
HDF User’s Guide

CHAPTER 1 -- Introduction to HDF
1.1 Chapter Overview

This chapter provides a general description of HDF including its native object structures, applica-
tion programming interface, and accompanying command-line utilities. It also provides a short
discussion of HDF’s original purpose and philosophy, the information about supported platforms,
and a brief discussion on HDF4 versus HDF5.

1.2 What is HDF?

The Hierarchical Data Format, or HDF, is a multiobject file format for sharing scientific data in
a distributed environment. HDF was created at the National Center for Supercomputing Applica-
tions, and is now developed and maintained by The HDF Group, to serve the needs of diverse
groups of scientists working on projects in various fields. HDF was designed to address many
requirements for storing scientific data, including:

• Support for the types of data and metadata commonly used by scientists.

• Efficient storage of and access to large data sets.

• Platform independence.

• Extensibility for future enhancements and compatibility with other standard formats.

In this document, the term HDF data structures will be used to describe the primary constructs
HDF provides to store data. These constructs include raster image, palette, scientific data set,
annotation, vdata, and vgroup. They are illustrated in Figure 1a on page 2. Note that the construct
vgroup is designed for the purpose of grouping HDF data structures.

HDF files are self-describing. The term “self-description” means that, for each HDF data struc-
ture in a file, there is comprehensive information about the data and its location in the file. This
information is often referred to as metadata. Also, many types of data can be included within an
HDF file. For example, it is possible to store symbolic, numerical and graphical data within an
HDF file by using appropriate HDF data structures.
June 2017 1

The HDF Group Table of Contents Chapter 1 -- Introduction to HDF
FIGURE 1a HDF Data Structures

HDF can be viewed as several interactive levels. At its lowest level, HDF is a physical file format
for storing scientific data. At its highest level, HDF is a collection of utilities and applications for
manipulating, viewing, and analyzing data stored in HDF files. Between these levels, HDF is a
software library that provides high-level and low-level programming interfaces. It also includes
supporting software that make it easy to store, retrieve, visualize, analyze, and manage data in
HDF files. See Figure 1b on page 3 for an illustration of the interface levels.

The basic interface layer, or the low-level API, is reserved for software developers. It was
designed for direct file I/O of data streams, error handling, memory management, and physical
storage. It is a software toolkit for experienced HDF programmers who wish to make HDF do
something more than what is currently available through the higher-level interfaces. Low-level
routines are available only in C.

The HDF application programming interfaces, or APIs, include several independent sets of rou-
tines, with each set specifically designed to simplify the process of storing and accessing one type
of data. These interfaces are represented in Figure 1b as the second layer from the top. Although
each interface requires programming, all the low-level details can be ignored. In most cases, all
one must do is make the correct function call at the correct time, and the interface will take care of
the rest. Most HDF interface routines are available in both FORTRAN-77 and C. A complete list
of the high-level interfaces is provided in Section 1.4, "High-Level HDF APIs".

X
256
38
6790
587
210

Y
4.1586
6.9214
2.9182
4.0913
3.8510

Z
a,b,c,d
d,c,b,a
f,g,h,i
j,k,l,m
m,l,k,j

Raster Image

Annotation

Palette

Scientific Data Set
(Multidimensional array)

Vdata
This HDF file contains one
example of each HDF data

(Table)

(8-bit, 24-bit and General
Raster)

X

256
38
6790
587
210

Y

4.1586
6.9214
2.9182
4.0913
3.8510

Z

abcd
dcba
fghi
jklm
mlkj

This HDF file contains one
example of each HDF data type.

Vgroup
(Group of HDF data structures)

type.
2 June 2017

Chapter 1 -- Introduction to HDF Table of Contents HDF User’s Guide
FIGURE 1b Three Levels of Interaction with the HDF File

On the highest level, general applications, HDF includes various command-line utilities for
managing and viewing HDF files, several research applications that support data visualization
and analysis, and a variety of third-party applications. The HDF utilities are included in the HDF
distribution.

Source code and documentation for the HDF libraries, as well as binaries for supported platforms,
is freely available but subject to the restrictions listed with the copyright notice at the beginning of
this guide. This material and information regarding a variety of HDF applications is available
from The HDF Group at http://www.hdfgroup.org/products/hdf4.

1.3 Why Was HDF Created?

Scientists commonly generate and process data files on several different machines, use various
software packages to process files and share data files with others who use different machines and
software. Also, they may include different kinds of information within one particular file, or
within a group of files, and the mixture of these different kinds of information may vary from one
file to another. Files may be conceptually related but physically separated. For example, some
data may be dispersed among different files and some in program code. It is also possible that data
may be related only in the scientist’s conception of the data; no physical relationship may exist.

HDF addresses these problems by providing a general-purpose file structure that:

• Provides the mechanism for programs to obtain information about the data in a file from
within the file, rather than from another source.

• Lets the user store mixtures of data from different sources into a single file as well as store
the data and its related information in separate files, even when the files are processed by the
same application program.

• Standardizes the formats and descriptions of many types of commonly-used data sets, such
as raster images and multidimensional arrays.

• Encourages the use of a common data format by all machines and programs that produce
files containing specific data.

• Can be adapted to accommodate virtually any kind of data.

HDF File

Data Descriptor Block Data Elements File Header

Low-level API (Routines starting with H)

General Applications

Commercial ApplicationsResearch ApplicationsUtilities

Multifile APIs
General
Raster

Scientific
 DataAnnotationsVgroups Vdata

Single-file APIs
Scientific

 Data
8-Bit

 Raster Raster
24-Bit

AnnotationsPalette
June 2017 3

The HDF Group Table of Contents Chapter 1 -- Introduction to HDF
1.4 High-Level HDF APIs

HDF APIs are divided into two categories: multifile interfaces (new) and single-file interfaces
(old). The multifile interfaces are those that provide simultaneous access to several HDF files
from within an application, which is an important feature that the single-file interfaces do not sup-
port. It is recommended that the user explore the new interfaces and their features since they are
an improvement over the old interfaces. The old interfaces remain simply because of the need for
backward compatibility.

The HDF I/O library consists of C and FORTRAN-77 routines for accessing objects and associ-
ated information. Although there is some overlap among object types, in most cases an API oper-
ates on data of only one type. Therefore, you need only familiarize yourself with the APIs specific
to your needs to access data in an HDF file.

The following lists include all of the currently available HDF interfaces and the data that each
interface supports.

The new multifile interfaces are:

The old single-file interfaces are:

As these interfaces are the tools used to read and write HDF files, they are the primary focus of
this manual.

In every interface, various programming examples are provided to illustrate the use of the inter-
face routines. Both C and FORTRAN-77 versions are available. Their source code, in ASCII for-

SD API Stores, manages and retrieves multidimensional arrays of character or
numeric data, along with their dimensions and attributes, in more than one
file. It is described in Chapter 3, Scientific Data Sets (SD API).

VS API Stores, manages and retrieves multivariate data stored as records in a table.
It is described in Chapter 4, Vdatas (VS API).

V API Creates groups of any primary HDF data structures. It is described in Chap-
ter 5, Vgroups (V API).

GR API Stores, manages and retrieves raster images, their dimensions and palettes in
more than one file. It can also manipulate unattached palettes in more than
one file. It is described in Chapter 8, General Raster Images (GR API).

AN API Stores, manages and retrieves text used to describe a file or any of the data
structures contained in the file. This interface can operate on several files at
once. It is described in Chapter 10, Annotations (AN API).

DFR8 API Stores, manages and retrieves 8-bit raster images, with their dimensions and
palettes in one file. It is described in Chapter 6, 8-Bit Raster Images (DFR8
API).

DF24 API Stores, manages and retrieves 24-bit images and their dimensions in one
file. It is described in Chapter 7, 24-bit Raster Images (DF24 API).

DFP API Stores and retrieves 8-bit palettes in one file. It is described in Chapter 9,
Palettes (DFP API).

DFAN API Stores, manages and retrieves text strings used to describe a file or any of
the data structures contained in the file. This interface only operates on one
file at a time. It is described in Chapter 11, Single-file Annotations (DFAN
API).

DFSD API Stores, manages and retrieves multidimensional arrays of integer or float-
ing-point data, along with their dimensions and attributes, in one file. It is
described in Chapter 12, Single-File Scientific Data Sets (DFSD API).
4 June 2017

Chapter 1 -- Introduction to HDF Table of Contents HDF User’s Guide
mat, is located on the FTP servers in the subdirectory samples/, as mentioned in Section 1.2,
"What is HDF?"

Note that the goal of these examples is to illustrate the use of the interface routines; thus, for sim-
plicity, many assumptions have been made, such as the availability or the authentication of the
data. Based on these assumptions, these examples skip the verification of the returned status of
each function. In practice, it is strongly recommended that the user verify the returned value of
every function to ensure the reliability of the user application.

1.5 HDF Command-Line Utilities and Visualization Tools

HDF application software fall within the following three categories:

1. The FORTRAN-77 and C APIs described in Section 1.4 on page 4.

2. Scientific visualization and analysis tools that read and write HDF files.

3. Command-line utilities that operate directly on HDF files.

Scientific visualization and analysis software that can read and write HDF files is available. This
software includes tools such as HDFview, user-developed software, and commercial packages.
The use of HDF files guarantees the interoperability of such tools. Some tools operate on raster
images, others on color palettes. Some use images, others color palettes, still others data and
annotations, and so forth. HDF provides the range of data types that these tools need, in a format
that allows different tools with different data requirements to operate on the same files without
confusion.

The HDF command-line utilities are application programs that can be executed by entering them
at the command prompt, like UNIX commands. They perform common operations on HDF files
for which one would otherwise have to write a program. The HDF utilities are described in detail
in Chapter 15, HDF Command-line Utilities.

1.6 Primary HDF Platforms

The HDF library and utilities are maintained on a number of different machines and operating sys-
tems. For a complete list of the machines, operating systems (with versions), C and FORTRAN-
77 compilers (also with versions), refer to http://www.hdfgroup.org/release4/plat-
forms.html.

1.7 HDF4 versus HDF5

Backward compatibility has always been an integral part of the design of HDF Versions 1, 2, 3,
and 4 and the HDF4 library can access files from all earlier versions. This manual describes HDF4
and, to the extent appropriate, the earlier versions.

To take advantage of the capabilities of many of the more recent computing platforms and to meet
the requirements of science applications that require ever-larger data sets, HDF5 had to be a com-
pletely new product, with a new format and a new library. HDF5 is conceptually related to HDF4
but incompatible; it cannot directly read or work with HDF4 files or the HDF4 library. HDF5 soft-
ware and documentation are available at http://www.hdfgroup.org/products/hdf5.

Both HDF4 and HDF5 are supported by The HDF Group, who will continue to maintain HDF4 as
long as funds are available to do so. There are no plans to add any new features to HDF4, but bugs
are fixed and the library is regularly built and tested on new operating system versions.

The HDF Group strongly recommends using HDF5, especially if you are a new user and are not
constrained by existing applications to using HDF4. We also recommend that you consider
June 2017 5

The HDF Group Table of Contents Chapter 1 -- Introduction to HDF
migrating existing applications from HDF4 to HDF5 to take advantage of the improved features
and performance of HDF5. Information about converting from HDF4 to HDF5 and tools to facili-
tate that conversion are available at http://www.hdfgroup.org/h4toh5.

See Section 15.19, "Working with Both HDF4 and HDF5 File Formats", for further discussions of
and links to some of these tools.
6 June 2017

CHAPTER 2 -- HDF Fundamentals
2.1 Chapter Overview

This chapter provides necessary information for the creation and manipulation of HDF files. It
includes an overview of the HDF file format, basic operations on HDF files, and programming
language issues pertaining to the use of Fortran and ANSI C in HDF programming.

2.2 HDF File Format

An HDF file contains a file header, at least one data descriptor block, and zero or more data ele-
ments as depicted in Figure 2a.

FIGURE 2a The Physical Layout of an HDF File Containing One Data Object

The file header identifies the file as an HDF file. A data descriptor block contains a number of
data descriptors. A data descriptor and a data element together form a data object, which is the
basic conglomerate structure for encapsulating data in the HDF file. Each of these terms is
described in the following sections.

Data Descriptor Block

Data Element

Data Descriptor

Empty Data Descriptor

Empty Data Descriptor

Empty Data Descriptor

HDF File Header HDF File Header

Data Object

HDF File

. .
 .
June 2017 7

The HDF Group Table of Contents Chapter 2 -- HDF Fundamentals
2.2.1 File Header

The first component of an HDF file is the file header, which takes up the first four bytes of the
HDF file. Specifically, it consists of four one-byte values that are ASCII representations of control
characters: the first is a control-N, the second is a control-C , the third is a control-S and the fourth
is a control-A (^N^C^S^A).

Note that, on some machines, the order of bytes in the file header might be swapped when the
header is written to an HDF file, causing these characters to be written in little-endian order. To
maintain the portability of HDF file header data when developing software for such machines, this
byte swapping must be counteracted by ensuring the characters are read and written in the desired
order.

2.2.2 Data Object

A data object is comprised of a data descriptor and a data element. The data descriptor consists of
information about the type, location, and size of the data element. The data element contains the
actual data. This organization of HDF data makes HDF files self-describing. Figure 2b shows two
examples of data objects.

FIGURE 2b Two Data Objects

2.2.2.1 Data Descriptor

All data descriptors are twelve bytes long and contain four fields, as depicted in Figure 2c. These
fields are: a 16-bit tag, a 16-bit reference number, a 32-bit data offset and a 32-bit data length.

FIGURE 2c The Contents of a Data Descriptor

Tag

A tag is the data descriptor field that identifies the type of data stored in the corresponding data
element. A tag is a 16-bit unsigned integer between 1 and 65,535, and is associated with a mne-
monic name to promote ease to use and the readability of user programs.

data

rank and dimensions 2

63.2,

18.2,

12.1,

. .
 .

54.5,

103.6,

6.9,

. .
 .

12.3,

-7.4,

83.6,

. .
 .

. . .

. . .

. . .

Data Descriptors Data Elements

90 by 100

Tag Reference Offset Length

2 bytes 4 bytes 2 bytes 4 bytes

Number
8 June 2017

Chapter 2 -- HDF Fundamentals Table of Contents HDF User’s Guide
If a data descriptor has no corresponding data element, the value of its tag is DFTAG_NULL (or 0).

Tags are assigned by The HDF Group as part of the HDF specification. The following are the
ranges of tag values and their descriptions:

1 to 32,767 - Tags reserved for HDF Group use

32,768 to 64,999 - User-definable tags

65,000 to 65,535 - Tags reserved for expansion of the HDF specification

A list of commonly-used tags and their descriptions is included in Appendix A, Reserved HDF
Tags of this document.

Reference Number

For each occurrence of a tag in an HDF file, a unique reference number is assigned by the library
with the tag in the data descriptor. A reference number is a 16-bit unsigned integer and can not be
changed during the life of the data object that the reference number specifies.

The combination of a tag and a reference number uniquely identifies the corresponding data
object in the file.

Reference numbers are not necessarily assigned consecutively, so it cannot be assumed that the
value of a reference number has any meaning beyond providing a way of distinguishing among
objects with the same tag. While application programmers may find it convenient to impart some
additional meaning to reference numbers in their code, it is emphasized that the HDF library will
not internally recognize any such meaning.

Data Offset and Length

The data offset field points to the location of the data element in the file by storing the number of
bytes from the beginning of the file to the beginning of the data element. The length field contains
the size of the data element in bytes. The data offset and the length are both 32-bit signed integers.
This results in a file-size limit of 2 gigabytes.

2.2.2.2 Data Elements

The data element is the raw data portion of a data object.

2.2.3 Data Descriptor Block

Data descriptors are physically stored in a linked list of blocks called data descriptor blocks. The
relationship between the data descriptor block to the other components of an HDF file is illus-
trated in Figure 2a on page 7. The individual components of a data descriptor block are depicted
in Figure 2d on page 10. Each data descriptor in a data descriptor block is assumed to be associ-
ated with a data element unless it contains the tag DFTAG_NULL (or 0),which indicates that there is
no associated data element. By default, a data descriptor block contains 16 (defined as DEF_NDDS)
data descriptors. The user may reset this limit when creating the HDF file. Refer to Section 2.3.2
on page 11 for more details.

In addition to data descriptors, each data descriptor block contains a data descriptor header. The
data descriptor header contains two fields: block size and next block. The block size field is a 16-
bit unsigned integer indicating the number of data descriptors in the data descriptor block. The
next block field is a 32-bit unsigned integer indicating the offset of the next data descriptor block,
if one exists. The last data descriptor header in the list contains a value of 0 in its next block field.

Figure 2d illustrates the layout of a data descriptor block.
June 2017 9

The HDF Group Table of Contents Chapter 2 -- HDF Fundamentals
FIGURE 2d Data Descriptor Block

2.2.4 Grouping Data Objects in an HDF File

Data objects containing related data in HDF files are usually grouped together by the library.
These groups of data objects are called data sets. The HDF user uses the application interface to
manipulate data sets in a file. As an example, an 8-bit raster image data set requires three objects:
a group object identifying the members of the set, an image object containing the image data, and
a dimension object indicating the size of the image.

Data objects are individually accessible even if they are included in a set, therefore data objects
can belong to more than one set and sets can be included in larger groups. For example, a palette
object included in one raster image set may also be a part of another raster image set if its tag and
reference number are included in a data descriptor within that second set.

Additional information about data objects, including the options available for storing them, can be
found in the HDF Specifications and Developer’s Guide from the HDF web site at http://
www.hdfgroup.org/doc.html.

2.3 Basic Operations on HDF Files Using the Multifile Interfaces

This section describes the basic file operations, some of which are required in working with HDF
files using the multifile interfaces. Except for the SD interface, all applications using other multi-
file interfaces must explicitly use the routines Hopen and Hclose to control accesses to the HDF
files. In an application using the HDF file format, the file is accessed via its identifier, referred to
as file identifier. The following subsections describe the file identifier and the basic file opera-
tions common to most multifile interfaces.

2.3.1 File Identifiers

The HDF programming model specifies that a data file is first explicitly created or opened by an
application, manipulated, then explicitly closed by the application. A file identifier is a unique
number that the HDF library assigns to an HDF file when creating or opening the file. The HDF
library creates the file identifier for an HDF file when given its file name, as represented in the
native file system. Interface routines use only the file identifier to access and manipulate the file.
When all operations on the file are complete, the file identifier must be discarded by explicitly
closing the file before terminating the application.

As every file is assigned its own identifier, the order in which files are accessed is very flexible.
For example, it is valid to open a file and obtain an identifier for it, then open a second file without
closing the first file or disposing of the first file identifier. The only requirement made by HDF is
that all file identifiers be individually discarded before the termination of the calling program.

File identifiers created by the routine of one HDF interface can be used by the routines of any
other interfaces, except SD’s.

block size tagnext block ref offset length tag ref offset length

data descriptor

header
data descriptor . . . data descriptor

data descriptor block

 . . .
10 June 2017

Chapter 2 -- HDF Fundamentals Table of Contents HDF User’s Guide
2.3.2 Opening HDF Files: Hopen

The routine Hopen creates or opens an HDF data file, depending on the access mode specified,
and returns the file identifier that the HDF library has assigned to the file. The Hopen syntax is as
follows:

C: file_id = Hopen(filename, access_mode, num_dds_block);

FORTRAN: file_id = hopen(filename, access_mode, num_dds_block)

The Hopen parameters are defined in Table 2A and the following discussion.

TABLE 2A Hopen Parameter List

The parameter filename is a character string representing the name of the HDF file to be accessed.

The parameter access_mode specifies how the file should be accessed. All the access modes are
listed in Table 2B. If the access mode is DFACC_CREATE and the file already exists, the file will be
replaced by the new one. If the access mode is DFACC_READ and the file does not exist, Hopen will
return FAIL (or -1). If the access mode is DFACC_WRITE and the file does not exist, a new file will
be created.

The parameter num_dds_block specifies the number of data descriptors in a block when the access
mode specified is create. If the access mode is not create, the value of num_dds_block is ignored.
The default number of data descriptors in a block is 16 (defined as DEF_NDDS) data descriptors.
The user may specify 0 to keep the default or any non-negative integer to reset this limit when cre-
ating the HDF file.

Prior to HDF 4.2r2, the maximum number of open files was limited to 32, but it now can be up to
what the system allowed, minus a few for stdout, etc.

It has been reported that opening/closing file in loops is very slow; thus, it is not recommended to
perform such operations too many times, particularly, when data is being added to the file between
opening/closing.

Note that, in the SD interface, SDstart is used to open files instead of Hopen. To access a file that
contains both SD API objects and non-SD API objects, the application must call SDstart/SDend
and Hopen/Hclose on the file. The non-SD API functions access the file via the identifier
returned by Hopen and the SD API functions use the identifier returned by SDstart. These iden-
tifiers must be released by Hclose and SDend, respectively. Refer to Chapter 3, Scientific Data
Sets (SD API), of this document for more information on SDstart/SDend.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

Hopen
[int32]

(hopen)

filename char * character*(*) File name

access_mode intn integer File access mode

num_dds_block int16 integer Number of data descriptors in a data descriptor block
June 2017 11

The HDF Group Table of Contents Chapter 2 -- HDF Fundamentals
TABLE 2B File Access Code Flags

2.3.3 Closing HDF Files: Hclose

The Hclose routine closes the file designated by the file identifier specified by the parameter
file_id. The Hclose syntax is as follows:

C: status = Hclose(file_id);

FORTRAN: status = hclose(file_id)

Hclose returns a value of SUCCEED (or 0) if successful or FAIL (or -1) otherwise. The parameter
name and type are listed in Table 2C. Refer also to the HDF Reference Manual for additional
information regarding Hclose.

Note that Hclose is not used to close files in the SD interface. SDend is used for this purpose.
(Refer to Chapter 3, Scientific Data Sets (SD API) of this document for more information on
SDend.)

TABLE 2C Hclose Parameter List

2.3.4 Getting the HDF Library and File Versions: Hgetlibversion and
Hgetfileversion

Hgetlibversion returns the version of the HDF library currently being used, as well as additional
textual information regarding the library. The parameter names and data types are listed in Table
2D. Refer also to the HDF Reference Manual for additional information regarding Hgetlibver-
sion.

Hgetfileversion returns the version information of the HDF file specified by the parameter
file_id, as well as additional textual information regarding the nature of the file. The parameter
names and data types are listed in Table 2D. Refer also to the HDF Reference Manual for addi-
tional information regarding Hgetfileversion.

The syntax of these routines is as follows:

C: status = Hgetlibversion(&major_v, &minor_v, &release, string);
status = Hgetfileversion(file_id, &major_v, &minor_v, &release,

string);

FORTRAN: status = hglibver(major_v, minor_v, release, string)
status = hgfilver(file_id, major_v, minor_v, release, string)

Both routines return a value of SUCCEED (or 0) if successful or FAIL (or -1) otherwise.

File Access Flag Flag Value Description

DFACC_READ 1 Read access

DFACC_WRITE 2 Read and write access

DFACC_CREATE 4 Create with read and write access

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

Hclose
[intn]

(hclose)
file_id int32 integer File identifier
12 June 2017

Chapter 2 -- HDF Fundamentals Table of Contents HDF User’s Guide
TABLE 2D Hgetlibversion and Hgetfileversion Parameter Lists

2.4 Determining whether a File Is an HDF File: Hishdf/hishdff

The Hishdf routine is used to determine whether the file filename is an HDF file. The Hishdf
syntax is as follows:

C: status = Hishdf(filename)

FORTRAN: status = hishdff(filename)

This routine returns a value of TRUE (or 1) if if the file is an HDF file or FALSE (or 0) otherwise.

TABLE 2E Hishdf/hishdff Parameter List

2.5 Programming Issues

This section introduces information relevant to the process of developing programs that use the
HDF library, such as the names of necessary header files, lists of common definitions and issues
concerning FORTRAN-77 and C programming.

2.5.1 Header File Information

The header file hdf.h must be included in every HDF application program written in C, except for
programs that call routines in the SD interface. The header file mfhdf.h must be included in all
programs that call SD interface routines.

Fortran programmers who use compilers that allow file inclusion can include the files hdf.inc
and dffunc.inc. If a Fortran compiler that does not support file inclusion is used, HDF library
definitions must be explicitly defined in the Fortran program as they are included in the header
files of the HDF library.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

Hgetlibversion
[intn]

(hglibver)

major_v uint32* integer Major version number

minor_v uint32* integer Minor version number

release uint32* integer Complete library version number

string char* character*(*) Additional information about the library version

Hgetfileversion
[intn]

(hgfilver)

file_id int32 integer File identifier

major_v uint32* integer Major version number

minor_v uint32* integer Minor version number

release uint32* integer Complete library version number

string char* character*(*) Additional information about the library version

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

Hishdf
[intn]

(hishdff)
filename char* character*(*) Filename
June 2017 13

The HDF Group Table of Contents Chapter 2 -- HDF Fundamentals
2.5.2 HDF Definitions

The HDF library provides several sets of definitions which can be used easily in the user applica-
tions. These sets include the definitions of the data types, the data type flags, and the limits that set
various maximum values. The definitions of the data types supported by HDF are located in the
hdf.h header file, and the data type flags are located in the hntdefs.h header file. Both are also
included in (See Table 2F on page 14), (See Table 2G on page 15), and (See Table 2H on
page 15). HDF data types are used for portability in the declaration of variables, and data type
flags are used as parameters in various HDF interface routines.

