads all values in the dataset given by the poDataset variable. After
executing the following code, the buffer will obtain the data stored in the HDF file.

int xsize = poDataset->GetRasterXSize();
int ysize = poDataset->GetRasterYSize();
GDALRasterBand *rb = poDataset->GetRasterBand(1);
float *buffer = new float[xsize * ysize];
rb->RasterIO(GF_Read, 0, 0, xsize, ysize, buffer,
 xsize, ysize, GDT_Float32, 0, 0);

10 Conclusion

We explained three applications and two libraries. For NCL and GrADS, we explained how to draw a
plot from an HDF4 file, an HDF-EOS2 file, and a netCDF-4-compliant HDF5 file. Both tools could
handle two-dimensional coordinate variables. GDL can draw a plot, but it has limitations.

May 22, 2009 TR THG 2009-05-22.v1

Page 26 of 39

PyHDF provides a Python interface for the HDF4 library. We showed the similarity between PyHDF
API and HDF4 C API. GDAL has a thick abstraction layer and provides one unified API for both HDF4
and HDF5 files. We showed how to read files, objects and data, and how to retrieve attributes.

11 Appendix

11.1 Additional explanations

11.1.1 NetCDF-4 Classic Model–compliant HDF5 File

Although NCL does not support HDF5, it does support the netCDF-4 classic model. This subsection
explains what the netCDF-4 classic model–compliant HDF5 file is and how to get it from an HDF5 file.

A netCDF-4 classic model–compliant HDF5 file strictly follows the netCDF-3 data model. It has three
requirements. The first requirement is that each dimension of an HDF5 dataset associated with a
dimension dataset and the dimension should be located under the same or ancestor groups of the
HDF5 dataset it is associated with. For this reason, a netCDF-4 classic model–compliant HDF5 file is a
netCDF-4-compliant HDF5 file. The second requirement is that all HDF5 datasets should be defined
only under the HDF5 root group. The third one is that all HDF5 datatypes should be HDF5 atomic
datatypes.

Most netCDF-4-compliant HDF5 files contain several groups, which causes them not to conform to
the netCDF-4 classic model. Although it is tedious, it is not impossible to manually convert a netCDF-
4-compliant HDF5 file with a non-classic model into one with a classic model.

One way to accomplish this is to use ncdump and ncgen, which are part of the netCDF-4 package. One
can use ncdump to generate a text file from a netCDF-4 file, which is shown in Figure 27. With this
text file, one can use any text editor to remove groups, as shown in Figure 28. One may also need to
rename some variables if their names are used in multiple groups. Then, the modified text file can be
used as input to ncgen, which generates a netCDF-4 file. The output of ncgen can be read by NCL.

netcdf AMSR_E_L3_RainGrid_B05_200707 {
 // global attributes:
 :HDFEOSVersion_GLOSDS = "HDFEOS_V2.13" ;
 group: MonthlyRainTotal_GeoGrid {
 ...
 group: Data\ Fields {
 dimensions:
 lon = 72 ;
 lat = 28 ;
 variables:
 float TbOceanRain(lat, lon) ;
 TbOceanRain:HDF4_OBJECT_TYPE = "SDS" ;
 TbOceanRain:HDF4_OBJECT_NAME = "TbOceanRain" ;
 double lon(lon) ;
 lon:long_name = "longitude" ;
 lon:units = "degrees_east" ;
 double lat(lat) ;
 lat:long_name = "latitude" ;
 lat:units = "degrees_north" ;
 float RrLandRain(lat, lon) ;

May 22, 2009 TR THG 2009-05-22.v1

Page 27 of 39

 RrLandRain:HDF4_OBJECT_TYPE = "SDS" ;
 RrLandRain:HDF4_OBJECT_NAME = "RrLandRain" ;
 ...
 }
 }

