HDF User’s Guide

|.u:

The HDF Group

CHAPTER 1 --

Introduction to HDF

1.1

1.2

Chapter Overview

This chapter provides a general description of HDF including its native object structures, applica-
tion programming interface, and accompanying command-line utilities. It also provides a short
discussion of HDF’s original purpose and philosophy, the information about supported platforms,
and a brief discussion on HDF4 versus HDF5.

What is HDF?

The Hierarchical Data Format, or HDF, is a multiobject file format for sharing scientific data in
a distributed environment. HDF was created at the National Center for Supercomputing Applica-
tions, and is now developed and maintained by The HDF Group, to serve the needs of diverse
groups of scientists working on projects in various fields. HDF was designed to address many
requirements for storing scientific data, including:

* Support for the types of data and metadata commonly used by scientists.
« Efficient storage of and access to large data sets.
* Platform independence.

+ Extensibility for future enhancements and compatibility with other standard formats.

In this document, the term HDF data structures will be used to describe the primary constructs
HDF provides to store data. These constructs include raster image, palette, scientific data set,
annotation, vdata, and vgroup. They are illustrated in Figure 1a on page 2. Note that the construct
vgroup is designed for the purpose of grouping HDF data structures.

HDF files are self-describing. The term “self-description” means that, for each HDF data struc-
ture in a file, there is comprehensive information about the data and its location in the file. This
information is often referred to as metadata. Also, many types of data can be included within an
HDF file. For example, it is possible to store symbolic, numerical and graphical data within an
HDF file by using appropriate HDF data structures.

June 2017 1

The HDF Group

Table of Contents Chapter 1 -- Introduction to HDF

FIGURE la

HDF Data Structures

Raster Image I::- Palette

(8-bit, 24-bit and General
Raster)

Scientific Data Set
(Multidimensional array)

X | Y | z
This HDF file contains one %5536 éég?g ?1’2’]03’2
:z;(ample of each HDF data Annotation gggo 4218(1)51% 'f’E’P’i Vdata
pe. Klm
210 | 38510 | Tlky | (Table)
° L]
T [Thaam

Vgroup
(Group of HDF data structures)

HDF can be viewed as several interactive levels. At its lowest level, HDF is a physical file format
for storing scientific data. At its highest level, HDF is a collection of utilities and applications for
manipulating, viewing, and analyzing data stored in HDF files. Between these levels, HDF is a
software library that provides high-level and low-level programming interfaces. It also includes
supporting software that make it easy to store, retrieve, visualize, analyze, and manage data in
HDF files. See Figure 1b on page 3 for an illustration of the interface levels.

The basic interface layer, or the low-level API, is reserved for software developers. It was
designed for direct file I/O of data streams, error handling, memory management, and physical
storage. It is a software toolkit for experienced HDF programmers who wish to make HDF do
something more than what is currently available through the higher-level interfaces. Low-level
routines are available only in C.

The HDF application programming interfaces, or APIs, include several independent sets of rou-
tines, with each set specifically designed to simplify the process of storing and accessing one type
of data. These interfaces are represented in Figure 1b as the second layer from the top. Although
each interface requires programming, all the low-level details can be ignored. In most cases, all
one must do is make the correct function call at the correct time, and the interface will take care of
the rest. Most HDF interface routines are available in both FORTRAN-77 and C. A complete list
of the high-level interfaces is provided in Section 1.4, "High-Level HDF APIs".

June 2017

Chapter 1 -- Introduction to HDF Table of Contents

HDF User’s Guide

FIGURE 1b Three Levels of Interaction with the HDF File

General Applications

Utilities V1

Research Applications |7—|

Commercial Applications

[T [

]

[

Single-file APIs
Scientific 8-Bit 24-Bit General

Multifile APIs

Scientific
Vdata |7] Data

Data |7| Palette |7|Annotations|7] Raster |7| Raster |/— Raster |7| Vgro
T T T T T [I

ups |7]Annotations17|
[

[[

! [T

JuUu U U u U U

g U

1.3

Low-level API (Routines starting with H)
HDF File
File Header |7-| Data Descriptor Block |7-I Data Elements

On the highest level, general applications, HDF includes various command-line utilities for
managing and viewing HDF files, several research applications that support data visualization
and analysis, and a variety of third-party applications. The HDF utilities are included in the HDF
distribution.

Source code and documentation for the HDF libraries, as well as binaries for supported platforms,
is freely available but subject to the restrictions listed with the copyright notice at the beginning of
this guide. This material and information regarding a variety of HDF applications is available
from The HDF Group at http://www.hdfgroup.org/products/hdf4.

Why Was HDF Created?

Scientists commonly generate and process data files on several different machines, use various
software packages to process files and share data files with others who use different machines and
software. Also, they may include different kinds of information within one particular file, or
within a group of files, and the mixture of these different kinds of information may vary from one
file to another. Files may be conceptually related but physically separated. For example, some
data may be dispersed among different files and some in program code. It is also possible that data
may be related only in the scientist’s conception of the data; no physical relationship may exist.

HDF addresses these problems by providing a general-purpose file structure that:

* Provides the mechanism for programs to obtain information about the data in a file from
within the file, rather than from another source.

» Lets the user store mixtures of data from different sources into a single file as well as store
the data and its related information in separate files, even when the files are processed by the
same application program.

 Standardizes the formats and descriptions of many types of commonly-used data sets, such
as raster images and multidimensional arrays.

* Encourages the use of a common data format by all machines and programs that produce
files containing specific data.

» Can be adapted to accommodate virtually any kind of data.

June 2017 3

The HDF Group

Table of Contents Chapter 1 -- Introduction to HDF

1.4

High-Level HDF APIs

HDF APIs are divided into two categories: multifile interfaces (new) and single-file interfaces
(old). The multifile interfaces are those that provide simultaneous access to several HDF files
from within an application, which is an important feature that the single-file interfaces do not sup-
port. It is recommended that the user explore the new interfaces and their features since they are
an improvement over the old interfaces. The old interfaces remain simply because of the need for
backward compatibility.

The HDF I/O library consists of C and FORTRAN-77 routines for accessing objects and associ-
ated information. Although there is some overlap among object types, in most cases an API oper-
ates on data of only one type. Therefore, you need only familiarize yourself with the APIs specific
to your needs to access data in an HDF file.

The following lists include all of the currently available HDF interfaces and the data that each
interface supports.

The new multifile interfaces are:

SD API Stores, manages and retrieves multidimensional arrays of character or
numeric data, along with their dimensions and attributes, in more than one
file. It is described in Chapter 3, Scientific Data Sets (SD API).

VS API Stores, manages and retrieves multivariate data stored as records in a table.
It is described in Chapter 4, Vdatas (VS API).

V API Creates groups of any primary HDF data structures. It is described in Chap-
ter 5, Vgroups (V API).

GR API Stores, manages and retrieves raster images, their dimensions and palettes in

more than one file. It can also manipulate unattached palettes in more than
one file. It is described in Chapter 8, General Raster Images (GR API).

AN API Stores, manages and retrieves text used to describe a file or any of the data
structures contained in the file. This interface can operate on several files at
once. It is described in Chapter 10, Annotations (AN API).

The old single-file interfaces are:

DFRS8 API Stores, manages and retrieves 8-bit raster images, with their dimensions and
palettes in one file. It is described in Chapter 6, 8-Bit Raster Images (DFRS8
API).

DF24 API Stores, manages and retrieves 24-bit images and their dimensions in one
file. It is described in Chapter 7, 24-bit Raster Images (DF24 API).

DFP API Stores and retrieves 8-bit palettes in one file. It is described in Chapter 9,
Palettes (DFP API).

DFAN API Stores, manages and retrieves text strings used to describe a file or any of

the data structures contained in the file. This interface only operates on one
file at a time. It is described in Chapter 11, Single-file Annotations (DFAN
API).

DFSD API Stores, manages and retrieves multidimensional arrays of integer or float-
ing-point data, along with their dimensions and attributes, in one file. It is
described in Chapter 12, Single-File Scientific Data Sets (DFSD API).

As these interfaces are the tools used to read and write HDF files, they are the primary focus of
this manual.

In every interface, various programming examples are provided to illustrate the use of the inter-
face routines. Both C and FORTRAN-77 versions are available. Their source code, in ASCII for-

June 2017

Chapter 1 -- Introduction to HDF Table of Contents HDF User’s Guide

1.5

1.6

1.7

mat, is located on the FTP servers in the subdirectory samples/, as mentioned in Section 1.2,
"What is HDF?"

Note that the goal of these examples is to illustrate the use of the interface routines; thus, for sim-
plicity, many assumptions have been made, such as the availability or the authentication of the
data. Based on these assumptions, these examples skip the verification of the returned status of
each function. In practice, it is strongly recommended that the user verify the returned value of
every function to ensure the reliability of the user application.

HDF Command-Line Utilities and Visualization Tools

HDF application software fall within the following three categories:
1. The FORTRAN-77 and C APIs described in Section 1.4 on page 4.
2. Scientific visualization and analysis tools that read and write HDF files.

3. Command-line utilities that operate directly on HDF files.

Scientific visualization and analysis software that can read and write HDF files is available. This
software includes tools such as HDFview, user-developed software, and commercial packages.
The use of HDF files guarantees the interoperability of such tools. Some tools operate on raster
images, others on color palettes. Some use images, others color palettes, still others data and
annotations, and so forth. HDF provides the range of data types that these tools need, in a format
that allows different tools with different data requirements to operate on the same files without
confusion.

The HDF command-line utilities are application programs that can be executed by entering them
at the command prompt, like UNIX commands. They perform common operations on HDF files
for which one would otherwise have to write a program. The HDF utilities are described in detail
in Chapter 15, HDF Command-line Utilities.

Primary HDF Platforms

The HDF library and utilities are maintained on a number of different machines and operating sys-
tems. For a complete list of the machines, operating systems (with versions), C and FORTRAN-
77 compilers (also with versions), refer to http://www.hdfgroup.org/released/plat-
forms.html.

HDF4 versus HDF5

Backward compatibility has always been an integral part of the design of HDF Versions 1, 2, 3,
and 4 and the HDF4 library can access files from all earlier versions. This manual describes HDF4
and, to the extent appropriate, the earlier versions.

To take advantage of the capabilities of many of the more recent computing platforms and to meet
the requirements of science applications that require ever-larger data sets, HDF5 had to be a com-
pletely new product, with a new format and a new library. HDF5 is conceptually related to HDF4
but incompatible; it cannot directly read or work with HDF4 files or the HDF4 library. HDF5 soft-
ware and documentation are available at http://www.hdfgroup.org/products/hdf5.

Both HDF4 and HDF'5 are supported by The HDF Group, who will continue to maintain HDF4 as
long as funds are available to do so. There are no plans to add any new features to HDF4, but bugs
are fixed and the library is regularly built and tested on new operating system versions.

The HDF Group strongly recommends using HDFS, especially if you are a new user and are not
constrained by existing applications to using HDF4. We also recommend that you consider

June 2017 5

The HDF Group

Table of Contents Chapter 1 -- Introduction to HDF

migrating existing applications from HDF4 to HDF5 to take advantage of the improved features
and performance of HDF5. Information about converting from HDF4 to HDF5 and tools to facili-
tate that conversion are available at http://www.hdfgroup.org/h4tohs.

See Section 15.19, "Working with Both HDF4 and HDF5 File Formats", for further discussions of
and links to some of these tools.

June 2017

CHAPTER 2 --

HDF Fundamentals

2.1

2.2

Chapter Overview

This chapter provides necessary information for the creation and manipulation of HDF files. It
includes an overview of the HDF file format, basic operations on HDF files, and programming
language issues pertaining to the use of Fortran and ANSI C in HDF programming.

HDF File Format

An HDF file contains a file header, at least one data descriptor block, and zero or more data ele-
ments as depicted in Figure 2a.

FIGURE 2a

The Physical Layout of an HDF File Containing One Data Object

HDF File ——) HDF File Header HDF File Header

Data Descriptor

Empty Data Descriptor .
Data Descriptor Block

. Empty Data Descriptor
Data Object

Empty Data Descriptor

Data Element

The file header identifies the file as an HDF file. A data descriptor block contains a number of
data descriptors. A data descriptor and a data element together form a data object, which is the
basic conglomerate structure for encapsulating data in the HDF file. Each of these terms is

described in the following sections.

June 2017 7

The HDF Group

Table of Contents Chapter 2 -- HDF Fundamentals

2.2.1 File Header

The first component of an HDF file is the file header, which takes up the first four bytes of the
HDF file. Specifically, it consists of four one-byte values that are ASCII representations of control
characters: the first is a control-N, the second is a control-C , the third is a control-S and the fourth
is a control-A ("N*C"S"A).

Note that, on some machines, the order of bytes in the file header might be swapped when the
header is written to an HDF file, causing these characters to be written in little-endian order. To
maintain the portability of HDF file header data when developing software for such machines, this
byte swapping must be counteracted by ensuring the characters are read and written in the desired
order.

2.2.2 Data Object

A data object is comprised of a data descriptor and a data element. The data descriptor consists of
information about the type, location, and size of the data element. The data element contains the
actual data. This organization of HDF data makes HDF files self-describing. Figure 2b shows two
examples of data objects.

FIGURE 2b

Two Data Objects

Data Descriptors Data Elements

rank and dimensions 2 90 by 100

data 63.2, 54.5, 12.3,

2.2.2.1 Data Descriptor

All data descriptors are twelve bytes long and contain four fields, as depicted in Figure 2c. These
fields are: a 16-bit tag, a 16-bit reference number, a 32-bit data offset and a 32-bit data length.

FIGURE 2¢

The Contents of a Data Descriptor

Reference
Tag Number Offset Length
2 bytes 2 bytes 4 bytes 4 bytes

Tag

A tag is the data descriptor field that identifies the type of data stored in the corresponding data
element. A tag is a 16-bit unsigned integer between 1 and 65,535, and is associated with a mne-
monic name to promote ease to use and the readability of user programs.

June 2017

Chapter 2 -- HDF Fundamentals Table of Contents HDF User’s Guide

If a data descriptor has no corresponding data element, the value of its tag is DFTAG_NULL (or 0).

Tags are assigned by The HDF Group as part of the HDF specification. The following are the
ranges of tag values and their descriptions:

1 to 32,767 - Tags reserved for HDF Group use
32,768 to 64,999 - User-definable tags
65,000 to 65,535 - Tags reserved for expansion of the HDF specification

A list of commonly-used tags and their descriptions is included in Appendix A, Reserved HDF
Tags of this document.

Reference Number

For each occurrence of a tag in an HDF file, a unique reference number is assigned by the library
with the tag in the data descriptor. A reference number is a 16-bit unsigned integer and can not be
changed during the life of the data object that the reference number specifies.

The combination of a tag and a reference number uniquely identifies the corresponding data
object in the file.

Reference numbers are not necessarily assigned consecutively, so it cannot be assumed that the
value of a reference number has any meaning beyond providing a way of distinguishing among
objects with the same tag. While application programmers may find it convenient to impart some
additional meaning to reference numbers in their code, it is emphasized that the HDF library will
not internally recognize any such meaning.

Data Offset and Length

The data offset field points to the location of the data element in the file by storing the number of
bytes from the beginning of the file to the beginning of the data element. The length field contains
the size of the data element in bytes. The data offset and the length are both 32-bit signed integers.
This results in a file-size limit of 2 gigabytes.

2.2.2.2 Data Elements

The data element is the raw data portion of a data object.

2.2.3 Data Descriptor Block

Data descriptors are physically stored in a linked list of blocks called data descriptor blocks. The
relationship between the data descriptor block to the other components of an HDF file is illus-
trated in Figure 2a on page 7. The individual components of a data descriptor block are depicted
in Figure 2d on page 10. Each data descriptor in a data descriptor block is assumed to be associ-
ated with a data element unless it contains the tag prTaG_nULL (or 0),which indicates that there is
no associated data element. By default, a data descriptor block contains 16 (defined as DEF_NDDS)
data descriptors. The user may reset this limit when creating the HDF file. Refer to Section 2.3.2
on page 11 for more details.

In addition to data descriptors, each data descriptor block contains a data descriptor header. The
data descriptor header contains two fields: block size and next block. The block size field is a 16-
bit unsigned integer indicating the number of data descriptors in the data descriptor block. The
next block field is a 32-bit unsigned integer indicating the offset of the next data descriptor block,
if one exists. The last data descriptor header in the list contains a value of 0 in its next block field.

Figure 2d illustrates the layout of a data descriptor block.

June 2017 9

The HDF Group Table of Contents Chapter 2 -- HDF Fundamentals
FIGURE 2d Data Descriptor Block
block size | nextblock | tag ref | offset | length cee tag ref | offset | length
data descriptor
<+ headerp —» 4 data descriptor —»> <+ cee —» 4 data descriptor —»
< data descriptor block »

2.3

2.2.4 Grouping Data Objects in an HDF File

Data objects containing related data in HDF files are usually grouped together by the library.
These groups of data objects are called data sets. The HDF user uses the application interface to
manipulate data sets in a file. As an example, an 8-bit raster image data set requires three objects:
a group object identifying the members of the set, an image object containing the image data, and
a dimension object indicating the size of the image.

Data objects are individually accessible even if they are included in a set, therefore data objects
can belong to more than one set and sets can be included in larger groups. For example, a palette
object included in one raster image set may also be a part of another raster image set if its tag and
reference number are included in a data descriptor within that second set.

Additional information about data objects, including the options available for storing them, can be
found in the HDF Specifications and Developer’s Guide from the HDF web site at http://
www .hdfgroup.org/doc.html.

Basic Operations on HDF Files Using the Multifile Interfaces

This section describes the basic file operations, some of which are required in working with HDF
files using the multifile interfaces. Except for the SD interface, all applications using other multi-
file interfaces must explicitly use the routines Hopen and Helose to control accesses to the HDF
files. In an application using the HDF file format, the file is accessed via its identifier, referred to
as file identifier. The following subsections describe the file identifier and the basic file opera-
tions common to most multifile interfaces.

2.3.1 File Identifiers

The HDF programming model specifies that a data file is first explicitly created or opened by an
application, manipulated, then explicitly closed by the application. A file identifier is a unique
number that the HDF library assigns to an HDF file when creating or opening the file. The HDF
library creates the file identifier for an HDF file when given its file name, as represented in the
native file system. Interface routines use only the file identifier to access and manipulate the file.
When all operations on the file are complete, the file identifier must be discarded by explicitly
closing the file before terminating the application.

As every file is assigned its own identifier, the order in which files are accessed is very flexible.
For example, it is valid to open a file and obtain an identifier for it, then open a second file without
closing the first file or disposing of the first file identifier. The only requirement made by HDF is
that all file identifiers be individually discarded before the termination of the calling program.

File identifiers created by the routine of one HDF interface can be used by the routines of any
other interfaces, except SD’s.

June 2017

Chapter 2 -- HDF Fundamentals Table of Contents HDF User’s Guide

2.3.2 Opening HDF Files: Hopen

The routine Hopen creates or opens an HDF data file, depending on the access mode specified,
and returns the file identifier that the HDF library has assigned to the file. The Hopen syntax is as
follows:

C: file id = Hopen (filename, access mode, num dds block);
FORTRAN: file id = hopen(filename, access mode, num dds block)

The Hopen parameters are defined in Table 2A and the following discussion.

TABLE 2A

Hopen Parameter List

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
filename char * character™(*) File name
Hopen
[int32] access_mode intn integer File access mode
(hopen) num_dds_block intl6 integer Number of data descriptors in a data descriptor block

The parameter filename is a character string representing the name of the HDF file to be accessed.

The parameter access mode specifies how the file should be accessed. All the access modes are
listed in Table 2B. If the access mode is pracc_creaTE and the file already exists, the file will be
replaced by the new one. If the access mode is brFacc RrReap and the file does not exist, Hopen will
return FATL (or -1). If the access mode is pracc_wrITE and the file does not exist, a new file will
be created.

The parameter num_dds_block specifies the number of data descriptors in a block when the access
mode specified is create. If the access mode is not create, the value of num_dds_block is ignored.
The default number of data descriptors in a block is 16 (defined as pEr_npDs) data descriptors.
The user may specify o to keep the default or any non-negative integer to reset this limit when cre-
ating the HDF file.

Prior to HDF 4.2r2, the maximum number of open files was limited to 32, but it now can be up to
what the system allowed, minus a few for stdout, etc.

It has been reported that opening/closing file in loops is very slow; thus, it is not recommended to
perform such operations too many times, particularly, when data is being added to the file between
opening/closing.

Note that, in the SD interface, SDstart is used to open files instead of Hopen. To access a file that
contains both SD API objects and non-SD API objects, the application must call SDstart/SDend
and Hopen/Hclose on the file. The non-SD API functions access the file via the identifier
returned by Hopen and the SD API functions use the identifier returned by SDstart. These iden-
tifiers must be released by Hclose and SDend, respectively. Refer to Chapter 3, Scientific Data
Sets (SD API), of this document for more information on SDstart/SDend.

June 2017 11

The HDF Group Table of Contents Chapter 2 -- HDF Fundamentals
TABLE 2B File Access Code Flags
File Access Flag Flag Value Description
DFACC_READ 1 Read access
DFACC_WRITE 2 Read and write access
DFACC_CREATE 4 Create with read and write access
2.3.3 Closing HDF Files: Hclose
The Hclose routine closes the file designated by the file identifier specified by the parameter
file_id. The Hclose syntax is as follows:
C: status = Hclose(file id);
FORTRAN: status = hclose (file id)
Hclose returns a value of succeep (or 0) if successful or Fatr (or -1) otherwise. The parameter
name and type are listed in Table 2C. Refer also to the HDF Reference Manual for additional
information regarding Hclose.
Note that Hclose is not used to close files in the SD interface. SDend is used for this purpose.
(Refer to Chapter 3, Scientific Data Sets (SD API) of this document for more information on
SDend.)
TABLE 2C Hclose Parameter List

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
Hclose
[intn] file_id int32 integer File identifier
(hclose)

2.3.4 Getting the HDF Library and File Versions: Hgetlibversion and
Hgetfileversion

Hgetlibversion returns the version of the HDF library currently being used, as well as additional
textual information regarding the library. The parameter names and data types are listed in Table
2D. Refer also to the HDF Reference Manual for additional information regarding Hgetlibver-
sion.

Hgetfileversion returns the version information of the HDF file specified by the parameter
file_id, as well as additional textual information regarding the nature of the file. The parameter
names and data types are listed in Table 2D. Refer also to the HDF Reference Manual for addi-
tional information regarding Hgetfileversion.

The syntax of these routines is as follows:

C: status = Hgetlibversion (&émajor v, &minor v, &release, string);
status = Hgetfileversion(file id, &major v, &minor v, &release,
string) ;

FORTRAN: status = hglibver (major v, minor v, release, string)
status = hgfilver (file id, major v, minor v, release, string)

Both routines return a value of succeep (or 0) if successful or FATL (or -1) otherwise.

June 2017

Chapter 2 -- HDF Fundamentals Table of Contents HDF User’s Guide

TABLE 2D Hgetlibversion and Hgetfileversion Parameter Lists
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
major_v uint32* integer Major version number
Hgetlibversion minor_v uint32* integer Minor version number
[intn]
(hglibver) release uint32* integer Complete library version number
string char* character*(*) Additional information about the library version
file_id int32 integer File identifier
Hetfileversion major_v uint32 integer Major version number
[intn] minor_v uint32* integer Minor version number
(hgfilver) release uint32* integer Complete library version number
string char* character*(*) Additional information about the library version
2.4 Determining whether a File Is an HDF File: Hishdf/hishdff
The Hishdf routine is used to determine whether the file filename is an HDF file. The Hishdf
syntax is as follows:
C: status = Hishdf (filename)
FORTRAN: status = hishdff (filename)
This routine returns a value of Truk (or 1) if if the file is an HDF file or FaLsE (or 0) otherwise.
TABLE 2E Hishdf/hishdff Parameter List

2.5

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
Hishdf
[intn] filename char* character*(*) Filename
(hishdff)

Programming Issues

This section introduces information relevant to the process of developing programs that use the
HDF library, such as the names of necessary header files, lists of common definitions and issues
concerning FORTRAN-77 and C programming.

2.5.1 Header File Information

The header file hdf.n must be included in every HDF application program written in C, except for
programs that call routines in the SD interface. The header file mfhdf.h must be included in all
programs that call SD interface routines.

Fortran programmers who use compilers that allow file inclusion can include the files hdf.inc
and dffunc.inc. If a Fortran compiler that does not support file inclusion is used, HDF library
definitions must be explicitly defined in the Fortran program as they are included in the header
files of the HDF library.

June 2017 13

The HDF Group

Table of Contents Chapter 2 -- HDF Fundamentals

2.5.2 HDF Definitions

The HDF library provides several sets of definitions which can be used easily in the user applica-
tions. These sets include the definitions of the data types, the data type flags, and the limits that set
various maximum values. The definitions of the data types supported by HDF are located in the
ndf.h header file, and the data type flags are located in the hntdefs.n header file. Both are also
included in (See Table 2F on page 14), (See Table 2G on page 15), and (See Table 2H on
page 15). HDF data types are used for portability in the declaration of variables, and data type
flags are used as parameters in various HDF interface routines.

2.5.2.1 Standard HDF Data Types

The definitions of the fundamental data types are in Table 2F. Although prNT FLOAT (or 5),
DFNT_UCHAR (or 3), and DFNT CHAR (or 4) have not been added to this table, they are also supported
by the HDF library for backward compatibility.

If the machine used is big-endian, using these data types will result in no byte-order conversion
being performed. If the machine used is little-endian, the library will convert the byte-order of the
variables to big-endian.

TABLE 2F

Standard HDF Data Types and Flags

HDF Data Type Data Type Flag and Value Description
char8 DFNT CHAR8 (4) 8-bit character type
uchars8 DENT_UCHAR8 (3) 8-bit unsigned character type
int8 DENT_INT8 (20) 8-bit integer type
uint8 DFNT_UINT8 (21) 8-bit unsigned integer type
intlé6 DFNT INT16 (22) 16-bit integer type
uintlé DFNT UINT16 (23) 16-bit unsigned integer type
int32 DFNT INT32 (24) 32-bit integer type
uint32 DENT_UINT32 (25) 32-bit unsigned integer type
float32 DENT_FLOAT32 (5) 32-bit floating-point type
float64 DFNT_FLOAT64 (6) 64-bit floating-point type

Fortran programmers should refer to Section 2.5.3 on page 16 for a discussion of the Fortran data
types.

2.5.2.2 Native Format Data Types

When a native format data type is specified, the corresponding numbers are stored in the HDF file
exactly as they appear in memory, without conversion. For example, on a Cray Y-MP, 8 bytes of
memory, or one Cray word, is used to store most integers. Therefore, an 8-bit signed integer, rep-
resented by the prnT 1nNT32 flag, on a Cray Y-MP uses 8 bytes of memory. Consequently, when
the data type DFNT NATIVE | DFNT INT32 (DENT NATIVE bytewise-ORed with DFNT INT32) is
used on a Cray Y-MP to specify the data type of an HDF SDS or vdata, each integer stored in the
HDF file is 8 bytes.

The method for constructing the data type flag for each native data type described in the previous
paragraph is used for any of the native data types: the prnT NaTIVE flag is bitwise-ORed with the
flag of the corresponding standard data type.

The definitions of the native format data types and the corresponding data type flags appear in
Table 2G.

June 2017

Chapter 2 -- HDF Fundamentals

Table of Contents HDF User’s Guide

TABLE 2G

Native Format Data Type Definitions

HDF Data Type HDF Data Type Flag and Value Description

int8 DFNT NINT8 (4116) 8-bit native integer type

uint8 DFNT NUINT8 (4117) 8-bit native unsigned integer type

intlé DENT_NINT16 (4118) 16-bit native integer type

uintlé DFENT_NUINT16 (4119) 16-bit native unsigned integer type

int32 DFNT_NINT32 (4120) 32-bit native integer type

uint32 DFNT NUINT32 (4121) 32-bit native unsigned integer type

float32 DFNT NFLOAT32 (4101) 32-bit native floating-point type

float64 DFNT NFLOAT64 (4102) 64-bit native floating-point type

2.5.2.3 Little-Endian Data Types

HDF normally writes data in big-endian format, but provides a little-endian option forcing all data
written to disk to be written in little-endian format. This is primarily for users of Intel-based
machines who do not want to incur the cost of reordering data when writing to an HDF file. Note
that direct conversions are supported between little-endian and all other byte-order formats sup-
ported by HDF.

The method for constructing the data type flag for each little-endian data type is similar to the
method for constructing native format data type flags: the prFnT n.1TEND flag is bitwise-ORed with
the flag of the corresponding standard data type.

If the user is on a little-endian machine, using these data types will result in no conversion. If the
user is on a big-endian machine, the HDF library will perform big-to-little-endian conversion.

The definitions of the little-endian data types and the corresponding data type flags appear in
Table 2H.

TABLE 2H

Little-Endian Format Data Type Definitions

HDF Data Type HDF Data Type Flag and Value Description

int8 DENT_LINT8 (16404) 8-bit little-endian integer type

uint8 DFNT_LUINT8 (16405) 8-bit little-endian unsigned integer type
intlé6 DFNT LINT16 (16406) 16-bit little-endian integer type
uintlé DFNT LUINT16 (16407) 16-bit little-endian unsigned integer type
int32 DFNT LINT32 (16408) 32-bit little-endian integer type
uint32 DENT_LUINT32 (16409) 32-bit little-endian unsigned integer type
float32 DFENT_LFLOAT32 (16389) 32-bit little-endian floating-point type
float64 DFNT_LFLOAT64 (16390) 64-bit little-endian floating-point type

2.5.2.4 Tag Definitions

These definitions identify the object tags defined and used by the HDF interface library. The con-
cept of object tags is introduced in Section 2.2.2.1 on page 8, and a list of tags can be found in
Appendix A of this manual. Note that tags can also identify properties of data objects.

2.5.2.5 Limit Definitions

These definitions declare the maximum size of specific data object parameters, such as the maxi-
mum length of a vdata field or the maximum number of objects in a vgroup. They are located in

June 2017 15

The HDF Group Table of Contents Chapter 2 -- HDF Fundamentals

the header file h1imits.h. A selection of the most-commonly-used limit definitions appears in

Table 21.
TABLE 21 Limit Definitions

Definition Name Definition Value Description
FIELDNAMELENMAX 128 Maximum length of a vdata field in bytes - 128 characters
H4_MAX NC_ATTRS 3000 Maximum number of file or variable attributes
H4_MAX_NC_DIMS 5000 Maximum number of dimensions per file
H4 MAX NC_NAME 256 Maximum length of a name - NC interface
H4_MAX NC_OPEN MAX FILE Maximum number of files can be open at the same time
H4 MAX NC_VARS 5000 Maximum number of variables per file
H4_MAX VAR DIMS 32 Maximum number of dimensions per variable
MAXNVELT 64 Maximum number of objects in a vgroup
MAX_ FIELD_SIZE 65535 Maximum length of a field
MAX FILE 32 Maximum number of open files
MAX ORDER 65535 Maximum order of a vdata field
MAX PATH LEN 1024 Maximum length of an external file name
MAX GROUPS 8 Maximum number of groups
MAX_GR_NAME 256 Maximum length of a name - GR interface
MAX_REF 65535 The largest number that will fit into a 16-bit word reference variable
MAX BLOCK_SIZE 65536 Maximum size of blocks in linked blocks
VSNAMELENMAX 64 Maximum length of a vdata name in bytes - 64 characters
VGNAMELENMAX 64 Maximum length of a vgroup name in bytes - 64 characters
VSFIELDMAX 256 Maximum number of fields per vdata (64 for Macintosh)
VDEFAULTBLKSIZE 4096 Default block size in a vdata
VDEFAULTNBLKS 32 Default number of blocks in a vdata

2.5.3 FORTRAN-77 and C Language Issues

HDF provides both FORTRAN-77 and C versions of most of its interface routines. In order to
make the FORTRAN-77 and C versions of each routine as similar as possible, some compromises
have been made in the process of simplifying the interface for both programming languages.

FORTRAN-77-to-C Translation

Nearly all of the HDF library code is written in C. A FORTRAN-77 HDF interface routine trans-
lates all parameter data types to C data types, then calls the C routine that performs the functional-
ity of the interface routine. For example, d8aimg is the FORTRAN-77 equivalent for
DFR8addimage. Calls to either routine execute the same C code that adds an 8-bit raster image to
an HDF file. See Figure 2e.

FIGURE 2¢ Use of a Function Call Converter to Route FORTRAN-77 HDF Calls to the C Library
Your Your
C FORTRAN-77 to C FORTRAN-77
Program Program
DFR8addimage w—- d8aimg to DFR8addimage - d8aimg

16 June 2017

Chapter 2 -- HDF Fundamentals Table of Contents HDF User’s Guide

Case Sensitivity

FORTRAN-77 identifiers generally are not case sensitive, whereas C identifiers are. Although all
of the FORTRAN-77 routines shown in this manual are written in lower case, FORTRAN-77 pro-
grams can generally call them using either upper- or lower-case letters without loss of meaning.

Name Length

Because some FORTRAN-77 compilers only interpret identifier names with seven or fewer char-
acters, the first seven characters of the FORTRAN-77 HDF routine names are unique.

Header Files

The inclusion of header files is not generally permitted by FORTRAN-77 compilers. However, it
is sometimes available as an option. On UNIX systems, for example, the macro processors ma and
cpp let the compiler include and preprocess header files. If this capability is not available, the user
may have to copy the declarations, definitions, or values needed from the files dffunc.inc and
hdf.inc into the user application. If the capability is available, the files can be included in the
Fortran code. These two files reside in the include directory after the library is installed on the
user’s system.

Data Type Specifications

When mixing machines, compilers, and languages, it is difficult to maintain consistent data type
definitions. For instance, on some machines an integer is a 32-bit quantity and on others, a 16-bit
quantity. In addition, the differences between FORTRAN-77 and C lead to difficulties in describ-
ing the data types found in the argument lists of HDF routines. To maintain portability, the HDF
library expects assigned names for all data types used in HDF routines. See Table 2J.

TABLE 2]

Correspondence Between Fortran and HDF C Data Types

Data Type FORTRAN (o)
8-bit signed integer character*l ** int8
8-bit unsigned integer character*1l uint8
16-bit signed integer integer*2 intlé
16-bit unsigned integer Not supported uintl6
32-bit signed integer integer*4 ** int32
32-bit unsigned integer Not supported uint32
32-bit floating point number real*4 ** float32
64-bit floating point number real*g ** float64
Native signed integer integer intn
Native unsigned integer Not supported uintn
**if the compiler supports this data type

When using a FORTRAN-77 data type that is not supported, the general practice is to use another
data type of the same size. For example, an 8-bit signed integer can be used to store an 8-bit
unsigned integer variable.

String and Array Specifications

The following conventions are followed in the specification of arrays in this manual:

* character*(*) defines a string of an indefinite number of characters. It is the responsibility
of the calling program to allocate enough space to hold the data to be stored in the string.

June 2017 17

The HDF Group

Table of Contents Chapter 2 -- HDF Fundamentals

* real x(*) means that x refers to an array of reals of indefinite size and of indefinite rank. It is
the responsibility of the calling program to allocate an actual array with the correct number
of dimensions and dimension sizes.

* <valid numeric data type> x means that x may have one of the numeric data types listed in
the Description column of Table 2J above.

* <valid data type> x means that x may have any of the data types listed in the Description
column of Table 2J above.

FORTRAN-77 and ANSI C

As much as possible, we have ensured that the HDF interface routines conform to the implemen-
tations of Fortran and C that are in most common use today, namely FORTRAN-77 and ANSI C.

As Fortran-90 is a superset of FORTRAN-77, HDF programs should compile and run correctly
when using a Fortran-90 compiler. However, an HDF library interface that makes full use of For-
tran-90 enhancements is being considered.

June 2017

CHAPTER 3 --

Scientific Data Sets (SD API)

3.1

3.2

Chapter Overview

This chapter describes the scientific data model and the interface routines provided by HDF for
creating and accessing the data structures included in the model. This interface is known as the
SD interface or the SD APIL

The Scientific Data Set Data Model

The scientific data set, or SDS, is a group of data structures used to store and describe multidi-
mensional arrays of scientific data. Refer to Figure 3a for a graphical overview of the SD data set.
Note that in this chapter the terms SDS, SD data set, and data set are used interchangeably; the
terms SDS array and array are also used interchangeably.

A scientific data set consists of required and optional components, which will be discussed in the
following subsections.

FIGURE 3a

The Contents of a Scientific Data Set

SDS
/ Required Components Optional Components \
SDS Array
Predefined Attributes
Name | | | T
User-defined Attributes
Data Type
Dimension Scales
Dimensions

June 2017 19

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

3.2.1 Required SDS Components

Every SDS must contain the following components: an SDS array, a name, a data type, and the
dimensions of the SDS, which are actually the dimensions of the SDS array.

SDS Array

An SDS array is a multidimensional data structure that serves as the core structure of an SDS.
This is the primary data component of the SDS model and can be compressed (refer to
Section 3.5.2 on page 47 for a description of SDS compression) and/or stored in external files
(refer the Section 3.5.3.3 on page 54 for a description of external SDS storage). Users of netCDF
should note that SDS arrays are conceptually equivalent to variables in the netCDF data model.

An SDS has an index and a reference number associated with it. The index is a non-negative inte-
ger that describes the relative position of the data set in the file. A valid index ranges from 0 to the
total number of data sets in the file minus 1. The reference number is a unique positive integer
assigned to the data set by the SD interface when the data set is created. Various SD interface rou-
tines can be used to obtain an SDS index or reference number depending on the available informa-
tion about the SDS. The index can also be determined if the sequence in which the data sets are
created in the file is known.

In the SD interface, an SDS identifier uniquely identifies a data set within the file. The identifier
is created by the SD interface access routines when a new SDS is created or an existing one is
selected. The identifier is then used by other SD interface routines to access the SDS until the
access to this SDS is terminated. For an existing data set, the index of the data set can be used to
obtain the identifier. Refer to Section 3.4.1 on page 27 for a description of the SD interface routine
that creates SDSs and assigns identifiers to them.

SDS Name

The name of an SDS can be provided by the calling program, or is set to "DataSet" by the HDF
library at the creation of the SDS. The name consists of case-sensitive alphanumeric characters, is
assigned only when the data set is created, and cannot be changed. SDS names do not have to be
unique within a file, but their uniqueness makes it easy to semantically distinguish among data
sets in the file.

Data Type

The data contained in an SDS array has a data type associated with it. The standard data types
supported by the SD interface include 32- and 64-bit floating-point numbers, 8-, 16- and 32-bit
signed integers, 8-, 16- and 32-bit unsigned integers, and 8-bit characters. The SD interface also
allows the creation of SD data sets consisting of data elements of non-standard lengths (1 to 32
bits). See Section 3.7.11 on page 77 for more information.

Dimensions

SDS dimensions specify the shape and size of an SDS array. The number of dimensions of an
array is referred to as the rank of the array. Each dimension has an index and an identifier
assigned to it. A dimension also has a size and may have a name associated with it.

A dimension identifier is a positive number uniquely assigned to the dimension by the library.
This dimension identifier can be retrieved via an SD interface routine. Refer to Section 3.8.1 on
page 78 for a description of how to obtain dimension identifiers.

1. netCDF-3 User s Guide for C (June 5, 1997), Section 7, http: //www.uni-
data.ucar.edu/software/netcdf/docs/netcdf/.

20

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

A dimension index is a non-negative number that describes the ordinal location of a dimension
among others in a data set. In other words, when an SDS dimension is created, an index number is
associated with it and is one greater than the index associated with the last created dimension that
belongs to the same data set. The dimension index is convenient in a sequential search or when the
position of the dimension among other dimensions in the SDS is known.

The size of a dimension is a positive integer. Also, one dimension of an SDS array can be assigned
the predefined size sp_uNLIMITED (or 0). This dimension is referred to as an unlimited dimension,
which, as the name suggests, can grow to any length. Refer to Section 3.5.1.3 on page 42 for more
information on unlimited dimensions.

Names can optionally be assigned to dimensions, however, dimension names are not treated in the
same way as SDS array names. For example, if a name assigned to a dimension was previously
assigned to another dimension the SD interface treats both dimensions as the same data compo-
nent and any changes made to one will be reflected in the other.

Important Note:

HDF4 allows a dimension and a one-dimensional SDS to be given the same name. The library
also stores a dimension and a data set the same way internally. Prior to HDF 4.2.2, however, the
library did not adequately distinguish these two types of objects. Thus, when a dimension and a
one-dimensional SDS shared a name, writing to the SDS or the dimension could cause data cor-
ruption to the other. The corrupted data was unrecoverable.

This problem was fixed in Release 4.2.2 and such data corruption will not occur in files created
with a 4.2.2 or later library. Note, however, that the fix is effective only in new files; a dimension
and a one-dimensional SDS of the same name that were created with a pre-4.2.2 HDF4 Library
remain vulnerable to data corruption if an application is unaware of the potential conflict. To
safely handle pre-4.2.2 files, the library now provides two functions, SDgetnumvars_byname
and SDnametoindices. SDgetnumvars_byname can be used to determine whether a name is
unique. If the function reports one ('1") variable by that name, the name is unique and no further
precaution needs to be taken. If the name is not unique, i.e., the number of variables by that name
is greater than one, SDnametoindices must then be used to retrieve the index and the type of each
variable with that name. The desired variable can then be safely selected via its index. These func-
tions are described in detail in this User's Guide and the HDF4 Reference Manual.

A similar problem is possible when a multi-dimensional SDS and a dimension are created with
the same name by a pre-4.2.2 library. The HDF Group has not seen such a failure, however, and it
is thought to be very unlikely. Note that the fix introduced in Release 4.2.2 also prevents data cor-
ruption from happening for this situation even though the data was created with libraries prior to
4.2.2, assuming no corruption had yet occurred.

3.2.2 Optional SDS Components

There are three types of optional SDS components: user-defined attributes, predefined attributes,
and dimension scales. These optional components are only created when specifically requested
by the calling program.

Attributes describe the nature and/or the intended usage of the file, data set, or dimension they are
attached to. Attributes have a name and value which contains one or more data entries of the same
data type. Thus, in addition to name and value, the data type and number of values are specified
when the attribute is created.

User-Defined Attributes

June 2017 21

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

3.3

User-defined attributes are defined by the calling program and contain auxiliary information
about a file, SDS array, or dimension. They are more fully described in Section 3.9 on page 92.

Predefined Attributes

Predefined attributes have reserved names and, in some cases, predefined data types and/or num-
ber of data entries. Predefined attributes are useful because they establish conventions that appli-
cations can depend on. They are further described in Section 3.10 on page 103.

Dimension Scales

A dimension scale is a sequence of numbers placed along a dimension to demarcate intervals
along it. Dimension scales are described in Section 3.8.4 on page 81.

3.2.3 Annotations and the SD Data Model

In the past, annotations were supported in the SD interface to allow the HDF user to attach
descriptive information (called metadata) to a data set. With the expansion of the SD interface to
include user-defined attributes, the use of annotations to describe metadata should be eliminated.
Metadata once stored as an annotation is now more conveniently stored as an attribute. However,
to ensure backward compatibility with scientific data sets and applications relying on annotations,
the AN annotation interface, described in Chapter 10, Annotations (AN API) can be used to anno-
tate SDSs.

There is no cross-compatibility between attributes and annotations; creating one does not auto-
matically create the other.

The SD Interface

The SD interface provides routines that store, retrieve, and manipulate scientific data using the SD
data model. The SD interface supports simultaneous access to more than one SDS in more than
one HDF file. In addition, the SD interface is designed to support a general scientific data model
which is very similar to the netCDF data model developed by the Unidata Program Center!.

For those users who have been using the DFSD interface, the SD interface provide a model com-
patible with that supported by the DFSD interface. It is recommended that DFSD users apply the
SD model and interface to their applications since the DFSD interface is less flexible and less
powerful than the SD interface and will eventually be removed from the HDF library.

This section specifies the header file to be used with the SD interface and lists all available SD
interface routines, each of which is accompanied by its purpose and the section where the routine
is discussed.

3.3.1 Header Files Required by the SD Interface

The mfhdf.h header file must be included in programs that invoke SD interface routines. FOR-
TRAN-77 users should refer to Section 2.5.3 on page 16.

3.3.2 SD Interface Routines

All C routines in the SD interface begin with the prefix "SD". The equivalent FORTRAN-77 rou-
tines use the prefix "sf". These routines are categorized as follows:

1. netCDF-3 User s Guide for C (June 5, 1997), Section 2, http: //www.uni-
data.ucar.edu/software/netcdf/docs/netcdf/.

22

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

* Access routines initialize and terminate access to HDF files and data sets.
* Read and write routines read and write data sets.

* General inquiry routines return information about the location, contents, and description of
the scientific data sets in an HDF file.

* Dimension routines access and define characteristics of dimensions within a data set.
e Dimension scale routines define and access dimension scales within a data set.

» User-defined attribute routines create and access user-defined attributes of an HDF file,
data set, or dimension.

* Predefined attribute routines access previously-defined attributes of an HDF file, data set,
or dimension.

» Compression routines compress SDS data and retrieves compresion information.

* Chunking/tiling routines manage chunked data sets.

* Miscellaneous routines provide other operations such as external file, n-bit data set, and
compatibility operations.

* Raw Data Information routines provide information that allows applications to read raw
data from HDF files without the use of HDF library. These functions are described in Chap-
ter 16, Raw Data Information of this document, together with the same type of routines that
belong to other interfaces.

The SD routines are listed in the following table and are discussed in the following sections of this
chapter.

June 2017 23

The HDF Group

Table of Contents

Chapter 3 -- Scientific Data Sets (SD API)

TABLE 3A

SD Interface Routines

Routine Name

Category Description and Reference
C FORTRAN-77
Opens the HDF file and initializes the SD interface (Section 3.4.1
SDstart sfstart
on page 27)
SDcreate sfcreate Creates a new data set (Section 3.4.1 on page 27)
Access SDselect sfselect Selects an existing SDS given its index (Section 3.4.1 on page 27)
SDendaccess sfendacc Terminates access to an SDS (Section 3.4.2 on page 29)
Terminates access to the SD interface and closes the file
SDend sfend .
(Section 3.4.2 on page 29)
SDreaddata sfrdata/ Reads data from a data set (Section 3.6 on page 58)
Read and sfrcdata
Write
SDhwritedata sfwdata/ Writes data to a data set (Section 3.5.1 on page 31)
sfwcdata
SDcheck N fen N Determines whether a scientific dataset (an SDS) is empty
checkem sfchem .
Pty Pty (Section 3.7.10 on page 74)
. . Retrieves information about the contents of a file (Section 3.7.1 on
SDfileinfo sffinfo
page 66)
. Given a file identifier, retrieves the name of the file (Section 3.11.1
SDgetfilename sfgetfname
on page 112)
SDgetinfo sfginfo Retrieves information about a data set (Section 3.7.2 on page 66)
SDget maxopen- Retrieves current and maximum number of open files
. - sfgmaxopenf .
files (Section 3.11.4 on page 113)
Retrieves the length of the name of a file, a dataset, or a dimension
SDgetnamelen sfgetnamelen .
(Section 3.11.2 on page 112)
SDget numopen- Returns the number of files currently open (Section 3.11.5 on
. - sfgnumopenf
files page 113)
SDgetnumvars by- sfgnvars_by- Retrieves the number of data sets having the same name
name name (Section 3.7.6 on page 72)
General
i Returns the reference number of a data set (Section 3.7.8 on
Inquiry SDhidtoref sfid2ref u " (
page 73)
.) Given an identifier, returns the type of object the identifier rep-
SDidtype sfidtype .
resents (Section 3.7.9 on page 73)
. . Distinguishes data sets from dimension scales (Section 3.8.4.4 on
SDiscoordvar sfiscvar
page 88)
. . Determines whether a data set is appendable, i.e., having unlimited
SDisrecord sfisrcrd . . .
dimension (Section 3.5.1.4 on page 42)
)) Returns the index of a data set specified by its name (Section 3.7.4
SDnametoindex sfn2index
on page 71)
L L Retrieves a list of indices of data sets having the same given name
SDnametoindices sfn2indices .
(Section 3.7.5 on page 71)
, , Returns the index of a data set specified by its reference number
SDreftoindex sfref2index .
(Section 3.7.7 on page 73)
SDreset maxopen-— Resets the maximum number of files that can be open at the same
. — sfrmaxopenf . .
files time (Section 3.11.3 on page 113)
SDhdiminfo sfgdinfo Gets information about a dimension (Section 3.8.4.2 on page 82)
Dimensions | SDgetdimid sfdimid Returns the identifier of a dimension (Section 3.8.1 on page 78)
SDsetdimname sfsdimname Associates a name with a dimension (Section 3.8.2 on page 79)
. Retrieves the scale values for a dimension (Section 3.8.4.3 on
Dimension SDgetdimscale sfgdscale
page 82)
Scales . R .
SDsetdimscale sfsdscale Stores the scale values of a dimension (Section 3.8.4.1 on page 81)
24 June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents

HDF User’s Guide

Sbhattrinfo sfgainfo Gets information about an attribute (Section 3.9.2 on page 96)
SDfindattr cffattr Retur'ns the index of an attribute specified by its name
(Section 3.9.2 on page 96)
User-defined - - —
Attributes SDhreadattr sfrnatt/sfr- Reads the values of an attribute specified by its index
catt (Section 3.9.3 on page 97)
sfsnatt/sfs- Creates a new attribute and stores its values (Section 3.9.1 on
SDsetattr
catt page 93)
SDgetcal sfgcal Retrieves calibration information (Section 3.10.6.2 on page 111)
Returns the predefined-attribute strings of a data set
SDgetdatastrs sfgdtstr .
(Section 3.10.2.2 on page 105)
SDgetdimst fadmst Returns the predefined-attribute strings of a dimension
etdimstrs s mstr .
9 g (Section 3.10.3.2 on page 107)
SDgetfillvalue ;f?flll/s£gc7 Reads the fill value if it exists (Section 3.10.5.2 on page 109)
SDgetrange cfgrange Retrieves the range of values in the specified data set
g g grang (Section 3.10.4.2 on page 108)
Predefined SDsetcal sfscal Defines the calibration information (Section 3.10.6.1 on page 110)
Attributes Sets predefined attributes of the specified data set
SDsetdatastrs sfsdtstr A
(Section 3.10.2.1 on page 105)
. Sets predefined attributes of the specified dimension
SDsetdimstrs sfsdmstr .
(Section 3.10.3.1 on page 106)
SDsetfillvalue sfsflll/sfsc— Defines the fill value for the specified data set (Section 3.10.5.1 on
fill page 109)
. Sets the fill mode to be applied to all data sets in the specified file
SDsetfillmode sfsflmd .
(Section 3.10.5.3 on page 109)
SDset £ Defines the maximum and minimum values of the specified data
setrange sfsrange .
g g set (Section 3.10.4.1 on page 107)
Compresses a data set using a specified compression method
SDsetcompress sfscompress .
(Section 3.5.2 on page 47)
. . . Defines the non-standard bit length of the data set data
Compression | SDsetnbitdataset sfsnbit .
(Section 3.7.11 on page 77)
SDget inf £ Retrieves data set compression type and compression information.
etcompinfo sfgcompress
9 © geomp (See the HDF Reference Manual)
.) Obtains information about a chunked data set (Section 3.12.5 on
SDgetchunkinfo sfgichnk
page 120)
sfrchnk/ .
SDreadchunk Reads data from a chunked data set (Section 3.12.4 on page 119)
sfrcchnk
Chunking/ -
- s Makes a non-chunked data set a chunked data set (Section 3.12.1
Tiling SDsetchunk sfschnk
on page 114)
SDsetchunkcache sfcchnk Sets the size of the chunk cache (Section 3.12.2 on page 116)
SDwritechunk iiﬁiink/ stw- Writes data to a chunked data set (Section 3.12.3 on page 117)
SDgetanndatainfo unvailable Retrieves location and size of annotations’ data ()
. . Retrieves location and size of an attribute’s data (Section 3.5.1.5
SDgetattdatainfo unvailable
on page 43)
Raw Data
: Retrieves location and size of data blocks in a spcified data set
Information | spyetdatainfo unvailable v z pettl
(Section 3.5.3.3 on page 54)
SDgetoldat— . Retrieves location and size of an old predefined attribute’s data
X unvailable .
tdatainfo (Section 3.8.3.2 on page 81)

June 2017

25

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
. . Gets information about external file of a data set (Section 3.5.3.4
SDgetexternalinfo | unvailable
on page 55)
, Sets the block size used for storing data sets with unlimited dimen-
SDsetblocksize sfsblsz . .
sion (Section 3.5.1.5 on page 43)
SDsetext 1511 ‘ of Specifies that a data set is to be stored in an external file
Miscellaneous setexternaiifile | stsex (Section 3.5.3.3 on page 54)
spisdi 1 b fisd Determines the current compatibility mode of a dimension
tsaimvat_bweomp | Stisdmve (Section 3.8.3.2 on page 81)
. Sets the future compatibility mode of a dimension (Section 3.8.3.1
SDsetdimval comp sfsdmvc
- on page 80)
SDsetaccesstype sdfsacct Sets the 1/0 access type for an SDS (Section 3.5.1.6 on page 43)
3.3.3 Tags in the SD Interface
A complete list of SDS tags and their descriptions appears in Table AD in Appendix A. Refer to
Section 2.2.2.1 on page 8 for a description of tags.
3.4 Programming Model for the SD Interface
This section describes the routines used to initialize the SD interface, create a new SDS or access
an existing one, terminate access to that SDS, and shut down the SD interface. Writing to existing
scientific data sets will be described in Section 3.5 on page 31.
To support multifile access, the SD interface relies on the calling program to initiate and terminate
access to files and data sets. The SD programming model for creating and accessing an SDS in an
HDF file is as follows:
1. Open a file and initialize the SD interface.
2. Create a new data set or open an existing one using its index.
3. Perform desired operations on this data set.
4. Terminate access to the data set.
5. Terminate access to the SD interface and close the file.
To access a single SDS in an HDF file, the calling program must contain the following calls:
C: sd id = SDstart (filename, access mode);
sds_id = SDcreate(sd id, sds name, data type, rank, dim sizes);
OR sds_id = SDselect (sd id, sds index);
<Optional operations>
status = SDendaccess (sds id);
status = SDend(sd id);
FORTRAN: sd id = sfstart (filename, access mode)
sds_id = sfcreate(sd id, sds name, data type, rank, dim sizes)
OR sds_id = sfselect(sd id, sds index)
<Optional operations>
status = sfendacc(sds id)
status = sfend(sd id)
If the file contains non-SD-API objects, such as vdatas or raster images, the application must use
Hopen/Hclose to access these objects while SDstart/SDend the SD-API objects. The non-SD
API functions access the file via the identifier returned by Hopen and the SD API functions use
the identifier returned by SDstart.
26 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

To access several files at the same time, a program must obtain a separate SD file identifier
(sd_id) for each file to be opened. Likewise, to access more than one SDS, a calling program must
obtain a separate SDS identifier (sds_id) for each SDS. For example, to open two SDSs stored in
two files a program would execute the following series of function calls.

C: sd id 1 = Shstart (filename 1, access mode);
sds id 1 = Shselect(sd id 1, sds index 1);
sd id 2 = SDstart (filename 2, access mode);
sds id 2 = SDhselect(sd id 2, sds index 2);
<Optional operations>
status SDendaccess (sds_id 1);
status = SDend(sd id 1);
status = SDendaccess(sds id 2);
status = SDend(sd id 2);

FORTRAN: sd id 1 = sfstart(filename 1, access mode)
sds id 1 = sfselect(sd id 1, sds index 1)
sd id 2 = sfstart(filename 2, access mode)
sds id 2 = sfselect(sd id 2, sds index 2)
<Optional operations>
status = sfendacc(sds id 1)

sfend(sd id 1)

status = sfendacc(sds id 2)

status = sfend(sd id 2)

status

3.4.1 Establishing Access to Files and Data Sets: SDstart, SDcreate, and
SDselect

In the SD interface, SDstart is used to open files rather than Hopen. SDstart takes two argu-
ments, filename and access_mode, and returns the SD interface identifier, sd_id. Note that the SD
interface identifier, sd_id, is not interchangeable with the file identifier, file id, created by Hopen
and used in other HDF APIs.

The argument filename is the name of an HDF or netCDF file.

The argument access _mode specifies the type of access required for operations on the file. All the
valid values for access mode are listed in Table 3B. If the file does not exist, specifying
DFACC_READ or DFACC_WRITE will cause SDstart to return a FAIL (or -1). Specifying DFACC_CRE-
ATE creates a new file with read and write access. If bFacc_creATE is specified and the file already
exists, the contents of this file will be replaced.

TABLE 3B

File Access Code Flags

File Access Flag | Flag Value Description
DFACC_READ 1 Read only access
DFACC_WRITE 2 Read and write access
DFACC_CREATE 4 Create with read and write access

The SD interface identifiers can be obtained and discarded in any order and all SD interface iden-
tifiers must be individually discarded, by SDend, before the termination of the calling program.

Although it is possible to open a file more than once, it is recommended that the appropriate
access mode be specified and SDstart called only once per file. Repeatedly calling SDstart on the

June 2017 27

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

same file and with different access modes may cause unexpected results. Note that it has been
reported that opening/closing file in loops is very slow; thus, it is not recommended to perform
such operations too many times, particularly, when data is being added to the file between open-
ing/closing.

Prior to HDF 4.2.2, the maximum number of open files was limited to 32; but, it now can be up to
what the system allowed.

SDstart returns an SD identifier or a value of ra1r (or -1). The parameters of SDstart are
defined in (See Table 3C on page 29).

SDcreate defines a new SDS using the arguments sd_id, sds_name, data_type, rank, and dim_-
sizes and returns the data set identifier, sds_id.

The parameter sds_name is a character string containing the name to be assigned to the SDS. The
SD interface will generate a default name, "DataSet", for the SDS, if one is not provided, i.e.,
when the parameter sds_name is set to NULL in C, or an empty string in FORTRAN-77. The maxi-
mum length of an SDS name is no longer limited to 64 characters, starting in HDF 4.2.2. Applica-
tions should use the API SDgetnamelen in order to allocate sufficient space when reading the
name. Note that when an older version of the library reads a data set, which was created by a
library of version 4.2.2 or later and has the name that is longer than 64 characters, the retrieved
name will contain some garbage after 64 characters.

The parameter data_type is a defined name, prefaced by prnT, and specifies the type of the data to
be stored in the data set. The header file "hntdefs.h" contains the definitions of all valid data types,
which are described in Chapter 2, HDF Fundamentals, and listed in (See Table 2F on page 14).

The parameter rank is a positive integer specifying the number of dimensions of the SDS array.
The maximum rank of an SDS array is defined by 14 Max var p1ms (or 32), which is defined in
the header file "hlimits.h". Note that, in order for HDF4 and NetCDF models to work together,
HDF allows SDS to have rank 0. However, there is no intention for data to be written to this type
of SDS, but only to store attribute as part of the data description. Consequently, setting compres-
sion and setting chunk are disallowed.

Each element of the one-dimensional array dim_sizes specifies the length of the corresponding
dimension of the SDS array. The size of dim_sizes must be the value of the parameter rank. To
create a data set with an unlimited dimension, assign the value of sp_UNLIMITED (or 0) to dim_-
sizes[0] in C, and to dim_sizes(rank) in FORTRAN-77. See the notes regarding the potential per-
formance impact of unlimited dimension data sets in Section 14.4.3, "Unlimited Dimension Data
Sets (SDSs and Vdatas) and Performance" on page 461.

Once an SDS is created, you cannot change its name, data type, size, or shape. However, it is pos-
sible to modify the data set’s data or to create an empty data set and later add values. To add data
or modify an existing data set, use SDselect to get the data set identifier instead of SDcreate.

Note that the SD interface retains no definitions about the size, contents, or rank of an SDS from
one SDS to the next, or from one file to the next.

SDselect initiates access to an existing data set. The routine takes two arguments: sd id and
sds_index and returns the SDS identifier sds_id. The argument sd_id is the SD interface identifier
returned by SDstart, and sds_index is the position of the data set in the file. The argument sds_in-
dex is zero-based, meaning that the index of first SDS in the file is 0.

Similar to SD interface identifiers, SDS identifiers can be obtained and discarded in any order as
long as they are discarded properly. Each SDS identifier must be individually disposed of, by
SDendaccess, before the disposal of the identifier of the interface in which the SDS is opened.

28

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

SDcreate and SDselect each returns an SDS identifier or a value of a1t (or -1). The parameters
of SDstart, SDcreate, and SDselect are further described in Table 3C.

3.4.2 Terminating Access to Files and Data Sets: SDendaccess and SDend

SDendaccess terminates access to the data set and disposes of the data set identifier sds_id. The
calling program must make one SDendaccess call for every SDselect or SDcreate call made
during its execution. Failing to call SDendaccess for each call to SDselect or SDcreate may result
in a loss of data.

SDend terminates access to the file and the SD interface and disposes of the file identifier sd id.
The calling program must make one SDend call for every SDstart call made during its execution.
Failing to call SDend for each SDstart may result in a loss of data.

SDendaccess and SDend each returns either a value of succeep (or 0) or Fa1L (or -1). The
parameters of SDendaccess and SDend are further described in Table 3C.

TABLE 3C SDstart, SDcreate, SDselect, SDendaccess, and SDend Parameter Lists
Routine Name Parameter Type
Return Type o 4.
(IEORTll},Xlll- Parameter C FORTRAN- Description
77) 77
SDstart filename char * character™(*) Name of the HDF or netCDF file
[int32] - -
(sfstart) access_mode int32 integer Type of access
sd_id int32 integer SD interface identifier
SDereate sds_name char * character*(*) ASCII string containing the name of the data set
[int32] data_type int32 integer Data type of the data set
(sfereate) rank int32 integer Number of dimensions in the array
dim_sizes int32[] integer(*) Array defining the size of each dimension
SDselect sd_id int32 integer SD interface identifier
[int32] . . . " L
(sfselect) sds_index int32 integer Position of the data set within the file
SDendaccess
[intn] sds_id int32 integer Data set identifier
(sfendacc)
SDend
[intn] sd_id int32 integer SD interface identifier
(sfend)
EXAMPLE 1. Creating an HDF file and an Empty SDS.

This example illustrates the use of SDstart/sfstart, SDcreate/sfcreate, SDendaccess/sfendacc,
and SDend/sfend to create the HDF file named SDS.hdf, and an empty data set with the name
SDStemplate in the file.

Note that the Fortran program uses a transformed array to reflect the difference between C and
Fortran internal data storages. When the actual data is written to the data set, SDS.hdf will contain
the same data regardless of the language being used.

C:
#include "mfhdf.h"

#define FILE NAME "SDS.hdf"
#define SDS_NAME "SDStemplate"

June 2017 29

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

#define X LENGTH 5

#define Y LENGTH 16

#define RANK 2 /* Number of dimensions of the SDS */
main()

{

/*‘k*********************** Variable declaration ‘k‘k************************/

int32 sd id, sds_id; /* SD interface and data set identifiers */
int32 dim sizes[2]; /* sizes of the SDS dimensions */
intn status; /* status returned by some routines; has value

SUCCEED or FAIL */

/********************* End Of Variable declaration ***********************/

/*
* Create the file and initialize the SD interface.
*/

sd_id = SDstart (FILE NAME, DFACC CREATE);

/*

* Define the dimensions of the array to be created.
*/

dim sizes[0] = Y LENGTH;

dim sizes[1] = X LENGTH;

/*

* Create the data set with the name defined in SDS_NAME. Note that
* DENT_INT32 indicates that the SDS data is of type int32. Refer to
* Table 2E for definitions of other types.