2.5.2.1 Standard HDF Data Types

The definitions of the fundamental data types are in Table 2F. Although DFNT_FLOAT (or 5),
DFNT_UCHAR (or 3), and DFNT_CHAR (or 4) have not been added to this table, they are also supported
by the HDF library for backward compatibility.

If the machine used is big-endian, using these data types will result in no byte-order conversion
being performed. If the machine used is little-endian, the library will convert the byte-order of the
variables to big-endian.

TABLE 2F Standard HDF Data Types and Flags

Fortran programmers should refer to Section 2.5.3 on page 16 for a discussion of the Fortran data
types.

2.5.2.2 Native Format Data Types

When a native format data type is specified, the corresponding numbers are stored in the HDF file
exactly as they appear in memory, without conversion. For example, on a Cray Y-MP, 8 bytes of
memory, or one Cray word, is used to store most integers. Therefore, an 8-bit signed integer, rep-
resented by the DFNT_INT32 flag, on a Cray Y-MP uses 8 bytes of memory. Consequently, when
the data type DFNT_NATIVE | DFNT_INT32 (DFNT_NATIVE bytewise-ORed with DFNT_INT32) is
used on a Cray Y-MP to specify the data type of an HDF SDS or vdata, each integer stored in the
HDF file is 8 bytes.

The method for constructing the data type flag for each native data type described in the previous
paragraph is used for any of the native data types: the DFNT_NATIVE flag is bitwise-ORed with the
flag of the corresponding standard data type.

The definitions of the native format data types and the corresponding data type flags appear in
Table 2G.

HDF Data Type Data Type Flag and Value Description

char8 DFNT_CHAR8 (4) 8-bit character type

uchar8 DFNT_UCHAR8 (3) 8-bit unsigned character type

int8 DFNT_INT8 (20) 8-bit integer type

uint8 DFNT_UINT8 (21) 8-bit unsigned integer type

int16 DFNT_INT16 (22) 16-bit integer type

uint16 DFNT_UINT16 (23) 16-bit unsigned integer type

int32 DFNT_INT32 (24) 32-bit integer type

uint32 DFNT_UINT32 (25) 32-bit unsigned integer type

float32 DFNT_FLOAT32 (5) 32-bit floating-point type

float64 DFNT_FLOAT64 (6) 64-bit floating-point type
14 June 2017

Chapter 2 -- HDF Fundamentals Table of Contents HDF User’s Guide
TABLE 2G Native Format Data Type Definitions

2.5.2.3 Little-Endian Data Types

HDF normally writes data in big-endian format, but provides a little-endian option forcing all data
written to disk to be written in little-endian format. This is primarily for users of Intel-based
machines who do not want to incur the cost of reordering data when writing to an HDF file. Note
that direct conversions are supported between little-endian and all other byte-order formats sup-
ported by HDF.

The method for constructing the data type flag for each little-endian data type is similar to the
method for constructing native format data type flags: the DFNT_LITEND flag is bitwise-ORed with
the flag of the corresponding standard data type.

If the user is on a little-endian machine, using these data types will result in no conversion. If the
user is on a big-endian machine, the HDF library will perform big-to-little-endian conversion.

The definitions of the little-endian data types and the corresponding data type flags appear in
Table 2H.

TABLE 2H Little-Endian Format Data Type Definitions

2.5.2.4 Tag Definitions

These definitions identify the object tags defined and used by the HDF interface library. The con-
cept of object tags is introduced in Section 2.2.2.1 on page 8, and a list of tags can be found in
Appendix A of this manual. Note that tags can also identify properties of data objects.

2.5.2.5 Limit Definitions

These definitions declare the maximum size of specific data object parameters, such as the maxi-
mum length of a vdata field or the maximum number of objects in a vgroup. They are located in

HDF Data Type HDF Data Type Flag and Value Description

int8 DFNT_NINT8 (4116) 8-bit native integer type

uint8 DFNT_NUINT8 (4117) 8-bit native unsigned integer type

int16 DFNT_NINT16 (4118) 16-bit native integer type

uint16 DFNT_NUINT16 (4119) 16-bit native unsigned integer type

int32 DFNT_NINT32 (4120) 32-bit native integer type

uint32 DFNT_NUINT32 (4121) 32-bit native unsigned integer type

float32 DFNT_NFLOAT32 (4101) 32-bit native floating-point type

float64 DFNT_NFLOAT64 (4102) 64-bit native floating-point type

HDF Data Type HDF Data Type Flag and Value Description

int8 DFNT_LINT8 (16404) 8-bit little-endian integer type

uint8 DFNT_LUINT8 (16405) 8-bit little-endian unsigned integer type

int16 DFNT_LINT16 (16406) 16-bit little-endian integer type

uint16 DFNT_LUINT16 (16407) 16-bit little-endian unsigned integer type

int32 DFNT_LINT32 (16408) 32-bit little-endian integer type

uint32 DFNT_LUINT32 (16409) 32-bit little-endian unsigned integer type

float32 DFNT_LFLOAT32 (16389) 32-bit little-endian floating-point type

float64 DFNT_LFLOAT64 (16390) 64-bit little-endian floating-point type
June 2017 15

The HDF Group Table of Contents Chapter 2 -- HDF Fundamentals
the header file hlimits.h. A selection of the most-commonly-used limit definitions appears in
Table 2I.

TABLE 2I Limit Definitions

2.5.3 FORTRAN-77 and C Language Issues

HDF provides both FORTRAN-77 and C versions of most of its interface routines. In order to
make the FORTRAN-77 and C versions of each routine as similar as possible, some compromises
have been made in the process of simplifying the interface for both programming languages.

FORTRAN-77-to-C Translation

Nearly all of the HDF library code is written in C. A FORTRAN-77 HDF interface routine trans-
lates all parameter data types to C data types, then calls the C routine that performs the functional-
ity of the interface routine. For example, d8aimg is the FORTRAN-77 equivalent for
DFR8addimage. Calls to either routine execute the same C code that adds an 8-bit raster image to
an HDF file. See Figure 2e.

FIGURE 2e Use of a Function Call Converter to Route FORTRAN-77 HDF Calls to the C Library

Definition Name Definition Value Description

FIELDNAMELENMAX 128 Maximum length of a vdata field in bytes - 128 characters

H4_MAX_NC_ATTRS 3000 Maximum number of file or variable attributes

H4_MAX_NC_DIMS 5000 Maximum number of dimensions per file

H4_MAX_NC_NAME 256 Maximum length of a name - NC interface

H4_MAX_NC_OPEN MAX_FILE Maximum number of files can be open at the same time

H4_MAX_NC_VARS 5000 Maximum number of variables per file

H4_MAX_VAR_DIMS 32 Maximum number of dimensions per variable

MAXNVELT 64 Maximum number of objects in a vgroup

MAX_FIELD_SIZE 65535 Maximum length of a field

MAX_FILE 32 Maximum number of open files

MAX_ORDER 65535 Maximum order of a vdata field

MAX_PATH_LEN 1024 Maximum length of an external file name

MAX_GROUPS 8 Maximum number of groups

MAX_GR_NAME 256 Maximum length of a name - GR interface

MAX_REF 65535 The largest number that will fit into a 16-bit word reference variable

MAX_BLOCK_SIZE 65536 Maximum size of blocks in linked blocks

VSNAMELENMAX 64 Maximum length of a vdata name in bytes - 64 characters

VGNAMELENMAX 64 Maximum length of a vgroup name in bytes - 64 characters

VSFIELDMAX 256 Maximum number of fields per vdata (64 for Macintosh)

VDEFAULTBLKSIZE 4096 Default block size in a vdata

VDEFAULTNBLKS 32 Default number of blocks in a vdata

Your
C

Program

DFR8addimage

Your
FORTRAN-77

Program

d8aimg

FORTRAN-77 to C

HDF Library d8aimg to DFR8addimage
16 June 2017

Chapter 2 -- HDF Fundamentals Table of Contents HDF User’s Guide
Case Sensitivity

FORTRAN-77 identifiers generally are not case sensitive, whereas C identifiers are. Although all
of the FORTRAN-77 routines shown in this manual are written in lower case, FORTRAN-77 pro-
grams can generally call them using either upper- or lower-case letters without loss of meaning.

Name Length

Because some FORTRAN-77 compilers only interpret identifier names with seven or fewer char-
acters, the first seven characters of the FORTRAN-77 HDF routine names are unique.

Header Files

The inclusion of header files is not generally permitted by FORTRAN-77 compilers. However, it
is sometimes available as an option. On UNIX systems, for example, the macro processors m4 and
cpp let the compiler include and preprocess header files. If this capability is not available, the user
may have to copy the declarations, definitions, or values needed from the files dffunc.inc and
hdf.inc into the user application. If the capability is available, the files can be included in the
Fortran code. These two files reside in the include directory after the library is installed on the
user’s system.

Data Type Specifications

When mixing machines, compilers, and languages, it is difficult to maintain consistent data type
definitions. For instance, on some machines an integer is a 32-bit quantity and on others, a 16-bit
quantity. In addition, the differences between FORTRAN-77 and C lead to difficulties in describ-
ing the data types found in the argument lists of HDF routines. To maintain portability, the HDF
library expects assigned names for all data types used in HDF routines. See Table 2J.

TABLE 2J Correspondence Between Fortran and HDF C Data Types

When using a FORTRAN-77 data type that is not supported, the general practice is to use another
data type of the same size. For example, an 8-bit signed integer can be used to store an 8-bit
unsigned integer variable.

String and Array Specifications

The following conventions are followed in the specification of arrays in this manual:

• character*(*) defines a string of an indefinite number of characters. It is the responsibility
of the calling program to allocate enough space to hold the data to be stored in the string.

Data Type FORTRAN C

8-bit signed integer character*1 ** int8

8-bit unsigned integer character*1 uint8

16-bit signed integer integer*2 int16

16-bit unsigned integer Not supported uint16

32-bit signed integer integer*4 ** int32

32-bit unsigned integer Not supported uint32

32-bit floating point number real*4 ** float32

64-bit floating point number real*8 ** float64

Native signed integer integer intn

Native unsigned integer Not supported uintn

**if the compiler supports this data type
June 2017 17

The HDF Group Table of Contents Chapter 2 -- HDF Fundamentals
• real x(*) means that x refers to an array of reals of indefinite size and of indefinite rank. It is
the responsibility of the calling program to allocate an actual array with the correct number
of dimensions and dimension sizes.

• <valid numeric data type> x means that x may have one of the numeric data types listed in
the Description column of Table 2J above.

• <valid data type> x means that x may have any of the data types listed in the Description
column of Table 2J above.

FORTRAN-77 and ANSI C

As much as possible, we have ensured that the HDF interface routines conform to the implemen-
tations of Fortran and C that are in most common use today, namely FORTRAN-77 and ANSI C.

As Fortran-90 is a superset of FORTRAN-77, HDF programs should compile and run correctly
when using a Fortran-90 compiler. However, an HDF library interface that makes full use of For-
tran-90 enhancements is being considered.
18 June 2017

CHAPTER 3 -- Scientific Data Sets (SD API)
3.1 Chapter Overview

This chapter describes the scientific data model and the interface routines provided by HDF for
creating and accessing the data structures included in the model. This interface is known as the
SD interface or the SD API.

3.2 The Scientific Data Set Data Model

The scientific data set, or SDS, is a group of data structures used to store and describe multidi-
mensional arrays of scientific data. Refer to Figure 3a for a graphical overview of the SD data set.
Note that in this chapter the terms SDS, SD data set, and data set are used interchangeably; the
terms SDS array and array are also used interchangeably.

A scientific data set consists of required and optional components, which will be discussed in the
following subsections.

FIGURE 3a The Contents of a Scientific Data Set

Required Components Optional Components

SDS Array

Name

Data Type

Dimensions

Dimension Scales

Predefined Attributes

 User-defined Attributes

SDS
June 2017 19

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
3.2.1 Required SDS Components

Every SDS must contain the following components: an SDS array, a name, a data type, and the
dimensions of the SDS, which are actually the dimensions of the SDS array.

SDS Array

An SDS array is a multidimensional data structure that serves as the core structure of an SDS.
This is the primary data component of the SDS model and can be compressed (refer to
Section 3.5.2 on page 47 for a description of SDS compression) and/or stored in external files
(refer the Section 3.5.3.3 on page 54 for a description of external SDS storage). Users of netCDF
should note that SDS arrays are conceptually equivalent to variables in the netCDF data model1.

An SDS has an index and a reference number associated with it. The index is a non-negative inte-
ger that describes the relative position of the data set in the file. A valid index ranges from 0 to the
total number of data sets in the file minus 1. The reference number is a unique positive integer
assigned to the data set by the SD interface when the data set is created. Various SD interface rou-
tines can be used to obtain an SDS index or reference number depending on the available informa-
tion about the SDS. The index can also be determined if the sequence in which the data sets are
created in the file is known.

In the SD interface, an SDS identifier uniquely identifies a data set within the file. The identifier
is created by the SD interface access routines when a new SDS is created or an existing one is
selected. The identifier is then used by other SD interface routines to access the SDS until the
access to this SDS is terminated. For an existing data set, the index of the data set can be used to
obtain the identifier. Refer to Section 3.4.1 on page 27 for a description of the SD interface routine
that creates SDSs and assigns identifiers to them.

SDS Name

The name of an SDS can be provided by the calling program, or is set to "DataSet" by the HDF
library at the creation of the SDS. The name consists of case-sensitive alphanumeric characters, is
assigned only when the data set is created, and cannot be changed. SDS names do not have to be
unique within a file, but their uniqueness makes it easy to semantically distinguish among data
sets in the file.

Data Type

The data contained in an SDS array has a data type associated with it. The standard data types
supported by the SD interface include 32- and 64-bit floating-point numbers, 8-, 16- and 32-bit
signed integers, 8-, 16- and 32-bit unsigned integers, and 8-bit characters. The SD interface also
allows the creation of SD data sets consisting of data elements of non-standard lengths (1 to 32
bits). See Section 3.7.11 on page 77 for more information.

Dimensions

SDS dimensions specify the shape and size of an SDS array. The number of dimensions of an
array is referred to as the rank of the array. Each dimension has an index and an identifier
assigned to it. A dimension also has a size and may have a name associated with it.

A dimension identifier is a positive number uniquely assigned to the dimension by the library.
This dimension identifier can be retrieved via an SD interface routine. Refer to Section 3.8.1 on
page 78 for a description of how to obtain dimension identifiers.

1. netCDF-3 User’s Guide for C (June 5, 1997), Section 7, http://www.uni-
data.ucar.edu/software/netcdf/docs/netcdf/.
20 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
A dimension index is a non-negative number that describes the ordinal location of a dimension
among others in a data set. In other words, when an SDS dimension is created, an index number is
associated with it and is one greater than the index associated with the last created dimension that
belongs to the same data set. The dimension index is convenient in a sequential search or when the
position of the dimension among other dimensions in the SDS is known.

The size of a dimension is a positive integer. Also, one dimension of an SDS array can be assigned
the predefined size SD_UNLIMITED (or 0). This dimension is referred to as an unlimited dimension,
which, as the name suggests, can grow to any length. Refer to Section 3.5.1.3 on page 42 for more
information on unlimited dimensions.

Names can optionally be assigned to dimensions, however, dimension names are not treated in the
same way as SDS array names. For example, if a name assigned to a dimension was previously
assigned to another dimension the SD interface treats both dimensions as the same data compo-
nent and any changes made to one will be reflected in the other.

Important Note:

HDF4 allows a dimension and a one-dimensional SDS to be given the same name. The library
also stores a dimension and a data set the same way internally. Prior to HDF 4.2.2, however, the
library did not adequately distinguish these two types of objects. Thus, when a dimension and a
one-dimensional SDS shared a name, writing to the SDS or the dimension could cause data cor-
ruption to the other. The corrupted data was unrecoverable.

This problem was fixed in Release 4.2.2 and such data corruption will not occur in files created
with a 4.2.2 or later library. Note, however, that the fix is effective only in new files; a dimension
and a one-dimensional SDS of the same name that were created with a pre-4.2.2 HDF4 Library
remain vulnerable to data corruption if an application is unaware of the potential conflict. To
safely handle pre-4.2.2 files, the library now provides two functions, SDgetnumvars_byname
and SDnametoindices. SDgetnumvars_byname can be used to determine whether a name is
unique. If the function reports one ('1') variable by that name, the name is unique and no further
precaution needs to be taken. If the name is not unique, i.e., the number of variables by that name
is greater than one, SDnametoindices must then be used to retrieve the index and the type of each
variable with that name. The desired variable can then be safely selected via its index. These func-
tions are described in detail in this User's Guide and the HDF4 Reference Manual.

A similar problem is possible when a multi-dimensional SDS and a dimension are created with
the same name by a pre-4.2.2 library. The HDF Group has not seen such a failure, however, and it
is thought to be very unlikely. Note that the fix introduced in Release 4.2.2 also prevents data cor-
ruption from happening for this situation even though the data was created with libraries prior to
4.2.2, assuming no corruption had yet occurred.

3.2.2 Optional SDS Components

There are three types of optional SDS components: user-defined attributes, predefined attributes,
and dimension scales. These optional components are only created when specifically requested
by the calling program.

Attributes describe the nature and/or the intended usage of the file, data set, or dimension they are
attached to. Attributes have a name and value which contains one or more data entries of the same
data type. Thus, in addition to name and value, the data type and number of values are specified
when the attribute is created.

User-Defined Attributes
June 2017 21

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
User-defined attributes are defined by the calling program and contain auxiliary information
about a file, SDS array, or dimension. They are more fully described in Section 3.9 on page 92.

Predefined Attributes

Predefined attributes have reserved names and, in some cases, predefined data types and/or num-
ber of data entries. Predefined attributes are useful because they establish conventions that appli-
cations can depend on. They are further described in Section 3.10 on page 103.

Dimension Scales

A dimension scale is a sequence of numbers placed along a dimension to demarcate intervals
along it. Dimension scales are described in Section 3.8.4 on page 81.

3.2.3 Annotations and the SD Data Model

In the past, annotations were supported in the SD interface to allow the HDF user to attach
descriptive information (called metadata) to a data set. With the expansion of the SD interface to
include user-defined attributes, the use of annotations to describe metadata should be eliminated.
Metadata once stored as an annotation is now more conveniently stored as an attribute. However,
to ensure backward compatibility with scientific data sets and applications relying on annotations,
the AN annotation interface, described in Chapter 10, Annotations (AN API) can be used to anno-
tate SDSs.

There is no cross-compatibility between attributes and annotations; creating one does not auto-
matically create the other.

3.3 The SD Interface

The SD interface provides routines that store, retrieve, and manipulate scientific data using the SD
data model. The SD interface supports simultaneous access to more than one SDS in more than
one HDF file. In addition, the SD interface is designed to support a general scientific data model
which is very similar to the netCDF data model developed by the Unidata Program Center1.

For those users who have been using the DFSD interface, the SD interface provide a model com-
patible with that supported by the DFSD interface. It is recommended that DFSD users apply the
SD model and interface to their applications since the DFSD interface is less flexible and less
powerful than the SD interface and will eventually be removed from the HDF library.

This section specifies the header file to be used with the SD interface and lists all available SD
interface routines, each of which is accompanied by its purpose and the section where the routine
is discussed.

3.3.1 Header Files Required by the SD Interface

The mfhdf.h header file must be included in programs that invoke SD interface routines. FOR-
TRAN-77 users should refer to Section 2.5.3 on page 16.

3.3.2 SD Interface Routines

All C routines in the SD interface begin with the prefix "SD". The equivalent FORTRAN-77 rou-
tines use the prefix "sf". These routines are categorized as follows:

1. netCDF-3 User’s Guide for C (June 5, 1997), Section 2, http://www.uni-
data.ucar.edu/software/netcdf/docs/netcdf/.
22 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
• Access routines initialize and terminate access to HDF files and data sets.

• Read and write routines read and write data sets.

• General inquiry routines return information about the location, contents, and description of
the scientific data sets in an HDF file.

• Dimension routines access and define characteristics of dimensions within a data set.

• Dimension scale routines define and access dimension scales within a data set.

• User-defined attribute routines create and access user-defined attributes of an HDF file,
data set, or dimension.

• Predefined attribute routines access previously-defined attributes of an HDF file, data set,
or dimension.

• Compression routines compress SDS data and retrieves compresion information.

• Chunking/tiling routines manage chunked data sets.

• Miscellaneous routines provide other operations such as external file, n-bit data set, and
compatibility operations.

• Raw Data Information routines provide information that allows applications to read raw
data from HDF files without the use of HDF library. These functions are described in Chap-
ter 16, Raw Data Information of this document, together with the same type of routines that
belong to other interfaces.

The SD routines are listed in the following table and are discussed in the following sections of this
chapter.
June 2017 23

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
TABLE 3A SD Interface Routines

Category
Routine Name

Description and Reference
C FORTRAN-77

Access

SDstart sfstart
Opens the HDF file and initializes the SD interface (Section 3.4.1
on page 27)

SDcreate sfcreate Creates a new data set (Section 3.4.1 on page 27)

SDselect sfselect Selects an existing SDS given its index (Section 3.4.1 on page 27)

SDendaccess sfendacc Terminates access to an SDS (Section 3.4.2 on page 29)

SDend sfend
Terminates access to the SD interface and closes the file
(Section 3.4.2 on page 29)

Read and
Write

SDreaddata
sfrdata/
sfrcdata

Reads data from a data set (Section 3.6 on page 58)

SDwritedata
sfwdata/
sfwcdata

Writes data to a data set (Section 3.5.1 on page 31)

General
Inquiry

SDcheckempty sfchempty
Determines whether a scientific dataset (an SDS) is empty
(Section 3.7.10 on page 74)

SDfileinfo sffinfo
Retrieves information about the contents of a file (Section 3.7.1 on
page 66)

SDgetfilename sfgetfname
Given a file identifier, retrieves the name of the file (Section 3.11.1
on page 112)

SDgetinfo sfginfo Retrieves information about a data set (Section 3.7.2 on page 66)

SDget_maxopen-
files

sfgmaxopenf
Retrieves current and maximum number of open files
(Section 3.11.4 on page 113)

SDgetnamelen sfgetnamelen
Retrieves the length of the name of a file, a dataset, or a dimension
(Section 3.11.2 on page 112)

SDget_numopen-
files

sfgnumopenf
Returns the number of files currently open (Section 3.11.5 on
page 113)

SDgetnumvars_by-
name

sfgnvars_by-
name

Retrieves the number of data sets having the same name
(Section 3.7.6 on page 72)

SDidtoref sfid2ref
Returns the reference number of a data set (Section 3.7.8 on
page 73)

SDidtype sfidtype
Given an identifier, returns the type of object the identifier rep-
resents (Section 3.7.9 on page 73)

SDiscoordvar sfiscvar
Distinguishes data sets from dimension scales (Section 3.8.4.4 on
page 88)

SDisrecord sfisrcrd
Determines whether a data set is appendable, i.e., having unlimited
dimension (Section 3.5.1.4 on page 42)

SDnametoindex sfn2index
Returns the index of a data set specified by its name (Section 3.7.4
on page 71)

SDnametoindices sfn2indices
Retrieves a list of indices of data sets having the same given name
(Section 3.7.5 on page 71)

SDreftoindex sfref2index
Returns the index of a data set specified by its reference number
(Section 3.7.7 on page 73)

SDreset_maxopen-
files

sfrmaxopenf
Resets the maximum number of files that can be open at the same
time (Section 3.11.3 on page 113)

Dimensions

SDdiminfo sfgdinfo Gets information about a dimension (Section 3.8.4.2 on page 82)

SDgetdimid sfdimid Returns the identifier of a dimension (Section 3.8.1 on page 78)

SDsetdimname sfsdimname Associates a name with a dimension (Section 3.8.2 on page 79)

Dimension
Scales

SDgetdimscale sfgdscale
Retrieves the scale values for a dimension (Section 3.8.4.3 on
page 82)

SDsetdimscale sfsdscale Stores the scale values of a dimension (Section 3.8.4.1 on page 81)
24 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
User-defined
Attributes

SDattrinfo sfgainfo Gets information about an attribute (Section 3.9.2 on page 96)

SDfindattr sffattr
Returns the index of an attribute specified by its name
(Section 3.9.2 on page 96)

SDreadattr
sfrnatt/sfr-
catt

Reads the values of an attribute specified by its index
(Section 3.9.3 on page 97)

SDsetattr
sfsnatt/sfs-
catt

Creates a new attribute and stores its values (Section 3.9.1 on
page 93)

Predefined
Attributes

SDgetcal sfgcal Retrieves calibration information (Section 3.10.6.2 on page 111)

SDgetdatastrs sfgdtstr
Returns the predefined-attribute strings of a data set
(Section 3.10.2.2 on page 105)

SDgetdimstrs sfgdmstr
Returns the predefined-attribute strings of a dimension
(Section 3.10.3.2 on page 107)

SDgetfillvalue
sfgfill/sfgc-
fill

Reads the fill value if it exists (Section 3.10.5.2 on page 109)

SDgetrange sfgrange
Retrieves the range of values in the specified data set
(Section 3.10.4.2 on page 108)

SDsetcal sfscal Defines the calibration information (Section 3.10.6.1 on page 110)

SDsetdatastrs sfsdtstr
Sets predefined attributes of the specified data set
(Section 3.10.2.1 on page 105)

SDsetdimstrs sfsdmstr
Sets predefined attributes of the specified dimension
(Section 3.10.3.1 on page 106)

SDsetfillvalue
sfsfill/sfsc-
fill

Defines the fill value for the specified data set (Section 3.10.5.1 on
page 109)

SDsetfillmode sfsflmd
Sets the fill mode to be applied to all data sets in the specified file
(Section 3.10.5.3 on page 109)

SDsetrange sfsrange
Defines the maximum and minimum values of the specified data
set (Section 3.10.4.1 on page 107)

Compression

SDsetcompress sfscompress
Compresses a data set using a specified compression method
(Section 3.5.2 on page 47)

SDsetnbitdataset sfsnbit
Defines the non-standard bit length of the data set data
(Section 3.7.11 on page 77)

SDgetcompinfo sfgcompress
Retrieves data set compression type and compression information.
(See the HDF Reference Manual)

Chunking/
Tiling

SDgetchunkinfo sfgichnk
Obtains information about a chunked data set (Section 3.12.5 on
page 120)

SDreadchunk
sfrchnk/
sfrcchnk

Reads data from a chunked data set (Section 3.12.4 on page 119)

SDsetchunk sfschnk
Makes a non-chunked data set a chunked data set (Section 3.12.1
on page 114)

SDsetchunkcache sfcchnk Sets the size of the chunk cache (Section 3.12.2 on page 116)

SDwritechunk
sfwchnk/sfw-
cchnk

Writes data to a chunked data set (Section 3.12.3 on page 117)

Raw Data
Information

SDgetanndatainfo unvailable Retrieves location and size of annotations’ data ()

SDgetattdatainfo unvailable
Retrieves location and size of an attribute’s data (Section 3.5.1.5
on page 43)

SDgetdatainfo unvailable
Retrieves location and size of data blocks in a spcified data set
(Section 3.5.3.3 on page 54)

SDgetoldat-
tdatainfo

unvailable
Retrieves location and size of an old predefined attribute’s data
(Section 3.8.3.2 on page 81)
June 2017 25

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
3.3.3 Tags in the SD Interface

A complete list of SDS tags and their descriptions appears in Table AD in Appendix A. Refer to
Section 2.2.2.1 on page 8 for a description of tags.