Figure 27. Textual representation of a netCDF-4 file generated by ncdump

netcdf AMSR_E_L3_RainGrid_B05_200707_flatten {
 dimensions:
 lon = 72 ;
 lat = 28 ;
 variables:
 float TbOceanRain(lat, lon) ;
 TbOceanRain:HDF4_OBJECT_TYPE = "SDS" ;
 TbOceanRain:HDF4_OBJECT_NAME = "TbOceanRain" ;
 double lon(lon) ;
 lon:long_name = "longitude" ;
 lon:units = "degrees_east" ;
 double lat(lat) ;
 lat:long_name = "latitude" ;
 lat:units = "degrees_north" ;
 float RrLandRain(lat, lon) ;
 RrLandRain:HDF4_OBJECT_TYPE = "SDS" ;
 RrLandRain:HDF4_OBJECT_NAME = "RrLandRain" ;
 data:

 TbOceanRain =
 ...
 }

Figure 28. Edited textual representation of a netCDF-4 file

11.1.2 GrADS-related topics

11.1.2.1 Link GrADS with NetCDF-4

This section is only for those who want to build GrADS with netCDF-4. Since GrADS assumes netCDF-
3, linking with netCDF-4 requires a few modifications.

Both netCDF-4 and GrADS define find_dim() and find_var() functions. To resolve the conflict, we
renamed find_dim() and find_var() in the GrADS code.

Another problem is that GrADS assumes that netCDF does not depend on HDF5. While this is true for
netCDF-3, netCDF-4 needs HDF5. The clean solution for this is to edit the configure.in file and
regenerate the configure script. In the configure.in file, we put hdf5_hl and hdf5 in the
dependency list for nc_libs.

11.1.2.2 Retrieve Dimension Names and Sizes using HDFView

This section explains how users can retrieve dimensions associated with the given variable using
HDFView. Both dimension names and dimension sizes are necessary to write a description file used
by xdfopen command.

May 22, 2009 TR THG 2009-05-22.v1

Page 28 of 39

Opening an HDF-EOS2 file shows the hierarchy of the opened file. For example, users will see Figure
29 when the AMSR-E file that contains the rainfall accumulation data is opened.

Figure 29. HDFView when an HDF-EOS2 is opened

To retrieve dimensions associated with RrLandRain variable, the user can click the right button on
RrLandRain variable in the tree and choose “Show Properties”. That command shows detailed
properties of RrLandRain variable as shown in Figure 30.

May 22, 2009 TR THG 2009-05-22.v1

Page 29 of 39

Figure 30. "Show Properties" on a variable

The user can find dimension information from the row marked as “Dimension Size(s)” located in the
middle of the window. The string can be interpreted as follows:

 The size of the first dimension is 28, and its name is YDim:MonthlyRainTotal_GeoGrid.

 The size of the second dimension is 72, and its name is XDim:MonthlyRainTotal_GeoGrid.

Use the above information in the first and the second arguments of XDEF and YDEF in the description
file.

DSET AMSR_E_L3_RainGrid_B05_200707.hdf
...
XDEF XDim:MonthlyRainTotal_GeoGrid 72 LINEAR 2.5 5
YDEF YDim:MonthlyRainTotal_GeoGrid 28 LINEAR -67.5 5
...

Figure 31. Description file for rainfall accumulation over land in July 2007

11.1.2.3 PDEF BILIN Option in GrADS

This section provides more information about the PDEF BILIN option with a concrete example.

Suppose that a data field, Field1, has 3×3 values, and they are measured at (20˚S, 30˚W), (20˚S, 0˚),
(20˚S, 30˚E); (0˚, 30˚W), (0˚, 0˚), (0˚, 30˚E); (20˚N, 30˚W), (20˚N, 0˚), (20˚N, 30˚E).