*/

sds_id = SDcreate (sd id, SDS NAME, DENT INT32, RANK, dim sizes);

/*
* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*
* Terminate access to the SD interface and close the file.
x/

status = SDend (sd_id);

FORTRAN:
program create SDS
implicit none
C
c Parameter declaration.
C
character*7 FILE_NAME
character*11l SDS_NAME
integer X_LENGTH, Y LENGTH, RANK
parameter (FILE NAME = ’SDS.hdf’,
+ SDS NAME = ’SDStemplate’,
+ X_LENGTH = 5,
+ Y LENGTH = 16,
+ RANK = 2)
integer DFACC_CREATE, DENT_INT32
parameter (DFACC_CREATE = 4,
+ DFNT INT32 = 24)
C
30 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

3.5

C Function declaration.
C
integer sfstart, sfcreate, sfendacc, sfend
C
C**** Variable declaration KAk Ak Ak hkhkhkhhkhkhkhkhhk bk hkhkhrhkrhkhhkhkhhkrhkhkhkkrkrhk kA kxkx
C
integer sd id, sds id, dim sizes(2)
integer status
C
C**** End Of Variable declaration KA K KA KA A AA KA RA AR AR AR A AR AR A AR AR AR A Ak K
C
C
C Create the file and initialize the SD interface.
C
sd_id = sfstart (FILE NAME, DFACC CREATE)
C
C Define dimensions of the array to be created.
C
dim sizes (1) = X LENGTH
dim sizes(2) = Y LENGTH
C
c Create the array with the name defined in SDS_NAME.
c Note that DFNT INT32 indicates that the SDS data is of type
C integer. Refer to Tables 2E and 2I for the definition of other types.
C
sds_id = sfcreate(sd id, SDS NAME, DFNT INT32, RANK,
dim sizes)
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
c
C Terminate access to the SD interface and close the file.
C

status = sfend(sd id)

end

Writing Data to an SDS

An SDS can be written partially or entirely. Partial writing includes writing to a contiguous region
of the SDS and writing to selected locations in the SDS according to patterns defined by the user.
This section describes the routine SDwritedata and how it can write data to part of an SDS or to
an entire SDS. The section also illustrates the concepts of compressing SDSs and using external
files to store scientific data.

3.5.1 Writing Data to an SDS Array: SDwritedata

SDwritedata can completely or partially fill an SDS array or append data along the dimension
that is defined to be of unlimited length (see Section 3.5.1.3 on page 42 for a discussion of unlim-
ited-length dimensions). It can also skip a specified number of SDS array elements between write
operations along each dimension.

To write to an existing SDS, the calling program must contain the following sequence of routine
calls:

C: sds id = SDselect (sd id, sds_index);
status = SDwritedata(sds id, start, stride, edges, data);

June 2017 31

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

FORTRAN: sds id = sfselect(sd id, sds index)

status = sfwdata(sds _id, start, stride, edges, data)

OR status = sfwcdata(sds id, start, stride, edges, data)

To write to a new SDS, simply replace the call SDselect with the call SDcreate, which is
described in Section 3.4.1 on page 27.

SDwritedata takes five arguments: sds_id, start, stride, edges, and data. The argument sds_id is
the data set identifier returned by SDcreate or SDselect.

Before proceeding with the description of the remaining arguments, an explanation of the term
hyperslab (or slab, as it will be used in this chapter) is in order. A slab is a group of SDS array ele-
ments that are stored in consecutive locations. It can be of any size and dimensionality as long as
it is a subset of the array, which means that a single array element and the entire array can both be
considered slabs. A slab is defined by the multidimensional coordinate of its initial vertex and the
lengths of each dimension.

Given this description of the slab concept, the usage of the remaining arguments should become
apparent. The argument start is a one-dimensional array specifying the location in the SDS array
at which the write operation will begin. The values of each element of the array start are relative
to 0 in both the C and FORTRAN-77 interfaces. The size of start must be the same as the number
of dimensions in the SDS array. In addition, each value in start must be smaller than its corre-
sponding SDS array dimension unless the dimension is unlimited. Violating any of these condi-
tions causes SDwritedata to return FAIL.

The argument stride is a one-dimensional array specifying, for each dimension, the interval
between values to be written. For example, setting the first element of the array stride equal to 1
writes data to every location along the first dimension. Setting the first element of the array stride
to 2 writes data to every other location along the first dimension. Figure 3b illustrates this exam-
ple, where the shading elements are written and the white elements are skipped. If the argument
stride is set to NULL in C (or either 0 or 1 in FORTRAN-77), SDwritedata operates as if every ele-
ment of stride contains a value of 1, and a contiguous write is performed. For better performance,
it is recommended that the value of stride be defined as nuLL (i.e., 0 or 1 in FORTRAN-77) rather
than being set to 1.

The size of the array stride must be the same as the number of dimensions in the SDS array. Also,
each value in stride must be smaller than or equal to its corresponding SDS array dimension
unless the dimension is unlimited. Violating any of these conditions causes SDwritedata to return
FATL.

FIGURE 3b

An Example of Access Pattern (' Strides')

stride[0] = 2

Array 0 1 2 3 4 5 6 N
Location

The argument edges is a one-dimensional array specifying the length of each dimension of the
slab to be written. If the slab has fewer dimensions than the SDS data set has, the size of edges

32

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

must still be equal to the number of dimensions in the SDS array and all the elements correspond-
ing to the additional dimensions must be set to 1.

Each value in the array edges must not be larger than the length of the corresponding dimension in
the SDS data set unless the dimension is unlimited. Attempting to write slabs larger than the size
of the SDS data set will result in an error condition.

In addition, the sum of each value in the array edges and the corresponding value in the start array
must be smaller than or equal to its corresponding SDS array dimension unless the dimension is
unlimited. Violating any of these conditions causes SDwritedata to return Fa1z. When SDreadd-
ata returns FAIL (or -1) due to any invalid argements, the error code prE_arcs will be pushed on
the stack.

The parameter data contains the SDS data to be written. If the SDS array is smaller than the buffer
data, the amount of data written will be limited to the maximum size of the SDS array.

Be aware that the mapping between the dimensions of a slab and the order in which the slab val-
ues are stored in memory is different between C and FORTRAN-77. In C, the values are stored
with the assumption that the last dimension of the slab varies fastest (or "row-major order" stor-
age), but in FORTRAN-77 the first dimension varies fastest (or "column-major order" storage).
These storage order conventions can cause some confusion when data written by a C program is
read by a FORTRAN-77 program or vice versa.

There are two FORTRAN-77 versions of this routine: sfwdata and sfwedata. The routine sfw-
data writes numeric scientific data and sfwcdata writes character scientific data.

SDwritedata returns either a value of succeep (or 0) or FAIL (or -1). The parameters of this rou-
tine are described in Table 3D.

TABLE 3D

SDwritedata Parameter List

Routine Name Parameter Type
Return Type a9
(l<£0RTRy1§1]\I- Parameter Description
C FORTRAN-77
77)
sds_id int32 integer Data set identifier
start int32 [] integer(*) Ar{'ay Cf)ntamlng the p051-t10n aF which the
write will start for each dimension
SDwritedata . . . Array specifying the interval between the val-
t t32 t *
[intn] stride int32{] integer(*) ues that will be read along each dimension
(sfwdata/ -
. . Array containing the number of data elements
*
sfwedata) edges ini32] integer(*) that will be written along each dimension
<valid numeric data
data VOIDP type>(*)/ Buffer for the data to be written
character*(*)

3.5.1.1 Filling an Entire Array

Filling an array is a simple slab operation where the slab begins at the origin of the SDS array and
fills every location in the array. SDwritedata fills an entire SDS array with data when all elements
of the array start are set to 0, the argument s¢ride is set equal to NULL in C or each element of the
array stride is set to 1 in both C and FORTRAN-77, and each element of the array edges is equal
to the length of each dimension.

June 2017 33

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

EXAMPLE 2. Writing to an SDS.

This example illustrates the use of the routines SDselect/sfselect and SDwritedata/sfwrite to
select the first SDS in the file SDS.hdf created in Example 1 and to write actual data to it.

C:
#include "mfhdf.h"

#define FILE NAME "SDS.hdf"
#define X LENGTH 5
#define Y LENGTH 16

main()

{

/*‘k*********************** Variable declaration ‘k‘k************************/

int32 sd_id, sds_id, sds_index;

intn status;

int32 start[2], edges[2];

int32 data[Y LENGTH] [X LENGTH];

int i, 37

/********************* End Of Variable declaration ***********************/
/*

* Data set data initialization.

*/
for (3 = 0; j < Y LENGTH; j++) {

for (i = 0; i < X LENGTH; i++)
data[j][i] = (L + J) + 1;

}
/%
* Open the file and initialize the SD interface.
*/
sd_id = SDstart (FILE NAME, DFACC WRITE);
/*
* Attach to the first data set.
*/

sds_index = 0;
sds_id = SDselect (sd _id, sds_index);

/*
* Define the location and size of the data to be written to the data set.
*/

start[0] = O;

start[1l] = 0;

edges[0] = Y LENGTH;

edges[1l] = X LENGTH;

/*

* Write the stored data to the data set. The third argument is set to NULL
* to specify contiguous data elements. The last argument must

* be explicitly cast to a generic pointer since SDwritedata is designed

* to write generic data.

*/

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)data);

/*
* Terminate access to the data set.
*/

34 June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents HDF User’s Guide

status = SDendaccess (sds_id);

/*
* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

FORTRAN:
program write data
implicit none
C
C Parameter declaration.
C
character*7 FILE_ NAME
character*11l SDS NAME
integer X_LENGTH, Y_ LENGTH, RANK
parameter (FILE NAME = ’SDS.hdf’,
+ SDS_NAME = ’SDStemplate’,
+ X_LENGTH = 5,
+ Y LENGTH = 16,
+ RANK = 2)
integer DFACC_WRITE, DENT_INT32
parameter (DFACC_WRITE = 2,
+ DFNT_INT32 = 24)
C
C Function declaration.
C
integer sfstart, sfselect, sfwdata, sfendacc, sfend
C
C**** variable declaration KAk Ak Ak kA hkhhkhkhkhkhk kA hhkhkhkrhkhkhkhkhkhkrhkkhkhkkdkrhkhxhkhrkhrxk*x
C
integer sd id, sds id, sds index, status
integer start(2), edges(2), stride(2)
integer i, j
integer data (X LENGTH, Y LENGTH)
C
C**** End Of Variable declaration KAK KA KA AR AA KA KRA A KA KA A A A KA AR A AR AR AR,k
C
C
C Data set data initialization.
C
do 20 j =1, Y LENGTH
do 10 i = 1, X LENGTH
data(i, j) =i+ 3 -1
10 continue
20 continue
C
C Open the file and initialize the SD interface.
C
Sdﬁid = sfstart (FILE NAME, DFACC WRITE)
C
C Attach to the first data set.
C
sds_index = 0
sds_id = sfselect(sd id, sds index)
C

June 2017

35

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
C Define the location and size of the data to be written
C to the data set. Note that setting values of the array stride to 1
C specifies the contiguous writing of data.
C
start (1) = 0
start(2) = 0
edges (1) = X LENGTH
edges (2) = Y LENGTH
stride(l) =1
stride (2) 1
C
C Write the stored data to the data set named in SDS NAME.
C Note that the routine sfwdata is used instead of sfwcdata
C to write the numeric data.
C
status = sfwdata(sds_id, start, stride, edges, data)
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
status = sfend(sd_id)
end
3.5.1.2 Writing Slabs to an SDS Array
To allow preexisting data to be modified, the HDF library does not prevent SDwritedata from
overwriting one slab with another. As a result, the calling program is responsible for managing
any overlap when writing slabs. The HDF library will issue an error if a slab extends past the valid
boundaries of the SDS array. However, appending data along an unlimited dimension is allowed.
EXAMPLE 3. Writing a Slab of Data to an SDS.

This example shows how to fill a 3-dimensional SDS array with data by writing series of 2-
dimensional slabs to it.

C:

#inclu

#defin
#defin
#defin
#defin
#defin
#defin

main (
{
/‘k*

int
int
int
int
int
int

de "mfhdf.h"

e FILE_NAME "SLABS.hdf"

e SDS_NAME "FilledBySlabs"
e X_LENGTH 4

e Y _LENGTH 5

e Z LENGTH 6

e RANK 3

)

Ak Kk kA hkhkkkrhkhkhkkhkhkkhkrhkkkkxk Variable declaration **************************/

32 sd id, sds_id;
n status;
32 dim sizes[3], start[3], edges[3];
32 data[Z LENGTH] [Y LENGTH] [X LENGTH];
32 zx_data[Z LENGTH] [X_LENGTH];

i, 3, ks

36

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

/********************* End of variable declaration ***********************/

/%
* Data initialization.
*/
for (k = 0; k < Z_LENGTH; k++)
for (j = 0; j < Y LENGTH; j++)

for (1 = 0; i < X LENGTH; i++)
datalk][J]1[i] = (L + 1) + (3 + 1) + (k + 1);

/*
* Create the file and initialize the SD interface.
*/
sd_id = SDstart (FILE NAME, DFACC CREATE);
/*
* Define dimensions of the array to be created.
*/
dim sizes[0] = Z LENGTH;
dim sizes[1] = Y LENGTH;
dim sizes[2] = X LENGTH;
/*
* Create the array with the name defined in SDS_NAME.
*/

sds_id = SDcreate (sd_id, SDS NAME, DENT INT32, RANK, dim sizes);

* Set the parameters start and edges to write

* a 6x4 element slab of data to the data set; note

* that edges[l] is set to 1 to define a 2-dimensional slab

* parallel to the ZX plane.

* start[l] (slab position in the array) is initialized inside
* the for loop.

*/
edges[0] = Z_LENGTH;
edges[1l] = 1;
edges[2] = X LENGTH;
start[0] = start([2] = 0;
for (j = 0; j < Y LENGTH; j++)
{
start[1] = j;
/*
* Initialize zx data buffer (data slab).
*/
for (k = 0; k < Z LENGTH; k++)
{
for (1 =0; i < X LENGTH; i++)
{
zx_datalk] [i] = data(k] [J][i];
}
}
/*

* Write the data slab into the SDS array defined in SDS NAME.

* Note that the 3rd parameter is NULL which indicates that consecutive
* slabs in the Y direction are written.

*/

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)zx data);

}

/*

June 2017 37

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*
* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

FORTRAN:
program write slab
implicit none
C
C Parameter declaration.
C
character*9 FILE NAME
character*13 SDS_NAME
integer X _LENGTH, Y LENGTH, Z_LENGTH, RANK
parameter (FILE NAME = ’SLABS.hdf’,
+ SDS NAME = ’FilledBySlabs’,
+ X_LENGTH = 4,
+ Y LENGTH = 5,
+ Z LENGTH = 6,
+ RANK = 3)
integer DFACC_CREATE, DENT_INT32
parameter (DFACC_CREATE = 4,
+ DFNTilNT32 = 24)
C
C Function declaration.
C
integer sfstart, sfcreate, sfwdata, sfendacc, sfend
C
C**** Variable declaration ER R R R R R B R R I i I i
C
integer sd id, sds_id
integer dim sizes(3), start(3), edges(3), stride(3)
integer i, j, k, status
integer data (X LENGTH, Y LENGTH, Z LENGTH)
integer xz data (X LENGTH, Z LENGTH)
C
C**** End Of Variable declaration KAK KA KA KR AR KA KRA AR AR AR AR KA R A AR A XA AR A, K
C
C
C Data initialization.
C
do 30 k = 1, Z_ LENGTH
do 20 j =1, Y LENGTH
do 10 i = 1, X LENGTH
data(i, j, k) =1 + 3 + k
10 continue
20 continue
30 continue
C
C Create the file and initialize the SD interface.
C
Sdﬁid = sfstart (FILE NAME, DFACC CREATE)
C
C Define dimensions of the array to be created.
C

dim sizes(l) = X LENGTH
dim sizes(2) = Y LENGTH

38

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

dim sizes(3) = Z LENGTH
C
C Create the data set with the name defined in SDS_NAME.
C
sds_id = sfcreate(sd id, SDS NAME, DFNT INT32, RANK,
dim sizes)
C
C Set the parameters start and edges to write
C a 4x6 element slab of data to the data set;
C note that edges(2) is set to 1 to define a 2 dimensional slab
C parallel to the XZ plane;
C start (2) (slab position in the array) is initialized inside the
C for loop.
C
edges (1) = X LENGTH
edges(2) =1
edges (3) = 7Z_LENGTH
start (1) = 0
start(3) = 0
stride(l) = 1
stride(2) =1
stride(3) =1
do 60 j =1, Y LENGTH
start(2) = j -1
C
C Initialize the buffer xz data (data slab).
C
do 50 k = 1, Z LENGTH
do 40 i = 1, X LENGTH
xz data(i, k) = data(i, j, k)
40 continue
50 continue
C
c Write the data slab into SDS array defined in SDS_NAME.
C Note that the elements of array stride are set to 1 to
C specify that the consecutive slabs in the Y direction are written.
c
status = sfwdata(sds_id, start, stride, edges, xz data)
60 continue
c
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
c
status = sfend(sd_id)
end
EXAMPLE 4. Altering Values within an SDS Array.

This example demonstrates how the routine SDwritedata can be used to alter the values of the
elements in the 10th and 11th rows, at the 2nd column, in the SDS array created in the Example 1
and written in Example 2. FORTRAN-77 routine sfwdata is used to alter the elements in the 2nd
row, 10th and 11th columns, to reflect the difference between C and Fortran internal storage.

C:

#include "mfhdf.h"

June 2017 39

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

#define FILE NAME "SDS.hdf"

main()

{

/‘k************************ Variable declaration **************************/

int32 sd id, sds_id, sds_index;
intn status;

int32 start[2], edges[2];

int32 new datal2];

int i, 3

/********************* End Of Variable declaration ***********************/
/*

* Open the file and initialize the SD interface with write access.

*/

sd_id = SDstart (FILE NAME, DFACC WRITE);

/*
* Select the first data set.

*/

sds_index = 0;

sds_id = SDselect (sd_id, sds_index);

/*
* Set up the start and edge parameters to write new element values
* into 10th row, 2nd column place, and 1lth row, 2nd column place.

*/

start[0] = 9; /* starting at 10th row */

start([1l] = 1; /* starting at 2nd column */

edges[0] = 2; /* rows 10th and 11th */

edges[1l] = 1; /* column 2nd only */

/*

* Initialize buffer with the new values to be written.

*/

new data[0] = new data[l] = 1000;

/*

* Write the new values.

*/

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)new data);
/*

* Terminate access to the data set.

*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

FORTRAN:
program alter data
implicit none
C
C Parameter declaration.
C

character*7 FILE NAME

40 June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents HDF User’s Guide

C
C

C

C**‘k‘k

C

C

C‘k‘k**

C

Q

Q

Q Q000

Q

Q

Q

integer DFACC_WRITE
parameter (FILE NAME = ’SDS.hdf’,
+ DFACC WRITE = 2)

Function declaration.
integer sfstart, sfselect, sfwdata, sfendacc, sfend

variable declaration KAk Ak Ak hkhkhkhhkhkhkhkhk kA hkhkhkhkrhkhkhkkhkhkrhkkhkhkkhkrkhkhkhkkrkkhrxk*x

integer sd_id, sds_id, sds_index
integer start(2), edges(2), stride(2)
integer status

integer new_data(2)

End Of Variable declaration KAK KA KA A AA KA RA A KA R AR A A KA A AR AR AR A A,k

Open the file and initialize the SD interface.

sd id = sfstart (FILE NAME, DFACC WRITE)

Select the first data set.

sds_index = 0

sds_id = sfselect(sd id, sds_index)

Initialize the start, edge, and stride parameters to write
two elements into 2nd row, 10th column and 1lth column places.
Specify 2nd row.

start(l) =1

Specify 10th column.

start(2) = 9
edges (1)

Il
-

Two elements are written along 2nd row.
edges(2) = 2
stride(l) =1
stride(2) =1

Initialize the new values to be written.

1000
1000

new data (1)
new_data(2)

Write the new values.

status = sfwdata(sds_id, start, stride, edges, new data)
Terminate access to the data set.

status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

status = sfend(sd_id)

June 2017

41

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

end

3.5.1.3 Appending Data to an SDS Array along an Unlimited Dimension

An SDS array can be made appendable, however, only along one dimension. This dimension must
be specified as an appendable dimension when it is created.

In C, only the first element of the SDcreate parameter dim_sizes (i.e., the dimension of the lowest
rank or the slowest-changing dimension) can be assigned the value sp_uNLIMITED (or 0) to make
the first dimension unlimited. In FORTRAN-77, only the /ast dimension (i.e., the dimension of
the highest rank or the slowest-changing dimension) can be unlimited. In other words, in FOR-
TRAN-77 dim_sizes(rank) must be set to the value sp_uNLIMITED to make the last dimension
appendable.

To append data to a data set without overwriting previously-written data, the user must specify the
appropriate coordinates in the szart parameter of the SDwritedata routine. For example, if 15 data
elements have been written to an unlimited dimension, appending data to the array requires a start
coordinate of 15. Specifying a starting coordinate less than the current number of elements written
to the unlimited dimension will result in data being overwritten. In either case, all of the coordi-
nates in the array except the one corresponding to the unlimited dimension must be equal to or
less than the lengths of their corresponding dimensions.

Any time an unlimited dimension is appended to, the HDF library will automatically adjust the
dimension record to the new length. If the newly-appended data begins beyond the previous
length of the dimension, the locations between the old data and the beginning of the newly-
appended data are initialized to the assigned fill value if there is one defined by the user, or the
default fill value if none is defined. Refer to Section 3.10.5 on page 108 for a discussion of fill
value.

3.5.1.4 Determining whether an SDS Array is Appendable: SDisrecord

SDisrecord determines whether the data set identified by the parameter sds id is appendable,
which means that the slowest-changing dimension of the SDS array is declared unlimited when
the data set is created. The syntax of SDisrecord is as follows:

C: status = SDhisrecord(sds id);
FORTRAN: status = sfisrcrd(sds id)

SDisrecord returns TRUE (or 1) when the data set specified by sds_id is appendable and raLsEe (or
0) otherwise. The parameter of this routine is defined in Table 3E.

42

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

TABLE 3E SDisrecord Parameter List
Routine Name Parameter Type
(lglgtﬁr%l?x]\l_ Parameter . FORTRAN- Description
77) 77
SDisrecord
[int32] sds_id int32 integer Data set identifier
(sfisrerd)
3.5.1.5 Setting the Block Size: SDsetblocksize
SDsetblocksize sets the size of the blocks used for storing the data for unlimited dimension data
sets. This is used only when creating new data sets; it does not have any affect on existing data
sets. The syntax of this routine is as follows:
C: status = SDsetblocksize (sds id, block size);
FORTRAN: status = sfsblsz(sds id, block size)
SDsetblocksize must be called after SDcreate or SDselect and before SDwritedata. The parame-
ter block_size should be set to a multiple of the desired buffer size.
SDsetblocksize returns a value of succeep (or 0) or FAIL (or -1). Its parameters are further
described in Table 3F.
3.5.1.6 Setting the I/O Access Type of an SDS: SDsetaccesstype
SDsetaccesstype sets the type of I/O (serial, parallel,...) for accessing the data of the data set iden-
tified by sds_id. Valid values of access types are DFACC_SERIAL (Or 1), DFACC_PARALLEL (Or 11),
and pracc_DEFAULT (or 0.) The syntax of this routine is as follows:
C: status = SDsetaccesstype (sds_id, accesstype);
FORTRAN: status = sdfsacct(sds id, accesstype)
SDsetaccesstype returns a value of succeep (or 0) if the SDS data can be accessed via accesstype
or FATL (or -1) otherwise. Its parameters are further described in Table 3F.
TABLE 3F SDsetblocksize and SDsetaccesstype Parameter List
Routine Name Parameter Type
(l?gtﬁn{;{yz]\l_ Parameter . FORTRAN- Description
77) 77
SDsetblocksize sds_id int32 integer Data set identifier
(s[;snl:;gz) block_size int32 integer Block size
SDsetaccesstype sds_id int32 integer Data set identifier
(S(glfrsl:l]ct) accesstype int32 integer /O access type
EXAMPLE 5. Appending Data to an SDS Array with an Unlimited Dimension.

This example creates a 10x10 SDS array with one unlimited dimension and writes data to it. The
file is reopened and the routine SDisrecord/sfisrerd is used to determine whether the selected
SDS array is appendable. Then new data is appended, starting at the 11th row.

June 2017 43

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

#include "mfhdf.h"

#define FILE NAME "SDSUNLIMITED.hdf"
#define SDS NAME "AppendableData"
#define X LENGTH 10

#define Y LENGTH 10

#define RANK 2

main()

{

/*‘k*********************** Variable declaration ‘k‘k************************/

int32 sd_id, sds_id, sds_index;

intn status;

int32 dim sizes[2];

int32 data[Y LENGTH] [X LENGTH], append data[X LENGTH];
int32 start[2], edges[2];

int i, 3

/********************* End of variable declaration ***********************/

/%
* Data initialization.
*/
for (j = 0; j < Y LENGTH; j++)
{
for (1 = 0; i < X LENGTH; i++)
data[3]1[i] = (1 + 1) + (3 + 1);

/*
* Create the file and initialize the SD interface.
*/

Sd_id = SDstart (FILE NAME, DFACC_CREATE) ;

/*

* Define dimensions of the array. Make the first dimension
* appendable by defining its length to be unlimited.

*/

dim sizes[0] = SD UNLIMITED;

dim sizes[1] = X LENGTH;

/*
* Create the array data set.

*/

sds_id = SDcreate (sd_id, SDS_NAME, DFNT INT32, RANK, dim sizes);

/*

* Define the location and the size of the data to be written
* to the data set.

*/

start[0] = start([1l] = 0;

edges[0] = Y LENGTH;

edges[1] = X LENGTH;

/*

* Write the data.

*/

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)data);

/*

44

June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents HDF User’s Guide

* Terminate access to the array data set, terminate access
* to the SD interface, and close the file.

*/

status SDendaccess (sds_id);

status = SDend (sd_id);

/*
* Store the array values to be appended to the data set.
*/
for (i = 0; 1 < X LENGTH; i++)

append_data[i] = 1000 + i;

/*
* Reopen the file and initialize the SD interface.
*/

sd _id = SDstart (FILE NAME, DFACC WRITE);

/*
* Select the first data set.

*/

sds_index = 0;

sds_id = SDselect (sd _id, sds_index);

/*
* Check if selected SDS is unlimited. If it is not, then terminate access
* to the SD interface and close the file.

*/

if (SDisrecord (sds_id))

{

/*

* Define the location of the append to start at the first column
* of the 1lth row of the data set and to stop at the end of the
* eleventh row.

*/

start[0] = Y LENGTH;

start[1l] = O;

edges[0] = 1;

edges[1] = X LENGTH;

/*

* Append data to the data set.
*/

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)append data);
}

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

FORTRAN:
program append sds
implicit none
c
C Parameter declaration.
June 2017 45

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

C
character*16 FILE NAME
character*14 SDS NAME
integer X LENGTH, Y LENGTH, RANK
parameter (FILE NAME = 'SDSUNLIMITED.hdf’,
+ SDS_NAME = ’AppendableData’,
+ X LENGTH = 10,
+ Y LENGTH = 10,
+ RANK = 2)
integer DFACC CREATE, DFACC WRITE, SD UNLIMITED,
+ DENT_INT32
parameter (DFACC_CREATE = 4,
+ DFACC WRITE = 2,
+ SD_UNLIMITED = O,
+ DFNT INT32 = 24)
C
C Function declaration.
C
integer sfstart, sfcreate, sfwdata, sfselect
integer sfendacc, sfend
C
C**** Variable declaration KA K KA KA KR AR KA KR AR A AR A AR AR KA R AR A AR AR A AR AR AR A K* K
C
integer sd id, sds_id, sds_index, status
integer dim sizes(2)
integer start(2), edges(2), stride(2)
integer i, j
integer data (X LENGTH, Y LENGTH), append data (X LENGTH)
C
C**‘k‘k End Of Variable declaration KAk Ak Ak hkkhk kA hkhkhkkhkrhkhkhkhkhkhrhkkhkkhkhkhrkhkhkhrk*x
C
C
C Data initialization.
C
do 20 § = 1, Y LENGTH
do 10 i = 1, X LENGTH
data(i, j) =1 + 3
10 continue
20 continue
C
C Create the file and initialize the SD interface.
C
sd id = sfstart (FILE NAME, DFACC CREATE)
C
C Define dimensions of the array. Make the
C last dimension appendable by defining its length as unlimited.
C
dim sizes(l) = X LENGTH
dim sizes(2) = SD UNLIMITED
C Create the array data set.
sds_id = sfcreate(sd id, SDS NAME, DFNT INT32, RANK,
dim sizes)
C
C Define the location and the size of the data to be written
C to the data set. Note that the elements of array stride are
C set to 1 for contiguous writing.
C
start (1) = 0
start(2) = 0
edges (1) = X LENGTH
edges (2) = Y LENGTH
stride(l) = 1

46 June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents HDF User’s Guide

Q Q

Qa0

Q Q

QO

Q00

stride(2) = 1
Write the data.
status = sfwdata(sds_id, start, stride, edges, data)

Terminate access to the data set, terminate access
to the SD interface, and close the file.

status = sfendacc(sds_id)
status = sfend(sd_id)

Store the array values to be appended to the data set.
do 30 i = 1, X LENGTH
append data(i) = 1000 + i - 1
continue
Reopen the file and initialize the SD.
sd_id = sfstart (FILE NAME, DFACC WRITE)

Select the first data set.

sds_index = 0
sds_id = sfselect(sd id, sds_index)

Define the location of the append to start at the 11lth
column of the 1lst row and to stop at the end of the 10th row.

start (1) = 0
start (2) = Y LENGTH
edges (1) = X LENGTH
edges(2) =1

Append the data to the data set.

status = sfwdata(sds_id, start, stride, edges, append data)
Terminate access to the data set.

status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.
status = sfend(sd id)

end

3.5.2 Compressing SDS Data: SDsetcompress

The SDsetcompress routine compresses an existing data set or creates a new compressed data set.
It is a simplified interface to the HCcreate routine, and should be used instead of HCcreate
unless the user is familiar with the lower-level routines.

The compression algorithms currently supported by SDsetcompress are:

* Adaptive Huffman
* GZIP "deflation" (Lempel/Ziv-77 dictionary coder)
* Run-length encoding

June 2017

47

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

* NBIT
» Szip
The syntax of the routine SDsetcompress is as follows:
C: status = SDsetcompress (sds id, comp type, &c info);
FORTRAN: status = sfscompress(sds id, comp type, comp prm)

The parameter comp_type specifies the compression type definition and is set to

comp_copE RLE (or 1) for run-length encoding (RLE)
comMp_coDE_SKPHUFF (or 3) for Skipping Huffman
comp_copE_DEFLATE (or 4) for GZIP compression
comp_copE_sz1P (or 5) for Szip compression

Compression information is specified by the parameter c¢_info in C, and by the parameter com-
p_prm in FORTRAN-77. The parameter c_info is a pointer to a union structure of type comp_info.

Refer to the SDsetcompress entry in the HDF Reference Manual for the description of the com-
p_info structure.

If comp_type is set to comp_CODE_RLE, the parameters ¢_info and comp_prm are not used; c_info
can be set to NULL and comp_prm can be undefined.

If comp_type is set to coMP_cope_SKPHUFF, then the structure skphuff in the union comp_info in C
(comp_prm(1) in FORTRAN-77) must be provided with the size, in bytes, of the data elements.

If comp_type is set to coMp_coDE_DEFLATE, the deflate structure in the union comp_info in C (com-
p_prm(1) in FORTRAN-77) must be provided with the information about the compression effort.

If comp_type is set to comp_cope_sz1p the Szip options mask and the number of pixels per block
in a chunked and Szip-compressed dataset must be specified in ¢_info.szip.options mask
and c_info.szip.pixels per block in C, and comp prm(Il) and comp_prm(2) in Fortran,
respectively.

For example, to compress signed 16-bit integer data using the adaptive Huffman algorithm, the
following definition and SDsetcompress call are used.

c: comp info c info;
c info.skphuff.skp size = sizeof (intl6);
status = SDsetcompress (sds_id, COMP CODE SKPHUFF, &c info);

FORTRAN: comp prm(l) = 2
COMP_CODE_SKPHUEF = 3
status = sfscompress(sds id, COMP CODE SKPHUFF, comp prm)

To compress a data set using the gzip deflation algorithm with the maximum effort specified, the
following definition and SDsetcompress call are used.

C: comp_info c info;
c info.deflate.level = 9;
status = SDsetcompress(sds id, COMP CODE DEFLATE, &c info);

FORTRAN: comp prm(l) = 9
COMP CODE DEFIATE = 4
status = sfscompress(sds id, COMP CODE DEFLATE, comp prm)

SDsetcompress functionality is currently limited to the following:

* Write the compressed data, in its entirety, to the data set. The data set is built in-core then
written in a single write operation.

48

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

* Compression is not supported on an SDS with unlimited dimension. SDsetcompress will
return FAIL for such SDS and any subsequent writing to this SDS will write uncompressed
data.

The existing compression algorithms supported by HDF do not allow partial modification to a
compressed datastream. In addition, compressed data sets cannot be stored in external files (see
Section 3.5.3.)

SDsetcompress returns a value of succeep (or 0) or FAIL (or -1). The C version parameters are
further described in Table 3G and the FORTRAN-77 version parameters are further described in
Table 3H.

TABLE 3G SDsetcompress Parameter List
; Parame- Parameter Type L.
Routine Name Description
[Return Type] ter C
sds_id int32 Data set identifier
SDsetcompress
[intn] comp_type int32 Compression method
c_info comp_info* Pointer to compression information structure
TABLE 3H sfscompress Parameter List
Routine Name | Parame- | Parameter Type .
Description
ter FORTRAN-77
sds_id integer Data set identifier
sfscompress comp_type integer Compression method
comp_prm integer(*) Compression parameters array
EXAMPLE 6. Compressing SDS Data.

This example uses the routine SDsetcompress/sfscompress to compress SDS data with the GZIP
compression method. See comments in the program regarding the use of the Skipping Huffman or
RLE compression methods.

C:
#include "mfhdf.h"

#define FILE NAME "SDScompressed.hdf"
#define SDS NAME "SDSgzip"

#define X LENGTH 5

#define Y LENGTH 16

#define RANK 2

main()

{

/*‘k*********************** Variable declaration ‘k‘k****‘k‘k*****‘k*****‘k‘k*****/

int32 sd _id, sds_id, sds_index;

intn status;

int32 comp_type; /* Compression flag */
comp_info c_info; /* Compression structure */
int32 start[2], edges[2], dim sizes[2];
int32 data[Y LENGTH] [X LENGTH];

int i, 9;

June 2017 49

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

/********************* End Of Variable declaration ***********************/

/%
* Buffer array data and define array dimensions.
*/

for (j = 0; j < Y LENGTH; j++)

{

for (i = 0; i < X LENGTH; i++)

dataljl[i]l = (1 + 3J) + 1;
}
dim sizes[0] = Y LENGTH;
dim sizes[1] = X LENGTH;
/*
* Create the file and initialize the SD interface.
*/
sd_id = SDstart (FILE NAME, DFACC CREATE) ;
/*
* Create the data set with the name defined in SDS NAME.
*/

sds_id = SDcreate (sd_id, SDS NAME, DENT INT32, RANK, dim sizes);

/*
* Ininitialize compression structure element and compression

* flag for GZIP compression and call SDsetcompress.
*

* To use the Skipping Huffman compression method, initialize

* comp_type = COMP_CODE_ SKPHUFF

* c_info.skphuff.skp size = value

*

* To use the RLE compression method, initialize
*

comp_type = COMP CODE RLE

* No structure element needs to be initialized.

*/

comp type = COMP CODE DEFLATE;

c_info.deflate.level = 6;

status = SDsetcompress (sds_id, comp type, &c_info);

/*
* Define the location and size of the data set
* to be written to the file.

*/

start[0] = 0O;
start[1l] = O;
edges[0] = Y LENGTH;
edges[1] = X LENGTH;
/*

* Write the stored data to the data set. The last argument

* must be explicitly cast to a generic pointer since SDwritedata
* is designed to write generic data.

*/

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)data);

/*
* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.

50

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

*/
status = SDend (sd_id);

FORTRAN:

program write compressed data
implicit none

Q

Parameter declaration.

character*17 FILE NAME
character*7 SDS_NAME
integer X LENGTH, Y LENGTH, RANK
parameter (FILE NAME = ’'SDScompressed.hdf’,
SDS_NAME = ’SDSgzip’,
X LENGTH 5,
Y LENGTH = 16,
RANK = 2)
integer DFACC_CREATE, DFNT INT32
parameter (DFACC_CREATE = 4,
+ DENT_INT32 = 24)

integer COMP_ CODE DEFLATE

parameter (COMP_CODE_DEFLATE = 4)

integer DEFLATE LEVEL

parameter (DEFLATE LEVEL = 6)

To use Skipping Huffman compression method, declare
integer COMP_CODE_SKPHUFF
parameter (COMP_CODE_SKPHUFF = 3)

To use RLE compression method, declare
integer COMP_CODE_RLE
parameter (COMP_CODE_RLE = 1)

+ o+ + +

Function declaration.

OO OO O NONONONONe]

integer sfstart, sfcreate, sfwdata, sfendacc, sfend,
+ sfscompress
C
C**** variable declaration KAk Ak Ak kA hkhkhkhkhkhkhk kA hkhkhkhkrhkhkhkkrkhkrhkkhkhkkhkrhhkhkkhrkkhrxkh*x
C
integer sd id, sds_id, status
integer start(2), edges(2), stride(2), dim sizes(2)
integer comp type
integer comp prm(1l)
integer data (X LENGTH, Y LENGTH)
integer i, j

c**‘k‘k End of variable declaration KAk Ak Ak hkhkhk kA hkhkhkhkr kA hkkhkhkhrhkhkhkkhkrkhkhkhkkhxkkhrk*x

c
C Buffer array data and define array dimensions.
C

do 20 j =1, Y LENGTH

do 10 i = 1, X LENGTH
data(i, j) =1 + 3 -1

10 continue
20 continue

dim sizes (1) = X LENGTH

dim sizes(2) = Y _LENGTH
C

June 2017

51

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

C Open the file and initialize the SD interface.
C
sd _id = sfstart(FILE NAME, DFACC_CREATE)
C
c Create the data set with the name SDS NAME.
C
sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT32, RANK, dim sizes)
C
C Initialize compression parameter (deflate level)
C and call sfscompress function
C For Skipping Huffman compression, comp prm(l) should be set
C to skipping sizes value (skp size).
C
comp_type = COMP_CODE_DEFLATE
comp prm(l) = deflate level
status = sfscompress(sds_id, comp type, comp prm(l))
C
C Define the location and size of the data that will be written to
C the data set.
C
start(l) = 0
start(2) = 0
edges (1) = X LENGTH
edges (2) = Y LENGTH
stride(l) =1
stride(2) = 1
C
C Write the stored data to the data set.
C
status = sfwdata(sds_id, start, stride, edges, data)
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C

status = sfend(sd id)

end

3.5.3 External File Operations

The HDF library provides routines to store SDS arrays in an external file that is separate from the
primary file containing the metadata for the array. Such an SDS array is called an external SDS
array. With external arrays, it is possible to link data sets in the same HDF file to multiple external
files or data sets in different HDF files to the same external file.

External arrays are functionally identical to arrays in the primary data file. The HDF library keeps
track of the beginning of the data set and adds data at the appropriate position in the external file.
When data is written or appended along a specified dimension, the HDF library writes along that
dimension in the external file and updates the appropriate dimension record in the primary file.

There are two methods for creating external SDS arrays. The user can create a new data set in an
external file or move data from an existing internal data set to an external file. In either case, only
the array values are stored externally, all metadata remains in the primary HDF file.

When an external array is created, a sufficient amount of space is reserved in the external file for
the entire data set. The data set will begin at the specified byte offset and extend the length of the
data set. The write operation will overwrite the target locations in the external file. The external

52

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

file may be of any format, provided the data types, byte ordering, and dimension ordering are sup-
ported by HDF. However, the primary file must be an HDF file.

Routines for manipulating external SDS arrays can only be used with HDF files. Unidata-format-
ted netCDF files are not supported by these routines.

Note: Compressed data sets (see Section 3.5.2) cannot be stored in external files.

3.5.3.1 Specifying the Directory Search Path of an External File: HXsetdir
There are three filesystem locations the HDF external file routines check when determining the
location of an external file. They are, in order of search precedence:

1. The directory path specified by the last call to the HXsetdir routine.

2. The directory path specified by the SHDFEXTDIR shell environment variable.

3. The file system locations searched by the standard open(3) routine.

The syntax of HXsetdir is as follows:
C: status = HXsetdir (dir list);
FORTRAN: status = hxisdir(dir list, dir length)

HXsetdir has one argument, a string specifying the directory list to be searched. This list can con-
sist of one directory name or a set of directory names separated by colons. The FORTRAN-77
version of this routine takes an additional argument, dir length, which specifies the length of the
directory list string.

If an error condition is encountered, HXsetdir leaves the directory search path unchanged. The
directory search path specified by HXsetdir remains in effect throughout the scope of the calling
program.

HXsetdir returns a value of succeep (or 0) or FaIL (or -1). The parameters of HXsetdir are
described in (See Table 31 on page 54).

3.5.3.2 Specifying the Location of the Next External File to be Created: HXsetcreatedir

HXsetcreatedir specifies the directory location of the next external file to be created. It overrides
the directory location specified by SHDFEXTCREATEDIR and the locations searched by the
open(3) call in the same manner as HXsetdir. Specifically, the search precedence is:

1. The directory specified by the last call to the HXsetcreatedir routine.
2. The directory specified by the SHDFEXTCREATEDIR shell environment variable.

3. The locations searched by the standard open(3) routine.
The syntax of HXsetcreatedir is as follows:

C: status = HXsetcreatedir (dir) ;

FORTRAN: status = hxiscdir(dir, dir length)

HXsetcreatedir has one argument, the directory location of the next external file to be created.
The FORTRAN-77 version of this routine takes an additional argument, dir length, which speci-
fies the length of the directory list string. If an error is encountered, the directory location is left
unchanged.

HXsetcreatedir returns a value of succeep (or 0) or Fa1L (or -1). The parameters of HXsetcre-
atedir are described in Table 31.

June 2017 53

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
TABLE 31 HXsetdir and HXsetcreatedir Parameter Lists
Routine Name Parameter Type
[Return Type] Qv
(FORTRAN- Parameter . FORTRAN- Description
77) 77
HXsetdir dir_list char * character*(*) Directory list to be searched
intn
(h[xisdgr) dir_length Not applicable integer Length ofthe dir 11ist string
HXsetcreatedir dir char * character*(*) Directory location of the next external file to be cre-
[intn] ated
(hxisedir) dir_length Not applicable integer Length of the d1ir string

3.5.3.3 Creating a Data Set with Data Stored in an External File: SDsetexternalfile
Creating a data set in an external file involves the following steps:

1. Create the data set.

2. Specify that an external data file is to be used.

3. Write data to the data set.

4. Terminate access to the data set.

To create a data set with data stored in an external file, the calling program must make the follow-

ing calls.

C: sds id = SDcreate(sd id, name, data type, rank, dim sizes);
status = SDsetexternalfile(sds id, filename, offset);
status = SDwritedata(sds id, start, stride, edges, data);
status = SDendaccess (sds id);

FORTRAN: sds id = sfcreate(sd id, name, data type, rank, dim sizes)

status = sfsextf(sds id, filename, offset)

status = sfwdata(sds _id, start, stride, edges, data)
OR status = sfwcdata(sds id, start, stride, edges, data)

status = sfendacc(sds id)

For a newly-created data set, SDsetexternalfile marks the SDS identified by sds_id as one whose
data is to be written to an external file. It does not actually write data to an external file; it marks
the data set as an external data set for all subsequent SDwritedata operations.

Note that data can only be moved once for any given data set, i.c., SDsetexternalfile can only be
called once after a data set has been created. It is the user's responsibility to make sure that the
external data file is kept with the primary HDF file.

The parameter filename is the name of the external data file and offset is the number of bytes from
the beginning of the external file to the location where the first byte of data should be written. If a
file with the name specified by filename exists in the current directory search path, HDF will
access it as the external file. If the file does not exist, HDF will create one in the directory named
in the last call to HXsetcreatefile. If an absolute pathname is specified, the external file will be
created at the location specified by the pathname, overriding the location specified by the last call
to HXsetcreatefile. Use caution when writing to existing external or primary files since the HDF
library starts the write operation at the specified offset without determining whether data is being
overwritten.

54 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

Once the name of an external file is established, it cannot be changed without breaking the associ-
ation between the data set’s metadata and the data it describes.

SDsetexternalfile returns a value of succeep (or 0) or FAIL (or -1). The parameters of SDsetex-
ternalfile are described in Table 3J.

3.5.3.4 Getting External File Information of a Data Set: SDgetexternalinfo

SDgetexternalinfo retrieves external file information of a data set, when the data set has external
element. The information includes the external file’s name, the position, where the data set’s data
had been written in the external file, and the length of the external data. SDgetexternalinfo will
return o if the data set does not have external element.

The syntax of SDgetexternalinfo is as follows:

C: status = SDgetexternalinfo(sds id, buf size, filename, &offset,
&length) ;

FORTRAN: Currently unavailable

The application must provide sufficient buffer for the external file name. When the external file
name is available and buf size is 0, SDgetexternalinfo simply returns the length of the external
file name. Thus, application can call SDgetexternalinfo passing in 0 for buf" size first, then allo-
cate the buffer sufficiently before calling SDgetexternalinfo again passing in the proper length
for buf size and appropriately allocated buffer filename. SDgetexternalinfo stores the external
file name in the buffer filename up to the name’s length or the value in buf size, whichever
smaller.

SDgetexternalinfo stores in the parameter offser the number of bytes from the beginning of the
external file to the location where the first byte of data had been written and in the parameter
length the length of the data.

SDgetexternalinfo returns one of the following values:

* the actual length of the external file name or the length of the retrieved file name, if there is
external element

¢ 0, if there is no external element

e FAIL (or -1), if failure occurs

The parameters of SDgetexternalinfo are described in (See Table 3J on page 56).

June 2017 55

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
TABLE 3J SDsetexternalfile Parameter List
Routine Name Parameter Type
[Return Type] Qv
(FORTRAN- Parameter e FORTRAN- Description
77) 77
sds_id int32 integer Data set identifier
SDsetB};ttenr]nalﬁle filename char * character®(*) Name of the file to contain the external data set
(sfsextf) . . Offset in bytes from the beginning of the external file to
offset int32 integer where the SDS data will be written
sds_id int32 N/A Data set identifier
buf size uintn N/A Size of buffer for external file name
SDgete[)i(;:;;alinfo filename char * N/A Buffer for external file name
(unvailable) o Offset in bytes from the beginning of the external file to
offset int32 NA where the SDS data had been written
length *int32 N/A Length of the data written in the external file
3.5.3.5 Moving Existing Data to an External File
Data can be moved from a primary file to an external file. The following steps perform this task:
1. Select the data set.
2. Specify the external data file.
3. Terminate access to the data set.
To move data set data to an external file, the calling program must make the following calls:
C: sds id = SDselect (sd id, sds index);
status = SDsetexternalfile(sds id, filename, offset);
status = SDendaccess (sds id);
FORTRAN: sds id = sfselect(sd id, sds index)
status = sfsextf(sds id, filename, offset)
status = sfendacc(sds id)
For an existing data set, SDsetexternalfile moves the data to the external file. Any data in the
external file that occupies the space reserved for the external array will be overwritten as a result
of this operation. Data of an existing data set in the primary file can only be moved to the external
file once. During the operation, the data is written to the external file as a contiguous stream
regardless of how it is stored in the primary file. Because data is moved as is, any unwritten loca-
tions in the data set are preserved in the external file. Subsequent read and write operations per-
formed on the data set will access the external file.
EXAMPLE 7. Moving Data to the External File.
This example illustrates the use of the routine SDsetexternalfile/sfsextf to move the SDS data
written in Example 2 to the external file.
C:
#include "mfhdf.h"
#define FILE NAME "SDS.hdf"
#define EXT FILE NAME "ExternalSDS"
#define OFFSET 24
56 June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents HDF User’s Guide

main()

{

/*‘k*********************** Variable declaration **************************/

int32 sd_id, sds_id, sds_index, offset;
intn status;

/********************* End Of variable declaration ***********************/

/*
* Open the file and initialize the SD interface.
*/

sd_id = SDstart (FILE NAME, DFACC WRITE);

/%
* Select the first data set.

*/

sds_index = 0;

sds_id = SDselect (sd_id, sds_index);

/%
* Create a file with the name EXT FILE NAME and move the data set
* values into it, starting at byte location OFFSET.

*/

status = SDsetexternalfile (sds_id, EXT FILE NAME, OFFSET);

/*

* Terminate access to the data set, SD interface, and file.
*/

status SDendaccess (sds_id);

status = SDend (sd_id);

FORTRAN:
program write extfile
implicit none
C
C Parameter declaration.
C
character*7 FILE NAME
character*11 EXT_FILE NAME
integer OFFSET
integer DFACC_WRITE
parameter (FILE NAME = ’SDS.hdf’,
+ EXT FILE NAME = ’ExternalSDS’,
+ OFFSET = 24,
+ DFACC WRITE = 2)
C
C Function declaration.
C
integer sfstart, sfselect, sfsextf, sfendacc, sfend
C
C**** Variable declaration R R R R R R B R R B I I i
C
integer sd id, sds id, sds index, offset
integer status
C
C**** End Of Variable declaration KAK KA KRAA KA KA RA AR AR AR A A KA A AR A XA AR Ak K
C
C

June 2017

57

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

3.6

C Open the HDF file and initialize the SD interface.
C
sd_id = sfstart (FILE NAME, DFACC WRITE)
C
C Select the first data set.
C
sds_index = 0
sds_id = sfselect(sd id, sds_index)
C
c Create a file with the name EXT FILE NAME and move the data set
C into it, starting at byte location OFFSET.
C
status = sfsextf(sds_id, EXT FILE NAME, OFFSET)
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C

status = sfend(sd_id)

end

Reading Data from an SDS Array: SDreaddata

Data of an SDS array can be read as an entire array, a subset of the array, or a set of samples of the
array. SDS data is read from an external file in the same way that it is read from a primary file;
whether the SDS array is stored in an external file is transparent to the user. Reading data from an
SDS array involves the following steps:

1. Select the data set.
2. Define the portion of the data to be read.

3. Read data portion as defined.

To read data from an SDS array, the calling program must contain the following function calls:

C: sds_id = SDselect (sd id, sds index);
status = SDreaddata(sds id, start, stride, edges, data);

FORTRAN: sds id = sfselect(sd id, sds index)

status = sfrdata(sds id, start, stride, edges, data)
OR status = sfrcdata(sds id, start, stride, edges, data)

Note that step 2 is not illustrated in the function call syntax; it is carried out by assigning values to
the parameters start, stride, and edges before the routine SDreaddata is called in step 3.

SDreaddata reads the data according to the definition specified by the parameters start, stride,
and edges and stores the data into the buffer provided, data. The argument sds_id is the SDS iden-
tifier returned by SDcreate or SDselect. As with SDwritedata, the arguments start, stride, and
edges describe the starting location, the number of elements to skip after each read, and the num-
ber of elements to be read, respectively, for each dimension. For additional information on the
parameters start, stride, and edges, refer to Section 3.5.1 on page 31.

There are two FORTRAN-77 versions of this routine: sfrdata reads numeric data and sfrcdata
reads character data.

58

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

SDreaddata returns a value of succeep (or 0), including the situation when the data set does not
contain data, or FAIL (or -1). The parameters of SDreaddata are further described in Table 3K.

TABLE 3K SDreaddata Parameter List
Routine Parameter Type
Name Parame- A
[Return Type] Description
(FOR. ter C FORTRAN-77
TRAN-77)
sds_id int32 integer Data set identifier
. . Array containing the position at which the
E3
start int32(] integer(*) read will start for each dimension
SDreaddat Array containing the number of data loca-
rgat aa stride int32[] integer(*) tions the current location is to be moved for-
Lintn] ward before the next read
(sfrdata/
sfredata) . . % Array containing the number of data ele-
edges int32(] integer(*) ments to be read along each dimension
<valid numeric data
data VOIDP type>(*)/ Buffer the data will be read into
character®(*)
EXAMPLE 8. Reading from an SDS.

This example uses the routine SDreaddata/sfrdata to read the data that has been written in
Example 2, modified in Example 4, and moved to the external file in the Example 7. Note that the
original file SDS.hdf that contains the SDS metadata and the external file ExternalSDS that con-
tains the SDS raw data should reside in the same directory. The fact that raw data is in the external
file is transparent to the user’s program.

C:
#include "mfhdf.h"
#define FILE NAME "SDS.hdf"
#define X LENGTH 5
#define Y LENGTH 16
main()

{

/*‘k*********************** Variable declaration ‘k‘k****‘k‘k*****‘k************/

int32 sd id, sds_id, sds_index;
intn status;

int32 start[2], edges[2];

int32 data [Y_LENGTH] [X_LE‘.NGTH] ;
int i, 37

/********************* End Of Variable declaration ***********************/

/*

* Open the file for reading and initialize the SD interface.
*/

sd id = SDstart (FILE NAME, DFACC READ);

/*
* Select the first data set.
*/

sds_index = 0;

June 2017 59

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

sds_id = SDselect (sd _id, sds_ index);

/*
* Set elements of array start to 0, elements of array edges

* to SDS dimensions,and use NULL for the argument stride in SDreaddata
* to read the entire data.

*/

start[0] = 0;

start[1l] = 0;

edges[0] = Y LENGTH;

edges[1] = X LENGTH;

/*

* Read entire data into data array.
*/

status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)data);

/*
* Print 10th row; the following numbers should be displayed.

*

* 10 1000 12 13 14

*/

for (j = 0; j < X LENGTH; j++) printf ("%d ", data[9][3j]);
printf ("\n");

/*

* Terminate access to the data set.

*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

FORTRAN:

Q

C
C

C

program read data
implicit none

Parameter declaration.

character*7 FILE_ NAME

integer X_LENGTH, Y LENGTH
parameter (FILE NAME = ’'SDS.hdf’,
+ X LENGTH = 5,
+ Y LENGTH = 16)

integer DFACC_READ, DFNT INT32
parameter (DFACC_READ = 1,
+ DENT INT32 = 24)

Function declaration.

integer sfstart, sfselect, sfrdata, sfendacc, sfend

C*‘k** Variable declaration KA K KA KA KR AR KA KA A A A KA R AR KA KNI A A A KA R A AR AR AR Ak K

c

integer sd _id, sds_id, sds_index, status
integer start(2), edges(2), stride(2)
integer data (X _LENGTH, Y LENGTH)

integer j

60

June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents HDF User’s Guide

C

C**** End Of variable declaration Khkhhkhkhkkrhkhhkhkhhkrhkr kb hkrhkhkhkkhkhkrhk kA kxkx

C

C
C
C

Q Q

Qa0

Qa0

@] Qa0

Q

Q

Open the file and initialize the SD interface.

sd id = sfstart (FILE NAME, DFACC READ)

Select the first data set.

sds_index = 0
sds_id = sfselect(sd id, sds index)

Set elements of the array start to 0, elements of the array edges to
SDS dimensions, and elements of the array stride to 1 to read the
entire data.

start(l) = 0
start(2) =0
edges (1) = X LENGTH
edges (2) = Y LENGTH
stride(l) =1
stride(2) = 1

Read entire data into data array. Note that sfrdata is used
to read the numeric data.

status = sfrdata(sds_id, start, stride, edges, data)

Print 10th column; the following numbers are displayed:
10 1000 12 13 14

write(*,*) (data(j,10), j = 1, X LENGTH)

Terminate access to the data set.

status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

status = sfend(sd_id)

end

EXAMPLE 9

Reading Subsets of an SDS.

This example shows how parameters start, stride, and edges of the routine SDreadata/sfrdata
can be used to read three subsets of an SDS array.

C:

For the first subset, the program reads every 3rd element of the 2nd column starting at

the 4th row of the data set created in Example 2 and modified in Examples 4
and 7.

For the second subset the program reads the first 4 elements of the 10th row.
For the third subset, the program reads from the same data set every 6th element of

each column and 4th element of each row starting at 1st column, 3d row.

June 2017

61

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

FORTRAN-77:

Fortran program reads transposed data to reflect the difference in C and Fortran inter-
nal storage.

#include "mfhdf.h"

#define FILE NAME "SDS.hdf"
#define SUB1_LENGTH 5
#define SUB2_LENGTH 4
#define SUB3 LENGTH1 2
#define SUB3_LENGTH2 3

main()

{

/‘k************************ Variable declaration **************************/

int32 sd id, sds_id, sds_index;

intn status;

int32 start[2], edges[2], stride[2];

int32 subl data[SUB1 LENGTH];

int32 sub2 data[SUB2 LENGTH];

int32 Sub37data[SUB37LENGTH2][SUB37LENGTH1];
int i, 3

/********************* End Of variable declaration ***********************/

/*
* Open the file for reading and initialize the SD interface.
*/

sd_id = SDstart (FILE NAME, DFACC READ);

/*

* Select the first data set.

*/

sds_index = 0;

sds_id = SDselect (sd_id, sds_index);

/*

* Reading the first subset.

*

* Set elements of start, edges, and stride arrays to read
* every 3rd element in the 2nd column starting at 4th row.

*/

start[0] = 3; /* 4th row */

start([1l] = 1; /* 2nd column */

edges[0] = SUB1_LENGTH; /* SUB1_LENGTH elements are read along 2nd column*/
edges[1l] = 1;

stride[0] = 3; /* every 3rd element is read along 2nd column */

stride[l] = 1;

/*

* Read the data from the file into subl data array.

*/

status = SDreaddata (sds_id, start, stride, edges, (VOIDP)subl data);

/*

* Print what we have just read; the following numbers should be displayed:
*

* 5 8 1000 14 17

*/

for (j = 0; j < SUBLl LENGTH; j++) printf ("%d ", subl dataljl);

printf ("\n");

62 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

* Reading the second subset.

* Set elements of start and edges arrays to read
* first 4 elements of the 10th row.

*/

start[0] = 9; /* 10th row */

start[1l] = 0; /* 1lst column */

edges[0] = 1;

edges([1] = SUB2 LENGTH; /* SUB2 LENGTH elements are read along 10th row */
/*

* Read data from the file into sub2 data array. Note that the third
* parameter is set to NULL for contiguous reading.

*/

status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)sub2 data);

/*
* Print what we have just read; the following numbers should be displayed:
*

* 10 1000 12 13

*/

for (3 = 0; j < SUB2_LENGTH; j++) printf ("%d ", sub2 datal[j]):;
printf ("\n");

/*

* Reading the third subset.

*
* Set elements of the arrays start, edges, and stride to read

* every 6th element in the column and 4th element in the row
* starting at 1st column, 3d row.

*/

start[0] = 2; /* 3d row */

start[1l] = 0; /* 1lst column */

edges[0] = SUB3_LENGTH2; /* SUB3_LENGTH2 elements are read along
each column */

edges[1l] = SUB3 LENGTH1; /* SUB3 LENGTHl elements are read along
each row */

stride[0] = 6; /* read every 6th element along each column */

stride[l] = 4; /* read every 4th element along each row */

/*

* Read the data from the file into sub3 data array.

*/

status = SDreaddata (sds_id, start, stride, edges, (VOIDP)sub3 data);

/*
* Print what we have just read; the following numbers should be displayed:

* 37

* 9 13

* 15 19

x/

for (j = 0; j < SUB3_LENGTH2; j++) {

for (1 = 0; i < SUB3 LENGTH1; i++) printf ("%d ", sub3 datal[j][i]);
printf ("\n");

}

/*

* Terminate access to the data set.

*/

status = SDendaccess (sds_id);

/*

June 2017 63

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

* Terminate access to the SD interface and close the file.
*/
status = SDend (sd_id);

FORTRAN:
program read subsets
implicit none
C
C Parameter declaration.
C
character*7 FILE_NAME
parameter (FILE NAME = ’SDS.hdf’)
integer DFACC_READ, DENT_INT32
parameter (DFACC_READ = 1,
+ DENT_INT32 = 24)
integer SUB1_LENGTH, SUB2_ LENGTH, SUB3_ LENGTHI,
+ SUB3 LENGTH?2
parameter (SUB1_LENGTH = 5,
+ SUB2_LENGTH = 4,
+ SUB3_LENGTH1 = 2,
+ SUB3_LENGTHZ2 = 3)
C
C Function declaration.
C
integer sfstart, sfselect, sfrdata, sfendacc, sfend
c
C**** variable declaration KAk Ak Ak hkhkhkhhkhkhkhkhk kA hkhkhkhkrhkhkhkkhkhkhrhkkhkhkkhkrkhxkhkhkhkhrxk*x
C
integer sd id, sds id, sds index, status
integer start(2), edges(2), stride(2)
integer subl data (SUBl LENGTH)
integer sub2 data (SUB2_ LENGTH)
integer sub3_data (SUB3_LENGTHI1, SUB3_LENGTHZ2)
integer i, j
c
C**** End Of variable declaration KAk Ak kA hkhkh kA hkhkhkkhkrhkhkhkhkhkhrhkhkhkkhkhkhhkhkkhkhrk*x
C
c
C Open the file and initialize the SD interface.
C
sd id = sfstart (FILE NAME, DFACC_ READ)
C
C Select the first data set.
c
sds_index = 0
sds_id =sfselect(sd id, sds_ index)
c
C Reading the first subset.
C
C Set elements of start, stride, and edges arrays to read
C every 3d element in in the 2nd row starting in the 4th column.
C
start(1l) =1
start(2) = 3
edges(l) =1
edges (2) = SUBl_LENGTH
stride(l) =1
stride(2) = 3
c
c Read the data from subl data array.

64 June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents HDF User’s Guide

C
status = sfrdata(sds_id, start, stride, edges, subl data)
C
C Print what we have just read, the following numbers should be displayed:
C
C 5 8 1000 14 17
C
write(*,*) (subl data(j), j = 1, SUBl LENGTH)
C
C Reading the second subset.
C
C Set elements of start, stride, and edges arrays to read
C first 4 elements of 10th column.
C
start(l) = 0
start(2) = 9
edges (1) = SUBZ2_LENGTH
edges(2) =1
stride(l) = 1
stride(2) =1
C
c Read the data into sub2 data array.
C
status = sfrdata(sds_id, start, stride, edges, sub2 data)
C
C Print what we have just read; the following numbers should be displayed:
C
C 10 1000 12 13
C
write(*,*) (sub2 data(j), j = 1, SUB2 LENGTH)
C
C Reading the third subset.
C
C Set elements of start, stride and edges arrays to read
C every 6th element in the row and every 4th element in the column
C starting at 1lst row, 3rd column.
C
start (1) = 0
start(2) = 2
edges (1) = SUB3_LENGTH1
edges (2) = SUB3_LENGTH2
stride(l) = 4
stride(2) = 6
C
c Read the data from the file into sub3 data array.
C
status = sfrdata(sds_id, start, stride, edges, sub3 data)
C
C Print what we have just read; the following numbers should be displayed:
C
C 3 9 15
C 7 13 19
C
do 50 i = 1, SUB3_LENGTH1
write(*,*) (sub3 data(i,j), j = 1, SUB3 LENGTH2)
50 continue
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
June 2017 65

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

3.7

Q

Terminate access to the SD interface and close the file.
status = sfend(sd id)

end

Obtaining Information about SD Data Sets

The routines covered in this section provide methods for obtaining information about all scientific
data sets in a file, for identifying the data sets that meet certain criteria, and for obtaining informa-
tion about specific data sets.

SDfileinfo obtains the numbers of data sets and file attributes, set by SD interface routines, in a
file. SDgetinfo provides information about an individual SDS. To retrieve information about all
data sets in a file, a calling program can use SDfileinfo to determine the number of data sets, fol-
lowed by repeated calls to SDgetinfo to obtain the information about a particular data set.

SDnametoindex, SDnametoindices, or SDreftoindex can be used to obtain the index of an SDS
in a file knowing its name or reference number. Refer to Section 3.2.1 on page 20 for a description
of the data set index and reference number. SDidtoref is used when the reference number of an
SDS is required by another routine and the SDS identifier is available.

These routines are described individually in the following subsections.

3.7.1 Obtaining Information about the Contents of a File: SDfileinfo

SDfileinfo determines the number of scientific data sets and the number of file attributes con-
tained in a file. This information is often useful in index validation or sequential searches. The
syntax of SDfileinfo is as follows:

C: status = SDfileinfo(sd id, &n datasets, &n file attrs);
FORTRAN: status = sffinfo(sd id, n datasets, n file attrs)

SDfileinfo stores the numbers of scientific data sets and file attributes in the parameters n_data-
sets and n_file attrs, respectively. Note that the value returned by n_datasets will include the
number of SDS arrays and the number of dimension scales. Refer to Section 3.8.4 on page 81 and
Section 3.8.4.4 on page 88 for the description of dimension scales and its association with SDS
arrays as well as how to distinguish between SDS arrays and dimension scales. The file attributes
are those that are created by SDsetattr for an SD interface identifier instead of an SDS identifier.
Refer to Section 3.9.1 on page 93 for the discussion of SDsetattr.