3.4 Programming Model for the SD Interface

This section describes the routines used to initialize the SD interface, create a new SDS or access
an existing one, terminate access to that SDS, and shut down the SD interface. Writing to existing
scientific data sets will be described in Section 3.5 on page 31.

To support multifile access, the SD interface relies on the calling program to initiate and terminate
access to files and data sets. The SD programming model for creating and accessing an SDS in an
HDF file is as follows:

1. Open a file and initialize the SD interface.

2. Create a new data set or open an existing one using its index.

3. Perform desired operations on this data set.

4. Terminate access to the data set.

5. Terminate access to the SD interface and close the file.

To access a single SDS in an HDF file, the calling program must contain the following calls:

C: sd_id = SDstart(filename, access_mode);

sds_id = SDcreate(sd_id, sds_name, data_type, rank, dim_sizes);
OR sds_id = SDselect(sd_id, sds_index);

<Optional operations>
status = SDendaccess(sds_id);
status = SDend(sd_id);

FORTRAN: sd_id = sfstart(filename, access_mode)

sds_id = sfcreate(sd_id, sds_name, data_type, rank, dim_sizes)
OR sds_id = sfselect(sd_id, sds_index)

<Optional operations>
status = sfendacc(sds_id)
status = sfend(sd_id)

If the file contains non-SD-API objects, such as vdatas or raster images, the application must use
Hopen/Hclose to access these objects while SDstart/SDend the SD-API objects. The non-SD
API functions access the file via the identifier returned by Hopen and the SD API functions use
the identifier returned by SDstart.

Miscellaneous

SDgetexternalinfo unvailable
Gets information about external file of a data set (Section 3.5.3.4
on page 55)

SDsetblocksize sfsblsz
Sets the block size used for storing data sets with unlimited dimen-
sion (Section 3.5.1.5 on page 43)

SDsetexternalfile sfsextf
Specifies that a data set is to be stored in an external file
(Section 3.5.3.3 on page 54)

SDisdimval_bwcomp sfisdmvc
Determines the current compatibility mode of a dimension
(Section 3.8.3.2 on page 81)

SDsetdimval_comp sfsdmvc
Sets the future compatibility mode of a dimension (Section 3.8.3.1
on page 80)

SDsetaccesstype sdfsacct Sets the I/O access type for an SDS (Section 3.5.1.6 on page 43)
26 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
To access several files at the same time, a program must obtain a separate SD file identifier
(sd_id) for each file to be opened. Likewise, to access more than one SDS, a calling program must
obtain a separate SDS identifier (sds_id) for each SDS. For example, to open two SDSs stored in
two files a program would execute the following series of function calls.

C: sd_id_1 = SDstart(filename_1, access_mode);
sds_id_1 = SDselect(sd_id_1, sds_index_1);
sd_id_2 = SDstart(filename_2, access_mode);
sds_id_2 = SDselect(sd_id_2, sds_index_2);
<Optional operations>
status = SDendaccess(sds_id_1);
status = SDend(sd_id_1);
status = SDendaccess(sds_id_2);
status = SDend(sd_id_2);

FORTRAN: sd_id_1 = sfstart(filename_1, access_mode)
sds_id_1 = sfselect(sd_id_1, sds_index_1)
sd_id_2 = sfstart(filename_2, access_mode)
sds_id_2 = sfselect(sd_id_2, sds_index_2)
<Optional operations>
status = sfendacc(sds_id_1)
status = sfend(sd_id_1)
status = sfendacc(sds_id_2)
status = sfend(sd_id_2)

3.4.1 Establishing Access to Files and Data Sets: SDstart, SDcreate, and
SDselect

In the SD interface, SDstart is used to open files rather than Hopen. SDstart takes two argu-
ments, filename and access_mode, and returns the SD interface identifier, sd_id. Note that the SD
interface identifier, sd_id, is not interchangeable with the file identifier, file_id, created by Hopen
and used in other HDF APIs.

The argument filename is the name of an HDF or netCDF file.

The argument access_mode specifies the type of access required for operations on the file. All the
valid values for access_mode are listed in Table 3B. If the file does not exist, specifying
DFACC_READ or DFACC_WRITE will cause SDstart to return a FAIL (or -1). Specifying DFACC_CRE-
ATE creates a new file with read and write access. If DFACC_CREATE is specified and the file already
exists, the contents of this file will be replaced.

TABLE 3B File Access Code Flags

The SD interface identifiers can be obtained and discarded in any order and all SD interface iden-
tifiers must be individually discarded, by SDend, before the termination of the calling program.

Although it is possible to open a file more than once, it is recommended that the appropriate
access mode be specified and SDstart called only once per file. Repeatedly calling SDstart on the

File Access Flag Flag Value Description

DFACC_READ 1 Read only access

DFACC_WRITE 2 Read and write access

DFACC_CREATE 4 Create with read and write access
June 2017 27

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
same file and with different access modes may cause unexpected results. Note that it has been
reported that opening/closing file in loops is very slow; thus, it is not recommended to perform
such operations too many times, particularly, when data is being added to the file between open-
ing/closing.

Prior to HDF 4.2.2, the maximum number of open files was limited to 32; but, it now can be up to
what the system allowed.

SDstart returns an SD identifier or a value of FAIL (or -1). The parameters of SDstart are
defined in (See Table 3C on page 29).

SDcreate defines a new SDS using the arguments sd_id, sds_name, data_type, rank, and dim_-
sizes and returns the data set identifier, sds_id.

The parameter sds_name is a character string containing the name to be assigned to the SDS. The
SD interface will generate a default name, "DataSet", for the SDS, if one is not provided, i.e.,
when the parameter sds_name is set to NULL in C, or an empty string in FORTRAN-77. The maxi-
mum length of an SDS name is no longer limited to 64 characters, starting in HDF 4.2.2. Applica-
tions should use the API SDgetnamelen in order to allocate sufficient space when reading the
name. Note that when an older version of the library reads a data set, which was created by a
library of version 4.2.2 or later and has the name that is longer than 64 characters, the retrieved
name will contain some garbage after 64 characters.

The parameter data_type is a defined name, prefaced by DFNT, and specifies the type of the data to
be stored in the data set. The header file "hntdefs.h" contains the definitions of all valid data types,
which are described in Chapter 2, HDF Fundamentals, and listed in (See Table 2F on page 14).

The parameter rank is a positive integer specifying the number of dimensions of the SDS array.
The maximum rank of an SDS array is defined by H4_MAX_VAR_DIMS (or 32), which is defined in
the header file "hlimits.h". Note that, in order for HDF4 and NetCDF models to work together,
HDF allows SDS to have rank 0. However, there is no intention for data to be written to this type
of SDS, but only to store attribute as part of the data description. Consequently, setting compres-
sion and setting chunk are disallowed.

Each element of the one-dimensional array dim_sizes specifies the length of the corresponding
dimension of the SDS array. The size of dim_sizes must be the value of the parameter rank. To
create a data set with an unlimited dimension, assign the value of SD_UNLIMITED (or 0) to dim_-
sizes[0] in C, and to dim_sizes(rank) in FORTRAN-77. See the notes regarding the potential per-
formance impact of unlimited dimension data sets in Section 14.4.3, "Unlimited Dimension Data
Sets (SDSs and Vdatas) and Performance" on page 461.

Once an SDS is created, you cannot change its name, data type, size, or shape. However, it is pos-
sible to modify the data set’s data or to create an empty data set and later add values. To add data
or modify an existing data set, use SDselect to get the data set identifier instead of SDcreate.

Note that the SD interface retains no definitions about the size, contents, or rank of an SDS from
one SDS to the next, or from one file to the next.

SDselect initiates access to an existing data set. The routine takes two arguments: sd_id and
sds_index and returns the SDS identifier sds_id. The argument sd_id is the SD interface identifier
returned by SDstart, and sds_index is the position of the data set in the file. The argument sds_in-
dex is zero-based, meaning that the index of first SDS in the file is 0.

Similar to SD interface identifiers, SDS identifiers can be obtained and discarded in any order as
long as they are discarded properly. Each SDS identifier must be individually disposed of, by
SDendaccess, before the disposal of the identifier of the interface in which the SDS is opened.
28 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
SDcreate and SDselect each returns an SDS identifier or a value of FAIL (or -1). The parameters
of SDstart, SDcreate, and SDselect are further described in Table 3C.

3.4.2 Terminating Access to Files and Data Sets: SDendaccess and SDend

SDendaccess terminates access to the data set and disposes of the data set identifier sds_id. The
calling program must make one SDendaccess call for every SDselect or SDcreate call made
during its execution. Failing to call SDendaccess for each call to SDselect or SDcreate may result
in a loss of data.

SDend terminates access to the file and the SD interface and disposes of the file identifier sd_id.
The calling program must make one SDend call for every SDstart call made during its execution.
Failing to call SDend for each SDstart may result in a loss of data.

SDendaccess and SDend each returns either a value of SUCCEED (or 0) or FAIL (or -1). The
parameters of SDendaccess and SDend are further described in Table 3C.

TABLE 3C SDstart, SDcreate, SDselect, SDendaccess, and SDend Parameter Lists

EXAMPLE 1. Creating an HDF file and an Empty SDS.

This example illustrates the use of SDstart/sfstart, SDcreate/sfcreate, SDendaccess/sfendacc,
and SDend/sfend to create the HDF file named SDS.hdf, and an empty data set with the name
SDStemplate in the file.

Note that the Fortran program uses a transformed array to reflect the difference between C and
Fortran internal data storages. When the actual data is written to the data set, SDS.hdf will contain
the same data regardless of the language being used.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define SDS_NAME "SDStemplate"

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

SDstart
[int32]

(sfstart)

filename char * character*(*) Name of the HDF or netCDF file

access_mode int32 integer Type of access

SDcreate
[int32]

(sfcreate)

sd_id int32 integer SD interface identifier

sds_name char * character*(*) ASCII string containing the name of the data set

data_type int32 integer Data type of the data set

rank int32 integer Number of dimensions in the array

dim_sizes int32[] integer(*) Array defining the size of each dimension

SDselect
[int32]

(sfselect)

sd_id int32 integer SD interface identifier

sds_index int32 integer Position of the data set within the file

SDendaccess
[intn]

(sfendacc)
sds_id int32 integer Data set identifier

SDend
[intn]

(sfend)
sd_id int32 integer SD interface identifier
June 2017 29

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
#define X_LENGTH 5
#define Y_LENGTH 16
#define RANK 2 /* Number of dimensions of the SDS */

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id; /* SD interface and data set identifiers */
 int32 dim_sizes[2]; /* sizes of the SDS dimensions */
 intn status; /* status returned by some routines; has value
 SUCCEED or FAIL */

 /********************* End of variable declaration ***********************/

 /*
 * Create the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_CREATE);

 /*
 * Define the dimensions of the array to be created.
 */
 dim_sizes[0] = Y_LENGTH;
 dim_sizes[1] = X_LENGTH;

 /*
 * Create the data set with the name defined in SDS_NAME. Note that
 * DFNT_INT32 indicates that the SDS data is of type int32. Refer to
 * Table 2E for definitions of other types.
 */
 sds_id = SDcreate (sd_id, SDS_NAME, DFNT_INT32, RANK, dim_sizes);

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

FORTRAN:
 program create_SDS
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 character*11 SDS_NAME
 integer X_LENGTH, Y_LENGTH, RANK
 parameter (FILE_NAME = ’SDS.hdf’,
 + SDS_NAME = ’SDStemplate’,
 + X_LENGTH = 5,
 + Y_LENGTH = 16,
 + RANK = 2)
 integer DFACC_CREATE, DFNT_INT32
 parameter (DFACC_CREATE = 4,
 + DFNT_INT32 = 24)
C

30 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
C Function declaration.
C
 integer sfstart, sfcreate, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, dim_sizes(2)
 integer status
C
C**** End of variable declaration ************************************
C
C
C Create the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_CREATE)
C
C Define dimensions of the array to be created.
C
 dim_sizes(1) = X_LENGTH
 dim_sizes(2) = Y_LENGTH
C
C Create the array with the name defined in SDS_NAME.
C Note that DFNT_INT32 indicates that the SDS data is of type
C integer. Refer to Tables 2E and 2I for the definition of other types.
C
 sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT32, RANK,
 . dim_sizes)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

3.5 Writing Data to an SDS

An SDS can be written partially or entirely. Partial writing includes writing to a contiguous region
of the SDS and writing to selected locations in the SDS according to patterns defined by the user.
This section describes the routine SDwritedata and how it can write data to part of an SDS or to
an entire SDS. The section also illustrates the concepts of compressing SDSs and using external
files to store scientific data.

3.5.1 Writing Data to an SDS Array: SDwritedata

SDwritedata can completely or partially fill an SDS array or append data along the dimension
that is defined to be of unlimited length (see Section 3.5.1.3 on page 42 for a discussion of unlim-
ited-length dimensions). It can also skip a specified number of SDS array elements between write
operations along each dimension.

To write to an existing SDS, the calling program must contain the following sequence of routine
calls:

C: sds_id = SDselect(sd_id, sds_index);
status = SDwritedata(sds_id, start, stride, edges, data);
June 2017 31

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
FORTRAN: sds_id = sfselect(sd_id, sds_index)

status = sfwdata(sds_id, start, stride, edges, data)

OR status = sfwcdata(sds_id, start, stride, edges, data)

To write to a new SDS, simply replace the call SDselect with the call SDcreate, which is
described in Section 3.4.1 on page 27.

SDwritedata takes five arguments: sds_id, start, stride, edges, and data. The argument sds_id is
the data set identifier returned by SDcreate or SDselect.

Before proceeding with the description of the remaining arguments, an explanation of the term
hyperslab (or slab, as it will be used in this chapter) is in order. A slab is a group of SDS array ele-
ments that are stored in consecutive locations. It can be of any size and dimensionality as long as
it is a subset of the array, which means that a single array element and the entire array can both be
considered slabs. A slab is defined by the multidimensional coordinate of its initial vertex and the
lengths of each dimension.

Given this description of the slab concept, the usage of the remaining arguments should become
apparent. The argument start is a one-dimensional array specifying the location in the SDS array
at which the write operation will begin. The values of each element of the array start are relative
to 0 in both the C and FORTRAN-77 interfaces. The size of start must be the same as the number
of dimensions in the SDS array. In addition, each value in start must be smaller than its corre-
sponding SDS array dimension unless the dimension is unlimited. Violating any of these condi-
tions causes SDwritedata to return FAIL.

The argument stride is a one-dimensional array specifying, for each dimension, the interval
between values to be written. For example, setting the first element of the array stride equal to 1
writes data to every location along the first dimension. Setting the first element of the array stride
to 2 writes data to every other location along the first dimension. Figure 3b illustrates this exam-
ple, where the shading elements are written and the white elements are skipped. If the argument
stride is set to NULL in C (or either 0 or 1 in FORTRAN-77), SDwritedata operates as if every ele-
ment of stride contains a value of 1, and a contiguous write is performed. For better performance,
it is recommended that the value of stride be defined as NULL (i.e., 0 or 1 in FORTRAN-77) rather
than being set to 1.

The size of the array stride must be the same as the number of dimensions in the SDS array. Also,
each value in stride must be smaller than or equal to its corresponding SDS array dimension
unless the dimension is unlimited. Violating any of these conditions causes SDwritedata to return
FAIL.

FIGURE 3b An Example of Access Pattern ("Strides")

The argument edges is a one-dimensional array specifying the length of each dimension of the
slab to be written. If the slab has fewer dimensions than the SDS data set has, the size of edges

Array
Location

0 1 2 3 4 5 6 N

. . .

stride[0] = 2
32 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
must still be equal to the number of dimensions in the SDS array and all the elements correspond-
ing to the additional dimensions must be set to 1.

Each value in the array edges must not be larger than the length of the corresponding dimension in
the SDS data set unless the dimension is unlimited. Attempting to write slabs larger than the size
of the SDS data set will result in an error condition.

In addition, the sum of each value in the array edges and the corresponding value in the start array
must be smaller than or equal to its corresponding SDS array dimension unless the dimension is
unlimited. Violating any of these conditions causes SDwritedata to return FAIL. When SDreadd-
ata returns FAIL (or -1) due to any invalid argements, the error code DFE_ARGS will be pushed on
the stack.

The parameter data contains the SDS data to be written. If the SDS array is smaller than the buffer
data, the amount of data written will be limited to the maximum size of the SDS array.

Be aware that the mapping between the dimensions of a slab and the order in which the slab val-
ues are stored in memory is different between C and FORTRAN-77. In C, the values are stored
with the assumption that the last dimension of the slab varies fastest (or "row-major order" stor-
age), but in FORTRAN-77 the first dimension varies fastest (or "column-major order" storage).
These storage order conventions can cause some confusion when data written by a C program is
read by a FORTRAN-77 program or vice versa.

There are two FORTRAN-77 versions of this routine: sfwdata and sfwcdata. The routine sfw-
data writes numeric scientific data and sfwcdata writes character scientific data.

SDwritedata returns either a value of SUCCEED (or 0) or FAIL (or -1). The parameters of this rou-
tine are described in Table 3D.

TABLE 3D SDwritedata Parameter List

3.5.1.1 Filling an Entire Array

Filling an array is a simple slab operation where the slab begins at the origin of the SDS array and
fills every location in the array. SDwritedata fills an entire SDS array with data when all elements
of the array start are set to 0, the argument stride is set equal to NULL in C or each element of the
array stride is set to 1 in both C and FORTRAN-77, and each element of the array edges is equal
to the length of each dimension.

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C FORTRAN-77

SDwritedata
[intn]

(sfwdata/
sfwcdata)

sds_id int32 integer Data set identifier

start int32 [] integer(*)
Array containing the position at which the
write will start for each dimension

stride int32 [] integer(*)
Array specifying the interval between the val-
ues that will be read along each dimension

edges int32 [] integer(*)
Array containing the number of data elements
that will be written along each dimension

data VOIDP
<valid numeric data

type>(*)/
character*(*)

Buffer for the data to be written
June 2017 33

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
EXAMPLE 2. Writing to an SDS.

This example illustrates the use of the routines SDselect/sfselect and SDwritedata/sfwrite to
select the first SDS in the file SDS.hdf created in Example 1 and to write actual data to it.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define X_LENGTH 5
#define Y_LENGTH 16

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 start[2], edges[2];
 int32 data[Y_LENGTH][X_LENGTH];
 int i, j;

 /********************* End of variable declaration ***********************/

 /*
 * Data set data initialization.
 */
 for (j = 0; j < Y_LENGTH; j++) {
 for (i = 0; i < X_LENGTH; i++)
 data[j][i] = (i + j) + 1;
 }

 /*
 * Open the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_WRITE);

 /*
 * Attach to the first data set.
 */
 sds_index = 0;
 sds_id = SDselect (sd_id, sds_index);

 /*
 * Define the location and size of the data to be written to the data set.
 */
 start[0] = 0;
 start[1] = 0;
 edges[0] = Y_LENGTH;
 edges[1] = X_LENGTH;

 /*
 * Write the stored data to the data set. The third argument is set to NULL
 * to specify contiguous data elements. The last argument must
 * be explicitly cast to a generic pointer since SDwritedata is designed
 * to write generic data.
 */
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)data);

 /*
 * Terminate access to the data set.
 */
34 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

FORTRAN:
 program write_data
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 character*11 SDS_NAME
 integer X_LENGTH, Y_LENGTH, RANK
 parameter (FILE_NAME = ’SDS.hdf’,
 + SDS_NAME = ’SDStemplate’,
 + X_LENGTH = 5,
 + Y_LENGTH = 16,
 + RANK = 2)
 integer DFACC_WRITE, DFNT_INT32
 parameter (DFACC_WRITE = 2,
 + DFNT_INT32 = 24)
C
C Function declaration.
C

 integer sfstart, sfselect, sfwdata, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer start(2), edges(2), stride(2)
 integer i, j
 integer data(X_LENGTH, Y_LENGTH)
C
C**** End of variable declaration ************************************
C

C
C Data set data initialization.
C
 do 20 j = 1, Y_LENGTH
 do 10 i = 1, X_LENGTH
 data(i, j) = i + j - 1
10 continue
20 continue

C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_WRITE)

C
C Attach to the first data set.
C
 sds_index = 0
 sds_id = sfselect(sd_id, sds_index)

C

June 2017 35

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
C Define the location and size of the data to be written
C to the data set. Note that setting values of the array stride to 1
C specifies the contiguous writing of data.
C
 start(1) = 0
 start(2) = 0
 edges(1) = X_LENGTH
 edges(2) = Y_LENGTH
 stride(1) = 1
 stride(2) = 1
C
C Write the stored data to the data set named in SDS_NAME.
C Note that the routine sfwdata is used instead of sfwcdata
C to write the numeric data.
C
 status = sfwdata(sds_id, start, stride, edges, data)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

3.5.1.2 Writing Slabs to an SDS Array

To allow preexisting data to be modified, the HDF library does not prevent SDwritedata from
overwriting one slab with another. As a result, the calling program is responsible for managing
any overlap when writing slabs. The HDF library will issue an error if a slab extends past the valid
boundaries of the SDS array. However, appending data along an unlimited dimension is allowed.

EXAMPLE 3. Writing a Slab of Data to an SDS.

This example shows how to fill a 3-dimensional SDS array with data by writing series of 2-
dimensional slabs to it.

C:
#include "mfhdf.h"

#define FILE_NAME "SLABS.hdf"
#define SDS_NAME "FilledBySlabs"
#define X_LENGTH 4
#define Y_LENGTH 5
#define Z_LENGTH 6
#define RANK 3

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id;
 intn status;
 int32 dim_sizes[3], start[3], edges[3];
 int32 data[Z_LENGTH][Y_LENGTH][X_LENGTH];
 int32 zx_data[Z_LENGTH][X_LENGTH];
 int i, j, k;

36 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 /********************* End of variable declaration ***********************/

 /*
 * Data initialization.
 */
 for (k = 0; k < Z_LENGTH; k++)
 for (j = 0; j < Y_LENGTH; j++)
 for (i = 0; i < X_LENGTH; i++)
 data[k][j][i] = (i + 1) + (j + 1) + (k + 1);

 /*
 * Create the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_CREATE);

 /*
 * Define dimensions of the array to be created.
 */
 dim_sizes[0] = Z_LENGTH;
 dim_sizes[1] = Y_LENGTH;
 dim_sizes[2] = X_LENGTH;

 /*
 * Create the array with the name defined in SDS_NAME.
 */
 sds_id = SDcreate (sd_id, SDS_NAME, DFNT_INT32, RANK, dim_sizes);

 /*
 * Set the parameters start and edges to write
 * a 6x4 element slab of data to the data set; note
 * that edges[1] is set to 1 to define a 2-dimensional slab
 * parallel to the ZX plane.
 * start[1] (slab position in the array) is initialized inside
 * the for loop.
 */
 edges[0] = Z_LENGTH;
 edges[1] = 1;
 edges[2] = X_LENGTH;
 start[0] = start[2] = 0;
 for (j = 0; j < Y_LENGTH; j++)
 {
 start[1] = j;

 /*
 * Initialize zx_data buffer (data slab).
 */
 for (k = 0; k < Z_LENGTH; k++)
 {
 for (i = 0; i < X_LENGTH; i++)
 {
 zx_data[k][i] = data[k][j][i];
 }
 }

 /*
 * Write the data slab into the SDS array defined in SDS_NAME.
 * Note that the 3rd parameter is NULL which indicates that consecutive
 * slabs in the Y direction are written.
 */
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)zx_data);
 }

 /*
June 2017 37

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

FORTRAN:
 program write_slab
 implicit none
C
C Parameter declaration.
C
 character*9 FILE_NAME
 character*13 SDS_NAME
 integer X_LENGTH, Y_LENGTH, Z_LENGTH, RANK
 parameter (FILE_NAME = ’SLABS.hdf’,
 + SDS_NAME = ’FilledBySlabs’,
 + X_LENGTH = 4,
 + Y_LENGTH = 5,
 + Z_LENGTH = 6,
 + RANK = 3)
 integer DFACC_CREATE, DFNT_INT32
 parameter (DFACC_CREATE = 4,
 + DFNT_INT32 = 24)
C
C Function declaration.
C
 integer sfstart, sfcreate, sfwdata, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id
 integer dim_sizes(3), start(3), edges(3), stride(3)
 integer i, j, k, status
 integer data(X_LENGTH, Y_LENGTH, Z_LENGTH)
 integer xz_data(X_LENGTH, Z_LENGTH)
C
C**** End of variable declaration ************************************
C
C
C Data initialization.
C
 do 30 k = 1, Z_LENGTH
 do 20 j = 1, Y_LENGTH
 do 10 i = 1, X_LENGTH
 data(i, j, k) = i + j + k
10 continue
20 continue
30 continue
C
C Create the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_CREATE)
C
C Define dimensions of the array to be created.
C
 dim_sizes(1) = X_LENGTH
 dim_sizes(2) = Y_LENGTH
38 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 dim_sizes(3) = Z_LENGTH
C
C Create the data set with the name defined in SDS_NAME.
C
 sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT32, RANK,
 . dim_sizes)
C
C Set the parameters start and edges to write
C a 4x6 element slab of data to the data set;
C note that edges(2) is set to 1 to define a 2 dimensional slab
C parallel to the XZ plane;
C start(2) (slab position in the array) is initialized inside the
C for loop.
C
 edges(1) = X_LENGTH
 edges(2) = 1
 edges(3) = Z_LENGTH
 start(1) = 0
 start(3) = 0
 stride(1) = 1
 stride(2) = 1
 stride(3) = 1

 do 60 j = 1, Y_LENGTH
 start(2) = j - 1
C
C Initialize the buffer xz_data (data slab).
C
 do 50 k = 1, Z_LENGTH
 do 40 i = 1, X_LENGTH
 xz_data(i, k) = data(i, j, k)
40 continue
50 continue
C
C Write the data slab into SDS array defined in SDS_NAME.
C Note that the elements of array stride are set to 1 to
C specify that the consecutive slabs in the Y direction are written.
C
 status = sfwdata(sds_id, start, stride, edges, xz_data)
60 continue
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

EXAMPLE 4. Altering Values within an SDS Array.