May 22, 2009 TR THG 2009-05-22.v1

Page 30 of 39

For this data field, one can write a description file containing the following statements:

PDEF 3 3 BILIN STREAM BINARY bilin_file
XDEF 3 LEVELS -30 0 30
YDEF 2 LEVELS -20 20

XDEF and YDEF specify that the rectilinear latitude/longitude grid has 3×2 locations: (20˚S, 30˚W),
(20˚S, 0˚), (20˚S, 30˚E); (20˚N, 30˚W), (20˚N, 0˚), (20˚N, 30˚E). Figure 32 shows this configuration; nine
circles describe where nine elements of Field1 were measured, and six rectangles describe a
rectilinear latitude/longitude grid defined by XDEF and YDEF.

Figure 32. A data field with nine elements and six geolocations defined by XDEF and YDEF

Note that the setting of a rectilinear grid is up to the users, and it may have nothing to do with the
data field.

For each location of the rectilinear latitude/longitude grid, GrADS must know which element of the
data field is related to this location. The related element is specified by its indices for each dimension:
i and j. For this example, the following table shows the values of i and j.

Location i J Reason

20˚S, 30˚W 0 0 Field1[0][0] is related to this location

20˚S, 0˚ 0 1 Field1[0][1] is related to this location

20˚S, 30˚E 0 2 Field1[0][2] is related to this location

20˚N, 30˚W 2 0 Field1[2][0] is related to this location

20˚N, 0˚ 2 1 Field1[2][1] is related to this location

20˚N, 30˚E 2 2 Field1[2][2] is related to this location

20˚N

20˚S

0˚

30˚W 0˚ 30˚E

j

i

[0][0] [0][1] [0][2]

[1][0] [1][1] [1][2]

[2][0] [2][1] [2][2]

May 22, 2009 TR THG 2009-05-22.v1

Page 31 of 39

Then, the file that BILIN needs will contain both six values of i and six values of j, sequentially; that is,
the file will start with 0, 0, 0, 2, 2, 2, 0, 1, 2, 0, 1, 2. After these values, this file should have additional
data for wind rotation values. For more information, refer to
http://www.iges.org/grads/gadoc/pdef.html.

If the rectilinear latitude/longitude grid has a location such as (10˚S, 15˚E), the values of i and j will be
0.5 and 1.5, respectively. For this i and j pair, GrADS does the interpolation using data values from
Field1[0][1], Field1[0][2], Field1[1][1] and Field1[1][2].

Since calculating the value of i and j from a location is difficult in most cases, the user needs to
consider using an HDF-EOS2 API, GDll2ij(), if the file is an HDF-EOS2 grid file. This function returns i
and j based on a location, a projection code and related attributes. One can easily read the projection
code and related attributes using HDF-EOS2 API (26) (27).

11.2 Unabridged code

11.2.1 Visualize an HDF4 SDS with NCL

This code is an unabridged version of Figure 2. It reads and visualizes ocean wind fields in an HDF4
SDS.

load "$NCARG_ROOT/lib/ncarg/nclex/gsun/gsn_code.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin
 cdf_file = addfile("atlas.ssmi.ver02.level3.5_5day.s950103.hdf", "r")
 u = cdf_file->u10m(0,:,:)
 v = cdf_file->v10m(0,:,:)

 xwks = gsn_open_wks("pdf","ssmi")

 resources = True
 resources@vcGlyphStyle = "CurlyVector"
 resources@tiMainString = "Ocean Wind Fields at Jan 3, 1995"

 ; skip some data to prevent too dense vector
 resources@vcRefLengthF = 0.05
 resources@vcMinDistanceF = 0.015

 resources@tiMainFont = 21
 resources@tiXAxisFont = 21
 resources@tiYAxisFont = 21
 resources@lbLabelFont = 21
 resources@tmXBLabelFont = 21
 resources@tmYLLabelFont = 21
 resources@tmXTLabelFont = 21
 resources@gsnStringFont = 21

 plot = gsn_csm_vector_map_ce(xwks,u,v,resources)

 delete(plot)
 delete(u)
 delete(v)

http://www.iges.org/grads/gadoc/pdef.html

May 22, 2009 TR THG 2009-05-22.v1

Page 32 of 39

 delete(resources)
end

11.2.2 Visualize an HDF-EOS2 File with NCL that has 1-D Coordinate Variables

The following code is an unabridged version of Figure 4.