SDfileinfo returns a value of succeep (or 0) or FaTL (or -1). The parameters of SDfileinfo are
specified in (See Table 3L on page 68).

3.7.2 Obtaining Information about a Specific SDS: SDgetinfo

SDgetinfo provides basic information about an SDS array. Often information about an SDS array
is needed before reading and working with the array. For instance, the rank, dimension sizes, and/
or data type of an array are needed to allocate the proper amount of memory to work with the
array. SDgetinfo takes an SDS identifier as input, and retrieves the name, rank, dimension sizes,
data type, and number of attributes for the corresponding SDS. The syntax of this routine is as fol-
lows:

66

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

C: status = SDgetinfo(sds_id, sds name, &rank, dim sizes, &data type,
&n attrs);

FORTRAN: status = sfginfo(sds id, sds name, rank, dim sizes, data type, n at-
trs)

SDgetinfo stores the name, rank, dimension sizes, data type, and number of attributes of the spec-
ified data set into the parameters sds_name, rank, dim_sizes, data_type, and n_attrs, respectively.
The parameter sds _name is a character string. Note that, starting in HDF 4.2.2, the name of the
SDS is no longer limited to 64 characters. Thus, it is recommended that the application use
SDgetnamlen to obtain the length of the data set’s name so that it can sufficiently allocate space
for the name prior to calling SDgetinfo.

If the data set is created with an unlimited dimension, then in the C interface, the first element of
the dim_sizes array (corresponding to the slowest-changing dimension) contains the number of
records in the unlimited dimension; in the FORTRAN-77 interface, the last element of the array
dim_sizes (corresponding to the slowest-changing dimension) contains this information.

The parameter data_type contains any type that HDF supports for the scientific data. Refer to (See
Table 2F on page 14), for the list of supported data types and their corresponding defined values.
The parameter n_attrs only reflects the number of attributes assigned to the data set specified by
sds_id; file attributes are not included. Use SDfileinfo to get the number of file attributes.

SDgetinfo returns a value of succeep (or 0) or rFaI1L (or -1). The parameters of SDgetinfo are
specified in (See Table 3L on page 68).

3.7.3 Obtaining Data Set Compression Information: SDgetcompinfo

SDgetcompinfo retrieves the compression information used to create or write an SDS data set.
SDgetcompinfo replaces SDgetcompress because this function has flaws, causing failure for
some chunked and chunked/compressed data.
The possible compression algorithms used in SDS include:

* Adaptive Huffman

* GZIP "deflation" (Lempel/Ziv-77 dictionary coder)

* Run-length encoding

+ NBIT

» Szip
SDgetcompinfo takes one input parameter, sds_id, a data set identifier, and two return parame-

ters, comp_type, identifying the type of compression used, and either c¢_info (in C) or comp prm
(in FORTRAN-77), containing further compression information.

The syntax of SDgetcompinfo is as follows:
C: status = SDgetcompinfo(sds id, comp type, ¢ info);
FORTRAN: status = sfgcompress(sds id, comp type, comp prm)

See Section 3.5.2, "Compressing SDS Data: SDsetcompress,” for a discussion of comp type,
c¢_info, ane comp _prm, and a list of supported compression modes.

The parameter comp_type specifies the compression type definition and is set to

comp_copE_NONE (or 0) for no compression
comp_cobE_RLE (or 1) for run-length encoding (RLE)
comp_cobE_NBIT (or 2) for NBIT compression
comp_coDE_sSKPHUFF (or 3) for Skipping Huffman

June 2017 67

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
comp_CoDE_DEFLATE (or 4) for GZIP compression
comp_coDE_szIP (or 5) for Szip compression
Compression information is returned by the parameter c¢_info in C, and by the parameter com-
p_prm in FORTRAN-77. The parameter c_info is a pointer to a union structure of type comp_info.
Refer to the SDsetcompress entry in the HDF Reference Manual for the description of the com-
p_info structure.)
When comp_type is COMP_CODE NONE Or COMP_CODE_RLE, the parameters ¢_info and comp prm are
unchanged.
When comp_type is coMP_CODE_SKPHUFF, then the structure skphuff in the union comp_info in C
(comp_prm(1) in FORTRAN-77) will store the size, in bytes, of the data elements.
When comp_type is comp_cope DEFLATE, then the deflate structure in the union comp_info in C
(comp_prm(1) in FORTRAN-77) will store the information about the compression effort.
When comp_type is comp_cope_sz1p, then the Szip options mask and the number of pixels per
block in a chunked and Szip-compressed dataset will be specified in
c_info.szip.options mask and c info.szip.pixels per block in C, and com-
p_prm(1) and comp_prm(2) in Fortran, respectively.
SDgetcompinfo returns a value of succeep (or 0) or FATL (or -1). The parameters of SDgetcomp-
info are specified in Table 3L.
TABLE 3L SDfileinfo, SDgetinfo, and SDgetcompinfo Parameter Lists
Routine Name Parameter Type
[Return Type] S
(FORTRAN- Parameter . FORTRAN- Description
77) 77
SDfileinfo sd_id int32 integer SD interface identifier
[intn] n_datasets int32 * integer Number of data sets in the file
(sffinfo) . - . .
n_file attrs int32 * integer Number of global attributes in the file
sds_id int32 integer Data set identifier
sds_name char* character*(*) Name of the data set
SDgetinfo rank int32 * integer Number of dimensions in the data set
intn
(s[fginf]l)) dim_sizes int32 [] integer (*) Size of each dimension in the data set
data_type int32 * integer Data type of the data in the data set
n_attrs int32 * integer Number of attributes in the data set
sds_id int32 integer Data set identifier
SDgetcompinfo comp_type comp_coder _t integer Type of compression
[intn] ; X - — -
(sfgcompress) c_info comp_info N/A Pointer to compression information structure
comp_prm(1) N/A integer Compression parameter in array format
EXAMPLE 10. Getting Information about a File and an SDSs.

This example illustrates the use of the routine SDfileinfo/sffinfo to obtain the number of data sets
in the file SDS.hdf and the routine SDgetinfo/sfginfo to retrieve the name, rank, dimension sizes,
data type and number of attributes of the selected data set.

C:

#include "mfhdf.h"

#define FILE NAME "SDS.hdf"

68

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

main()

{

/*‘k*********************** Variable declaration **************************/

int32 sd id, sds_id;

intn status;

int32 n datasets, n_file attrs, index;
int32 dim sizes[MAX VAR DIMS];

int32 rank, data type, n attrs;

char name[MAX NC NAME];

int i;

/********************* End Of Variable declaration ***********************/

/*
* Open the file and initialize the SD interface.
*/

sd id = SDstart (FILE NAME, DFACC READ);

/*
* Determine the number of data sets in the file and the number
* of file attributes.

*/

status = SDfileinfo (sd id, &n datasets, &n file attrs);

/*
* Access every data set and print its name, rank, dimension sizes,
* data type, and number of attributes.

* The following information should be displayed:
*

* name = SDStemplate

* rank = 2

* dimension sizes are : 16 5

* data type is 24

* number of attributes is 0

*/

for (index = 0; index < n datasets; index++)
{
sds_id = SDselect (sd id, index);
status = SDgetinfo (sds_id, name, &rank, dim sizes,
&data type, &n_attrs);

printf ("name = %s\n", name);

printf ("rank = %d\n", rank);

printf ("dimension sizes are : ");

for (i=0; i< rank; i++) printf ("%d ", dim sizes[i]);
printf ("\n");

printf ("data type is %d\n", data type);

printf ("number of attributes is %d\n", n attrs);

/*
* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

June 2017 69

The HDF Group

Table of Contents

Chapter 3 -- Scientific Data Sets (SD API)

FORTRAN:
program get data set info
implicit none
C
C Parameter declaration.
C
character*7 FILE NAME
parameter (FILE NAME = ’SDS.hdf’)
integer DFACC_READ, DFNT_INT32
parameter (DFACC_READ = 1,
+ DFNTiINT32 = 24)
integer MAX NC_NAME, MAX VAR DIMS
parameter (MAX NC NAME = 256,
+ MAX VAR DIMS = 32)
C
C Function declaration.
C
integer sfstart, sffinfo, sfselect, sfginfo
integer sfendacc, sfend
C
C**** Variable declaration KAk Ak Ak hkhhkhhkhkhkhkh kb hkhkhkhkrhkhkhkhkhhkrhkhkhkhkhkkrhk kA kxkx
C
integer sd id, sds_id
integer n datasets, n file attrs, index
integer status, n_attrs
integer rank, data type
integer dim sizes (MAX VAR DIMS)
character name * (MAX NC NAME)
integer i
C
C**‘k* End of Variable declaration KAk Ak Ak hkhkhkh A hkhkhkkhkrhkhkhkhkhkhrhkhkhkkhkhkhhkhkkhkhrkx
C
C
C Open the file and initialize the SD interface.
C
Sdﬁid = sfstart (FILE NAME, DFACC READ)
C
C Determine the number of data sets in the file and the number of
C file attributes.
C
status = sffinfo(sd_id, n datasets, n_file attrs)
C
C Access every data set in the file and print its name, rank,
C dimension sizes, data type, and number of attributes.
C The following information should be displayed:
C
C name = SDStemplate
C rank = 2
C dimension sizes are : 5 16
C data type is 24
C number of attributes is 0
C
do 10 index = 0, n datasets - 1
sds_id = sfselect(sd id, index)
status = sfginfo(sds_id, name, rank, dim sizes, data type,
n _attrs)
write (*,*) "name = ", name(1:15)
write(*,*) "rank = ", rank
write (*,*) "dimension sizes are : ", (dim sizes(i), i=1, rank)
write(*,*) '"data type is ", data type
write(*,*) "number of attributes is ", n_attrs
70 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

C
C Terminate access to the current data set.
C
status = sfendacc(sds_id)
10 continue
C
C Terminate access to the SD interface and close the file.
C

status = sfend(sd_id)

end

3.7.4 Locating an SDS by Name: SDnametoindex

SDnametoindex determines and returns the index of a data set in a file given the data set’s name.
The syntax of this routine is as follows:

C: sds index = SDhnametoindex(sd id, sds name);
FORTRAN: sds index = sfn2index(sd id, sds name)

The parameter sds_name is a character string. Note that, starting in HDF 4.2.2, the name of the
SDS is no longer limited to 64 characters, which was the limit prior to 4.2.2.

If more than one data set has the name specified by sds name, SDnametoindex will return the
index of the first data set, which could be an SDS or a coordinate variable (also called dimension
scale.) Note that if there are more than one data set with the same name in the file, writing to a
data set returned by this function without verifying that it is the desired data set could cause data
corruption. Refer to the Important Note on page 21 in Chapter 3 for more details regarding the
problem and how to handle it.

SDgetnumvars_byname can be used to get the number of data sets (or variables, which includes
both data sets and coordinate variables) with the same name. SDnametoindices can be used to
get a list of structures containing the indices and the types of all the variables of that same name.

An index obtained by SDnametoindex or SDnametoindices can then be used by SDselect to
obtain an SDS identifier for the specified data set. The SDnametoindex routine is case-sensitive
to the name specified by sds_name and does not accept wildcards as part of that name. The name
must exactly match the name of the SDS being searched for.

SDnametoindex returns the index of a data set or ra1L (or -1). The parameters of SDnametoin-
dex are specified in (See Table 3M on page 73).

3.7.5 Locating More Than One SDS by the Same Name: SDnametoindices

SDnametoindices returns indices of all data sets having the same name. The data sets can be
either SDSs or coordinate variables. The syntax of this routine is as follows:

C: status = SDnametoindices(sd id, sds name, var list);

FORTRAN: status = sfn2indices(sd_id, sds name, var list, type list,

n_vars)

The parameter sds_name is a character string. Note that, starting in HDF 4.2.2, the name of the
SDS is no longer limited to 64 characters, which was the limit prior to 4.2.2.

SDnametoindices retrieves a list of structures varlist t, containing the indices and the types
of all variables of the same name sds_name. The structure varlist t is defined as:

June 2017 71

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

typedef struct varlist
{
int32 var index; /* index of a variable */
vartype t var type; /* type of a variable */
} varlist t;

The type of a variable vartype t is defined as:

IS SDSVAR=0 : variable is an actual SDS

IS CRDVAR=1 : variable is a coordinate variable

UNKNOWN=2 : variable is created before HDF 4.2.2, unknown type
Prior to calling SDnametoindices, SDgetnumvars_byname can be used to get the number of
data sets, with which the application can allocate var_list appropriately. Also, when the number
of data sets returned is 1, the application can call SDnametoindex instead of SDnametoindices
for simplicity.

An index obtained by SDnametoindex or SDnametoindices can then be used by SDselect to
obtain an SDS identifier for the specified data set.

The SDnametoindices routine is case-sensitive to the name specified by sds_name and does not
accept wildcards as part of that name. The name must match exactly the name of the SDS being
searched for.

SDnametoindices returns a value of succeep (or 0) or FATL (or -1). The parameters of SDname-
toindices are specified in (See Table 3M on page 73).

3.7.6 Getting Number of Data Sets Given a Name: SDgetnumvars_byname

SDgetnumvars_byname determines and returns the number of variables in a file having the same
name. The variables may include both data sets and coordinate variables. The syntax of this rou-
tine is as follows:

C: status = SDgetnumvars byname (sd id, sds name, n vars);
FORTRAN: status = sfgnvars byname (sd_id, sds_name, n vars);

The parameter sds_name is a character string. Note that, starting in HDF 4.2.2, the name of the
SDS is no longer limited to 64 characters, which was the limit prior to 4.2.2.

SDgetnumvars_byname returns a value of succeep (or 0) or FAIL (or -1). The parameters of
SDgetnumvars_byname are specified in (See Table 3M on page 73).

72

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

TABLE 3M

SDnametoindex, SDnametoindices, and SDgetnumvars_byname Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter FORTRAN- Description
(FORTRAN-77) C 7
SDnametoindex sd_id int32 integer SD interface identifier

[int32]

(sfn2index) sds_name char * character*(*) Name of the data set

sd_id int32 integer SD interface identifier
sds_name char * character*(*) Name of the data set
List of variables havi ; For-
SDnametoindices var_list varlist_t * integer*® s 0_ variables having name sds_name; For
. tran: list of ?
[intn]
indi t list . . .
(sfn2indices ype_lis N/A integer*® Fortran: list of types of variables
(only Fortran)
nvars N/A integer Fortran: number of variables found
(only Fortran)
i int32 int DS i tifi
SDgetnumvars_byname sds_id int3 integer SDS identifier
[intn] sds_name char * character*(*) Name of the data set
f b - : - .
(sfgnvars_byname) n_vars unsigned* integer Number of variables having name sds_name

3.7.7 Locating an SDS by Reference Number: SDreftoindex

SDreftoindex determines and returns the index of a data set in a file given the data set’s reference
number. The syntax of this routine is as follows:

C: sds index = SDreftoindex(sd id, ref);
FORTRAN: sds index = sfref2index(sd id, ref)

The reference number can be obtained using SDidtoref if the SDS identifier is available. Remem-
ber that reference numbers do not necessarily adhere to any ordering scheme.

SDreftoindex returns either the index of an SDS or ra11, (or -1). The parameters of this routine

are specified in (See Table 3N on page 74).

3.7.8 Obtaining the Reference Number Assigned to the Specified SDS:
SDidtoref

SDidtoref returns the reference number of the data set identified by the parameter sds_id if the
data set is found, or Fa11L (or -1) otherwise. The syntax of this routine is as follows:

C: sds ref = SDidtoref (sds id);
FORTRAN: sds ref = sfid2ref(sds id)

This reference number is often used by Vaddtagref to add the data set to a vgroup. Refer to
Chapter 5, Vgroups (V API), for more information.

The parameter of SDidtoref is specified in (See Table 3N on page 74).

3.7.9 Obtaining the Type of an HDF4 Object: SDidtype

SDidtype returns the type of an object, given the object’s identifier, obj id. The syntax of this rou-
tine is as follows:

C: obj type = SDidtype (obj id);

June 2017 73

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

The HDF Group
FORTRAN: obj type = sfidtype (obj id, obj type)
SDidtype returns a value of type Adf idtype_t, which can be one of the following:
NOT SDAPI ID (or - not an SD API
1) identifier
SD_ID (or 0) SD identifier
SDS_ID (or 1) SDS identifier
Dimension iden-
DIM ID (or 2) fifier
SDidtype returns noT_spar1_1D for either when obj id is not a valid HDF identifier, or is a valid
HDF identifier, but not one of the identifier types in the SD interface, which are SD identifier,
SDS identifier, and dimension identifier.
The parameter of SDidtype is specified in Table 3N.
3.7.10Determining whether an SDS is empty: SDcheckempty
SDcheckempty takes an SDS identifier, sds id, as input, and returns a single parameter indicat-
ing whether the SDS is empty. The syntax of this routine is as follows:
C: status = SDcheckempty (sds_id, emptySDS);
FORTRAN: status = sfchempty(sds id, emptySDS)
The output parameter, emptySDS, indicates whether the SDS is empty or non-empty.
SDcheckempty returns a value of succeep (or 0) or rFarn (or -1). The parameters of
SDcheckempty are specified in Table 3N.
TABLE 3N SDreftoindex, SDidtoref, SDidtype, and SDcheckempty Parameter Lists
Routine Name Parameter Type
(F[‘gﬁr%ﬁyg%_ Parameter . FORTRAN- Description
77) 77
SDreftoindex sd_id int32 integer SD interface identifier
int32
(sfr[;nﬂtin(]iex) sds_ref int32 integer SDS reference number
SDidtoref
[int32] sds_id int32 integer SDS identifier
(sfid2ref)
SDidtype
[hdf idtype t] obj_id int32 integer An object identifier
(sfidtype)
SDcheckempty sds_id int32 integer SDS identifier
int32
(sfc[;lnetm}lty) emptySDS intn * integer SDS status indicator (empty, not empty)
EXAMPLE 11. Locating an SDS by Its Name.

This example uses the routine SDnametoindex/sfn2index to locate the SDS with the specified
name and then reads the data from it.

C:
#include "mfhdf.h"

74

June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents HDF User’s Guide

#define FILE NAME "SDS.hdf"
#define SDS_NAME "SDStemplate"
#define WRONG NAME "WrongName"
#define X LENGTH 5

#define Y LENGTH 16

main()

{

/*‘k*********************** Variable declaration **************************/

int32 sd_id, sds_id, sds_index;
intn status;

int32 start[2], edges[2];

int32 data[Y LENGTH] [X LENGTH];
int i, 37

/********************* End Of variable declaration ***********************/

/*
* Open the file for reading and initialize the SD interface.
*/

sd_id = SDstart (FILE NAME, DFACC READ);

/*
* Find index of the data set with the name specified in WRONG NAME.

* Error condition occurs, since the data set with that name does not exist
* in the file.

*/
sds_index = SDnametoindex (sd_id, WRONG_ NAME) ;
if (sds_index == FAIL)

printf ("Data set with the name \"WrongName\" does not exist\n");

/*

* Find index of the data set with the name specified in SDS NAME and use
* the index to select the data set.

*/

sds_index = SDnametoindex (sd id, SDS NAME) ;

sds_id = SDselect (sd_id, sds_index);

/*

* Set elements of the array start to 0, elements of the array edges to

* SDS dimensions, and use NULL for stride argument in SDreaddata to read
* the entire data.

*/

start[0] = 0;

start[1l] = 0;

edges[0] = Y LENGTH;

edges[1] = X LENGTH;

/*

* Read the entire data into the buffer named data.

*/

status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)data);
/*

* Print 10th row; the following numbers should be displayed:
*

* 10 1000 12 13 14

*/

for (j = 0; j < X LENGTH; j++) printf ("%d ", data([9][j]);
printf ("\n");

June 2017

75

The HDF Group

Table of Contents

/*
* Terminate access to the data set.
*/
status = SDendaccess (sds_id);
/*
* Terminate access to the SD interface and close the file.
*/
status = SDend (sd_id);
}
FORTRAN:
program locate by name
implicit none
C
C Parameter declaration.
C
character*7 FILE_NAME
character*11l SDS NAME
character*9 WRONG NAME
integer X LENGTH, Y LENGTH
parameter (FILE NAME = ’SDS.hdf’,
+ SDS_NAME = ’SDStemplate’,
+ WRONG NAME = 'WrongName’,
+ X_LENGTH = 5,
+ Y LENGTH = 16)
integer DFACC _READ, DFNTilNT32
parameter (DFACC_READ = 1,
+ DENT INT32 = 24)
C
C Function declaration.
C
integer sfstart, sfn2index, sfselect, sfrdata, sfendacc, sfend
C
C**** variable declaration KA K KA KA KR AKR KA KNI A A A KA R A AR A R A A A AR AR AR AR A AR Ak K
C
integer sd id, sds_id, sds_index, status
integer start(2), edges(2), stride(2)
integer data (X _LENGTH, Y LENGTH)
integer j
C
C**** End Of Variable declaration R R R R R R R ki
C
C
C Open the file and initialize the SD interface.
C
Sdﬁid = sfstart (FILE NAME, DFACC READ)
C
C Find index of the data set with the name specified in WRONG_ NAME.
C Error condition occurs, since a data set with this name
C does not exist in the file.
C
sds_index = sfn2index(sd _id, WRONG_ NAME)
if (sds_index .eq. -1) then
write(*,*) "Data set with the name ", WRONG NAME,
+ " does not exist"
endif
C
c Find index of the data set with the name specified in SDS_NAME
C and use the index to attach to the data set.
C

76 June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

sds_index = sfn2index(sd _id, SDS_NAME)

sds_id = sfselect (sd_id, sds_index)
C
C Set elements of start array to 0, elements of edges array
C to SDS dimensions, and elements of stride array to 1 to read entire data.
C
start (1) = 0
start(2) = 0
edges (1) = X LENGTH
edges (2) = Y LENGTH
stride(l) = 1
stride(2) =1
C
C Read entire data into array named data.
C
status = sfrdata(sds_id, start, stride, edges, data)
C
C Print 10th column; the following numbers should be displayed:
C
C 10 1000 12 13 14
C
write(*,*) (data(j,10), j = 1, X LENGTH)
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C

status = sfend(sd_id)

end

3.7.11 Creating SDS Arrays Containing Non-standard Length Data:
SDsetnbitdataset

Starting with version 4.0r1, HDF provides the routine SDsetnbitdataset, allowing the HDF user
to specify that a particular SDS array contains data of a non-standard length.

SDsetnbitdataset specifies that the data set identified by the parameter sds_id will contain data of
a non-standard length defined by the parameters start_bit and bit len. Additional information
about the non-standard bit length decoding are specified in the parameters sign_ext and fill one.
The syntax of SDsetnbitdataset is as follows:

C: status = SDsetnbitdataset(sds id, start bit, bit len, sign ext,
fill one);

FORTRAN: status = sfsnbit(sds id, start bit, bit len, sign ext, fill one)

Any length between 1 and 32 bits can be specified. After SDsetnbitdataset has been called for an
SDS array, any read or write operations will convert between the new data length of the SDS array
and the data length of the read or write buffer.

Bit lengths of all data types are counted from the right of the bit field starting with 0. In a bit field
containing the values 01111011, bits 2 and 7 are set to 0 and all the other bits are set to 1.

The parameter start bit specifies the left-most position of the variable-length bit field to be writ-
ten. For example, in the bit field described in the preceding paragraph a parameter start bit set to
4 would correspond to the fourth bit value of 1 from the right.

June 2017 77

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

The parameter bit len specifies the number of bits of the variable-length bit field to be written.
This number includes the starting bit and the count proceeds toward the right end of the bit field -
toward the lower-bit numbers. For example, starting at bit 5 and writing 4 bits of the bit field
described in the preceding paragraph would result in the bit field 1110 being written to the data
set. This would correspond to a start_bit value of 5 and a bit_len value of 4.

The parameter sign_ext specifies whether to use the left-most bit of the variable-length bit field to
sign-extend to the left-most bit of the data set data. For example, if 9-bit signed integer data is
extracted from bits 17-25 and the bit in position 25 is 1, then when the data is read back from disk,
bits 26-31 will be set to 1. Otherwise bit 25 will be 0 and bits 26-31 will be set to 0. The sign_ext
parameter can be set to TRUE (or 1) or FALSE (or 0); specify TRUE to sign-extend.

The parameter fill one specifies whether to fill the "background" bits with the value 1 or 0. This
parameter is also set to either TRUE (or 1) or FALSE (Or 0).

The "background" bits of a non-standard length data set are the bits that fall outside of the non-
standard length bit field stored on disk. For example, if five bits of an unsigned 16-bit integer data
set located in bits 5 to 9 are written to disk with the parameter fill one set to TRUE (or 1), then
when the data is reread into memory bits 0 to 4 and 10 to 15 would be set to 1. If the same 5-bit
data was written with a fill_one value of FALSE (or 0), then bits 0 to 4 and 10 to 15 would be set to
0.

The operation on fill_one is performed before the operation on sign_ext. For example, using the
sign_ext example above, bits 0 to 16 and 26 to 31 will first be set to the background bit value, and
then bits 26 to 31 will be set to 1 or 0 based on the value of the 25th bit.

SDsetnbitdataset returns a positive value or FAIL (or -1). The parameters for SDsetnbitdataset
are specified in Table 30.

TABLE 30

3.8

SDsetnbitdataset Parameter List

Routine Name Parameter Type
[Return Type] Parameter c FORTRAN- Description
(FORTRAN-77) 77
sds_id int32 integer Data set identifier
SDsetnbitdataset start_bit intn integer Leftmost bit of the field to be written
[intn] bit_len intn integer Length of the bit field to be written
(sfsnbit) sign_ext intn integer Sign-extend specifier
fill_one intn integer Background bit specifier

SDS Dimension and Dimension Scale Operations

The concept of dimensions is introduced in Section 3.2.1 on page 20. This section describes SD
interface routines which store and retrieve information on dimensions and dimension scales.
When a dimension scale is set for a dimension, the library stores the dimension and its associated
information as an SDS array. In the following discussion, we will refer to that array (recall
NetCDF) as a coordinate variable or dimension record. The section concludes with consideration
of related data sets and sharable dimensions.

3.8.1 Selecting a Dimension: SDgetdimid

SDS dimensions are uniquely identified by dimension identifiers, which are assigned when a
dimension is created. These dimension identifiers are used within a program to refer to a particu-

78

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

lar dimension, its scale, and its attributes. Before working with a dimension, a program must first
obtain a dimension identifier by calling the SDgetdimid routine as follows:

C: dim id = SDgetdimid(sds id, dim index);
FORTRAN: dim id = sfdimid(sds id, dim index)

SDgetdimid takes two arguments, sds id and dim_index, and returns a dimension identifier,
dim_id. The argument dim_index is an integer from 0 to the number of dimensions minus 1. The
number of dimensions in a data set is specified at the time the data set is created. Specifying a
dimension index equal to or larger than the number of dimensions in the data set causes SDget-
dimid to return a value of FATL (or -1).

SDgetdimid returns a dimension identifier or Fa11 (or -1). The parameters of SDgetdimid are
specified in (See Table 3P on page 80).

Unlike file and data set identifiers, dimension identifiers cannot be explicitly closed.

3.8.2 Naming a Dimension: SDsetdimname

SDsetdimname assigns a name to a dimension. If two dimensions have the same name, they will
be represented in the file by only one SDS. Therefore changes to one dimension will be reflected
in the other. Naming dimensions is optional but encouraged. Dimensions that are not explicitly
named by the user will have names generated by the HDF library. Use SDdiminfo to read existing
dimension names. The syntax of SDsetdimname is as follows:

C: status = SDsetdimname (dim id, dim name);
FORTRAN: status = sfsdmname (dim id, dim name)

The argument dim_id in SDsetdimname is the dimension identifier returned by SDgetdimid. The
parameter dim_name is a string of alphanumeric characters representing the name for the selected
dimension. An attempt to rename a dimension using SDsetdimname will cause the old name to
be deleted and a new one to be assigned.

Note that when naming dimensions the name of a particular dimension must be set before attri-
butes are assigned; once the attributes have been set, the name must not be changed. In other
words, SDsetdimname must only be called before any calls to SDsetdimscale (described in
Section 3.8.4.1 on page 81), SDsetattr (described in Section 3.9.1 on page 93) or SDsetdimstrs
(described in Section 3.10.2.1 on page 105).

If the file being worked on was created by a pre-4.2.2 version of HDF, please refer to the Import-
ant Note on page 21 in Chapter 3 for information regarding a data corruption which might occur
when a dimension is named the same as a one-dimensional data set.

SDsetdimname returns a value of succeep (or 0) or FAIL (or -1). The parameters of SDsetdim-
name are described in Table 3P.

June 2017 79

The HDF Group

Table of Contents

Chapter 3 -- Scientific Data Sets (SD API)

TABLE 3P

SDgetdimid and SDsetdimname Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter FORTRAN- Description
(FORTRAN-77) C 7
SDgetdimid sds_id int32 integer Data set identifier
[int32]
(sfdimid) dim_index intn integer Dimension index
SDsetdimname dim_id int32 integer Dimension identifier
[intn]
(sfsdmname) dim_name char * character*(*) Dimension name

3.8.3 Old and New Dimension Implementations

Up to and including HDF version 4.0 betal, dimensions were vgroup objects (described in Chap-
ter 5, Vgroups (V API), containing a single field vdata (described in Chapter 4, Vdatas (VS API),
with a class name of DimVal0.0. The vdata had the same number of records as the size of the
dimension, which consisted of the values 0, 1, 2, . .. n - 1, where n is the size of the dimension.
These values were not strictly necessary. Consider the case of applications that create large one
dimensional data sets: the disk space taken by these unnecessary values nearly doubles the size of
the HDF file. To avoid these situations, a new representation of dimensions was implemented for
HDF version 4.0 beta 2 and later versions.

Dimensions are still vgroups in the new representation, but the vdata has only one record with a
value of <dimension size> and the class name of the vdata has been changed to DimVal0.1 to dis-
tinguish it from the old version.

Between HDF versions 4.0 betal and 4.1, the old and new dimension representations were written
by default for each dimension created, and both representations were recognized by routines that
operate on dimensions. From HDF version 4.1 forward, SD interface routines recognize only the
new representation. Two compatibility mode routines, SDsetdimval _comp and SDisdimval_bw-
comp, are provided to allow HDF programs to distinguish between the two dimension representa-
tions, or compatibility modes.

3.8.3.1 Setting the Future Compatibility Mode of a Dimension: SDsetdimval_comp

SDsetdimval_comp sets the compatibility mode for the dimension identified by the parameter
dim_id. This operation determines whether the dimension will have the old and new representa-
tions or the new representation only. The syntax of SDsetdimval_comp is as follows:

C: status = SDsetdimval comp(dim id, comp mode) ;
FORTRAN: status = sfsdmvc(dim id, comp mode)

The parameter comp mode specifies the compatibility mode. It can be set to either sp_pIMvaL B-
w_comp (or 1), which specifies compatible mode and that the old and new dimension representa-
tions will be written to the file, or so piMvarL Bw 1NncomP (or 0), which specifies incompatible
mode and that only the new dimension representation will be written to file. As of HDF version
4.1r1, the default mode is backward-incompatible. Subsequent calls to SDsetdimval_comp will
override the settings established in previous calls to the routine.

Unlimited dimensions are always backward compatible. Therefore SDsetdimval_comp takes no
action when the dimension identified by dim_id is unlimited.

SDsetdimval_comp returns a value of succeep (or 0) or FAIL (or -1). The parameters of SDset-
dimval_comp are specified in (See Table 3Q on page 81).

80

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

3.8.3.2 Determining the Current Compatibility Mode of a Dimension: SDisdimval_bwcomp

SDisdimval_bwcomp determines whether the specified dimension has the old and new represen-
tations or the new representation only. The syntax of SDisdimval_bwcomp is as follows:

C: comp mode = SDisdimval bwcomp (dim id) ;
FORTRAN: comp mode = sfisdmvc (dim id)

SDisdimval_bwcomp returns one of the three values: sp_pIMvAL BW coMP (Or 1), SD_DIMVAL B-
w_1NcoMp (or 0), and FAIL (or -1). The interpretation of sb_pIMvAL Bw comP and SD _DIMVAIL B-
w_INCoMP are as that in the routine SDsetdimval_comp.

The parameters of SDisdimval_bwcomp are specified in Table 3Q.

TABLE 3Q

SDsetdimval_comp and SDisdimval_bwcomp Parameter Lists

Routine Name Parameter Type

[Return Type] Parameter FORTRAN- Description
(FORTRAN-77) C 77
SDsetdimval_comp dim_id int32 integer Dimension identifier
intn
(sf[sdmlc) comp_mode intn integer Compatibility mode

SDisdimval_bwcomp
[intn] dim_id int32 integer Dimension identifier
(sfisdmvc)

3.8.4 Dimension Scales

A dimension scale can be thought of as a series of numbers demarcating intervals along a dimen-
sion. One scale is assigned per dimension. Users of netCDF can think of them as analogous to
coordinate variables. In the SDS data model, each dimension scale is a one-dimensional array
with name and size equal to its assigned dimension name and size.

For example, if a dimension of length 6 named "depth" is assigned a dimension scale, its scale is a
one-dimensional array of length 6 and is also assigned the name "depth". The name of the dimen-
sion will also appear as the name of the dimension scale.

Recall that when dimension scale is assigned to a dimension, the dimension is implemented as an
SDS array with data being the data scale. Although dimension scales are conceptually different
from SDS arrays, they are implemented as SDS arrays by the SD interface and are treated simi-
larly by the routines in the interface. For example, when the SDfileinfo routine returns the number
of data sets in a file, it includes dimension scales in that number. The SDiscoordvar routine
(described in Section 3.8.4.4 on page 88) distinguishes SDS data sets from dimension scales.

3.8.4.1 Writing Dimension Scales: SDsetdimscale

SDsetdimscale stores scale information for the dimension identified by the parameter dim_id.
The syntax of this routine is as follows:

C: status = SDsetdimscale (dim id, n values, data type, data);
FORTRAN: status = sfsdscale(dim id, n values, data type, data)

The argument n_values specifies the number of scale values along the specified dimension. For a
fixed size dimension, n_values must be equal to the size of the dimension. The parameter data_-
type specifies the data type for the scale values and data is an array containing the scale values.

June 2017 81

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

If the file being worked on was created by a pre-4.2.2 version of HDF, please refer to the Import-
ant Note on page 21 in Chapter 3 for information regarding a data corruption which might occur
when a dimension is named the same as a one-dimensional data set.

SDsetdimscale returns a value of succeep (or 0) or FAIL (or -1). The parameters of this routine
are specified in (See Table 3R on page 83).

3.8.4.2 Obtaining Dimension Scale and Other Dimension Information: SDdiminfo

Before working with an existing dimension scale, it is often necessary to determine its characteris-
tics. For instance, to allocate the proper amount of memory for a scale requires knowledge of its
size and data type. SDdiminfo provides this basic information, as well as the name and the num-
ber of attributes for a specified dimension.

The syntax of this routine is as follows:

C: status = SDdiminfo (dim id, dim name, &dim size, &data type, &n at-
trs);

FORTRAN: status = sfgdinfo(dim id, dim name, dim size, data type, n attrs)

SDdiminfo retrieves and stores the dimension’s name, size, data type, and number of attributes
into the parameters dim_name, dim_size, data_type, and n_attrs, respectively.

The parameter dim_name will contain the dimension name set by SDsetdimname or the default
dimension name, fakeDim[x], if SDsetdimname has not been called, where [x] denotes the
dimension index. If the name is not desired, the parameter dim_name can be set to NuLL in C or an
empty string in FORTRAN-77.

An output value of 0 for the parameter dim_size indicates that the dimension specified by the
parameter dim_id is unlimited. Use SDgetinfo to get the number of elements of the unlimited
dimension.

If scale information is available for the specified dimension, i.e., SDsetdimscale has been called,
the parameter data type will contain the data type of the scale values; otherwise, data_type will
contain 0.

SDdiminfo returns a value of succeep (or 0) or FAIL (or -1). The parameters of this routine are
specified in Table 3R.

3.8.4.3 Reading Dimension Scales: SDgetdimscale

SDgetdimscale retrieves the scale values of a dimension. These values have previously been
stored by SDsetdimscale. The syntax of this routine is as follows:

C: status = SDgetdimscale(dim id, data);
FORTRAN: status = sfgdscale(dim id, data)

SDgetdimscale reads all the scale values and stores them in the buffer data which is assumed to
be sufficiently allocated to hold all the values. SDdiminfo should be used to determine whether the
scale has been set for the dimension and to obtain the data type and the number of scale values for
space allocation before calling SDgetdimscale. Refer to Section 3.8.4.2 on page 82 for a discus-
sion of SDdiminfo.

Note that it is not possible to read a subset of the scale values. SDgetdimscale returns all of the
scale values stored with the given dimension.

The fact that SDgetdimscale returns SUCCEED should not be interpreted as meaning that scale val-
ues have been defined for the data set. This function should always be used with SDdiminfo,

82

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

which is used first to determine whether a scale has been set, the number of scale values, their data
type, etc. If SDdiminfo indicates that no scale values have been set, the values returned by
SDgetdimscale in data should be ignored.

SDgetdimscale returns a value of succeep (or 0) or FAIL (or -1). The parameters of this routine
are specified in Table 3R.

TABLE 3R SDsetdimscale, SDdiminfo, and SDgetdimscale Parameter Lists
Routine Name Parameter Type
Return Type . e
(F[OIL{TI{XIL_ Parameter Description
C FORTRAN-77
77)
dim_id int32 integer Dimension identifier
SDsetdimscale n_values int32 integer Number of scale values
intn
(sf£dsc2]lle) data_type int32 integer Data type to be set for the scale values
data VOIDP <valid data type>(¥*) Buffer containing the scale values to be set
dim_id int32 integer Dimension identifier
1 * & (K 1 1
SDdiminfo dim_name char character*(*) Buffer for the dimension name
[intn] n_values int32 * integer Buffer for the dimension size
(sfgdinfo) data_type int32 * integer Buftfer for the scale data type
n_attrs int32 * integer Buffer for the attribute count
SDgetdimscale dim_id int32 integer Dimension identifier
[intn]
(sfedscale) data VOIDP <valid data type>(*) Buffer for the scale values
EXAMPLE 12. Setting and Retrieving Dimension Information.

This example illustrates the use of the routines SDgetdimid/sfdimid, SDsetdimname/sfsdm-
name, SDsetdimscale/sfsdscale, SDdiminfo/sfgdinfo, and SDgetdimscale/sfgdscale to set and
retrieve the dimensions names and dimension scales of the SDS created in Example 2 and modi-
fied in Examples 4 and 7.

C:

#include "mfhdf.h"

#define FILE NAME "SDS.hdf"
#define SDS_NAME "SDStemplate"
#define DIM NAME X "X Axis"
#define DIM NAME Y "Y Axis"
#define NAME_LENGTH 6

#define X LENGTH 5

#define Y LENGTH 16

#define RANK

main()

{

/*‘k*****‘k‘k****‘k‘k*****‘k**** Variable declaration ‘k‘k***********‘k************/

int32 sd_id, sds_id, sds_index;

intn status;

int32 dim index, dim id;

int32 n _values, data type, n_attrs;

intl6é data X[X LENGTH]; /* X dimension dimension scale */
intle data X out[X LENGTH];

June 2017 83

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

float64 data Y[Y LENGTH]; /* Y dimension dimension scale */
float64 data Y out[Y LENGTH];

char dim name [NAME LENGTH];

int i, j, nrow;

/********************* End Of Variable declaration ***********************/

/*
* Initialize dimension scales.

*/

for (1=0; i < X LENGTH; i++) data X[i] = i;

for (1=0; i < Y LENGTH; i++) data Y[i] = 0.1 * i;

/*

* Open the file and initialize SD interface.

*/

sd_id = SDstart (FILE NAME, DFACC WRITE);

/%

* Get the index of the data set specified in SDS NAME.
*/

sds_index = SDnametoindex (sd id, SDS NAME) ;

/*
* Select the data set corresponding to the returned index.
*/

sds_id = SDselect (sd_id, sds_index);

/* For each dimension of the data set specified in SDS NAME,
* get its dimension identifier and set dimension name
* and dimension scale. Note that data type of dimension scale
* can be different between dimensions and can be different from
* SDS data type.
*/
for (dim_index = 0; dim index < RANK; dim_index++)
{
/*
* Select the dimension at position dim_index.
*/
dim id = SDgetdimid (sds_id, dim index);

/*
* Assign name and dimension scale to selected dimension.
*/
switch (dim index)
{
case 0: status = SDsetdimname (dim id, DIM NAME Y);
n_values = Y LENGTH;
status = SDsetdimscale (dim id,n values,DFNT FLOAT64, \
(VOIDP)data Y);
break;
case 1: status = SDsetdimname (dim id, DIM NAME X);
n_values = X LENGTH;
status = SDsetdimscale (dim id,n_values, DFNT INT16, \
(VOIDP)data X);
break;
default: break;
}

/*
* Get and display info about the dimension and its scale values.

* The following information is displayed:
*

84

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

* Information about 1 dimension:

*

dimension name is Y Axis

number of scale values is 16
dimension scale data type is float64
number of dimension attributes is 0

Scale values are
0.000 0.100 0.200
0.400 0.500 0.600
0.800 0.900 1.000
1.200 1.300 1.400

.300
.700
.100
.500

R B O O

Information about 2 dimension:
dimension name is X Axis

number of scale values is 5
dimension scale data type is intlé
number of dimension attributes is 0

Scale values are
0 1 2 3 4

EoE I R T e S NS N S R TS ST T . S .

status = SDdiminfo (dim id, dim name, &n values, &data type, &n_attrs);
printf ("Information about %d dimension:\n", dim index+l);
printf ("dimension name is %$s\n", dim name);
printf ("number of scale values is %d\n", n_values);
if (data type == DFNT_FLOAT64)
printf ("dimension scale data type is float64\n");
if(data type == DFNTilNT16)
printf ("dimension scale data type is intl6\n");
printf ("number of dimension attributes is %d\n", n attrs);
printf ("\n");
printf ("Scale values are :\n");
switch (dim index)
{
case 0: status = SDgetdimscale (dim id, (VOIDP)data Y out);

nrow = 4;

for (i=0; i<n values/nrow; i++)

{

for (3j=0; j<nrow; Jj++)
printf (" %-6.3f", data Y out[i*nrow + j]);
printf ("\n");
}

break;

case 1: status = SDgetdimscale (dim id, (VOIDP)data X out);
for (i=0; i<n values; i++) printf (" %d", data X out[i]);
break;

default: break;
}
printf ("\n");
} /*for dim index */

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd id);

June 2017 85

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

FORTRAN:
program dimension_info
implicit none
C
C Parameter declaration.
C
character*7 FILE NAME
character*11 SDS_NAME
character*6 DIM NAME X
character*6 DIM NAME Y
integer X_LENGTH, Y_ LENGTH, RANK
parameter (FILE NAME = ’'SDS.hdf’,
+ SDS_NAME = ’SDStemplate’,
+ DIM NAME X = ’'X Axis’,
+ DIM NAME Y = 'Y Axis’,
+ X_LENGTH = 5,
+ Y LENGTH = 16,
+ RANK = 2)
integer DFACC_WRITE, DFNT INT16, DENT_ FLOAT64
parameter (DFACC_WRITE = 2,
+ DENT INT16 = 22,
+ DEFNT_FLOAT64 = 6)
C
C Function declaration.
C
integer sfstart, sfn2index, sfdimid, sfgdinfo
integer sfsdscale, sfgdscale, sfsdmname, sfendacc
integer sfend, sfselect
C
C**** Variable declaration ER R R R R R R R B i I I I i
C
integer sd id, sds id, sds index, status
integer dim index, dim id
integer n values, n_attrs, data type
integer*2 data X (X LENGTH)
integer*2 data X out (X LENGTH)
real*8 data_Y (Y_LENGTH)
real*8 data Y out (Y LENGTH)
character*6 dim name
integer i
C
C**** End of Variable declaration R R R R R R Rk i kb
C
C
C Initialize dimension scales.
C
do 10 i = 1, X LENGTH
data X(i) =1 -1
10 continue
do 20 i = 1, Y LENGTH
data Y(i) = 0.1 * (1 - 1)
20 continue
c
C Open the file and initialize SD interface.
C
sd id = sfstart (FILE NAME, DFACC WRITE)
C
c Get the index of the data set with the name specified in SDS_NAME.
c

sds_index = sfn2index(sd id, SDS_NAME)

86 June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents

HDF User’s Guide

Q Q

QOO0

Q Q

Q

OO NN OO NN NONONONONONONONONONONO OO NG

Select the data set corresponding to the returned index.
sds_id = sfselect(sd id, sds index)

For each dimension of the data set,
get its dimension identifier and set dimension name

and dimension scales. Note that data type of dimension scale can
be different between dimensions and can be different from SDS data type.

do 30 dim index = 0, RANK - 1
Select the dimension at position dim index.
dim id = sfdimid(sds_id, dim_index)
Assign name and dimension scale to the dimension.
if (dim index .eqg. 0) then

status = sfsdmname (dim id, DIM NAME X)
n _values = X LENGTH

status = sfsdscale(dim _id, n_values, DFNT_INT16, data X)

end if

if (dim index .eq. 1) then
status = sfsdmname (dim_id, DIM NAME Y)
n values = Y LENGTH

status = sfsdscale(dim id, n_values, DFNT_FLOAT64, data Y)

end if

Get and display information about dimension and its scale values.

The following information is displayed:

Information about 1 dimension
dimension name is X Axis

number of scale values is 5
dimension scale data type is intlé

number of dimension attributes is 0
Scale values are:
0 1 2 3 4

Information about 2 dimension
dimension name is Y Axis

number of scale values is 16
dimension scale data type is float64
number of dimension attributes is 0

Scale values are:

0.000 0.100 0.200 0.300
0.400 0.500 0.600 0.700
0.800 0.900 1.000 1.100
1.200 1.300 1.400 1.500
status = sfgdinfo(dim id, dim name, n values, data type, n_attrs)
C
write(*,*) "Information about ", dim index+1," dimension :"
write(*,*) "dimension name is ", dim name
write(*,*) "number of scale values is", n_values
if (data type. eq. 22) then
write(*,*) "dimension scale data type is intlé"
endif
if (data_type. eq. 6) then
write (*,*) "dimension scale data type is float64"
June 2017 87

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

endif
write(*,*) "number of dimension attributes is ", n_attrs
C
write(*,*) "Scale values are:"
if (dim _index .eq. 0) then
status = sfgdscale(dim id, data X out)
write(*,*) (data X out(i), i= 1, X LENGTH)
endif
if (dim index .eq. 1) then
status = sfgdscale(dim id, data Y out)
write(*,100) (data Y out(i), i= 1, Y LENGTH)
100 format (4 (1x,£10.3)/)
endif
30 continue
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C

status = sfend(sd id)
end

3.8.4.4 Distinguishing SDS Arrays from Dimension Scales: SDiscoordvar

The HDF library stores SDS dimensions as data sets. HDF therefore provides the routine SDisco-
ordvar to determine whether a particular data set contains the data of an SDS or an SDS dimen-
sion with dimension scale or attribute assigned to it. The syntax of SDiscoordvar this routine is as
follows:

C: status = SDiscoordvar (sds_id);
FORTRAN: status = sfiscvar(sds id)

If the data set, identified by the parameter sds id, contains the dimension data, a subsequent call
to SDgetinfo will fill the specified arguments with information about a dimension, rather than a
data set.

If the file being worked on was created by a pre-4.2.2 version of HDF, please refer to the Import-
ant Note on page 21 in Chapter 3 for information regarding a data corruption which might occur
when a dimension is named the same as a one-dimensional SDS.

SDiscoordvar returns TrUE (or 1) if the specified data set represents a dimension scale and FALSE
(or 0), otherwise. This routine is further defined in Table 3S.

88

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

TABLE 3S SDiscoordvar Parameter List
Routine Name Parameter Type
(lglgtﬁr%l?%]\l_ Parameter . FORTRAN- Description
77) 77
SDiscoordvar
[intn] sds_id int32 integer Data set identifier
(sfiscvar)
EXAMPLE 13. Distinguishing a Dimension Scale from a Data Set in a File.

This example illustrates the use of the routine SDiscoordvar/sfiscvar to determine whether the
selected SDS array is a data set or a dimension stored as an SDS array (coordinate variable) (see
discussion in Section 3.8.4) and displays the name of the data set or dimension.

C:
#include "mfhdf.h"
#define FILE_NAME "SDS.hdf"
main()

{

/*‘k*********************** Variable declaration ‘k‘k*****‘k******************/

int32 sd id, sds_id, sds_index;

intn status;

int32 rank, data type, dim sizes[MAX VAR DIMS];
int32 n datasets, n_file attr, n attrs;

char sds_name[MAX NC NAME];

/********************* End Of Variable declaration ***********************/

/*

* Open the file and initialize the SD interface.
*/

sd_id = SDstart(FILE NAME, DFACC READ);

/*

* Obtain information about the file.

*/

status = SDfileinfo(sd id, &n datasets, &n file attr);

/* Get information about each SDS in the file.
* Check whether it is a coordinate variable, then display retrieved
* information.

* Output displayed:

*

* SDS array with the name SDStemplate

* Coordinate variable with the name Y Axis
* Coordinate variable with the name X Axis
*

*/

for (sds_index=0; sds index< n datasets; sds_index++)
{
sds_id = SDselect (sd id, sds_index);
status = SDgetinfo(sds_id, sds name, &rank, dim sizes, &data type,
&n_attrs);
if (SDiscoordvar (sds_id))
printf (" Coordinate variable with the name %s\n", sds name);

June 2017 89

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

else
printf (" SDS array with the name %s\n", sds_name) ;

/*
* Terminate access to the selected data set.
*/

status = SDendaccess (sds_id);

/*
* Terminate access to the SD interface and close the file.
*/

status = SDend(sd_id);

FORTRAN:
program sds_vrs coordvar
implicit none
C
C Parameter declaration.
C
character*7 FILE NAME
parameter (FILE NAME = ’SDS.hdf’)
integer DFACC_READ, DFNT INT32
parameter (DFACC_READ = 1,
+ DENT INT32 = 24)
integer MAX VAR DIMS
parameter (MAX VAR DIMS = 32)
C
c Function declaration.
C
integer sfstart, sfselect, sfiscvar, sffinfo, sfginfo
integer sfendacc, sfend
C
C**** Variable declaration KA K KA KA KR AKA KA KR AR A AR AR A A KA R A A A AR A R A AR A AR AR A * K
c
integer sd_id, sds_id, sds_index, status
integer rank, data type
integer n datasets, n file attrs, n_attrs
integer dim sizes (MAX VAR DIMS)
character*256 sds name
c
C**‘k‘k End of Variable declaration KAk KAk Ak hkkhkh A hkhkhkkhkrhkhkhkkhkhkhrhkkhkhkkhkhkhhhkhkhkhrk*x
C
c
C Open the file and initialize the SD interface.
C
sd id = sfstart (FILE NAME, DFACC_ READ)
C
C Obtain information about the file.
c
status = sffinfo(sd id, n datasets, n file attrs)
C
c Get information about each SDS in the file.
C Check whether it is a coordinate variable, then display retrieved
C information.
C Output displayed:
C
C SDS array with the name SDStemplate
c Coordinate variable with the name X Axis
C Coordinate variable with the name Y Axis

90

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

C
do 10 sds_index = 0, n datasets-1
sds_id = sfselect(sd _id, sds_index)
status = sfginfo(sds id, sds name, rank, dim sizes,
+ data_type, n_attrs)
status = sfiscvar (sds_id)
if (status .eq. 1) then
write(*,*) "Coordinate variable with the name ",
+ sds_name (1:6)
else
write(*,*) "SDS array with the name ",
+ sds_name (1:11)
endif
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
10 continue
C
C Terminate access to the SD interface and close the file.
C

status = sfend(sd id)
end

3.8.5 Related Data Sets

SD data sets with one or more dimensions with the same name and size are considered to be
related. Examples of related data sets are cross-sections from the same simulation, frames in an
animation, or images collected from the same apparatus. HDF attempts to preserve this relation-
ship by unifying their dimension scales and attributes. To understand how related data sets are
handled, it is necessary to understand what dimension records are and how they are created.

In the SD interface, dimension records are only created for dimensions of a unique name and size.
To illustrate this, consider a case where there are three scientific data sets, each representing a
unique variable, in an HDF file. (See Figure 3¢) The first two data sets have two dimensions each
and the third data set has three dimensions. There are a total of four dimensions in the file and the
name mapping between the data sets and the dimensions are shown in the figure. Note that if, for
example, the creation of a second dimension named "Altitude" is attempted and the size of the
dimension is different from the existing dimension named "Altitude", an error condition will be
generated.

As expected, assigning a dimension attribute to dimension 1 of either data set will create the
required dimension scale and assign the appropriate attribute. However, because related data sets
share dimension records, they also share dimension attributes. Therefore, it is impossible to assign
an attribute to a dimension without assigning the same attribute to all dimensions of identical
name and size, either within one data set or related data sets.

June 2017 91

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

FIGURE 3¢

3.9

Dimension Records and Attributes Shared Between Related Data Sets
Data Set A

Data Set B

Data Set C

Latitude | [Congitude]

Latitude |

Latitude | Longitude Time Altitude

Dimensions

User-defined Attributes

User-defined attributes are defined by the calling program and contain auxiliary information
about a file, SDS array, or dimension. This auxiliary information is sometimes called metadata
because it is data about data. There are two ways to store metadata: as user-defined attributes or as
predefined attributes.

Attributes take the form /abel=value, where label is a character string containing H4_MAX NC_NAME
(or 256) or fewer characters and value contains one or more entries of the same data type as
defined at the time the attribute is created. Attributes can be attached to files, data sets, and dimen-
sions. These are referred to, respectively, as file attributes, data set attributes, and dimension
attributes:

* File attributes describe an entire file. They generally contain information pertinent to all
HDF data sets in the file and are sometimes referred to as global attributes.

* Data set attributes describe individual SDSs. Because their scope is limited to an individual
SDS, data set attributes are sometimes referred to as local attributes.

* Dimension attributes provide information applicable to an individual SDS dimension. It is
possible to assign a unit to one dimension in a data set without assigning a unit to the
remaining dimensions.

For each attribute, an attribute count is maintained that identifies the number of values in the
attribute. Each attribute has a unique attribute index, the value of which ranges from 0 to the total
number of attributes minus 1. The attribute index is used to locate an attribute in the object which
the attribute is attached to. Once the attribute is identified, its values and information can be
retrieved.

The data types permitted for attributes are the same as those allowed for SDS arrays. SDS arrays
with general attributes of the same name can have different data types. For example, the attribute
valid_range specifying the valid range of data values for an array of 16-bit integers might be of
type 16-bit integer, whereas the attribute valid range for an array of 32-bit floats could be of type
32-bit floating-point integer.

Attribute names follow the same rules as dimension names. Providing meaningful names for attri-
butes is important, however using standardized names may be necessary if generic applications
and utility programs are to be used. For example, every variable assigned a unit should have an
attribute named "units" associated with it. Furthermore, if an HDF file is to be used with software
that recognizes "units" attributes, the values of the "units" attributes should be expressed in a con-
ventional form as a character string that can be interpreted by that software.

92

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

The SD interface uses the same functions to access all attributes regardless of the objects they are
assigned to. The difference between accessing a file, array, or dimension attribute lies in the use of
identifiers. File identifiers, SDS identifiers, and dimension identifiers are used to respectively
access file attributes, SDS attributes, and dimension attributes.

3.9.1 Creating or Writing User-defined Attributes: SDsetattr

SDsetattr creates or modifies an attribute for one of the objects: the file, the data set, or the
dimension. If the attribute with the specified name does not exist, SDsetattr creates a new one. If
the named attribute already exists, SDsetattr resets all the values that are different from those pro-
vided in its argument list. The syntax of this routine is as follows:

C: status = SDsetattr(obj id, attr name, data type, n values, values);

FORTRAN: status = sfsnatt(obj id, attr name, data type, n values, values)

OR status = sfscatt(obj id, attr name, data type, n values, values)

The parameter obj id is the identifier of the HDF data object to which the attribute is assigned and
can be a file identifier, SDS identifier, or dimension identifier. If obj id specifies an SD interface
identifier (sd_id), a global attribute will be created which applies to all objects in the file. If 0bj id
specifies a data set identifier (sds_id), an attribute will be attached only to the specified data set. If
obj _id specifies a dimension identifier (dim_id), an attribute will be attached only to the specified
dimension.

The parameter attr name is an ASCII character string containing the name of the attribute. It rep-
resents the label in the label = value equation and can be no more than H4 MAX NC NAME (Or 256)
characters. If this is set to the name of an existing attribute, the value portion of the attribute will
be overwritten. Do not use SDsetattr to assign a name to a dimension, use SDsetdimname
instead.

The arguments data_type, n_values, and values describe the right side of the label = value equa-
tion. The argument values contains one or more values of the same data type. The argument
data_type contains any HDF supported data type (see (See Table 2F on page 14)). The parameter
n_values specifies the total number of values in the attribute.

There are two FORTRAN-77 versions of this routine: sfsnatt and sfscatt. The routine sfsnatt
writes numeric attribute data and sfscatt writes character attribute data.

SDsetattr returns a value of succeep (or 0) or FAIL (or -1). The parameters of SDsetattr are fur-
ther described in (See Table 3T on page 98).

EXAMPLE 14.

Setting Attributes.

This example shows how the routines SDsetattr/sfscatt/sfsnatt are used to set the attributes of the
file, data set, and data set dimension created in the Examples 2, 4, and 12.

C:
#include "mfhdf.h"

#define FILE NAME "SDS.hdf"
#define FILE_ATTR NAME "File contents"
#define SDS_ATTR NAME "Valid range"
#define DIM ATTR NAME "Dim metric"

main()

June 2017 93

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

/************************* Variable declaration **************************/

int32 sd id, sds id, sds_index;

intn status;
int32 dim id, dim index;
int32 n_values; /* number of values of the file, SDS or
dimension attribute */
chars8 file values[] = "Storm track data";
/* values of the file attribute */
float32 sds values[2] = {2., 10.};
/* values of the SDS attribute */
char8 dim values[] = "Seconds";

/* values of the dimension attribute */
/********************* End Of Variable declaration ***********************/

/*
* Open the file and initialize the SD interface.
*/

sd_id = SDstart (FILE NAME, DFACC WRITE);

/*

* Set an attribute that describes the file contents.

*/

n _values = 16;

status = SDsetattr (sd_id, FILE ATTR NAME, DFNT CHAR8, n values,
(VOIDP) file values);

/*
* Select the first data set.

*/

sds_index = 0;

sds_id = SDselect (sd id, sds_ index);

/*

* Assign attribute to the first SDS. Note that attribute values

* may have different data type than SDS data.

*/

n values = 2;

status = SDsetattr (sds_id, SDS ATTR NAME, DFNT FLOAT32, n values,
(VOIDP) sds_values) ;

/*

* Get the the second dimension identifier of the SDS.
*/

dim_index = 1;

dim id = SDgetdimid (sds_id, dim index);

/*

* Set an attribute of the dimension that specifies the dimension metric.

*/

n values = 7;

status = SDsetattr (dim id, DIM ATTR NAME, DFNT CHAR8, n values,
(VOIDP)dim values);

/*
* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.

94

June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents

HDF User’s Guide

*/
st

atus = SDend (sd_id);

FORTRAN:

Q

Q

c

program set attribs
implicit none

Parameter declaration.

character*7 FILE NAME
character*13 FILE ATTR NAME
character*11l SDS ATTR NAME
character*10 DIM ATTR NAME
parameter (FILE NAME = ’SDS.hdf’,

+ FILE ATTR NAME = ’'File contents’,

+ SDS_ATTR NAME = ’‘Valid range’,

+ DIM ATTR NAME = ’Dim metric’)
integer DFACC_WRITE, DFNT CHAR8, DENT_ FLOAT32
parameter (DFACC_WRITE = 2,

+ DFNT CHAR8 = 4,

+ DEFNT_FLOAT32 = 5)

Function declaration.

integer sfstart, sfscatt, sfsnatt, sfselect, sfdimid

integer sfendacc, sfend

C**‘k‘k variable declaration KAk Ak Ak hkhkhrhkhkhkhkhkhhkhkhkhkhkrhkhkhkkhkhkhkrhkkhkhkkhkrkhkhhkkhrkhrxk*x

C

C

C‘k‘k**

c

C
C
C

Q Q

QO

Qa0

integer sd id, sds id, sds index, status
integer dim id, dim index

integer n values

character*16 file values

real sds_values (2)
character*7 dim values

file values = ’Storm track data’
sds_values(l) = 2.

sds_values (2) = 10.

dim values = ’Seconds’

End Of Variable declaration KAK KA KRAA AR KA KRAAIAA R AR AR KA R AR A A XA AR A,k

Open the file and initialize the SD interface.
sd_id = sfstart (FILE NAME, DFACC WRITE)
Set an attribute that describes the file contents.

n _values = 16

status = sfscatt(sd id, FILE ATTR NAME, DFNT CHAR8, n values,

+ file values)
Select the first data set.

sds_index = 0
sds_id = sfselect(sd id, sds index)

Assign attribute to the first SDS. Note that attribute values

may have different data type than SDS data.

June 2017

95

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

n _values = 2
status = sfsnatt(sds_id, SDS ATTR NAME, DFNT FLOAT32, n_values,
+ sds_values)

Q

Get the identifier for the first dimension.

Q

dim index = 0
dim id = sfdimid(sds_id, dim_ index)

Set an attribute to the dimension that specifies the
dimension metric.

Qa0

n_values = 7
status = sfscatt(dim id, DIM ATTR NAME, DFNT CHAR8, n values,
+ dim values)

Q

Terminate access to the data set.

status = sfendacc(sds_id)

Q

Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

3.9.2 Querying User-defined Attributes: SDfindattr and SDattrinfo

Given a file, SDS, or dimension identifier and an attribute name, SDfindattr returns a valid attri-
bute index if the corresponding attribute exists. The attribute index can then be used to retrieve
information about the attribute or its values. Given a file, SDS, or dimension identifier and a valid
attribute index, SDattrinfo retrieves the information about the corresponding attribute if it exists.

The syntax for SDfindattr and SDattrinfo are as follows:

C: attr index = SDfindattr(obj id, attr name);
status = SDattrinfo(obj id, attr index, attr name, &data type,
&n values);

FORTRAN: attr index = sffattr(obj id, attr name)
status = sfgainfo(obj id, attr index, attr name, data type, n val-
ues)

SDfindattr returns the index of the attribute, which belongs to the object identified by the param-
eter obj _id, and whose name is specified by the parameter attr_name.

The parameter obj id can be either an SD interface identifier (sd_id), a data set identifier (sds_id),
or a dimension identifier (dim_id). SDfindattr is case-sensitive in searching for the name speci-
fied by the parameter atfr_name and does not accept wildcards as part of that name.

SDattrinfo retrieves the attribute’s name, data type, and number of values into the parameters
attr_name, data_type, and n_values, respectively.

The parameter attr_index specifies the relative position of the attribute within the specified object.
An attribute index may also be determined by either keeping track of the number and order of
attributes as they are written or dumping the contents of the file using the HDF dumping utility,
hdp, which is described in Chapter 15, HDF Command-line Utilities.

96

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

SDfindattr returns an attribute index or a value of Fa1r (or -1). SDattrinfo returns a value of
succeeD (or 0) or FAIL (or -1). The parameters of SDfindattr and SDattrinfo are further
described in (See Table 3T on page 98).

3.9.3 Reading User-defined Attributes: SDreadattr

Given a file, SDS, or dimension identifier and an attribute index, SDreadattr reads the values of
an attribute that belongs to either a file, an SDS, or a dimension. The syntax of this routine is as
follows:

C: status = SDreadattr(cbj id, attr index, wvalues);

FORTRAN: status = sfrattr(obj id, attr index, values)

OR status = sfrnatt (obj id, attr index, values)

OR status = sfrcatt(obj id, attr index, values)

SDreadattr stores the attribute values in the buffer values, which is assumed to be sufficiently
allocated. The size of the buffer must be at least n_values*sizeof (data_type) bytes long, where
n_values and data_type are the number of attribute values and their type. The values of n_values
and data_type can be retrieved using SDattrinfo. Note that the size of the data type must be deter-
mined at the local machine where the application is running. SDreadattr will also read attributes
and annotations created by the DFSD interface.

The parameter 0bj _id can be either an SD interface identifier (sd_id), a data set identifier (sds_id),
or a dimension identifier (dim_id).