This example demonstrates how the routine SDwritedata can be used to alter the values of the
elements in the 10th and 11th rows, at the 2nd column, in the SDS array created in the Example 1
and written in Example 2. FORTRAN-77 routine sfwdata is used to alter the elements in the 2nd
row, 10th and 11th columns, to reflect the difference between C and Fortran internal storage.

C:
#include "mfhdf.h"
June 2017 39

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
#define FILE_NAME "SDS.hdf"

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 start[2], edges[2];
 int32 new_data[2];
 int i, j;

 /********************* End of variable declaration ***********************/
 /*
 * Open the file and initialize the SD interface with write access.
 */
 sd_id = SDstart (FILE_NAME, DFACC_WRITE);

 /*
 * Select the first data set.
 */
 sds_index = 0;
 sds_id = SDselect (sd_id, sds_index);

 /*
 * Set up the start and edge parameters to write new element values
 * into 10th row, 2nd column place, and 11th row, 2nd column place.
 */
 start[0] = 9; /* starting at 10th row */
 start[1] = 1; /* starting at 2nd column */
 edges[0] = 2; /* rows 10th and 11th */
 edges[1] = 1; /* column 2nd only */

 /*
 * Initialize buffer with the new values to be written.
 */
 new_data[0] = new_data[1] = 1000;

 /*
 * Write the new values.
 */
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)new_data);

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

FORTRAN:
 program alter_data
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
40 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 integer DFACC_WRITE
 parameter (FILE_NAME = ’SDS.hdf’,
 + DFACC_WRITE = 2)
C
C Function declaration.
C
 integer sfstart, sfselect, sfwdata, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index
 integer start(2), edges(2), stride(2)
 integer status
 integer new_data(2)
C
C**** End of variable declaration ************************************
C

C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_WRITE)
C
C Select the first data set.
C
 sds_index = 0
 sds_id = sfselect(sd_id, sds_index)

C
C Initialize the start, edge, and stride parameters to write
C two elements into 2nd row, 10th column and 11th column places.
C
C Specify 2nd row.
C
 start(1) = 1
C
C Specify 10th column.
C
 start(2) = 9
 edges(1) = 1
C
C Two elements are written along 2nd row.
C
 edges(2) = 2
 stride(1) = 1
 stride(2) = 1
C
C Initialize the new values to be written.
C
 new_data(1) = 1000
 new_data(2) = 1000
C
C Write the new values.
C
 status = sfwdata(sds_id, start, stride, edges, new_data)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)
June 2017 41

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
 end

3.5.1.3 Appending Data to an SDS Array along an Unlimited Dimension

An SDS array can be made appendable, however, only along one dimension. This dimension must
be specified as an appendable dimension when it is created.

In C, only the first element of the SDcreate parameter dim_sizes (i.e., the dimension of the lowest
rank or the slowest-changing dimension) can be assigned the value SD_UNLIMITED (or 0) to make
the first dimension unlimited. In FORTRAN-77, only the last dimension (i.e., the dimension of
the highest rank or the slowest-changing dimension) can be unlimited. In other words, in FOR-
TRAN-77 dim_sizes(rank) must be set to the value SD_UNLIMITED to make the last dimension
appendable.

To append data to a data set without overwriting previously-written data, the user must specify the
appropriate coordinates in the start parameter of the SDwritedata routine. For example, if 15 data
elements have been written to an unlimited dimension, appending data to the array requires a start
coordinate of 15. Specifying a starting coordinate less than the current number of elements written
to the unlimited dimension will result in data being overwritten. In either case, all of the coordi-
nates in the array except the one corresponding to the unlimited dimension must be equal to or
less than the lengths of their corresponding dimensions.

Any time an unlimited dimension is appended to, the HDF library will automatically adjust the
dimension record to the new length. If the newly-appended data begins beyond the previous
length of the dimension, the locations between the old data and the beginning of the newly-
appended data are initialized to the assigned fill value if there is one defined by the user, or the
default fill value if none is defined. Refer to Section 3.10.5 on page 108 for a discussion of fill
value.

3.5.1.4 Determining whether an SDS Array is Appendable: SDisrecord

SDisrecord determines whether the data set identified by the parameter sds_id is appendable,
which means that the slowest-changing dimension of the SDS array is declared unlimited when
the data set is created. The syntax of SDisrecord is as follows:

C: status = SDisrecord(sds_id);

FORTRAN: status = sfisrcrd(sds_id)

SDisrecord returns TRUE (or 1) when the data set specified by sds_id is appendable and FALSE (or
0) otherwise. The parameter of this routine is defined in Table 3E.
42 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
TABLE 3E SDisrecord Parameter List

3.5.1.5 Setting the Block Size: SDsetblocksize

SDsetblocksize sets the size of the blocks used for storing the data for unlimited dimension data
sets. This is used only when creating new data sets; it does not have any affect on existing data
sets. The syntax of this routine is as follows:

C: status = SDsetblocksize(sds_id, block_size);

FORTRAN: status = sfsblsz(sds_id, block_size)

SDsetblocksize must be called after SDcreate or SDselect and before SDwritedata. The parame-
ter block_size should be set to a multiple of the desired buffer size.

SDsetblocksize returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further
described in Table 3F.

3.5.1.6 Setting the I/O Access Type of an SDS: SDsetaccesstype

SDsetaccesstype sets the type of I/O (serial, parallel,...) for accessing the data of the data set iden-
tified by sds_id. Valid values of access_types are DFACC_SERIAL (or 1), DFACC_PARALLEL (or 11),
and DFACC_DEFAULT (or 0.) The syntax of this routine is as follows:

C: status = SDsetaccesstype(sds_id, accesstype);

FORTRAN: status = sdfsacct(sds_id, accesstype)

SDsetaccesstype returns a value of SUCCEED (or 0) if the SDS data can be accessed via accesstype
or FAIL (or -1) otherwise. Its parameters are further described in Table 3F.

TABLE 3F SDsetblocksize and SDsetaccesstype Parameter List

EXAMPLE 5. Appending Data to an SDS Array with an Unlimited Dimension.

This example creates a 10x10 SDS array with one unlimited dimension and writes data to it. The
file is reopened and the routine SDisrecord/sfisrcrd is used to determine whether the selected
SDS array is appendable. Then new data is appended, starting at the 11th row.

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

SDisrecord
[int32]

(sfisrcrd)
sds_id int32 integer Data set identifier

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

SDsetblocksize
[intn]

(sfsblsz)

sds_id int32 integer Data set identifier

block_size int32 integer Block size

SDsetaccesstype
[intn]

(sdfsacct)

sds_id int32 integer Data set identifier

accesstype int32 integer I/O access type
June 2017 43

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
C:
#include "mfhdf.h"

#define FILE_NAME "SDSUNLIMITED.hdf"
#define SDS_NAME "AppendableData"
#define X_LENGTH 10
#define Y_LENGTH 10
#define RANK 2

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 dim_sizes[2];
 int32 data[Y_LENGTH][X_LENGTH], append_data[X_LENGTH];
 int32 start[2], edges[2];
 int i, j;

 /********************* End of variable declaration ***********************/

 /*
 * Data initialization.
 */
 for (j = 0; j < Y_LENGTH; j++)
 {
 for (i = 0; i < X_LENGTH; i++)
 data[j][i] = (i + 1) + (j + 1);
 }

 /*
 * Create the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_CREATE);

 /*
 * Define dimensions of the array. Make the first dimension
 * appendable by defining its length to be unlimited.
 */
 dim_sizes[0] = SD_UNLIMITED;
 dim_sizes[1] = X_LENGTH;

 /*
 * Create the array data set.
 */
 sds_id = SDcreate (sd_id, SDS_NAME, DFNT_INT32, RANK, dim_sizes);

 /*
 * Define the location and the size of the data to be written
 * to the data set.
 */
 start[0] = start[1] = 0;
 edges[0] = Y_LENGTH;
 edges[1] = X_LENGTH;

 /*
 * Write the data.
 */
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)data);

 /*
44 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 * Terminate access to the array data set, terminate access
 * to the SD interface, and close the file.
 */
 status = SDendaccess (sds_id);
 status = SDend (sd_id);

 /*
 * Store the array values to be appended to the data set.
 */
 for (i = 0; i < X_LENGTH; i++)
 append_data[i] = 1000 + i;

 /*
 * Reopen the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_WRITE);

 /*
 * Select the first data set.
 */
 sds_index = 0;
 sds_id = SDselect (sd_id, sds_index);

 /*
 * Check if selected SDS is unlimited. If it is not, then terminate access
 * to the SD interface and close the file.
 */
 if (SDisrecord (sds_id))
 {

 /*
 * Define the location of the append to start at the first column
 * of the 11th row of the data set and to stop at the end of the
 * eleventh row.
 */
 start[0] = Y_LENGTH;
 start[1] = 0;
 edges[0] = 1;
 edges[1] = X_LENGTH;

 /*
 * Append data to the data set.
 */
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)append_data);
 }

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

FORTRAN:
 program append_sds
 implicit none
C
C Parameter declaration.
June 2017 45

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
C
 character*16 FILE_NAME
 character*14 SDS_NAME
 integer X_LENGTH, Y_LENGTH, RANK
 parameter (FILE_NAME = ’SDSUNLIMITED.hdf’,
 + SDS_NAME = ’AppendableData’,
 + X_LENGTH = 10,
 + Y_LENGTH = 10,
 + RANK = 2)
 integer DFACC_CREATE, DFACC_WRITE, SD_UNLIMITED,
 + DFNT_INT32
 parameter (DFACC_CREATE = 4,
 + DFACC_WRITE = 2,
 + SD_UNLIMITED = 0,
 + DFNT_INT32 = 24)
C
C Function declaration.
C
 integer sfstart, sfcreate, sfwdata, sfselect
 integer sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer dim_sizes(2)
 integer start(2), edges(2), stride(2)
 integer i, j
 integer data (X_LENGTH, Y_LENGTH), append_data(X_LENGTH)
C
C**** End of variable declaration ************************************
C
C
C Data initialization.
C
 do 20 j = 1, Y_LENGTH
 do 10 i = 1, X_LENGTH
 data(i, j) = i + j
10 continue
20 continue
C
C Create the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_CREATE)
C
C Define dimensions of the array. Make the
C last dimension appendable by defining its length as unlimited.
C
 dim_sizes(1) = X_LENGTH
 dim_sizes(2) = SD_UNLIMITED

C Create the array data set.
 sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT32, RANK,
 . dim_sizes)
C
C Define the location and the size of the data to be written
C to the data set. Note that the elements of array stride are
C set to 1 for contiguous writing.
C
 start(1) = 0
 start(2) = 0
 edges(1) = X_LENGTH
 edges(2) = Y_LENGTH
 stride(1) = 1
46 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 stride(2) = 1
C
C Write the data.
C
 status = sfwdata(sds_id, start, stride, edges, data)
C
C Terminate access to the data set, terminate access
C to the SD interface, and close the file.
C
 status = sfendacc(sds_id)
 status = sfend(sd_id)
C
C Store the array values to be appended to the data set.
C
 do 30 i = 1, X_LENGTH
 append_data(i) = 1000 + i - 1
30 continue
C
C Reopen the file and initialize the SD.
C
 sd_id = sfstart(FILE_NAME, DFACC_WRITE)
C
C Select the first data set.
C
 sds_index = 0
 sds_id = sfselect(sd_id, sds_index)
C
C Define the location of the append to start at the 11th
C column of the 1st row and to stop at the end of the 10th row.
C
 start(1) = 0
 start(2) = Y_LENGTH
 edges(1) = X_LENGTH
 edges(2) = 1
C
C Append the data to the data set.
C
 status = sfwdata(sds_id, start, stride, edges, append_data)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

3.5.2 Compressing SDS Data: SDsetcompress

The SDsetcompress routine compresses an existing data set or creates a new compressed data set.
It is a simplified interface to the HCcreate routine, and should be used instead of HCcreate
unless the user is familiar with the lower-level routines.

The compression algorithms currently supported by SDsetcompress are:

• Adaptive Huffman

• GZIP "deflation" (Lempel/Ziv-77 dictionary coder)

• Run-length encoding
June 2017 47

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
• NBIT

• Szip

The syntax of the routine SDsetcompress is as follows:

C: status = SDsetcompress(sds_id, comp_type, &c_info);

FORTRAN: status = sfscompress(sds_id, comp_type, comp_prm)

The parameter comp_type specifies the compression type definition and is set to
COMP_CODE_RLE (or 1) for run-length encoding (RLE)
COMP_CODE_SKPHUFF (or 3) for Skipping Huffman
COMP_CODE_DEFLATE (or 4) for GZIP compression
COMP_CODE_SZIP (or 5) for Szip compression

Compression information is specified by the parameter c_info in C, and by the parameter com-
p_prm in FORTRAN-77. The parameter c_info is a pointer to a union structure of type comp_info.
Refer to the SDsetcompress entry in the HDF Reference Manual for the description of the com-
p_info structure.

If comp_type is set to COMP_CODE_RLE, the parameters c_info and comp_prm are not used; c_info
can be set to NULL and comp_prm can be undefined.

If comp_type is set to COMP_CODE_SKPHUFF, then the structure skphuff in the union comp_info in C
(comp_prm(1) in FORTRAN-77) must be provided with the size, in bytes, of the data elements.

If comp_type is set to COMP_CODE_DEFLATE, the deflate structure in the union comp_info in C (com-
p_prm(1) in FORTRAN-77) must be provided with the information about the compression effort.

If comp_type is set to COMP_CODE_SZIP, the Szip options mask and the number of pixels per block
in a chunked and Szip-compressed dataset must be specified in c_info.szip.options_mask
and c_info.szip.pixels_per_block in C, and comp_prm(1) and comp_prm(2) in Fortran,
respectively.

For example, to compress signed 16-bit integer data using the adaptive Huffman algorithm, the
following definition and SDsetcompress call are used.

C: comp_info c_info;
c_info.skphuff.skp_size = sizeof(int16);
status = SDsetcompress(sds_id, COMP_CODE_SKPHUFF, &c_info);

FORTRAN: comp_prm(1) = 2
COMP_CODE_SKPHUFF = 3
status = sfscompress(sds_id, COMP_CODE_SKPHUFF, comp_prm)

To compress a data set using the gzip deflation algorithm with the maximum effort specified, the
following definition and SDsetcompress call are used.

C: comp_info c_info;
c_info.deflate.level = 9;
status = SDsetcompress(sds_id, COMP_CODE_DEFLATE, &c_info);

FORTRAN: comp_prm(1) = 9
COMP_CODE_DEFLATE = 4
status = sfscompress(sds_id, COMP_CODE_DEFLATE, comp_prm)

SDsetcompress functionality is currently limited to the following:

• Write the compressed data, in its entirety, to the data set. The data set is built in-core then
written in a single write operation.
48 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
• Compression is not supported on an SDS with unlimited dimension. SDsetcompress will
return FAIL for such SDS and any subsequent writing to this SDS will write uncompressed
data.

The existing compression algorithms supported by HDF do not allow partial modification to a
compressed datastream. In addition, compressed data sets cannot be stored in external files (see
Section 3.5.3.)

SDsetcompress returns a value of SUCCEED (or 0) or FAIL (or -1). The C version parameters are
further described in Table 3G and the FORTRAN-77 version parameters are further described in
Table 3H.

TABLE 3G SDsetcompress Parameter List

TABLE 3H sfscompress Parameter List

EXAMPLE 6. Compressing SDS Data.

This example uses the routine SDsetcompress/sfscompress to compress SDS data with the GZIP
compression method. See comments in the program regarding the use of the Skipping Huffman or
RLE compression methods.

C:
#include "mfhdf.h"

#define FILE_NAME "SDScompressed.hdf"
#define SDS_NAME "SDSgzip"
#define X_LENGTH 5
#define Y_LENGTH 16
#define RANK 2

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 comp_type; /* Compression flag */
 comp_info c_info; /* Compression structure */
 int32 start[2], edges[2], dim_sizes[2];
 int32 data[Y_LENGTH][X_LENGTH];
 int i, j;

Routine Name
[Return Type]

Parame-
ter

Parameter Type
Description

C

SDsetcompress
[intn]

sds_id int32 Data set identifier

comp_type int32 Compression method

c_info comp_info* Pointer to compression information structure

Routine Name Parame-
ter

Parameter Type
Description

FORTRAN-77

sfscompress
sds_id integer Data set identifier

comp_type integer Compression method

comp_prm integer(*) Compression parameters array
June 2017 49

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
 /********************* End of variable declaration ***********************/

 /*
 * Buffer array data and define array dimensions.
 */
 for (j = 0; j < Y_LENGTH; j++)
 {

for (i = 0; i < X_LENGTH; i++)
data[j][i] = (i + j) + 1;

 }
 dim_sizes[0] = Y_LENGTH;
 dim_sizes[1] = X_LENGTH;

 /*
 * Create the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_CREATE);

 /*
 * Create the data set with the name defined in SDS_NAME.
 */
 sds_id = SDcreate (sd_id, SDS_NAME, DFNT_INT32, RANK, dim_sizes);

 /*
 * Ininitialize compression structure element and compression
 * flag for GZIP compression and call SDsetcompress.
 *
 * To use the Skipping Huffman compression method, initialize
 * comp_type = COMP_CODE_SKPHUFF
 * c_info.skphuff.skp_size = value
 *
 * To use the RLE compression method, initialize
 * comp_type = COMP_CODE_RLE
 * No structure element needs to be initialized.
 */
 comp_type = COMP_CODE_DEFLATE;
 c_info.deflate.level = 6;
 status = SDsetcompress (sds_id, comp_type, &c_info);

 /*
 * Define the location and size of the data set
 * to be written to the file.
 */
 start[0] = 0;
 start[1] = 0;
 edges[0] = Y_LENGTH;
 edges[1] = X_LENGTH;

 /*
 * Write the stored data to the data set. The last argument
 * must be explicitly cast to a generic pointer since SDwritedata
 * is designed to write generic data.
 */
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)data);

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
50 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 */
 status = SDend (sd_id);

}

FORTRAN:
 program write_compressed_data
 implicit none
C
C Parameter declaration.
C
 character*17 FILE_NAME
 character*7 SDS_NAME
 integer X_LENGTH, Y_LENGTH, RANK
 parameter (FILE_NAME = ’SDScompressed.hdf’,
 + SDS_NAME = ’SDSgzip’,
 + X_LENGTH = 5,
 + Y_LENGTH = 16,
 + RANK = 2)
 integer DFACC_CREATE, DFNT_INT32
 parameter (DFACC_CREATE = 4,
 + DFNT_INT32 = 24)
 integer COMP_CODE_DEFLATE
 parameter (COMP_CODE_DEFLATE = 4)
 integer DEFLATE_LEVEL
 parameter (DEFLATE_LEVEL = 6)
C To use Skipping Huffman compression method, declare
C integer COMP_CODE_SKPHUFF
C parameter(COMP_CODE_SKPHUFF = 3)
C To use RLE compression method, declare
C integer COMP_CODE_RLE
C parameter(COMP_CODE_RLE = 1)
C
C
C Function declaration.
C
 integer sfstart, sfcreate, sfwdata, sfendacc, sfend,
 + sfscompress
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, status
 integer start(2), edges(2), stride(2), dim_sizes(2)
 integer comp_type
 integer comp_prm(1)
 integer data(X_LENGTH, Y_LENGTH)
 integer i, j
C
C**** End of variable declaration ************************************
C
C
C Buffer array data and define array dimensions.
C
 do 20 j = 1, Y_LENGTH
 do 10 i = 1, X_LENGTH
 data(i, j) = i + j - 1
10 continue
20 continue
 dim_sizes(1) = X_LENGTH
 dim_sizes(2) = Y_LENGTH
C

June 2017 51

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_CREATE)
C
C Create the data set with the name SDS_NAME.
C
 sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT32, RANK, dim_sizes)
C
C Initialize compression parameter (deflate level)
C and call sfscompress function
C For Skipping Huffman compression, comp_prm(1) should be set
C to skipping sizes value (skp_size).
C
 comp_type = COMP_CODE_DEFLATE
 comp_prm(1) = deflate_level
 status = sfscompress(sds_id, comp_type, comp_prm(1))
C
C Define the location and size of the data that will be written to
C the data set.
C
 start(1) = 0
 start(2) = 0
 edges(1) = X_LENGTH
 edges(2) = Y_LENGTH
 stride(1) = 1
 stride(2) = 1
C
C Write the stored data to the data set.
C
 status = sfwdata(sds_id, start, stride, edges, data)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

3.5.3 External File Operations

The HDF library provides routines to store SDS arrays in an external file that is separate from the
primary file containing the metadata for the array. Such an SDS array is called an external SDS
array. With external arrays, it is possible to link data sets in the same HDF file to multiple external
files or data sets in different HDF files to the same external file.

External arrays are functionally identical to arrays in the primary data file. The HDF library keeps
track of the beginning of the data set and adds data at the appropriate position in the external file.
When data is written or appended along a specified dimension, the HDF library writes along that
dimension in the external file and updates the appropriate dimension record in the primary file.

There are two methods for creating external SDS arrays. The user can create a new data set in an
external file or move data from an existing internal data set to an external file. In either case, only
the array values are stored externally, all metadata remains in the primary HDF file.

When an external array is created, a sufficient amount of space is reserved in the external file for
the entire data set. The data set will begin at the specified byte offset and extend the length of the
data set. The write operation will overwrite the target locations in the external file. The external
52 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide

s.
file may be of any format, provided the data types, byte ordering, and dimension ordering are sup-
ported by HDF. However, the primary file must be an HDF file.

Routines for manipulating external SDS arrays can only be used with HDF files. Unidata-format-
ted netCDF files are not supported by these routines.

3.5.3.1 Specifying the Directory Search Path of an External File: HXsetdir

There are three filesystem locations the HDF external file routines check when determining the
location of an external file. They are, in order of search precedence:

1. The directory path specified by the last call to the HXsetdir routine.

2. The directory path specified by the $HDFEXTDIR shell environment variable.

3. The file system locations searched by the standard open(3) routine.

The syntax of HXsetdir is as follows:

C: status = HXsetdir(dir_list);

FORTRAN: status = hxisdir(dir_list, dir_length)

HXsetdir has one argument, a string specifying the directory list to be searched. This list can con-
sist of one directory name or a set of directory names separated by colons. The FORTRAN-77
version of this routine takes an additional argument, dir_length, which specifies the length of the
directory list string.

If an error condition is encountered, HXsetdir leaves the directory search path unchanged. The
directory search path specified by HXsetdir remains in effect throughout the scope of the calling
program.

HXsetdir returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of HXsetdir are
described in (See Table 3I on page 54).

3.5.3.2 Specifying the Location of the Next External File to be Created: HXsetcreatedir

HXsetcreatedir specifies the directory location of the next external file to be created. It overrides
the directory location specified by $HDFEXTCREATEDIR and the locations searched by the
open(3) call in the same manner as HXsetdir. Specifically, the search precedence is:

1. The directory specified by the last call to the HXsetcreatedir routine.

2. The directory specified by the $HDFEXTCREATEDIR shell environment variable.

3. The locations searched by the standard open(3) routine.

The syntax of HXsetcreatedir is as follows:

C: status = HXsetcreatedir(dir);

FORTRAN: status = hxiscdir(dir, dir_length)

HXsetcreatedir has one argument, the directory location of the next external file to be created.
The FORTRAN-77 version of this routine takes an additional argument, dir_length, which speci-
fies the length of the directory list string. If an error is encountered, the directory location is left
unchanged.