load "$NCARG_ROOT/lib/ncarg/nclex/gsun/gsn_code.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin
 cdf_file = addfile("AMSR_E_L3_RainGrid_B05_200707.he2","r")

 tbocean = cdf_file->TbOceanRain_MonthlyRainTotal_GeoGrid(:,:)
 tbocean@units = "Unit mm"
 tbocean@_FillValue = -1
 rrland = cdf_file->RrLandRain_MonthlyRainTotal_GeoGrid(:,:)
 rrland@units = "Unit mm"
 rrland@_FillValue = -1

 xwks = gsn_open_wks("pdf","AE_RnGd.hdfeos2")

 resources = True
 resources@gsnDraw = False
 resources@gsmFrame = False
 resources@cnLinesOn = False
 resources@cnFillOn = True
 resources@cnMonoFillPattern = True
 resources@cnMonoFillColor = False
 resources@cnInfoLabelOn = False
 resources@mpFillOn = False

 resources@pmLabelBarDisplayMode = "Always"
 resources@lbOrientation = "vertical"

 resources@tiMainFont = 21
 resources@tiXAxisFont = 21
 resources@tiYAxisFont = 21
 resources@lbLabelFont = 21
 resources@tmXBLabelFont = 21
 resources@tmYLLabelFont = 21
 resources@tmXTLabelFont = 21
 resources@gsnStringFont = 21
 resources@tiMainFontHeightF = 0.015
 resources@tiXAxisFontHeightF = 0.01
 resources@tiYAxisFontHeightF = 0.01
 resources@lbLabelFontHeightF = 0.01
 resources@tmXBLabelFontHeightF = 0.01
 resources@tmYLLabelFontHeightF = 0.01
 resources@tmXTLabelFontHeightF = 0.01
 resources@gsnStringFontHeightF = 0.01

 resources@cnLevelSelectionMode = "ManualLevels"
 resources@cnLevelSpacingF = 50

May 22, 2009 TR THG 2009-05-22.v1

Page 33 of 39

 resources@cnMinLevelValF = 50
 resources@cnMaxLevelValF = 600

 resources@cnMissingValFillPattern = 0
 resources@cnMissingValFillColor = 17

 ; define color map
 cmap = (/ (/360.,0.,1./),(/360.,0.,0./), \
 (/220, 0.05, 1.0/), (/220, 0.2, 1.0/), \
 (/220, 0.3, 1.0/), (/220, 0.4, 1.0/), \
 (/220, 0.5, 1.0/), (/220, 0.6, 1.0/), \
 (/220, 0.7, 1.0/), (/220, 0.8, 0.9/), \
 (/220, 0.8, 0.8/), (/220, 0.8, 0.7/), \
 (/220, 0.8, 0.6/), (/220, 0.8, 0.5/), \
 (/220, 0.8, 0.4/), (/220, 0.8, 0.3/), \
 (/220, 0.9, 0.2/), (/60, 0.3, 1.0/) /)
 rgbcmap = hsvrgb(cmap)
 gsn_define_colormap(xwks,rgbcmap)

 ; Brightness temperature derived monthly rain total over ocean
 resources@tiMainString = "AE_RnGd.he2 - Total Rain Rate over Ocean in July
2007"
 plot = gsn_csm_contour_map_ce(xwks,tbocean,resources)