The parameter attr_index specifies the relative position of the attribute within the specified object.
An attribute index may also be determined by either keeping track of the number and order of
attributes as they are written or dumping the contents of the file using the HDF dumping utility,
hdp, which is described in Chapter 15, HDF Command-line Utilities.

There are three FORTRAN-77 versions of this routine: sfrattr, sfrnatt, and sfrcatt. The routine
sfrattr reads data of all valid data types, sfrnatt reads numeric attribute data and sfrcatt reads
character attribute data.

SDreadattr returns a value of succeep (or 0) or FAIL (or -1). The parameters of SDreadattr are
further described in Table 3T.

June 2017 97

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
TABLE 3T SDsetattr, SDfindattr, SDattrinfo, and SDreadattr Parameter Lists
Routine Name Parameter Type
Return Type o
(I*EORTRYXI]\I- Parameter Description
C FORTRAN-77
77)
sd_id, sds_id int32 inteeer SD interface, data set, or
or dim_id cse dimension identifier
SDsetattr attr_name char * character*(*) Name of the attribute
[intn] R R R
(sfsnatt/ data_type int32 integer Data type of the attribute
sfscatt) n_values int32 integer Number of values in the attribute
<vali i >(*
values VOIDP valid numeric data type>(*)/ Buffer containing the data to be written
character*(*)
SDfindattr sd_id, sds_id int32 integer SD interface, data set, or
[int32] or dim_id dimension identifier
(sffattr) attr name char * character™(*) Attribute name
sd_id, sds_id int32 integer SD interface, data set, or
or dim_id & dimension identifier
attr_index int32 integer Index of the attribute to be read
SD;ttt"]nfO attr name char * character™(*) Buffer for the name of the attribute
intn
(sfgainfo) data_type inf32 * integer Buffer for the data type of the values in
the attribute
. . Buffer for the total number of values in
n_values int32 * integer .
- the attribute
sd_id, sds_id int32 integer SD interface, data set, or dimension iden-
SDreadattr or dim_id & tifier
Lintn] attr_index int32 integer Index of the attribute to be read
(sfrattr/ -
sfrnatt/ <valid data type>(*)/
sfreatt) values VOIDP <valid numeric data type>(*)/ | Buffer for the attribute values
character*(*)
EXAMPLE 15. Reading Attributes.

This example uses the routines SDfindattr/sffattr, SDattrinfo/sfgainfo, and SDreadattr/sfrattr
to find and read attributes of the file, data set, and data set dimension created in the Example 14.

C:
#include "mfhdf.h"
#define FILE NAME "SDS.hdf"
#define FILE ATTR NAME "File contents"
#define SDS_ATTR NAME "Valid range"
#define DIM ATTR NAME "Dim metric"
main()
{
/**k*********************** Variable declaration ******‘k‘k******************/
int32 sd_id, sds_id, dim id;
intn status;
int32 attr index, data type, n values;
char attr name[MAX NC NAME];
int8 *file data;
int8 *dim data;
float32 *sds data;
int i;
98 June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents HDF User’s Guide

/********************* End of variable declaration ***********************/

/*
* Open the file and initialize SD interface.
*/

sd_id = SDstart (FILE NAME, DFACC READ);

/*
* Find the file attribute defined by FILE ATTR NAME.
*/

attr index = SDfindattr (sd_id, FILE ATTR NAME);

/*
* Get information about the file attribute. Note that the first
* parameter is an SD interface identifier.

*/

status = SDhattrinfo (sd id, attr index, attr name, &data type, &n values);

/*
* Allocate a buffer to hold the attribute data.
*/

file data = (int8 *)malloc (n values * sizeof (data type));

/*
* Read the file attribute data.

*/

status = SDreadattr (sd id, attr index, file data);

/*

* Print out file attribute value.

*/

printf ("File attribute value is : %$s\n", file data);

/*
* Select the first data set.
*/
sds_id = SDselect (sd _id, 0);

/*

* Find the data set attribute defined by SDS ATTR NAME. Note that the
* first parameter is a data set identifier.

*/

attr index = SDfindattr (sds_id, SDS ATTR NAME);

/*

* Get information about the data set attribute.

*/

status = SDattrinfo (sds_id, attr index, attr name, &data type, &n_values);
/*

* Allocate a buffer to hold the data set attribute data.

*/

sds_data = (float32 *)malloc (n values * sizeof (data type));
/*

* Read the SDS attribute data.

*/

status = SDreadattr (sds_id, attr index, sds data);

/*

* Print out SDS attribute data type and values.

x/

if (data_type == DFNT_FLOAT32)

June 2017

2

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

printf ("SDS attribute data type is : float32\n");
printf ("SDS attribute values are : ");
for (1=0; i<n_values; i++) printf (" %f", sds datali]);
printf ("\n");

/*

* Get the identifier for the second dimension of the SDS.
*/

dim id = SDgetdimid (sds_id, 1);

/*

* Find dimension attribute defined by DIM ATTR NAME.

*/

attr index = SDfindattr (dim id, DIM ATTR NAME);

/*

* Get information about the dimension attribute.

*/

status = SDhattrinfo (dim id, attr index, attr name, &data type, &n values);
/*

* Allocate a buffer to hold the dimension attribute data.
*/

dim data = (int8 *)malloc (n_values * sizeof (data type));
/*

* Read the dimension attribute data.

*/

status = SDreadattr (dim id, attr index, dim data);

/*

* Print out dimension attribute value.

*/

printf ("Dimensional attribute values is : %s\n", dim data);

/*

* Terminate access to the data set and to the SD interface and
* close the file.

*/

status SDendaccess (sds_id);

status = SDend (sd_id);

/*
* Free all buffers.
*/

free (dim data
free (sds _data
free (file dat

);
)
a);

/* Output of this program is

* File attribute value is : Storm track data
* SDS attribute data type is : float32
* SDS attribute values are : 2.000000 10.000000
* Dimensional attribute values is : Seconds
x/
}
FORTRAN:

program attr info

100 June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents HDF User’s Guide

Q

Q

C****

C**‘k‘k

OO eNNe] Qa0

Q Q

implicit none
Parameter declaration.

character*7 FILE NAME

character*13 FILE ATTR NAME
character*11 SDS_ATTR NAME
character*10 DIM ATTR NAME

parameter (FILE NAME = ’SDS.hdf’,

+ FILE ATTR NAME = ’'File contents’,

+ SDS_ATTR NAME = ’Valid range’,

+ DIM ATTR NAME = ’'Dim metric’)
integer DFACC READ, DFNTiFLOAT32
parameter (DFACC_READ =1,

+ DENT_ FLOAT32 = 5)

Function declaration.

integer sfstart, sffattr, sfgainfo, sfrattr, sfselect
integer sfdimid, sfendacc, sfend

Variable declaration KAk A kA hkhkhhkhkhkhkhkhkrkhhhkhkhhkrhkhhkhkhkhkrhkhkhkhkhkhkrhk kA kxkx

integer sd id, sds_id, dim id
integer attr index, data type, n_values, status
real sds_data(2)

character*20 attr name
character*16 file data
character*7 dim data
integer i

End of Variable declaration Kk KAk Ak hkkhkh A hkhkhkkhkrhkhkhkkhkhkhrhkkhkhkkhkhkhhrhkhkhrk*x

Open the file and initialize SD interface.
sd id = sfstart (FILE NAME, DFACC_ READ)

Find the file attribute defined by FILE ATTR NAME.
Note that the first parameter is an SD interface identifier.

attr_index = sffattr(sd_id, FILE_ATTR NAME)
Get information about the file attribute.

status = sfgainfo(sd id, attr index, attr name, data type,
+ n_values)

Read the file attribute data.

status = sfrattr(sd id, attr index, file data)
Print file attribute value.

write(*,*) "File attribute value is : ", file data
Select the first data set.

sds_id = sfselect(sd_id, 0)

Find the data set attribute defined by SDS_ATTR NAME.
Note that the first parameter is a data set identifier.

June 2017

101

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

C
attr index = sffattr(sds_id, SDS_ATTR NAME)
C
C Get information about the data set attribute.
C
status = sfgainfo(sds_id, attr index, attr name, data type,
+ n values)
C
C Read the SDS attribute data.
C
status = sfrattr(sds_id, attr index, sds_data)
C
C Print SDS attribute data type and values.
C
if (data type .eq. DFNT FLOAT32) then
write (*,*) "SDS attribute data type is : float32 "
endif
write (*,*) "SDS attribute values are "
write (*,*) (sds_data(i), i=1, n_values)
C
C Get the identifier for the first dimension of the SDS.
C
dim id = sfdimid(sds_id, 0)
C
c Find the dimensional attribute defined by DIM ATTR NAME.
C Note that the first parameter is a dimension identifier.
C
attr_index = sffattr(dim_id, DIM ATTR NAME)
C
C Get information about dimension attribute.
C
status = sfgainfo(dim id, attr index, attr name, data type,
+ n _values)
C
C Read the dimension attribute data.
C
status = sfrattr(dim id, attr index, dim data)
C
C Print dimension attribute value.
C
write(*,*) "Dimensional attribute value is ", dim data
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
status = sfend(sd id)
C
c Output of this program is
C
C
c File attribute value is : Storm track data
C SDS attribute data type is : float32
C SDS attribute values are
C 2.00000 10.00000
C Dimensional attribute value is : Seconds
C

end

102 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

3.10 Predefined Attributes

Predefined attributes use reserved names and in some cases predefined data type names. Pre-
defined attributes are categorized as follows:

Labels can be thought of as variable names. They are often used as keys in searches to find
a particular predefined attribute.

Units are a means of declaring the units pertinent to a specific discipline. A freely-available
library of routines is available to convert between character string and binary forms of unit
specifications and to perform useful operations on the binary forms. This library is used in
some netCDF applications and is recommended for use with HDF applications. For more
information, refer to the netCDF User s Guide for C which can be obtained at
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/.

Formats describe the format in which numeric values will be printed and/or displayed. The
recommended convention is to use standard FORTRAN-77 notation for describing the data
format. For example, "F7.2" means to display seven digits with two digits to the right of the
decimal point.

Coordinate systems contain information that should be used when interpreting or displaying

the data. For example, the text strings "cartesian", "polar" and "spherical" are recommended
coordinate system descriptions.

Ranges define the maximum and minimum values of a selected valid range. The range may
cover the entire data set, values outside the data set, or a subset of values within a data set.
Because the HDF library does not check or update the range attribute as data is added or
removed from the file, the calling program may assign any values deemed appropriate as
long as they are of the same data type as the SDS array.

Fill value is the value used to fill the areas between non-contiguous writes to SDS arrays.
For more information about fill values, refer to Section 3.10.5 on page 108.

Calibration stores scale and offset values used to create calibrated data in SDS arrays.
When data are calibrated, they are typically reduced from floats, double, or large integers
into 8-bit or 16-bit integers and "packed" into an appropriately sized array. After the scale
and offset values are applied, the packed array will return to its original form.

Predefined attributes are useful because they establish conventions that applications can depend
on and because they are understood by the HDF library without users having to define them. Pre-
defined attributes also ensure backward compatibility with earlier versions of the HDF library.
They can be assigned only to data sets and dimensions. Table 3U lists the predefined attributes
and the types of object each attribute can be assigned to.

June 2017 103

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
TABLE 3U Predefined Attributes List
HDF Data Attribute Cate- . ..
. Attribute Name Description
Object Type gory
SDS Array Label long name Name of the array
or Unit units Units used for all dimensions and data
Dimension Format format Format for displaying dim scales and array values
Ez;vlrdlnate Sys- coordsys Coordinate system used to interpret the SDS array
Range valid range Maximum and minimum values within a selected data range
Fill Value __Fillvalue Value used to fill empty locations in an SDS array
scale_factor Value by which each array value is to be multiplied
SDS Array Only
scale_fac- Error introduced by scaling SDS array data
tor_err
Calibration . R
add_offset Value to which each array value is to be added
add_offset_err Error introduced by offsetting the SDS array data
calibrated nt Data type of the calibrated data

While the following netCDF naming conventions are not predefined in HDF, they are highly rec-
ommended to promote consistency of information-sharing among generic applications. Refer to
the netCDF User s Guide for C for further information.

* missing_value: An attribute containing a value used to fill areas of an array not intended to
contain either valid data or a fill value. The scope of this attribute is local to the array. An
example of this would be a region where information is unavailable, as in a geographical
grid containing ocean data. The part of the grid where there is land might not have any data
associated with it and in such a case the missing_value value could be supplied. The miss-
ing value attribute is different from the FillValue attribute in that fill values are intended to
indicate data that was expected but did not appear, whereas missing values are used to indi-
cate data that were never expected.

* title: A global file attribute containing a description of the contents of a file.

* history: A global file attribute containing the name of a program and the arguments used to
derive the file. Well-behaved generic filters (programs that take HDF or netCDF files as
input and produce HDF or netCDF files as output) would be expected to automatically
append their name and the parameters with which they were invoked to the history attribute
of an input file.

3.10.1 Accessing Predefined Attributes

The SD interface provides two methods for accessing predefined attributes. The first method uses
the general attribute routines for user-defined attributes described in Section 3.9 on page 92; the
second employs routines specifically designed for each attribute and will be discussed in the fol-
lowing sections. Although the general attribute routines work well and are recommended in most
cases, the specialized attribute routines are sometimes easier to use, especially when reading or
writing related predefined attributes. This is true for two reasons. First, because predefined attri-
butes are guaranteed unique names, the attribute index is unnecessary. Second, attributes with sev-
eral components may be read as a group. For example, using the SD routine designed to read the
predefined calibration attribute returns all five components with a single call, rather than five sep-
arate calls.

There is one exception: unlike predefined data set attributes, predefined dimension attributes
should be read or written using the specialized attribute routines only.

104 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

The predefined attribute parameters are described in Table 3V. Creating a predefined attribute
with parameters different from these will produce unpredictable results when the attribute is read
using the corresponding predefined-attribute routine.

TABLE 3V

Predefined Attribute Definitions

Category Attribute Name Data Type Numblﬁz:f Val- Attribute Description
Label long_name DFNT_CHARS String length String
Unit units DFNT_CHARS String length String
Format format DFNT_CHARS String length String
C()S(;rs(:il::te coordsys DFNT_CHARS String length String
Range valid_range <valid data type> 2 Minimum and maximum values
in 2-element array
Fill Value _FillValue <valid data type> 1 Fill value
scale_factor DFNT_FLOAT64 1 Scale
scale_factor_err DFNT_FLOAT64 1 Scale error
Calibration add_offset DFNT_FLOAT64 1 Offset
add_offset_err DFNT_FLOAT64 1 Offset error
calibrated nt DENT _INT32 1 Data type

In addition to SDreadattr, SDfindattr and SDattrinfo are also valid general attribute routines to
use when reading a predefined attribute. SDattrinfo is always useful for determining the size of
an attribute whose value contains a string.

3.10.2SDS String Attributes

This section describes the predefined string attributes of the SDSs and the next section describes
those of the dimensions. Predefined string attributes of an SDS include the label, unit, format,
and coordinate system.

3.10.2.1 Writing String Attributes of an SDS: SDsetdatastrs

SDsetdatastrs assigns the predefined string attributes label, unit, format, and coordinate system
to an SDS array. The syntax of this routine is as follows:

C: status = SDsetdatastrs(sds id, label, unit, format, coord system);

FORTRAN: status = sfsdtstr(sds id, label, unit, format, coord system)

If you do not wish to set an attribute, set the corresponding parameter to nuLL in C and an empty
string in FORTRAN-77. SDsetdatastrs returns a value of succeep (or 0) or FAIL (or -1). Its argu-
ments are further described in (See Table 3W on page 106).

3.10.2.2 Reading String Attributes of an SDS: SDgetdatastrs

SDgetdatastrs reads the predefined string attributes label, unit, format, and coordinate system
from an SDS. These string attributes have previously been set by the routine SDsetdatastrs. The
syntax of SDgetdatastrs is as follows:

C: status = SDgetdatastrs(sds id, label, unit, format, coord system,
len);

FORTRAN: status = sfgdtstr(sds id, label, unit, format, coord system, len)

June 2017 105

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
SDgetdatastrs stores the predefined attributes into the parameters label, unit, format, and coor-
d_system, which are character string buffers. If a particular attribute has not been set by SDset-
datastrs, the first character of the corresponding returned string will be nurn for C and o for
FORTRAN-77. Each string buffer is assumed to be at least /en characters long, including the
space to hold the nULL termination character. If you do not wish to get a predefined attribute of
this SDS, set the corresponding parameter to NULL in C and an empty string in FORTRAN-77.
SDgetdatastrs returns a value of succeep (or 0) or FAIL (or -1). Its parameters are further
described in Table 3W.

TABLE 3W SDsetdatastrs and SDgetdatastrs Parameter Lists

Routine Name Parameter Type
[Return Type] Parame- D inti
(FORTRAN- ter C FORTRAN- escription
77) 77
sds_id int32 integer Data set identifier
label char * character*(*) Label for the data
SDsetdatastrs . . e . .
[intn] unit char character*(*) Definition of the units
(sfsdtstr) format char * character*(*) Description of the data format
COOISI;SYS- char * character*(*) Description of the coordinate system
sds_id int32 integer Data set identifier
label char * character*(*) Buffer for the label
SDgetdatastrs unit char * character*(*) Buffer for the description of the units
[intn] format char * character*(*) Buffer for the description of the data format
(sfgdtstr)
coo::l;sys— char * character*(*) Buffer for the description of the coordinate system
len intn integer Minimum length of the string buffers
3.10.3String Attributes of Dimensions
Predefined string attributes of a dimension include label, unit, and format. They adhere to the
same definitions as those of the label, unit, and format strings for SDS attributes.
3.10.3.1 Writing a String Attribute of a Dimension: SDsetdimstrs
SDsetdimstrs assigns the predefined string attributes label, unit, and format to an SDS dimension
and its scales. The syntax of this routine is as follows:
C: status = SDsetdimstrs(dim id, label, unit, format);
FORTRAN: status = sfsdmstr(dim id, label, unit, format)
The argument dim_id is the dimension identifier, returned by SDgetdimid, and identifies the
dimension to which the attributes will be assigned. If you do not wish to set an attribute, set the
corresponding parameter to NULL in C and an empty string in FORTRAN-77.
SDsetdimstrs returns a value of succeep (or 0) or FAIL (or -1). Its parameters are further
described in Table 3X.
106 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

3.10.3.2 Reading a String Attribute of a Dimension: SDgetdimstrs

SDgetdimstrs reads the predefined string attributes label, unit, and format from an SDS dimen-
sion. These string attributes have previously been set by the routine SDsetdimstrs. The syntax of
SDgetdimstrs is as follows:

C: status = SDgetdimstrs(dim id, label, unit, format, len);
FORTRAN: status = sfgdmstr(dim id, label, unit, format, len)

SDgetdimstrs stores the predefined attributes of the dimension into the arguments label, unit, and
format, which are character string buffers. If a particular attribute has not been set by SDsetdim-
strs, the first character of the corresponding returned string will be nuzL for C and o for FOR-
TRAN-77. Each string buffer is assumed to be at least /en characters long, including the space to
hold the nuLL termination character. If you do not wish to get a predefined attribute of this dimen-
sion, set the corresponding parameter to NULL in C and an empty string in FORTRAN-77.

SDgetdimstrs returns a value of succeep (or 0) or FAIL (or -1). Its parameters are further
described in Table 3X.

TABLE 3X

SDsetdimstrs and SDgetdimstrs Parameter Lists

Routine Name Parameter Type
[Return Type] Parame- . L.
(FORTRAN- ter c FORTRAN- Description
77) 77
dim_id int32 integer Dimension identifier
SDsetdimstrs label char * character*(*) Label describing the specified dimension
[intn] - 4 . R R R
(sfsdmstr) unit char * character*(*) Units to be used with the specified dimension
format char * character*(*) Format to use when displaying the scale values
dim_id int32 integer Dimension identifier
. label char * character*(*) Buffer for the dimension label
SDgetdimstrs
[intn] unit char * character*(*) Buffer for the dimension unit
fgdmst; . .
(sfgdmstr) format char * character*(*) Buffer for the dimension format
len intn integer Maximum length of the string attributes

3.10.4Range Attributes

The attribute range contains user-defined maximum and minimum values in a selected range.
Since the HDF library does not check or update the range attribute as data is added or removed
from the file, the calling program may assign any values deemed appropriate. Also, because the
maximum and minimum values are supposed to relate to the data set, it is assumed that they are of
the same data type as the data.

3.10.4.1 Writing a Range Attribute: SDsetrange

SDsetrange sets the maximum and minimum range values for the data set identified by sds_id to
the values provided by the parameters max and min. The syntax of the routine is as follows:

C: status = SDsetrange(sds _id, max, min);
FORTRAN: status = sfsrange(sds id, max, min)

SDsetrange does not compute the maximum and minimum range values, it only stores the values
as given. As a result, the maximum and minimum range values may not always reflect the actual

June 2017 107

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
maximum and minimum range values in the data set data. Recall that the type of max and min is
assumed to be the same as that of the data set data.

SDsetrange returns a value of succeep (or 0) or FAIL (or -1). Its parameters are further described
in Table 3Y.
3.10.4.2 Reading a Range Attribute: SDgetrange
SDgetrange reads the maximum and minimum valid values of a data set. The syntax of this rou-
tine is as follows:

C: status = SDgetrange(sds id, &max, &min);

FORTRAN: status = sfgrange(sds id, max, min)
The maximum and minimum range values are stored in the parameters max and min, respectively,
and must have previously been set by SDsetrange. Recall that the type of max and min is assumed
to be the same as that of the data set data.
SDgetrange returns a value of succeep (or 0) or FAIL (or -1). Its parameters are further described
in Table 3Y.

TABLE 3Y SDsetrange and SDgetrange Parameter Lists

Routine Name Parameter Type
[Return Type] Parame- . e
Description
(OLATERN- ter C FORTRAN-77
77)
SDsetrange sds_id int32 integer Data set identifier
[intn] max VOIDP <valid data type> Maximum value to be stored
(sfsrange) min VOIDP <valid data type> Minimum value to be stored
sds_id int32 integer Data set identifier
SDgetrange
[intn] max VOIDP <valid data type> Buffer for the maximum value
(sfgrange) . - .
min VOIDP <valid data type> Buffer for the minimum value

3.10.5Fill Values and Fill Mode

A fill value is the value used to fill the spaces between non-contiguous writes to SDS arrays; it can
be set with SDsetfillvalue. If a fill value is set before writing data to an SDS, the entire array is
initialized to the specified fill value. By default, any location not subsequently overwritten with
SDS data will contain the fill value.

A fill value must be of the same data type as the array to which it is written. To avoid conversion
errors, use data-specific fill values instead of special architecture-specific values, such as infinity
and Not-a-Number or NaN.

A fill mode specifies whether the fill value is to be written to all the SDSs in the file; it can be set
with SDsetfillmode.

Writing fill values to an SDS can involve more I/O overhead than is necessary, particularly in sit-
uations where the data set is to be contiguously filled with data before any read operation is made.
In other words, writing fill values is only necessary when there is a possibility that the data set will
be read before all gaps between writes are filled with data, i.e., before all elements in the array
have been assigned values. Thus, for a file that has only data sets containing contiguous data, the
fill mode should be set to sp_nor1LL (or 256). Avoiding unnecessary filling can substantially
increase the application performance.

108

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

For a non-contiguous data set, the array elements that have no actual data values must be filled
with a fill value before the data set is read. Thus, for a file that has a non-contiguous data set, the
fill mode should be set to sp_r1LL (or 0) and a fill value will be written to the all data sets in the
file.

Note that, currently, SDsetfillmode specifies the fill mode of all data sets in the file. Thus, either
all data sets are in sp_r11L mode or all data sets are in sp_Nor1LL mode. However, when a spe-
cific SDS needs to be written with a fill value while others in the file do not, the following proce-
dure can be used: set the fill mode to sp_r111, write data to the data set requiring fill values, then
set the fill mode back to sp _nor1rr. This procedure will produce one data set with fill values
while the remaining data sets have no fill values.

3.10.5.1 Writing a Fill Value Attribute: SDsetfillvalue

SDsetfillvalue assigns a new value to the fill value attribute for an SDS array. The syntax of this
routine is as follows:

C: status = SDsetfillvalue(sds id, fill wval);
FORTRAN: status = sfsfill(sds id, fill wval)
OR status = sfscfill(sds id, fill wval)

The argument fill val is the new fill value. It is recommended that you set the fill value before
writing data to an SDS array, as calling SDsetfillvalue after data is written to an SDS array only
changes the fill value attribute — it does not update the existing fill values.

There are two FORTRAN-77 versions of this routine: sfsfill and sfscfill. sfsfill writes numeric fill
value data and sfscfill writes character fill value data.

SDsetfillvalue returns a value of succeep (or 0) or FATL (or -1). Its parameters are further
described in (See Table 3Z on page 110).

3.10.5.2 Reading a Fill Value Attribute: SDgetfillvalue

SDgetfillvalue reads in the fill value of an SDS array as specified by a SDsetfillvalue call or its
equivalent. The syntax of this routine is as follows:

C: status = SDgetfillvalue(sds id, &fill val);
FORTRAN: status = sfgfill(sds id, fill val)
OR status = sfgcfill(sds id, fill wval)

The fill value is stored in the argument fill val which is previously allocated based on the data
type of the SDS data.

There are two FORTRAN-77 versions of this routine: sfgfill and sfgcfill. The sfgfill routine reads
numeric fill value data and sfgcfill reads character fill value data.

SDgetfillvalue returns a value of succeep (or 0) if a fill value is retrieved successfully, or FATL (or
-1) otherwise, including when the fill value has not been set. The parameters of SDgetfillvalue
are further described in Table 3Z.

3.10.5.3 Setting the Fill Mode for all SDSs in the Specified File: SDsetfillmode

SDsetfillmode sets the fill mode for all data sets contained in the file identified by the parameter
sd_id. The syntax of SDsetfillmode is as follows:

C: old fmode = SDsetfillmode (sd id, fill mode);

June 2017 109

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

FORTRAN: old fmode = sfsflmd(sd id, fill mode)

The argument fill_ mode is the fill mode to be applied and can be set to either sp_FILL (or 0) or
SD_NOFILL (or 256). sD_FILL specifies that fill values will be written to all SDSs in the specified
file by default. If SDsetfillmode is never called before SDsetfillvalue, sp_r1L1L is the default fill
mode. sp_NorILL specifies that, by default, fill values will not be written to all SDSs in the speci-
fied file. This can be overridden for a specific SDS by calling SDsetfillmode then writing data to
this data set before closing the file.

Note that whenever a file has been newly opened, or has been closed and then re-opened, the
default sp_r11L fill mode will be in effect until it is changed by a call to SDsetfillmode.

SDsetfillmode returns the fill mode value before it is reset or a value of Fa1L (or -1). The param-
eters of this routine are further described in Table 3Z.

TABLE 3Z

SDsetfillvalue, SDgetfillvalue, and SDsetfillmode Parameter Lists

Routine Name Parameter Type
Return Type o
(l<£ORTRy1§1]\I- Parameter Description
C FORTRAN-77
77)
SDsetfillvalue sds_id int32 integer Data set identifier
[intn] i d ,
(sfsfill/ fill_val VOIDP ~valid numeric da YPE | b value to be set
sfsefill) - character*(*)
SDgetfillvalue sds_id int32 integer Data set identifier
[intn] id o d ,
(sfgfill/ fill val VOIDP <valid numeric *aia type> Buffer for the fill value
sfgefill) - character*(*)
SDsetfillmode sd_id int32 integer SD interface identifier
intn
(sf['sflm]d) fill_mode intn integer Fill mode to be set

3.10.6Calibration Attributes

The calibration attributes are designed to store calibration information associated with data set
data. When data is calibrated, the values in an array can be represented using a smaller data type
than the original. For instance, an array containing data of type float could be stored as an array
containing data of type 8- or 16-bit integer. Note that neither function performs any operation on
the data set.

3.10.6.1 Setting Calibration Information: SDsetcal

SDsetcal stores the scale factor, offset, scale factor error, offset error, and the data type of the
uncalibrated data set for the specified data set. The syntax of this routine is as follows:

C: status = SDsetcal (sds id, cal, cal error, offset, off err, data -
type) ;

FORTRAN: status = sfscal(sds_id, cal, cal error, offset, off err, data type)

SDsetcal has six arguments; sds_id, cal, cal _error, offset, off_err, and data_type. The argument
cal represents a single value that when multiplied against every value in the calibrated data array
reproduces the original data array (assuming an offset of 0). The argument offSef represents a sin-
gle value that when subtracted from every value in the calibrated array reproduces the original
data (assuming a cal of 1). The values of the calibrated data array relate to the values of the origi-
nal data array according to the following equation:

110

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

orig value = cal * (cal value - offset)

In addition to cal/ and offset, SDsetcal also includes the scale and offset errors. The argument
cal_err contains the potential error of the calibrated data due to scaling; offset_err contains the
potential error for the calibrated data due to the offset.

SDsetcal returns a value of succeep (or 0) or FAIL (or -1). Its parameters are further described in
Table 3AA.
3.10.6.2 Reading Calibrated Data: SDgetcal

SDgetcal reads calibration attributes for an SDS array as previously written by SDsetcal. The
syntax of this routine is as follows:

C: status = SDgetcal (sds id, &cal, &cal error, &offset, &offset err,
&data type);

FORTRAN: status = sfgcal(sds id, cal, cal error, offset, offset err, data -

type)
Because the HDF library does not actually apply calibration information to the data, SDgetcal can
be called anytime before or after the data is read. If a calibration record does not exist, SDgetcal

returns FaT1L. SDgetcal takes six arguments: sds_id, cal, cal_error, offset, offset_err, and data_-
type. Refer to Section 3.10.6.1 for the description of these arguments.

SDgetcal returns a value of succeep (or 0) or FaIL (or -1). The parameters of SDgetcal are

described in Table 3AA.
TABLE 3AA SDsetcal and SDgetcal Parameter Lists
Routine Name Parameter Type
[Return Type] q-v
(FORTRAN- Parameter . FORTRAN- Description
77) 77
sds_id int32 integer Data set identifier
cal float64 real*8 Calibration factor
SDseteal cal_error float64 real*8 Calibration error
[intn]
(sfscal) offset float64 real*8 Uncalibrated offset
offset_err float64 real*8 Uncalibrated offset error
data_type int32 integer Data type of uncalibrated data
sds_id int32 integer Data set identifier
cal float64 * real*8 Calibration factor
SDgetcal cal_error float64 * real*8 Calibration error
[intn]
(sfgeal) offset float64 * real*8 Uncalibrated offset
offset_err float64 * real*8 Uncalibrated offset error
data_type int32 * integer Data type of uncalibrated data
EXAMPLE 16. Calibrating Data.

Suppose the values in the calibrated array cal val are the following integers:
cal val[6] = {2, 4, 5, 11, 26, 81}

By applying the calibration equation orig = cal * (cal_val - offset) with cal = 0.50 and offset = -
2000.0, the calibrated array cal_val[] returns to its original floating-point form:

June 2017 111

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

original val[6] = {1001.0, 1002.0, 1002.5, 1005.5, 1013.0, 1040.5}

3.11 Convenient Operations Related to File and Environment

The routines covered in this section provide methods for obtaining file name, object’s type, length
of object’s name, and number of opened files allowed.

SDgetfilename retrieves the name of the file. SDgetnamelen retrieves the length of an object’s
name. SDreset_maxopenfiles resets the maximum number of files that can be opened at a time.
SDget_maxopenfiles retrieves current limits on opened files. SDget_numopenfiles returns the
number of files currently open.

These routines are described individually in the following subsections.

3.11.1 Obtaining the Name of a File: SDgetfilename

Given an identifier to a file, SDgetfilename returns its name via parameter filename. The user is
repsonsible for allocating sufficient space to hold the file name. It can be at most H4 MAX-
_Nc_nNaME characters in length. SDgetnamelen can be used to obtain the actual length of the
name. The syntax of SDgetfilename is as follows:

C: status = SDgetfilename(sd id, filename);

FORTRAN: status = sfgetfname (sd id, filename)
SDgetfilename returns the length of the file name, without '\0', or FAIL (or -1). The parameters
of SDgetfilename are specified in Table 3AB.
3.11.2 Obtaining the Length of an HDF4 Object’s Name: SDgetnamelen

SDgetnamelen retrieves the length of an object’s name, given the object’s identifier, obj _id. The
object can be a file, a dataset, or a dimension. SDgetnamelen stores the length in the parameter
name_len. The length does not include the "\ o' character. The syntax of this routine is as follows:

C: status = SDgetnamelen (obj id, name len);
FORTRAN: status = sfgetnamelen(obj id, name len)

SDgetnamelen returns a value of succeep (or 0) or FAIL (or -1). The parameters of SDgetname-
len are specified in Table 3AB.

TABLE 3AB

SDgetfilename and SDgetnamelen Parameter Lists

Routine Name Parameter Type

[Return Type] Parameter FORTRAN-
(FORTRAN-77) C 7

Description

SDgetfilename
[intn]
(sfgetfname)

sd_id

int32

integer

SD interface identifier

filename

char*

character*(*)

Name of the file

SDgetnamelen
[intn]
(sfgetnamelen)

obj id

int32

integer

HDF4 object identifier

name_len

uintl16*

integer

Length of the name

112

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

3.11.3 Resetting the Allowed Number of Opened Files: SDreset_maxopenfiles

SDreset_maxopenfiles resets the maximum number of files can be opened at the same time. The
syntax of the routine SDsetcompress is as follows:

C: curr max = SDreset maxopenfiles (req max);
FORTRAN: curr max = sfrmaxopenf (req max)

Prior to release 4.2.2, the maximum number of files that can be opened at the same time was lim-
ited to 32. In HDF 4.2.2 and later versions, when this limit is reached, the library will increase it
to the system limit minus 3 to account for stdin, stdout, and stderr.

This function can be called anytime to change the maximum number of open files allowed in HDF
to req_max. 1If req_max is 0, SDreset_maxopenfiles will simply return the current maximum
number of open files allowed. If req_max exceeds system limit, SDreset_maxopenfiles will reset
the maximum number of open files to the system limit, and return that value.

Furthermore, if the system maximum limit is reached, the library will push the error code
DFE_TOOMANY onto the error stack. User applications can detect this after an SDstart fails.

SDreset_maxopenfiles returns the current maximum number of opened files allowed, or FA1L (or
-1). The parameters of SDreset_maxopenfiles are specified in Table 3AC on page 114.

3.11.4 Obtaining Current Limits on Opened Files: SDget_maxopenfiles

SDget_maxopenfiles retrieves the current number of opened files allowed in HDF and the maxi-
mum number of opened files allowed on a system. The two parameters, curr_max and sys_limit,
contain the two values, respectively. The syntax of this routine is as follows:

C: status = SDget maxopenfiles(curr max, sys limit);

FORTRAN: status = sfgmaxopenf (cur max, sys limit)
SDget_maxopenfiles returns a value of succeep (or 0) or Fa1L (or -1). The parameters of
SDget_maxopenfiles are specified in Table 3AC on page 114.
3.11.5Obtaining Number of Opened Files: SDget_numopenfiles

SDget_numopenfiles returns the number of files that are opened currently. The syntax of this rou-
tine is as follows:

C: num opened = SDget numopenfiles();
FORTRAN: num opened = sfgnumopenf (cur num)

SDget_numopenfiles returns the number of opened files or ra1r (or -1). The parameters of
SDget_numopenfiles are specified in Table 3AC on page 114.

June 2017 113

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

TABLE 3AC SDreset_maxopenfiles, SDget_maxopenfiles, andSDget_numopenfiles Parameter Lists

Routine Name Parameter Type

[Return Type] Parameter c FORTRAN- Description
(FORTRAN-77) 77
SDreset_maxopenfiles
[intn] req_max intn integer Requested maximum number of opened files
(sfrmaxopenf)
SDget_maxopenfiles curr_max intn* integer Current number of open files allowed
[intn] svs limit intn* integer Maximum number of open files allowed on a sys-
(sfgmaxopenf) ySs_ g tem

SDget_numopenfiles
[intn] curr_num N/A integer
(sfgnumopenf)

Current number of open files. C function has no
parameter

3.12 Chunked (or Tiled) Scientific Data Sets

NOTE: It is strongly encouraged that HDF users who wish to use the SD chunking routines first
read the section on SD chunking in Chapter 14, HDF Performance Issues. In that section the con-
cepts of chunking are explained, as well as their use in relation to HDF. As the ability to work with
chunked data has been added to HDF functionality for the purpose of addressing specific perfor-
mance-related issues, you should first have the necessary background knowledge to correctly
determine how chunking will positively or adversely affect your application.

This section will refer to both "tiled" and "chunked" SDSs as simply chunked SDSs, as tiled
SDSs are the two-dimensional case of chunked SDSs.

3.12.1Making an SDS a Chunked SDS: SDsetchunk

In HDF, an SDS must first be created as a generic SDS through the SDcreate routine, then
SDsetchunk is called to make that generic SDS a chunked SDS. Note that there are two restric-
tions that apply to chunked SDSs. The maximum number of chunks in a single HDF file is 65,535
and a chunked SDS cannot contain an unlimited dimension. SDsetchunk sets the chunk size and
the compression method for a data set. The syntax of SDsetchunk is as follows:

C: status = SDsetchunk(sds id, c def, flag);
FORTRAN: status = sfschnk(sds id, dim length, comp type, comp prm)

The chunking information is provided in the parameters c_def and flag in C, and the parameters
comp_type and comp _prm in FORTRAN-77.

In C:

The parameter c¢_def has type upr_crunk DEF which is defined as follows:
typedef union hdf chunk def u {
int32 chunk lengths[MAX VAR DIMS];
struct {
int32 chunk_lengths[MAX VAR DIMS];
int32 comp_ type;
comp_info cinfo;
} comp;
struct {
int32 chunk lengths[MAX VAR DIMS];
intn start bit;
intn bit len;
intn sign_ext;

114 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

intn fill one;
} nbit;
} HDF CHUNK_DEF

Refer to the reference manual page for SDsetcompress for the definition of the structure com-
p_info.

The parameter flag specifies the type of the data set, i.e., if the data set is chunked or chunked and
compressed with either RLE, Skipping Huffman, GZIP, Szip, or NBIT compression methods.
Valid values of flag are upr_crunk for a chunked data set, (ipr_cHunk | HDF_comp) for a chunked
data set compressed with RLE, Skipping Huffman, GZIP, and Szip compression methods, and
(upr_cuunk | HDF _NBIT) for a chunked NBIT-compressed data set.

There are three pieces of chunking and compression information which should be specified:
chunking dimensions, compression type, and, if needed, compression parameters.

If the data set is chunked, i.e., flag value is HDF cHUNK, then the elements of the array
chunk_lengths in the union c_def (c_def.chunk lengths[]) have to be initialized to the chunk
dimension sizes.

If the data set is chunked and compressed using RLE, Skipping Huffman, GZIP, or Szip methods
(i.e., flag value is set up to (MDF_CHUNK | HDF_coMP)), then the elements of the array
chunk_lengths of the structure comp in the union ¢ def (c_def.comp.chunk lengths[])
have to be initialized to the chunk dimension sizes.

If the data set is chunked and NBIT compression is applied (i.e., flag values is set up to
(HDF_CHUNK | HDF NBIT)), then the elements of the array chunk lengths of the structure nbit
in the union c¢_def (c_def.nbit.chunk lengths[]) have to be initialized to the chunk
dimension sizes.

The values of upr_cHUNK, HDF_comp, and #DF_NBIT are defined in the header file hproto.h.

Compression types are passed in the field comp_type of the structure cinfo, which is an element of
the structure comp in the union ¢ _def (c_def.comp.cinfo.comp type). Valid compression
types are: comp_cope_RLE for RLE, comMp_cope_skprUrF for Skipping Huffman, comp cobe DE-
FLATE for GZIP compression.

For Skipping Huffman, GZIP, and Szip compression methods, parameters are passed in corre-
sponding fields of the structure cinfo. Specify skipping size for Skipping Huffman compression in
the field ¢_def.comp.cinfo.skphuff.skp size; this value cannot be less than 1. Specify
deflate level for GZIP compression in the field ¢ _def.comp.cinfo.deflate level. Valid
values of deflate levels are integers from 0 to 9 inclusive. Specify the Szip options mask and the
number of pixels per block in a chunked and Szip-compressed dataset in the fields
c_info.szip.options maskandc_info.szip.pixels per block, respectively.

NBIT compression parameters are specified in the fields start_bit, bit _len, sign_ext, and fill one
in the structure nbit of the union c_def.

In FORTRAN-77:
The dim_length array specifies the chunk dimensions.

The comp_type parameter specifies the compression type. Valid compression types and their val-
ues are defined in the hdf.inc file, and are listed below.

coMP_CODE_NONE (or 0) for uncompressed data

comp_coDE_RLE (or 1) for data compressed using the RLE compression algorithm

comp_cobE_NBIT (or 2) for data compressed using the NBIT compression algorithm

coMP_CODE_SKPHUFF (or 3) for data compressed using the Skipping Huffman com-
pression algorithm

June 2017 115

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

coMP_CODE_DEFLATE (or 4) for data compressed using the GZIP compression algo-
rithm
comp_copE_szIP (or 5) for data compressed using the Szip compression algorithm
The parameter comp_prm(1) specifies the skipping size for the Skipping Huffman compression
method and the deflate level for the GZIP compression method.

For Szip compression, the Szip options mask and the number of pixels per block in a chunked and
Szip-compressed dataset must be specified in comp_prm(1) and comp_prm(2), respectively.

comp_prm(1) = value of option mask

value of pixels per -
comp_prm(2) = block P _ber_

For NBIT compression, the four elements of the array comp prm correspond to the four NBIT
compression parameters listed in the structure nbit. The array comp prm should be initialized as
follows:

comp_prm(1) = \sl?:éuret O}iit

comp_prm(2) = value of bit len

comp _prm(3) = value of sign ext

comp _prm(4) = value of fill one

Refer to the description of the union HDF CHUNK DEF and of the routine SDsetnbitdataset for
NBIT compression parameter definitions.

SDsetchunk returns either a value of succeep (or 0) or FAIL (or -1). Refer to Table 3AD and
Table 3AE for the descriptions of the parameters of both versions.

TABLE 3AD

SDsetchunk Parameter List

Routine Name | Parame- | Parameter Type
[Return Type] ter C

Description

sds_id int32 Data set identifier

SDsetchunk

[intn] c_def HDF_CHUNK_DEF | Union containing information on how the chunks are to be defined

flag int32 Flag determining the behavior of the routine

TABLE 3AE

sfschnk Parameter List

Routine Name | Parame- | Parameter Type
ter FORTRAN-77

sds_id integer Data set identifier

Description

sfschnk dim_length integer(*) Sizes of the chunk dimensions

comp_type integer Compression type

comp_prm integer(*) Array containing information needed by the compression algorithm

3.12.2Setting the Maximum Number of Chunks in the Cache:
SDsetchunkcache

To maximize the performance of the HDF library routines when working with chunked SDSs, the
library maintains a separate area of memory specifically for cached data chunks. SDsetchunk-

116

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

cache sets the maximum number of chunks of the specified SDS that are cached into this segment
of memory. The syntax of SDsetchunkcache is as follows:

C: status = SDsetchunkcache (sds id, maxcache, flag);
FORTRAN: status = sfscchnk(sds id, maxcache, flag)

When the chunk cache has been filled, any additional chunks written to cache memory are cached
according to the Least-Recently-Used (LRU) algorithm. This means that the chunk that has
resided in the cache the longest without being reread or rewritten will be written over with the
new chunk.

By default, when a generic SDS is made a chunked SDS, the parameter maxcache 1is set to the
number of chunks along the fastest changing dimension. If needed, SDsetchunkcache can then be
called again to reset the size of the chunk cache.

Essentially, the value of maxcache cannot be set to a value less than the number of chunks cur-
rently cached. If the chunk cache is not full, then the size of the chunk cache is reset to the new
value of maxcache only if it is greater than the current number of chunks cached. If the chunk
cache has been completely filled with cached data, SDsetchunkcache has already been called,
and the value of the parameter maxcache in the current call to SDsetchunkcache is larger than the
value of maxcache in the last call to SDsetchunkcache, then the value of maxcache is reset to the
new value.

Currently the only allowed value of the parameter flag is 0, which designates default operation. In
the near future, the value upr_cacueart will be provided to specify that the entire SDS array is to
be cached.

SDsetchunkcache returns the maximum number of chunks that can be cached (the value of the
parameter maxcache) if successful and ra11 (or -1) otherwise. The parameters of SDsetchunk-
cache are further described in Table 3AF.

TABLE 3AF

SDsetchunkcache Parameter List

Routine Name | p Parameter Type
arame- . .
[Return Type] ter c FORTRAN- Description
(FORTRAN-77) -7

SDsetchunkeache sds_id int32 integer Data set identifier

intn maxcache int32 integer Maximum number of chunks to cache

[intn]

(sfscchnk) flag int32 integer Flag determining the default caching behavior

3.12.3Writing Data to Chunked SDSs: SDwritechunk and SDwritedata

Both SDwritedata and SDwritechunk can be used to write to a chunked SDS. Later in this chap-
ter, situations where SDwritechunk may be a more appropriate routine than SDwritedata will be
discussed, but, for the most part, both routines achieve the same results. SDwritedata is discussed
in Section 3.5.1 on page 31. The syntax of SDwritechunk is as follows:

C: status = SDwritechunk(sds id, origin, datap);
FORTRAN: status = sfwchnk(sds id, origin, datap)
OR status = sfwcchnk (sds id, origin, datap)

The location of data in a chunked SDS can be specified in two ways. The first is the standard
method used in the routine SDwritedata that access both chunked and non-chunked SDSs; this

June 2017 117

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

method refers to the starting location as an offset in elements from the origin of the SDS array
itself. The second method is used by the routine SDwritechunk that only access chunked SDSs;
this method refers to the origin of the chunk as an offset in chunks from the origin of the chunk
array itself. The parameter origin specifies this offset; it also may be considered as chunk’s coor-
dinates in the chunk array. Figure 3d on page 118 illustrates this method of chunk indexing in a 4-
by-4 element SDS array with 2-by-2 element chunks.

FIGURE 3d

Chunk Indexing as an Offset in Chunks

3 . .
I |
| |
This chunk is in location (0, 0) 2 — O — —— —@D - — 4
I I
1 | I
I |
A | |
0 F— -(o,b) — = —a0 - — -
Y Dimension : :
Il |

0 1 2 3

v

X Dimension

SDwritechunk is used when an entire chunk is to be written and requires the chunk offset to be
known. SDwritedata is used when the write operation is to be done regardless of the chunking
scheme used in the SDS. Also, as SDwritechunk is written specifically for chunked SDSs and
does not have the overhead of the additional functionality supported by the SDwritedata routine,
it is much faster than SDwritedata. Note that attempting to use SDwritechunk for writing to a
non-chunked data set will return a Fa11L (or -1).

The parameter datap must point to an array containing the entire chunk of data. In other words,
the size of the array must be the same as the chunk size of the SDS to be written to, or an error
condition will result.

There are two FORTRAN-77 versions of this routine: sfwchnk writes numeric data and sfwechnk
writes character data.

SDwritechunk returns either a value of succeep (or 0) or Fa1L (or -1). The parameters of SDwri-
techunk are in Table 3AG. The parameters of SDwritedata are listed in (See Table 3D on
page 33).

118

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

TABLE 3AG

SDwritechunk Parameter List

Routine Name Parameter Type
[Return Type] Parame- ..
Description
(ORI W ter C FORTRAN-77
77)
sds_id int32 integer Data set identifier
SDerltechunk Coordinates of the origin of the chunk to
[intn] origin int32 * integer b it
(sfwchnk/sfw- ¢ written
cchnk) <valid numeric data .. .
datap VOIDP type>(*)/character*(*) Buffer containing the data to be written

3.12.4Reading Data from Chunked SDSs: SDreadchunk and SDreaddata

As both SDwritedata and SDwritechunk can be used to write data to a chunked SDS, both
SDreaddata and SDreadchunk can be used to read data from a chunked SDS. SDreaddata is
discussed in Section 3.5.1 on page 31. The syntax of SDreadchunk is as follows:

C: status = SDreadchunk (sds id, origin, datap);

FORTRAN: status = sfrchnk(sds id, origin, datap)
OR status = sfrcchnk(sds id, origin, datap)

SDreadchunk is used when an entire chunk of data is to be read. SDreaddata is used when the
read operation is to be done regardless of the chunking scheme used in the SDS. Also, SDread-
chunk is written specifically for chunked SDSs and does not have the overhead of the additional
functionality supported by the SDreaddata routine. Therefore, it is much faster than SDreaddata.
Note that SDreadchunk will return Fa11 (or -1) when an attempt is made to read from a non-
chunked data set.

As with SDwritechunk, the parameter origin specifies the coordinates of the chunk to be read,
and the parameter datap must point to an array containing enough space for an entire chunk of
data. In other words, the size of the array must be the same as or greater than the chunk size of the
SDS to be read, or an error condition will result.

There are two FORTRAN-77 versions of this routine: sfrchnk reads numeric data and sfrechnk
reads character data.

SDreadchunk returns either a value of succeep (or 0) or Fa11L (or -1). The parameters of SDread-
chunk are further described in Table 3AH. The parameters of SDreaddata are listed in (See
Table 3K on page 59).

June 2017 119

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

TABLE 3AH SDreadchunk Parameter List
Routine Name Parameter Type
[Return Type] Parame- ..
Description
(LA ter C FORTRAN-77 P
77)
sds_id int32 integer Data set identifier
SDreftdchunk origin int32 * integer(*) Coordinates of the origin of the chunk to
[intn] be read
(sfrchnk/sfrechnk) R . *
datap VOIDP <valid mcllrlr; i:cct:lit?*t)ype>(y Buffer for the returned chunk data

3.12.50btaining Information about a Chunked SDS: SDgetchunkinfo

SDgetchunkinfo is used to determine whether an SDS is chunked and how the chunk is defined.
The syntax of this routine is as follows:

C: status = SDgetchunkinfo(sds id, c def, flag);
FORTRAN: status = sfgichnk(sds id, dim length, flag)

Currently, only information about chunk dimensions is retrieved into the corresponding structure
element c_def for each type of compression in C, and into the array dim_length in Fortran. No
information on compression parameters is available in the structure comp of the union
uDF_CcHUNK_DEF. For specific information on c_def, refer to Section 3.12.1 on page 114.

The value returned in the parameter flag indicates the data set type (i.e., whether the data set is not
chunked, chunked, or chunked and compressed).

If the data set is not chunked, the value of flag will be Hpr_NoONE (or -1). If the data set is chunked,
the value of flag will be upr_crunk (or 0). If the data set is chunked and compressed with either
RLE, Skipping Huffman, or GZIP compression algorithm, then the value of flag will be
HDF _CHUNK | HDF_coMP (or 1). If the data set is chunked and compressed with NBIT compression,
then the value of flag will be ipF_CHUNK | HDF NBIT (Or 2).

If the chunk length for each dimension is not needed, NULL can be passed in as the value of the
parameter ¢_def'in C.

Note that if the data set is empty, SDgetchunkinfo will fail. Thus, application must first verify
that the data set has been written with data, before calling SDgetchunkinfo. SDcheckempty in
Section 3.7.10 on page 74 determines whether the data set is empty.

SDgetchunkinfo returns either a value of succeep (or 0) or FAIL (or -1). Refer to Table 3AI and
Table 3AJ for the description of the parameters of both versions.

120 June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents HDF User’s Guide

TABLE 3AI SDgetchunkinfo Parameter List
; Parame- Parameter Type L.
Routine Name Description
[Return Type] ter C
sds_id int32 Data set identifier
SDgetchunkinfo R . . .
[intn] c_def HDF_CHUNK_DEF * Union structure containing information about the chunks in the SDS
flag int32 * Flag determining the behavior of the routine
TABLE 3AJ sfgichnk Parameter List
Routine Name | Parame- | Parameter Type .
Description
ter FORTRAN-77
sds_id integer Data set identifier
sfgichnk dim_length integer(*) Sizes of the chunk dimensions
comp_type integer Compression type
EXAMPLE 17. Writing and Reading a Chunked SDS.

This example demonstrates the use of the routines SDsetchunk/sfschnk, SDwritedata/sfwdata,
SDwritechunk/sfwchnk, SDgetchunkinfo/sfgichnk, SDreaddata/sfrdata, and SDreadchunk/
sfrchnk to create a chunked data set, write data to it, get information about the data set, and read
the data back. Note that the Fortran example uses transpose data to reflect the difference between
C and Fortran internal storage.

C:

#include

#define FILE NAME

#define SDS_NAME
#define RANK

main ()

{

"mfhdf.h"

"SDSchunked.hdf"
"ChunkedData"
2

/************************* Variable declaration ‘k‘k************************/

int32
intn
int32
int32
HDF CHUNK DEF
int32
intl6
int32
intle
intl6
intlé6
intle
int

/*

sd id, sds id, sds_index;

status;

flag, maxcache, new maxcache;

dim sizes[2], origin[2];

c_def, c def out; /* Chunking definitions */
comp_flag, c_flags;

all data[9]([4];

start[2], edges[2];

chunk out[3][2];

row[2] = { 5, 5 };

column (3] = { 4, 4, 4 };

fill value = 0; /* Fill value */
1,737

* Declare chunks data type and initialize some of them.

*/

intl6 chunkl([3][2] = {

1
1, 1,
1, 1

June 2017

121

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

intl6 chunk2[3][2]

I
—_—
N
~

intl6 chunk3[3][2]

Il
—~—
w
~
w
~

intl6é chunk6[3][2] = { 6,

/********************* End Of Variable declaration ***********************/
/*

* Define chunk’s dimensions.

*

* In this example we do not use compression.
* To use chunking with RLE, Skipping Huffman, and GZIP
* compression, initialize

*

* c_def.comp.chunk lengths[0] = 3;

* c _def.comp.chunk lengths[1l] = 2;

*

* To use chunking with NBIT, initialize

*

* c def.nbit.chunk lengths[0] = 3;

* c_def.nbit.chunk lengths[1l] = 2;

*

*/

c_def.chunk lengths[0] = 3;

c def.chunk lengths[1l] = 2;

/*

* Create the file and initialize SD interface.
*/

sd_id = SDstart (FILE NAME, DFACC CREATE);

/*

* Create 9x4 SDS.

*/

dim sizes[0] = 9;

dim sizes[1l] = 4;

sds_id = SDcreate (sd id, SDS NAME,DENT INT16, RANK, dim sizes);

/*
* Fill the SDS array with the fill value.

*/

status = SDsetfillvalue (sds_id, (VOIDP)&fill value);

/*

* Create chunked SDS.

* In this example we do not use compression (third
parameter of SDsetchunk is set to HDF_CHUNK) .

*

*

* To use RLE compresssion, set compression type and flag

*

* c _def.comp.comp type = COMP_CODE_RLE;

* comp flag = HDF CHUNK | HDF COMP;

*

* To use Skipping Huffman compression, set compression type, flag
* and skipping size skp size

*

* c def.comp.comp type = COMP_CODE_SKPHUFF;

122 June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents

HDF User’s Guide

* c def.comp.cinfo.skphuff.skp size = value;
* comp_flag = HDF _CHUNK | HDF_COMP;

*

* To use GZIP compression, set compression type, flag and
* deflate level

*

* c def.comp.comp type = COMP CODE DEFLATE;
* c def.comp.cinfo.deflate.level = value;

* comp_flag = HDF _CHUNK | HDF_COMP;

*

* To use NBIT compression, set compression flag and

* compression parameters

*

* comp_flag = HDF CHUNK | HDF _NBIT;

* c def.nbit.start bit = valuel;

* c def.nbit.bit len = value2;

* c def.nbit.sign ext = value3;

* c def.nbit.fill one = value4;

*/

comp_ flag = HDF CHUNK;

status = SDsetchunk (sds_id, c_def, comp flag);

/*

* Set chunk cache to hold maximum of 3 chunks.

*/

maxcache = 3;

flag = 0;

new _maxcache = SDsetchunkcache (sds_id, maxcache, flag);
/%

* Write chunks using SDwritechunk function.

* Chunks can be written in any order.

*/

/*

* Write the chunk with the coordinates (0,0).

*/

origin[0] = 0;

origin[l] = 0;

status = SDwritechunk (sds_id, origin, (VOIDP) chunkl);
/*

* Write the chunk with the coordinates (1,0).

*/

origin[0] = 1;

origin[l] = 0;

status = SDwritechunk (sds_id, origin, (VOIDP) chunk3);
/*

* Write the chunk with the coordinates (0,1).

*/

origin[0] = 0;

origin[l] = 1;

status = SDwritechunk (sds_id, origin, (VOIDP) chunk2);
/*

* Write chunk with the coordinates (1,2) using

* SDwritedata function.

*/

start[0] 6;

start[1l] = 2;

edges[0] = 3;

edges[1l] = 2;

June 2017

123

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP) chunk6) ;

/%
* Fill second column in the chunk with the coordinates (1,1)
* using SDwritedata function.

*/

start[0] = 3;

start[1l] = 3;

edges[0] = 3;

edges[1] = 1;

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP) column);
/*

* Fill second row in the chunk with the coordinates (0,2)
* using SDwritedata function.
*/

0]
1]
0] = 1;
1]

= O

=2;
SDwritedata (sds_id, start, NULL, edges, (VOIDP) row);

/*
* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

/*

* Reopen the file and access the first data set.
*/

sd_id = SDstart (FILE NAME, DFACC READ);
sds_index = 0;

sds_id = SDselect (sd id, sds index);

/*

* Get information about the SDS. Only chunk lengths and compression
* flag can be returned. Compression information is not available if
* NBIT, Skipping Huffman, or GZIP compression is used.

*/
status = SDgetchunkinfo (sds_id, &c def out, &c_flags);
if (c_flags == HDF CHUNK)

printf (" SDS is chunked\nChunk’s dimensions %dx%d\n",
c_def out.chunk lengths[O],
c def out.chunk lengths[1]);
else if (c_flags == (HDF CHUNK | HDF COMP))
printf ("SDS is chunked and compressed\nChunk’s dimensions %dx%d\n",
c def out.comp.chunk lengths[0],
c def out.comp.chunk lengths[1]);
else if (c_flags == (HDF _CHUNK | HDF_NBIT))
printf ("SDS is chunked (NBIT)\nChunk’s dimensions %dx%d\n",
c def out.nbit.chunk lengths[0],
c def out.nbit.chunk lengths[1]);

/*

* Read the entire data set using SDreaddata function.
*/

start[0] = O;

start[1l] = 0;

124 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

edges[0] = 9;

edges[1l] = 4;

status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)all data);
/*

* Print out what we have read.

* The following information should be displayed:
*

* SDS is chunked

* Chunk’s dimensions 3x2

* 112

* 1122

* 1122

* 3304

* 3304

* 3304

* 0066

* 5566

* 0066

for (3=0; 3<9;

.
+
+

for (i=0; i<4; i++) printf (" %d", all data([j][i]);
printf ("\n");

/*
* Read chunk with the coordinates (2,0) and display it.
*/

origin[0] = 2;

origin[l] = 0;

status = SDreadchunk (sds_id, origin, chunk out);

printf (" Chunk (2,0) \n");

for (j=0; 3<3; j++)

{
for (1=0; i<2; i++) printf (" %d", chunk out[j][i]);
printf ("\n");

/*

* Read chunk with the coordinates (1,1) and display it.
*/

origin[0] = 1;

origin[l] = 1;

status = SDreadchunk (sds_id, origin, chunk out);

printf (" Chunk (1,1) \n");

for (3=0; j<3; Jj++)

{
for (i=0; i<2; i++) printf (" %d", chunk out[j][i]);
printf ("\n");

/* The following information is displayed:

* Chunk (2,0)

* 00

* 55

* 00

* Chunk (1,1)
* 0 4

* 0 4

* 0 4

*/

June 2017 125

The HDF Group

Table of Contents

Chapter 3 -- Scientific Data Sets (SD API)

/*

* Terminate access to the data set.

*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.

*/
status = SDend (sd_id);

FORTRAN:
program chunk examples
implicit none
C
C Parameter declaration.
c
character*14 FILE NAME
character*11 SDS_NAME
integer RANK
parameter (FILE NAME = ’SDSchunked.hdf’,
+ SDS_NAME = ’'ChunkedData’,
+ RANK = 2)
integer DFACC_CREATE, DFACC READ, DENT_ INT16
parameter (DFACC_CREATE = 4,
+ DFACC READ =1,
+ DFNT INT16 = 22)
integer COMP_CODE_NONE

parameter (COMP_CODE_NON

integer COMP_CODE_RLE
parameter (COMP CODE RLE

integer COMP_CODE_NBI
parameter (COMP_CODE_NBT

Function declaration.

QOO0

integer sfstart, sfcreate,
+ sfselect, sfsfill,
+ sfrchnk, sfgichnk,
+ sfscchnk

c

E

T
T

This example does not use compression.

To use RLE compression, declare:

1)

To use NBIT compression, declare:

=2)

To use Skipping Huffman compression,

integer COMP_CODE_SKPHUFF
parameter (COMP_CODE_SKPHUFF

To use GZIP compression, declare:

integer COMP_CODE_DEFLATE
parameter (COMP CODE DEFLATE

sfendacc,
sfschnk,
sfwdata,

declare:

c**‘k‘k variable declaration KAk KAk Ak kA kA hkhkhkhk Ak kA hkhkhkhk kA hkkhkhkrhkkhkhkkhkrkhkrkhkkhkkhrxk*x

126

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

C
integer sd_id, sds_id, sds_index, status
integer dim sizes(2), origin(2)
integer fill value, maxcache, new maxcache, flag
integer start (2), edges(2), stride(2)
integer*2 all data(4,9)
integer*2 row(3), column(2)
integer*2 chunk out (2, 3)
integer*2 chunkl (2, 3),
+ chunk?2 (2, 3),
+ chunk3(2,3),
+ chunké6 (2, 3)
integer i, 3
C
C Compression flag and parameters.
C
integer comp_ type, comp flag, comp_ prm(4)
C
C Chunk’s dimensions.
C
integer dim length(2), dim length out (2)
C
C Initialize four chunks
C
data chunkl /6*1/
data chunk2 /6*2/
data chunk3 /6*3/
data chunk6 /6*6/
C
C Initialize row and column arrays.
C
data row /3*4/
data column /2*5/
C
C**** End of Variable declaration R R R R R
C
C
C Define chunk’s dimensions.
C
dim length (1) = 2
dim length(2) = 3
C
C Create the file and initialize SD interface.
C
sd_id = sfstart (FILE NAME, DFACC CREATE)
C
C Create 4x9 SDS
C
dim sizes(l) = 4
dim sizes(2) = 9
sds_id = sfcreate(sd id, SDS NAME, DFNT INT16,
+ RANK, dim sizes)
C
C Fill SDS array with the fill value.
C
fill value = 0
status = sfsfill(sds_id, fill value)
C
C Create chunked SDS.
C
C In this example we do not use compression.
C

June 2017 127

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

To use RLE compression, initialize comp type parameter
before the call to sfschnk function.
comp_type = COMP_CODE RLE

To use NBIT, Skipping Huffman, or GZIP compression,
initialize comp prm array and comp type parameter
before call to sfschnk function

NBIT:
comp prm(l) = value of (sign ext)
comp prm(2) = value of (fill one)
comp_prm(3) = value of (start bit)
comp prm(4) = value of (bit len)
comp_type = COMP_CODE_NBIT
Skipping Huffman:
comp prm(l) = value of (skp size)
comp_type = COMP_CODE_SKPHUFF
GZIP:
comp prm(l) = value of (deflate_level)
comp_type = COMP_CODE DEFLATE

[N NONONONONONO OO NI NN NN NONO OO

comp type = COMP CODE NONE
status = sfschnk(sds_id, dim length, comp type, comp_ prm)

C
C Set chunk cache to hold maximum 2 chunks.
C

flag = 0

maxcache = 2

new maxcache = sfscchnk(sds id, maxcache, flag)
C
C Write chunks using SDwritechunk function.
C Chunks can be written in any order.
C
C Write chunk with the coordinates (1,1).
C

origin(l) =1

origin(2) =1

status = sfwchnk(sds id, origin, chunkl)
C
C Write chunk with the coordinates (1,2).
C

origin(l) =1

origin(2) = 2

status = sfwchnk(sds id, origin, chunk3)
C
C Write chunk with the coordinates (2,1).
C

origin(l) = 2

origin(2) =1

status = sfwchnk(sds id, origin, chunk2)
C
C Write chunk with the coordinates (2,3).
C

origin(l) = 2

origin(2) = 3

status = sfwchnk(sds_id, origin, chunk6)
C
C Fill second row in the chunk with the coordinates (2,2).
C

start (1) = 3

128 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

start(2) = 3
edges(l) =1
edges(2) = 3
stride(l) = 1
stride(2) = 1
status = sfwdata(sds_id, start, stride, edges, row)
C
C Fill second column in the chunk with the coordinates (1,3).
C
start (1) = 0
start(2) = 7
edges(l) = 2
edges(2) =1
stride(1l) = 1
stride(2) =1
status = sfwdata(sds_id, start, stride, edges, column)
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
status = sfend(sd_id)
C
C Reopen the file and access the first data set.
C
Sdﬁid = sfstart (FILE NAME, DFACC READ)
sds_index = 0
sds_id = sfselect(sd id, sds_index)
C
C Get information about the SDS.
C
status = sfgichnk(sds_id, dim length out, comp flag)
if (comp flag .eq. 0) then
write(*,*) ’SDS is chunked’
endif
if (comp flag .eq. 1) then
write (*,*) ’SDS is chunked and compressed’
endif
if (comp flag .eq. 2) then
write (*,*) ’SDS is chunked and NBIT compressed’
endif
write(*,*) ’‘Chunks dimensions are ', dim length out (1),
+ 7 x’ ,dim length out(2)
C
C Read the whole SDS using sfrdata function and display
C what we have read. The following information will be displayed:
C
C
C SDS is chunked
C Chunks dimensions are 2 x 3
C
C 1 1 1 3 3 3 0 5 0
C 11 1 3 3 3 0 5 0
C 2 2 2 0 0 0 6 6 6
C 2 2 2 4 4 4 6 6 6
C
start (1) = 0
start(2) =0
edges(l) = 4
edges(2) = 9
stride(l) = 1

June 2017 129

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

stride(2) = 1
status = sfrdata(sds_id, start, stride, edges, all data)

Q

Display the SDS.

write (*,*)
do 10 i = 1,4

write(*,*) (all data(i,j), j=1,9)
continue

o

Read chunks with the coordinates (2,2) and (1,3) and display.
The following information will be shown:

Chunk (2,2)

Chunk (1,3)

OO NI O OO OO IO IO RO
o
o
o

origin(l) = 2

origin(2) = 2

status = sfrchnk(sds_id, origin, chunk out)

write (*,*)

write(*,*) ’Chunk (2,2)’

write (*,*)

do 20 1i=1,2
write (*,*)

20 continue

(chunk out(i,3j), j=1,3)

origin(l) =1
origin(2) 3
status = sfrchnk(sds_id, origin, chunk out)

write (*,*)
write(*,*) ’‘Chunk (1,3)’
write (*,*)
do 30 i = 1,2
write (*,*)
30 continue

(chunk out(i,3j), j=1,3)

Q Q

Terminate access to the data set.

status = sfendacc(sds_id)

Q

Terminate access to the SD interface and close the file.

status = sfend(sd id)
end

3.13 Ghost Areas

In cases where the size of the SDS array is not an even multiple of the chunk size, regions of
excess array space beyond the defined dimensions of the SDS will be created. Refer to the follow-
ing illustration.