HXsetcreatedir returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of HXsetcre-
atedir are described in Table 3I.

Note: Compressed data sets (see Section 3.5.2) cannot be stored in external file
June 2017 53

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
TABLE 3I HXsetdir and HXsetcreatedir Parameter Lists

3.5.3.3 Creating a Data Set with Data Stored in an External File: SDsetexternalfile

Creating a data set in an external file involves the following steps:

1. Create the data set.

2. Specify that an external data file is to be used.

3. Write data to the data set.

4. Terminate access to the data set.

To create a data set with data stored in an external file, the calling program must make the follow-
ing calls.

C: sds_id = SDcreate(sd_id, name, data_type, rank, dim_sizes);
status = SDsetexternalfile(sds_id, filename, offset);
status = SDwritedata(sds_id, start, stride, edges, data);
status = SDendaccess(sds_id);

FORTRAN: sds_id = sfcreate(sd_id, name, data_type, rank, dim_sizes)
status = sfsextf(sds_id, filename, offset)

status = sfwdata(sds_id, start, stride, edges, data)
OR status = sfwcdata(sds_id, start, stride, edges, data)

status = sfendacc(sds_id)

For a newly-created data set, SDsetexternalfile marks the SDS identified by sds_id as one whose
data is to be written to an external file. It does not actually write data to an external file; it marks
the data set as an external data set for all subsequent SDwritedata operations.

Note that data can only be moved once for any given data set, i.e., SDsetexternalfile can only be
called once after a data set has been created. It is the user's responsibility to make sure that the
external data file is kept with the primary HDF file.

The parameter filename is the name of the external data file and offset is the number of bytes from
the beginning of the external file to the location where the first byte of data should be written. If a
file with the name specified by filename exists in the current directory search path, HDF will
access it as the external file. If the file does not exist, HDF will create one in the directory named
in the last call to HXsetcreatefile. If an absolute pathname is specified, the external file will be
created at the location specified by the pathname, overriding the location specified by the last call
to HXsetcreatefile. Use caution when writing to existing external or primary files since the HDF
library starts the write operation at the specified offset without determining whether data is being
overwritten.

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

HXsetdir
[intn]

(hxisdir)

dir_list char * character*(*) Directory list to be searched

dir_length Not applicable integer Length of the dir_list string

HXsetcreatedir
[intn]

(hxiscdir)

dir char * character*(*)
Directory location of the next external file to be cre-
ated

dir_length Not applicable integer Length of the dir string
54 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
Once the name of an external file is established, it cannot be changed without breaking the associ-
ation between the data set’s metadata and the data it describes.

SDsetexternalfile returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDsetex-
ternalfile are described in Table 3J.

3.5.3.4 Getting External File Information of a Data Set: SDgetexternalinfo

SDgetexternalinfo retrieves external file information of a data set, when the data set has external
element. The information includes the external file’s name, the position, where the data set’s data
had been written in the external file, and the length of the external data. SDgetexternalinfo will
return 0 if the data set does not have external element.

The syntax of SDgetexternalinfo is as follows:

C: status = SDgetexternalinfo(sds_id, buf_size, filename, &offset,
&length);

FORTRAN: Currently unavailable

The application must provide sufficient buffer for the external file name. When the external file
name is available and buf_size is 0, SDgetexternalinfo simply returns the length of the external
file name. Thus, application can call SDgetexternalinfo passing in 0 for buf_size first, then allo-
cate the buffer sufficiently before calling SDgetexternalinfo again passing in the proper length
for buf_size and appropriately allocated buffer filename. SDgetexternalinfo stores the external
file name in the buffer filename up to the name’s length or the value in buf_size, whichever
smaller.

SDgetexternalinfo stores in the parameter offset the number of bytes from the beginning of the
external file to the location where the first byte of data had been written and in the parameter
length the length of the data.

SDgetexternalinfo returns one of the following values:

• the actual length of the external file name or the length of the retrieved file name, if there is
external element

• 0, if there is no external element

• FAIL (or -1), if failure occurs

The parameters of SDgetexternalinfo are described in (See Table 3J on page 56).
June 2017 55

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
TABLE 3J SDsetexternalfile Parameter List

3.5.3.5 Moving Existing Data to an External File

Data can be moved from a primary file to an external file. The following steps perform this task:

1. Select the data set.

2. Specify the external data file.

3. Terminate access to the data set.

To move data set data to an external file, the calling program must make the following calls:

C: sds_id = SDselect(sd_id, sds_index);
status = SDsetexternalfile(sds_id, filename, offset);
status = SDendaccess(sds_id);

FORTRAN: sds_id = sfselect(sd_id, sds_index)
status = sfsextf(sds_id, filename, offset)
status = sfendacc(sds_id)

For an existing data set, SDsetexternalfile moves the data to the external file. Any data in the
external file that occupies the space reserved for the external array will be overwritten as a result
of this operation. Data of an existing data set in the primary file can only be moved to the external
file once. During the operation, the data is written to the external file as a contiguous stream
regardless of how it is stored in the primary file. Because data is moved as is, any unwritten loca-
tions in the data set are preserved in the external file. Subsequent read and write operations per-
formed on the data set will access the external file.

EXAMPLE 7. Moving Data to the External File.

This example illustrates the use of the routine SDsetexternalfile/sfsextf to move the SDS data
written in Example 2 to the external file.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define EXT_FILE_NAME "ExternalSDS"
#define OFFSET 24

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

SDsetexternalfile
[intn]

(sfsextf)

sds_id int32 integer Data set identifier

filename char * character*(*) Name of the file to contain the external data set

offset int32 integer
Offset in bytes from the beginning of the external file to
where the SDS data will be written

SDgetexternalinfo
[intn]

(unvailable)

sds_id int32 N/A Data set identifier

buf_size uintn N/A Size of buffer for external file name

filename char * N/A Buffer for external file name

offset *int32 N/A
Offset in bytes from the beginning of the external file to
where the SDS data had been written

length *int32 N/A Length of the data written in the external file
56 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
main()
{

 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index, offset;
 intn status;

 /********************* End of variable declaration ***********************/

 /*
 * Open the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_WRITE);

 /*
 * Select the first data set.
 */
 sds_index = 0;
 sds_id = SDselect (sd_id, sds_index);

 /*
 * Create a file with the name EXT_FILE_NAME and move the data set
 * values into it, starting at byte location OFFSET.
 */
 status = SDsetexternalfile (sds_id, EXT_FILE_NAME, OFFSET);

 /*
 * Terminate access to the data set, SD interface, and file.
 */
 status = SDendaccess (sds_id);
 status = SDend (sd_id);
}

FORTRAN:
 program write_extfile
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 character*11 EXT_FILE_NAME
 integer OFFSET
 integer DFACC_WRITE
 parameter (FILE_NAME = ’SDS.hdf’,
 + EXT_FILE_NAME = ’ExternalSDS’,
 + OFFSET = 24,
 + DFACC_WRITE = 2)

C
C Function declaration.
C
 integer sfstart, sfselect, sfsextf, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, offset
 integer status
C
C**** End of variable declaration ************************************
C
C

June 2017 57

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
C Open the HDF file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_WRITE)
C
C Select the first data set.
C
 sds_index = 0
 sds_id = sfselect(sd_id, sds_index)
C
C Create a file with the name EXT_FILE_NAME and move the data set
C into it, starting at byte location OFFSET.
C
 status = sfsextf(sds_id, EXT_FILE_NAME, OFFSET)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

3.6 Reading Data from an SDS Array: SDreaddata

Data of an SDS array can be read as an entire array, a subset of the array, or a set of samples of the
array. SDS data is read from an external file in the same way that it is read from a primary file;
whether the SDS array is stored in an external file is transparent to the user. Reading data from an
SDS array involves the following steps:

1. Select the data set.

2. Define the portion of the data to be read.

3. Read data portion as defined.

To read data from an SDS array, the calling program must contain the following function calls:

C: sds_id = SDselect(sd_id, sds_index);
status = SDreaddata(sds_id, start, stride, edges, data);

FORTRAN: sds_id = sfselect(sd_id, sds_index)

status = sfrdata(sds_id, start, stride, edges, data)

OR status = sfrcdata(sds_id, start, stride, edges, data)

Note that step 2 is not illustrated in the function call syntax; it is carried out by assigning values to
the parameters start, stride, and edges before the routine SDreaddata is called in step 3.

SDreaddata reads the data according to the definition specified by the parameters start, stride,
and edges and stores the data into the buffer provided, data. The argument sds_id is the SDS iden-
tifier returned by SDcreate or SDselect. As with SDwritedata, the arguments start, stride, and
edges describe the starting location, the number of elements to skip after each read, and the num-
ber of elements to be read, respectively, for each dimension. For additional information on the
parameters start, stride, and edges, refer to Section 3.5.1 on page 31.

There are two FORTRAN-77 versions of this routine: sfrdata reads numeric data and sfrcdata
reads character data.
58 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
SDreaddata returns a value of SUCCEED (or 0), including the situation when the data set does not
contain data, or FAIL (or -1). The parameters of SDreaddata are further described in Table 3K.

TABLE 3K SDreaddata Parameter List

EXAMPLE 8. Reading from an SDS.

This example uses the routine SDreaddata/sfrdata to read the data that has been written in
Example 2, modified in Example 4, and moved to the external file in the Example 7. Note that the
original file SDS.hdf that contains the SDS metadata and the external file ExternalSDS that con-
tains the SDS raw data should reside in the same directory. The fact that raw data is in the external
file is transparent to the user’s program.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define X_LENGTH 5
#define Y_LENGTH 16

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 start[2], edges[2];
 int32 data[Y_LENGTH][X_LENGTH];
 int i, j;

 /********************* End of variable declaration ***********************/

 /*
 * Open the file for reading and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_READ);

 /*
 * Select the first data set.
 */
 sds_index = 0;

Routine
Name

[Return Type]
(FOR-

TRAN-77)

Parame-
ter

Parameter Type

Description
C FORTRAN-77

SDreaddata
[intn]

(sfrdata/
sfrcdata)

sds_id int32 integer Data set identifier

start int32[] integer(*)
Array containing the position at which the
read will start for each dimension

stride int32[] integer(*)
Array containing the number of data loca-
tions the current location is to be moved for-
ward before the next read

edges int32[] integer(*)
Array containing the number of data ele-
ments to be read along each dimension

data VOIDP
<valid numeric data

type>(*)/
character*(*)

Buffer the data will be read into
June 2017 59

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
 sds_id = SDselect (sd_id, sds_index);

 /*
 * Set elements of array start to 0, elements of array edges
 * to SDS dimensions,and use NULL for the argument stride in SDreaddata
 * to read the entire data.
 */
 start[0] = 0;
 start[1] = 0;
 edges[0] = Y_LENGTH;
 edges[1] = X_LENGTH;

 /*
 * Read entire data into data array.
 */
 status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)data);

 /*
 * Print 10th row; the following numbers should be displayed.
 *
 * 10 1000 12 13 14
 */
 for (j = 0; j < X_LENGTH; j++) printf ("%d ", data[9][j]);
 printf ("\n");

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

 FORTRAN:
 program read_data
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 integer X_LENGTH, Y_LENGTH
 parameter (FILE_NAME = ’SDS.hdf’,
 + X_LENGTH = 5,
 + Y_LENGTH = 16)
 integer DFACC_READ, DFNT_INT32
 parameter (DFACC_READ = 1,
 + DFNT_INT32 = 24)

C
C Function declaration.
C
 integer sfstart, sfselect, sfrdata, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer start(2), edges(2), stride(2)
 integer data(X_LENGTH, Y_LENGTH)
 integer j
60 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
C
C**** End of variable declaration ************************************
C
C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_READ)

C
C Select the first data set.
C
 sds_index = 0
 sds_id = sfselect(sd_id, sds_index)

C
C Set elements of the array start to 0, elements of the array edges to
C SDS dimensions, and elements of the array stride to 1 to read the
C entire data.
C
 start(1) = 0
 start(2) = 0
 edges(1) = X_LENGTH
 edges(2) = Y_LENGTH
 stride(1) = 1
 stride(2) = 1
C
C Read entire data into data array. Note that sfrdata is used
C to read the numeric data.
C
 status = sfrdata(sds_id, start, stride, edges, data)

C
C Print 10th column; the following numbers are displayed:
C
C 10 1000 12 13 14
C
 write(*,*) (data(j,10), j = 1, X_LENGTH)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

EXAMPLE 9. Reading Subsets of an SDS.

This example shows how parameters start, stride, and edges of the routine SDreadata/sfrdata
can be used to read three subsets of an SDS array.

C:
For the first subset, the program reads every 3rd element of the 2nd column starting at

the 4th row of the data set created in Example 2 and modified in Examples 4
and 7.

For the second subset the program reads the first 4 elements of the 10th row.
For the third subset, the program reads from the same data set every 6th element of

each column and 4th element of each row starting at 1st column, 3d row.
June 2017 61

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
FORTRAN-77:
Fortran program reads transposed data to reflect the difference in C and Fortran inter-

nal storage.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define SUB1_LENGTH 5
#define SUB2_LENGTH 4
#define SUB3_LENGTH1 2
#define SUB3_LENGTH2 3

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 start[2], edges[2], stride[2];
 int32 sub1_data[SUB1_LENGTH];
 int32 sub2_data[SUB2_LENGTH];
 int32 sub3_data[SUB3_LENGTH2][SUB3_LENGTH1];
 int i, j;

 /********************* End of variable declaration ***********************/

 /*
 * Open the file for reading and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_READ);

 /*
 * Select the first data set.
 */
 sds_index = 0;
 sds_id = SDselect (sd_id, sds_index);
 /*
 * Reading the first subset.
 *
 * Set elements of start, edges, and stride arrays to read
 * every 3rd element in the 2nd column starting at 4th row.
 */
 start[0] = 3; /* 4th row */
 start[1] = 1; /* 2nd column */
 edges[0] = SUB1_LENGTH; /* SUB1_LENGTH elements are read along 2nd column*/
 edges[1] = 1;
 stride[0] = 3; /* every 3rd element is read along 2nd column */
 stride[1] = 1;

 /*
 * Read the data from the file into sub1_data array.
 */
 status = SDreaddata (sds_id, start, stride, edges, (VOIDP)sub1_data);

 /*
 * Print what we have just read; the following numbers should be displayed:
 *
 * 5 8 1000 14 17
 */
 for (j = 0; j < SUB1_LENGTH; j++) printf ("%d ", sub1_data[j]);
 printf ("\n");
62 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 /*
 * Reading the second subset.
 *
 * Set elements of start and edges arrays to read
 * first 4 elements of the 10th row.
 */
 start[0] = 9; /* 10th row */
 start[1] = 0; /* 1st column */
 edges[0] = 1;
 edges[1] = SUB2_LENGTH; /* SUB2_LENGTH elements are read along 10th row */

 /*
 * Read data from the file into sub2_data array. Note that the third
 * parameter is set to NULL for contiguous reading.
 */
 status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)sub2_data);

 /*
 * Print what we have just read; the following numbers should be displayed:
 *
 * 10 1000 12 13
 */
 for (j = 0; j < SUB2_LENGTH; j++) printf ("%d ", sub2_data[j]);
 printf ("\n");

 /*
 * Reading the third subset.
 *
 * Set elements of the arrays start, edges, and stride to read
 * every 6th element in the column and 4th element in the row
 * starting at 1st column, 3d row.
 */
 start[0] = 2; /* 3d row */
 start[1] = 0; /* 1st column */
 edges[0] = SUB3_LENGTH2; /* SUB3_LENGTH2 elements are read along
 each column */
 edges[1] = SUB3_LENGTH1; /* SUB3_LENGTH1 elements are read along
 each row */
 stride[0] = 6; /* read every 6th element along each column */
 stride[1] = 4; /* read every 4th element along each row */

 /*
 * Read the data from the file into sub3_data array.
 */
 status = SDreaddata (sds_id, start, stride, edges, (VOIDP)sub3_data);

 /*
 * Print what we have just read; the following numbers should be displayed:
 *
 * 3 7
 * 9 13
 * 15 19
 */
 for (j = 0; j < SUB3_LENGTH2; j++) {
 for (i = 0; i < SUB3_LENGTH1; i++) printf ("%d ", sub3_data[j][i]);
 printf ("\n");
 }
 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
June 2017 63

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

FORTRAN:
 program read_subsets
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 parameter (FILE_NAME = ’SDS.hdf’)
 integer DFACC_READ, DFNT_INT32
 parameter (DFACC_READ = 1,
 + DFNT_INT32 = 24)
 integer SUB1_LENGTH, SUB2_LENGTH, SUB3_LENGTH1,
 + SUB3_LENGTH2
 parameter (SUB1_LENGTH = 5,
 + SUB2_LENGTH = 4,
 + SUB3_LENGTH1 = 2,
 + SUB3_LENGTH2 = 3)

C
C Function declaration.
C
 integer sfstart, sfselect, sfrdata, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer start(2), edges(2), stride(2)
 integer sub1_data(SUB1_LENGTH)
 integer sub2_data(SUB2_LENGTH)
 integer sub3_data(SUB3_LENGTH1,SUB3_LENGTH2)
 integer i, j
C
C**** End of variable declaration ************************************
C
C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_READ)
C
C Select the first data set.
C
 sds_index = 0
 sds_id =sfselect(sd_id, sds_index)
C
C Reading the first subset.
C
C Set elements of start, stride, and edges arrays to read
C every 3d element in in the 2nd row starting in the 4th column.
C
 start(1) = 1
 start(2) = 3
 edges(1) = 1
 edges(2) = SUB1_LENGTH
 stride(1) = 1
 stride(2) = 3
C
C Read the data from sub1_data array.
64 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
C
 status = sfrdata(sds_id, start, stride, edges, sub1_data)

C
C Print what we have just read, the following numbers should be displayed:
C
C 5 8 1000 14 17
C
 write(*,*) (sub1_data(j), j = 1, SUB1_LENGTH)
C
C Reading the second subset.
C
C Set elements of start, stride, and edges arrays to read
C first 4 elements of 10th column.
C
 start(1) = 0
 start(2) = 9
 edges(1) = SUB2_LENGTH
 edges(2) = 1
 stride(1) = 1
 stride(2) = 1
C
C Read the data into sub2_data array.
C
 status = sfrdata(sds_id, start, stride, edges, sub2_data)

C
C Print what we have just read; the following numbers should be displayed:
C
C 10 1000 12 13
C
 write(*,*) (sub2_data(j), j = 1, SUB2_LENGTH)
C
C Reading the third subset.
C
C Set elements of start, stride and edges arrays to read
C every 6th element in the row and every 4th element in the column
C starting at 1st row, 3rd column.
C
 start(1) = 0
 start(2) = 2
 edges(1) = SUB3_LENGTH1
 edges(2) = SUB3_LENGTH2
 stride(1) = 4
 stride(2) = 6
C
C Read the data from the file into sub3_data array.
C
 status = sfrdata(sds_id, start, stride, edges, sub3_data)

C
C Print what we have just read; the following numbers should be displayed:
C
C 3 9 15
C 7 13 19
C
 do 50 i = 1, SUB3_LENGTH1
 write(*,*) (sub3_data(i,j), j = 1, SUB3_LENGTH2)
50 continue
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
June 2017 65

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

3.7 Obtaining Information about SD Data Sets

The routines covered in this section provide methods for obtaining information about all scientific
data sets in a file, for identifying the data sets that meet certain criteria, and for obtaining informa-
tion about specific data sets.

SDfileinfo obtains the numbers of data sets and file attributes, set by SD interface routines, in a
file. SDgetinfo provides information about an individual SDS. To retrieve information about all
data sets in a file, a calling program can use SDfileinfo to determine the number of data sets, fol-
lowed by repeated calls to SDgetinfo to obtain the information about a particular data set.

SDnametoindex, SDnametoindices, or SDreftoindex can be used to obtain the index of an SDS
in a file knowing its name or reference number. Refer to Section 3.2.1 on page 20 for a description
of the data set index and reference number. SDidtoref is used when the reference number of an
SDS is required by another routine and the SDS identifier is available.

These routines are described individually in the following subsections.

3.7.1 Obtaining Information about the Contents of a File: SDfileinfo

SDfileinfo determines the number of scientific data sets and the number of file attributes con-
tained in a file. This information is often useful in index validation or sequential searches. The
syntax of SDfileinfo is as follows:

C: status = SDfileinfo(sd_id, &n_datasets, &n_file_attrs);

FORTRAN: status = sffinfo(sd_id, n_datasets, n_file_attrs)

SDfileinfo stores the numbers of scientific data sets and file attributes in the parameters n_data-
sets and n_file_attrs, respectively. Note that the value returned by n_datasets will include the
number of SDS arrays and the number of dimension scales. Refer to Section 3.8.4 on page 81 and
Section 3.8.4.4 on page 88 for the description of dimension scales and its association with SDS
arrays as well as how to distinguish between SDS arrays and dimension scales. The file attributes
are those that are created by SDsetattr for an SD interface identifier instead of an SDS identifier.
Refer to Section 3.9.1 on page 93 for the discussion of SDsetattr.

SDfileinfo returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDfileinfo are
specified in (See Table 3L on page 68).

3.7.2 Obtaining Information about a Specific SDS: SDgetinfo

SDgetinfo provides basic information about an SDS array. Often information about an SDS array
is needed before reading and working with the array. For instance, the rank, dimension sizes, and/
or data type of an array are needed to allocate the proper amount of memory to work with the
array. SDgetinfo takes an SDS identifier as input, and retrieves the name, rank, dimension sizes,
data type, and number of attributes for the corresponding SDS. The syntax of this routine is as fol-
lows:
66 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
C: status = SDgetinfo(sds_id, sds_name, &rank, dim_sizes, &data_type,
&n_attrs);

FORTRAN: status = sfginfo(sds_id, sds_name, rank, dim_sizes, data_type, n_at-
trs)

SDgetinfo stores the name, rank, dimension sizes, data type, and number of attributes of the spec-
ified data set into the parameters sds_name, rank, dim_sizes, data_type, and n_attrs, respectively.
The parameter sds_name is a character string. Note that, starting in HDF 4.2.2, the name of the
SDS is no longer limited to 64 characters. Thus, it is recommended that the application use
SDgetnamlen to obtain the length of the data set’s name so that it can sufficiently allocate space
for the name prior to calling SDgetinfo.

If the data set is created with an unlimited dimension, then in the C interface, the first element of
the dim_sizes array (corresponding to the slowest-changing dimension) contains the number of
records in the unlimited dimension; in the FORTRAN-77 interface, the last element of the array
dim_sizes (corresponding to the slowest-changing dimension) contains this information.

The parameter data_type contains any type that HDF supports for the scientific data. Refer to (See
Table 2F on page 14), for the list of supported data types and their corresponding defined values.
The parameter n_attrs only reflects the number of attributes assigned to the data set specified by
sds_id; file attributes are not included. Use SDfileinfo to get the number of file attributes.

SDgetinfo returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDgetinfo are
specified in (See Table 3L on page 68).

3.7.3 Obtaining Data Set Compression Information: SDgetcompinfo

SDgetcompinfo retrieves the compression information used to create or write an SDS data set.
SDgetcompinfo replaces SDgetcompress because this function has flaws, causing failure for
some chunked and chunked/compressed data.

The possible compression algorithms used in SDS include:

• Adaptive Huffman

• GZIP "deflation" (Lempel/Ziv-77 dictionary coder)

• Run-length encoding

• NBIT

• Szip

SDgetcompinfo takes one input parameter, sds_id, a data set identifier, and two return parame-
ters, comp_type, identifying the type of compression used, and either c_info (in C) or comp_prm
(in FORTRAN-77), containing further compression information.

The syntax of SDgetcompinfo is as follows:

C: status = SDgetcompinfo(sds_id, comp_type, c_info);

FORTRAN: status = sfgcompress(sds_id, comp_type, comp_prm)

See Section 3.5.2, "Compressing SDS Data: SDsetcompress," for a discussion of comp_type,
c_info, ane comp_prm, and a list of supported compression modes.

The parameter comp_type specifies the compression type definition and is set to
COMP_CODE_NONE (or 0) for no compression
COMP_CODE_RLE (or 1) for run-length encoding (RLE)
COMP_CODE_NBIT (or 2) for NBIT compression
COMP_CODE_SKPHUFF (or 3) for Skipping Huffman
June 2017 67

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
COMP_CODE_DEFLATE (or 4) for GZIP compression
COMP_CODE_SZIP (or 5) for Szip compression

Compression information is returned by the parameter c_info in C, and by the parameter com-
p_prm in FORTRAN-77. The parameter c_info is a pointer to a union structure of type comp_info.
Refer to the SDsetcompress entry in the HDF Reference Manual for the description of the com-
p_info structure.)

When comp_type is COMP_CODE_NONE or COMP_CODE_RLE, the parameters c_info and comp_prm are
unchanged.

When comp_type is COMP_CODE_SKPHUFF, then the structure skphuff in the union comp_info in C
(comp_prm(1) in FORTRAN-77) will store the size, in bytes, of the data elements.

When comp_type is COMP_CODE_DEFLATE, then the deflate structure in the union comp_info in C
(comp_prm(1) in FORTRAN-77) will store the information about the compression effort.