 ; create label bar for fill value
 lbres = True
 lbBoxCount = 1
 lbres@vpWidthF = 0.15
 lbres@vpHeightF = 0.04
 lbres@lbBoxMajorExtentF = 0.60
 lbres@lbFillColors = hsvrgb((/ (/60, 0.3, 1.0/), (/60, 0.3, 1.0/) /))
 lbres@lbMonoFillPattern = True
 lbres@lbLabelFont = 21
 lbres@lbLabelFontHeightF = 0.04
 lbres@lbLabelJust = "CenterLeft"
 lbid = gsn_create_labelbar(xwks,1,(/"fill value"/),lbres)

 ; draw annotation containing label bar
 amres = True
 amres@amJust = "TopRight"
 amres@amParallelPosF = 0.5
 amres@amOrthogonalPosF = -0.5
 annoid = gsn_add_annotation(plot,lbid,amres)

 draw(plot)
 frame(xwks)

 ; Rain rate derived monthly rain total over land
 resources@tiMainString = "AE_RnGd.he2 - Total Rain Rate over Land in July
2007"
 plot = gsn_csm_contour_map_ce(xwks,rrland,resources)

 annoid = gsn_add_annotation(plot,lbid,amres)

 draw(plot)

May 22, 2009 TR THG 2009-05-22.v1

Page 34 of 39

 frame(xwks)

 delete(plot)
 delete(tbocean)
 delete(rrland)
 delete(resources)
end

11.2.3 Visualize an HDF-EOS2 File with NCL that has 2-D Coordinate Variables

The following code is an unabridged version of Figure 7.

load "$NCARG_ROOT/lib/ncarg/nclex/gsun/gsn_code.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin

 cdf_file = addfile("AMSR_E_L3_SeaIce12km_B02_20020619.he2", "r")

 nh18vday = cdf_file->SI_12km_NH_18V_DAY_NpPolarGrid12km(:,:)
 nh18vday@lon2d = cdf_file->GridLon_NpPolarGrid12km
 nh18vday@lat2d = cdf_file->GridLat_NpPolarGrid12km
 nh18vday@unit = "K"

 xwks = gsn_open_wks("pdf","AE_SI12.north.dailyavgt.hdfeos2")

 setvalues NhlGetWorkspaceObjectId()
 "wsMaximumSize" : 500000000
 end setvalues

 resources = True

 gsn_define_colormap(xwks,"wgne15")

 resources@gsnPolar = "NH"
 resources@mpMinLatF = 30
 resources@mpFillOn = False
 resources@cnFillOn = True
 resources@cnLinesOn = False
 resources@gsnSpreadColors = True
 resources@gsnSpreadColorStart = 2
 resources@gsnSpreadColorEnd = -3

 resources@tiMainString = "18.7 GHz vertical, daily average Tb (x10) at June
19 2002"

 ; [1625, ..., 3058] 4186 fillers
 resources@cnLevelSelectionMode = "ManualLevels"
 resources@cnLevelSpacingF = 200
 resources@cnMinLevelValF = 1500
 resources@cnMaxLevelValF = 3500
 plot = gsn_csm_contour_map_polar(xwks,nh18vday,resources)

 delete(plot)

May 22, 2009 TR THG 2009-05-22.v1

Page 35 of 39

 delete(nh18vday)
 delete(resources)
end

11.2.4 A Complete Program Built on GDAL

This program recursively dumps all datasets in a file. Although this program is not very practical, this
sample shows how users can call GDAL APIs.

#include "gdal_priv.h"
#include <iostream>
#include <cstdlib>
#include <string>

#define suicide() _suicide(__FILE__, __LINE__)

#define DUMP(expr) std::cout << dump::indent() << expr << std::endl
#define DUMP_PUSH(expr) do { std::cout << dump::indent() << expr;
dump::push(); } while (false)
#define DUMP_POP() dump::pop()
namespace dump
{
 static int level = 0;
 static std::string indentation;
 static const char *indent()
 {
 return indentation.c_str();
 }
 static void increase(bool positive)
 {
 level += positive ? 1 : -1;
 indentation = "";
 for (int i = 0; i < level; ++i)
 indentation += " ";
 }
 static void push()
 {
 std::cout << " {{{" << std::endl;
 increase(true);
 }
 static void pop()
 {
 increase(false);
 DUMP("}}}");
 }
}

static void _suicide(const char *fname, int line)
{
 std::cerr << "suicide at " << fname << ":" << line << std::endl;
 _exit(1);
}