130

June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

FIGURE 3e

3.14

Array Locations Created Beyond the Defined Dimensions of an SDS

<—— 1600 ints ——

In a 1600 by 2000 integer chunked
SDS array with 500 by 500 integer
chunks, a 400 by 2000 integer area
of array locations beyond the
defined dimensions of the SDS

is created (shaded area). These
areas are called "ghost areas".

2000
ints

These "ghost areas" can be accessed only by SDreadchunk and SDwritechunk; they cannot be
accessed by either SDreaddata or SDwritedata. Therefore, storing data in these areas is not rec-
ommended. Future versions of the HDF library may not include the ability to write to these areas.

If the fill value has been set, the values in these array locations will be initialized to the fill value.
It is highly recommended that users set the fill value before writing to chunked SDSs so that gar-
bage values won’t be read from these locations.

netCDF

HDF supports the netCDF data model and interface developed at the Unidata Program Center
(UPC). Like HDF, netCDF is an interface to a library of data access programs that store and
retrieve data. The file format developed at the UPC to support netCDF uses XDR (eXternal Data
Representation), a non-proprietary external data representation developed by Sun Microsystems
for describing and encoding data. Full documentation on netCDF and the Unidata netCDF inter-
face is available at http://www.unidata.ucar.edu/packages/netcdf/.

The netCDF data model is interchangeable with the SDS data model in so far as it is possible to
use the netCDF calling interface to place an SDS into an HDF file and conversely the SDS inter-
face will read from an XDR-based netCDF file. Because the netCDF interface has not changed
and netCDF files stored in XDR format are readable, existing netCDF programs and data are still
usable, although programs will need to be relinked to the new library. However, there are import-
ant conceptual differences between the HDF and the netCDF data model that must be understood
to effectively use HDF in working with netCDF data objects and to understand enhancements to
the interface that will be included in the future to make the two APIs much more similar.

In the HDF model, when a multidimensional SDS is created by SDcreate, HDF data objects are
also created that provide information about the individual dimensions — one for each dimension.
Each SDS contains within its internal structure the array data as well as pointers to these dimen-
sions. Each dimension is stored in a structure that is in the HDF file but separate from the SDS
array.

If more than one SDS have the same dimension sizes, they may share dimensions by pointing to
the same dimensions. This can be done in application programs by calling SDsetdimname to

June 2017 131

The HDF Group

Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

assign the same dimension name to all dimensions that are shared by several SDSs. For example,
suppose you make the following sequence of calls for every SDS in a file:

dim id = SDgetdimid(sds id, 0);
ret = SDsetdimname (dim id, "Lat");
dim id = SDgetdimid(sds id, 1);
ret = SDsetdimname (dim id, "Long");

This will create a shared dimension named "Lat" that is associated with every SDS as the first
dimension and a dimension named "Long" as the second dimension.

This same result is obtained differently in netCDF. Note that a netCDF "variable" is roughly the
same as an HDF SDS. The netCDF interface requires application programs to define all dimen-
sions, using ncdimdef, before defining variables. Those defined dimensions are then used to
define variables in ncvardef. Each dimension is defined by a name and a size. All variables using
the same dimension will have the same dimension name and dimension size.

Although the HDF SDS interface will read from and write to existing XDR-based netCDF files,
HDF cannot be used to create XDR-based netCDF files.

There is currently no support for mixing HDF data objects that are not SDSs and netCDF data
objects. For example, a raster image can exist in the same HDF file as a netCDF data object, but
you must use one of the HDF raster image APIs to read the image and the HDF SD or netCDF
interface to read the netCDF data object. The other HDF APIs are currently being modified to
allow multifile access. Closer integration with the netCDF interface will probably be delayed until
the end of that project.

3.14.1 HDF Interface vs. netCDF Interface

Existing netCDF applications can be used to read HDF files and existing HDF applications can be
used to read XDR-based netCDF files. To read an HDF file using a netCDF application, the appli-
cation must be recompiled using the HDF library. For example, recompiling the netCDF utility
ncdump with HDF creates a utility that can dump scientific data sets from both HDF and XDR-
based files. To read an XDR-based file using an HDF application, the application must be relinked
to the HDF library.

The current version of HDF contains several APIs that support essentially the same data model:

* The multifile SD interface.

* The netCDF or NC interface.

* The single-file DFSD interface.

* The multifile GR interface.
The first three models can create, read, and write SDSs in HDF files. Both the SD and NC inter-
faces can read from and write to XDR-based netCDF files, but they cannot create them. This

interoperability means that a single program may contain both SD and NC function calls and thus
transparently read and write scientific data sets to HDF or XDR-based files.

The SD interface is the only HDF interface capable of accessing the XDR-based netCDF file for-
mat. The DFSD interface cannot access XDR-based files and can only access SDS arrays, dimen-
sion scales, and predefined attributes. A summary of file interoperability among the three
interfaces is provided in Table 3AK.

132

June 2017

Chapter 3 -- Scientific Data Sets (SD API)

Table of Contents

HDF User’s Guide

TABLE 3AK

Summary of HDF and XDR File Compatibility for the HDF and netCDF APIs

Files Created .
by Files (;reated Files Written by
DFSD inter- . Y NC Interface
SD interface
face
Unidata
HDF HDF HDF Library netCDF
Library
Accessed by DFSD Yes Yes Yes No
Accessed by SD Yes Yes Yes Yes
Accessed by NC Yes Yes Yes Yes

A summary of NC function calls and their SD equivalents is presented in Table 3AL.

June 2017

133

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

TABLE 3AL NC Interface Routine Calls and their SD Equivalents
Routine Name
SD ey
Purpose C FORTRAN- Equivalent Description
77
nccreate NCCRE SDstart Creates a file
ncopen NCOPN SDstart Opens a file
ncredef NCREDF Not Applicable Sets open file into define mode
ncendef NCENDF Not Applicable Leaves define mode
Operations ncclose NCCLOS SDend Closes an open file
ncinquire NCINQ SDhfileinfo Inquires about an open file
ncsync NCSNC Not Applicable Synchronizes a file to disk
ncabort NCABOR Not Applicable Backs out of recent definitions
ncsetfill NCSFIL Not Implemented Sets fill mode for writes
ncdimdef NCDDEF SDsetdimname Creates a dimension
. ncdimid NCDID SDgetdimid Returns a dimension identifier from its name
D ncdiming NCDINQ Sbdiminfo Inquires about a dimension
ncdimrename NCDREN Not Implemented Renames a dimension
ncvardef NCVDEF SDcreate Creates a variable
ncvarid NCVID z:gagl]iZZiZiix Returns a variable identifier from its name
ncvaring NCVINQ SDgetinfo Returns information about a variable
ncvarputl NCVPT1 Not Implemented Writes a single data value
Variables ncvargetl NCVGT1 Not Implemented Reads a single data value
ncvarput NCVPT SDwritedata Writes a hyperslab of values
ncvarget Eg\\;ggé SDhreaddata Reads a hyperslab of values
ncvarrename NCVREN Not Implemented Renames a variable
nctypelen NCTLEN DFKNTsize Returns the number of bytes for a data type
ncattput Eg:ggé SDhsetattr Creates an attribute
ncatting NCAINQ SDattrinfo Returns information about an attribute
ncattcopy NCACPY Not Implemented Copies attribute from one file to another
Attributes ncattget Egiggé SDreadattr Returns attributes values
ncattname NCANAM SDattrinfo Returns name of attribute from its number
ncattrename NCAREN Not Implemented Renames an attribute
ncattdel NCADEL Not Implemented Deletes an attribute

3.14.2ncdump and ncgen
The nedump summary capability works on both HDF and netCDF files.

The negen summary capability works only on netCDF files.

3.14.2.1 Using ncdump on HDF Files

When used with an HDF file on some platforms (reported on SGI), nedump may display signed
8-bit integer data (int8, with the intended signed range of -7/27 through /28) as unsigned 8-bit inte-
ger data (uint8, with the unsigned range 0 through 255). This is due to the mapping of int8 and
uint8 data types in HDF to a common data type, NC_BYTE, in netCDF.

134 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

3.14.2.2 New error code from ncdump

Prior to 4.2.11, ncdump did not report failure in reading corrupted data even though the internal
reading function failed, thus, ncdump appeared to succeed when data corruption exists. Starting
in version 4.2.11, when corrupted data is encountered, ncdump will display the following message
for the variable with corrupted data and proceed to the next variable or exit if there are no more
variables to read:

"Reading failed for variable <Variable name>, the data is possibly corrupted.”

June 2017 135

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)

136 June 2017

CHAPTER 4 --

Vdatas (VS API)

4.1

4.2

Chapter Overview

This chapter describes the vdata data model, the Vdata interface (also called the VS interface or
the VS API), and the vdata programming model.

The Vdata Model

The HDF Vdata model provides a framework for storing customized tables, or vdatas, in HDF
files. The term “vdata” is an abbreviation of “vertex data”, alluding to the fact that the object was
first implemented in HDF to store the vertex and edge information of polygon sets. The vdata
design has since been generalized to apply to a broader variety of applications.

A vdata is like a table that consists of a collection of records whose values are stored in fixed-
length fields. All records have the same structure and all values in each field have the same data
type. (See Figure 4a) The library does not check for uniqueness in vdata’s name, class, or field
names. For example, when two vdatas having the same name, the first vdata will always be
returned by VSfind().

FIGURE 4a

Vdata Table Structure

< Vdata Name
General vdata
Class
Class_1 =
y. > ~ Field Name
y y y
Field_1 Field 2 Field_3
— 6.9 53 6.93
—» 23 1.5 23.50
Records —
—» 0.5 35 1.22
L 1.8 2.6 0.00

Fields * * *

A vdata name is a label typically assigned to describe the contents of a vdata. It often serves as a
search key to locate a vdata in a file. A vdata class further distinguishes a particular vdata by iden-
tifying the purpose or the use of its data. Finally, vdata field names are labels assigned to the
fields in the vdata.

June 2017 137

The HDF Group

Table of Contents Chapter 4 - Vdatas (VS API)

4.2.1 Records and Fields

Each record in a vdata is composed of one or more fixed-length fields. Vdata records and fields
are identified by an index. The record and field indexes are zero-based and are separately incre-
mented by one for each additional record and field in the vdata.

Every field in a vdata is assigned a data type when the vdata is created. The data type of a field
may be any basic HDF data type: character, 8-bit, 16-bit, and 32-bit signed and unsigned integers,
and 32-bit and 64-bit floating point numbers. The maximum length of a vdata record is 65,535
bytes.

The Vdata model allows multiple entries per field as long as they have the same data type. The
number of entries or components in a field is called the order of the field.

The organizational structure of a vdata is often determined by the data types of its data set or sets.
For example, given a data set describing the location (“X,Y”) and temperature (“Temp”) of points
in a plane, there are several ways to organize the data. (See Figure 4b) If the “X”, “Y” and “Temp”
values are of the same data type, they could be stored as three single-component fields, as a two-
component “X Y” field and a single-component “Temp” field, or as a three-component
“X_ Y Temp” field. Generally, the “X,Y” data is stored in a single field, but HDF places no
restrictions on the organization of field data and there are no significant HDF performance issues
involved in choosing one organizational regime over another.

FIGURE 4b

4.3

Three Different Vdata Structures for Data of the Same Number Type

Simulation Data 1 Simulation Data 1 Simulation Data 1
2D_Temperature_Grid 2D_Temperature_Grid 2D_Temperature_Grid
X Y Temp X Y Temp X_Y_Temp
2.30 1.50 23.50 2.30, 1.50 23.50 2.30, 1.50, 23.50
3.40 5.70 8.03 3.40, 5.70 8.03 3.40, 5.70, 8.03
0.50 3.50 1.22 0.50, 3.50 1.22 0.50, 3.50, 1.22
1.80 2.60 0.00 1.80, 2.60 0.00 1.80, 2.60, 0.00

1 Multi-component Field of Order 2

1 Multi- t Field of Order 3
1 Single-component Field ulti-component Field of Order

3 Single-component Fields

The Vdata Interface

The Vdata interface consists of routines that are used to store and retrieve information about vda-
tas and their contents.

4.3.1 Header Files Used by the Vdata Interface

The header file “hdf.h” must be included in programs that invoke Vdata interface routines.

4.3.2 Vdata Library Routines

Vdata routines begin with the prefixes “VS”, “VF”, “VSQ”, and “VH” in C, and “vsf”, “v{”,
“vsq”, and “vh” in FORTRAN-77. Vdata routines perform most general vdata operations, VF rou-
tines query information about vdata fields, and VSQ routines query information about specific
vdatas. VH routines are high-level procedures that write to single-field vdatas.

Vdata routines let you define, organize and manipulate vdatas. They are categorized as follows
and are listed in Table 4A by their categories:

138

June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

Access routines control access to files and vdatas. Data transfer to and from a vdata can
only occur after the access to the vdata has been initiated and before it is terminated. Some
Vgroup interface routines are included since they are used interchangeably between the
Vdata and Vgroup interfaces. Refer to Chapter 5, Vgroups (V API), for a description of the
Vgroup interface.

Read and write routines store and retrieve the contents of and the information about a
vdata.

File inquiry routines provide information about how vdatas are stored in a file. They are
useful for locating vdatas in the file.

Vdata inquiry routines provide specific information about a given vdata, including the
vdata’s name, class, number of records, tag and reference number pairs, size, and interlace
mode.

Field inquiry routines provide specific information about the fields in a given vdata, includ-
ing the field’s size, name, order, and type, and the number of fields in the vdata.

June 2017 139

The HDF Group Table of Contents Chapter 4 - Vdatas (VS API)
TABLE 4A Vdata Interface Routines
Routine Names
Category FORTRAN- Description
C
77
Initializes the Vdata and the Vgroup interfaces (Section 4.3.5 on
Vstart vistart
page 143)
Establishes access to a specified vdata (Section 4.3.5 on
VSattach vsfatch
Access/Create page 143)
VSdetach vsfdtch Terminates access to a specified vdata (Section 4.3.6 on page 143)
vend vfend Terminates access to the Vdata and the Vgroup interfaces
(Section 4.3.6 on page 143)
VSfdefine vsffdef Defines a new vdata field (Section 4.5.1.2 on page 156)
VSread vsfrd/vsfrde/ Reads one record from a vdata (Section 4.6.2 on page 174)
vsfread
Seeks to a specified record in a vdata (Section 4.5.2.1 on
VSseek vsfseek
page 160)
vsfsnat/vsfs- | Sets the attribute of a vdata field or vdata (Section 4.8.2 on
VSsetattr
cat page 191)
VSsetclass vsfscls Assigns a class to a vdata (Section 4.5.1.1 on page 156)
) Specifies the vdata fields to be read or written (Section 4.5.1.3 on
\ fiel fsfl .
Ssetfields vstsfld page 157 and Section 4.6.1 on page 174)
VSsetinterlace | vsfsint Sets the interlace mode for a vdata (Section 4.5.1.4 on page 157)
VSsetname vsfsnam Assigns a name to a vdata (Section 4.5.1.1 on page 156)
Read and Write
it ta t ta with a single- t fiel tion 4.4
VHstoredata vhfsd/vhfscd Writes data to a vdata with a single-component field (Section
on page 149)
vhfsdm/ Writes data to a vdata with a multi-component field (Section 4.4
VHstoredatam
vhfscdm on page 149)
Retrieves the block size and the number of blocks for a linked-
v lockinf £ linf
Sgetblockinfo vsfgetblinfo block vdata element (see HDF Reference Manual)
Vssetblocksize | vsfsetblsz Sets linked-block vdata element block size (see HDF Reference
Manual)
VSsetnumblocks vsfsetnmbl Sets the number of blocks for a linked-block vdata element (see
HDF Reference Manual)
vsfwrt/vsf-
VSwrite wrtc/ Writes records to a vdata (Section 4.5.2.2 on page 161)
vsfwrit
140 June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents

HDF User’s Guide

Vdata
Inquiry

Retrieves information on a given attribute (Section 4.8.7 on

VSattrinfo vsfainf page 193)
Returns the number of records in the specified vdata
VSelts vsfelts .
(Section 4.9.5 on page 205)
) Locates a vdata given a list of field names (Section 4.7.4 on
VSfexist vsfex
page 184)
. . Returns the index of a vdata field given the field name
VSfindex vsffidx .
(Section 4.8.1 on page 190)
Returns the number of attributes of a vdata or vdata field
VSfnattrs vsffnas .
(Section 4.8.5 on page 192)
) Retrieves the index of an attribute given the attribute name
vSfindattr vsffdat .
(Section 4.8.6 on page 193)
VSgetattr vsfgnat/vsfg- | Retrieves the values of a given attribute (Section 4.8.3 on
cat page 191)
Returns the class name of the specified vdata (Section 4.9.5 on
VSgetclass vsfgcls
page 205)
VSgetfields vsfgfld Retrieves all field names within the specified vdata (Section 4.9.5
on page 205)
. . Retrieves the interlace mode of the specified vdata (Section 4.9.5
VSgetinterlace vsfgint
on page 205)
Retrieves the name of the specified vdata (Section 4.9.5 on
VSgetname vsfgnam
page 205)
)) . Returns information about the specified vdata (Section 4.9.1 on
VSinquire vsfing
page 199)
X X Determines whether the given vdata is an attribute (Section 4.8.8
VSisattr vsfisat
on page 194)
Returns the total number of vdata attributes (Section 4.8.4 on
VSnattrs vsfnats
page 192)
VSQuerycount vsafnelt Returns the number of records in the specified vdata
uerycou a (Section 4.9.4 on page 204)
. Returns the field names of the specified vdata (Section 4.9.4 on
VSQueryfields vsqgfflds
page 204)
VSQueryinter-— . Returns the interlace mode of the specified vdata (Section 4.9.4
vsqgfintr
lace on page 204)
Returns the name of the specified vdata (Section 4.9.4 on
VSQueryname vsgfname
page 204)
VSoueryref vsaref Retrieves the reference number of the specified vdata
Y a (Section 4.9.4 on page 204)
VSoueryta vsata Retrieves the tag of the specified vdata (Section 4.9.4 on
ytag arag page 204)
VSOueryvsize veafsiz Retrieves the local size in bytes of the specified vdata record
uery a (Section 4.9.4 on page 204)
vsfsnat/vsfs- | Sets the attribute of a vdata field or vdata (Section 4.8.2 on
VSsetattr
cat page 191)
. . Returns the size of the specified fields in a vdata (Section 4.9.5 on
VSsizeof vsfsiz

page 205)

June 2017

141

The HDF Group Table of Contents Chapter 4 - Vdatas (VS API)
VFfieldesi ffesi Returns the field size, as stored in a file, of a specified field
reraesize viresiz (Section 4.9.6 on page 206)
VFfieldisi ffisi Returns the field size, as stored in memory, of a specified field
rerdrsize vitisiz (Section 4.9.6 on page 206)
VFfieldname vEfname Rctu@s the name of the specified field in the given vdata
Field (Section 4.9.6 on page 206)
Inquiry . Returns the order of the specified field in the given vdata
VFfieldorder vifordr .
(Section 4.9.6 on page 206)
VFfieldt P Returns the data type for the specified field in the given vdata
e ype v ype (Section 4.9.6 on page 206)
) Returns the total number of fields in the specified vdata
VEntields vintlds (Section 4.9.6 on page 206)
. Searches for a vdata in a file given the vdata’s name (Section 4.7.3
Vsfind vsffnd
on page 183)
File VSgetid fgid Returns the reference number of the next vdata in the file
Inquiry gett vergl (Section 4.7.2 on page 183)
Returns the reference number of vdatas that are not linked with
VSlone vsflone .
any vgroups (Section 4.7.1 on page 182)
4.3.3 Identifying Vdatas in the Vdata Interface
The Vdata interface identifies vdatas in several ways. Before an existing vdata is accessible, it is
uniquely identified by its reference number. The reference number of a vdata can be obtained
from the name or the class of the vdata, or by sequentially traversing the file. The concept of ref-
erence number is discussed in Section 2.2.2.1 on page 8.
When a vdata is attached, it is assigned with an identifier, called vdata id, which is used by the
Vdata interface routines in accessing the vdata.
4.3.4 Programming Model for the Vdata Interface
The programming model for accessing vdatas is as follows:
1. Open the file.
2. Initialize the Vdata interface.
3. Create a new vdata or open an existing one using its reference number.
4. Perform the desired operations on the vdata.
5. Terminate access to the vdata.
6. Terminate access to the Vdata interface.
7. Close the file.
To access a vdata, the calling program must contain the following calls, which are individually
explained in the following subsections:
C: file id = Hopen(filename, file access mode, num dds block);
status = Vstart (file id);
vdata id = VSattach(file id, vdata ref, vdata access mode);
<Optional operations>
status = VSdetach (vdata id);
status = Vend(file id);
status = Hclose(file id);
FORTRAN: file id = hopen(filename, file access mode, num dds block)
status = vfstart (file id)
vdata id = vsfatch(file id, vdata ref, vdata access mode)
142 June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

<Optional operations>
status = vsfdtch(vdata id)
status = vfend(file id)
hclose (file id)

status

4.3.5 Accessing Files and Vdatas: Vstart and VSattach

An HDF file must be opened by Hopen before it can be accessed using the Vdata interface.
Hopen is described in Chapter 2, HDF Fundamentals.

Vstart must be called for every file to be accessed. This routine initializes the internal vdata struc-
tures used by the Vdata interface. Vstart has only one argument, the file identifier (file id)
returned by Hopen, and returns either succeep (or 0) or FATL (or -1). Note that the Vstart routine
is used by both the Vdata and Vgroup interfaces.

VSattach initiates access to a vdata and must be called before any operations on the vdata may
occur. VSattach takes three arguments: file id, vdata_ref, and vdata_access_mode, and returns
either a vdata identifier or Fa1L (or -1).

The argument file id is the file identifier returned by Hopen and vdata ref is the reference num-
ber that identifies the vdata to be accessed. Specifying vdata_ref with a value of -1 will create a
new vdata; specifying vdata_ref with a nonexistent reference number will return an error code of
FAIL (or -1); and specifying vdata ref with a valid reference number will initiate access to the
corresponding vdata.

If an existing vdata’s reference number is unknown, it must be obtained prior to the VSattach
call. (Refer to Chapter 2, HDF Fundamentals, for a description of reference numbers.) The HDF
library provides two routines for this purpose, VSfind and VSgetid. VSfind can be used to obtain
the reference number of a vdata when the vdata’s name is known. VSgetid can be used to obtain
the reference number when only the location of the vdata within the file is known; this is often
discovered by sequentially traversing the file. These routines are discussed in Section 4.7.2 on
page 183 and Section 4.7.3 on page 183.

The argument vdata_access_mode specifies the access mode (“7” for read-only access or “w” for
read and write access) for subsequent operations on the specified vdata. Although several HDF
user programs may simultaneously read from one vdata, only one write access is allowed at a
time. The “7” access mode may only be used with existing vdatas; the “w” access mode is valid
with both new vdatas (vdata_ref = -1) and existing vdatas.

Note that, although a vdata can be created without being written with data, either the routine
VSsetname or VSsetfields must be called in order for the vdata to exist in the file.

The parameters for Vstart and VSattach are further defined in Table 4B on page 144.

4.3.6 Terminating Access to Vdatas and Files: VSdetach and Vend

VSdetach terminates access to a vdata by updating pertinent information and freeing all memory
associated with the vdata and initialized by VSattach. Once access to the vdata is terminated, its
identifier becomes invalid and any attempt to access it will result in an error condition. VSdetach
takes only one argument, the vdata identifier that is returned by VSattach, and returns either suc-
CEED (or 0) or FAIL (Or -1).

Vend releases all internal data structures allocated by Vstart. Vend must be called once for each
call to Vstart and only after access to all vdatas have been terminated (i.c., all calls to VSdetach
have been made). Attempts to call Vdata interface routines after calling Vend will result in an
error condition. Vend takes one argument, the file identifier that is returned by Hopen, and returns

June 2017 143

The HDF Group Table of Contents Chapter 4 - Vdatas (VS API)
either succeep (or 0) or FAIL (or -1). Note that the Vend routine is used by both the Vdata and
Vgroup interfaces.
In summary, successfully terminating access to a vdata requires one VSdetach call for each call to
VSattach and one Vend call for each call to Vstart.
The parameters for VSdetach and Vend are further defined in Table 4B.
Heclose terminates access to a file and should only be called after all Vend calls have been made to
close the Vdata interface. Refer to Chapter 2, HDF Fundamentals, for a description of Hclose.
TABLE 4B Vstart, VSattach, VSdetach, and Vend Parameter Lists
Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 7
77)
Vstart
[intn] file id int32 integer File identifier
(vfstart)
VSattach file_id int32 integer File identifier
[int32] vdata_ref int32 integer Reference number of the vdata
(vsfatch) vdata_access_mode char * character* 1 Vdata access mode
VSdetach
[int32] vdata_id int32 integer Vdata identifier
(vsfdtch)
Vend
[intn] file_id int32 integer File identifier
(vfend)
EXAMPLE 1. Accessing a Vdata in an HDF File

This example illustrates the use of Hopen/hopen, Vstart/vistart, VSattach/vsfatch, VSdetach/
vsfdtch, Vend/vfend, and Hclose/hclose to create and to access different vdatas from different
HDF files.

The program creates an HDF file, named "General Vdatas.hdf", containing a vdata. The program
also creates a second HDF file, named "Two Vdatas.hdf", containing two vdatas. Note that, in
this example, the program does not write data to these vdatas. Also note that before closing the
file, the access to its vdatas and its corresponding Vdata interface must be terminated. These
examples request information about a specific vdata.

C:
#include "hdf.h"

#define FILEl NAME "General Vdatas.hdf"
#define FILE2 NAME "Two_Vdatas.hdf"
#define VDATA NAME "Vdata 1"

#define VDATA CLASS "Empty Vdatas"

main()

144

June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide

{

[kR sk sk skckosksk skckockskskekckskock skokokk Varigble declaration sk ook koo stokok skokokoskokoskokokoskokok /

intn status n; /* returned status for functions returning an intn */
int32 status 32, /* returned status for functions returning an int32 */
filel id, file2 id,
vdata_id, vdatal id, vdata2 _id,

vdata ref=-1; /* ref number of a vdata, set to -1 to create */

[k sk kst ckeskokckk) B d of variable declaration %k sk s ks sko ok sk stk sk skoskoskeokok /

/*

* Create the first HDF file.

*/

filel id = Hopen (FILE1 NAME, DFACC_CREATE, 0);

/*

* Initialize the VS interface associated with the first HDF file.
*/

status_n = Vstart (filel _id);

/*

* Create a vdata in the first HDF file.

*/

vdata_id = VSattach (filel id, vdata_ref, "w");

/*

* Assign a name to the vdata.

*/

status_32 = VSsetname (vdata_id, VDATA NAME);

/*
* Other operations on the vdata identified by vdata_id can be carried

* out starting from this point.

*/

June 2017 145

The HDF Group

Table of Contents

Chapter 4

-- Vdatas (VS API)

/*

* Create the second HDF file.

*/

file2_id = Hopen (FILE2 NAME, DFACC_CREATE, 0);

/*

* Initialize the VS interface associated with the second HDF file.
*/

status_n = Vstart (file2_id);

/*

* Create the first vdata in the second HDF file.
*/

vdatal id = VSattach (file2_id, vdata_ref, "w");

/*

* Create the second vdata in the second HDF file.
*/

vdata2 id = VSattach (file2_id, vdata_ref, "w");

/*

* Assign a class name to these vdatas.

*/

status_32 = VSsetclass (vdatal id, VDATA CLASS);
status_32 = VSsetclass (vdata2_id, VDATA CLASS);

/ *
* Other operations on the vdatas identified by vdatal id and vdata2 id

* can be carried out starting from this point.

*/

/*
* Terminate access to the first vdata in the second HDF file.

*/

146

June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

status_32 = VSdetach (vdatal id);

/*

* Terminate access to the second vdata in the second HDF file.
*/

status_32 = VSdetach (vdata2_id);

/*
* From this point on, any operations on the vdatas identified by vdatal id

and vdata2_id are invalid but not on the vdata identified by vdata_id.
*/

/*

* Terminate access to the VS interface associated with the second HDF file.
*/

status_n = Vend (file2_id);

/*
* Close the second HDF file.
*/
status_n = Hclose (file2_id);

/*

* Terminate access to the vdata in the first HDF file.
*/

status_32 = VSdetach (vdata_id);

/*

* Terminate access to the VS interface associated with the first HDF file.
*/

status_n = Vend (filel id);

/*
* Close the first HDF file.
*/

June 2017 147

The HDF Group Table of Contents Chapter 4 - Vdatas (VS API)

status_n = Hclose (filel id);

FORTRAN:

program create vdatas
implicit none

C
C Parameter declaration
C
character*18 FILEl NAME
character*14 FILE2 NAME
character*7 VDATA NAME
character*12 VDATA CLASS
C
parameter (FILE1 _NAME = ’General Vdatas.hdf’,
+ FILE2 NAME = ’'Two Vdatas.hdf’,
+ VDATA NAME = 'Vdata 17,
+ VDATA CLASS = ’'Empty Vdatas’)
integer DFACC_CREATE
parameter (DFACC_CREATE = 4)
C
C Function declaration
C
integer hopen, hclose
integer vfstart, vsfatch, vsfsnam, vsfscls, vsfdtch, vfend
C
C**** Variable declaration ERE R R R R R B R R B I i I i
C
integer status
integer filel id, file2_ id
integer vdata_id, vdatal id, vdata2 id
integer vdata ref
C
C**** End Of Variable declaration Kk Kk kA hkkh kA hkkhkhkkhkr kA hkhkhkhrhkkhkkhkhkhrhkhkkrxkx
C
C
C Create the first HDF file.
C
filel id = hopen (FILEl NAME, DFACC CREATE, 0)
C
C Initialize the VS interface associated with the first HDF file.
C
status = vfstart(filel id)
C
C Create a vdata in the first HDF file.
C
vdata ref = -1
vdata_id = vsfatch(filel id, vdata ref, 'w’)
C
C Assign a name to the vdata.
C
status = vsfsnam(vdata id, VDATA NAME)
C
C Other operations on the vdata identified by vdata id can be carried out
C starting from this point.
C
C Create the second HDF file.
C

file2 id = hopen (FILE2 NAME, DFACC CREATE, 0)

148 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide

C
C Initialize the VS interface associated with the second HDF file.
C
status = vfstart(file2 id)
C
C Create the first vdata in the second HDF file.
C
vdatal id = vsfatch(file2 id, vdata ref, 'w’)
C
C Create the second vdata in the second HDF file.
C
vdata2 id = vsfatch(file2 id, vdata ref, 'w’)
C
C Assign a class name to these vdatas.
C
status = vsfscls(vdatal id, VDATA CLASS)
status = vsfscls(vdata2 id, VDATA CLASS)
C
c Other operations on the vdatas identified by vdatal id and vdata2_ id
C can be carried out starting from this point.
C
C
C Terminate access to the first vdata in the second HDF file.
C
status = vsfdtch(vdatal id)
C
C Terminate access to the second vdata in the second HDF file.
C
status = vsfdtch(vdata2 id)
C
C Terminate access to the VS interface associated with the second HDF file.
C
status = vfend(file2 id)
C
C Close the second HDF file.
C
status = hclose(file2 id)
C
C Terminate access to the vdata in the first HDF file.
C
status = vsfdtch(vdata id)
C
C terminate access to the VS interface associated with the first HDF file.
C
status = vfend(filel id)
C
C Close the first HDF file.
C

status = hclose(filel id)
end

4.4 Creating and Writing to Single-Field Vdatas: VHstoredata and
VHstoredatam

There are two methods of writing vdatas that contain one field per record. One requires the use of
several VS routines and the other involves the use of VHstoredata or VHstoredatam, two high-
level routines that encapsulate several VS routines into one.

June 2017 149

The HDF Group Table of Contents

Chapter 4 -- Vdatas (VS API)

The high-level VH routines are useful when writing one-field vdatas and complete information
about each vdata is available. If you cannot provide full information about a vdata, you must use
the VS routines described in the next section.

Figure 4c shows two examples of single-field vdatas. The fields can be single-component or
multi-component fields. With a multi-component field, they may contain one or more values of
the same data type.

FIGURE 4c Single- and Multi-component Vdatas

——— Vdata Name¢ ———

|4 N\
Vdata Vdata
/—— Class Name M\
I4 N\
Class X Class X
S Field Name ™\
|4 A
Field 1 Field 1
» comp_1 comp_1, comp_2
» comp_1 comp_1, comp_2
Records Records
» comp_1 comp_1, comp_2
» comp_1 comp_1, comp_2

Vdata with Single-component Field Vdata with Multi-component Field

VHstoredata creates then writes a vdata with one single-component field. VHstoredatam creates
and writes a vdata with one multi-component field. In both cases the following steps are involved:

1. Open the file.

2. Initialize the Vdata interface.

3. Store (create then write to) the vdata.

4. Terminate access to the Vdata interface.
5. Close the file.

These steps correspond to the following sequence of function calls:

C: file id = Hopen(filename, file access mode, num dds block);
status = Vstart (file id);

/* Either VHstoredata or VHstoredatam can be called here. */
vdata ref = VHstoredata(file id, fieldname, buf, n records,
data type, vdata name, vdata class);
OR vdata ref = VHstoredatam(file id, fieldname, buf, n records,
data type, vdata name, vdata class, order);

status = Vend(file id);

status = Hclose(file id);

FORTRAN: file id = hopen(filename, file access mode, num dds block)
status = vfstart (file id)

C Either vhfsd/vhfscd or vhfsdm/vhfscdm can be called here.

vdata ref = vhfsd(file id, fieldname, buf, n records, data type,
vdata name, vdata class)

OR vdata ref = vhfscd(file id, fieldname, buf, n records, data type,
vdata name, vdata class)

150 June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

OR

vdata ref = vhfsdm(file id, fieldname, buf, n records, data type,
vdata name, vdata class, order)

OR vdata ref = vhfscdm(file id, fieldname, buf, n records, data type,
vdata name, vdata class, order)

status vfend(file id)

status = hclose (file id)

The first seven parameters of VHstoredata and VHstoredatam are the same. The parameter
file_id is the file identifier returned by Hopen. The parameter fieldname specifies the name of the
vdata field. The parameter buf contains the data to be stored into the vdata. In C, the data type of
the parameter buf is uint8; in FORTRAN-77, it is the data type of the data to be stored. The
parameters n_records and data_type contain the number of records in the vdata and the data type
of the vdata data. The parameters vdata_name and vdata_class specify the name and class of the
vdata. The parameter order of VHstoredatam specifies the order of the field. The maximum
length of the vdata name is given by the vsnaMELENMAX (or 64) as defined in the header file “hlim-
its.h”.

Note that these two routines do not overwrite existing vdatas but only create new ones before stor-
ing the data.

The FORTRAN-77 version of VHstoredata has two routines: vhfsd for numeric data and vhfsed
for character data; the FORTRAN-77 version of VHstoredatam has two routines: vhfsdm for
numeric data and vhfsedm for character data.

Both routines return the reference number of the newly-created vdata or Fa11, (or -1) if the opera-
tion is unsuccessful. The parameters for VHstoredata and VHstoredatam are further described
in Table 4C.

June 2017 151

The HDF Group Table of Contents Chapter 4 - Vdatas (VS API)

TABLE 4C VHstoredata and VHstoredatam Parameter Lists
Routine Name Parameter Type
Return Type o
(IEORTRYXI]\I- Parameter Description
C FORTRAN-77
77)
file_id int32 integer File identifier
fieldname char * character®(*) String containing the name of the field
<valid numeric data
o ..
VHstoredata buf uint8 type>(*)/character*(*) Buffer containing the data to be stored
[int32] . - -
(vhfsd/vhfscd) n_records int32 integer Number of records to create in the vdata
data_type int32 integer Data type of the stored data
vdata_name char * character®(*) Name of the vdata
vdata_class char * character*(*) Class name of the vdata
file_id int32 integer File identifier
fieldname char * character*®(*) String containing the name of the field
buf uint8 * <Vall‘i umerie diti Buffer containing the data to be stored
VHstoredatam type>(*)/character*®(*)
[int32] n_records int32 integer Number of records to create in the vdata
(vhfsdm/
vhfsedm) data_type int32 integer Data type of the stored data
vdata_name char * character*(*) Name of the vdata
vdata_class char * character*(*) Class name of the vdata
order int32 integer Number of field components
EXAMPLE 2. Creating and Storing One-field Vdatas Using VHstoredata and VHstoredatam

This example illustrates the use of VHstoredata/vhfscd and VHstoredatam/vhfsdm to create
single-field vdatas.

This example creates and writes two vdatas to the file "General Vdatas.hdf". The first vdata is
named "First Vdata", contains 5 records, and belongs to a class named "5x1 Array". The second
vdata is named "Second Vdata", contains 6 records, and belongs to a class named "6x4 Array".
The field of the first vdata is a single-component field, i.e., order of 1, and named "Single-compo-
nent Field". The field of the second vdata has an order of 4 and is named "Multi-component
Field".

In these examples two vdatas are created. The first vdata has five records with one field of order 1
and is created from a 5 x 1 array in memory. The second vdata has six records with one field of
order 4 and is created from a 6 x 4 array in memory.

C:
#include "hdf.h"
#define FILE_NAME "General Vdatas.hdf"
#define CLASS1 NAME "5x1 Array"
#define CLASS2_ NAME "6x4 Array"
#define VDATAl NAME "First Vdata"
#define VDATA2 NAME "Second Vdata"
#define FIELD1 NAME "Single-component Field"
#define FIELD2 NAME "Multi-component Field"
#define N_RECORDS_1 5 /* number of records the first vdata contains */
#define N_RECORDS_2 6 /* number of records the second vdata contains */
#define ORDER 2 4 /* order of the field in the second vdata */

/* Note that the order of the field in the first vdata is 1 */

152 June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

main()

{

/‘k‘k*********************** Variable declaration **************************/

intn status n; /* returned status for functions returning an intn */
int32 status_32; /* returned status for functions returning an int32 */
int32 file id, vdatal ref, vdata2 ref;

/*
* Define an array to buffer the data of the first vdata.

*/

char8 vdatal buf [N RECORDS 1] = {'V’, ’'D’, 'A", 'T’, 'A’'};

/*

* Define an array to buffer the data of the second vdata.

*

igt32 vdata2 buf [N RECORDS 2] [ORDER 2] = {{1, 2, 3, 4}, {2, 4, 6, 8},

{3, 6, 9, 12}, {4, 8, 12, 16},
{5, 10, 15, 20}, {6, 12, 18, 24}};

/********************** End Of variable declaration **********************/

/*
* Open the HDF file for writing.

*/

file id = Hopen (FILE NAME, DFACC WRITE, 0);

/*

* Initialize the VS interface.
*/

status n = Vstart (file id);

/*
* Create the first vdata and populate it with data from the vdatal buf
* array. Note that the buffer vdatal buf is cast to (uint8 *) for the
* benefit of generic data type.
*/
vdatal ref = VHstoredata (file_id, FIELDl NAME, (uint8 *)vdatal buf,
N _RECORDS 1, DFNT CHARS, VDATAl NAME, CLASS1 NAME);

/*
* Create the second vdata and populate it with data from the vdata2 buf
* array.
*/
vdata2 ref = VHstoredatam (file id, FIELD2 NAME, (uint8 *)vdata2 buf,
N RECORDS 2, DEFNT INT32, VDATA2 NAME, CLASS2 NAME, ORDER 2);

/*
* Terminate access to the VS interface and close the HDF file.
x/

status_ n = Vend (file id);

status 32 = Hclose (file id);

FORTRAN:

C
C
C

program create onefield vdatas

implicit none
Parameter declaration

character*18 FILE_ NAME
character*9 CLASS1 NAME

June 2017

153

The HDF Group

Table of Contents Chapter 4 - Vdatas (VS API)

C*‘k**

C

C*‘k**

c

C
C
C

Q Q

Q

@]

character*9 CLASS2 NAME

character*11 VDATAl NAME

character*12 VDATAZ NAME

character*22 FIELD1 NAME

character*21 FIELD2 NAME

integer N_RECORDS_1, N_RECORDS_2
integer ORDER_2

parameter (FILE NAME = ’General Vdatas.hdf’,

+ CLASS1 NAME = ’'5x1 Array’,

+ CLASS2 NAME = ’6x4 Array’,

+ VDATAl NAME = ’'First Vdata’,

+ VDATA2_NAME = ’Second Vdata’,

+ FIELD1 NAME = ’Single-component Field’,
+ FIELD2 NAME = ’'Multi-component Field’)
parameter (N_RECORDS 1 = 5,

+ N _RECORDS_2 = 6,

+ ORDER 2 = 4)

integer DFACC_WRITE, DFNT CHAR8, DENT INT32

parameter (DFACC WRITE = 2,
+ DFNT CHARS = 4,
+ DFNT_INT32 = 24)

Function declaration

integer hopen, hclose
integer vfstart, vhfscd, vhfsdm, vfend

Variable declaration KA K KA KA KR AKA KA KR AR A A KA AR AR KA R AR AR KA R A AR A XA A A A h K

integer status
integer file id
integer vdatal ref, vdata2 ref

character vdatal buf (N_RECORDS 1)
integer vdata2 buf (ORDER 2, N RECORDS 2)
data vdatal buf /’Vv’,’D’,’A’,'T','A"/
data vdata2 buf / 1, 2, 3, 4,

2, 4, 6, 8,

3, 6, 9, 12,

4, 8, 12, 1e,

5, 10, 15, 20,

6, 12, 18, 24/

+ o+ o+ o+

End Of Variable declaration KAK KA KRKAKRAA KA KRA A IR R AR AN KA AR A AR AR A AR

Open the HDF file for writing.

file id = hopen (FILE NAME, DFACC WRITE, 0)

Initialize the VS interface.

status = vfstart(file id)

Create the first vdata and populate it with data from vdatal buf array.

vdatal ref = vhfscd(file_ id, FIELD1 NAME, vdatal buf, N_RECORDS 1,
+ DENT_CHAR8, VDATAl NAME, CLASS1_NAME)

Create the second vdata and populate it with data from vdata2 buf array.

154

June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide

vdata2 ref = vhfsdm(file id, FIELD2 NAME, vdata2 buf, N RECORDS 2,

+ DFNT_INT32 ’ VDATAZ_NAME, CLASS2_NAME,

+ ORDER_2)
C
C Terminate access to the VS interface and close the HDF file.
C

status = vfend(file id)
status = hclose(file_ id)
end

4.5 Writing to Multi-Field Vdatas

There are several steps involved in creating general vdatas with more than one field: define the
vdata, define the fields of the vdata, and write the vdata to the file. These steps are usually exe-
cuted within a single program, although it is also possible to define an empty vdata in anticipation
of writing data to it at a later time.

4.5.1 Creating Vdatas

Creating an empty vdata involves the following steps:
1. Open a file.
2. Initialize the Vdata interface.
3. Create the new vdata.
4. Assign a vdata name. (optional)
5. Assign a vdata class. (optional)
6. Define the fields.
7. Initialize fields for writing.
8. Set the interlace mode.
9. Dispose of the vdata identifier.
10. Terminate access to the Vdata interface.
1. Close the file.
Like the high-level VH interface, the Vdata interface does not retain default settings from one

operation to the next or from one file to the next. Each time a vdata is created, its definitions must
be explicitly reset.

To create a multi-field vdata, the calling program must contain the following:

C: file id = Hopen(filename, file access mode, num dds block);
status = Vstart (file id);
vdata id = VSattach(file id, -1, vdata access mode);
status = VSsetname (vdata id, vdata name);
status = VSsetclass(vdata id, vdata class);
status = VSfdefine(vdata id, fieldnamel, data typel, orderl);

status = VSfdefine(vdata id, fieldnameN, data typeN, orderN);
status = VSsetfields(vdata id, fieldname list);

status = VSsetinterlace (vdata id, interlace mode);

status = VSdetach (vdata id);

status = Vend(file id);

status = Hclose (file id);

June 2017 155

The HDF Group

Table of Contents Chapter 4 -- Vdatas (VS API)

FORTRAN: file id = hopen(filename, file access mode, num dds block)
status = vfstart (file id)
vdata id = vsfatch(file id, -1, vdata access mode)
status = vsfsnam(vdata id, vdata name)
status = vsfscls(vdata id, vdata class)
status = vsffdef (vdata id, fieldnamel, data typel, orderl)
status = vsffdef (vdata id, fieldnameN, data typeN, orderN)
status = vsfsfld(vdata id, fieldname list)
status = vsfsint (vdata id, interlace mode)
status = vsfdtch(vdata id)
status = vfend(file id)
status = hclose (file id)

In the routines that follow, vdata_id is the vdata identifier returned by VSattach.

4.5.1.1 Assigning a Vdata Name and Class: VSsetname and VSsetclass

VSsetname assigns a name to a vdata. If not explicitly named by a call to VSsetname, the name
of the vdata is set by default to NULL. A name may be assigned and reassigned at any time after the
vdata is created. The parameter vdata_name contains the name to be assigned to the vdata.

VSsetclass assigns a class to a vdata. If VSsetclass is not called, the vdata’s class is set by default
to NULL. As with the vdata name, the class may be assigned and reassigned any time after the vdata
is created. The parameter vdata_class contains the class name to be assigned to the vdata.

VSsetname and VSsetclass return either succeep (or 0) or FATL (or -1). The parameters for these
routines are further defined in (See Table 4E on page 159).

4.5.1.2 Defining a Field within a Vdata: VSfdefine

VSfdefine defines a field within a newly-created vdata. Each VSfdefine call assigns the name
contained in the argument fieldname, the data type contained in the argument data_type, and the
order contained in the argument order to one new field. Once data is written to a vdata, the name,
data type and order of the field may not be modified or deleted.

The Vdata interface also provides certain predefined fields. A predefined field has a specific
name, data type, and order, so there is no need to call VSfdefine to define a predefined field.
Some applications may require the use of predefined fields in vdatas. Available predefined fields
are discussed in Table 4D.

Note that VSfdefine does not allocate memory for the field, but simply introduces the field. The
field definition must be completed by VSsetfields, which is discussed in Section 4.5.1.3 on
page 157.

VSfdefine returns either succeep (or 0) or FATL (or -1). The parameters for VSfdefine are further
described in (See Table 4E on page 159).

156

June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

TABLE 4D

Predefined Data Types and Field Names for Vdata Fields

Coordinate Point Field Names Normal Component Field Names
Data Type . y-coordi- z-coordi- | x-compo- | y-compo- | z-compo-
x-coordinate
nate nate nent nent nent
float PX PY PZ NX NY NZ
integer X Y 1z None None None

4.5.1.3 Initializing the Fields for Write Access: VSsetfields

VSsetfields initializes read and write access to the fields in a vdata. It must be called prior to read
or write operations. Initializing for read access is discussed in Section 4.6.1 on page 174. For writ-
ing, VSsetfields specifies the fields to be written and the order in which they are to be placed.

The parameter fieldname_list is a comma-separated list of the field names, with no white space
included. The fields can be either the predefined fields or the fields that have been previously
introduced by VSfdefine. VSfdefine allows a user to declare a field, along with its data type and
order, but VSsetfields finalizes the definition by allowing the user to select the fields that are to be
included in the vdata. Thus, any fields created by VSfdefine that are not in the parameter
fieldname_list of VSsetfields will be ignored. This feature was originally intended for interactive-
mode users. The combined width of the fields in the parameter fieldname_list is also the length of
the record and must be less than Max FIELD sSIzE (or 65535). An attempt to create a larger record
will cause VSsetfields to return FaT1L (or -1).

VSsetfields returns either succeeD (or 0) or FAIL (or -1). The parameters for VSsetfields are fur-
ther defined in Table 4E on page 159.

4.5.1.4 Specifying the Interlace Mode: VSsetinterlace

The Vdata interface supports two types of interlacing: file interlacing and buffer interlacing. File
interlacing determines how data is stored in a file and buffer interlacing determines how data is
stored in memory. The Vdata interface can write data from a buffer to a file in an interlaced or
non-interlaced manner. It can also read data from a file in an interlaced or non-interlaced manner.

The VSread and VSwrite routines set the buffer’s interlace mode. The VSwrite routine will be
discussed in Section4.5.2.2 on page 161 and the VSread routine will be discussed in
Section 4.6.2 on page 174.

VSsetinterlace sets the file interlacing mode for a vdata. Setting the parameter interlace _mode to
FULL_INTERLACE (or 0) fills the vdata by record, whereas specifying No INTERLACE (or 1) fills the
vdata by field. (See Figure 4d) For multi-component fields, all components are treated as a single
field.

As with file interlacing, the default buffer interlace mode is FULL_INTERLACE because it is more
efficient to write complete records than it is to write fields if the file and buffer interlace modes
are the same, although both require the same amount of disk space.

In Figure 4d, the illustrated vdata has four fields and three records.

June 2017 157

The HDF Group

Table of Contents Chapter 4 - Vdatas (VS API)

FIGURE 4d

Interlaced and Non-Interlaced Vdata Contents

Vdata Vdata
Mixed Data Type Mixed Data Type
Temp Height Speed Ident Temp 1.11 2.22 3.33
1.11 1 11.11 A Height 1 2 3
2.22 2 22.22 B Speed 11.11 22.22 33.33
3.33 3 33.33 C Ident A B C
Interlacing Mode: FULL_INTERLACE Interlacing Mode: NO_INTERLACE

VSsetinterlace can only be used for operations on new vdatas as the interlacing cannot be
changed once the data has been written to a vdata. Records in a fully interlaced vdata can be writ-
ten record-by-record and, thus, can be appended; however, all records in a non-interlaced vdata
must be written at the same time.

VSsetinterlace returns either succeep (or 0) or Fa1L (or -1). The parameters for VSsetinterlace
are further described in Table 4E.

4.5.1.5 Specifying External Storage Information: VSsetexternalfile

The HDF library allows applications to store vdata tables in an external file that is separate from
the primary file containing the metadata for the vdata. The library keeps track of the beginning of
the vdata and adds data at the appropriate position in the external file. When data is written or
appended, the HDF library writes data to the external file and updates the appropriate metadata in
the primary file.

VSsetexternalfile specifies that an external data file is to be used to store the data of the given
vdata. The parameter filename is the name of the external data file and offset is the number of
bytes from the beginning of the external file to the location where the first byte of data should be
written. The syntax for VSsetexternalfile is as followed:

C: status = VSsetexternalfile(vdata id, filename, &offset)
FORTRAN: status = vsfsextf (vdata id, filename, offset)

If a file with the name specified by filename exists in the current directory search path, the func-
tion will access it as the external file. It is the user's responsibility to make sure that the external
data file is kept with the primary HDF file.

VSsetexternalfile returns either succeeD (or 0) or FATL (or -1). The parameters for VSsetexter-
nalfile are further described in (See Table 4E on page 159).

158

June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents

HDF User’s Guide

TABLE 4E VSsetname, VSsetclass, VSfdefine, VSsetfields, and VSsetinterlace Parameter Lists
Routine Name Parameter Type
[Return Type] Qv
(FORTRAN- Parameter . FORTRAN- Description
77) 77
VSsetname vdata_id int32 integer Vdata identifier
[int32]
(vsfsnam) vdata_name char * character™(*) Vdata name
VSsetclass vdata_id int32 integer Vdata identifier
[int32]
(vsfscls) vdata_class char * character™(*) Vdata name
vdata_id int32 integer Vdata identifier
VSfdeﬁne fieldname char * character*(*) Name of the field to be defined
(v[sl;tgif) data_type int32 integer Type of the field data
order int32 integer Order of the new field
VSsetfields vdata_id int32 integer Vdata identifier
(V[SI?JRL) fieldname_list char * character*(*) Names of the vdata fields to be accessed
VSsetinterlace vdata_id int32 integer Vdata identifier
(V[sl?st?jt) interlace_mode int32 integer Interlace mode
VSsetexternalfile vdata_id int32 integer Vdata identifier
[intn] filename char * character*(*) External file name
(vsfsextf) offset int32 integer Offset of external data

4.5.2 Writing Data to Vdatas

This section describes the vdata writing operation (VSwrite), random access to vdata (VSseek),
and packing and unpacking mechanisms that allow storing vdata fields of different data types

(VSfpack).

Writing to a vdata requires the following steps:

1. Open a file.

2. Initialize the Vdata interface.
3. Initialize fields for writing.

4. Initiate access to the vdata.

5. Seek to the target record.

6. Write the data.

7. Dispose of the vdata identifier.

8. Terminate access to the Vdata interface.

9. Close the file.

These steps correspond to the following sequence of function calls:

C: file id = Hopen(filename, file access mode, num dds block);
status = Vstart (file id);
vdata id = VSattach(file id, vdata ref, vdata access mode);
status = VSsetfields(vdata id, fieldname list);
record pos = VSseek (vdata id, record index);

num of recs = VSwrite(vdata id, databuf, n records, interlace mode);
status = VSdetach (vdata id);
status = Vend(file id);

June 2017

159

The HDF Group

Table of Contents Chapter 4 -- Vdatas (VS API)

status = Hclose (file id);

FORTRAN: file id = hopen(filename, file access mode, num dds block)
status = vfstart (file id)
vdata id = vsfatch(file id, vdata ref, vdata access mode)
status = vsfsfld(vdata id, fieldname list);
record pos = vsfseek(vdata id, record index);

num of recs = vsfwrt (vdata id, databuf, n records, interlace mode)
OR num of recs = vsfwrtc(vdata id, databuf, n records, interlace mode)

OR num of recs = vsfwrit (vdata id, databuf, n records, interlace mode)

status = vsfdtch(vdata id)
status = vfend(file id)
status = hclose (file id)

4.5.2.1 Resetting the Current Position within Vdatas: VSseek

VSseek provides a mechanism for random access to fully-interlaced vdatas. Random-access for
non-interlaced vdatas is not available. The parameter record_index is the position of the record to
be written. The position of the first record in a vdata is specified by record _index = 0. Any vdata
operation will be performed on this record by default; vdata operations on other records require
that VSseek be called first to specify the target record.

Note that VSseek has been designed for the purpose of overwriting data, not appending data. That
means VSseek puts the current record pointer at the beginning of the sought record and the subse-
quent write will overwrite the record. To append data to a vdata, the current record pointer must be
put at the end of the last record. Thus, you must seek to the last record then read this record so that
the current record pointer will be put at the end of the record. A write operation will now start at
the end of the last record in the vdata. Figure 4e illustrates a situation where VSseek can be mis-
used while attempting to append data to the vdata and how VSread is called to correctly place the
record pointer at the end of the vdata for appending.

Note that, because the record location numbering starts at 0, the record location and the value of
the parameter record index are off by 1. For example, reading the fourth record in the buffer
requires record_index to be set to 3.

See the notes regarding the potential performance impact of appendable data sets in Section
14.4.3, "Unlimited Dimension Data Sets (SDSs and Vdatas) and Performance"

160

June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide

FIGURE 4e Setting the Record Pointer to the End of a Vdata

Using: VSseek(vdata_id, 4); Seeks to the end of
the vdata - an error

condition for VSseek. \
—————————————————————— -

Vdata Record 1 Vdata Record 2 Vdata Record 3 Vdata Record 4
Record
Location - 0 1 E
Seeks to the end of
the vdata and buffers
Using: VSseek(vdata_id, 3); the fourth record.
VSread(vdata_id, buffer, 1, FULL_INTERLACE);
| |
———————————————— > P
Vdata Record 1 Vdata Record 2 Vdata Record 3 Vdata Record 4
Records
Read - 0 T y.

In this illustration, the vdata to which we plan to append data contains 4 records. Using VSseek to
seek to the end of the fourth record by setting the parameter record _index to 4 results in an error
condition. Setting the parameter record _index to 3 places the current record pointer at the begin-
ning of the fourth record. We then use VSread to read the contents of the fourth record into a
buffer; this moves the current record pointer to the end of the fourth record. The contents of the
buffer can then be discarded and a write operation can be called to append data to the end of the
vdata.

VSseek returns the sought record location or Fa1L (or -1). Its parameters are further defined in
Table 4F.

4.5.2.2 Writing to a Vdata: VSwrite

VSwrite writes buffered data to a specified vdata. The parameter databuf is a buffer containing
the records to be stored in the vdata. The parameter n_records specifies the number of records to
be stored.

Recall that the file interlacing is set by VSsetinterlace when the vdata is created, and the buffer
interlacing is specified by the parameter interlace_mode in the call to VSwrite when data is writ-
ten to the file. The array databuf is assumed to be organized in memory as specified by
interlace_mode. Setting interlace_mode to FULL INTERLACE (or 0) indicates that the array in
memory is organized by record, whereas to N0 INTERLACE (or 1) indicates that the array is orga-
nized by field. (See Figure 4f) VSwrite will write interlaced or non-interlaced data to a vdata in a
file: interlaced data in the buffer can be written to the vdata in the file as non-interlaced data and
vice versa. If the data is to be stored with an interlace mode different from that of the buffer,
VSsetinterlace (described in Section 4.5.1.4 on page 157) must be called prior to VSwrite. Mul-
tiple write operations can only be used on fully-interlaced vdatas in the file.

June 2017 161

The HDF Group

Table of Contents Chapter 4 - Vdatas (VS API)

FIGURE 4f

Writing Interlaced or Non-interlaced Buffers into Interlaced or Non-interlaced Vdatas

[1 [1] na Ja] 222 [J2] 22 [B] 333 [3] 3333 [C]
Buffer Interlacing: FULL _INTERLACE
111 2.22 333 [1 [2]3] un 22.22 3333 [A[B]C]
Buffer Interlacing: NO_INTERLACE
-
—> Complex vdata Complex vdata
Mixed Data Type Mixed Data_Type
Temp Height Speed Ident Temp 1.11 222 3.33
1.11 1 11.11 A Height 1 2 3
2.22 2 22.22 B Speed 11.11 22.22 33.33
3.33 3 33.33 C Ident A B C
Interlacing Mode: FULL_INTERLACE Interlacing Mode: NO_INTERLACE

The data in the array databuf'is assumed to contain the exact amount of data in the order needed to
fill the fields defined in the last call to VSsetfields. Because VSwrite writes the contents of
databuf contiguously to the vdata, any “padding” due to record alignment must be removed before
attempting to write from databuf to the vdata. For more information on alignment padding see
Section 4.5.2.4 on page 167.

It should be remembered that VSwrite writes whole records, not individual fields. If a modifica-
tion to one field within a previously-written record is needed, the contents of the record must first
be preserved by reading it to a buffer with VSread, which will be described in Section 4.6.2 on
page 174; the record must then be updated in the buffer and written back to the file with VSwrite.

To store a vdata to the file after being created, either VSsetname, VSsetfields, or VSwrite must
be called before VSdetach for the vdata. If VSwrite is not called, the vdata created will be empty.

The FORTRAN-77 version of VSwrite has three routines: vsfwrt is for buffered numeric data,
vsfwrte is for buffered character data and vsfwrit is for generic packed data.

VSwrite returns the total number of records written or FaTL (or -1). Its parameters are further
defined in Table 4F.

162

June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide

TABLE 4F VSseek and VSwrite Parameter Lists
Routine Parameter Type
Name
[Return Type] Parameter Description
(FORTRAN- C FORTRAN-77
77)
VSseek vdata_id int32 integer Vdata identifier
[int32] _ _
(vsfseek) record_index int32 integer Index of the record to seek to
vdata_id int32 integer Vdata identifier
VSwrite <vali § (%
[int32] databuf uint8* Val;i;:g:z:f(%a;i;fg er()/ Buffer containing data to be written
(vsfwrt/vsfwrte/
vsfwrit) n_records int32 integer Number of records to be written
interlace_mode int32 integer Interlace mode of the buffered data
EXAMPLE 3. Writing a Vdata of Homogeneous Type

This example illustrates the use of VSfdefine/vsffdef, VSsetname/vsfsnam, VSsetclass/vsfscls,
VSsetfields/vsfsfld, and VSwrite/vsfwrt to create and write a three-field vdata to the file
"General Vdatas.hdf". Although the fields have data of the same type, they have different orders.

To clarify the illustration, let us assume that the vdata is used to contain the data of some particles
collected from an experiment. Each record of the data includes the position of a particle, its
weight, and the minimum and maximum temperature the particle can endure. The vdata is named
"Solid Particle", contains 10 records, and belongs to a class, named "Particle Data". The fields of
the vdata include "Position", "Mass", and "Temperature". The field "Position" has an order of 3
for the x, y, and z values representing the position of a particle. The field "Mass" has an order of 1.
The field "Temperature" has an order of 2 for the minimum and maximum temperature. The pro-
gram creates the vdata, sets its name and class name, defines its fields, and then writes the data to

it.
C:

#include "hdf.h"
#define FILE_NAME "General Vdatas.hdf"
#define N RECORDS 10 /* number of records the vdata contains */
#define ORDER 1 3 /* order of first field */
#define ORDER 2 1 /* order of second field */
#define ORDER 3 2 /* order of third field */
#define CLASS NAME "Particle Data"
#define VDATA NAME "Solid Particle"
#define FIELD1 NAME "Position" /* contains x, y, z values */
#define FIELD2_ NAME "Mass" /* contains weight values */
#define FIELD3_NAME "Temperature" /* contains min and max values */
#define FIELDNAME LIST "Position,Mass, Temperature" /* No spaces b/w names */

/* number of values per record */
#define N VALS PER REC (ORDER 1 + ORDER 2 + ORDER 3)

main()

{

/*********‘k***‘k*********** Variable declaration ‘k‘k************************/

intn status_n; /* returned status for functions returning an intn */
int32 status 32, /* returned status for functions returning an int32 */
file id, vdata id,

June 2017 163

The HDF Group

Table of Contents Chapter 4 - Vdatas (VS API)

vdata ref = -1, /* ref number of a vdata, set to -1 to create */
num_of records; /* number of records actually written to vdata */
intl6 rec num; /* current record number */

float32 data buf[N _RECORDS] [N _VALS PER REC]; /* buffer for vdata values */

/********************** End Of variable declaration **********************/

/*
* Open the HDF file for writing.