When comp_type is COMP_CODE_SZIP, then the Szip options mask and the number of pixels per
block in a chunked and Szip-compressed dataset will be specified in
c_info.szip.options_mask and c_info.szip.pixels_per_block in C, and com-
p_prm(1) and comp_prm(2) in Fortran, respectively.

SDgetcompinfo returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDgetcomp-
info are specified in Table 3L.

TABLE 3L SDfileinfo, SDgetinfo, and SDgetcompinfo Parameter Lists

EXAMPLE 10. Getting Information about a File and an SDSs.

This example illustrates the use of the routine SDfileinfo/sffinfo to obtain the number of data sets
in the file SDS.hdf and the routine SDgetinfo/sfginfo to retrieve the name, rank, dimension sizes,
data type and number of attributes of the selected data set.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

SDfileinfo
[intn]

(sffinfo)

sd_id int32 integer SD interface identifier

n_datasets int32 * integer Number of data sets in the file

n_file_attrs int32 * integer Number of global attributes in the file

SDgetinfo
[intn]

(sfginfo)

sds_id int32 integer Data set identifier

sds_name char* character*(*) Name of the data set

rank int32 * integer Number of dimensions in the data set

dim_sizes int32 [] integer (*) Size of each dimension in the data set

data_type int32 * integer Data type of the data in the data set

n_attrs int32 * integer Number of attributes in the data set

SDgetcompinfo
[intn]

(sfgcompress)

sds_id int32 integer Data set identifier

comp_type comp_coder_t integer Type of compression

c_info comp_info N/A Pointer to compression information structure

comp_prm(1) N/A integer Compression parameter in array format
68 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id;
 intn status;
 int32 n_datasets, n_file_attrs, index;
 int32 dim_sizes[MAX_VAR_DIMS];
 int32 rank, data_type, n_attrs;
 char name[MAX_NC_NAME];
 int i;

 /********************* End of variable declaration ***********************/

 /*
 * Open the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_READ);

 /*
 * Determine the number of data sets in the file and the number
 * of file attributes.
 */
 status = SDfileinfo (sd_id, &n_datasets, &n_file_attrs);

 /*
 * Access every data set and print its name, rank, dimension sizes,
 * data type, and number of attributes.
 * The following information should be displayed:
 *
 * name = SDStemplate
 * rank = 2
 * dimension sizes are : 16 5
 * data type is 24
 * number of attributes is 0
 */
 for (index = 0; index < n_datasets; index++)
 {
 sds_id = SDselect (sd_id, index);
 status = SDgetinfo (sds_id, name, &rank, dim_sizes,
 &data_type, &n_attrs);

 printf ("name = %s\n", name);
 printf ("rank = %d\n", rank);
 printf ("dimension sizes are : ");
 for (i=0; i< rank; i++) printf ("%d ", dim_sizes[i]);
 printf ("\n");
 printf ("data type is %d\n", data_type);
 printf ("number of attributes is %d\n", n_attrs);

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);
 }

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

June 2017 69

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
FORTRAN:
 program get_data_set_info
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 parameter (FILE_NAME = ’SDS.hdf’)
 integer DFACC_READ, DFNT_INT32
 parameter (DFACC_READ = 1,
 + DFNT_INT32 = 24)
 integer MAX_NC_NAME, MAX_VAR_DIMS
 parameter (MAX_NC_NAME = 256,
 + MAX_VAR_DIMS = 32)
C
C Function declaration.
C
 integer sfstart, sffinfo, sfselect, sfginfo
 integer sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id
 integer n_datasets, n_file_attrs, index
 integer status, n_attrs
 integer rank, data_type
 integer dim_sizes(MAX_VAR_DIMS)
 character name *(MAX_NC_NAME)
 integer i
C
C**** End of variable declaration ************************************
C
C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_READ)
C
C Determine the number of data sets in the file and the number of
C file attributes.
C
 status = sffinfo(sd_id, n_datasets, n_file_attrs)
C
C Access every data set in the file and print its name, rank,
C dimension sizes, data type, and number of attributes.
C The following information should be displayed:
C
C name = SDStemplate
C rank = 2
C dimension sizes are : 5 16
C data type is 24
C number of attributes is 0
C
 do 10 index = 0, n_datasets - 1
 sds_id = sfselect(sd_id, index)
 status = sfginfo(sds_id, name, rank, dim_sizes, data_type,
 . n_attrs)
 write(*,*) "name = ", name(1:15)
 write(*,*) "rank = ", rank
 write(*,*) "dimension sizes are : ", (dim_sizes(i), i=1, rank)
 write(*,*) "data type is ", data_type
 write(*,*) "number of attributes is ", n_attrs
70 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
C
C Terminate access to the current data set.
C
 status = sfendacc(sds_id)
10 continue
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

3.7.4 Locating an SDS by Name: SDnametoindex

SDnametoindex determines and returns the index of a data set in a file given the data set’s name.
The syntax of this routine is as follows:

C: sds_index = SDnametoindex(sd_id, sds_name);

FORTRAN: sds_index = sfn2index(sd_id, sds_name)

The parameter sds_name is a character string. Note that, starting in HDF 4.2.2, the name of the
SDS is no longer limited to 64 characters, which was the limit prior to 4.2.2.

If more than one data set has the name specified by sds_name, SDnametoindex will return the
index of the first data set, which could be an SDS or a coordinate variable (also called dimension
scale.) Note that if there are more than one data set with the same name in the file, writing to a
data set returned by this function without verifying that it is the desired data set could cause data
corruption. Refer to the Important Note on page 21 in Chapter 3 for more details regarding the
problem and how to handle it.

SDgetnumvars_byname can be used to get the number of data sets (or variables, which includes
both data sets and coordinate variables) with the same name. SDnametoindices can be used to
get a list of structures containing the indices and the types of all the variables of that same name.

An index obtained by SDnametoindex or SDnametoindices can then be used by SDselect to
obtain an SDS identifier for the specified data set. The SDnametoindex routine is case-sensitive
to the name specified by sds_name and does not accept wildcards as part of that name. The name
must exactly match the name of the SDS being searched for.

SDnametoindex returns the index of a data set or FAIL (or -1). The parameters of SDnametoin-
dex are specified in (See Table 3M on page 73).

3.7.5 Locating More Than One SDS by the Same Name: SDnametoindices

SDnametoindices returns indices of all data sets having the same name. The data sets can be
either SDSs or coordinate variables. The syntax of this routine is as follows:

C: status = SDnametoindices(sd_id, sds_name, var_list);

FORTRAN: status = sfn2indices(sd_id, sds_name, var_list, type_list,
n_vars)

The parameter sds_name is a character string. Note that, starting in HDF 4.2.2, the name of the
SDS is no longer limited to 64 characters, which was the limit prior to 4.2.2.

SDnametoindices retrieves a list of structures varlist_t, containing the indices and the types
of all variables of the same name sds_name. The structure varlist_t is defined as:
June 2017 71

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
typedef struct varlist
{
 int32 var_index; /* index of a variable */
 vartype_t var_type; /* type of a variable */
} varlist_t;

The type of a variable vartype_t is defined as:
IS_SDSVAR=0 : variable is an actual SDS
IS_CRDVAR=1 : variable is a coordinate variable
UNKNOWN=2 : variable is created before HDF 4.2.2, unknown type

Prior to calling SDnametoindices, SDgetnumvars_byname can be used to get the number of
data sets, with which the application can allocate var_list appropriately. Also, when the number
of data sets returned is 1, the application can call SDnametoindex instead of SDnametoindices
for simplicity.

An index obtained by SDnametoindex or SDnametoindices can then be used by SDselect to
obtain an SDS identifier for the specified data set.

The SDnametoindices routine is case-sensitive to the name specified by sds_name and does not
accept wildcards as part of that name. The name must match exactly the name of the SDS being
searched for.

SDnametoindices returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDname-
toindices are specified in (See Table 3M on page 73).

3.7.6 Getting Number of Data Sets Given a Name: SDgetnumvars_byname

SDgetnumvars_byname determines and returns the number of variables in a file having the same
name. The variables may include both data sets and coordinate variables. The syntax of this rou-
tine is as follows:

C: status = SDgetnumvars_byname(sd_id, sds_name, n_vars);

FORTRAN: status = sfgnvars_byname(sd_id, sds_name, n_vars);

The parameter sds_name is a character string. Note that, starting in HDF 4.2.2, the name of the
SDS is no longer limited to 64 characters, which was the limit prior to 4.2.2.

SDgetnumvars_byname returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of
SDgetnumvars_byname are specified in (See Table 3M on page 73).
72 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
TABLE 3M SDnametoindex, SDnametoindices, and SDgetnumvars_byname Parameter Lists

3.7.7 Locating an SDS by Reference Number: SDreftoindex

SDreftoindex determines and returns the index of a data set in a file given the data set’s reference
number. The syntax of this routine is as follows:

C: sds_index = SDreftoindex(sd_id, ref);

FORTRAN: sds_index = sfref2index(sd_id, ref)

The reference number can be obtained using SDidtoref if the SDS identifier is available. Remem-
ber that reference numbers do not necessarily adhere to any ordering scheme.

SDreftoindex returns either the index of an SDS or FAIL (or -1). The parameters of this routine
are specified in (See Table 3N on page 74).

3.7.8 Obtaining the Reference Number Assigned to the Specified SDS:
SDidtoref

SDidtoref returns the reference number of the data set identified by the parameter sds_id if the
data set is found, or FAIL (or -1) otherwise. The syntax of this routine is as follows:

C: sds_ref = SDidtoref(sds_id);

FORTRAN: sds_ref = sfid2ref(sds_id)

This reference number is often used by Vaddtagref to add the data set to a vgroup. Refer to
Chapter 5, Vgroups (V API), for more information.

The parameter of SDidtoref is specified in (See Table 3N on page 74).

3.7.9 Obtaining the Type of an HDF4 Object: SDidtype

SDidtype returns the type of an object, given the object’s identifier, obj_id. The syntax of this rou-
tine is as follows:

C: obj_type = SDidtype(obj_id);

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type

Description
C

FORTRAN-
77

SDnametoindex
[int32]

(sfn2index)

sd_id int32 integer SD interface identifier

sds_name char * character*(*) Name of the data set

SDnametoindices
[intn]

(sfn2indices

sd_id int32 integer SD interface identifier

sds_name char * character*(*) Name of the data set

var_list varlist_t * integer*
List of variables having name sds_name; For-
tran: list of ?

type_list
(only Fortran)

N/A integer* Fortran: list of types of variables

n_vars
(only Fortran)

N/A integer Fortran: number of variables found

SDgetnumvars_byname
[intn]

(sfgnvars_byname)

sds_id int32 integer SDS identifier

sds_name char * character*(*) Name of the data set

n_vars unsigned* integer Number of variables having name sds_name
June 2017 73

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
FORTRAN: obj_type = sfidtype(obj_id, obj_type)

SDidtype returns a value of type hdf_idtype_t, which can be one of the following:

SDidtype returns NOT_SDAPI_ID for either when obj_id is not a valid HDF identifier, or is a valid
HDF identifier, but not one of the identifier types in the SD interface, which are SD identifier,
SDS identifier, and dimension identifier.

The parameter of SDidtype is specified in Table 3N.

3.7.10Determining whether an SDS is empty: SDcheckempty

SDcheckempty takes an SDS identifier, sds_id, as input, and returns a single parameter indicat-
ing whether the SDS is empty. The syntax of this routine is as follows:

C: status = SDcheckempty(sds_id, emptySDS);

FORTRAN: status = sfchempty(sds_id, emptySDS)

The output parameter, emptySDS, indicates whether the SDS is empty or non-empty.

SDcheckempty returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of
SDcheckempty are specified in Table 3N.

TABLE 3N SDreftoindex, SDidtoref, SDidtype, and SDcheckempty Parameter Lists

EXAMPLE 11. Locating an SDS by Its Name.

This example uses the routine SDnametoindex/sfn2index to locate the SDS with the specified
name and then reads the data from it.

C:
#include "mfhdf.h"

NOT_SDAPI_ID (or -
1)

not an SD API
identifier

SD_ID (or 0) SD identifier

SDS_ID (or 1) SDS identifier

DIM_ID (or 2) Dimension iden-
tifier

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

SDreftoindex
[int32]

(sfref2index)

sd_id int32 integer SD interface identifier

sds_ref int32 integer SDS reference number

SDidtoref
[int32]

(sfid2ref)
sds_id int32 integer SDS identifier

SDidtype
[hdf_idtype_t]

(sfidtype)
obj_id int32 integer An object identifier

SDcheckempty
[int32]

(sfchempty)

sds_id int32 integer SDS identifier

emptySDS intn * integer SDS status indicator (empty, not empty)
74 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
#define FILE_NAME "SDS.hdf"
#define SDS_NAME "SDStemplate"
#define WRONG_NAME "WrongName"
#define X_LENGTH 5
#define Y_LENGTH 16

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 start[2], edges[2];
 int32 data[Y_LENGTH][X_LENGTH];
 int i, j;

 /********************* End of variable declaration ***********************/

 /*
 * Open the file for reading and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_READ);

 /*
 * Find index of the data set with the name specified in WRONG_NAME.
 * Error condition occurs, since the data set with that name does not exist
 * in the file.
 */
 sds_index = SDnametoindex (sd_id, WRONG_NAME);
 if (sds_index == FAIL)
 printf ("Data set with the name \"WrongName\" does not exist\n");

 /*
 * Find index of the data set with the name specified in SDS_NAME and use
 * the index to select the data set.
 */
 sds_index = SDnametoindex (sd_id, SDS_NAME);
 sds_id = SDselect (sd_id, sds_index);

 /*
 * Set elements of the array start to 0, elements of the array edges to
 * SDS dimensions, and use NULL for stride argument in SDreaddata to read
 * the entire data.
 */
 start[0] = 0;
 start[1] = 0;
 edges[0] = Y_LENGTH;
 edges[1] = X_LENGTH;

 /*
 * Read the entire data into the buffer named data.
 */
 status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)data);

 /*
 * Print 10th row; the following numbers should be displayed:
 *
 * 10 1000 12 13 14
 */
 for (j = 0; j < X_LENGTH; j++) printf ("%d ", data[9][j]);
 printf ("\n");
June 2017 75

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

FORTRAN:
 program locate_by_name
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 character*11 SDS_NAME
 character*9 WRONG_NAME
 integer X_LENGTH, Y_LENGTH
 parameter (FILE_NAME = ’SDS.hdf’,
 + SDS_NAME = ’SDStemplate’,
 + WRONG_NAME = ’WrongName’,
 + X_LENGTH = 5,
 + Y_LENGTH = 16)
 integer DFACC_READ, DFNT_INT32
 parameter (DFACC_READ = 1,
 + DFNT_INT32 = 24)

C
C Function declaration.
C
 integer sfstart, sfn2index, sfselect, sfrdata, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer start(2), edges(2), stride(2)
 integer data(X_LENGTH, Y_LENGTH)
 integer j
C
C**** End of variable declaration ************************************
C
C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_READ)
C
C Find index of the data set with the name specified in WRONG_NAME.
C Error condition occurs, since a data set with this name
C does not exist in the file.
C
 sds_index = sfn2index(sd_id, WRONG_NAME)
 if (sds_index .eq. -1) then
 write(*,*) "Data set with the name ", WRONG_NAME,
 + " does not exist"
 endif
C
C Find index of the data set with the name specified in SDS_NAME
C and use the index to attach to the data set.
C

76 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 sds_index = sfn2index(sd_id, SDS_NAME)
 sds_id = sfselect(sd_id, sds_index)
C
C Set elements of start array to 0, elements of edges array
C to SDS dimensions, and elements of stride array to 1 to read entire data.
C
 start(1) = 0
 start(2) = 0
 edges(1) = X_LENGTH
 edges(2) = Y_LENGTH
 stride(1) = 1
 stride(2) = 1
C
C Read entire data into array named data.
C
 status = sfrdata(sds_id, start, stride, edges, data)
C
C Print 10th column; the following numbers should be displayed:
C
C 10 1000 12 13 14
C
 write(*,*) (data(j,10), j = 1, X_LENGTH)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

3.7.11Creating SDS Arrays Containing Non-standard Length Data:
SDsetnbitdataset

Starting with version 4.0r1, HDF provides the routine SDsetnbitdataset, allowing the HDF user
to specify that a particular SDS array contains data of a non-standard length.

SDsetnbitdataset specifies that the data set identified by the parameter sds_id will contain data of
a non-standard length defined by the parameters start_bit and bit_len. Additional information
about the non-standard bit length decoding are specified in the parameters sign_ext and fill_one.
The syntax of SDsetnbitdataset is as follows:

C: status = SDsetnbitdataset(sds_id, start_bit, bit_len, sign_ext,
fill_one);

FORTRAN: status = sfsnbit(sds_id, start_bit, bit_len, sign_ext, fill_one)

Any length between 1 and 32 bits can be specified. After SDsetnbitdataset has been called for an
SDS array, any read or write operations will convert between the new data length of the SDS array
and the data length of the read or write buffer.

Bit lengths of all data types are counted from the right of the bit field starting with 0. In a bit field
containing the values 01111011, bits 2 and 7 are set to 0 and all the other bits are set to 1.

The parameter start_bit specifies the left-most position of the variable-length bit field to be writ-
ten. For example, in the bit field described in the preceding paragraph a parameter start_bit set to
4 would correspond to the fourth bit value of 1 from the right.
June 2017 77

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
The parameter bit_len specifies the number of bits of the variable-length bit field to be written.
This number includes the starting bit and the count proceeds toward the right end of the bit field -
toward the lower-bit numbers. For example, starting at bit 5 and writing 4 bits of the bit field
described in the preceding paragraph would result in the bit field 1110 being written to the data
set. This would correspond to a start_bit value of 5 and a bit_len value of 4.

The parameter sign_ext specifies whether to use the left-most bit of the variable-length bit field to
sign-extend to the left-most bit of the data set data. For example, if 9-bit signed integer data is
extracted from bits 17-25 and the bit in position 25 is 1, then when the data is read back from disk,
bits 26-31 will be set to 1. Otherwise bit 25 will be 0 and bits 26-31 will be set to 0. The sign_ext
parameter can be set to TRUE (or 1) or FALSE (or 0); specify TRUE to sign-extend.

The parameter fill_one specifies whether to fill the "background" bits with the value 1 or 0. This
parameter is also set to either TRUE (or 1) or FALSE (or 0).

The "background" bits of a non-standard length data set are the bits that fall outside of the non-
standard length bit field stored on disk. For example, if five bits of an unsigned 16-bit integer data
set located in bits 5 to 9 are written to disk with the parameter fill_one set to TRUE (or 1), then
when the data is reread into memory bits 0 to 4 and 10 to 15 would be set to 1. If the same 5-bit
data was written with a fill_one value of FALSE (or 0), then bits 0 to 4 and 10 to 15 would be set to
0.

The operation on fill_one is performed before the operation on sign_ext. For example, using the
sign_ext example above, bits 0 to 16 and 26 to 31 will first be set to the background bit value, and
then bits 26 to 31 will be set to 1 or 0 based on the value of the 25th bit.

SDsetnbitdataset returns a positive value or FAIL (or -1). The parameters for SDsetnbitdataset
are specified in Table 3O.

TABLE 3O SDsetnbitdataset Parameter List

3.8 SDS Dimension and Dimension Scale Operations

The concept of dimensions is introduced in Section 3.2.1 on page 20. This section describes SD
interface routines which store and retrieve information on dimensions and dimension scales.
When a dimension scale is set for a dimension, the library stores the dimension and its associated
information as an SDS array. In the following discussion, we will refer to that array (recall
NetCDF) as a coordinate variable or dimension record. The section concludes with consideration
of related data sets and sharable dimensions.

3.8.1 Selecting a Dimension: SDgetdimid

SDS dimensions are uniquely identified by dimension identifiers, which are assigned when a
dimension is created. These dimension identifiers are used within a program to refer to a particu-

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type

Description
C

FORTRAN-
77

SDsetnbitdataset
[intn]

(sfsnbit)

sds_id int32 integer Data set identifier

start_bit intn integer Leftmost bit of the field to be written

bit_len intn integer Length of the bit field to be written

sign_ext intn integer Sign-extend specifier

fill_one intn integer Background bit specifier
78 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
lar dimension, its scale, and its attributes. Before working with a dimension, a program must first
obtain a dimension identifier by calling the SDgetdimid routine as follows:

C: dim_id = SDgetdimid(sds_id, dim_index);

FORTRAN: dim_id = sfdimid(sds_id, dim_index)

SDgetdimid takes two arguments, sds_id and dim_index, and returns a dimension identifier,
dim_id. The argument dim_index is an integer from 0 to the number of dimensions minus 1. The
number of dimensions in a data set is specified at the time the data set is created. Specifying a
dimension index equal to or larger than the number of dimensions in the data set causes SDget-
dimid to return a value of FAIL (or -1).

SDgetdimid returns a dimension identifier or FAIL (or -1). The parameters of SDgetdimid are
specified in (See Table 3P on page 80).

Unlike file and data set identifiers, dimension identifiers cannot be explicitly closed.

3.8.2 Naming a Dimension: SDsetdimname

SDsetdimname assigns a name to a dimension. If two dimensions have the same name, they will
be represented in the file by only one SDS. Therefore changes to one dimension will be reflected
in the other. Naming dimensions is optional but encouraged. Dimensions that are not explicitly
named by the user will have names generated by the HDF library. Use SDdiminfo to read existing
dimension names. The syntax of SDsetdimname is as follows:

C: status = SDsetdimname(dim_id, dim_name);

FORTRAN: status = sfsdmname(dim_id, dim_name)

The argument dim_id in SDsetdimname is the dimension identifier returned by SDgetdimid. The
parameter dim_name is a string of alphanumeric characters representing the name for the selected
dimension. An attempt to rename a dimension using SDsetdimname will cause the old name to
be deleted and a new one to be assigned.

Note that when naming dimensions the name of a particular dimension must be set before attri-
butes are assigned; once the attributes have been set, the name must not be changed. In other
words, SDsetdimname must only be called before any calls to SDsetdimscale (described in
Section 3.8.4.1 on page 81), SDsetattr (described in Section 3.9.1 on page 93) or SDsetdimstrs
(described in Section 3.10.2.1 on page 105).

If the file being worked on was created by a pre-4.2.2 version of HDF, please refer to the Import-
ant Note on page 21 in Chapter 3 for information regarding a data corruption which might occur
when a dimension is named the same as a one-dimensional data set.

SDsetdimname returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDsetdim-
name are described in Table 3P.
June 2017 79

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
TABLE 3P SDgetdimid and SDsetdimname Parameter Lists

3.8.3 Old and New Dimension Implementations

Up to and including HDF version 4.0 beta1, dimensions were vgroup objects (described in Chap-
ter 5, Vgroups (V API), containing a single field vdata (described in Chapter 4, Vdatas (VS API),
with a class name of DimVal0.0. The vdata had the same number of records as the size of the
dimension, which consisted of the values 0, 1, 2, . . . n - 1, where n is the size of the dimension.
These values were not strictly necessary. Consider the case of applications that create large one
dimensional data sets: the disk space taken by these unnecessary values nearly doubles the size of
the HDF file. To avoid these situations, a new representation of dimensions was implemented for
HDF version 4.0 beta 2 and later versions.

Dimensions are still vgroups in the new representation, but the vdata has only one record with a
value of <dimension size> and the class name of the vdata has been changed to DimVal0.1 to dis-
tinguish it from the old version.

Between HDF versions 4.0 beta1 and 4.1, the old and new dimension representations were written
by default for each dimension created, and both representations were recognized by routines that
operate on dimensions. From HDF version 4.1 forward, SD interface routines recognize only the
new representation. Two compatibility mode routines, SDsetdimval_comp and SDisdimval_bw-
comp, are provided to allow HDF programs to distinguish between the two dimension representa-
tions, or compatibility modes.

3.8.3.1 Setting the Future Compatibility Mode of a Dimension: SDsetdimval_comp

SDsetdimval_comp sets the compatibility mode for the dimension identified by the parameter
dim_id. This operation determines whether the dimension will have the old and new representa-
tions or the new representation only. The syntax of SDsetdimval_comp is as follows:

C: status = SDsetdimval_comp(dim_id, comp_mode);

FORTRAN: status = sfsdmvc(dim_id, comp_mode)

The parameter comp_mode specifies the compatibility mode. It can be set to either SD_DIMVAL_B-
W_COMP (or 1), which specifies compatible mode and that the old and new dimension representa-
tions will be written to the file, or SD_DIMVAL_BW_INCOMP (or 0), which specifies incompatible
mode and that only the new dimension representation will be written to file. As of HDF version
4.1r1, the default mode is backward-incompatible. Subsequent calls to SDsetdimval_comp will
override the settings established in previous calls to the routine.

Unlimited dimensions are always backward compatible. Therefore SDsetdimval_comp takes no
action when the dimension identified by dim_id is unlimited.

SDsetdimval_comp returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDset-
dimval_comp are specified in (See Table 3Q on page 81).

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type

Description
C

FORTRAN-
77

SDgetdimid
[int32]

(sfdimid)

sds_id int32 integer Data set identifier

dim_index intn integer Dimension index

SDsetdimname
[intn]

(sfsdmname)

dim_id int32 integer Dimension identifier

dim_name char * character*(*) Dimension name
80 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
3.8.3.2 Determining the Current Compatibility Mode of a Dimension: SDisdimval_bwcomp

SDisdimval_bwcomp determines whether the specified dimension has the old and new represen-
tations or the new representation only. The syntax of SDisdimval_bwcomp is as follows:

C: comp_mode = SDisdimval_bwcomp(dim_id);

FORTRAN: comp_mode = sfisdmvc(dim_id)

SDisdimval_bwcomp returns one of the three values: SD_DIMVAL_BW_COMP (or 1), SD_DIMVAL_B-
W_INCOMP (or 0), and FAIL (or -1). The interpretation of SD_DIMVAL_BW_COMP and SD_DIMVAL_B-
W_INCOMP are as that in the routine SDsetdimval_comp.