// print all metadata in the given domain

May 22, 2009 TR THG 2009-05-22.v1

Page 36 of 39

static void print_metadata(GDALDataset *poDataset, const char *domain)
{
 char **metadata = poDataset->GetMetadata(domain);
 if (metadata) {
 DUMP_PUSH("Metadata " << domain);
 for (char **meta = metadata; *meta; ++meta)
 DUMP(*meta);
 DUMP_POP();
 }
}

// recursively dump elements, attributes and child datasets
static void doit(const char *filename)
{
 GDALDataset *poDataset;

 poDataset = (GDALDataset *)GDALOpen(filename, GA_ReadOnly);
 if (!poDataset) suicide();
 DUMP_PUSH(filename);

 // global description
 {
 DUMP("Driver " << poDataset->GetDriver()->GetDescription());
 }

 // x, y
 int xsize = poDataset->GetRasterXSize();
 int ysize = poDataset->GetRasterYSize();
 DUMP("(X, Y) " << xsize << ", " << ysize);

 // projection
 {
 const char *proj = poDataset->GetProjectionRef();
 if (proj) {
 DUMP("Projection " << proj);
 }
 const char *gcpproj = poDataset->GetGCPProjection();
 if (gcpproj) {
 DUMP("GCPProjection " << proj);
 }
 int gcpcount = poDataset->GetGCPCount();
 for (int i = 0; i < gcpcount; ++i) {
 const GDAL_GCP *gcp = poDataset->GetGCPs() + i;
 DUMP("GCP[" << i << "] " << gcp->pszId << ", " << gcp->pszInfo);
 }
 }
 {
 double geotransform[6];
 if (poDataset->GetGeoTransform(geotransform) == CE_None) {
 DUMP("GeoTransform " << geotransform[0] << ", " << geotransform[1] << ",
" << geotransform[2]);
 DUMP("GeoTransform " << geotransform[3] << ", " << geotransform[4] << ",
" << geotransform[5]);
 }
 }

May 22, 2009 TR THG 2009-05-22.v1

Page 37 of 39

 // elements
 {
 int count = poDataset->GetRasterCount();
 for (int i = 0; i < count; ++i) {
 GDALRasterBand *rb = poDataset->GetRasterBand(i + 1);
 int blockx, blocky;
 rb->GetBlockSize(&blockx, &blocky);
 GDALDataType dtype = rb->GetRasterDataType();
 const char *desc = rb->GetDescription();
 DUMP_PUSH("RasterBand[" << i << "] (" << blockx << ", " << blocky << ")
" << GDALGetDataTypeName(dtype) << " : " << desc);
 int hasfill = false;
 double fill = rb->GetNoDataValue(&hasfill);
 if (hasfill) DUMP("Fill " << fill);
 float *buffer = new float[xsize * ysize];
 rb->RasterIO(GF_Read, 0, 0, xsize, ysize, buffer, xsize, ysize,
GDT_Float32, 0, 0);
 for (int j = 0; j < ysize; ++j) {
 for (int k = 0; k < xsize; ++k) {
 std::cout << buffer[j * xsize + k] << " ";
 }
 std::cout << std::endl;
 }
 delete [] buffer;
 DUMP_POP();
 }
 }

 // metadata
 print_metadata(poDataset, "");
 print_metadata(poDataset, "GEOLOCATION");
 print_metadata(poDataset, "IMAGE_STRUCTURE");
 print_metadata(poDataset, "SUBDATASETS");