*/

file id = Hopen (FILE NAME, DFACC WRITE, 0);
/*

* Initialize the VS interface.

*/

status n = Vstart (file id);

/*

* Create a new vdata.

*/

vdata id = VSattach (file id, vdata ref, "w");
/*

* Set name and class name of the vdata.

*/

status 32 = VSsetname (vdata id, VDATA NAME) ;
status 32 = VSsetclass (vdata_id, CLASS NAME);

/*

* Introduce each field’s name, data type, and order. This is the first
* part in defining a field.

*/

status_n = VSfdefine (vdata id, FIELD1 NAME, DFNT_ FLOAT32, ORDER 1);
status n = VSfdefine (vdata id, FIELD2 NAME, DFNT FLOAT32, ORDER 2);
status n = VSfdefine (Vdataiid, FIELD37NAME, DFNTiFLOAT32, ORDER73) ;

/*

* Finalize the definition of the fields.

*/

status n = VSsetfields (vdata id, FIELDNAME LIST);

/*

* Buffer the data by the record for fully interlaced mode. Note that the
* first three elements contain the three values of the first field, the

* fourth element contains the value of the second field, and the last two
* elements contain the two values of the third field.

*/

for (rec num = 0; rec_num < N_RECORDS; rec_num++)

{

data buf[rec num] [0] = 1.0 * rec num;
data_buf[rec num] [1] = 2.0 * rec num;
data buf[rec num][2] = 3.0 * rec num;
data buf[rec num] [3] = 0.1 + rec num;
data_buf[rec num] [4] = 0.0;
data buf[rec num] [5] = 65.0;

/*
* Write the data from data buf to the vdata with full interlacing mode.
*/
num of records = VSwrite (vdata id, (uint8 *)data buf, N RECORDS,
FULL INTERLACE) ;

164

June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide

/*
* Terminate access to the vdata and to the VS interface, then close
* the HDF file.

*/
status_32 = VSdetach (vdata id);
status_ n = Vend (file id);

status 32 = Hclose (file id);

FORTRAN:

program write to vdata
implicit none

C
C Parameter declaration
c
character*18 FILE NAME
character*13 CLASS NAME
character*14 VDATA NAME
character*8 FIELDl1 NAME
character*4 FIELDZ NAME
character*11l FIELD3 NAME
character*27 FIELDNAME LIST
integer N_RECORDS
integer ORDER 1, ORDER 2, ORDER 3
integer N _VALS PER REC
c
parameter (FILE NAME = ’General Vdatas.hdf’,

+ CLASS NAME = ’Particle Data’,

+ VDATA NAME = ’Solid Particle’,

+ FIELD1 NAME = ’Position’,

+ FIELD2 NAME = 'Mass’,

+ FIELD3_NAME = ’Temperature’,

+ FIELDNAME LIST = ’'Position,Mass, Temperature’)
parameter (N _RECORDS = 10,

+ ORDER 1 =3,

+ ORDER 2 = 1,

+ ORDER 3 = 2,

+ N _VALS PER REC = ORDER 1 + ORDER 2 + ORDER 3)
integer DFACC WRITE, DFNT FLOAT32, FULL INTERLACE
parameter (DFACC_WRITE = 2,

+ DFNT FLOAT32 =5,

+ FULL INTERLACE = 0)

C
C Function declaration
c
integer hopen, hclose
integer vfstart, vsfatch, vsfsnam, vsfscls, vsffdef, vsfsfld,
+ vsfwrt, vsfdtch, vfend
C
C**** Variable declaration R R R R R R R I i I i i
C
integer status
integer file id, vdata id
integer vdata ref, rec num, num of records
real data buf (N VALS PER REC, N RECORDS)
c
c**** End Of variable declaration KAk KAk Ak hk kA hkhkhkkhkr kA hkkhkhkhrhkhkhkkhkrkhrhkhkkhrk*x
C
c
C Open the HDF file for writing.

June 2017 165

The HDF Group

Table of Contents Chapter 4 - Vdatas (VS API)

C
file id = hopen(FILE NAME, DFACC WRITE, 0)
C
C Initialize the VS interface.
C
status = vfstart(file id)
C
C Create a new vdata.
C
vdata ref = -1
vdata id = vsfatch(file id, vdata ref, 'w’)
C
C Set name and class name of the vdata.
C
status = vsfsnam(vdata id, VDATA NAME)
status = vsfscls(vdata_id, CLASS NAME)
C
C Introduce each field’s name, data type, and order. This is the
C first part in defining a field.
C
status = vsffdef(vdata id, FIELDl NAME, DFNT FLOAT32, ORDER 1)
status = vsffdef (vdata_id, FIELD2 NAME, DEFNT FLOAT32, ORDER 2)
status = vsffdef (vdata_id, FIELD3 NAME, DFNT FLOAT32, ORDER 3)
C
C Finalize the definition of the fields.
C
status = vsfsfld(vdata id, FIELDNAME LIST)
C
C Buffer the data by the record for fully interlaced mode. Note that the
C first three elements contain the three values of the first field,
C the forth element contains the value of the second field, and the last two
C elements contain the two values of the third field.
C
do 10 rec num = 1, N_RECORDS
data buf(l, rec num) = 1.0 * rec num
data_buf (2, rec num) = 2.0 * rec num
data buf (3, rec num) = 3.0 * rec num
data buf (4, rec num) = 0.1 + rec num
data_buf (5, rec num) = 0.0
data buf (6, rec num) = 65.0
10 continue
C
c Write the data from data buf to the vdata with the full interlacing mode.
C
num of records = vsfwrt(vdata id, data buf, N_RECORDS,
+ FULL INTERLACE)
C
C Terminate access to the vdata and to the VS interface, and
C close the HDF file.
C

status = vsfdtch(vdata id)
status = vfend(file id)
status = hclose(file id)
end

4.5.2.3 Setting Up Linked Block Vdatas: VSsetblocksize and VSsetnumblocks

Unless otherwise specified, Vdata data sets stored in linked blocks employ a default size and num-
ber of linked blocks, as set in HDF APPENDABLE BLOCK LEN and HDF APPENDABLE BLOCK NUM,
respectively. VSsetblocksize and VSsetnumblocks provide a mechanism for managing these val-
ues when the defaults are not appropriate.

166

June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

VSsetblocksize and VSsetnumblocks can be called to change the default linked block settings.
The parameter vdata_id identifies the vdata. The size of blocks is specified in bytes in block size
and number of blocks in num_blocks.

VSsetblocksize and VSsetnumblocks must be called before any data is written to a vdata; once a
linked block element has been created, neither the block size nor the number blocks can be
changed. Further note that VSsetblocksize sets the block size only for blocks following the first
block.

See the notes regarding the potential performance impact of block size in Section 14.4.2, "Tuning
Linked Block Size to Enhance Performance”

VSsetblocksize and VSsetnumblocks both return success (or 0) upon successful completion or
FAIL (or -1). Their parameters are further defined in Table 4G.

TABLE 4G

VSsetblocksize and VSsetnumblocks Parameter Lists

Routine Parameter Type
Name
[Return Type] Parameter Description
(FORTRAN- C FORTRAN-77
77)
VSsetblocksize vdata_id int32 integer Vdata identifier
intn
(st['setb]]sz) block_size int32 integer Size of each block, in bytes
VSsetnumblocks vdata_id int32 integer Vdata identifier
[intn] um block int32 nteger Number of blocks to be used for the
(vsfsetnmbl) um_blocks e linked-block element

4.5.2.4 Packing or Unpacking Field Data: VSfpack

Storing fields of mixed data types is an efficient use of disk space and is useful in applications that
use structures. However, while data structures in memory containing fields of variable lengths can
contain alignment bytes, field data stored in a vdata cannot include them. This is true for both
fully-interlaced and non-interlaced data. Because of this storing limitation, when variable-length
field types are used, it is generally not possible to write data directly from a structure in memory
into a vdata in a file with a VSwrite call or to read data directly into a buffer from the vdata with a
call to VSread. Thus, when writing, VSfpack is used to pack field data into a temporary buffer by
removing the padding, or alignment bytes, and when reading, to unpack field data into vdata fields
by adding necessary alignment bytes. The syntax for VSfpack is as follows:

C: status = VSfpack(vdata id, action, fields in buf, buf, buf size,
n records, fieldname list, bufptrs);

FORTRAN: status = vsfcpak(vdata id, action, fields in buf, buf, buf size,
n records, fieldname list, bufptrs)

OR status = vsfnpak(vdata id, action, fields in buf, buf, buf size,
n records, fieldname list, bufptrs)

The process of removing the alignment bytes is called “packing the array.” An illustration of this
process is provided in Figure 4g. The data provided by the user is stored in the structure in mem-
ory. The field values are aligned with padded bytes. VSfpack packs the data into the array in
memory after removing the padded bytes. The packed data is then written to the vdata in the file
by VSwrite.

June 2017 167

The HDF Group

Table of Contents Chapter 4 - Vdatas (VS API)

FIGURE 4g

Removing Alignment Bytes When Writing Data From a C Structure to a Vdata

111 222 | 333 |
T2]3] Complex vdata
11.11 22.22 | 33.33 | .
ATBIC \ Mixed_Data_Type
Array
(non-interlaced in memory) Temp | Height | Speed Ident
/ (4 bytes) | (2bytes) | (4 bytes) (1 byte)
1.11 1 11.11 A 1.11 1 11.11 A
2.22 2 22.22 B 2.22 2 22.22 B
3.33 3 33.33 C 3.33 3 33.33 C
Structure Array Vdata
(aligned in memory) (interlaced in memory) (interlaced in file)

The process illustrated in Figure 4g can be read in the reverse direction for "unpacking the array,"
that is when using VSfpack to fill a structure in memory with vdata field data. In this case, align-
ment bytes are added to the field data to make the data conform to the specific alignment require-
ments of the platform.

VSfpack performs both tasks, packing and unpacking, and the parameter action specifies the
appropriate action for the routine. Valid values for the parameter action are HDF_vsPAck (or 0) for
packing and HDF vsunpack (or 1) for unpacking.

The calling program must allocate sufficient space for the buffer buf to hold all packed or
unpacked fields. The parameter buf size specifies the size of the buffer buf and should be at least
n_records *(the total size of all fields specified in fields_in_buf).

When VSfpack is called to pack field values into buf, the parameter fields in_buf must specify all
fields of the vdata. This can be accomplished either by listing all of the field names in
fields_in_buf or by setting fields _in_bufto nurL in C or to one blank character in FORTRAN-77.

When VSfpack is called to unpack field values, the parameter fields_in_buf may specify a subset
of the vdata fields. The parameter fields_in_buf can be set to NuLL in C or to one space character in
FORTRAN-77 to specify all fields in the vdata.

The parameter fieldname_list specifies the field(s) to be packed or unpacked. The parameter bufp-
trs provides pointers to the buffers for each field to be packed or unpacked. The calling program is
responsible for allocating sufficient space for each field buffer. Significant differences between
the C and FORTRAN-77 functionality are described in the following paragraphs.

In C, fieldname_list can list either all of the fields specified by fields in_buf or a subset of those
fields. Only if fields_in_buf specifies all of the vdata fields, then fields_in_buf can be set to NULL
to specify all vdata fields. The parameter bufptrs contains an array of pointers to the buffers where
field data will be packed or unpacked.

The FORTRAN-77 routines can pack or unpack only one field at a time, so the parameter
fieldname_list contains only the name of that field. The parameter bufptrs is the buffer for that
field.

The FORTRAN-77 version of VSfpack has two routines: vsfepak packs or unpacks character
data and vsfnpak packs or unpacks numeric data. Refer to the FORTRAN-77 version in Example
4 for a more specific illustration.

VSfpack returns either succeep (or 0) or FATL (or -1). The parameters for VSfpack are described
in Table 4H.

168

June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

TABLE 4H VSfpack Parameter List
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
vdata_id int32 integer Vdata identifier
action intn integer Action to be performed
fields in_buf char * character*(*) Fields in the buffer buf to write or read
from the vdata
buf VOIDP integer Buffer for the vdata values
VSfpack - - - —
[intn] buf size intn integer Buffer size in bytes
(vsfepak/vsfnpak) n_records intn integer Number of records to pack or unpack
fieldname_list char * character*(¥) Names of the fields to be packed or
unpacked
<valid numeric data . .
bufptrs VOIDP type>(*)/ Array of pomter§ to the field buffers in C
and field buffer in FORTRAN-77
character*(*)
EXAMPLE 4. Writing a Multi-field and Mixed-type Vdata with Packing

This example illustrates the use of VSfpack/vsfnpak/vsfepak and VSwrite/vsfwrit to write a
vdata with data of different types. Note that the approach used in Example 3 makes it difficult for
the vdata to have mixed-type data.

In this example, the program creates an HDF file, named "Packed Vdata.hdf", then defines a
vdata which is named "Mixed Data Vdata" and belongs to class "General Data Class". The vdata
contains four order-1 fields, "Temp", "Height", "Speed", and "Ident" of type float32, intl6,
float32, and char8, respectively. The program then packs the data in fully interlaced mode into a
databuf and writes the packed data to the vdata. Note that, in the C example, a VSfpack call packs
allN_RECORDS and a VSwrite call writes out all N RECORDS records. In the Fortran example,
N_RECORDS of each field are packed using separate calls to vsfnpak and vsfcpak; vsfwrit writes
packed data to the vdata.

C:
#include "hdf.h"
#define FILE_ NAME "Packed Vdata.hdf"
#define VDATA NAME "Mixed Data Vdata"
#define CLASS_NAME "General Data Class"
#define FIELD1 NAME "Temp"
#define FIELD2_NAME "Height™"
#define FIELD3_NAME "Speed"
#define FIELD4 NAME "Ident"
#define ORDER 1 /* number of values in the field */
#define N_RECORDS 20 /* number of records the vdata contains */
#define N _FIELDS 4 /* number of fields in the vdata */
#define FIELDNAME LIST "Temp, Height, Speed, Ident" /* No spaces b/w names */

/* number of bytes of the data to be written, i.e., the size of all the
field values combined times the number of records */
#define BUF SIZE (2*sizeof(float32) + sizeof(intl6) + sizeof(char)) * N_RECORDS

main()

{

/*‘k*****‘k******‘k********** Variable declaration ‘k‘k*****‘k*****‘k*****‘k‘k*****/

intn status n; /* returned status for functions returning an intn */

June 2017 169

The HDF Group

Table of Contents

Chapter 4 -- Vdatas (VS API)

int

32 status 32,
file id, vdata id,
vdata_ref = -1,
num_of records;

/* vdata’s reference number,
/* number of records actually written to the vdata

/* returned status for functions returning an int32

set to -1 to create

to hold values
to hold values
to hold values
to hold values

of first field
of second field
of third field
of fourth field

float32 temp[N RECORDS]; /* buffer
intlé6 height [N_RECORDS] ; /* buffer
float32 speed[N RECORDS]; /* buffer
char8 ident [N_RECORDS] ; /* buffer
VOIDP
ers*/
uintle
int i;

fldbufptrs [N _FIELDS];/*pointers to be pointing to the field buff-

*/

*/
*/
*/
*/
*/
*/

databuf [BUF SIZE]; /* buffer to hold the data after being packed*/

/********************** End Of Varlable declaratlon **********************/

/%
* Create an HDF file.
*/

file id = Hopen (FILE NAME, DFACC CREATE, 0);

le_id);

VSattach (file id, vdata ref,

* Set name and class name of the vdata.

(vdataiid, VDATA NAME) ;
(vdata id, CLASS NAME) ;

S

/*

* Initialize the VS interface.
*/

status n = Vstart (fi
/*

* Create a new vdata.
*/

vdata id =

/*

*/

status 32 = VSsetname
status_32 = VSsetclas
/*

* Introduce each fiel

d’s name,

data type,

* part in defining a vdata field.

FIELD1 NAME,
FIELDZ_ NAME,
FIELD3 NAME,
FIELD4 NAME,

and order.

W' ;

This is the first

DFNT FLOAT32, ORDER);
DFNT INT16, ORDER);
DFNT FLOAT32, ORDER);
DEFNT CHAR8, ORDER);

the definition of the fields of the vdata.

(vdata id, FIELDNAME LIST);

* Enter data values into the field buffers by the records.

*/
status n = VSfdefine (vdata id,
status n = VSfdefine (vdata id,
status n = VSfdefine (vdata id,
status n = VSfdefine (vdata id,
/*
* Finalize
*/
status n = VSsetfields
/*
*/
for (i = 0; i < N_RECORDS; i++)
{
temp[i] = 1.11 * (i+1);
height[i] = i;
speed[i] = 1.11 * (i+1);
ident[i] = 'A’ + i;
}
/*

* Build an array of pointers each of which points to a field buffer that

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

* holds all values of the field.

*/

fldbufptrs[0] = &temp[O0];
fldbufptrs[1l] = &height[0];
fldbufptrs[2] = &speed[0];
fldbufptrs([3] = &ident[0];
/*

* Pack all data in the field buffers that are pointed to by the set of

* pointers fldbufptrs, and store the packed data into the buffer

* databuf. Note that the second parameter is HDF VSPACK for packing.

*/

status _n = VSfpack (vdata id, HDF VSPACK, NULL, (VOIDP)databuf,
BUF_SIZE, N_RECORDS, NULL, (VOIDP)fldbufptrs);

/%

* Write all records of the packed data to the vdata.

*/

num of records = VSwrite (vdata id, (uint8 *)databuf, N_RECORDS,
FULL INTERLACE) ;

/*
* Terminate access to the vdata and the VS interface, then close
* the HDF file.

*/

status_32 = VSdetach (vdata id);

status_ n = Vend (file id);

status 32 = Hclose (file id);

FORTRAN:

C
C
C

program write mixed vdata

implicit none
Parameter declaration

character*16 FILE NAME

character*18 CLASS NAME

character*16 VDATA NAME

character*4 FIELD1 NAME

character*6 FIELDZ NAME

character*5 FIELD3 NAME

character*5 FIELD4 NAME

character*23 FIELDNAME LIST

integer N RECORDS, N FIELDS, ORDER
integer BUF_SIZE

parameter (FILE NAME "Packed Vdata.hdf’,

+ CLASS_NAME = ’General Data Class’,
+ VDATA NAME = ’Mixed Data Vdata’,

+ FIELD1 NAME = ’'Temp’,

+ FIELD2 NAME = ’Height’,

+ FIELD3 NAME = ’Speed’,

+ FIELD4 NAME = 'Ident’,

+ FIELDNAME LIST = ’'Temp,Height, Speed, Ident’)
parameter (N_RECORDS = 20,

+ N FIELDS = 4,

+ ORDER =1,

+ BUF SIZE = (4 + 2 + 4 + 1)*N_RECORDS)

integer DFACC WRITE, DFNT FLOAT32, DFNT INT16, DEFNT CHARS,
+ FULL_INTERLACE, HDF_VSPACK

June 2017

171

The HDF Group

Table of Contents

Chapter 4 -- Vdatas (VS API)

+ o+ o+ o+

+

C

parameter (DFACC_WRITE =2,
DFNT FLOAT32 =5,
DENT_INT16 = 22,
DFNT CHARS = 4,
FULL INTERLACE = O,
HDF_VSPACK = 0)

Function declaration

integer hopen, hclose

integer vfstart, vsfatch, vsfsnam, vsfscls, vsffdef, vsfsfld,
vsfnpak, vsfcpak, vsfwrit, vsfdtch, vfend

C**‘k‘k variable declaration KAk Ak Ak hkhkhkhhkhkhkhkhk kA hkhkhkhkrhkhkhkkhkhkrhkkhkhkkhkrkhhkhkkhkkrxkx

C

Q

C**‘k‘k

Q Qa0

Q

@]

Q Q

Qa0

integer status
integer file id, vdata_ id
integer vdata ref, num of records

real temp (N_RECORDS)
integer*2 height (N_RECORDS)
real speed (N_RECORDS)

character ident (N_RECORDS)
integer i

Buffer for packed data should be big enough to hold N RECORDS.

integer databuf (BUF SIZE/4 + 1)

End of Variable declaration KAk KAk Ak hkhkhkhk A hkhkhkkhkrhkhkhkhkhkhrhkkhkhkkhkhkhrhkkhkkrk*x

Open the HDF file for writing.

file id = hopen(FILE NAME, DFACC WRITE,
Initialize the VS interface.

status = vfstart(file id)

Create a new vdata.

vdata ref = -1
vdata_id = vsfatch(file_ id, vdata_ref,

Set name and class name of the vdata.

status = vsfsnam(vdata id, VDATA NAME)
status = vsfscls(vdata id, CLASS NAME)

Introduce each field’s name, data type,
first part in defining a field.

status = vsffdef(vdata id, FIELDl NAME,
status = vsffdef (vdata_id, FIELD2 NAME,
status = vsffdef (vdata_id, FIELD3 NAME,
status = vsffdef (vdata id, FIELD4 NAME,

Finalize the definition of the fields.

0)

W'

and order. This is the

DFNT FLOAT32, ORDER)
DFNT INT16, ORDER)
DFNT FLOAT32, ORDER)
DFNT CHAR8, ORDER)

status = vsfsfld(vdata_ id, FIELDNAME LIST)

Enter data values into the field databufs by the records.

172

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide

C
do 10 i = 1, N _RECORDS
temp (1) =1.11 * i
height(i) =1 - 1
speed(i) = 1.11 * i
ident (i) = char (64+1i)
10 continue
C
C Pack N _RECORDS of data into databuf. In Fortran, each field is packed
C using separate calls to vsfnpak or vsfcpak.
C
status = vsfnpak(vdata id, HDF VSPACK, ’ ', databuf, BUF SIZE,
+ N_RECORDS, FIELDl1 NAME, temp)
status = vsfnpak(vdata id, HDF VSPACK, ’ ', databuf, BUF SIZE,
+ N_RECORDS, FIELD2 NAME, height)
status = vsfnpak(vdata id, HDF VSPACK, ’ ', databuf, BUF SIZE,
+ N_RECORDS, FIELD3_NAME, speed)
status = vsfcpak(vdata id, HDF VSPACK, ’ ', databuf, BUF SIZE,
+ N RECORDS, FIELD4 NAME, ident)
C
C Write all the records of the packed data to the vdata.
C
num of records = vsfwrit(vdata id, databuf, N_RECORDS,
+ FULL INTERLACE)
C
C Terminate access to the vdata and to the VS interface, and
C close the HDF file.
C
status = vsfdtch(vdata id)
status = vfend(file id)

status = hclose(file id)
end

4.6 Reading from Vdatas

Reading from vdatas is more complicated than writing to vdatas, as it usually involves searching
for a particular vdata, then searching within that vdata, before actually reading data. The process
of reading from vdatas can be summarized as follows:

10. Identify the appropriate vdata in the file.

11. Obtain information about the vdata.

12. Read in the desired data.
Only Step 3 will be covered in this section assuming that the vdata of interest and its data informa-
tion is known. Step 1 is covered in Section 4.7 on page 182 and Step 2 is covered in Section 4.9 on
page 199.
Step 3 can be expanded into the following:

1. Open the file.

2. Initialize the Vdata interface.

3. Initiate access to the vdata.

4. Optionally seek to the appropriate record.

5. Initialize the fields to be read.

6. Read the data.

7. If the fields have different data types, unpack the field data.

8. Terminate access to the vdata.

June 2017 173

The HDF Group Table of Contents Chapter 4 - Vdatas (VS API)

9. Terminate access to the Vdata interface.
10. Close the file.

The following sequence of function calls corresponds to the above steps:

C: file id = Hopen(filename, file access mode, num dds block);
status = Vstart (file id);
vdata id = VSattach(file id, vdata ref, vdata access mode);
record pos = VSseek (vdata id, record index);
status = VSsetfields(vdata id, fieldname list);
records read = VSread(vdata id, databuf, n records, interlace mode);
status = VSfpack(vdata id, action, fields in buf, buf, buf size,

n records, fieldname list, bufptrs);

status VSdetach (vdata id);
status = Vend(file id);

Hclose (file id);

status

FORTRAN: file id = hopen(filename, file access mode, num dds block)
status = vfstart (file id)
vdata id = vsfatch(file id, vdata ref, vdata access mode)
record pos = vsfseek(vdata id, record index)
status = vsfsfld(vdata id, fieldname list)

records_read = vsfrd(vdata id, databuf, n records, interlace mode)
OR records_read = vsfrdc(vdata id, databuf, n records, interlace mode)

status = vsfcpak(vdata id, action, fields in buf, buf, buf size,
n records, fieldname list, bufptrs)

OR status = vsfrnpak(vdata id, action, fields in buf, buf, buf size,

n records, fieldname list, bufptrs)

status = vsfdtch(vdata id)
vfend(file id)
status = hclose (file id)

status

4.6.1 Initializing the Fields for Read Access: VSsetfields

VSsetfields is used to establish access to the fields to be read by the next read operation. The
argument fieldname_list is a comma-separated string of the field names with no white space. The
order the field names occur in fieldname list is the order in which the fields will be read. For
example, assume that a vdata contains fields named A, B, C, D, E, F in that order. The following
declarations demonstrate how to use fieldname_list to read a single field, a collection of random
fields, and all the fields in reverse order:

* Single field: fieldname_list = “B”

* Collection of fields: fieldname list = “n,&”

* Reverse order: fieldname_list=“r,E,D,C,B,A”

VSsetfields returns either succeeD (or 0) or FAIL (or -1). The parameters for VSsetfields are fur-
ther defined in Table 4E on page 159.

4.6.2 Reading from the Current Vdata: VSread

VSread sequentially retrieves data from the records in a vdata. The parameter databuf is the
buffer to store the retrieved data, n_records specifies the number of records to retrieve, and

174 June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

interlace_mode specifies the interlace mode, FULL_INTERLACE (Or 0) Or NO_INTERLACE (or 1), to
be used in the contents of databuf.

Prior to the first VSread call, VSsetfields must be called.

If a VSread call is successful, the data returned in databuf'is formatted according to the interlace
mode specified by the parameter inferlace_mode and the data fields appear in the order specified
in the last call to VSsetfields for that vdata.

By default, VSread reads from the first vdata record. To retrieve an arbitrary record from a vdata,
use VSseek to specify the record position before calling VSread. VSseek is described in
Section 4.5.2.1 on page 160.

The FORTRAN-77 version of VSread has three routines: vsfrd reads buffered numeric data,
vsfrdc reads buffered character data and vsfread reads generic packed data.

VSread returns the total number of records read if successful and ra11 (or -1) otherwise. The
parameters for VSread are further defined in Table 41.

TABLE 41

VSread Parameter List

Routine Parameter Type
Name
[Return Type] Parameter Description
(FORTRAN- C FORTRAN-77
77)
vdata_id int32 integer Vdata identifier
VSread <vali ; < (k
int32 databuf uint8* valid numeric data' type(*)/ Buffer for the retrieved data
[int32] character®(*) / integer
(vsfrd/vsfrde/
vsfread) n_records int32 integer Number of records to be retrieved
interlace_mode int32 integer Interlace mode of the buffered data

VSsetfields and VSread may be called several times to read from the same vdata. However, note
that VSread operations are sequential. Thus, in the following code segment, the first call to
VSread returns ten “A” data values from the first ten elements in the vdata, while the second call
to VSread returns ten “B” data values from the second ten elements (elements 10 to 19) in the
vdata.

status = VSsetfields(vdata id, "A");
records read = VSread(vdata id, bufferA, 10, interlace mode);

status = VSsetfields(vdata id, "B");
records_read = VSread(vdata id, bufferB, 10, interlace mode);

To read the first ten “B” data values, the access routine VSseek must be called to explicitly posi-
tion the read pointer back to the position of the first record. The following code segment reads the
first ten “A” and “B” values into two separate float arrays bufferA and bufferB.

status = VSsetfields(vdata id, "A");
records read = VSread(vdata id, bufferA, 10, interlace mode);

record pos = VSseek(vdata id, 0); /* seeks to first record */
status = VSsetfields(vdata id, "B");
records read = VSread(vdata id, bufferB, 10, interlace mode);

June 2017 175

The HDF Group

Table of Contents Chapter 4 - Vdatas (VS API)

EXAMPLE 5.

Reading a Vdata of Homogeneous Type

This example illustrates the use of VSfind/vsffnd to locate a vdata given its name, VSseek/vsf-
seek to move the current position to a desired record, and VSread/vsfrd to read the data of several
records. The function VSfind will be discussed in Section 4.7.3. The approach used in this exam-
ple can only read data written by a program such as that in Example 3, i.e., without packing.
Reading mixed data vdatas must use the approach illustrated in Example 6.

The program reads 5 records starting from the fourth record of the two fields "Position" and "Tem-
perature" in the vdata "Solid Particle" from the file "General Vdatas.hdf". After the program uses
VSfind/vsffnd to obtain the reference number of the vdata, it uses VSseek/vsfseek to place the
current position at the fourth record, then starts reading 5 records, and displays the data.

C:
#include "hdf.h"
#define FILE NAME "General Vdatas.hdf"
#define VDATA NAME "Solid Particle"
#define N_RECORDS 5 /* number of records the vdata contains */
#define RECORD_ INDEX 3 /* position where reading starts - 4th record */
#define ORDER 1 3 /* order of first field to be read */
#define ORDER 2 2 /* order of second field to be read */
#define FIELDNAME LIST "Position,Temperature" /* only two fields are read */
#define N _VALS PER REC (ORDER 1 + ORDER 2)
/* number of values per record */
main()
{
/*‘k*****‘k‘k****‘k‘k*****‘k**** Variable declaration ‘k‘k************************/
intn status n; /* returned status for functions returning an intn */
int32 status 32, /* returned status for functions returning an int32 */
file id, vdata id,
vdata_ ref, /* vdata’s reference number */
num of records, /* number of records actually written to the vdata */
record pos; /* position of the current record */
intl6é i, rec_num; /* current record number in the vdata */
float32 databuf [N RECORDS] [N VALS PER REC]; /* buffer for vdata values */
/********************** End Of Variable declaration **********************/
/*
* Open the HDF file for reading.
*/
file id = Hopen (FILE NAME, DFACC_READ, 0);
/%
* Initialize the VS interface.
*/
status n = Vstart (file id);
/*
* Get the reference number of the vdata, whose name is specified in
* VDATA NAME, using VSfind, which will be discussed in Section 4.7.3.
*/
vdata ref = VSfind (file id, VDATA NAME);
/*
* Attach to the vdata for reading if it is found, otherwise
* exit the program.
*/
176 June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

if (vdata ref == 0) exit;
vdata id = VsSattach (file id, vdata_ref, "r");

/%
* Specify the fields that will be read.

*/

status n = VSsetfields (vdata id, FIELDNAME LIST);

/*

* Place the current point to the position specified in RECORD INDEX.

*/
record pos = VSseek (vdata id, RECORD INDEX) ;

/*

* Read the next N _RECORDS records from the vdata and store the data

* in the buffer databuf with fully interlaced mode.

*/

num of records = VSread (vdata id, (uint8 *)databuf, N_RECORDS,
FULL INTERLACE) ;

/*

* Display the read data as many records as the number of records

* returned by VSread.

*/

printf ("\n Particle Position Temperature Range\n\n");

for (rec num = 0; rec num < num of records; rec numt+)

{

printf (" $6.2f, %6.2f, $6.2f $6.2f, %6.2f\n",

databuf[rec num] [0], databuf[rec num][1], databuf[rec num][2],
databuf[rec_num] [3], databuf[rec num] [4]);

/*
* Terminate access to the vdata and to the VS interface, then close
* the HDF file.

*/

status 32 = VSdetach (vdata id);

status n = Vend (file id);

status_32 = Hclose (file id);

FORTRAN:

@]

program read from vdata

implicit none
Parameter declaration
character*18 FILE NAME

character*14 VDATA NAME
character*20 FIELDNAME LIST

integer N RECORDS, RECORD INDEX

integer ORDER 1, ORDER 2

integer N _VALS PER_REC

parameter (FILE NAME = ’'General Vdatas.hdf’,
+ VDATA NAME = ’Solid Particle’,
+ FIELDNAME LIST = ’'Position,Temperature’)
parameter (N _RECORDS = 5,
+ RECORD_INDEX 3,
+ ORDER 1 = 3,
+ ORDER 2 =2,
+ N_VALS PER REC = ORDER 1 + ORDER 2)

June 2017

177

The HDF Group Table of Contents Chapter 4 - Vdatas (VS API)

integer DFACC_READ, FULL INTERLACE

parameter (DFACC_ READ =1,
+ FULL INTERLACE = 0)
C
C Function declaration
C
integer hopen, hclose
integer vfstart, vsffnd, vsfatch, vsfsfld, vsfrd, vsfseek,
+ vsfdtch, vfend
C
C**** Variable declaration KA KKK KA KR AR KA KR AR AR KA AR A AR A R A A A AR AR AR AR A A A A * K
C
integer status
integer file id, vdata id
integer vdata_ref, rec num, num of records, rec pos
real databuf (N_VALS_PER REC, N _RECORDS)
integer i
C
C**** End Of variable declaration Kk Ak Ak hkkhk kA hkhkhkkhkrhkhkhkkhkhkhrhkkhkkhkhkhhrhkhxkrkx
C
C
C Open the HDF file for reading.
C
file id = hopen(FILE NAME, DFACC READ, 0)
C
C Initialize the VS interface.
c
status = vfstart(file id)
C
C Get the reference number of the vdata, whose name is specified in
C VDATA NAME, using vsffnd, which will be discussed in Section 4.7.3.
C
vdata ref = vsffnd(file id, VDATA NAME)
C
C Attach to the vdata for reading if it is found,
C otherwise exit the program.
C
if (vdata ref .eq. 0) stop
vdata_id = vsfatch(file_ id, vdata ref, 'r’)
C
C Specify the fields that will be read.
c
status = vsfsfld(vdata id, FIELDNAME LIST)
C
C Place the current point to the position specified in RECORD INDEX.
C
rec_pos = vsfseek(vdata id, RECORD_INDEX)
c
c Read the next N RECORDS from the vdata and store the data in the buffer
C databuf with fully interlace mode.
c
num of records = vsfrd(vdata id, databuf, N _RECORDS,
+ FULL INTERLACE)
c
C Display the read data as many records as the number of records returned
C by vsfrd.
c
write(*,*) ’ Particle Position Temperature Range’

write (*,*)
do 10 rec_ num = 1, num of records
write(*,1000) (databuf(i, rec num), i = 1, N_VALS PER REC)

178 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide

10 continue

1000 format(lx,3(f6.2), 8%,2(f6.2))

C

C Terminate access to the vdata and to the VS interface, and
C close the HDF file.

C

status = vsfdtch(vdata id)
status = vfend(file_ id)
status = hclose(file id)
end

EXAMPLE 6. Reading a Multi-field and Mixed-type Vdata with Packing

This example illustrates the use of VSread/vsfread to read part of a mixed data vdata and VSf-
pack/vsfnpak/vsfcpak to unpack the data read.

The program reads the vdata "Mixed Data Vdata" that was written to the file "Packed Vdata.hdf"
by the program in Example 4. In Example 6, all values of the fields "Temp" and "Ident" are read.
The program unpacks and displays all the values after reading is complete. Again, note that in C
only one call to VSread and one call to VSfpack are made to read and unpack all N RECORDS
records. In Fortran, data is read with one call to vsfread, but each field is unpacked using separate
calls to vsfnpak and vsfcpak

C:
#include "hdf.h"

#define N RECORDS 20 /* number of records to be read */
#define N_FIELDS 2 /* number of fields to be read */
#define FILE_NAME "Packed Vdata.hdf"
#define VDATA NAME "Mixed Data Vdata"

#define FIELDNAME LIST "Temp,Ident"

/* number of bytes of the data to be read */
#define BUFFER SIZE (sizeof (float32) + sizeof (char)) * N_RECORDS

main ()

{

/‘k************‘k‘k*****‘k**** Variable declaration **************************/

intn status n; /* returned status for functions returning an intn */
int32 status_ 32, /* returned status for functions returning an int32 */
file id, vdata id,
num_of records, /* number of records actually read */
vdata_ref, /* reference number of the vdata to be read */
buffer size; /* number of bytes the vdata can hold */
float32 itemp[N RECORDS]; /* buffer to hold values of first field *x/
char idents[N_RECORDS]; /* buffer to hold values of fourth field *x/

uint8 databuf [BUFFER SIZE]; /* buffer to hold read data, still packed */
VOIDP fldbufptrs[N FIELDS];/*pointers to be pointing to the field buffers*/
int i

JERERFK KR KKKk x Kk kxKkkkxkk* End of variable declaration ****xxxkkxxkkkxkkkxxkkx /

/%
* Open the HDF file for reading.

*/

file id = Hopen (FILE NAME, DFACC READ, 0);

/*

June 2017 179

The HDF Group

Table of Contents

Chapter 4 -- Vdatas (VS API)

* Initialize the VS interface.
*/
status_n = Vstart (file id);

/*

* Get the reference number of the vdata, whose name is specified in
* VDATA NAME, using VSfind, which will be discussed in Section 4.7.3.

*/

vdata ref = VSfind (file id, VDATA NAME) ;
/*

* Attach to the vdata for reading.

*/

vdata id = VSattach (file id, vdata_ref, "r");

/%
* Specify the fields that will be read.

*/

status n = VSsetfields(vdata id, FIELDNAME LIST);

/*

* Read N_RECORDS records of the vdata and store the values into the

* buffer databuf.
*/

num of records = VSread (vdata id, (uint8 *)databuf, N_RECORDS,

FULL INTERLACE) ;

/*

* Build an array of pointers each of which points to an array that

* will hold all values of a field after being unpacked.

*/
fldbufptrs[0] = &itemp[0];
fldbufptrs([1l] = &idents[0];

* Unpack the data from the buffer databuf and store the values into the
* appropriate field buffers pointed to by the set of pointers fldbufptrs.
* Note that the second parameter is HDF VSUNPACK for unpacking and the

* number of records is the one returned by VSread.

*/

status_n = VSfpack (vdata id, HDF VSUNPACK, FIELDNAME LIST, (VOIDP)databuf,
BUFFER_SIZE, num of records, NULL, (VOIDP)fldbufptrs);

/*

* Display the read data being stored in the field buffers.
*/

printf ("\n Temp Ident\n");

for (1=0; i < num of records; i++)

printf (" $6.2f %c\n", itemp[i], idents[il]);

/*

* Terminate access to the vdata and the VS interface,

* the HDF file.

*/

status_32 = VSdetach (vdata_id);
status n = Vend (file id);
status_32 = Hclose (file id);

then close

180

June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

FORTRAN:

program read mixed vdata

implicit none

C
C Parameter declaration
C
character*16 FILE NAME
character*16 VDATA NAME
character*4 FIELD1 NAME
character*5 FIELD2 NAME
character*10 FIELDNAME LIST
integer N RECORDS, N FIELDS
integer BUFFER SIZE
C
parameter (FILE NAME = ’Packed Vdata.hdf’,
+ VDATA NAME = ’Mixed Data Vdata’,
+ FIELD1 NAME = 'Temp’,
+ FIELD2 NAME = 'Ident’,
+ FIELDNAME LIST = ’'Temp, Ident’)
parameter (N_RECORDS = 20,
+ N FIELDS = 2,
+ BUFFER SIZE = (4 + 1)*N_RECORDS)
integer DFACC READ, DFNT FLOAT32, DFNT CHARS,
+ FULL INTERLACE, HDF_ VSUNPACK
parameter (DFACC READ =1,
+ DFNT FLOAT32 =5,
+ DFNT CHARS = 4,
+ FULL_INTERLACE =0,
+ HDF VSUNPACK = 1)
c
C Function declaration
c
integer hopen, hclose
integer vfstart, vsfatch, vsffnd, vsfsfld,
+ vsfnpak, vsfcpak, vsfread, vsfdtch, vfend
C
C**** Variable declaration KKK KA KA KR AR KA KR AR A AR AR AR A AR A AR AR AR AR A A AR A A Ak K
c
integer status
integer file id, vdata id
integer vdata ref, num of records
real temp (N_RECORDS)
character ident (N_RECORDS)
integer i
C
C Buffer for read packed data should be big enough to hold N RECORDS.
c
integer databuf (BUFFER SIZE/4 + 1)
c
C**** End of Variable declaration R R R R R R Rk i R
C
C
C Open the HDF file for reading.
c
file id = hopen (FILE NAME, DFACC READ, 0)
c
C Initialize the VS interface.
C
status vistart (file id)
C

June 2017

181

The HDF Group

Table of Contents Chapter 4 - Vdatas (VS API)

4.7

C Get the reference number of the vdata, whose name is specified in
C VDATA NAME, using vsffnd, which will be discussed in Section 4.7.3.
C
vdata ref = vsffnd(file id, VDATA NAME)
C
C Attach to the vdata for reading if it is found,
c otherwise exit the program.
C
if (vdata ref .eq. 0) stop
vdata id = vsfatch(file id, vdata ref, 'r’)
C
C Specify the fields that will be read.
C
status = vsfsfld(vdata id, FIELDNAME LIST)
C
c Read N_RECORDS records of the vdata and store the values into the databuf.
C
num of records = vsfread(vdata id, databuf, N_RECORDS,
+ FULL_INTERLACE)
C
C Unpack N RECORDS from databuf into temp and ident arrays.
C In Fortran, each field is unpacked using separate calls to
C vsfnpak or vsfcpak.
C
status = vsfnpak(vdata id, HDF VSUNPACK, FIELDNAME LIST, databuf,
+ BUFFER_SIZE, num of records, FIELDl1 NAME, temp)
status = vsfcpak(vdata id, HDF VSUNPACK, FIELDNAME LIST, databuf,
+ BUFFER_SIZE, num of records, FIELD2 NAME, ident)
C
C Display the read data being stored in the field databufs.
c
write (*,*) ' Temp Ident’
do 10 i = 1, num of records
write (*,1000) temp (i), ident (i)
10 continue
1000 format (3x,F6.2, 4x, a)
c
C Terminate access to the vdata and to the VS interface, and
C close the HDF file.
c

status = vsfdtch(vdata_id)
status = vfend(file id)
status = hclose(file id)
end

Searching for Vdatas in a File

There are several HDF library routines that perform searches for a specific vdata in a file. In this
section, we introduce these routines; methods for obtaining information about the members of a
given vdata are described in the following section.

4.7.1 Finding All Vdatas that are Not Members of a Vgroup: VSlone

A lone vdata is one that is not a member of a vgroup. Vgroups are HDF objects that contain sets
of HDF objects, including vgroups. Vgroups are described in Chapter 5, Vgroups (V API).

182

June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

VSlone searches an HDF file and retrieves the reference numbers of lone vdatas in the file. The
syntax of VSlone is as follows:

C: num of lone vdatas = VSlone(file id, ref array, maxsize);
FORTRAN: num of lone vdatas = vsflone(file id, ref array, maxsize)

The parameter ref array is an array allocated to hold the retrieved reference numbers of lone vda-
tas and the argument maxsize specifies the maximum size of ref array. At most, maxsize reference
numbers will be returned in ref array.

The space that should be allocated for ref array is dependent upon on how many lone vdatas are
expected in the file. A size of MaAXx FIELD sIzE (or 65535) integers is adequate to handle any case.
To use dynamic memory instead of allocating such a large array, first call VSlone with maxsize set
to a small value like O or 1, then use the returned value to allocate memory for ref array to be
passed to a subsequent call to VSlone.

VSlone returns the number of lone vdatas or Fa11L (or -1). The parameters for VSlone are listed in
Table 4] on page 184.

4.7.2 Sequentially Searching for a Vdata: VSgetid

VSgetid sequentially searches through an HDF file to obtain the vdata immediately following the
vdata specified by the reference number in the parameter vdata ref. The syntax of VSgetid is as
follows:

C: ref num = VSgetid(file id, vdata ref);
FORTRAN: ref num = vsfgid(file id, vdata ref)

To obtain the reference number of the first vdata in the file, the user must set the parameter
vdata_ref'to -1. Thus, VSgetid can be repeatedly called, with the initial value of vdata_ref'set to -
1 so that the routine will sequentially return the reference number of each vdata in the file, starting
from the first vdata. After the last vdata is reached, subsequent calls to VSgetid will return FATL
(or -1).

VSgetid returns a vdata reference number or FAIL (or -1). The parameters for VSgetid are listed
in Table 4J on page 184.

4.7.3 Determining a Reference Number from a Vdata Name: VSfind

VSfind searches an HDF file for a vdata with the specified name and returns the vdata reference
number. The syntax of VSfind is as follows:

C: ref num = VSfind(file id, vdata name);
FORTRAN: ref num = vsffnd(file id, vdata name)

The parameter vdata_name is the search key. Although there may be several identically named
vdatas in the file, VSfind will only return the reference number of the first vdata in the file with
the specified name.

VSfind returns either the vdata reference number if the named vdata is found or o otherwise. The
parameters for VSfind are listed in Table 4J.

June 2017 183

The HDF Group Table of Contents Chapter 4 - Vdatas (VS API)
4.7.4 Searching for a Vdata by Field Name: VSfexist
VSfexist queries a vdata for a set of specified field names and is often useful for locating vdatas
containing particular field names. The syntax of the VSfexist function is as follows:
C: status = VSfexist (vdata id, fieldname list);
FORTRAN: status = vsfex(vdata id, fieldname list)
The parameter fieldname list is a string of comma-separated field names containing no white
space, for example, “px, Py, Pz”.
VSfexist returns succeep (or 0) if all of the fields specified in the parameter fieldname_list are
found and ra1L (or -1) otherwise. The parameters for VSfexist are listed in Table 4J.
TABLE 4] VSlone, VSgetid, VSfind, and VSfexist Parameter Lists
Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 7
77)
VSlone file_id int32 integer File identifier
[int32] ref_array int32 [] integer (*) Buffer for a list of lone vdata reference numbers
(vsflone) maxsize int32 integer Maximum number of reference numbers to be buffered
VSgetid file id int32 integer File identifier
[int32]) . .
(vsfgid) vdata_ref int32 integer Reference number of the vdata preceding the vdata
VSfind file id int32 integer File identifier
[int32]
(vsffnd) vdata_name char * character*(¥*) Name of the vdata to find
VSfexist vdata_id int32 integer Vdata identifier
intn
(Efsfei) fieldname_list char * character*(*) Names of the fields to be queried
EXAMPLE 7. Locating a Vdata Containing Specified Field Names

This example illustrates the use of VSgetid/vsfgid to obtain the reference number of each vdata in
an HDF file and the use of VSfexist/vsfex to determine whether a vdata contains specific fields.

In this example, the program searches the HDF file "General Vdatas.hdf" to locate the first vdata
containing the fields "Position" and "Temperature". The HDF file is an output of the program in
Example 3.

C:
#include "hdf.h"

#define FILE_NAME "General Vdatas.hdf"
#define SEARCHED FIELDS "Position, Temperature"

main()

{

/*‘k*********************** Variable declaration ‘k‘k****‘k‘k*****‘k*****‘k‘k*****/

intn status n; /* returned status for functions returning an intn */
int32 status 32, /* returned status for functions returning an int32 */
file id, vdata id, vdata ref,
index = 0; /* index of the vdata in the file - manually kept */

184

June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

int8 found fields; /* TRUE if the specified fields exist in the vdata */
/********************** End of Variable declaration **********************/

/*
* Open the HDF file for reading.

*/

file id = Hopen (FILE NAME, DFACC_READ, 0);

/%
* Initialize the VS interface.
*/

status n = Vstart (file id);

/%
* Set the reference number to -1 to start the search from
* the beginning of file.

*/

vdata ref = -1;

/*
* Assume that the specified fields are not found in the current vdata.
*/

found fields = FALSE;

* Use VSgetid to obtain each vdata by its reference number then
* attach to the vdata and search for the fields. The loop
* terminates when the last vdata is reached or when a vdata which
* contains the fields listed in SEARCHED FIELDS is found.
*/
while ((vdata ref = VSgetid (file id, vdata ref)) != FAIL)
{
vdata id = VSattach (file id, vdata ref, "r");
if ((status n = VSfexist (vdata id, SEARCHED FIELDS)) != FAIL)
{
found fields = TRUE;
break;

/*
* Detach from the current vdata before continuing searching.
*/

status 32 = VSdetach (vdata id);

index++;/* advance the index by 1 for the next vdata */

/*
* Print the index of the vdata containing the fields or a "not found"
* message if no such vdata is found. Also detach from the vdata found.
*/
if (!found fields)
printf ("Fields Position and Temperature were not found.\n");
else
{
printf
("Fields Position and Temperature found in the vdata at position %d\n",
index) ;
status 32 = VSdetach (vdata id);

/*

June 2017

185

The HDF Group

Table of Contents Chapter 4 - Vdatas (VS API)

* Terminate access to the VS interface and close the HDF file.

*/

status_ n = Vend (file id);
status 32 = Hclose (file id);

FORTRAN:

program locate vdata

Q

Q

C*‘k**

C****

QQQQ

Qa0

Qa0

Qa0

o

[HO OO O N =

implicit none
Parameter declaration

character*18 FILE NAME
character*20 SEARCHED FIELDS

parameter (FILE NAME 'General Vdatas.hdf’,
SEARCHED FIELDS = ’Position, Temperature’)

integer DFACC READ

parameter (DFACC READ = 1)

Function declaration

integer hopen, hclose

integer vfstart, vsfatch, vsfgid, vsfex, vsfdtch, vfend

Variable declaration KA K KA KA KR AR KA KR AR A AR AR A A KA R A A A AR AR A AR AR AR A A * K

integer status

integer file id, vdata id, vdata ref
integer index

logical found fields

End of Variable declaration R R R e R e Rk R I I R

Open the HDF file for reading.
file id = hopen (FILE NAME, DFACC READ, 0)
Initialize the VS interface.

status = vfstart(file id)
index = 0

Set the reference number to -1 to start the search from the beginning
of the file.

vdata ref = -1
Assume that the specified fields are not found in the current vdata.

found fields = .FALSE.
continue

Use vsfgid to obtain each vdata by its reference number then
attach to the vdata and search for the fields. The loop terminates
when the last vdata is reached or when a vdata which contains the
fields listed in SEARCHED FIELDS is found.

vdata ref = vsfgid(file id, vdata ref)
if (vdata ref .eq. -1) goto 100

186

June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

vdata id = vsfatch(file id, vdata ref, 'r’)
status = vsfex(vdata id, SEARCHED FIELDS)
if (status .ne. -1) then

found fields = .TRUE.

goto 100
endif
status = vsfdtch(vdata id)
index = index + 1

goto 10

100 continue
Print the index of the vdata containing the fields or a ’"not found’

message if no such vdata is found. Also detach from the vdata found.

Q

if (.NOT.found fields) then
write (*,*)
else

"Fields Positions and Temperature were not found’

write (*, *)
+ 'Fields Positions and Temperature were found in the vdata’,

+ ’ at position ’, index

Q

Terminate access to the vdata

status =
endif

vsfdtch (vdata id)

Q

Terminate access to the VS interface and close the HDF file.

status
status

vsfdtch (vdata id)
vfend(file id)
hclose (file id)

status =
end

4.7.5 Retrieving Vdatas in a File or in a Vgroup: VSgetvdatas

VSgetvdatas retrieves a list containing reference numbers of vdatas in a file or in a vgroup, which
is identified by the parameter id. The syntax of VSgetvdatas is as follows:

C: status = VSgetvdatas (id, start vd, vd count, refarray);

FORTRAN: status = vsfgvdatas(id, start vd, vd count, refarray)

The library commonly use vgroups or vdatas to store HDF objects. For example, a vgroup is used
to represent an SDS and a vdata for an attribute. VSgetvdatas retrieves only the vdatas that were
previously created by user applications, not those that were created by the library internally. They
are referred to as user-created vdatas, for brevity.

When id is a vgroup identifier, only the immediate sub-vdatas will be retrieved; that is, the sub-
vgroups will not be traversed.

The parameter vd_count specifies the number of values that the refarray list can hold and can be
any positive number smaller than Max_rEF (65535). If vd_count is larger than the actual number
of user-created vdatas, then only the actual number of user-created vdatas will be retrieved.

The retrieval starts at the vdatas number start vd going forward in the order which the vdatas
were created. For example, if there are 100 vdatas that can be retrieved, specifying start vd as 90
and vd_count as 10 will retrieve the last ten vdatas. The value for start vd must be non-negative
and smaller than the number of user-created vdatas, which can be obtained by invoking VSgetv-
datas passing in nuLL for the array refarray. This number of user-created vdatas will also allow
applications to sufficiently allocate space for refarray.

June 2017 187

The HDF Group

Table of Contents Chapter 4 -- Vdatas (VS API)

* When start_vd is 0, the retrieval will start at the beginning of the file or the first sub-vdata of
the specified vgroup.

* When start vd is smaller than the number of user-created vdatas in the file or the specified
vgroup, VSgetvdatas will start retrieving vdatas from the vdata number start vd.

* When start_vd equals or is greater than the number of user-created vdatas in the file or the
vgroup, VSgetvdatas will return FaTL (or -1).

Following are some examples of using VSgetvdatas to get the reference numbers of vdatas in a
file, assuming that the file has been opened for reading successfully:

C:

/* Call VSgetvdatas the first time to get the number of vdatas in
the file to allocate ref array */
n vds = VSgetvdatas(file id, 0, 0, NULL);

/* Allocate space to retrieve reference numbers of n vds vdatas */
ref array = (uintlé *)HDmalloc (sizeof (uintl6)*n vds);

/* To get all the vdatas in the file: */
n vds = VSgetvdatas(file id, 0, n vds, ref array);

/* Assuming n vds=100, to get the first 10 vdatas in the file: */
n vds = VSgetvdatas (file id, 0, 10, ref array);

/* Assuming n vds=100, to get the last 10 vdatas in the file: */
n vds = VSgetvdatas (file id, 90, 10, ref array);

Following are some examples of using VSgetvdatas to get the reference numbers of vdatas in a

parent vgroup:

C:

vdata id = Vattach(file id, vdata ref, "r");

/* Call VSgetvdatas the first time to get the number of vdatas in the
parent vgroup to allocate ref array */

n vds = VSgetvdatas (vgroup id, 0, 0, NULL);

/* Allocate space to retrieve reference numbers of n vds vdatas */
ref array = (uintl6é *)HDmalloc (sizeof (uintl6)*n vds);

/* Get all the vdatas in the parent vgroup */
n vds = VSgetvdatas (vgroup id, 0, n vds, ref array);

/* Close the vgroup */
status = Vdetach (vgroup id);

Note that, in the FORTRAN-77 version, if vd_count is -1 then the function will return the number
of user-created vdatas and disregard refarray; equivalent to passing NuLL for refarray in the C ver-

sion.

VSgetvdatas returns the number of user-created vdatas retrieved, if successful, or Fa1L (or -1),
otherwise. The parameters of this routine are further defined in (See Table 4K on page 190).

4.7.6 Determining Internal Vdata: VSisinternal

The HDF library commonly uses vgroups and vdatas to store metadata or data for the library's
own use. For examples, vgroups are used to represent SDS or raster images, and vdatas are used

188

June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

to store attributes or dimensions. Typically, a user is only interested in vgroups/vdatas that were
created by user applications, not by the library internally. VSisinternal allows an application to
find out if a vdata is internally created.

The syntax of VSisinternal is as follows:
C: is internal = VSisinternal (vdata id);
FORTRAN: Currently unavailable

VSisinternal checks the class name of the given vdata against the list iDF INTERNAL vDs to deter-
mine whether the vdata was previously created by the library instead of by a user application. The

names in HDF_INTERNAL vDs are included:

DIM VALS ("DimVal0.0")

DIM VALSO1l ("DimValO.1")

_HDF_ATTRIBUTE ("Attr0.0")

HDF_SDSVAR ("SDSVar")

HDF_CRDVAR ("Coordvar")

_HDF _CHK_TBL_CLASS (" HDF CHK_TBL_")

RIGATTRCTASS("RIATTRO.0C")
VSisinternal returns TRUE (1) if the inquired vdata is one that was internally created by the library,
FALSE (0) otherwise, and Fa11 (-1) if failure occurs. The parameters of this routine are further

defined in (See Table 4K on page 190).

4.7.7 Retrieving Vdatas in a File or in a Vgroup: VSofclass

VSofclass retrieves reference numbers of vdatas of the specified class in a file or in a vgroup. The
syntax of VSofclass is as follows:

C: status = VSofclass(id, vd class, start vd, vd count, refarray);

FORTRAN: Unavailable

When id is a vgroup identifier, only the immediate sub-vdatas will be checked; that is, the sub-
vgroups will not be traversed. The parameter vd count specifies the number of values that the
refarray list can hold and can be any positive number smaller than Max REF (65535). If vd_count is
larger than the actual number of vdatas that has the specified class, then only the actual number of
such vdatas will be retrieved.

The parameter start vd is the index of the vdatas having the specified class, vd class. The
retrieval starts at the vdata number start_vd going forward in the order which the vdatas were cre-
ated. The combination of start vd and vd_count provide flexibility in the retrieval. For example,
if there are 100 vdatas that can be retrieved, specifying start vd as 90 and vd_count as 10 will
retrieve the last ten such vdatas. The value for start vd must be non-negative and smaller than the
number of vdatas having the specified class. This number can be obtained by invoking VSofclass
passing in nurL for the array refarray and will also allow applications to sufficiently allocate
space for refarray.

When start_vd is 0, the retrieval will start at the beginning of the file or the first sub-vdata of the
specified vgroup.

When start vd is smaller than the number of vdatas having the specified class name, VSofclass
will start retrieving from the vdata number start vd.

When start_vd equals or is greater than the number of vdatas having the specified class name,
VSofclass will return Fa1z (or -1).

VSofclass returns the number of vdatas retrieved, if successful, or Fa1L (or -1), otherwise. The
parameters of this routine are further defined in Table 4K.

June 2017 189

The HDF Group

Table of Contents Chapter 4 -- Vdatas (VS API)

TABLE 4K

4.8

VSgetvdatas, VSisinternal, and VSofclass Parameter Lists

Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 7
77)
id int32 integer File or vgroup identifier
VSggtvdatas start_vd uintn integer Vdata index to start retrieving at
(vsfgﬁtas) vd_count uintn integer Number of vdatas to be retrieved
refarray uintl6 * integer (*) Array to hold reference numbers of retrieved vdatas

VSisinternal
[intn] vdata_id int32 N/A Vdata identifier
(unavailable)

id int32 N/A File or vgroup identifier
vd_class const char * N/A Class name of vdatas to be retrieved
VSofclass -
[intn] start_vd uintn N/A Vdata index to start retrieving at
unavailable
() vd_count uintn N/A Number of vdatas to be retrieved
*refarray uintl6 N/A Array to hold reference numbers of retrieved vdatas
Vdata Attributes

HDF version 4.1r1 and later include the ability to assign attributes to a vdata and/or a vdata field.
The concept of attributes is fully explained in Chapter 3, Scientific Data Sets (SD API). To review
briefly: an attribute has a name, a data type, a number of attribute values, and the attribute values
themselves. All attribute values must be of the same data type. For example, an integer cannot be
added to an attribute value consisting of ten characters, or a character value cannot be included in
an attribute value consisting of 2 32-bit integers.

Any number of attributes can be assigned to either a vdata or any single field in a vdata. However,
each attribute name should be unique within its scope. In other words, the name of a field’s
attribute must be unique among all attributes that belong to that same field, and the name of a
vdata’s attribute must be unique among all attributes assigned to the same vdata.

The following subsections describe routines that retrieve various information about vdata and
vdata field attributes. Those routines that access field attributes require the field index as a param-
eter (field _index.)

4.8.1 Querying the Index of a Vdata Field Given the Field Name: VSfindex

VSfindex retrieves the index of a field given its name, field name, and stores the value in the
parameter field index. The syntax of VSfindex is as follows:

C: status = VSfindex(vdata id, field name, &field index);
FORTRAN: status = vsffidx(vdata id, field name, field index)

The parameter field index is the index number that uniquely identifies the location of the field
within the vdata. Field index numbers are assigned in increasing order and are zero-based: for
example, a field index value of 4 would refer to the fifth field in the vdata.

VSfindex returns succeep (or 0) if successful and ra11 (or -1) otherwise. The parameters for
VSfindex are further defined in Table 4L.

190

June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents

HDF User’s Guide

VSfindex Parameter List

Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 7
77)
VSfindex vdata_id int32 integer Vdata identifier
[intn] field_name char * character*(*) Name of the vdata field
(vsffidx) . - .
field_index int32 * integer Index of the vdata field

4.8.2 Setting the Attribute of a Vdata or Vdata Field: VSsetattr
VSsetattr attaches an attribute to a vdata or a vdata field. The syntax of VSsetattr is as follows:

C: status = VSsetattr(vdata id, field index, attr name, data type,
n values, values);

FORTRAN: status = vsfsnat(vdata id, field index, attr name, data type,
n values, values)
OR status = vsfscat (vdata id, field index, attr name, data type,

n values, values)

If the attribute has already been attached, the new attribute values will replace the current values,
provided the data type and the number of attribute values (n_values) have not been changed. If
either of these have been changed, VSsetattr will return Fa1L (or -1).

Set the parameter field indexto HDF vDATA (or -1) to set an attribute for a vdata or to a valid field
index to set attribute for a vdata field. A valid field index is a zero-based integer value represent-
ing the ordinal location of a field within the vdata.

The parameter attr name specifies the name of the attribute to be set and can contain VSNAMELEN-
vax (or 64) characters. The parameter data_type specifies the data type of the attribute values.
Data types supported by HDF are listed in Table 2F on page 14. The parameter values contains
attribute values to be written.

The FORTRAN-77 version of VSsetattr has two routines: vsfsnat sets numeric attribute data and
vsfscat sets character attribute data.

VSsetattr returns succeep (or 0) if successful and Fatr (or -1) otherwise. The parameters for
VSsetattr are described in Table 4M.

4.8.3 Querying the Values of a Vdata or Vdata Field Attribute: VSgetattr

VSgetattr returns all of the values of the specified attribute of the specified vdata field or vdata.
The syntax of VSgetattr is as follows:

C: status = VSgetattr(vdata id, field index, attr index, values);

FORTRAN: status = vsfgnat(vdata id, field index, attr index, values)

OR status = vsfgcat (vdata id, field index, attr index, values)

Set the parameter field index to HDF VDATA (or -1) to retrieve the values of the attribute attached
to the vdata identified by the parameter vdata id. Set field index to a zero-based integer value to
retrieve the values of an attribute attached to a vdata field; the value of field index will be used as

June 2017 191

The HDF Group

Table of Contents Chapter 4 - Vdatas (VS API)

the index of the vdata field. In both cases, the values returned will be those of the attribute located
at the position specified by the parameter attr_index, the zero-based index of the target attribute.

The parameter values must be sufficiently allocated to hold the retrieved attribute values. Use
VSattrinfo to obtain information about the attribute values for appropriate memory allocation.

The FORTRAN-77 versions of VSgetattr has two routines: vsfgnat gets numeric attribute data
and vsfgcat gets character attribute data.

VSgetattr returns succeep (or 0) if successful and Fa1L (or -1) otherwise. The parameters for
VSgetattr are described in Table 4M.

TABLE 4M

VSsetattr and VSgetattr Parameter Lists

Routine Parameter Type
Name
[Return Type] Parameter Description
(FORTRAN- C FORTRAN-77
77)
vdata_id int32 integer Vdata identifier
field_index int32 integer _HDF_VDATA or index of the field
attr name char * character*(*) Name of the attribute
VSsetattr
[intn] data_type int32 integer Data type of the attribute
(vsfsnat/vsfscat) n_values int32 integer Number of values the attribute contains

<valid numeric data

values VOIDP type>(*)/ Buffer containing the attribute values
character*(*)
vdata_id int32 integer Vdata identifier
field_index int32 integer _HDF_VDATA or index of the field
VSgetattr - - - -
[intn] attr_index intn integer Index of the attribute
(vsfgnat/vsfgcat) <valid numeric data
values VOIDP type>(*)/ Buffer containing attribute values
character*(*)

4.8.4 Querying the Total Number of Vdata and Vdata Field Attributes:

VSnattrs

VSnattrs returns the total number of attributes of the specified vdata and the fields contained in
the vdata. This is different from the VSfnattrs routine, which returns the number of attributes of
the specified vdata or a specified field contained in the specified vdata. The syntax of VSnattrs is
as follows:

C: num of attrs = VSnattrs(vdata id);
FORTRAN: num of attrs = vsfnats(vdata id)

VSnattrs returns the total number of attributes assigned to the vdata and its fields when success-
ful, and Fa1L (or -1) otherwise. The parameters for VSnattrs are described in Table 4N.