The parameters of SDisdimval_bwcomp are specified in Table 3Q.

TABLE 3Q SDsetdimval_comp and SDisdimval_bwcomp Parameter Lists

3.8.4 Dimension Scales

A dimension scale can be thought of as a series of numbers demarcating intervals along a dimen-
sion. One scale is assigned per dimension. Users of netCDF can think of them as analogous to
coordinate variables. In the SDS data model, each dimension scale is a one-dimensional array
with name and size equal to its assigned dimension name and size.

For example, if a dimension of length 6 named "depth" is assigned a dimension scale, its scale is a
one-dimensional array of length 6 and is also assigned the name "depth". The name of the dimen-
sion will also appear as the name of the dimension scale.

Recall that when dimension scale is assigned to a dimension, the dimension is implemented as an
SDS array with data being the data scale. Although dimension scales are conceptually different
from SDS arrays, they are implemented as SDS arrays by the SD interface and are treated simi-
larly by the routines in the interface. For example, when the SDfileinfo routine returns the number
of data sets in a file, it includes dimension scales in that number. The SDiscoordvar routine
(described in Section 3.8.4.4 on page 88) distinguishes SDS data sets from dimension scales.

3.8.4.1 Writing Dimension Scales: SDsetdimscale

SDsetdimscale stores scale information for the dimension identified by the parameter dim_id.
The syntax of this routine is as follows:

C: status = SDsetdimscale(dim_id, n_values, data_type, data);

FORTRAN: status = sfsdscale(dim_id, n_values, data_type, data)

The argument n_values specifies the number of scale values along the specified dimension. For a
fixed size dimension, n_values must be equal to the size of the dimension. The parameter data_-
type specifies the data type for the scale values and data is an array containing the scale values.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type

Description
C

FORTRAN-
77

SDsetdimval_comp
[intn]

(sfsdmvc)

dim_id int32 integer Dimension identifier

comp_mode intn integer Compatibility mode

SDisdimval_bwcomp
[intn]

(sfisdmvc)
dim_id int32 integer Dimension identifier
June 2017 81

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
If the file being worked on was created by a pre-4.2.2 version of HDF, please refer to the Import-
ant Note on page 21 in Chapter 3 for information regarding a data corruption which might occur
when a dimension is named the same as a one-dimensional data set.

SDsetdimscale returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of this routine
are specified in (See Table 3R on page 83).

3.8.4.2 Obtaining Dimension Scale and Other Dimension Information: SDdiminfo

Before working with an existing dimension scale, it is often necessary to determine its characteris-
tics. For instance, to allocate the proper amount of memory for a scale requires knowledge of its
size and data type. SDdiminfo provides this basic information, as well as the name and the num-
ber of attributes for a specified dimension.

The syntax of this routine is as follows:

C: status = SDdiminfo(dim_id, dim_name, &dim_size, &data_type, &n_at-
trs);

FORTRAN: status = sfgdinfo(dim_id, dim_name, dim_size, data_type, n_attrs)

SDdiminfo retrieves and stores the dimension’s name, size, data type, and number of attributes
into the parameters dim_name, dim_size, data_type, and n_attrs, respectively.

The parameter dim_name will contain the dimension name set by SDsetdimname or the default
dimension name, fakeDim[x], if SDsetdimname has not been called, where [x] denotes the
dimension index. If the name is not desired, the parameter dim_name can be set to NULL in C or an
empty string in FORTRAN-77.

An output value of 0 for the parameter dim_size indicates that the dimension specified by the
parameter dim_id is unlimited. Use SDgetinfo to get the number of elements of the unlimited
dimension.

If scale information is available for the specified dimension, i.e., SDsetdimscale has been called,
the parameter data_type will contain the data type of the scale values; otherwise, data_type will
contain 0.

SDdiminfo returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are
specified in Table 3R.

3.8.4.3 Reading Dimension Scales: SDgetdimscale

SDgetdimscale retrieves the scale values of a dimension. These values have previously been
stored by SDsetdimscale. The syntax of this routine is as follows:

C: status = SDgetdimscale(dim_id, data);

FORTRAN: status = sfgdscale(dim_id, data)

SDgetdimscale reads all the scale values and stores them in the buffer data which is assumed to
be sufficiently allocated to hold all the values. SDdiminfo should be used to determine whether the
scale has been set for the dimension and to obtain the data type and the number of scale values for
space allocation before calling SDgetdimscale. Refer to Section 3.8.4.2 on page 82 for a discus-
sion of SDdiminfo.

Note that it is not possible to read a subset of the scale values. SDgetdimscale returns all of the
scale values stored with the given dimension.

The fact that SDgetdimscale returns SUCCEED should not be interpreted as meaning that scale val-
ues have been defined for the data set. This function should always be used with SDdiminfo,
82 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
which is used first to determine whether a scale has been set, the number of scale values, their data
type, etc. If SDdiminfo indicates that no scale values have been set, the values returned by
SDgetdimscale in data should be ignored.

SDgetdimscale returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of this routine
are specified in Table 3R.

TABLE 3R SDsetdimscale, SDdiminfo, and SDgetdimscale Parameter Lists

EXAMPLE 12. Setting and Retrieving Dimension Information.

This example illustrates the use of the routines SDgetdimid/sfdimid, SDsetdimname/sfsdm-
name, SDsetdimscale/sfsdscale, SDdiminfo/sfgdinfo, and SDgetdimscale/sfgdscale to set and
retrieve the dimensions names and dimension scales of the SDS created in Example 2 and modi-
fied in Examples 4 and 7.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define SDS_NAME "SDStemplate"
#define DIM_NAME_X "X_Axis"
#define DIM_NAME_Y "Y_Axis"
#define NAME_LENGTH 6
#define X_LENGTH 5
#define Y_LENGTH 16
#define RANK 2

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 dim_index, dim_id;
 int32 n_values, data_type, n_attrs;
 int16 data_X[X_LENGTH]; /* X dimension dimension scale */
 int16 data_X_out[X_LENGTH];

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C FORTRAN-77

SDsetdimscale
[intn]

(sfsdscale)

dim_id int32 integer Dimension identifier

n_values int32 integer Number of scale values

data_type int32 integer Data type to be set for the scale values

data VOIDP <valid data type>(*) Buffer containing the scale values to be set

SDdiminfo
[intn]

(sfgdinfo)

dim_id int32 integer Dimension identifier

dim_name char * character*(*) Buffer for the dimension name

n_values int32 * integer Buffer for the dimension size

data_type int32 * integer Buffer for the scale data type

n_attrs int32 * integer Buffer for the attribute count

SDgetdimscale
[intn]

(sfgdscale)

dim_id int32 integer Dimension identifier

data VOIDP <valid data type>(*) Buffer for the scale values
June 2017 83

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
 float64 data_Y[Y_LENGTH]; /* Y dimension dimension scale */
 float64 data_Y_out[Y_LENGTH];
 char dim_name[NAME_LENGTH];
 int i, j, nrow;

 /********************* End of variable declaration ***********************/

 /*
 * Initialize dimension scales.
 */
 for (i=0; i < X_LENGTH; i++) data_X[i] = i;
 for (i=0; i < Y_LENGTH; i++) data_Y[i] = 0.1 * i;

 /*
 * Open the file and initialize SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_WRITE);

 /*
 * Get the index of the data set specified in SDS_NAME.
 */
 sds_index = SDnametoindex (sd_id, SDS_NAME);

 /*
 * Select the data set corresponding to the returned index.
 */
 sds_id = SDselect (sd_id, sds_index);

 /* For each dimension of the data set specified in SDS_NAME,
 * get its dimension identifier and set dimension name
 * and dimension scale. Note that data type of dimension scale
 * can be different between dimensions and can be different from
 * SDS data type.
 */
 for (dim_index = 0; dim_index < RANK; dim_index++)
 {
 /*
 * Select the dimension at position dim_index.
 */
 dim_id = SDgetdimid (sds_id, dim_index);

 /*
 * Assign name and dimension scale to selected dimension.
 */
 switch (dim_index)
 {

case 0: status = SDsetdimname (dim_id, DIM_NAME_Y);
 n_values = Y_LENGTH;
 status = SDsetdimscale (dim_id,n_values,DFNT_FLOAT64, \
 (VOIDP)data_Y);

break;
case 1: status = SDsetdimname (dim_id, DIM_NAME_X);

 n_values = X_LENGTH;
 status = SDsetdimscale (dim_id,n_values,DFNT_INT16, \
 (VOIDP)data_X);

break;
default: break;

 }

 /*
 * Get and display info about the dimension and its scale values.
 * The following information is displayed:
 *
84 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 * Information about 1 dimension:
 * dimension name is Y_Axis
 * number of scale values is 16
 * dimension scale data type is float64
 * number of dimension attributes is 0
 *
 * Scale values are :
 * 0.000 0.100 0.200 0.300
 * 0.400 0.500 0.600 0.700
 * 0.800 0.900 1.000 1.100
 * 1.200 1.300 1.400 1.500
 *
 * Information about 2 dimension:
 * dimension name is X_Axis
 * number of scale values is 5
 * dimension scale data type is int16
 * number of dimension attributes is 0
 *
 * Scale values are :
 * 0 1 2 3 4
 */

 status = SDdiminfo (dim_id, dim_name, &n_values, &data_type, &n_attrs);
 printf ("Information about %d dimension:\n", dim_index+1);
 printf ("dimension name is %s\n", dim_name);
 printf ("number of scale values is %d\n", n_values);
 if(data_type == DFNT_FLOAT64)
 printf ("dimension scale data type is float64\n");
 if(data_type == DFNT_INT16)
 printf ("dimension scale data type is int16\n");
 printf ("number of dimension attributes is %d\n", n_attrs);
 printf ("\n");
 printf ("Scale values are :\n");
 switch (dim_index)
 {
 case 0: status = SDgetdimscale (dim_id, (VOIDP)data_Y_out);
 nrow = 4;
 for (i=0; i<n_values/nrow; i++)
 {
 for (j=0; j<nrow; j++)
 printf (" %-6.3f", data_Y_out[i*nrow + j]);
 printf ("\n");
 }
 break;
 case 1: status = SDgetdimscale (dim_id, (VOIDP)data_X_out);
 for (i=0; i<n_values; i++) printf (" %d", data_X_out[i]);
 break;
 default: break;
 }
 printf ("\n");
 } /*for dim_index */

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

June 2017 85

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
FORTRAN:
 program dimension_info
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 character*11 SDS_NAME
 character*6 DIM_NAME_X
 character*6 DIM_NAME_Y
 integer X_LENGTH, Y_LENGTH, RANK
 parameter (FILE_NAME = ’SDS.hdf’,
 + SDS_NAME = ’SDStemplate’,
 + DIM_NAME_X = ’X_Axis’,
 + DIM_NAME_Y = ’Y_Axis’,
 + X_LENGTH = 5,
 + Y_LENGTH = 16,
 + RANK = 2)
 integer DFACC_WRITE, DFNT_INT16, DFNT_FLOAT64
 parameter (DFACC_WRITE = 2,
 + DFNT_INT16 = 22,
 + DFNT_FLOAT64 = 6)

C
C Function declaration.
C
 integer sfstart, sfn2index, sfdimid, sfgdinfo
 integer sfsdscale, sfgdscale, sfsdmname, sfendacc
 integer sfend, sfselect
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer dim_index, dim_id
 integer n_values, n_attrs, data_type
 integer*2 data_X(X_LENGTH)
 integer*2 data_X_out(X_LENGTH)
 real*8 data_Y(Y_LENGTH)
 real*8 data_Y_out(Y_LENGTH)
 character*6 dim_name
 integer i
C
C**** End of variable declaration ************************************
C
C
C Initialize dimension scales.
C
 do 10 i = 1, X_LENGTH
 data_X(i) = i - 1
10 continue

 do 20 i = 1, Y_LENGTH
 data_Y(i) = 0.1 * (i - 1)
20 continue
C
C Open the file and initialize SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_WRITE)
C
C Get the index of the data set with the name specified in SDS_NAME.
C
 sds_index = sfn2index(sd_id, SDS_NAME)
86 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
C
C Select the data set corresponding to the returned index.
C
 sds_id = sfselect(sd_id, sds_index)
C
C For each dimension of the data set,
C get its dimension identifier and set dimension name
C and dimension scales. Note that data type of dimension scale can
C be different between dimensions and can be different from SDS data type.
C
 do 30 dim_index = 0, RANK - 1
C
C Select the dimension at position dim_index.
C
 dim_id = sfdimid(sds_id, dim_index)
C
C Assign name and dimension scale to the dimension.
C
 if (dim_index .eq. 0) then
 status = sfsdmname(dim_id, DIM_NAME_X)
 n_values = X_LENGTH
 status = sfsdscale(dim_id, n_values, DFNT_INT16, data_X)
 end if
 if (dim_index .eq. 1) then
 status = sfsdmname(dim_id, DIM_NAME_Y)
 n_values = Y_LENGTH
 status = sfsdscale(dim_id, n_values, DFNT_FLOAT64, data_Y)
 end if
C
C Get and display information about dimension and its scale values.
C The following information is displayed:
C
C Information about 1 dimension :
C dimension name is X_Axis
C number of scale values is 5
C dimension scale data type is int16
C
C number of dimension attributes is 0
C Scale values are:
C 0 1 2 3 4
C
C Information about 2 dimension :
C dimension name is Y_Axis
C number of scale values is 16
C dimension scale data type is float64
C number of dimension attributes is 0
C
C Scale values are:
C 0.000 0.100 0.200 0.300
C 0.400 0.500 0.600 0.700
C 0.800 0.900 1.000 1.100
C 1.200 1.300 1.400 1.500
C
 status = sfgdinfo(dim_id, dim_name, n_values, data_type, n_attrs)
C
 write(*,*) "Information about ", dim_index+1," dimension :"
 write(*,*) "dimension name is ", dim_name
 write(*,*) "number of scale values is", n_values
 if (data_type. eq. 22) then
 write(*,*) "dimension scale data type is int16"
 endif
 if (data_type. eq. 6) then
 write(*,*) "dimension scale data type is float64"
June 2017 87

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
 endif
 write(*,*) "number of dimension attributes is ", n_attrs
C
 write(*,*) "Scale values are:"
 if (dim_index .eq. 0) then
 status = sfgdscale(dim_id, data_X_out)
 write(*,*) (data_X_out(i), i= 1, X_LENGTH)
 endif
 if (dim_index .eq. 1) then
 status = sfgdscale(dim_id, data_Y_out)
 write(*,100) (data_Y_out(i), i= 1, Y_LENGTH)
100 format(4(1x,f10.3)/)
 endif
30 continue
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)
 end

3.8.4.4 Distinguishing SDS Arrays from Dimension Scales: SDiscoordvar

The HDF library stores SDS dimensions as data sets. HDF therefore provides the routine SDisco-
ordvar to determine whether a particular data set contains the data of an SDS or an SDS dimen-
sion with dimension scale or attribute assigned to it. The syntax of SDiscoordvar this routine is as
follows:

C: status = SDiscoordvar(sds_id);

FORTRAN: status = sfiscvar(sds_id)

If the data set, identified by the parameter sds_id, contains the dimension data, a subsequent call
to SDgetinfo will fill the specified arguments with information about a dimension, rather than a
data set.

If the file being worked on was created by a pre-4.2.2 version of HDF, please refer to the Import-
ant Note on page 21 in Chapter 3 for information regarding a data corruption which might occur
when a dimension is named the same as a one-dimensional SDS.

SDiscoordvar returns TRUE (or 1) if the specified data set represents a dimension scale and FALSE
(or 0), otherwise. This routine is further defined in Table 3S.
88 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
TABLE 3S SDiscoordvar Parameter List

EXAMPLE 13. Distinguishing a Dimension Scale from a Data Set in a File.

This example illustrates the use of the routine SDiscoordvar/sfiscvar to determine whether the
selected SDS array is a data set or a dimension stored as an SDS array (coordinate variable) (see
discussion in Section 3.8.4) and displays the name of the data set or dimension.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 rank, data_type, dim_sizes[MAX_VAR_DIMS];
 int32 n_datasets, n_file_attr, n_attrs;
 char sds_name[MAX_NC_NAME];

 /********************* End of variable declaration ***********************/

 /*
 * Open the file and initialize the SD interface.
 */
 sd_id = SDstart(FILE_NAME, DFACC_READ);

 /*
 * Obtain information about the file.
 */
 status = SDfileinfo(sd_id, &n_datasets, &n_file_attr);

 /* Get information about each SDS in the file.
 * Check whether it is a coordinate variable, then display retrieved
 * information.
 * Output displayed:
 *
 * SDS array with the name SDStemplate
 * Coordinate variable with the name Y_Axis
 * Coordinate variable with the name X_Axis
 *
 */
 for (sds_index=0; sds_index< n_datasets; sds_index++)
 {
 sds_id = SDselect (sd_id, sds_index);
 status = SDgetinfo(sds_id, sds_name, &rank, dim_sizes, &data_type,
&n_attrs);
 if (SDiscoordvar(sds_id))
 printf(" Coordinate variable with the name %s\n", sds_name);

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

SDiscoordvar
[intn]

(sfiscvar)
sds_id int32 integer Data set identifier
June 2017 89

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
 else
 printf(" SDS array with the name %s\n", sds_name);

 /*
 * Terminate access to the selected data set.
 */
 status = SDendaccess(sds_id);

 }

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend(sd_id);
}

FORTRAN:
 program sds_vrs_coordvar
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 parameter (FILE_NAME = ’SDS.hdf’)
 integer DFACC_READ, DFNT_INT32
 parameter (DFACC_READ = 1,
 + DFNT_INT32 = 24)
 integer MAX_VAR_DIMS
 parameter (MAX_VAR_DIMS = 32)
C
C Function declaration.
C
 integer sfstart, sfselect, sfiscvar, sffinfo, sfginfo
 integer sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer rank, data_type
 integer n_datasets, n_file_attrs, n_attrs
 integer dim_sizes(MAX_VAR_DIMS)
 character*256 sds_name
C
C**** End of variable declaration ************************************
C
C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_READ)
C
C Obtain information about the file.
C
 status = sffinfo(sd_id, n_datasets, n_file_attrs)
C
C Get information about each SDS in the file.
C Check whether it is a coordinate variable, then display retrieved
C information.
C Output displayed:
C
C SDS array with the name SDStemplate
C Coordinate variable with the name X_Axis
C Coordinate variable with the name Y_Axis
90 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
C
 do 10 sds_index = 0, n_datasets-1
 sds_id = sfselect(sd_id, sds_index)
 status = sfginfo(sds_id, sds_name, rank, dim_sizes,
 + data_type, n_attrs)
 status = sfiscvar(sds_id)
 if (status .eq. 1) then
 write(*,*) "Coordinate variable with the name ",
 + sds_name(1:6)
 else
 write(*,*) "SDS array with the name ",
 + sds_name(1:11)
 endif
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
10 continue
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)
 end

3.8.5 Related Data Sets

SD data sets with one or more dimensions with the same name and size are considered to be
related. Examples of related data sets are cross-sections from the same simulation, frames in an
animation, or images collected from the same apparatus. HDF attempts to preserve this relation-
ship by unifying their dimension scales and attributes. To understand how related data sets are
handled, it is necessary to understand what dimension records are and how they are created.

In the SD interface, dimension records are only created for dimensions of a unique name and size.
To illustrate this, consider a case where there are three scientific data sets, each representing a
unique variable, in an HDF file. (See Figure 3c) The first two data sets have two dimensions each
and the third data set has three dimensions. There are a total of four dimensions in the file and the
name mapping between the data sets and the dimensions are shown in the figure. Note that if, for
example, the creation of a second dimension named "Altitude" is attempted and the size of the
dimension is different from the existing dimension named "Altitude", an error condition will be
generated.

As expected, assigning a dimension attribute to dimension 1 of either data set will create the
required dimension scale and assign the appropriate attribute. However, because related data sets
share dimension records, they also share dimension attributes. Therefore, it is impossible to assign
an attribute to a dimension without assigning the same attribute to all dimensions of identical
name and size, either within one data set or related data sets.
June 2017 91

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
FIGURE 3c Dimension Records and Attributes Shared Between Related Data Sets

3.9 User-defined Attributes

User-defined attributes are defined by the calling program and contain auxiliary information
about a file, SDS array, or dimension. This auxiliary information is sometimes called metadata
because it is data about data. There are two ways to store metadata: as user-defined attributes or as
predefined attributes.

Attributes take the form label=value, where label is a character string containing H4_MAX_NC_NAME
(or 256) or fewer characters and value contains one or more entries of the same data type as
defined at the time the attribute is created. Attributes can be attached to files, data sets, and dimen-
sions. These are referred to, respectively, as file attributes, data set attributes, and dimension
attributes:

• File attributes describe an entire file. They generally contain information pertinent to all
HDF data sets in the file and are sometimes referred to as global attributes.

• Data set attributes describe individual SDSs. Because their scope is limited to an individual
SDS, data set attributes are sometimes referred to as local attributes.

• Dimension attributes provide information applicable to an individual SDS dimension. It is
possible to assign a unit to one dimension in a data set without assigning a unit to the
remaining dimensions.

For each attribute, an attribute count is maintained that identifies the number of values in the
attribute. Each attribute has a unique attribute index, the value of which ranges from 0 to the total
number of attributes minus 1. The attribute index is used to locate an attribute in the object which
the attribute is attached to. Once the attribute is identified, its values and information can be
retrieved.

The data types permitted for attributes are the same as those allowed for SDS arrays. SDS arrays
with general attributes of the same name can have different data types. For example, the attribute
valid_range specifying the valid range of data values for an array of 16-bit integers might be of
type 16-bit integer, whereas the attribute valid_range for an array of 32-bit floats could be of type
32-bit floating-point integer.

Attribute names follow the same rules as dimension names. Providing meaningful names for attri-
butes is important, however using standardized names may be necessary if generic applications
and utility programs are to be used. For example, every variable assigned a unit should have an
attribute named "units" associated with it. Furthermore, if an HDF file is to be used with software
that recognizes "units" attributes, the values of the "units" attributes should be expressed in a con-
ventional form as a character string that can be interpreted by that software.

Data Set A

Latitude Longitude

Altitude

Data Set B Data Set C

Latitude LongitudeLongitudeTime

Latitude Longitude Time Altitude

Dimensions
92 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
The SD interface uses the same functions to access all attributes regardless of the objects they are
assigned to. The difference between accessing a file, array, or dimension attribute lies in the use of
identifiers. File identifiers, SDS identifiers, and dimension identifiers are used to respectively
access file attributes, SDS attributes, and dimension attributes.

3.9.1 Creating or Writing User-defined Attributes: SDsetattr

SDsetattr creates or modifies an attribute for one of the objects: the file, the data set, or the
dimension. If the attribute with the specified name does not exist, SDsetattr creates a new one. If
the named attribute already exists, SDsetattr resets all the values that are different from those pro-
vided in its argument list. The syntax of this routine is as follows:

C: status = SDsetattr(obj_id, attr_name, data_type, n_values, values);

FORTRAN: status = sfsnatt(obj_id, attr_name, data_type, n_values, values)

OR status = sfscatt(obj_id, attr_name, data_type, n_values, values)

The parameter obj_id is the identifier of the HDF data object to which the attribute is assigned and
can be a file identifier, SDS identifier, or dimension identifier. If obj_id specifies an SD interface
identifier (sd_id), a global attribute will be created which applies to all objects in the file. If obj_id
specifies a data set identifier (sds_id), an attribute will be attached only to the specified data set. If
obj_id specifies a dimension identifier (dim_id), an attribute will be attached only to the specified
dimension.

The parameter attr_name is an ASCII character string containing the name of the attribute. It rep-
resents the label in the label = value equation and can be no more than H4_MAX_NC_NAME (or 256)
characters. If this is set to the name of an existing attribute, the value portion of the attribute will
be overwritten. Do not use SDsetattr to assign a name to a dimension, use SDsetdimname
instead.

The arguments data_type, n_values, and values describe the right side of the label = value equa-
tion. The argument values contains one or more values of the same data type. The argument
data_type contains any HDF supported data type (see (See Table 2F on page 14)). The parameter
n_values specifies the total number of values in the attribute.

There are two FORTRAN-77 versions of this routine: sfsnatt and sfscatt. The routine sfsnatt
writes numeric attribute data and sfscatt writes character attribute data.

SDsetattr returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDsetattr are fur-
ther described in (See Table 3T on page 98).

EXAMPLE 14. Setting Attributes.