 // recursively dump all child objects
 {
 char **metadata = poDataset->GetMetadata("SUBDATASETS");
 if (metadata) {
 // need to skip SUBDATASET_?_DESC;
 // we only need SUBDATASET_?_NAME here
 for (char **meta = metadata; *meta; meta += 2) {
 const char *name = strstr(*meta, "=");
 if (!name) suicide();
 doit(name + 1);
 }
 }
 }

 GDALClose(poDataset);
 DUMP_POP();
}

int main(int argc, char **argv)
{

May 22, 2009 TR THG 2009-05-22.v1

Page 38 of 39

 if (argc != 2) return 1;

 GDALAllRegister();
 doit(argv[1]);
 return 0;
}

12 Bibliography

1. HDF4. [Online] The HDF Group. http://www.hdfgroup.org/products/hdf4/.

2. HDF5. [Online] The HDF Group. http://www.hdfgroup.org/HDF5/.

3. HDF-EOS2. HDF-EOS. [Online] http://www.hdfeos.org/software.php#HDF-EOS2.

4. NetCDF-4. [Online] Unidata. http://www.unidata.ucar.edu/software/netcdf/netcdf-4/.

5. NCAR Common Language (NCL). [Online] http://www.ncl.ucar.edu/.

6. GrADS. [Online] http://www.iges.org/grads/grads.html.

7. PyHDF. [Online] http://pysclint.sourceforge.net/pyhdf/.

8. GNU Data Language (GDL). [Online] http://gnudatalanguage.sourceforge.net/.

9. Geospatial Data Abstraction Library (GDAL). [Online] http://www.gdal.org/.

10. NCL Documentation. NCL. [Online] http://www.ncl.ucar.edu/Document/index.shtml.

11. GrADS User's Guide. [Online] http://www.iges.org/grads/gadoc/users.html.

12. PyHDF Documentation. [Online] http://pysclint.sourceforge.net/pyhdf/documentation.html.

13. An Evaluation of HDF Support for NCL, GrADS, PyHDF, GDL and GDAL. [Online]

14. SSM/I derived global ocean surface-wind components '87-'96 (Atlas et al.). [Online]
http://podaac.jpl.nasa.gov/order/order_ocnwind.html#Product079.

15. AMSR-E/Aqua Monthly L3 5x5 deg Rainfall Accumulations. [Online]
http://nsidc.org/data/ae_rngd.html.

16. H4H5TOOLS. [Online] http://www.hdfgroup.org/h4toh5/.

17. The NetCDF-4 Classic Model Format. [Online]
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/NetCDF_002d4-Classic-Model-
Format.html#NetCDF_002d4-Classic-Model-Format.

18. AMSR-E/Aqua Daily L3 12.5 km Tb, Sea Ice Conc., & Snow Depth Polar Grids. [Online]
http://nsidc.org/data/ae_si12.html.

19. NCL Language Reference Guide: Variables. [Online]
http://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/NclVariables.shtml#Subscripts.

20. COARDS Conventions. [Online] http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html.

21. HDFView. [Online] http://www.hdfgroup.org/hdf-java-html/hdfview/.

May 22, 2009 TR THG 2009-05-22.v1

Page 39 of 39

22. NumPy. [Online] http://numpy.scipy.org/.

23. PLplot. [Online] http://plplot.sourceforge.net/.

24. GNU Scientific Library (GSL). [Online] http://www.gnu.org/software/gsl/.

25. Ticket #2296. GDAL. [Online] http://trac.osgeo.org/gdal/attachment/ticket/2296/gdal-hdf4-
UNKNOWN.diff.

26. GDgridinfo 2-143. HDF-EOS Library Users Guide for the EMD Project Volume 2. Upper Marlboro,
Maryland : Ratheon Company, 2003.

27. GDprojinfo 2-154. HDF-EOS Library Users Guide for the EMD Project Volume 2. Upper Marlboro,
Maryland : Ratheon Company, 2003.