4.8.5 Querying the Number of Attributes of a Vdata or a Vdata Field:
VSfnattrs

VSfnattrs returns the number of attributes attached to the vdata field specified by the parameter
field index or the number of attributes attached to the vdata identified by vdata id. This is differ-

192

June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

ent from the routine VSnattrs, which returns the total number of attributes of the specified vdata
and the fields contained in it. The syntax of VSfnattrs is as follows:

C: num of attrs = VSfnattrs(vdata id, field index);
FORTRAN: num of attrs = vsffnas(vdata id, field index)

If field index is set to a zero-based integer value, it will be used as the index of the vdata field, and
the number of attributes attached to that field will be returned. If field index is set to HDF VDATA
(or -1), the number of attributes attached to the vdata specified by vdata_id will be returned.

VSfnattrs returns the number of attributes assigned to the specified vdata or to the specified vdata
field when successful, and Fa1L (or -1) otherwise. The parameters for VSfnattrs are described in
Table 4N.

TABLE 4N

VSnattrs and VSfnattrs Parameter Lists

Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C
77
77)
VSnattrs
[intn] vdata_id int32 integer Vdata identifier
(vsfnats)
VSfnattrs vdata_id int32 integer Vdata identifier
[int32]]]]]
(vsffnas) field_index int32 integer _HDF_VDATA or index of the field

4.8.6 Retrieving the Index of a Vdata or Vdata Field Attribute Given the
Attribute Name: VSfindattr

VSfindattr returns the index of an attribute with the specified name. The attribute must be
attached to either a vdata or one of its fields. The syntax of VSfindattrs is as follows:

C: attr index = VSfindattr(vdata id, field index, attr name);
FORTRAN: attr index = vsffdat(vdata id, field index, attr name)

If field index is set to HDF vDATA (or -1), the index of the attribute identified by the parameter
attr_name and attached to the vdata specified by vdata_id will be returned.

If the parameter field index is set to a zero-based integer value, the value will be used as the index
of the vdata field. Then, the index of the attribute named by the parameter attr name and attached
to the field specified by the parameter field index will be returned.

VSfindattr returns an attribute index if successful, and a1z (or -1) otherwise. The parameters for
VSfindattr are described in Table 40 on page 194.

4.8.7 Querying Information on a Vdata or Vdata Field Attribute:
VSattrinfo

VSattrinfo returns the name, data type, number of values, and the size of the values of the speci-
fied attribute of the specified vdata field or vdata. The syntax of VSattrinfo is as follows:

C: status = VSattrinfo(vdata id, field index, attr index, attr name,
&data type, &n values, &size);

June 2017 193

The HDF Group Table of Contents Chapter 4 - Vdatas (VS API)
FORTRAN: status = vsfainf(vdata id, field index, attr index, attr name,
data type, n values, size)
In C, the parameters attr_name, data_type, n_values, and size can be set to NULL, if the informa-
tion returned by these parameters are not needed.
The parameter field index is the same as the parameter field index in VSsetattr; it can be set
either to a nonnegative integer to specify the field or to HDF vDATA (or -1) to specify the vdata
referred to by vdata_id.
VSattrinfo returns succeep (or 0) if successful and rFa1L (or -1) otherwise. The parameters for
VSattrinfo are described in Table 40.
4.8.8 Determining whether a Vdata Is an Attribute: VSisattr
The HDF library stores vdata attributes and vdata field attributes as vdatas. HDF therefore pro-
vides the routine VSisattr to determine whether a particular vdata contains attribute data. The
syntax of VSisattr is as follows:
C: status = VSisattr (vdata id);
FORTRAN: status = vsfisat (vdata id)
VSisattr returns TrUE (or 1) if the vdata contains an attribute data and Farse (or 0) otherwise. The
parameters for VSisattr are described in Table 40.
TABLE 40 VSfindattr, VSattrinfo, and VSisattr Parameter Lists
Routine Parameter Type
Name
[Return Type] Parameter Description
(FORTRAN- C FORTRAN-77
77)
VSfindattr vdata_id int32 integer Vdata identifier
[intn] field_index int32 integer _HDF VDATA or index of the field
(vsffdat) R
attr name char * character™®(*) Name of the attribute
vdata_id int32 integer Vdata identifier
field_index int32 integer Index of the field
VSattrinfo attr_index intn integer Index of the attribute
[intn] attr_name char * character*(*) Returned name of the attribute
(vsfaind) data_type int32 * integer Returned data type of the attribute
n_values int32 * integer Number of values of the attribute
size int32 * integer Size, in bytes, of the values of the attribute
VSisattr
[intn] vdata_id int32 integer Vdata identifier
(vsfisat)
EXAMPLE 8. Operations on Field and Vdata Attributes

This example illustrates the use of VSsetattr/vsfscat/vsfsnat to attach an attribute to a vdata and
to a field in a vdata, the use of VSattrinfo/vsfainf to get information about a field attribute and a
vdata attribute, and the use of VSgetattr/vsfgcat/vsfgnat to get the values of an attribute of a
vdata and the values of an attribute of a field in a vdata. The example also shows the use of

194

June 2017

Chapter 4 -- Vdatas (VS API)

Table o

f Contents

HDF User’s Guide

VSfnattrs/vsffnas to obtain the number of attributes attached to a field of a vdata and the use of
VSnattrs/vsfnats to obtain the total number of attributes attached to both a vdata and its fields.

In this example, the program finds the vdata, named "Solid Particle", in the HDF file
"General Vdatas.hdf" produced by Example 3. It then obtains the index of the field, named
"Mass", in the vdata. An attribute named "Site Ident" is attached to the vdata to contain the iden-
tification of the experiment sites. Another attribute named "Scales" is attached to the field for its
scale values. The vdata attribute has 3 character values and the field attribute has 4 integer values.

C:

#include

#define
#define
#define
#define
#define
#define
#define

main()

{

"hdf.h"

FILE NAME
VDATA NAME
FIELD NAME
VATTR NAME
FATTR NAME
VATTR N _VALUES
FATTR N VALUES

"General Vdatas.hdf"
"Solid Particle"

"Mass"

"Site Ident" /* name

of the vdata attribute */
"Scales" /* name of the field attribute */
3 /* number of values in the vdata attribute */
4 /* number of values in the field attribute */

/‘k************************ Variable declaration **************************/

intn
int32

char
int32
char
int32
char

/********************** End Of variable

/*

status_n; /* returned status for functions returning an intn */
status 32, /* returned status for functions returning an int32 */
file id, vdata ref, vdata id,

field index, /* index of a field within the vdata */

n vdattrs, /* number of vdata attributes */

n fldattrs, /* number of field attributes */

vdata type, /* to hold the type of vdata’s attribute */
vdata_n_values, /* to hold the number of vdata’s attribute values */
vdata_ size, /* to hold the size of vdata’s attribute values */
field type, /* to hold the type of field’s attribute */
field n values,/* to hold the number of field’s attribute values */
field size; /* to hold the size of field’s attribute values */
vd_attr[VATTR N VALUES] = {’A’, ’'B’, ’'C’};/* vdata attribute values*/
fld attr[FATTR N VALUES] = {2, 4, 6, 8}; /* field attribute values*/
vattr buf [VATTR N VALUES]; /* to hold vdata attribute’s values */
fattr buf [FATTR N VALUES]; /* to hold field attribute’s values */
vattr name[30], /* name of vdata attribute */

fattr name[30]; /* name of field attribute */

* Open the HDF file for writing.

*/

file id = Hopen (FILE NAME, DFACC WRITE, 0);

/*

* Initialize the VS interface.

*/

status n = Vstart (file id);

/*

declaration *********************‘k/

* Get the reference number of the vdata named VDATA NAME.

*/

vdata ref = VSfind (file id, VDATA NAME) ;

/*

* Attach to the vdata for writing.

June 2017

195

The HDF Group

Table of Contents Chapter 4 - Vdatas (VS API)

*/
vdata id = VSattach (file id, vdata_ref, "w");

/*

* Attach an attribute to the vdata, i.e., indicated by the second parameter.

*/

status_n = VSsetattr (vdata_ id, _HDF VDATA, VATTR NAME, DENT CHAR,
VATTR_N_VALUES, vd_attr);

/%
* Get the index of the field FIELD NAME within the vdata.
*/

status_n = VSfindex (vdata id, FIELD NAME, &field index);

/*

* Attach an attribute to the field field index.

*/

status_n = VSsetattr (vdata id, field index, FATTR NAME, DEFNT INT32,
FATTR N VALUES, fld attr);

/*
* Get the number of attributes attached to the vdata’s first
* field - should be 0.

*/

n _fldattrs = VSfnattrs (vdata_id, 0);

printf ("Number of attributes of the first field of the vdata: %d\n",
n_fldattrs);

/*

* Get the number of attributes attached to the field specified by

* field index - should be 1.

*/

n fldattrs = VSfnattrs (vdata id, field index);

printf ("Number of attributes of field %s: %d\n", FIELD NAME, n fldattrs);

/*
* Get the total number of the field’s and vdata’s attributes - should be 2.
x/
n vdattrs = VSnattrs (vdata_ id);
printf ("Number of attributes of the vdata and its fields: %d\n",

n _vdattrs);

/*
* Get information about the vdata’s first attribute, indicated
* by the third parameter which is the index of the attribute.
*/
status n = VSattrinfo (vdata id, HDF VDATA, 0, vattr name,
&vdata type, &vdata n values, &vdata size);

/*

* Get information about the first attribute of the field specified by

* field index.

*/

status_n = VSattrinfo (vdata id, field index, 0, fattr name, &field type,
&field n values, &field size);

/*

* Get the vdata’s first attribute.

*/

status_n = VSgetattr (vdata id, _HDF VDATA, 0, vattr buf);

printf ("Values of the vdata attribute = %c %c $%$c\n", vattr buf[0],
vattr buf[l], vattr buf([2]);

196

June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

/*

* Get the first attribute of the field specified by field index.

*/

status_n = VSgetattr (vdata id, field index, 0, fattr buf);

printf ("Values of the field attribute = %d %d %d %d\n", fattr buf[0],
fattr buf[l], fattr buf[2], fattr buf[3]);

/*

* Terminate access to the vdata and to the VS interface, then close

* the HDF file.

*/
status 32 = VSdetach (vdata id);
status n = Vend (file id);
status_32 = Hclose (file id);
}
FORTRAN:

program vdata attributes

C
C
C

C

implicit none

Parameter declaration
character*18 FILE NAME
VDATA NAME
FIELD NAME
VATTR_NAME

FATTR NAME
VATTR N VALUES, FATTR N VALUES

character*14
character*4
character*10
character*6
integer

parameter (FILE NAME "General Vdatas.hdf’,

+ VDATA NAME = ’Solid Particle’,
+ FIELD NAME = ’'Mass’,

+ VATTR NAME = ’Site Ident’,

+ FATTR_NAME = ’Scales’)
parameter (VATTR N VALUES = 3,

+ FATTR N VALUES = 4)

integer DFACC WRITE, FULL INTERLACE, HDF VDATA
integer DENT INT32, DFNT CHARS

parameter (DFACC WRITE = 2,
+ FULL_INTERLACE = O,
+ HDF VDATA = -1,
+ DFNTilNTBZ = 24,
+ DFNT_CHARS = 4)

Function declaration

integer hopen, hclose

integer vfstart, vsffnd, vsfatch, vsfscat, vsfsnat,
+ vsffnas, vsffidx, vsfnats, vsfainf, vsfgcat, vsfgnat,
+ vsfdtch, vfend

C‘k‘k** Variable declaration KA K KA KA KR AKR KA KR AR A AR AR AR KA R A AR AR AR AR A AR AR A h K

c

integer status

integer file id, vdata id, vdata ref

integer field index, n vdattrs, n fldattrs
integer vdata type, vdata n values, vdata size
integer field type, field n values, field size

character vd _attr (VATTR N VALUES)
integer fld attr (FATTR_N_VALUES)

June 2017

197

The HDF Group Table of Contents Chapter 4 - Vdatas (VS API)

character vattr buf (VATTR N VALUES)

integer fattr buf (FATTR N VALUES)

character vattr name out (30), fattr name out (30)
data vd attr /’A’, 'B’, 'C’/

data fld attr /2, 4, 6, 8/

C
C**** End Of Variable declaration KAK KA KRKAA A A KA RA A KA R AR A AR AR AR A AR AR A A,k
C
C
C Open the HDF file for writing.
C
file id = hopen (FILE _NAME, DFACC_WRITE, 0)
C
C Initialize the VS interface.
C
status = vfstart(file id)
C
c Get the reference number of the vdata named VDATA NAME.
C
vdata ref = vsffnd(file id, VDATA NAME)
C
C Attach to the vdata for writing.
C
vdata id = vsfatch(file id, vdata ref, 'w’)
C
C Attach an attribute to the vdata, as it is indicated by second parameter.
C
status = vsfscat(vdata id, HDF VDATA, VATTR NAME, DENT CHARS,
+ VATTR N VALUES, vd attr)
C
c Get the index of the field FIELD NAME within the vdata.
C
status = vsffidx(vdata id, FIELD NAME, field index)
C
c Attach an attribute to the field with the index field index.
C
status = vsfsnat(vdata_id, field index, FATTR NAME, DFNT_ INT32,
+ FATTR N VALUES, fld attr)
C
C Get the number of attributes attached to the vdata’s first
C field - should be 0.
C
n fldattrs = vsffnas(vdata id, 0)
write(*,*) ’Number of attributes of the first field’
write(*,*) ' of the vdata: ’, n fldattrs
C
C Get the number of the attributes attached to the field specified by
c index field index - should be 1.
C
n fldattrs = vsffnas(vdata id, field index)
write(*,*) ’‘Number of attributes of field ’, FIELD NAME,
+ n fldattrs
C
C Get the total number of the field’s and vdata’s attributes - should be 2.
C
n _vdattrs = vsfnats(vdata_ id)
write(*,*) ’Number of attributes of the vdata and its fields: ’,
+ n_vdattrs
C
C Get information about the vdata’s first attribute, indicated by
C the third parameter, which is the index of the attribute.
C

198 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide

status = vsfainf (vdata id, HDF VDATA, 0, vattr name out,

+ vdata type, vdata n values, vdata size)
C
C Get information about the first attribute of the field specified by
c field index.
C
status = vsfainf (vdata id, field index, 0, fattr name out,
+ field type, field n values, field size)
C
C Get the vdata’s first attribute.
C
status = vsfgcat (vdata id, HDF _VDATA, 0, vattr buf)
write(*,*) ’‘Values of vdata attribute ', vattr buf
C
C Get the first attribute of the field specified by field index.
C
status = vsfgnat(vdata id, field index, 0, fattr buf)
write(*,*) ‘Values of the field attribute = ’, fattr buf
C
C Terminate access to the vdata and to the VS interface, and
C close the HDF file.
C

status = vsfdtch(vdata id)
status = vfend(file id)
status = hclose(file id)
end

4.9 Obtaining Information about a Specific Vdata

Once a vdata has been located, its contents must be obtained. In this section four categories of
routines that obtain vdata information are described:

* A general inquiry routine named VSinquire.
* A set of vdata query routines with names prefaced by “VSQuery”.

* A set of vdata inquiry routines prefaced by “VS”. Some of these routines retrieve specific
vdata information which can also be retrieved by the general inquiry routine VSinquire.

* A set of field query routines with names prefaced by “VF”.

4.9.1 Obtaining Vdata Information: VSinquire

VSinquire retrieves information about the vdata identified by the parameter vdata_id. The routine
has the following syntax:

C: status = VSinquire (vdata id, &n records, &interlace mode,
fieldname list, &vdata size, vdata name);

FORTRAN: status = vsfing(vdata id, n records, interlace mode, fieldname list,
vdata size, vdata name)

The parameter n_records contains the returned number of records in the vdata, the parameter
interlace_mode contains the returned interlace mode of the vdata contents, the parameter
fieldname_list is a comma-separated list of the returned names of all the fields in the vdata, the
parameter vdata_size is the returned size, in bytes, of the vdata record, and the parameter
vdata_name contains the returned name of the vdata.

If any of the parameters are set to NULL in C, the corresponding data will not be returned. VSin-
quire will return ra1L if it is called before VSdefine and VSsetfield on the same vdata.

June 2017 199

The HDF Group Table of Contents Chapter 4 - Vdatas (VS API)
VSinquire returns either succeep (or 0) or FAIL (or -1). The parameters for VSinquire are further
defined in Table 4P.

TABLE 4P VSinquire Parameter List

Routine Name Parameter Type
[Return Type] Qv
(FORTRAN- Parameter e FORTRAN- Description
77) 77
vdata_id int32 integer Vdata identifier
n_records int32 * integer Number of records in the vdata
VSinquire interlace_mode int32 * integer Interlace mode
intn
(\Esﬁngl) fieldname _list char * character*(*) Buftfer for the list of field names
vdata_size int32 * integer Size in bytes of the vdata record
vdata_name char * character®(*) Name of the vdata
EXAMPLE 9. Obtaining Vdata Information

This example illustrates the use of VSgetid/vsfgid and VSinquire/vsfinq to obtain information
about all vdatas in an HDF file.

In this example, the program uses VSgetid to locate all vdatas in the HDF file
"General Vdatas.hdf", which is the output of Example 3. For each vdata found, if it is not the
storage of an attribute, the program uses VSinquire/vsfinq to obtain information about the vdata
and displays its information. Recall that an attribute is also stored as a vdata; the function VSi-
sattr/vsfisat checks whether a vdata is a storage of an attribute.

C:
#include "hdf.h"
#define FILE_NAME "General Vdatas.hdf"
#define FIELD SIZE 80 /* maximum length of all the field names */
main()
{
/***************‘k‘k****‘k‘k** Variable declaration **************************/
intn status n; /* returned status for functions returning an intn */
int32 status 32, /* returned status for functions returning an int32 */
n_records, /* to retrieve the number of records in the vdata */
interlace mode,/* to retrieve the interlace mode of the vdata */
vdata size, /* to retrieve the size of all specified fields */
file id, vdata ref, vdata id;
char fieldname 1ist[FIELD SIZE], /* buffer to retrieve the vdata data */
vdata name [VSNAMELENMAX] ; /* buffer to retrieve the vdata name */
/********************** End Of Variable declaration **‘k‘k*****‘k*****‘k******/
/*
* Open the HDF file for reading.
*/
file id = Hopen (FILE NAME, DFACC READ, 0);
/*
* Initialize the VS interface.
*/
status_n = Vstart (file id);
200 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide

/*
* Set vdata _ref to -1 to start the search from the beginning of file.
*/

vdata ref = -1;

/*

* Use VSgetid to obtain each vdata by its reference number then attach
* to the vdata and get its information. The loop terminates when
* the last vdata is reached.

*/
while ((vdata ref = VSgetid (file id, vdata ref)) != FAIL)
{

/*

* Attach to the current vdata for reading.

*/

vdata id = VSattach (file id, vdata ref, "r");

/*
* Test whether the current vdata is not a storage of an attribute, then
* obtain and display its information.

*/
if (VSisattr (vdata id) != TRUE)
{
status n = VSinquire (vdata id, &n records, &interlace mode,
fieldname list, &vdata size, vdata name);
printf ("Vdata %s: - contains %d records\n\tInterlace mode: %s \
\n\tFields: %s - %d bytes\n\t\n", vdata name, n records,
interlaceimode == FULL INTERLACE ? "FULL" : "NONE",
fieldname list, vdata_size);
}
/*
* Detach from the current vdata.
*/

status 32 = VSdetach (vdata id);
} /* while */

/*
* Terminate access to the VS interface and close the HDF file.
*/

status_ n = Vend (file id);

status 32 = Hclose (file id);

FORTRAN:

program vdata info
implicit none

C
C Parameter declaration
C
character*18 FILE_ NAME
integer DFACC_READ, FULL INTERLACE
integer FIELD SIZE
C
parameter (FILE NAME = ’General Vdatas.hdf’,
+ DFACC READ =1,
+ FULL INTERLACE = 0,
+ FIELD SIZE = 80)
C
C Function declaration

June 2017 201

The HDF Group Table of Contents Chapter 4 - Vdatas (VS API)

C
integer hopen, hclose
integer vfstart, vsfatch, vsfgid, vsfing,
+ vsfisat, vsfdtch, vfend
C
C**** Variable declaration KA K KA KA KR AKR KA KR AR A AR AR A AR AR AR A AR AR A AR AR AR A Ak K
C
integer status
integer file id, vdata id, vdata ref
integer n _records, interlace mode, vdata size
character*64 vdata name
character*80 fieldname list
C
C**‘k* End Of Variable declaration KAk Ak hkhkkhkhkhkhkkhkkhkrhkhkhkkhkhkhrhkkhkhkkhkhkhkrhkhkkhrk*x
C
C
C Open the HDF file for reading.
C
file id = hopen(FILE NAME, DFACC READ, 0)
C
C Initialize the VS interface.
C
status = vfstart(file id)
C
C Set the reference number to -1 to start the search from the beginning
C of the file.
C
vdata ref = -1
10 continue
C
C Use vsfgid to obtain each vdata by its reference number then
C attach to the vdata and get information. The loop terminates
C when the last vdata is reached.
c
vdata ref = vsfgid(file id, vdata ref)
if (vdata ref .eq. -1) goto 100
c
C Attach to the current vdata for reading.
C
vdata_id = vsfatch(file_ id, vdata ref, 'r’)
C
C Test whether the current vdata is not a storage for an attribute,

C then obtain and display its information.
if (vsfisat(vdata id) .ne. 1) then
status = vsfing(vdata id, n records, interlace mode,
+ fieldname list, vdata size, vdata name)
write(*,*) ’‘Vdata: ', vdata name
write(*,*) ’‘contains ’, n records, ’ records’
if (interlace mode .eq. 0) then
write(*,*) ’Interlace mode: FULL’
else
write(*,*) ’Interlace mode: NONE’
endif
write(*,*) 'Fields: ’, fieldname list(1:30)
write (*,*) ’‘Vdata record size in bytes :’
write (*,*)

, vdata size

endif
C
C Detach from the current vdata.
C

status = vsfdtch(vdata id)
goto 10

202 June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

100 continue

Terminate access to the vdata and to the VS interface, and
close the HDF file.

Q0O

status = vsfdtch(vdata id)
status = vfend(file id)
status = hclose(file_ id)
end

4.9.2 Obtaining Linked Block Information: VSgetblockinfo

VSgetblockinfo retrieves the block size and number of blocks employed in a linked block vdata
data element. The parameter vdata id identifies the vdata. The size of blocks, in bytes, is returned
in block size and the number of blocks in num_blocks.

If either the block size or the number of blocks used in a particular vdata is likely to differ from
the default setting, VSgetblockinfo must be called before any data is read from a vdata.

VSgetblockinfo returns success (or 0) upon successful completion or Fa11 (or -1). Its parameters
are further defined in Table 4Q.

4.9.3 Obtaining Linked Block Information: VSgetblockinfo

VSgetexternalinfo retrieves external file and data information of a vdata, when the vdata has
external element. The information includes the external file’s name, the position, where the data
had been written in the external file, and the length of that external data. VSgetexternalinfo will
return o if the vdata does not have external element.

The syntax of VSgetexternalinfo is as follows:

C: status = VSgetexternalinfo(vdata id, buf size, filename, &offset,
&length) ;

FORTRAN: Currently unavailable

The application must provide sufficient buffer for the external file name. When the external file
name is available and buf size is 0, VSgetexternalinfo simply returns the length of the external
file name. Thus, application can call VSgetexternalinfo passing in O for buf size first, then allo-
cate the buffer sufficiently before calling VSgetexternalinfo again passing in the proper length
for buf size and appropriately allocated buffer filename. VSgetexternalinfo stores the external
file name in filename up to the name’s length or the value in buf size, whichever smaller.

VSgetexternalinfo stores in the parameter offset the number of bytes from the beginning of the
external file to the location where the first byte of data had been written and in the parameter
length the length of the data.

VSgetexternalinfo returns one of the following values:

« the actual length of the external file name or the length of the retrieved file name, if there is
external element

e 0, if there is no external element

* raIL (or -1), if failure occurs

The parameters of VSgetexternalinfo are described in Table 4Q.

June 2017 203

The HDF Group

Table of Contents

Chapter 4 -- Vdatas (VS API)

TABLE 4Q

VSgetblockinfo Parameter List

Routine Name

Parameter Type

[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
VSgetblockinfo vdata_id int32 integer Vdata identifier
[intn] block_size int32 integer Size of each block, in bytes
(vsfgetblinfo) num_blocks int32 integer Number of linked blocks
vdata_id int32 N/A Vdata identifier
VSgetexternalinfo buf size int32 N/A Size of external file name’s buffer
[intn] filename char * N/A External file name
(unavailable) offset int32 * N/A Offset of external data
length int32 * N/A Length of external data

4.9.4 VSQuery Vdata Information Retrieval Routines
The syntax of the VSQuery routines are as follows:

C: status = VSQueryname (vdata id, vdata name);
status = VSQueryfields(vdata id, fields);
status = VSQueryinterlace (vdata id, &interlace mode);
status = VSQuerycount (vdata id, &n records);
vdata tag = VSQuerytag(vdata id);
vdata ref = VSQueryref (vdata id);
status = VSQueryvsize (vdata id, &vdata vsize);

FORTRAN: status = vsgfname (vdata_id, vdata name)
vsgfflds (vdata id, fields)
(

vsgfintr (vdata id, interlace mode)

status

status
status = vsgfnelt (vdata_id, n records)
vdata tag = vsgtag(vdata id)

vdata ref = vsgref (vdata id)

status = vsgfvsiz(vdata id, vdata vsize)

All VSQuery routines except VSQuerytag and VSQueryref have two arguments. The first argu-
ment identifies the vdata to be queried. The second argument is the type of vdata information
being requested.

* VSQueryname retrieves the name of the specified vdata.
* VSQueryfields retrieves the names of the fields in the specified vdata.
* VSQueryinterlace retrieves the interlace mode of the specified vdata.
* VSQuerycount retrieves the number of records in the specified vdata.
* VSQuerytag returns the tag of the specified vdata.
* VSQueryref returns the reference number of the specified vdata.
* VSQueryvsize retrieves the size, in bytes, of a record in the specified vdata.
VSQuerytag and VSQueryref return the tag and reference number, respectively, or FATL (or -1).

All other routines return succeep (or 0) or FAIL (or -1). The parameters for these routines are
listed in Table 4R.

204 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide

TABLE 4R VSQuery Routines Parameter Lists
Routine Name Parameter Type
[Return Type] Qv
Parameter - Description
(FORTRAN- C FORTRAN p
77) 77
VSQueryname vdata_id int32 integer Vdata identifier
intn
(vsgfnazne) vdata_name char * character™(*) Name of the vdata
VSQueryfields vdata_id int32 integer Vdata identifier
[intn] Comma-separated list of the field names in the
* & (K
(vsqfflds) fields char character*(*) vdata
VSQueryinterlace vdata_id int32 integer Vdata identifier
intn
(vs[qﬁn]tr) interlace_mode int32 * integer Interlace mode
VSQuerycount vdata_id int32 integer Vdata identifier
intn
(vs[qfnglt) n_records int32 * integer Number of records in the vdata
VSQueryvsize vdata_id int32 integer Vdata identifier
intn
(vs[qfvs]iz) vdata_size int32 * integer Size in bytes of the vdata record
VSQuerytag
[int32] vdata_id int32 integer Vdata identifier
(vsqtag)
VSQueryref
[int32] vdata_id int32 integer Vdata identifier
(vsqref)

4.9.5 Other Vdata Information Retrieval Routines

The routines described in this section, with names prefaced by “VS”, are used to obtain specific
types of vdata information. The syntax of these routines are as follows:

C: num of records = VSelts(vdata id);
num of fields = VSgetfields (vdata id, fieldname list);
interlace mode = VSgetinterlace (vdata id);
size of fields = VSsizeof (vdata id, fieldname list);
status = VSgetname (vdata_id, vdata name) ;
status = VSgetclass (vdata_id, vdata class);

FORTRAN: num of records = vsfelts(vdata id)
num of fields = vsfgfld(vdata id, fieldname list)
interlace mode = vsfgint (vdata id)
size of fields = vsfsiz(vdata id, fieldname list)
status = vsfgnam(vdata id, vdata name)
status = vsfcls(vdata id, vdata class)

With the exception of VSgetclass, the information obtained through these routines can also be
obtained through VSinquire. VSinquire provides a way to query commonly used vdata informa-
tion with one routine call. The VS routines in this section are useful in situations where the HDF
programmer wishes to obtain only specific information.

* VSelts returns the number of records in the specified vdata or Fa1L (or -1).

* VSgetfields retrieves the names of all the fields in the specified vdata and returns the num-
ber of retrieved fields or ra1L (or -1).

» VSgetinterlace returns the interlace mode of the specified vdata or FATL (or -1).

* VSsizeof returns the size, in bytes, of the specified fields or Fa1L (or -1).

June 2017 205

The HDF Group

Table of Contents Chapter 4 -- Vdatas (VS API)

* VSgetname retrieves the name of the specified vdata and returns either succeep (or 0) or

FATL (or -1).

* VSgetclass retrieves the class of the specified vdata and returns either succeep (or 0) or

FAIL (or -1).

The parameters for these routines are described in Table 48S.

TABLE 4S

VSelts, VSgetfields, VSgetinterlace, VSsizeof, VSgetname, and VSgetclass Parameter Lists

Routine Name Parameter Type
[Return Type] 90
Parameter - Description
(FORTRAN- C FORTRAN p
77) 77
VSelts
[int32] vdata_id int32 integer Vdata identifier
(vsfelts)
VSgetfields vdata_id int32 integer Vdata identifier
[int32]] . .
(vsfgfld) fieldname_list char * character*(*) List of field names to be queried
VSgetinterlace
[int32] vdata_id int32 integer Vdata identifier
(vsfgint)
VSsizeof vdata_id int32 integer Vdata identifier
[int32] - - -
(vsfsiz) fieldname_list char * character*(*) List of field names to be queried
VSgetname vdata_id int32 integer Vdata identifier
[int32]
(vsfgnam) vdata_name char * character*(*) Vdata name
VSgetclass vdata_id int32 integer Vdata identifier
[int32] -
(vsfels) vdata_class char * character*(*) Class name of the vdata to be queried

4.9.6 VF Field Information Retrieval Routines

Routines whose names are prefaced by “VF” are used for obtaining information about specific
fields in a vdata. The syntax of these routines are as follows:

C:

FORTRAN:

field name = VFfieldname (vdata id, field index);

field file size = VFfieldesize(vdata id, field index);
field mem size = VFfieldisize (vdata id, field index);
num of fields = VFnfields(vdata id);

field order = VFfieldorder (vdata id, field index);
field type = VFfieldtype(vdata id, field index);

field name = vffname (vdata id, field index, field name)
field file size = vffesiz(vdata id, field index)
field mem size = vffisiz(vdata id, field index)

num of fields = vfnflds(vdata id)

field order = vffordr(vdata id, field index)

field type = viftype (vdata id, field index)

The functionality of each of the VF routines is as follows:

* VFfieldname returns the name of the specified field.

* VFfieldesize returns the size of the specified field as stored in the HDF file. This is the size
of the field as tracked by the HDF library.

206

June 2017

Chapter 4 -- Vdatas (VS API)

Table of Contents HDF User’s Guide

» VFfieldisize returns the size of the specified field as stored in memory. This is the native
machine size of the field.

* VFnfields returns the number of fields in the specified vdata.
* VFfieldorder returns the order of the specified field.
» VFfieldtype returns the data type of the specified field.

If the operations are unsuccessful, these routines return rart (or -1). The parameters for all of
these routines are described in Table 4T.

TABLE 4T

VF Routines Parameter Lists

Routine Name Parameter Type
[Return Type] G
Parameter - Description
(FORTRAN- C FORTRAN p
77) 77
VFfieldname vdata_id int32 integer Vdata identifier
[char *] field_index int32 integer Field index
(vffname) field_name character*(*) Field name (FORTRAN-77 only)
VFfieldesize vdata_id int32 integer Vdata identifier
[int32]
(vffesiz) field_index int32 integer Field index
VFfieldisize vdata_id int32 integer Vdata identifier
[int32]
(vffisiz) field_index int32 integer Field index
VFnfields
[int32] vdata_id int32 integer Vdata identifier
(vinflds)
VFfieldorder vdata_id int32 integer Vdata identifier
[int32]
(vffordr) field_index int32 integer Field index
VFfieldtype vdata_id int32 integer Vdata identifier
[int32]
(vfftype) field_index int32 integer Field index

June 2017 207

The HDF Group Table of Contents Chapter 4 - Vdatas (VS API)

208 June 2017

Vgroups (V API)

Chapter Overview

This chapter describes the vgroup data model and the Vgroup interface (also called the V interface
or the V API). The first section describes the vgroup data model. The second section introduces
the Vgroup interface, followed by a presentation of a programming model for vgroups. The next
three sections describe the use of the Vgroup interface in accessing and creating vgroups. The
final two sections cover vgroup attributes and obsolete Vgroup interface routines.

The Vgroup Data Model

A vgroup is a structure designed to associate related data objects. The general structure of a
vgroup is similar to that of the UNIX file system in that the vgroup may contain references to
other vgroups or HDF data objects just as the UNIX directory may contain subdirectories or files
(see Figure 5a). In previous versions of HDF, the data objects in a vgroup were limited to vdatas
and vgroups. The data objects that belong to a vgroup are often referred to as the vgroup’s mem-
bers.

CHAPTER 5 --
5.1
5.2
FIGURE 5a

Similarity of the HDF Vgroup Structure and the UNIX File System

¥ X ¥ X
¥ X ¥ X VRN VRN
Data Data Vgroup Data File File Directory File
object object object
Data Data File File

object object

Vgroup Structure UNIX File System

5.2.1 Vgroup Names and Classes

A vgroup can have a name and/or a class associated with it. The vgroup name and class are useful
in describing and classifying the data objects belonging to the vgroup.

June 2017 209

The HDF Group

Table of Contents Chapter 5 -- Vgroups (V API)

A vgroup name is a character string and is used to semantically distinguish between vgroups in an
HDF file. Multiple vgroups in a file can have the same name; however, unique names make it eas-
ier to distinguish among vgroups and are recommended.

A vgroup class is a character string and can be used to classify data objects by their intended use.
For example, a vdata object named "Storm Tracking Data - 5/11/94" and another vdata object
named "Storm Tracking Data - 6/23/94" can be grouped together under a vgroup named "Storm
Tracking Data - 1994". If the data was collected in Anchorage, Alaska the class name might be
"Anchorage Data", particularly if other vgroups contain storm track data collected in different
locations.

The specific use of the vgroup name and class name is solely determined by HDF users.

5.2.2 Vgroup Organization

There are many ways to organize vgroups through the use of the Vgroup interface. Vgroups may
contain any number of vgroups and data objects, including data objects and vgroups that are mem-
bers of other vgroups. Therefore, a data object may have more than one parent vgroup. For exam-
ple, Data object A and Vgroup B, shown in Figure 5b, are members of multiple vgroups with
different organizational structures.

FIGURE 5b

Sharing Data Objects among Vgroups

Vgroup Vgroup

| Vgroup | Vgroup Vgroup B 0];;‘:;

Data Data Data Data Data
object object object A object object

A vgroup can contain any combination of data objects. Figure Sc illustrates a vgroup that contains
two raster images and a vdata.

FIGURE 5¢

A Vgroup Containing Two 8-Bit Raster Images, or RIS8 Objects, and a Vdata

PX PY

/._/ /.—\.\/ 12.456 | 3456.78

< < 1.4567 | 34.5678
45678 | 3.456
RIS8 RIS8 34.5678 | 3.5678
Vdata

210

June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents HDF User’s Guide

5.2.3 An Example Using Vgroups

Although vgroups can contain any combination of HDF data objects, it is often useful to establish
conventions on the content and structure of vgroups. This section, with the illustration in Figure
5d, describes an example of a vgroup convention that is used by scientific and graphics program-
mers to describe the surfaces of a mathematical or material object as well as its properties.

This vgroup consists of one list of coordinate data, one list of connectivity data, and one list of
node property data. These three lists are stored in separate vdata objects within the vgroup.

Each 2-dimensional coordinate in the list of coordinate data defines the relative location of a ver-
tex, or node. Each entry in the list of connectivity data is an ordered list of node numbers which
describes a polygon. This ordered list is referred to as the connectivity list. For example, the num-
ber "2" as an item in a connectivity list would represent the second entry in the node table. Node
properties are user-defined values attached to each node within the polygon and can be numbers
or characters.

For example, consider a heated mesh of 400 triangles formed by connecting 1000 nodes. A
vgroup describing this mesh might contain the coordinates of the vertices, the temperature value
of the vertices, and a connectivity list describing the edges of the triangles.

FIGURE 5d

5.3

Vgroup Structure Describing a Heated Mesh

Vgroup

"Nodes"
Vdata Vdata Vdata

"PX, PY" "TMP" "PLIST"
Node 1 (-1.5,2.3) 23.55 1,2,7
Node 2 (-1.5,1.98) 3.77 2,7,8
Node 3 (-2.4,.67) 0.092 2,8,3
Node 1000 (-2.4,-2.5) -3.23 3,8,9
Coordinates of the Temperature at Connectivity list
nodes each node

The Vgroup Interface

The Vgroup interface consists of routines for creating and accessing vgroups, and getting infor-
mation about vgroups and their members.

5.3.1 Vgroup Interface Routines
Vgroup interface routine names are prefaced by "V" in C and by "vf" in FORTRAN-77. These
routines are categorized as follows:

Access/Create routines control access to the Vgroup interface and to individual vgroups.

Manipulation routines modify vgroups’ characteristics, and add and delete vgroups’ mem-
bers.

Vgroup inquiry routines obtain information about vgroups. Some of these routines are use-
ful for locating vgroups in a file.

June 2017 211

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)

Member inquiry routines obtain information about members of vgroups.

Attributes routines provide information about vgroups’ attributes.

The Vgroup interface routines are listed in Table SA below and described in the following sec-
tions.

212 June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents HDF User’s Guide

TABLE 5A Vgroup Interface Routines
Routine Name
Category FORTRAN- Description
C
77
Initializes the Vdata and Vgroup interfaces (Section 5.4.1 on
Vstart vistart
page 215)
Vattach vfatch Establishes access to a vgroup (Section 5.4.1 on page 215)
Access/Create
Vdetach vidtch Terminates access to a vgroup (Section 5.4.2 on page 216)
Terminates access to the Vdata and Vgroup interfaces (Section 5.4.2
Vend vfend
on page 216)
Builds a vgroup containing elements specified by their tags/refs
VHmak hfmk
maxegroup | vhbmegp (Section 5.5.4 on page 224)
Vaddtagref vfadtr Adds an HDF data object to a vgroup (Section 5.5.2 on page 220)
Vdelete vdelete Removes a vgroup from a file (Section 5.7.1 on page 248)
Vdeleteta- .
Manipulation gref vidtr Detaches a member from a vgroup (Section 5.7.2 on page 248)
Vinsert vFinsct Adds a vgroup or vdata to an existing vgroup (Section 5.5.3 on
page 223)
Vsetclass vfscls Assigns a class name to a vgroup (Section 5.5.1 on page 220)
Vsetname vfsnam Assigns a name to a vgroup (Section 5.5.1 on page 220)
)) Returns the reference number of a vgroup given its name
vE f
ind viind (Section 5.6.1.9 on page 236)
) Returns the reference number of a vgroup specified by class name
VE 1 fndcl
indelass | vindels (Section 5.6.1.10 on page 236)
Vgetclass vigcls Retrieves the class of a vgroup (Section 5.6.1.7 on page 235)
vget- [unavail- Retrieves the length of a vgroup’s class name (Section 5.6.1.8 on
classname-
len able] page 235)
Voetid vEgid Returns the reference number for the next vgroup in the HDF file
g g (Section 5.6.1.2 on page 232)
Vgetname vignam Retrieves the name of a vgroup (Section 5.6.1.5 on page 234)
Vgroup Inquiry Vgetnamelen [unavail- Retrieves the length of a vgroup’s name (Section 5.6.1.6 on
able] page 235)
Vgetversion | vfgver Returns the vgroup version of a vgroup (Section 5.8.1 on page 249)
))) Retrieves general information about a vgroup (Section 5.9.2 on
Vinquire vfing
page 258)
Retrieves the reference numbers of vgroups that are not members of
Vlone vflone .
other vgroups (Section 5.6.1.1 on page 231)
Vntagrefs vEntr Returns the number of tag/reference number pairs contained in the
9 specified vgroup (Section 5.6.2.1 on page 240)
Returns the reference number of a vgroup (Section 5.6.2.9 on
VQueryref vgref
page 247)
VQuerytag vgtag Returns the tag of a vgroup (Section 5.6.2.10 on page 247)

June 2017

213

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)

Locates a vdata in a vgroup given a list of field names
Vflocate vifloc .
(Section 5.6.2.7 on page 246)
Returns the identifier of the next vgroup or vdata in a vgroup (Obso-
Vgetnext vignxt .
lete) (Section 5.9.1 on page 258)
Voettagref vEqttr Retrieves a tag/reference number pair for a data object in the vgroup
gettagre g (Section 5.6.2.2 on page 240)
Retrieves the tag/reference number pairs of all of the data objects
Vgettagrefs vigttrs . .
belonging to a vgroup (Section 5.6.2.3 on page 241)
Member Inquiry
Vingtagref vFingtr Determines whether a data object belongs to a vgroup
ared d (Section 5.6.2.4 on page 245)
Visy vEisy Determines whether a data object is a vgroup within another vgroup
svg sv9 (Section 5.6.2.5 on page 245)
. . Determines whether a data object is a vdata within a vgroup
Visvs viisvs .
(Section 5.6.2.6 on page 246)
Retrieves the number of tags of a given tag type in a vgroup
Vnrefs vnrefs (Section 5.6.2.8 on page 246)
)) Retrieves information of a vgroup attribute (Section 5.8.5 on
Vattrinfo vfainfo
page 251)
. Returns the index of a vgroup attribute given the attribute name
Vfindattr vifdatt .
(Section 5.8.3 on page 249)
Attributes Vgetattr ZEEZZEE/ Retrieves the values of a vgroup attribute (Section 5.8.7 on page 253)
Returns the total number of vgroup attributes (Section 5.8.4 on
Vnattrs vinatts
page 250)
visnatt/ . .
Vsetattr vfecatt Sets the attribute of a vgroup (Section 5.8.2 on page 249)

5.3.2 Identifying Vgroups in the Vgroup Interface

The Vgroup interface identifies vgroups in several ways. In some cases, a vgroup can be accessed
directly through the use of its unique reference number. In other cases, the reference number and
the routine Vattach are used to obtain a vgroup identifier. The reference number of a vgroup can
be obtained from the name or the class of the vgroup, or by sequentially traversing the file. The
concept of reference number is discussed in Section 2.2.2.1 on page 8.

When a vgroup is attached or created, it is assigned an identifier, called vgroup id. After a vgroup
has been attached or created, its identifier is used by the Vgroup interface routines in accessing the
vgroup.

5.4 Programming Model for the Vgroup Interface

The programming model for accessing vgroups is as follows:
1. Open an HDF file.
2. Initialize the Vgroup interface.
3. Create a new vgroup or open an existing one.
4. Perform the desired operations on the vgroup.
5. Terminate access to the vgroup.
6. Terminate access to the Vgroup interface.
7. Close the file.

These steps correspond to the following sequence of function calls:

C: file id = Hopen(filename, file access mode, num dds block);
status = Vstart (file id);

214 June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents HDF User’s Guide

vgroup id = Vattach(file id, vgroup ref, vg access mode);
<Optional operations>

status = Vdetach (vgroup id);
Vend (file id);
status = Hclose (file id);

status

FORTRAN: file id = hopen(filename, file access mode, num dds block)
status = vfstart (file id)
vgroup id = vfatch(file id, vgroup ref, vg access mode)
<Optional operations>

status vfdtch (vgroup id)
status = vfend(file id)
status = hclose (file id)

The calling program must obtain a separate vgroup identifier for each vgroup to be accessed.

5.4.1 Accessing Files and Vgroups: Vstart and Vattach

An HDF file must be opened by Hopen before it can be accessed using the Vgroup interface.
Hopen is described in Chapter 2, HDF Fundamentals.

The Vgroup interface routines are used in a similar manner to the Vdata interface routines. Before
performing operations on a vgroup, a calling program must call Vstart for every file to be
accessed. Vstart initializes the internal vgroup structures in a file. Vstart takes one argument, the
file identifier returned by Hopen, and returns either succeep (or 0) or FAIL (or -1). Note that the
Vstart routine is used by both the Vdata and Vgroup interfaces.

The calling program must also call one Vattach for every vgroup to be accessed. Vattach pro-
vides access to an individual vgroup for all read and write operations. Vattach takes three argu-
ments: file id, vgroup_ref, and vg_access_mode, and returns either a vgroup identifier or FATL (or

-1).

The argument file _id is the file identifier returned by Hopen. The parameter vgroup_ref'is the ref-
erence number that identifies the vgroup to be accessed. Specifying vgroup ref with a value of -1
will create a new vgroup; specifying vgroup ref with a nonexistent reference number will return
an error code of FaIL (or -1); and specifying vgroup ref with a valid reference number will ini-
tiate access to the corresponding vgroup.

When a new vgroup is created, it does not have any members. Additional operations must be per-
formed to add other HDF data objects to the vgroup. Refer to Section 5.5 on page 218 for infor-
mation.

To access an existing vdata, its reference number must be obtained. The Vgroup interface includes
two routines for this purpose, Vfind and Vgetid. Vfind can be used to obtain the reference num-
ber of a vgroup when the vgroup’s name is known. Vgetid can be used to obtain the reference
number by sequentially traversing the file. These routines are discussed in Section 5.6.1.9 on
page 236 and Section 5.6.1.2 on page 232.

The parameter vg_access_mode in Vattach specifies the type of access ("7" or "w") required for
operations on the selected vgroup.

Multiple attaches may be made to a vgroup, which will result in several vgroup identifiers being
assigned to the same vgroup. Termination must be properly handled as described in the next sec-
tion.

The parameters of Vstart and Vattach are defined in Table 5B on page 216.

June 2017 215

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
5.4.2 Terminating Access to Vgroups and Files: Vdetach and Vend
Successfully terminating access to a vgroup requires one Vdetach call for every Vattach call
made. Similarly, successfully terminating access to the Vgroup interface requires one Vend call
for every Vstart call made.

Vdetach terminates access to a vgroup by updating internal library structures and freeing all
memory associated with the vgroup and allocated by Vattach. Once a vgroup is detached, its
identifier is invalid and any attempts to access this vgroup identifier will result in an error condi-
tion. Vdetach takes one argument, vgroup id, the vgroup identifier returned by Vattach, and
returns either succeeD (or 0) or FATL (or -1).
Vend releases all internal data structures allocated by Vstart. Attempts to use the Vgroup inter-
face identifier after calling Vend will produce errors. Vend takes one argument, file id, the file
identifier returned by Hopen, and returns either succeep (or 0) or FATL (or -1). Note that the first
Vend call to a file must occur after all Vdetach calls for the vgroups in the same file have been
made. Note also that the Vend routine is used by both the Vdata and Vgroup interfaces.
Hclose must be used to terminate access to the HDF file and only after all proper Vend calls are
made. Hclose is described in Chapter 2, HDF Fundamentals.
The parameters of Vdetach and Vend are also defined in Table 5B.
TABLE 5B Vstart, Vattach, Vdetach, and Vend Parameter Lists
Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 7
77)
Vstart
[intn] file_id int32 integer File identifier
(vistart)
file_id int32 integer File identifier
‘E?r::;;]h varoup. ref int32 integer Reference number for an existing vgroup or -1 to
(vfatch) create a new one
vg_access_mode char * character*(*) Access mode of the vgroup operation
Vdetach
[int32] vgroup_id int32 integer Vgroup identifier
(vfdtch)
Vend
[intn] file_id int32 integer File identifier
(vfend)
EXAMPLE 1. Creating HDF Files and Vgroups

This example illustrates the use of Hopen/hopen, Vstart/vfstart, Vattach/vfatch, Vdetach/
vfdtch, Vend/vfend, and Hclose/hclose to create and to access two vgroups in an HDF file.

The program creates the HDF file, named "Two_Vgroups.hdf", and two vgroups stored in the file.
Note that, in this example, the program only create two empty vgroups.
C:
#include "hdf.h"

#define FILE NAME "Two_Vgroups.hdf"

216

June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide

main ()

{

/‘k************************ Variable declaration **************************/

intn status n; /* returned status for functions returning an intn */
int32 status_ 32, /* returned status for functions returning an int32 */
vgroup_ref = -1,

vgroupl id, vgroup2 id, file id;
/********************** End Of Variable declaration **********************/

/%
* Create the HDF file.

*/

file id = Hopen (FILE NAME, DFACC CREATE, O0);

/*
* Initialize the V interface.
*/

status_n = Vstart (file id);

/*
* Create the first vgroup. Note that the vgroup reference number is set
* to -1 for creating and the access mode is "w" for writing.

*/

vgroupl id = Vattach (file id, vgroup_ref, "w");

/*

* Create the second vgroup.

*/

vgroup2 id = Vattach (file id, vgroup ref, "w");
/*

* Any operations on the vgroups.

*/

/*

* Terminate access to the first vgroup.

*/

status 32 = Vdetach (vgroupl id);

/*

* Terminate access to the second vgroup.

*/

status 32 = Vdetach (vgroup2 id);

/*

* Terminate access to the V interface and close the HDF file.
*/

status n = Vend (file id);

status_ n = Hclose (file id);

FORTRAN:
program create vgroup
implicit none
C
c Parameter declaration
C
character*15 FILE_ NAME
C

parameter (FILE NAME = ’Two Vgroups.hdf’)

June 2017 217

The HDF Group

Table of Contents Chapter 5 -- Vgroups (V API)

5.5

integer DFACC CREATE
parameter (DFACC CREATE = 4)

C
C Function declaration
C
integer hopen, hclose
integer vfstart, vfatch, vfdtch, vfend
C
C**** Variable declaration KA KKK KA KR AA KA KR AR A AR AR A AR A R A A A AR AR A AR AR A AR A * K
C
integer status
integer file id
integer vgroupl id, vgroup2 id, vgroup_ ref
C
C**** End Of Variable declaration KAK KA KRKAA KA KA KRNI A KA KA A A AR AR A AR AR A A A Ak K
C
C
C Create the HDF file.
C
file id = hopen(FILE NAME, DFACC CREATE, 0)
C
C Initialize the V interface.
c
status = vfstart(file id)
C
C Create the first vgroup. Note that the vgroup reference number is set
C to -1 for creating and the access mode is ’'w’ for writing.
c
vgroup ref = -1
vgroupl id = vfatch(file id, vgroup ref, ’w’)
c
C Create the second vgroup.
c
vgroup2 id = vfatch(file id, vgroup ref, 'w’)
C
C Any operations on the vgroups.
c
C e e
C
C Terminate access to the first vgroup.
c
status = vfdtch(vgroupl id)
c
C Terminate access to the second vgroup.
c
status = vfdtch(vgroup2 id)
C
C Terminate access to the V interface and close the HDF file.
c

status = vfend(file id)
status = hclose(file id)
end

Creating and Writing to a Vgroup

There are two steps involved in the creation of a vgroup: creating the vgroup and inserting data
objects into it. Any HDF data object can be inserted into a vgroup. Creation and insertion opera-
tions are usually performed at the same time, but that is not required.

218

June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide

HDF provides two routines that insert an HDF data object into a vgroup, Vaddtagref and Vin-
sert. Vaddtagref can insert any HDF data object into a vgroup, but requires that the tag and refer-
ence number of the object be available. Refer to Section 2.2.2.1 on page 8 for the description of
tags and reference numbers for HDF data objects. Vinsert only inserts a vdata or a vgroup to a
vgroup, but only requires the identifier of the vdata or the vgroup.
Creating a vgroup with a member involves the following steps:

1. Open the HDF file.

2. Initialize the Vgroup interface.

3. Create the new vgroup.

4. Optionally assign a vgroup name.

5. Optionally assign a vgroup class.

6. Insert a data object.

7. Terminate access to the vgroup.

8. Terminate access to the Vgroup interface.

9. Close the HDF file.

These steps correspond to the following sequence of function calls:

C: file id = Hopen(filename, file access mode, num dds block);
status = Vstart (file id);
vgroup id = Vattach(file id, vgroup ref, vg access mode);

status = Vsetname (vgroup id, vgroup name);

status = Vsetclass (vgroup id, vgroup class);

/* Use either Vinsert to add a vdata or a vgroup, or
Vaddtagref to add any data object */
num of tag refs = Vaddtagref (vgroup id, obj tag, obj ref);
OR obj pos = Vinsert (vgroup id, v_id);

status = Vdetach (vgroup id);
status = Vend(file id);
status = Hclose (file id);

FORTRAN: file id = hopen(filename, file access mode, num dds block)
status = vfstart (file id)
vgroup id = vfatch(file id, vgroup ref, vg access mode)

status visnam (vgroup_id, vdata name)

status = vfscls (vgroup_id, vdata class)

C Use either Vinsert to add a vdata or a vgroup, or Vaddtagref to
C add any data object
num of tag refs = vfadtr(vgroup id, obj tag, obj ref)
OR obj pos = vfinsrt (vgroup id, v_id)
status = vfdtch (vgroup id)

status = vfend(file id)
status = hclose (file id)

The parameter v_id in the calling sequence is either a vdata or vgroup identifier. The parameter
vgroup_id is the vgroup identifier returned by Vattach.

When a new vgroup is created, the value of vgroup ref must be set to -1 and the value of
vg_access_mode must be "w".

June 2017 219

The HDF Group

Table of Contents Chapter 5 -- Vgroups (V API)

5.5.1 Assigning a Vgroup Name and Class: Vsetname and Vsetclass

Vsetname assigns a name to a vgroup. The parameter vgroup name is a character string with the
name to be assigned to the vgroup. If Vsetname is not called, the vgroup name is set to a zero-
length character string. A name may be assigned and reset any time after the vgroup is created.

Vsetclass assigns a class to a vgroup. The parameter vgroup class is a character string with the
class name to be assigned to the vgroup. If Vsetclass is not called, the vgroup class is set to a zero-
length string. As with the vgroup names, the class may be set and reset at any time after the
vgroup is created.

Starting from release 4.2.4, the maximum length of vgroup’s name is no longer limited to veNaME-
LENMAX (or 64) and release 4.2.5 for vgroup’s class name.

Vsetname and Vsetclass return either succeep (or 0) or FATIL (or -1). The parameters of these
routines are further described in Table 5C on page 225.

5.5.2 Inserting Any HDF Data Object into a Vgroup: Vaddtagref

Vaddtagref inserts HDF data objects into the vgroup identified by vgroup id. HDF data objects
may be added to a vgroup when the vgroup is created or at any point thereafter.

The parameters obj tag and obj ref in Vaddtagref are the tag and reference number, respec-
tively, of the data object to be inserted into the vgroup. Note that duplicated tag and reference
number pairs are allowed.

Vaddtagref returns the total number of tag and reference number pairs, i.e., the total number of
data objects, in the vgroup if the operation is successful, and FaIL (or -1) otherwise. The parame-
ters of Vaddtagref are further described in Table 5C.

Note that Vaddtagref does not verify that the tag and reference number exist.

EXAMPLE 2.

Adding an SDS to a New Vgroup

This example illustrates the use of Vaddtagref/vfadtr to add an HDF data object, an SDS specif-
ically, to a vgroup.

In this example, the program first creates the HDF file "General Vgroups.hdf", then an SDS in
the SD interface, and a vgroup in the Vgroup interface. The SDS is named "Test SD" and is a
one-dimensional array of type int32 of 10 elements. The vgroup is named "SD Vgroup" and is of
class "Common Vgroups". The program then adds the SDS to the vgroup using Vaddtagref/
vfadtr. Notice that, when the operations are complete, the program explicitly terminates access to
the SDS, the vgroup, the SD interface, and the Vgroup interface before closing the HDF file.
Refer to Chapter 3, Scientific Data Sets (SD API) for the discussion of the SD routines used in this
example.

General Vgroups.hdf Vgroup

SDS

220

June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents HDF User’s Guide

#include "hdf.h" /* Note: in this example, hdf.h can be omitted...*/
#include "mfhdf.h" /* ...since mfhdf.h already includes hdf.h */
#define FILE_NAME "General Vgroups.hdf"

#define SDS_NAME "Test SD"

#define VG NAME "SD Vgroup"

#define VG CLASS "Common Vgroups"

main ()

{

/*‘k*********************** Variable declaration ‘k‘k************************/

intn status_n; /* returned status for functions returning an intn */
int32 status 32, /* returned status for functions returning an int32 */

sd_id, /* SD interface identifier */

sds_id, /* data set identifier */

sds_ref, /* reference number of the data set */

dim sizes[1], /* dimension of the data set - only one */

rank = 1, /* rank of the data set array */

vgroup_ id, /* vgroup identifier */

file id; /* HDF file identifier, same for V interface */

/********************** End Of variable declaration **********************/

/*

* Create the HDF file.

*/

file id = Hopen (FILE NAME, DFACC CREATE, 0);

/*

* Initialize the V interface.

*/

status n =

/*

Vstart (file id);

* Initialize the SD interface.

*/

sd _id = SDstart (FILE NAME, DFACC WRITE);

/*

* Set the size of the SDS’s dimension.

*/

dim sizes([0]

/*

= 10;

* Create the SDS.

*/

sds_id = SDcreate (sd id, SDS NAME, DENT INT32, rank, dim sizes);

/*

* Create a vgroup and set its name and class.

*/

vgroup id
status 32
status_32

/*

Vattach (file id, -1, "w");
Vsetname (vgroup_ id, VG_NAME);
Vsetclass (vgroup id, VG CLASS);

* Obtain the reference number of the SDS using its identifier.

*/
sds_ref =

SDhidtoref (sds_id);

June 2017

221

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)

/*
* Add the SDS to the vgroup. Note: the tag DFTAG NDG is used

* when adding an SDS. Refer to Appendix A for the entire list of tags.
*/

status_32 = Vaddtagref (vgroup id, DFTAG NDG, sds_ref);

/%
* Terminate access to the SDS and to the SD interface.
*/

status_n = SDendaccess (sds_id);

status_n = SDend (sd_id);

/*
* Terminate access to the vgroup and to the V interface, and
* close the HDF file.

*/

status_32 = Vdetach (vgroup id);

status_ n = Vend (file id);

status n = Hclose (file id);

FORTRAN:
program add SDS to_a vgroup
implicit none
C
C Parameter declaration
C
character*19 FILE_ NAME
character*7 SDS_NAME
character*9 VG NAME
character*13 VG CLASS
C
parameter (FILE NAME = ’General Vgroups.hdf’,
+ SDS_NAME = 'Test SD’,
+ VG_NAME = ’SD Vgroup’,
+ VG CLASS = ’'Common Vgroups’)
integer DFACC CREATE, DFACC WRITE
parameter (DFACC _CREATE = 4, DFACC WRITE = 2)
integer DENT INT32
parameter (DENT INT32 = 24)
integer DFTAG_NDG
parameter (DFTAG NDG = 720)
c
C Function declaration
C
integer hopen, hclose
integer vfstart, vfatch, vfsnam, vfscls, vfadtr, vfdtch, vfend
integer sfstart, sfcreate, sfid2ref, sfendacc, sfend
C
C**** Variable declaration KA K KA KA KR AKR KA KR AR AR R AR A AR AR A A A AR AR A AR AR A A A A h K
c
integer status
integer file id
integer vgroup id
integer sd_id, sds_id, sds_ref
integer dim sizes (1), rank
c
C***‘k End Of variable declaration Kk Ak Ak hkkhkhkhk A hkhkhkkhkrhkhkhkhkhkhrhkkhkhkkhkrkkhkhhkhkhkkhrkx
C
c
c Create the HDF file.

222 June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents HDF User’s Guide

C
file id = hopen (FILE NAME, DFACC_CREATE, 0)
C
C Initialize the V interface.
C
status = vfstart(file id)
C
C Initialize SD interface.
C
sd_id = sfstart (FILE NAME, DFACC WRITE)
C
C Set the rank and the size of SDS’s dimension.
C
rank = 1
dim sizes (1) = 10
C
C Create the SDS.
C
sds_id = sfcreate(sd id, SDS NAME, DENT INT32, rank, dim sizes)
C
C Create a vgroup and set its name and class.
C
vgroup id = vfatch(file id, -1 , 'w’)
status = vfsnam(vgroup id, VG _NAME)
status = vfscls (vgroup id, VG_CLASS)
C
C Obtain the reference number of the SDS using its identifier.
C
sds_ref = sfid2ref (sds_id)
C
C Add the SDS to the vgroup. Note: the tag DFTAG NDG is used
C when adding an SDS. Refer to HDF Reference Manual, Section III, Table 3K,
C for the entire list of tags.
C
status = vfadtr(vgroup_id, DFTAG NDG, sds_ref)
C
C Terminate access to the SDS and to the SD interface.
C
status = sfendacc(sds_id)
status = sfend(sd id)
C
C Terminate access to the vgroup.
C
status = vfdtch (vgroup_id)
C
C Terminate access to the V interface and close the HDF file.
C

status = vfend(file id)
status hclose (file id)
end

5.5.3 Inserting a Vdata or Vgroup Into a Vgroup: Vinsert

Vinsert is a routine designed specifically for inserting vdatas or vgroups into a parent vgroup. To
use Vinsert, you must provide the identifier of the parent vgroup, vgroup_id, as well as the identi-
fier of the vdata or vgroup to be inserted, v_id.

The parameter v_id of Vinsert is either a vdata identifier or a vgroup identifier, depending on
whether a vdata or vgroup is to be inserted.

June 2017 223

The HDF Group

Table of Contents Chapter 5 -- Vgroups (V API)

Vinsert returns the index of the inserted vdata or vgroup if the operation is successful, and FaTL
(or -1) otherwise. The parameters of Vinsert are further defined in Table 5C.

5.5.4 Building a Vgroup with or without Elements: VHmakegroup

VHmakegroup is a high-level routine, designed to facilite the process of creating and inserting
elements into a vgroup. The vgroup will have a name and/or class name if these information are
provided to VHmakegroup. By using VHmakegroup, an application can by pass a number of
function calls such as Vattach, Vsetname, Vsetclass, Vinsert/Vaddtagref, and Vdetach.

VHmakegroup creates a vgroup with the name specified by the parameter vgroup name and the
class name specified by the parameter vgroup class in the file identified by the parameter file id.
The routine inserts n_objects objects into the vgroup. The tag and reference numbers of the
objects to be inserted are specified in the arrays tag array and ref array.

Creating empty vgroups with VHmakegroup is allowed. VHmakegroup does not check if the
tag/reference number pair is valid, or if the corresponding data object exists. However, all of the
tag/reference number pairs must be unique.

Vstart must precede any calls to VHmakegroup.

The elements in the arrays tag array and ref array are the matching tag/reference number pairs
of the objects to be inserted, that means tag array/0] and ref array[0] refer to one data object,
and tag_array[l1] and ref array[1] to another, etc. If name and/or class name are not desired, the
parameters vgroup _name and/or vgroup class can be NULL.

The syntax of VHmakegroup is as follows:

C: vgroup ref = VHmakegroup (file id, tag array, ref array, n cbjects,
vgroup name, vgroup class);

FORTRAN: vgroup ref = vhfmkgp(file id, tag array, ref array, n cbjects,
vgroup name, vgroup class)

VHmakegroup returns the reference number of the newly-created vgroup if successful, Fa1z (or
-1) otherwise.

The parameters of VHmakegroup are further defined in Table 5F.

224

June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide

TABLE 5C Vsetname, Vsetclass, Vaddtagref, Vinsert, and VHmakegroup Parameter Lists
Routine Parameter Type
yp
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 7
77)
Vsetname vgroup_id int32 integer Vgroup identifier
[int32]
(vfsnam) vgroup_name char * character*(*) Vgroup name
Vsetclass vgroup_id int32 integer Vgroup identifier
[int32]
(vfscls) vgroup_class char * character*(*) Vgroup class
Vaddtagref vgroup_id int32 integer Vgroup identifier
[int32] obj_tag int32 integer Tag of the data object to be inserted
(viadtr) obj_ref int32 integer Reference number of the data object to be inserted
Vinsert vgroup_id int32 integer Vgroup identifier
[int32]
(vfinsrt) v_id int32 integer Identifier of the vgroup or vdata to be inserted
file id int32 integer File identifier
tag_array int32 * integer(*) Array of tags
VHmakegroup ref_array int32 * integer(*) Array of reference numbers
[int32] a obiect. int32 teger Number of items in tag_array or ref _array (must be
(vhfmkgp) _objects cge the same)
vgroup_name char * character*(*) Name of the vgroup
vgroup_class char * character*(*) Class of the vgroup
EXAMPLE 3. Adding Three Vdatas into a Vgroup

This example illustrates the use of Vinsert/vfinsrt to add a vdata to a vgroup. Note that Vadd-
tagref/vfadtrf, used in the previous example, performs the same task and only differs in the argu-
ment list.

In this example, the program creates three vdatas and a vgroup in the existing HDF file
"General_Vgroups.hdf" then adds the three vdatas to the vgroup. Notice that the vdatas and the
vgroup are created in the same interface that is initialized by the call Vstart/vfstart. The first
vdata is named "X,Y Coordinates" and has two order-1 fields of type float32. The second vdata is
named "Temperature" and has one order-1 field of type float32. The third vdata is named "Node
List" and has one order-3 field of type int16. The vgroup is named "Vertices" and is of class
"Vertex Set". The program uses Vinsert/vfinsrt to add the vdatas to the vgroup using the vdata
identifiers. Refer to Chapter 4, Vdatas (VS API), for the discussion of the VS routines used in this
example.

June 2017 225

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)

Vgroup
Name: Verti-
cesClass:
Vertex_set

T

PX PY TMP PLIST
-15 23 23.55 123
-1.5 1.98 33.77 45,6
-24 67 10.092 7.8,9

Vdata Vdata Vdata
Name: PX,PY Name: TMP Name: PLIST
Class: Node Class: Prop- Class: Connec-—
List erty List tivity List

C:
#include "hdf.h"
#define FILE NAME "General Vgroups.hdf"
#define N_RECORDS 30 /* number of records in the vdatas */
#define ORDER 3 /* order of field FIELD VD2 */
#define VG NAME "Vertices"
#define VG CLASS "Vertex Set"
#define VD1 NAME "X,Y Coordinates" /* first vdata to hold X,Y...*/
#define VD1 CLASS "Position" /*...values of the vertices */
#define VD2 NAME "Temperature" /* second vdata to hold the...*/
#define VD2 CLASS "Property List" /*...temperature field */
#define VD3 NAME "Node List" /* third vdata to hold...*/
#define VD3 CLASS "Mesh" /*...the list of nodes */
#define FIELD1 VD1 "pX" /* first field of first vdata - X values */
#define FIELD2 VD1 "PY"/* second field of first vdata - Y values */
#define FIELD VD2 "IMP"/* field of third vdata */
#define FIELD VD3 "PLIST"/* field of second vdata */
#define FIELDNAME LIST "PX,PY" /* field name list for first vdata */

/* Note that the second and third vdatas can use the field names as
the field name lists unless more fields are added to a vdata.
Then a field name list is needed for that vdata */

main()

{

/********‘k‘k***‘k‘k‘k********* Variable declaration ‘k‘k************************/

intn status_n; /* returned status for functions returning an intn */
int32 status 32, /* returned status for functions returning an int32 */
file id, vgroup id,
vdatal id, vdata2 id, vdata3 id;

int32 num_of records, /* number of records actually written */
vd_index; /* position of a vdata in the vgroup */

ints i, 3, k = 0;

float32 pxy[N RECORDS][2] = /* buffer for data of the first vdata */

{-1.5, 2.3, -1.5, 1.98, -2.4, .67,
-3.4, 1.46, -.65, 3.1, -.62, 1.23,
-.4, 3.8, -3.55, 2.3, -1.43, 2.44,
.23, 1.13, -1.4, 5.43, -1.4, 5.8,
-3.4, 3.85, -.55, .3, -.21, 1.22,
-1.44, 1.9, -1.4, 2.8, .94, 1.78,
-.4, 2.32, -.87, 1.99, -.54, 4.11,
-1.5, 1.35, -1.4, 2.21, -.22, 1.8,
-1.1, 4.55, -.44, .54, -1.11, 3.93,

226 June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents HDF User’s Guide

-.76, 1.9, -2.34, 1.7, -2.2, 1.21};
float32 tmp[N RECORDS]; /* buffer for data of the second vdata */
intl6 plist [N _RECORDS] [3]; /* buffer for data of the third vdata */

/********************** End Of Variable declaration ***********************/

/*
* Open the HDF file for writing.

*/

fileiid = Hopen (FILE NAME, DFACC WRITE, 0);

/*

* Initialize the V interface.

*/

status_n = Vstart (file id);

/*

* Buffer the data for the second and third vdatas.
*/

for (1 = 0; i < N _RECORDS; i++)
for (j = 0; j < ORDER; j++)
plist[i]1[]] = ++k;

for (i = 0; i < N_RECORDS; it+)
tmp[i] = 1 * 10.0;

/*

* Create the vgroup then set its name and class. Note that the vgroup’s

* reference number is set to -1 for creating and the access mode is "w" for
* writing.

*/

vgroup id = Vattach (file id, -1, "w");

status 32 = Vsetname (vgroup id, VG NAME) ;

status 32 = Vsetclass (vgroup id, VG CLASS);

/*

* Create the first vdata then set its name and class. Note that the vdata’s
* reference number is set to -1 for creating and the access mode is "w" for
* writing.

*/

vdatal id = VSattach (file id, -1, "w");

status 32 = VSsetname (vdatal id, VD1l NAME);

status 32 = VSsetclass (vdatal id, VD1 CLASS);

/*
* Introduce and define the fields of the first vdata.

*/

status_n = VSfdefine (vdatal id, FIELD1 VD1, DFNT_FLOAT32, 1);
status_n = VSfdefine (vdatal id, FIELD2 VD1, DFNT_FLOAT32, 1);

status_n = VSsetfields (vdatal id, FIELDNAME LIST);

/*
* Write the buffered data into the first vdata with full interlace mode.
*/
num of records = VSwrite (vdatal id, (uint8 *)pxy, N RECORDS,
FULL INTERLACE) ;

/*
* Insert the vdata into the vgroup using its identifier.
*/

vd index = Vinsert (vgroup id, vdatal id);

/*

June 2017

227

The HDF Group

Table of Contents Chapter 5 -- Vgroups (V API)

* Detach from the first vdata.
*/
status 32 = VSdetach (vdatal id);

/*

* Create, write, and insert the second vdata to the vgroup using

* steps similar to those used for the first vdata.

*/

vdata2 id = VSattach (file id, -1, "w");

status 32 = VSsetname (vdata2 id, VD2 NAME) ;

status 32 = VSsetclass (vdata2 id, VD2 CLASS);

status_n = VSfdefine (vdata2 id, FIELD VD2, DFNT_FLOAT32, 1);

status n = VSsetfields (vdata2 id, FIELD VD2);

num of records = VSwrite (vdata2 id, (uint8 *)tmp, N_RECORDS,
FULL INTERLACE) ;

vd index = Vinsert (vgroup id, vdata2 id);

status_32 = VSdetach (vdata2 id);

/%

* Create, write, and insert the third vdata to the vgroup using

* steps similar to those used for the first and second vdatas.

*/

vdata3 id = VSattach (file id, -1, "w");

status 32 = VSsetname (vdata3 id, VD3 NAME) ;

status 32 = VSsetclass (vdata3 id, VD3 CLASS);

status_n = VSfdefine (vdata3 id, FIELD VD3, DFNT INT16, 3);

status n = VSsetfields (vdata3_id, FIELD VD3);

num of records = VSwrite (vdata3_id, (uint8 *)plist, N_RECORDS,
FULL INTERLACE) ;

vd _index = Vinsert (vgroup_id, vdata3 id);

status_32 = VSdetach (vdata3_id);

/*
* Terminate access to the vgroup "Vertices".

*/

status 32 = Vdetach (vgroup id);

/*

* Terminate access to the V interface and close the HDF file.
*/

status n = Vend (file id);

status_n = Hclose (file id);

FORTRAN:

Q

program add vdatas to a vgroup
implicit none

Parameter declaration

character*19 FILE NAME
character*8 VG NAME
character*10 VG _CLASS
character*15 VD1 NAME
character*8 VD1 CLASS
character*11 VD2 NAME
character*13 VD2 CLASS
character*9 VD3 NAME
character*4 VD3 CLASS

parameter (FILE NAME = ’General Vgroups.hdf’,
+ VG_NAME = ’Vertices’,

228

June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents HDF User’s Guide

Q

c

+

+
+

+
+

+ o+ o+ o+

VG_CLASS = 'Vertex Set’)
parameter (VD1 _NAME = ’X,Y Coordinates’,

VD2_NAME = 'Temperature’,

VD3 NAME = ’Node List’)

parameter (VD1 CLASS = ’Position’,
VD2 CLASS = 'Property List’,
VD3 CLASS = ’Mesh’)

character*2 FIELD1 VD1

character*2 FIELD2 VDI

character*3 FIELD VD2

character*4 FIELD VD3

character*5 FIELDNAME LIST

parameter (FIELD1 VDl = ’PX’,

FIELD2 VD1 = 'PY’,

FIELD VD2 = '"TMP’,

FIELD VD3 = ’PLIST’,
FIELDNAME LIST = ’'PX,PY’)

integer N_RECORDS
parameter (N _RECORDS = 30)

integer DFACC WRITE

parameter (DFACC WRITE = 2)

integer DFNT_FLOAT32, DFNT_INT16

parameter (DFNT FLOAT32 = 5, DFNT INT16 = 22)
integer FULL INTERLACE

parameter (FULL INTERLACE = 0)

Function declaration

integer hopen, hclose
integer vfstart, vfatch, vfsnam, vfscls, vfinsrt, vfdtch, vfend
integer vsfatch, vsfsnam, vsfscls, vsffdef, vsfsfld,

vsfwrt, vsfwrtc, vsfdtch

C**‘k‘k variable declaration KAk Ak Ak kA kA hkhkhkhkhk kA hkhkhkhkr kA hkkhkhrhkkhkhkhkrhhkhkkhrkhrxk*x

C

c

+ 4+ o+ o+ o+ o+ o+

integer status

integer file id

integer vgroup id

integer vdatal id, vdata2 id, vdata3 id, vd index

integer num of records

integer i, j, k

real pxXy (2,N _RECORDS), tmp (N RECORDS)

integer plist (3,N_RECORDS)

data pxy /-1.5, 2.3, -1.5, 1.98, -2.4, .67,
-3.4, 1l.46, -.65, 3.1, -.62, 1.23,
-.4, 3.8, -3.55, 2.3, -1.43, 2.44,
.23, 1.13, -1.4, 5.43, -1.4, 5.8,
-3.4, 3.85, -.55, .3, -.21, 1.22,
-1.44, 1.9, -1.4, 2.8, .94, 1.78,
-.4, 2.32, -.87, 1.99, -.54, 4.11,
-1.5, 1.35, -1.4, 2.21, -.22, 1.8,
-1.1, 4.55, -.44, .54, -1.11, 3.93,
-.76, 1.9, -2.34, 1.7, -2.2, 1.21/

c**‘k‘k End of variable declaration KAk Ak Ak hkhk Ak Ak hkhkkhk A kA hkkhkhkhrhkkhkhkkhkhkhrhkkhxkkhrxk*x

C

C
C
C

Open the HDF file for writing.

file id = hopen(FILE NAME, DFACC WRITE, O0)

June 2017

229

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)

C Initialize the V interface.
C
status = vfstart(file id)
C
C Buffer the data for the third and second vdatas.
C
do 20 i = 1, N RECORDS
do 10 3 =1, 3
plist(j,1) = k
k = k+1
10 continue
20 continue
do 30 i = 1, N RECORDS
tmp (i) = (i-1) * 10.0
30 continue
C
C Create a vgroup and set its name and class.
C Note that the vgroup’s reference number is set to -1 for creating
C and the access mode is 'w’ for writing.
C
vgroup id = vfatch(file id, -1 , 'w’)
status = vfsnam(vgroup id, VG _NAME)
status = vfscls(vgroup id, VG_CLASS)
C
C Create the first vdata then set its name and class. Note that the vdata’s
C reference number is set to -1 for creating and the access mode is ’'w’ for
C writing.
C
vdatal id = vsfatch(file id, -1, 'w’)
status = vsfsnam(vdatal id, VD1 NAME)
status = vsfscls(vdatal id, VDl CLASS)
C
C Introduce and define the fields of the first vdata.
C
status = vsffdef (vdatal id, FIELDl1 VD1, DFNT FLOAT32, 1)
status = vsffdef (vdatal id, FIELD2 VD1, DEFNT FLOAT32, 1)
status = vsfsfld(vdatal id, FIELDNAME LIST)
C
C Write the buffered data into the first vdata.
C
num of records = vsfwrt(vdatal id, pxy, N RECORDS,
+ FULL INTERLACE)
C
C Insert the vdata into the vgroup using its identifier.
C
vd index = vfinsrt(vgroup id, vdatal id)
C
C Detach from the first vdata.
C
status = vsfdtch(vdatal id)
C
c Create, write, and insert the second vdata to the vgroup using
C steps similar to those used for the first vdata.
C

vdata2 id = vsfatch(file id, -1, 'w’)

status = vsfsnam(vdata2_id, VD2_NAME)

status = vsfscls(vdata2 id, VD2 CLASS)

status = vsffdef (vdata2 id, FIELD VD2, DENT FLOAT32, 1)
status = vsfsfld(vdata2_id, FIELD VD2)

num of records = vsfwrt(vdata2 id, tmp, N_RECORDS,
+ FULL INTERLACE)

vd_index = vfinsrt(vgroup_id, vdata2_ id)

status = vsfdtch(vdata2 id)

230 June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents HDF User’s Guide

5.6

C
C Create, write, and insert the third vdata to the vgroup using
C steps similar to those used for the first and second vdatas.
C
vdata3 id = vsfatch(file id, -1, 'w’)
status = vsfsnam(vdata3 id, VD3 NAME)
status = vsfscls(vdata3 id, VD3 CLASS)
status = vsffdef (vdata3 id, FIELD VD3, DFNT INT16, 3)
status = vsfsfld(vdata3 id, FIELD VD3)
num of records = vsfwrtc(vdata3 id, plist, N _RECORDS,
+ FULL_INTERLACE)
vd index = vfinsrt(vgroup id, vdata3 id)
status = vsfdtch(vdata3 id)
C
C Terminate access to the vgroup ’'Vertices’.
C
status = vfdtch (vgroup_id)
C
C Terminate access to the V interface and close the HDF file.
C
status = vfend(file id)
status = hclose(file id)
end
Reading from Vgroups

Reading from vgroups is more complicated than writing to vgroups. The process of reading from
vgroups involves two steps: locating the appropriate vgroup and obtaining information about the
member or members of a vgroup. This section describes routines that provide these functional-
ities.

5.6.1 Locating Vgroups and Obtaining Vgroup Information

There are several routines provided for the purpose of locating a particular vgroup, each corre-
sponding to an identifying aspect of a vgroup. These aspects include whether the vgroup has
vgroups included in it, the identification of the vgroup in the file based on its reference number,
and the name and class name of the vgroup. The routines are described in the following subsec-
tions.

5.6.1.1 Locating Lone Vgroups: Vlone

A lone vgroup is one that is not a member of any other vgroups, i.e., not linked with any other
vgroups. Vlene searches the file specified by the parameter file id and retrieves the reference
numbers of lone vgroups in the file. This routine is useful for locating unattached vgroups in a file
or the vgroups at the top of a grouping hierarchy. The syntax of Vleone is as follows:

C: num of lones = Vlone(file id, ref array, maxsize);
FORTRAN: num of lones = vflone(file id, ref array, maxsize)

The parameter ref array is an array allocated to hold the reference numbers of the found vgroups.
The argument maxsize specifies the maximum size of ref array. At most maxsize reference num-
bers will be retrieved in ref array. The value of max_size, the space allocated for ref array,
depends on how many lone vgroups are expected to be found.

To use dynamic memory instead of allocating an unnecessarily large array (i.e., one that will hold
the maximum possible number of reference numbers), call Vlone twice. In the first call to Vlene,

June 2017 231

The HDF Group

Table of Contents Chapter 5 -- Vgroups (V API)

set maxsize to a small value, for example, 0 or 1, then use the returned value (the total number of
lone vgroups in the file) to allocate memory for ref array. This array is then passed into the sec-
ond call to Vlone.

Vlone returns the total number of lone vgroups or FAIL (or -1). The parameters of this routine are
further defined in (See Table 5D on page 234).

5.6.1.2 Sequentially Searching for a Vgroup: Vgetid

Vgetid sequentially searches through an HDF file to obtain the reference number of the vgroup
immediately following the vgroup specified by the reference number, vgroup ref. The syntax of
Vgetid is as follows:

C: ref num = Vgetid(file id, vgroup ref);
FORTRAN: ref num = vfgid(file id, vgroup ref)

To initiate a search, Vgetid may be called with vgroup ref'set to -1. Doing so returns the refer-
ence number of the first vgroup in the file. Any attempt to search past the last vgroup in a file will
cause Vgetid to return a value of Fazz (or -1).

Vgetid returns a vgroup reference number or Fa11L (or -1). The parameters of Vgetid are further
defined in (See Table 5D on page 234).

5.6.1.3 Retrieving vgroups in a file or in a vgroup: Vgetvgroups

Vgetvgroups retrieves a list containing reference numbers of vgroups in a file or in a vgroup,
which is identified by the parameter id. The syntax of Vgetvgroups is as follows:

C: status = Vgetvgroups (id, start vgroup, vgroup count, refarray);
FORTRAN: status = vfgvgroups(id, start vg, vg count, refarray)

The library commonly use vgroups or vdatas to store HDF objects. For example, a vgroup is used
to represent an SDS and a vdata for an attribute. Vgetvgroups retrieves only the vgroups that
were previously created by user applications, not those that were created by the library internally.
They are referred to as user-created vgroups, for brevity.

When id is a vgroup identifier, only the immediate sub-vgroups will be retrieved; that is, the sub-
vgroups will not be traversed.

The parameter vgroup count specifies the number of values that the refarray list can hold and can
be any positive number smaller than Max_REF (65535). If vgroup count is larger than the actual
number of user-created vgroups, then only the actual number of user-created vgroups will be
retrieved.

The retrieval starts at the vgroup number start vgroup going forward in the order which the
vgroups were created. For example, if there are 100 vgroups that can be retrieved, specifying
start_vgroup as 90 and vgroup count as 10 will retrieve the last ten vgroups. The value for
start_vgroup must be non-negative and smaller than or equal to the number of user-created
vgroups, which can be obtained by invoking Vgetvgroups passing in NuLL for the array refarray.
This number of user-created vgroups will also allow applications to sufficiently allocate space for
refarray.

When start vgroup is 0, the retrieval will start at the beginning of the file or the first sub-

vgroup of the specified vgroup.

When start vgroup is smaller than the number of user-created vgroups in the file or the
specified vgroup, Vgetvgroups will start retrieving vgroups from the vgroup number
start_vgroup.

232

June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide

- When start_vgroup is greater than the number of user-created vgroups in the file or the
vgroup, Vgetvgroups will return Fa1L (or -1).

Following are some examples of using Vgetvgroups to get the reference numbers of vgroups in a
file, assuming that the file has been opened for reading successfully:

C: /* Call Vgetvgroups the first time to get the number of vgroups in
the file to allocate refarray */
n vgs = Vgetvgroups (file id, 0, 0, NULL);

/* Allocate space to retrieve reference numbers of n vgs vgroups */
refarray = (uintl6 *)HDmalloc (sizeof (uintl6)*n vgs);

/* To get all the vgroups in the file: */
n vgs = Vgetvgroups (file id, 0, n vgs, refarray);

/* Assuming n vgs=100, to get the first 10 vgroups in the file: */
n vgs = Vgetvgroups (file id, 0, 10, refarray);

/* Assuming n vgs=100, to get the last 10 vgroups in the file: */
n vgs = Vgetvgroups (file id, 90, 10, refarray);

Following are some examples of using Vgetvgroups to get the reference numbers of vgroups in a
parent vgroup:

C: vgroup id = Vattach(file id, vgroup ref, "r");
/* Call Vgetvgroups the first time to get the nurber of vgroups in
the parent vgroup to allocate refarray */
n vgs = Vgetvgroups (vgroup id, 0, 0, NULL);

/* Allocate space to retrieve reference nurbers of n vgs vgroups */
refarray = (uintl6é *)HDmalloc (sizeof (uintl6)*n vgs);

/* Get all the vgroups in the parent vgroup */
n vgs = Vgetvgroups (vgroup id, 0, n vgs, refarray);

/* Close the vgroup */
status = Vdetach (vgroup id);

Note that, in the FORTRAN-77 version, if vg _count is -1 then the function will return the number
of user-created vgroups and disregard refarray; equivalent to passing NULL for refarray in the C
version.

Vgetvgroups returns the number of user-created vgroups retrieved, if successful, or FATL (or -1),
otherwise. The parameters of this routine are further defined in (See Table 5D on page 234).

5.6.1.4 Determining Internal Vgroup: Vgisinternal

The HDF library commonly uses vgroups and vdatas to store metadata or data for the library's
own use. For examples, vgroups are used to represent SDS or raster images, and vdatas are used
to store attributes or dimensions. Typically, a user is only interested in vgroups/vdatas that were
created by user applications, not by the library internally. Vgisinternal allows an application to
find out if a vgroup is internally created.

The syntax of Vgisinternal is as follows:

June 2017 233

The HDF Group

Table of Contents Chapter 5 -- Vgroups (V API)

C: is internal = Vgisinternal (vgroup id);
FORTRAN: Currently unavailable

Vgisinternal checks the class name of the given vgroup against the list HDF INTERNAL VGS to
determine whether the vgroup was previously created by the library instead of by a user applica-
tion. The names in HDF INTERNAL vGs are included:

_HDF_VARIABLE ("Var0.0")
THDF_DIMENSION ("Dim0.0")
“HDF_UDIMENSION ("UDim0.0")
"HDF_CDF ("CDF0.0")

GR NAME ("RIG0.0")

RI_NAME ("RI0.0")

There is one special case where an internal vgroup having a null class name and a name as
Gr_naME. This should be extremely rare, yet it is a possibility.

Vgisinternal returns True (1) if the inquired vgroup is one that was internally created by the
library, Farse (0) otherwise, and Fa1L (-1) if failure occurs. The parameters of this routine are
further defined in (See Table 5D on page 234).

TABLE 5D

Vlone, Vgetid, Vgetvgroups, and Vgisinternal Parameter Lists

Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 7

77)

Vione file_id int32 integer File identifier

[int32] ref_array int32 * integer (*) Buffer for the reference numbers of lone vgroups
(vflone)

maxsize int32 integer Maximum number of vgroups to store in ref array

Vgetid file_id int32 integer File identifier

[int32]
(vigid) vgroup_ref int32 integer Reference number of the current vgroup

id int32 integer File or vgroup identifer

Vgetvgroups start_vgroup uintn integer Vgroup index to start retrieving at
[intn] - - -
(vfgvgroups) vgroup_count uintn integer Number of vgroups to be retrieved

refarray int32 * integer (*) Array to hold reference numbers of retrieved vgroups

Vgisinternal
[intn] vgroup_id int32 N/A
(unavailable)

Vgroup identifier

5.6.1.5 Obtaining the Name of a Vgroup: Vgetname

Vgetname retrieves the name of the vgroup identified by the parameter vgroup id into the param-
eter vgroup _name. The syntax of Vgetname is as follows:

C: status = Vgetname (vgroup id, vgroup name);
FORTRAN: status = vfgnam(vgroup id, vgroup name)

Starting from release 4.2.4, the maximum length of vgroup’s name is no longer limited to veNaME-
LENMAX (or 64). When an application attempts to read a vgroup’s name that is longer than 64
characters with an insufficient buffer, the result will be unpredictable. Applications can use Vget-
namelen to get the length of the vgroup’s name prior to calling Vgetname.

Vgetname returns either succeeD (or 0) or FATL (or -1). The parameters of this routine are further
defined in Table SE on page 236.

234

June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide

5.6.1.6 Obtaining the Length of a Vgroup’s Name: Vgetnamelen

Vgetnamelen retrieves the length of a vgroup’s name and stores it in the parameter name_len.
The vgroup is identified by the parameter vgroup _id . The syntax of Vgetnamelen is as follows:

C: status = Vgetnamelen (vgroup id, name len);
FORTRAN: Currently unavailable

Vgetnamelen returns either succeeb (or 0) or FAIL (or -1). The parameters of this routine are fur-
ther defined in Table 5E on page 236.

5.6.1.7 Obtaining the Class Name of a Vgroup: Vgetclass

Vgetclass retrieves the class name of the vgroup specified by the parameter vgroup id into the
parameter vgroup _class. The syntax of Vgetclass is as follows:

C: status = Vgetclass (vgroup id, vgroup class);
FORTRAN: status = vfgcls(vgroup id, vgroup class)

Starting from release 4.2.5, the maximum length of vgroup’s class name is no longer limited to
VGNAMELENMAX (or 64). When an application attempts to read a vgroup’s name that is longer than
64 characters with an insufficient buffer, the result will be unpredictable. Applications can use
Vgetclassnamelen to get the length of the vgroup’s class name prior to calling Vgetclass.

Vgetclass returns either succeep (or 0) or FATL (or -1). The parameters of this routine are further
defined in Table 5E.

5.6.1.8 Obtaining the Length of a Vgroup’s Class Name: Vgetclassnamelen

Vgetclassnamelen retrieves the length of a vgroup’s class name and stores it in the parameter
classname_len. The vgroup is identified by the parameter vgroup id . The syntax of Vgetclass-
namelen is as follows:

C: status = Vgetclassnamelen (vgroup id, classname len);
FORTRAN: Currently unavailable

Vgetclassnamelen returns either succeep (or 0) or FAIL (or -1). The parameters of this routine
are further defined in Table SE on page 236.

June 2017 235

The HDF Group

Table of Contents Chapter 5 -- Vgroups (V API)

TABLE SE

Vgetname, Vgetnamelen, Vgetclass, and Vgetclassnamelen Parameter Lists

Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 7
77)
Vgetname vgroup_id int32 integer Vgroup identifier
[int32]
(vfgnam) vgroup_name char * character*(¥) Buffer for the name of the vgroup
Vgetnamelen vgroup_id int32 N/A Vgroup identifier
int32
(unElvaila]ble) name_len uint16* N/A Buffer for the length of the vgroup’s name
Vgetclass vgroup_id int32 integer Vgroup identifier
[int32]
(vigels) vgroup_class char * character*(*) Buffer for the vgroup class
Vgetclassnamelen vgroup_id int32 N/A Vgroup identifier
int32
(unElVaila]ble) classname_len uint16* N/A Buffer for the length of the vgroup’s class name

5.6.1.9 Locating a Vgroup Given Its Name: Vfind

Vfind searches the file identified by file id for a vgroup with the name specified by the parameter
vgroup name. The syntax for Vfind is as follows:

C: vgroup ref = Vfind(file id, vgroup name);
FORTRAN: vgroup ref = vfind(file id, vgroup name)

Vfind returns the reference number of the vgroup if one is found, or 0 otherwise. If more than one
vgroup has the same name, Vfind will return the reference number of the first one.

The parameters of Vfind are further defined in Table 5F.

5.6.1.10 Locating a Vgroup Given Its Class Name: Vfindclass

Vfindclass searches the file identified by file_id for a vgroup with the class name specified by the
parameter vgroup class. The syntax of Vfindclass is as follows:

C: vgroup ref = Vfindclass(file id, vgroup class);
FORTRAN: vgroup ref = vfndcls(file id, vgroup class)

Vfindclass returns the reference number of the vgroup if one is found, or 0 otherwise. If more
than one vgroup has the same class name, Vfindclass will return the reference number of the first
one.

The parameters of Vfindclass are further defined in Table SF.

236

June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide

TABLE SF Vfind and Vfindclass Parameter Lists
Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 77
77)
Vfind file id int32 integer File identifier
[int32]
(vfind) vgroup_name char * character*(¥*) Buffer for the name of the vgroup
Vfindclass file id int32 integer File identifier
[int32]
(vfndcls) vgroup_class char * character*(*) Buffer for the vgroup class
EXAMPLE 4. Obtaining Information about Lone Vgroups

This example illustrates the use of Vlene/vflone to obtain the list of reference numbers of all lone
vgroups in the file and the use of Vgetname/vfgnam and Vgetclass/vfgcls to obtain the name and
the class of a vgroup.

In this example, the program calls Vlone/vflone twice. The first call is to obtain the number of
lone vgroups in the file so that sufficient space can be allocated; the later call is to obtain the
actual reference numbers of the lone vgroups. The program then goes through the list of lone
vgroup reference numbers to get and display the name and class of each lone vgroup. The file
used in this example is "General Vgroups.hdf".

C:
#include "hdf.h"

#define FILE_NAME "General Vgroups.hdf"

main()

{

/*‘k*********************** Variable declaration ‘k‘k****‘k‘k************‘k*****/

intn status_n; /* returned status for functions returning an intn */
int32 status 32, /* returned status for functions returning an int32 */
file id, vgroup_id;
int32 lone_vg number, /* current lone vgroup number */
num of lones = 0; /* number of lone vgroups */
int32 *ref array; /* buffer to hold the ref numbers of lone vgroups */

char vgroup_name [VGNAMELENMAX], vgroup class[VGNAMELENMAX] ;
/********************** End Of Variable declaration **********************/

/*
* Open the HDF file for reading.

*/

file id = Hopen (FILE NAME, DFACC READ, 0);

/*
* Initialize the V interface.
*/

status_n = Vstart (file id);

/*
* Get and print the names and class names of all the lone vgroups.

* First, call Vlone with num of lones set to 0 to get the number of
* lone vgroups in the file, but not to get their reference numbers.

June 2017 237

The HDF Group

Table of Contents Chapter 5 -- Vgroups (V API)

*/

num of lones = Vlone (file id, NULL, num of lones);
/*

* Then, if there are any lone vgroups,

*/

if (num of lones > 0)

{
/*
* use the num of lones returned to allocate sufficient space for the
* buffer ref array to hold the reference numbers of all lone vgroups,
*/

ref array = (int32 *) malloc(sizeof (int32) * num of lones);

/*
* and call Vlone again to retrieve the reference numbers into
* the buffer ref array.

*/

num of lones = Vlone (file id, ref array, num of lones);

/*
* Display the name and class of each lone vgroup.
*/
printf ("Lone vgroups in this file are:\n");
for (lone vg number = 0; lone vg number < num of lones;
lone vg number++)

/*
* Attach to the current vgroup then get and display its
* name and class. Note: the current vgroup must be detached before
* moving to the next.
*/
vgroup_id = Vattach (file id, ref array[lone vg number], "r");
status 32 = Vgetname (vgroup id, vgroup name) ;
status 32 = Vgetclass (vgroup id, vgroup class);
printf (" Vgroup name $%s and class $s\n", vgroup name,
vgroup class);
status 32 = Vdetach (vgroup id);
} /* for */
}o/x if x/

/*
* Terminate access to the V interface and close the file.
*/

status_ n = Vend (file id);

status n = Hclose (file id);

/*
* Free the space allocated by this program.
*/

free (ref array);

FORTRAN:

@]

program getinfo about vgroup
implicit none

Parameter declaration
character*19 FILE NAME

parameter (FILE NAME = ’General Vgroups.hdf’)

238

June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents HDF User’s Guide

Q

C**‘k‘k

C‘k‘k**

Q Q QO

Qa0

QOO0

integer DFACC READ
parameter (DFACC READ = 1)
integer SIZE

parameter (SIZE = 10)

Function declaration

integer hopen, hclose
integer vfstart, vfatch, vfgnam, vfgcls, vflone, vfdtch, vfend

variable declaration KAk Ak Ak hkhkhkhkhkhkhkhkhk kA hkhkhkhkrhkhkhkkhkhkrhkkhkhkkhkrkhkxhkkhkhrxk*x

integer status

integer file id

integer vgroup id

integer lone vg number, num of lones
character*64 vgroup name, vgroup_class
integer ref array(SIZE)

integer i

End Of Variable declaration KAK KA KRKAA KA KA KRA AR AR AR A A KA A AR A XA A A Ak K

Initialize ref array.

do 10 i = 1, SIZE
ref array(i) =0
continue

Open the HDF file for reading.

file id = hopen(FILE NAME, DFACC READ, O0)

Initialize the V interface.

status = vfstart(file id)

Get and print the name and class name of all lone vgroups.

First, call vflone with num of lones set to 0 to get the number of
lone vgroups in the file and check whether size of ref array is
big enough to hold reference numbers of ALL lone groups.

If ref array is not big enough, exit the program after displaying an
informative message.

num of lones 0

num of lones = vflone(file id, ref array, num of lones)

if (num of lones .gt. SIZE) then

write(*,*) num of lones, ’lone vgroups is found’

write(*,*) ’‘increase the size of ref array to hold reference ’
write (*,*) ’'numbers of all lone vgroups in the file’

stop

endif

If there are any lone groups in the file,

if (num of lones .gt. 0) then

call vflone again to retrieve the reference numbers into ref array.
num of lones = vflone(file id, ref array, num of lones)

Display the name and class of each vgroup.

June 2017

239

The HDF Group

Table of Contents Chapter 5 -- Vgroups (V API)

C
write(*,*) ’'Lone vgroups in the file are:’
do 20 lone vg number = 1, num of lones
C
C Attach to the current vgroup, then get and display its name and class.
C Note: the current vgroup must be detached before moving to the next.
C
vgroup name = " '
vgroup class = ' '/
vgroup_id = vfatch(file id, ref array(lone vg number), 'r’)
status = vfgnam(vgroup id, vgroup_ name)
status = vfgcls (vgroup id, vgroup class)
write(*,*) ’‘Vgroup name ’ , vgroup name
write(*,*) 'Vgroup class ’ , vgroup class
write (*,*)
status = vfdtch (vgroup id)
20 continue
endif
C
C Terminate access to the V interface and close the HDF file.
C

status = vfend(file id)
status = hclose(file id)
end

5.6.2 Obtaining Information about the Contents of a Vgroup

This section describes the Vgroup interface routines that allow the user to obtain various informa-
tion about the contents of vgroups.

5.6.2.1 Obtaining the Number of Objects in a Vgroup: Vntagrefs

Vntagrefs returns the number of tag/reference number pairs (i.e., the number of vgroup members)
stored in the specified vgroup. The syntax of Vntagrefs is as follows:

C: num of tagrefs = Vntagrefs (vgroup id);
FORTRAN: num of tagrefs = vfntr(vgroup id)

Vntagrefs can be used together with Vgettagrefs or Vgettagref to identify the data objects linked
to a given vgroup.

Vntagrefs returns 0 or a positive number representing the number of HDF data objects linked to
the vgroup if successful, or rFaIL (or -1) otherwise. The parameter of Vntagrefs is further defined
in Table 5G on page 241.

5.6.2.2 Obtaining the Tag/Reference Number Pair of a Data Object within a Vgroup :
Vgettagref

Vgettagref retrieves the tag/reference number pair of a specified data object stored within the
vgroup identified by the parameter vgroup id. The syntax of Vgettagref is as follows:

C: status = Vgettagref (vgroup id, index, &obj tag, &obj ref);

FORTRAN: status = vfgttr(vgroup id, index, obj tag, obj ref)

240

June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents HDF User’s Guide

Vgettagref stores the tag and reference number in the parameters obj tag and obj ref, respec-
tively. The parameter index specifies the location of the data object within the vgroup and is zero-
based.

Often, this routine is called in a loop to identify the tag/reference number pair of each data object
belong to a vgroup. In this case, Vntagrefs is used to obtain the loop boundary.

Vgettagref returns either succeep (or 0) or FAIL (or -1). The parameters of this routine are further
defined in Table 5G on page 241.

5.6.2.3 Obtaining the Tag/Reference Number Pairs of Data Objects in a Vgroup:
Vgettagrefs

Vgettagrefs retrieves the tag/reference number pairs of the members of a vgroup and returns the
number of pairs retrieved. The syntax of Vgettagrefs is as follows:

C: num of pairs = Vgettagrefs(vgroup id, tag array, ref array, max-
size);

FORTRAN: num of pairs = vfgttrs(vgroup id, tag array, ref array, maxsize)

Vgettagrefs stores the tags into the array tag array and the reference numbers into the array
ref array. The parameter maxsize specifies the maximum number of tag/reference number pairs
to return, therefore each array must be at least maxsize in size.

Vgettagrefs can be used to obtain the value of maxsize if the tag/reference number pairs for all
members of the vgroup are desired. To do this, set maxsize to 1 in the first call to Vgettagrefs.

Vgettagrefs returns the number of tag/reference number pairs or rFa1L (or -1). The parameters of
this routine are further defined in Table 5G.

TABLE 5G Vntagrefs, Vgettagref, and Vgettagrefs Parameter Lists
Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 77
77)
Vntagrefs
[int32] vgroup_id int32 integer Vgroup identifier
(vintr)
vgroup_id int32 integer Vgroup identifier
Vgettagref index int32 integer Index of the tag/reference number pair to be retrieved
intn
(\[/fgttl) obj_tag int32 * integer Tag of the data object
obj_ref int32 * integer Reference number of the data object
vgroup_id int32 integer Vgroup identifier
Vagettagrefs tag_array int32 [] integer (*) Buffer for the returned tags
[int32] ref array int32 [] integer (*) Buffer for the returned reference numbers
(vfgttrs)
. . . Maximum number of tag/reference number pairs to be
maxsize int32 integer
returned
EXAMPLE 5. Obtaining Information about the Contents of a Vgroup

This example illustrates the use of Vgetid/vfgid to get the reference number of a vgroup,
Vntagrefs/vintr to get the number of HDF data objects in the vgroup, Vgettagref/vfgttr to get

June 2017 241

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)

the tag/reference number pair of a data object within the vgroup, and Visvg/vfisvg and Visvs/
vfisvs to determine whether a data object is a vgroup and a vdata, respectively.

In the example, the program traverses the HDF file "General Vgroups.hdf" from the beginning
and obtains the reference number of each vgroup so it can be attached. Once a vgroup is attached,
the program gets the total number of tag/reference number pairs in the vgroup and displays some
information about the vgroup. The information displayed includes the position of the vgroup in
the file, the tag/reference number pair of each of its data objects, and the message stating whether
the object is a vdata, vgroup, or neither.

C:
#include "hdf.h"
#define FILE NAME "General Vgroups.hdf"
main()

{

/‘k************‘k‘k*****‘k**** Variable declaration **************************/

intn status_n; /* returned status for functions returning an intn */
int32 status_ 32, /* returned status for functions returning an int32 */
file id, vgroup id, vgroup ref,
obj index, /* index of an object within a vgroup */
num of pairs, /* number of tag/ref number pairs, i.e., objects */
obj tag, obj ref, /* tag/ref number of an HDF object */
vgroup pos = 0; /* position of a vgroup in the file */

/********************** End Of variable declaration ***********************/

/%
* Open the HDF file for reading.

*/

file id = Hopen (FILE NAME, DFACC READ, O0);

/*
* Initialize the V interface.
*/
status n = Vstart (file id);

/*
* Obtain each vgroup in the file by its reference number, get the
* number of objects in the vgroup, and display the information about
* that vgroup.
*/
vgroup ref = -1; /* set to -1 to search from the beginning of file */
while (TRUE)
{
/*
* Get the reference number of the next vgroup in the file.
*/
vgroup ref = Vgetid (file id, vgroup_ref);

/%
* Attach to the vgroup for reading or exit the loop if no more vgroups
* are found.

*/

if (vgroup ref == -1) break;

vgroup id = Vattach (file id, vgroup ref, "r");

/*
* Get the total number of objects in the vgroup.
*/

242 June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents HDF User’s Guide

num of pairs = Vntagrefs (vgroup id);

/*
* If the vgroup contains any object, print the tag/ref number
* pair of each object in the vgroup, in the order they appear in the
* file, and indicate whether the object is a vdata, vgroup, or neither.
*/
if (num of pairs > 0)
{
printf ("\nVgroup #%d contains:\n", vgroup pos);
for (obj index = 0; obj index < num of pairs; obj index++)
{
/*
* Get the tag/ref number pair of the object specified
* by its index, obj index, and display them.
*/
status_n = Vgettagref (vgroup id, obj index, &obj tag, &obj ref);
printf ("tag = %d, ref = %d", obj tag, obj ref);

/*
* State whether the HDF object referred to by obj ref is a vdata,
* a vgroup, or neither.

*/
if (Visvg (vgroup id, obj ref))
printf (" <-- is a vgroup\n");
else if (Visvs (vgroup id, obj ref))
printf (" <-- is a vdata\n");
else
printf (" <-- neither vdata nor vgroup\n");
} /* for */
yo/xoif x/

else
printf ("Vgroup #%d contains no HDF objects\n", vgroup pos);

/%
* Terminate access to the current vgroup.
*/

status 32 = Vdetach (vgroup id);

/%
* Move to the next vgroup position.
*/
vgroup post+;

} /* while */

/*

* Terminate access to the V interface and close the file.
*/

status n = Vend (file id);

status_ n = Hclose (file id);

FORTRAN:
program vgroup contents
implicit none
c
c Parameter declaration
C
character*19 FILE NAME
c
parameter (FILE NAME = ’General Vgroups.hdf’)
June 2017 243

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)

integer DFACC_ READ
parameter (DFACC READ = 1)

C
C Function declaration
C
integer hopen, hclose
integer vfstart, vfatch, vfgid, vntrc, vfgttr, vfisvg,
+ vfisvs, vfdtch, vfend
C
C**** Variable declaration KAk A kA hkhkhkhkhhkhkhkhkhhk bk hkhkhkhkrhkhhkhkhhkrhkhkhkhkrhkrhk kA kxkx
C
integer status
integer file id
integer vgroup id, vgroup ref, vgroup pos
integer obj index, num of pairs
integer obj tag, obj ref
C
C**** End Of Variable declaration KAK KA KA A A A KA RA A KA KA A A A KA R A AR A XA AR A kK
C
C
C Open the HDF file for reading.
C
file id = hopen (FILE _NAME, DFACC_READ, 0)
C
C Initialize the V interface.
C
status = vfstart(file id)
c
C Obtain each vgroup in the file by its reference number, get the
C number of objects in the vgroup, and display the information
C about that vgroup.
C
vgroup ref = -1
vgroup pos = 0
10 continue
C
C Get the reference number of the next vgroup in the file.
C
vgroup ref = vfgid(file id, vgroup ref)
c
C Attach to the vgroup or go to the end if no additional vgroup is found.
C
if (vgroup ref. eq. -1) goto 100
vgroup id = vfatch(file id, vgroup ref , ’'r’)
C
C Get the total number of objects in the vgroup.
C
num of pairs = vntrc(vgroup id)
c
C If the vgroup contains any object, print the tag/ref number
C pair of each object in vgroup, in the order they appear in the
C file, and indicate whether the object is a vdata, vgroup, or neither.
C
if (num of pairs .gt. 0) then
write(*,*) 'Vgroup # ', vgroup pos, ’ contains:’
do 20 obj_index = 1, num of pairs
C
C Get the tag/ref number pair of the object specified by its index
C and display them.
C
status = vfgttr(vgroup id, obj index-1, obj tag, obj ref)
C

244 June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents HDF User’s Guide

C State whether the HDF object referred to by obj ref is a vdata,
C a vgroup, or neither.
C
if (vfisvg(vgroup id, obj ref) .eg. 1) then
write(*,*) 'tag = ', obj tag, ' ref ="', obj ref,
+ ! <--- is a vgroup '
else if (vfisvs(vgroup id, obj ref) .eq. 1) then
write(*,*) 'tag = ', obj tag, ' ref ="', obj ref,
+ ! <--- is a vdata ’
else
write(*,*) 'tag = ', obj tag, ' ref ="', obj ref,
+ ! <--- neither vdata nor vgroup '
endif
20 continue
else
write (*,*) ’‘Vgroup #’, vgroup pos, ’ contains no HDF objects’
endif
write (*,*)
vgroup pos = vgroup pos + 1
goto 10
100 continue
C
C Terminate access to the vgroup.
C
status = vfdtch (vgroup id)
C
C Terminate access to the V interface and close the HDF file.
C

status vfend (file id)
status = hclose(file id)
end

5.6.2.4 Testing Whether a Data Object Belongs to a Vgroup: Vinqtagref

Vinqtagref determines whether a data object is a member of the vgroup specified by the parame-
ter vgroup id. The syntax of Vinqtagref is as follows:

C: true false = Vingtagref (vgroup id, obj tag, obj ref);
FORTRAN: true false = vfingtr(vgroup id, obj tag, obj ref)

The data object is specified by its tag/reference number pair in the parameters obj tag and
obj_ref. Vinqtagref returns TruE (or 1) if the object belongs to the vgroup, and FaLsE (or 0) other-
wise. The parameters of this routine are further defined in Table SH on page 246.

5.6.2.5 Testing Whether a Data Object within a Vgroup is a Vgroup: Visvg

Visvg determines whether the data object specified by its reference number, obj ref, is a vgroup
and is a member of the vgroup identified by the parameter vgroup id. The syntax of Visvg is as
follows:

C: true false = Visvg(vgroup id, obj ref);
FORTRAN: true false = vfisvg(vgroup id, obj ref)

Visvg returns either TrUE (or 1) or FALSE (or 0). The parameters of this routine are further defined
in Table SH on page 246.

June 2017 245

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
5.6.2.6 Testing Whether an HDF Object within a Vgroup is a Vdata: Visvs
Visvs determines whether the data object specified by its reference number, obj_ref, is a vdata and
is a member of the vgroup identified by the parameter vgroup id. The syntax of Visvs is as fol-
lows:
C: true false = Visvs(vgroup id, obj ref);
FORTRAN: true false = vfisvs(vgroup id, obj ref)
Visvs returns either TRUE (or 1) or FALSE (or 0). The parameters of this routine are further defined
in Table SH.
TABLE 5H Vinqtagref, Visvg, and Visvs Parameter Lists

Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 77
77)
Vingtagref vgroup_id int32 integer Vgroup identifier
[intn] obj_tag int32 integer Tag of the data object to be queried
(vfinqtr) R . R R R
obj_ref int32 integer Reference number of the data object to be queried
Visvg vgroup_id int32 integer Vgroup identifier
intn
(\[/fisv]g) obj_ref int32 integer Data object reference number to be queried
Visvs vgroup_id int32 integer Vgroup identifier
intn
(\['flsv]s) obj_ref int32 integer Data object reference number to be queried

5.6.2.7 Locating a Vdata in a Vgroup Given Vdata Fields: Vflocate

Vflocate locates a vdata that belongs to the vgroup identified by the parameter vgroup id and
contains the fields specified in the parameter fieldname_list. The syntax of Vflocate is as follows:

C: vdata ref = Vflocate (vgroup id, fieldname list);
FORTRAN: vdata ref = vffloc(vgroup id, fieldname list)

The parameter fieldname list is a string of comma-separated field names containing no white
space, for example, “px, Py, Pz”. Note that a vdata must contain all of the fields specified in
fieldname_list to be qualified.

Vflocate returns the reference number of the vdata, if one is found, and Fa1L (or -1) otherwise.
The parameters of this routine are further defined in Table 51.

5.6.2.8 Retrieving the Number of Tags of a Given Type in a Vgroup: Vnrefs

Vnrefs returns the number of tags of the type specified by the parameter tag type in the vgroup
identified by the parameter vgroup id. The syntax of Vnrefs is as follows:

C: num of tags = Vnrefs(vgroup id, tag type);
FORTRAN: num of tags = vnrefs(vgroup id, tag type)

Possible values of the parameter fag fype are defined in Appendix A of this manual. Vnrefs
returns 0 or the number of tags if successful, and rFarL (or -1) otherwise. The parameters of this
routine are further defined in Table 51.

246

June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents

HDF User’s Guide

TABLE 51 Vflocate and Vnrefs Parameter Lists
Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 7
77)
Vflocate vgroup_id int32 integer Vgroup identifier
int32
([‘I,Ifltt-loc]) fieldname_list char * character*(*) Buffer containing the names of the fields
Vnrefs vgroup_id int32 integer Vgroup identifier
[int32] i _
(vnrefs) tag_type int32 integer Tag type
5.6.2.9 Retrieving the Reference Number of a Vgroup: VQueryref
VQueryref returns the reference number of the vgroup identified by the parameter vgroup_id, or
FATL (or -1) if unsuccessful. The syntax of VQueryref is as follows:
C: vgroup ref = VQueryref (vgroup id);
FORTRAN: vgroup ref = vgref (vgroup id)
VQueryref is further defined in Table 5J.
5.6.2.10 Retrieving the Tag of a Vgroup: VQuerytag
VQuerytag returns prTaG_vG (or 1965), which would be the tag of the vgroup identified by the
parameter vgroup_id, or FATL (or -1) if unsuccessful. The syntax of VQuerytag is as follows:
C: vgroup tag = VQuerytag (vgroup id);
FORTRAN: vgroup tag = vgtag(vgroup id)
VQuerytag is further defined in Table 5J.
TABLE 5] VQueryref and VQuerytag Parameter Lists
Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 7
77)
VQueryref
[int32] vgroup_id int32 integer Vgroup identifier
(vqref)
VQuerytag
[int32] vgroup_id int32 integer Vgroup identifier
(vqtag)

5.7 Deleting Vgroups and Data Objects within a Vgroup

The Vgroup interface includes two routines for deletion: one deletes a vgroup from a file and the
other deletes a data object from a vgroup. These routines are discussed in the following subsec-
tions.

June 2017 247

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)

5.7.1 Deleting a Vgroup from a File: Vdelete
Vdelete removes the vgroup identified by the parameter vgroup id from the file identified by the
parameter file id. The syntax of Vdelete is as follows:

C: status = Vdelete (file id, vgroup id);

FORTRAN: status = vdelete(file id, vgroup id)
This routine will remove the vgroup from the internal data structures and from the file.
Vdelete returns either succeep (or 0) or FAIL (or -1). The parameters of Vdelete are further
described in Table 5K on page 248.
5.7.2 Deleting a Data Object from a Vgroup: Vdeletetagref
Vdeletetagref deletes the data object, specified by the parameters obj tag and obj ref, from the
vgroup, identified by the parameter vgroup id. The syntax of Vdeletetagref is as follows:

C: status = Vdeletetagref (vgroup id, obj tag, obj ref);

FORTRAN: status = vfdtr(vgroup id, obj tag, obj ref)
Vinqtagref should be used to determine whether the tag/reference number pair exists before call-
ing Vdeletetagref. If duplicate tag/reference number pairs are found in the vgroup, Vdeletetagref
deletes the first occurrence. Vinqtagref should also be used to determine whether duplicate tag/
reference number pairs exist in the vgroup.
Vdeletetagref returns either succeep (or 0) or FAIL (or -1). The parameters of this routine are fur-
ther described in Table 5K.

TABLE 5K Vdelete and Vdeletetagref Parameter Lists

5.8

Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 7
77)
Vdelete file_id int32 integer File identifier
[int32] .]]]]
(vdelete) vgroup_id int32 integer Vgroup identifier
Vdeletetagref vgroup_id int32 integer Vgroup identifier
[int32] obj_tag int32 integer Tag of the data object to be deleted
(vider) obj_ref int32 integer Reference number of the data object to be deleted
Vgroup Attributes

HDF version 4.1r1 and later include the ability to assign attributes to a vgroup. The concept of
attributes is fully explained in Chapter 3, Scientific Data Sets (SD API). To review briefly, an attri-
bute has a name, a data type, a number of attribute values, and the attribute values themselves. All
attribute values must be of the same data type. For example, an attribute value cannot consist of
ten characters and one integer, or a character value cannot be included in an attribute value con-
sisting of two 32-bit integers.

Any number of attributes can be assigned to a vgroup, however, each attribute name must be
unique among all attributes in the vgroup.

248

June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents HDF User’s Guide

5.8.1 Obtaining the Vgroup Version Number of a Given Vgroup:
Vgetversion

The structure of the vgroup has gone through several changes since HDF was first written. Deter-
mining the version of any particular vgroup is necessary as some of the older versions of vgroups
do not support some of the newer features, such as attributes. Vgetversion returns the version
number of the vgroup identified by the parameter vgroup id. The syntax of Vgetversion is as fol-
lows:

C: version num = Vgetversion (vgroup id);
FORTRAN: version num = vfgver (vgroup id)

There are three valid version numbers: VSET onLD VERSION (or 2), VSET VERSION (or 3), and
VSET NEW VERSION (Or 4).

VSET OLD VERSION is returned when the vgroup is of a version that corresponds to an HDF library
version before version 3.2.

VSET VERSION is returned when the vgroup is of a version that corresponds to an HDF library ver-
sion between versions 3.2 and 4.0 release 2.

VSET NEW VERSION is returned when the vgroup is of a version that corresponds to an HDF library
version of version 4.1 release 1 or higher.

Vgetversion returns the vgroup version number if successful, and rarz (or -1) otherwise. This
routine is further defined in Table 5L.

5.8.2 Setting the Attribute of a Vgroup: Vsetattr

Vsetattr attaches an attribute to the vgroup specified by the parameter vgroup id. The syntax of
Vsetattr is as follows:

C: status = Vsetattr(vgroup id, attr name, data type, n values,
attr values);

FORTRAN: status = vfsnatt(vgroup id, attr name, data type, n values,
attr values)

OR status = vfscatt (vgroup id, attr name, data type, n values,
attr values)

If the attribute with the name specified in the parameter attr_name already exists, the new values
will replace the current ones, provided the data type and count are not different. If either the data
type or the count have been changed, Vsetattr will return a1t (or -1).

The parameter data_type is an integer number specifying the data type of the attribute values.
Refer to Table 2F on page 14 for the definition of the data types to interpret this value. The param-
eter n_values specifies the number of values to be stored in the attribute. The buffer attr values
contains the values to be stored in the attribute.

Note that the FORTRAN-77 version of Vsetattr has two routines; vfsnatt sets a numeric value
attribute and vfscatt sets a character value attribute.

Vsetattr returns either succeep (or 0) or FATL (or -1). The parameters of this routine are further
defined in Table SL.

5.8.3 Retrieving the Index of a Vgroup Attribute Given the Attribute Name:

June 2017 249

The HDF Group

Table of Contents Chapter 5 -- Vgroups (V API)

Vfindattr

Vfindattr searches the vgroup, identified by the parameter vgroup id, for the attribute with the
name specified by the parameter atfr name, and returns the index of that attribute. The syntax of
this routine is as follows:

C: attr index = Vfindattr (vgroup id, attr name);
FORTRAN: attr index = vffdatt(vgroup id, attr name)

Vfindattr returns either an attribute index or ra11L (or -1). The parameters of this routine are fur-
ther defined in Table 5L.

TABLE 5L

Vgetversion, Vsetattr, and Vfindattr Parameter Lists

Routine Parameter Type
Name
[Return Type] Parameter Description
(FORTRAN- C FORTRAN-77
77)
Vgetversion
[int32] vgroup_id int32 integer Vgroup identifier
(vfgver)
vgroup_id int32 integer Vgroup identifier
attr_name char * character*(*) Name of the attribute
V;et:lt]tr data_type int32 integer Data type of the attribute
intn
(vfsnatt/vfscatt) n_values int32 integer Number of values the attribute contains
<valid ic dat; >(*)/ L .
attr_values VOIDP valid numeric data type>(*), Buffer containing the attribute values
character® (*)
Vfindattr vgroup_id int32 integer Vgroup identifier
[intn]]
(vifdatt) attr_name char * character*(*) Name of the target attribute

5.8.4 Obtaining the Total Number of Vgroup Attributes: Vnattrs and
Vnattrs2

Both Vnattrs and Vnattrs2 return the number of attributes assigned to the vgroup specified by
the parameter vgroup_ id, but Vnattrs2 is an updated version of Vnattrs. The syntax of both func-
tions are as follows:

C: num of attrs = Vnattrs(vgroup id);
num of attrs = Vnattrs2 (vgroup id);

FORTRAN: num of attrs = vfnatts(vgroup id)
Unvailable

There are two types of attributes for vgroups. One is the old-style that was created using methods
other than the standard attribute API function Vsetattr, which was introduced after HDF Version
4.0 Release 2, July 19, 1996. Without the use of Vsetattr, an application could simulate an
attribute for a vgroup by creating and writing a vdata of class _upr ATTRIBUTE and adding that
vdata to the vgroup via these calls:

vdata ref = VHstoredatam(file id, ATTR FIELD NAME, values, size, type,
attr name, HDF ATTRIBUTE, order);
ret value = Vaddtagref (vgroup id, DFTAG VH, vdata ref);

250

June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents HDF User’s Guide

While both types of attributes are stored as vdatas, the vdatas of the two types of attributes are
saved differently in the file. Because of the different storages, the new-style attribute functions,
such as Vnattrs, Vgetattr or Vattrinfo, would miss the old-style attributes. Starting in release
4.2.6, new functions were added to allow applications to get access to both types of attributes, i.c.,
Vnattrs2, Vattrinfo2, and Vgetattr2.

Note that, when a vgroup has both type of attributes, the old-style attributes will preceed the new
ones, regardless of when they were created. Applications that anticipate to access files that were
created by HDF Version 4.0 Release 2 and before (circa July 1996,) should use Vnattrs2 instead
of Vnattrs in order to include the old-style attributes if they exist and are desired.

Vnattrs and Vnattrs2 both returns the number of attributes, if successful, or Fa1L (or -1), other-
wise. These routines are further defined in Table SM.

TABLE 5SM

Vnattrs and Vnattrs2 Parameter Lists

Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 7
77)
Vnattrs
[intn] vgroup_id int32 integer Vgroup identifier
(vfnatts)
Vnattrs2
[int32] vgroup_id int32 integer Vgroup identifier
(Unavailable)

5.8.5 Obtaining Information on a Given Vgroup Attribute: Vattrinfo

Vattrinfo retrieves the name, data type, number of values, and the size of the values of an
attribute that belongs to the vgroup identified by the parameter vgroup id. The syntax of Vat-
trinfo is as follows:

C: status = Vattrinfo(vgroup id, attr index, attr name, &data type,
&n values, &size);

FORTRAN: status = vfainfo(vgroup id, attr index, attr name, data type,
n values, size)

Vattrinfo stores the name, data type, number of values, and the size of the value of the attribute
into the parameters attr_name, data_type, n_values, and size, respectively.

The attribute is specified by its index, attr_index. The valid values of attr_index range from 0 to
the total number of attributes attached to the vgroup - 1. The number of vgroup attributes can be
obtained using the routine Vnattrs.

The parameter data_type is an integer number. Refer to Table 2F on page 14 for the definitions of
the data types to interpret this value. The parameter size contains the number of bytes taken by an
attribute value.

In C, the parameters attr name, data_type, n_values, and size can be set to NULL, if the informa-
tion returned by these parameters is not needed.

Note that, when working with HDF files that were created by HDF Version 4.0 Release 2 and
before (circa July 1996,) please refer to the section about Vattrinfo2.

June 2017 251

The HDF Group

Table of Contents Chapter 5 -- Vgroups (V API)

Vattrinfo returns either succeep (or 0) or FaIL (or -1). The parameters of this routine are further
described in (See Table 5N on page 253).

5.8.6 Obtaining Information on a Given Vgroup Attribute: Vattrinfo2

Vattrinfo2 is an updated version of Vattrinfo. Beside retrieving the name, datatype, number of
values, and value size of an attribute identified by its index, attr_index, in the vgroup, vgroup id
as Vattrinfo, Vattrinfo2 also provides the reference number of and the number of fields in the
vdata that represents the attribute.

The syntax of Vattrinfo2 is as follows:

C: status = Vattrinfo2 (vgroup id, attr index, attr name, &data type,
&n values, &size, &n fields, &ref num);

FORTRAN: Unavailable

The attribute is specified by its index, attr_index. The valid values of attr_index range from 0 to
the total number of attributes attached to the vgroup - 1. The number of vgroup attributes can be
obtained using the routine Vnattrs2.

The parameter data_type is an integer number. Refer to Table 2F on page 14 for the definitions of
the data types to interpret this value. The parameter size contains the number of bytes taken by an
attribute value.

In C, the parameters attr_name, data_type, n_values, and size can be set to NuLL, if the informa-
tion returned by these parameters is not needed.

Note that, this function should be used in place of Vattrinfo when working with HDF files that
were created by HDF Version 4.0 Release 2 and before (circa July 1996.) Please refer to
Section 5.8.4 on page 250 and the Appendix Attribute for more details about vgroup attributes.

Vattrinfo2 returns either succeep (or 0) or FATL (or -1). The parameters of this routine are further
described in Table 5N.

252

June 2017

Chapter 5 -- Vgroups (V API)

Table of Contents HDF User’s Guide

TABLE 5N

Vattrinfo and Vattrinfo2 Parameter Lists

Routine Parameter Type
Name
[Return Type] Parameter FORTRAN- Description
(FORTRAN- C 7
77)
vgroup_id int32 integer Vgroup identifier
attr_index intn integer Index of the attribute
Vattrinfo attr_name char * character™®(*) Returned name of the attribute
(v[fl:it:go) data_type int32 * integer Returned data type of the attribute
n_values int32 * integer Returned number of values of the attribute
size int32 * integer Returned size, in bytes, of the value of the attribute
vgroup_id int32 N/A Vgroup identifier
attr_index intn N/A Index of the attribute
attr_name char * N/A Returned name of the attribute
VatFrinfoZ data_type int32 * N/A Returned data type of the attribute
(Un[vl:gla]hle) n_values int32 * N/A Returned number of values of the attribute
size int32 * N/A Returned size, in bytes, of the value of the attribute
n_fields int32 * N/A Returned number of fields in the attribute vdata
ref_num uintl6 * N/A Returned reference number of the attribute vdata

5.8.7 Retrieving the Values of a Given Vgroup Attribute: Vgetattr

Vgetattr retrieves the values of an attribute of the vgroup specified by the parameter vgroup id.
The syntax of Vgetattr is as follows:

C: status = Vgetattr(vgroup id, attr index, attr values);
FORTRAN: status = vfgnatt(vgroup id, attr index, attr values)
OR status = vfgcatt (vgroup id, attr index, attr values)

The attribute is specified by its index, attr_index. The valid values of attr_index range from 0 to
the total number of attributes attached to the vgroup - 1. The number of vgroup attributes can be
obtained using the routine Vnattrs.

The buffer attr values must be sufficiently allocated to hold the retrieved attribute values. Use
Vattrinfo to obtain information about the attribute values for appropriate memory allocation.

Note that the FORTRAN-77 version of Vgetattr has two routines; vfgnatt gets a numeric value
attribute and vfgcatt gets a character value attribute.

Vgetattr returns either succeep (or 0) or Fa1L (or -1). The parameters of this routine are further
defined in Table 50.
5.8.8 Retrieving the Values of a Given Vgroup Attribute: Vgetattr2

As Vgetattr, Vgetattr2 retrieves the values of an attribute of the vgroup specified by the parame-
ter vgroup_id. The syntax of Vgetattr2 are as follows:

C: status = Vgetattr2 (vgroup id, attr index, attr values);

FORTRAN: Currently unavailable

June 2017 253

Table of Contents

The HDF Group Chapter 5 -- Vgroups (V API)
Unlike Vgetattr, Vgetattr2 can also read values from attributes that were created by methods
other than Vsetattr. Please refer to Section 5.8.4 on page 250 and the Appendix Attribute for
information about the different types of vgroup attributes.

The attribute is specified by its index, attr_index. The valid values of attr_index range from 0 to
the total number of attributes attached to the vgroup - 1. The number of vgroup attributes can be
obtained using the routine Vnattrs2.
The buffer attr values must be sufficiently allocated to hold the retrieved attribute values. Use
Vattrinfo2 to obtain information about the attribute values for appropriate memory allocation.
Vgetattr2 returns either succeep (or 0) or FAIL (or -1). The parameters of this routine are further
defined in Table 50.
TABLE 50 Vgetattr and Vgetattr2 Parameter Lists
Routine Parameter Type
Name
[Return Type] Parameter Description
(FORTRAN- C FORTRAN-77
77)
vgroup_id int32 integer Vgroup identifier
Vgetattr attr_index intn integer Index of