This example shows how the routines SDsetattr/sfscatt/sfsnatt are used to set the attributes of the
file, data set, and data set dimension created in the Examples 2, 4, and 12.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define FILE_ATTR_NAME "File_contents"
#define SDS_ATTR_NAME "Valid_range"
#define DIM_ATTR_NAME "Dim_metric"

main()
June 2017 93

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 dim_id, dim_index;
 int32 n_values; /* number of values of the file, SDS or
 dimension attribute */
 char8 file_values[] = "Storm_track_data";
 /* values of the file attribute */
 float32 sds_values[2] = {2., 10.};
 /* values of the SDS attribute */
 char8 dim_values[] = "Seconds";
 /* values of the dimension attribute */

 /********************* End of variable declaration ***********************/

 /*
 * Open the file and initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_WRITE);

 /*
 * Set an attribute that describes the file contents.
 */
 n_values = 16;
 status = SDsetattr (sd_id, FILE_ATTR_NAME, DFNT_CHAR8, n_values,
 (VOIDP)file_values);

 /*
 * Select the first data set.
 */
 sds_index = 0;
 sds_id = SDselect (sd_id, sds_index);

 /*
 * Assign attribute to the first SDS. Note that attribute values
 * may have different data type than SDS data.
 */
 n_values = 2;
 status = SDsetattr (sds_id, SDS_ATTR_NAME, DFNT_FLOAT32, n_values,
 (VOIDP)sds_values);

 /*
 * Get the the second dimension identifier of the SDS.
 */
 dim_index = 1;
 dim_id = SDgetdimid (sds_id, dim_index);

 /*
 * Set an attribute of the dimension that specifies the dimension metric.
 */
 n_values = 7;
 status = SDsetattr (dim_id, DIM_ATTR_NAME, DFNT_CHAR8, n_values,
 (VOIDP)dim_values);

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
94 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 */
 status = SDend (sd_id);
}

FORTRAN:
 program set_attribs
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 character*13 FILE_ATTR_NAME
 character*11 SDS_ATTR_NAME
 character*10 DIM_ATTR_NAME
 parameter (FILE_NAME = ’SDS.hdf’,
 + FILE_ATTR_NAME = ’File_contents’,
 + SDS_ATTR_NAME = ’Valid_range’,
 + DIM_ATTR_NAME = ’Dim_metric’)
 integer DFACC_WRITE, DFNT_CHAR8, DFNT_FLOAT32
 parameter (DFACC_WRITE = 2,
 + DFNT_CHAR8 = 4,
 + DFNT_FLOAT32 = 5)
C
C Function declaration.
C
 integer sfstart, sfscatt, sfsnatt, sfselect, sfdimid
 integer sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, sds_index, status
 integer dim_id, dim_index
 integer n_values
 character*16 file_values
 real sds_values(2)
 character*7 dim_values
 file_values = ’Storm_track_data’
 sds_values(1) = 2.
 sds_values(2) = 10.
 dim_values = ’Seconds’
C
C**** End of variable declaration ************************************
C
C
C Open the file and initialize the SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_WRITE)
C
C Set an attribute that describes the file contents.
C
 n_values = 16
 status = sfscatt(sd_id, FILE_ATTR_NAME, DFNT_CHAR8, n_values,
 + file_values)
C
C Select the first data set.
C
 sds_index = 0
 sds_id = sfselect(sd_id, sds_index)
C
C Assign attribute to the first SDS. Note that attribute values
C may have different data type than SDS data.
C

June 2017 95

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
 n_values = 2
 status = sfsnatt(sds_id, SDS_ATTR_NAME, DFNT_FLOAT32, n_values,
 + sds_values)
C
C Get the identifier for the first dimension.
C
 dim_index = 0
 dim_id = sfdimid(sds_id, dim_index)
C
C Set an attribute to the dimension that specifies the
C dimension metric.
C
 n_values = 7
 status = sfscatt(dim_id, DIM_ATTR_NAME, DFNT_CHAR8, n_values,
 + dim_values)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)

 end

3.9.2 Querying User-defined Attributes: SDfindattr and SDattrinfo

Given a file, SDS, or dimension identifier and an attribute name, SDfindattr returns a valid attri-
bute index if the corresponding attribute exists. The attribute index can then be used to retrieve
information about the attribute or its values. Given a file, SDS, or dimension identifier and a valid
attribute index, SDattrinfo retrieves the information about the corresponding attribute if it exists.

The syntax for SDfindattr and SDattrinfo are as follows:

C: attr_index = SDfindattr(obj_id, attr_name);
status = SDattrinfo(obj_id, attr_index, attr_name, &data_type,

&n_values);

FORTRAN: attr_index = sffattr(obj_id, attr_name)
status = sfgainfo(obj_id, attr_index, attr_name, data_type, n_val-

ues)

SDfindattr returns the index of the attribute, which belongs to the object identified by the param-
eter obj_id, and whose name is specified by the parameter attr_name.

The parameter obj_id can be either an SD interface identifier (sd_id), a data set identifier (sds_id),
or a dimension identifier (dim_id). SDfindattr is case-sensitive in searching for the name speci-
fied by the parameter attr_name and does not accept wildcards as part of that name.

SDattrinfo retrieves the attribute’s name, data type, and number of values into the parameters
attr_name, data_type, and n_values, respectively.

The parameter attr_index specifies the relative position of the attribute within the specified object.
An attribute index may also be determined by either keeping track of the number and order of
attributes as they are written or dumping the contents of the file using the HDF dumping utility,
hdp, which is described in Chapter 15, HDF Command-line Utilities.
96 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
SDfindattr returns an attribute index or a value of FAIL (or -1). SDattrinfo returns a value of
SUCCEED (or 0) or FAIL (or -1). The parameters of SDfindattr and SDattrinfo are further
described in (See Table 3T on page 98).

3.9.3 Reading User-defined Attributes: SDreadattr

Given a file, SDS, or dimension identifier and an attribute index, SDreadattr reads the values of
an attribute that belongs to either a file, an SDS, or a dimension. The syntax of this routine is as
follows:

C: status = SDreadattr(obj_id, attr_index, values);

FORTRAN: status = sfrattr(obj_id, attr_index, values)

OR status = sfrnatt(obj_id, attr_index, values)

OR status = sfrcatt(obj_id, attr_index, values)

SDreadattr stores the attribute values in the buffer values, which is assumed to be sufficiently
allocated. The size of the buffer must be at least n_values*sizeof (data_type) bytes long, where
n_values and data_type are the number of attribute values and their type. The values of n_values
and data_type can be retrieved using SDattrinfo. Note that the size of the data type must be deter-
mined at the local machine where the application is running. SDreadattr will also read attributes
and annotations created by the DFSD interface.

The parameter obj_id can be either an SD interface identifier (sd_id), a data set identifier (sds_id),
or a dimension identifier (dim_id).

The parameter attr_index specifies the relative position of the attribute within the specified object.
An attribute index may also be determined by either keeping track of the number and order of
attributes as they are written or dumping the contents of the file using the HDF dumping utility,
hdp, which is described in Chapter 15, HDF Command-line Utilities.

There are three FORTRAN-77 versions of this routine: sfrattr, sfrnatt, and sfrcatt. The routine
sfrattr reads data of all valid data types, sfrnatt reads numeric attribute data and sfrcatt reads
character attribute data.

SDreadattr returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDreadattr are
further described in Table 3T.
June 2017 97

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
TABLE 3T SDsetattr, SDfindattr, SDattrinfo, and SDreadattr Parameter Lists

EXAMPLE 15. Reading Attributes.

This example uses the routines SDfindattr/sffattr, SDattrinfo/sfgainfo, and SDreadattr/sfrattr
to find and read attributes of the file, data set, and data set dimension created in the Example 14.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define FILE_ATTR_NAME "File_contents"
#define SDS_ATTR_NAME "Valid_range"
#define DIM_ATTR_NAME "Dim_metric"

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, dim_id;
 intn status;
 int32 attr_index, data_type, n_values;
 char attr_name[MAX_NC_NAME];
 int8 *file_data;
 int8 *dim_data;
 float32 *sds_data;
 int i;

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C FORTRAN-77

SDsetattr
[intn]

(sfsnatt/
sfscatt)

sd_id, sds_id
or dim_id

int32 integer
SD interface, data set, or
dimension identifier

attr_name char * character*(*) Name of the attribute

data_type int32 integer Data type of the attribute

n_values int32 integer Number of values in the attribute

values VOIDP
<valid numeric data type>(*)/

character*(*)
Buffer containing the data to be written

SDfindattr
[int32]

(sffattr)

sd_id, sds_id
or dim_id

int32 integer
SD interface, data set, or
dimension identifier

attr_name char * character*(*) Attribute name

SDattrinfo
[intn]

(sfgainfo)

sd_id, sds_id
or dim_id

int32 integer
SD interface, data set, or
dimension identifier

attr_index int32 integer Index of the attribute to be read

attr_name char * character*(*) Buffer for the name of the attribute

data_type int32 * integer
Buffer for the data type of the values in
the attribute

n_values int32 * integer
Buffer for the total number of values in
the attribute

SDreadattr
[intn]

(sfrattr/
sfrnatt/
sfrcatt)

sd_id, sds_id
or dim_id

int32 integer
SD interface, data set, or dimension iden-
tifier

attr_index int32 integer Index of the attribute to be read

values VOIDP
<valid data type>(*)/

<valid numeric data type>(*)/
character*(*)

Buffer for the attribute values
98 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 /********************* End of variable declaration ***********************/

 /*
 * Open the file and initialize SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_READ);

 /*
 * Find the file attribute defined by FILE_ATTR_NAME.
 */
 attr_index = SDfindattr (sd_id, FILE_ATTR_NAME);

 /*
 * Get information about the file attribute. Note that the first
 * parameter is an SD interface identifier.
 */
 status = SDattrinfo (sd_id, attr_index, attr_name, &data_type, &n_values);

 /*
 * Allocate a buffer to hold the attribute data.
 */
 file_data = (int8 *)malloc (n_values * sizeof (data_type));

 /*
 * Read the file attribute data.
 */
 status = SDreadattr (sd_id, attr_index, file_data);

 /*
 * Print out file attribute value.
 */
 printf ("File attribute value is : %s\n", file_data);

 /*
 * Select the first data set.
 */
 sds_id = SDselect (sd_id, 0);

 /*
 * Find the data set attribute defined by SDS_ATTR_NAME. Note that the
 * first parameter is a data set identifier.
 */
 attr_index = SDfindattr (sds_id, SDS_ATTR_NAME);

 /*
 * Get information about the data set attribute.
 */
 status = SDattrinfo (sds_id, attr_index, attr_name, &data_type, &n_values);

 /*
 * Allocate a buffer to hold the data set attribute data.
 */
 sds_data = (float32 *)malloc (n_values * sizeof (data_type));

 /*
 * Read the SDS attribute data.
 */
 status = SDreadattr (sds_id, attr_index, sds_data);

 /*
 * Print out SDS attribute data type and values.
 */
 if (data_type == DFNT_FLOAT32)
June 2017 99

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
 printf ("SDS attribute data type is : float32\n");
 printf ("SDS attribute values are : ");
 for (i=0; i<n_values; i++) printf (" %f", sds_data[i]);
 printf ("\n");

 /*
 * Get the identifier for the second dimension of the SDS.
 */
 dim_id = SDgetdimid (sds_id, 1);

 /*
 * Find dimension attribute defined by DIM_ATTR_NAME.
 */
 attr_index = SDfindattr (dim_id, DIM_ATTR_NAME);

 /*
 * Get information about the dimension attribute.
 */
 status = SDattrinfo (dim_id, attr_index, attr_name, &data_type, &n_values);

 /*
 * Allocate a buffer to hold the dimension attribute data.
 */
 dim_data = (int8 *)malloc (n_values * sizeof (data_type));

 /*
 * Read the dimension attribute data.
 */
 status = SDreadattr (dim_id, attr_index, dim_data);

 /*
 * Print out dimension attribute value.
 */
 printf ("Dimensional attribute values is : %s\n", dim_data);

 /*
 * Terminate access to the data set and to the SD interface and
 * close the file.
 */
 status = SDendaccess (sds_id);
 status = SDend (sd_id);

 /*
 * Free all buffers.
 */
 free (dim_data);
 free (sds_data);
 free (file_data);

 /* Output of this program is :
 *
 * File attribute value is : Storm_track_data
 * SDS attribute data type is : float32
 * SDS attribute values are : 2.000000 10.000000
 * Dimensional attribute values is : Seconds
 */
}

FORTRAN:
 program attr_info
100 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 implicit none
C
C Parameter declaration.
C
 character*7 FILE_NAME
 character*13 FILE_ATTR_NAME
 character*11 SDS_ATTR_NAME
 character*10 DIM_ATTR_NAME
 parameter (FILE_NAME = ’SDS.hdf’,
 + FILE_ATTR_NAME = ’File_contents’,
 + SDS_ATTR_NAME = ’Valid_range’,
 + DIM_ATTR_NAME = ’Dim_metric’)
 integer DFACC_READ, DFNT_FLOAT32
 parameter (DFACC_READ = 1,
 + DFNT_FLOAT32 = 5)

C
C Function declaration.
C
 integer sfstart, sffattr, sfgainfo, sfrattr, sfselect
 integer sfdimid, sfendacc, sfend
C
C**** Variable declaration ***
C
 integer sd_id, sds_id, dim_id
 integer attr_index, data_type, n_values, status
 real sds_data(2)
 character*20 attr_name
 character*16 file_data
 character*7 dim_data
 integer i
C
C**** End of variable declaration ************************************
C
C
C Open the file and initialize SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_READ)
C
C Find the file attribute defined by FILE_ATTR_NAME.
C Note that the first parameter is an SD interface identifier.
C
 attr_index = sffattr(sd_id, FILE_ATTR_NAME)
C
C Get information about the file attribute.
C
 status = sfgainfo(sd_id, attr_index, attr_name, data_type,
 + n_values)
C
C Read the file attribute data.
C
 status = sfrattr(sd_id, attr_index, file_data)
C
C Print file attribute value.
C
 write(*,*) "File attribute value is : ", file_data
C
C Select the first data set.
C
 sds_id = sfselect(sd_id, 0)
C
C Find the data set attribute defined by SDS_ATTR_NAME.
C Note that the first parameter is a data set identifier.
June 2017 101

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
C
 attr_index = sffattr(sds_id, SDS_ATTR_NAME)
C
C Get information about the data set attribute.
C
 status = sfgainfo(sds_id, attr_index, attr_name, data_type,
 + n_values)
C
C Read the SDS attribute data.
C
 status = sfrattr(sds_id, attr_index, sds_data)

C
C Print SDS attribute data type and values.
C
 if (data_type .eq. DFNT_FLOAT32) then
 write(*,*) "SDS attribute data type is : float32 "
 endif
 write(*,*) "SDS attribute values are : "
 write(*,*) (sds_data(i), i=1, n_values)
C
C Get the identifier for the first dimension of the SDS.
C
 dim_id = sfdimid(sds_id, 0)
C
C Find the dimensional attribute defined by DIM_ATTR_NAME.
C Note that the first parameter is a dimension identifier.
C
 attr_index = sffattr(dim_id, DIM_ATTR_NAME)
C
C Get information about dimension attribute.
C
 status = sfgainfo(dim_id, attr_index, attr_name, data_type,
 + n_values)
C
C Read the dimension attribute data.
C
 status = sfrattr(dim_id, attr_index, dim_data)
C
C Print dimension attribute value.
C
 write(*,*) "Dimensional attribute value is : ", dim_data
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)
C
C Output of this program is :
C
C
C File attribute value is : Storm_track_data
C SDS attribute data type is : float32
C SDS attribute values are :
C 2.00000 10.00000
C Dimensional attribute value is : Seconds
C
 end
102 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
3.10 Predefined Attributes

Predefined attributes use reserved names and in some cases predefined data type names. Pre-
defined attributes are categorized as follows:

• Labels can be thought of as variable names. They are often used as keys in searches to find
a particular predefined attribute.

• Units are a means of declaring the units pertinent to a specific discipline. A freely-available
library of routines is available to convert between character string and binary forms of unit
specifications and to perform useful operations on the binary forms. This library is used in
some netCDF applications and is recommended for use with HDF applications. For more
information, refer to the netCDF User’s Guide for C which can be obtained at
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/.

• Formats describe the format in which numeric values will be printed and/or displayed. The
recommended convention is to use standard FORTRAN-77 notation for describing the data
format. For example, "F7.2" means to display seven digits with two digits to the right of the
decimal point.

• Coordinate systems contain information that should be used when interpreting or displaying
the data. For example, the text strings "cartesian", "polar" and "spherical" are recommended
coordinate system descriptions.

• Ranges define the maximum and minimum values of a selected valid range. The range may
cover the entire data set, values outside the data set, or a subset of values within a data set.
Because the HDF library does not check or update the range attribute as data is added or
removed from the file, the calling program may assign any values deemed appropriate as
long as they are of the same data type as the SDS array.

• Fill value is the value used to fill the areas between non-contiguous writes to SDS arrays.
For more information about fill values, refer to Section 3.10.5 on page 108.

• Calibration stores scale and offset values used to create calibrated data in SDS arrays.
When data are calibrated, they are typically reduced from floats, double, or large integers
into 8-bit or 16-bit integers and "packed" into an appropriately sized array. After the scale
and offset values are applied, the packed array will return to its original form.

Predefined attributes are useful because they establish conventions that applications can depend
on and because they are understood by the HDF library without users having to define them. Pre-
defined attributes also ensure backward compatibility with earlier versions of the HDF library.
They can be assigned only to data sets and dimensions. Table 3U lists the predefined attributes
and the types of object each attribute can be assigned to.
June 2017 103

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
TABLE 3U Predefined Attributes List

While the following netCDF naming conventions are not predefined in HDF, they are highly rec-
ommended to promote consistency of information-sharing among generic applications. Refer to
the netCDF User’s Guide for C for further information.

• missing_value: An attribute containing a value used to fill areas of an array not intended to
contain either valid data or a fill value. The scope of this attribute is local to the array. An
example of this would be a region where information is unavailable, as in a geographical
grid containing ocean data. The part of the grid where there is land might not have any data
associated with it and in such a case the missing_value value could be supplied. The miss-
ing_value attribute is different from the _FillValue attribute in that fill values are intended to
indicate data that was expected but did not appear, whereas missing values are used to indi-
cate data that were never expected.

• title: A global file attribute containing a description of the contents of a file.

• history: A global file attribute containing the name of a program and the arguments used to
derive the file. Well-behaved generic filters (programs that take HDF or netCDF files as
input and produce HDF or netCDF files as output) would be expected to automatically
append their name and the parameters with which they were invoked to the history attribute
of an input file.

3.10.1Accessing Predefined Attributes

The SD interface provides two methods for accessing predefined attributes. The first method uses
the general attribute routines for user-defined attributes described in Section 3.9 on page 92; the
second employs routines specifically designed for each attribute and will be discussed in the fol-
lowing sections. Although the general attribute routines work well and are recommended in most
cases, the specialized attribute routines are sometimes easier to use, especially when reading or
writing related predefined attributes. This is true for two reasons. First, because predefined attri-
butes are guaranteed unique names, the attribute index is unnecessary. Second, attributes with sev-
eral components may be read as a group. For example, using the SD routine designed to read the
predefined calibration attribute returns all five components with a single call, rather than five sep-
arate calls.

There is one exception: unlike predefined data set attributes, predefined dimension attributes
should be read or written using the specialized attribute routines only.

HDF Data
Object Type

Attribute Cate-
gory

Attribute Name Description

SDS Array
or

Dimension

Label long_name Name of the array

Unit units Units used for all dimensions and data

Format format Format for displaying dim scales and array values

SDS Array Only

Coordinate Sys-
tem

coordsys Coordinate system used to interpret the SDS array

Range valid_range Maximum and minimum values within a selected data range

Fill Value __FillValue Value used to fill empty locations in an SDS array

Calibration

scale_factor Value by which each array value is to be multiplied

scale_fac-
tor_err

Error introduced by scaling SDS array data

add_offset Value to which each array value is to be added

add_offset_err Error introduced by offsetting the SDS array data

calibrated_nt Data type of the calibrated data
104 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
The predefined attribute parameters are described in Table 3V. Creating a predefined attribute
with parameters different from these will produce unpredictable results when the attribute is read
using the corresponding predefined-attribute routine.

TABLE 3V Predefined Attribute Definitions

In addition to SDreadattr, SDfindattr and SDattrinfo are also valid general attribute routines to
use when reading a predefined attribute. SDattrinfo is always useful for determining the size of
an attribute whose value contains a string.

3.10.2SDS String Attributes

This section describes the predefined string attributes of the SDSs and the next section describes
those of the dimensions. Predefined string attributes of an SDS include the label, unit, format,
and coordinate system.

3.10.2.1 Writing String Attributes of an SDS: SDsetdatastrs

SDsetdatastrs assigns the predefined string attributes label, unit, format, and coordinate system
to an SDS array. The syntax of this routine is as follows:

C: status = SDsetdatastrs(sds_id, label, unit, format, coord_system);

FORTRAN: status = sfsdtstr(sds_id, label, unit, format, coord_system)

If you do not wish to set an attribute, set the corresponding parameter to NULL in C and an empty
string in FORTRAN-77. SDsetdatastrs returns a value of SUCCEED (or 0) or FAIL (or -1). Its argu-
ments are further described in (See Table 3W on page 106).

3.10.2.2 Reading String Attributes of an SDS: SDgetdatastrs

SDgetdatastrs reads the predefined string attributes label, unit, format, and coordinate system
from an SDS. These string attributes have previously been set by the routine SDsetdatastrs. The
syntax of SDgetdatastrs is as follows:

C: status = SDgetdatastrs(sds_id, label, unit, format, coord_system,
len);

FORTRAN: status = sfgdtstr(sds_id, label, unit, format, coord_system, len)

Category Attribute Name Data Type
Number of Val-

ues
Attribute Description

Label long_name DFNT_CHAR8 String length String

Unit units DFNT_CHAR8 String length String

Format format DFNT_CHAR8 String length String

Coordinate
System

coordsys DFNT_CHAR8 String length String

Range valid_range <valid data type> 2
Minimum and maximum values
in 2-element array

Fill Value _FillValue <valid data type> 1 Fill value

Calibration

scale_factor DFNT_FLOAT64 1 Scale

scale_factor_err DFNT_FLOAT64 1 Scale error

add_offset DFNT_FLOAT64 1 Offset

add_offset_err DFNT_FLOAT64 1 Offset error

calibrated_nt DFNT_INT32 1 Data type
June 2017 105

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
SDgetdatastrs stores the predefined attributes into the parameters label, unit, format, and coor-
d_system, which are character string buffers. If a particular attribute has not been set by SDset-
datastrs, the first character of the corresponding returned string will be NULL for C and 0 for
FORTRAN-77. Each string buffer is assumed to be at least len characters long, including the
space to hold the NULL termination character. If you do not wish to get a predefined attribute of
this SDS, set the corresponding parameter to NULL in C and an empty string in FORTRAN-77.

SDgetdatastrs returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further
described in Table 3W.

TABLE 3W SDsetdatastrs and SDgetdatastrs Parameter Lists

3.10.3String Attributes of Dimensions

Predefined string attributes of a dimension include label, unit, and format. They adhere to the
same definitions as those of the label, unit, and format strings for SDS attributes.

3.10.3.1 Writing a String Attribute of a Dimension: SDsetdimstrs

SDsetdimstrs assigns the predefined string attributes label, unit, and format to an SDS dimension
and its scales. The syntax of this routine is as follows:

C: status = SDsetdimstrs(dim_id, label, unit, format);

FORTRAN: status = sfsdmstr(dim_id, label, unit, format)

The argument dim_id is the dimension identifier, returned by SDgetdimid, and identifies the
dimension to which the attributes will be assigned. If you do not wish to set an attribute, set the
corresponding parameter to NULL in C and an empty string in FORTRAN-77.

SDsetdimstrs returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further
described in Table 3X.

Routine Name
[Return Type]

(FORTRAN-
77)

Parame-
ter

Parameter Type

Description
C

FORTRAN-
77

SDsetdatastrs
[intn]

(sfsdtstr)

sds_id int32 integer Data set identifier

label char * character*(*) Label for the data

unit char * character*(*) Definition of the units

format char * character*(*) Description of the data format

coord_sys-
tem

char * character*(*) Description of the coordinate system

SDgetdatastrs
[intn]

(sfgdtstr)

sds_id int32 integer Data set identifier

label char * character*(*) Buffer for the label

unit char * character*(*) Buffer for the description of the units

format char * character*(*) Buffer for the description of the data format

coord_sys-
tem

char * character*(*) Buffer for the description of the coordinate system

len intn integer Minimum length of the string buffers
106 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
3.10.3.2 Reading a String Attribute of a Dimension: SDgetdimstrs

SDgetdimstrs reads the predefined string attributes label, unit, and format from an SDS dimen-
sion. These string attributes have previously been set by the routine SDsetdimstrs. The syntax of
SDgetdimstrs is as follows:

C: status = SDgetdimstrs(dim_id, label, unit, format, len);

FORTRAN: status = sfgdmstr(dim_id, label, unit, format, len)

SDgetdimstrs stores the predefined attributes of the dimension into the arguments label, unit, and
format, which are character string buffers. If a particular attribute has not been set by SDsetdim-
strs, the first character of the corresponding returned string will be NULL for C and 0 for FOR-
TRAN-77. Each string buffer is assumed to be at least len characters long, including the space to
hold the NULL termination character. If you do not wish to get a predefined attribute of this dimen-
sion, set the corresponding parameter to NULL in C and an empty string in FORTRAN-77.

SDgetdimstrs returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further
described in Table 3X.

TABLE 3X SDsetdimstrs and SDgetdimstrs Parameter Lists

3.10.4Range Attributes

The attribute range contains user-defined maximum and minimum values in a selected range.
Since the HDF library does not check or update the range attribute as data is added or removed
from the file, the calling program may assign any values deemed appropriate. Also, because the
maximum and minimum values are supposed to relate to the data set, it is assumed that they are of
the same data type as the data.

3.10.4.1 Writing a Range Attribute: SDsetrange

SDsetrange sets the maximum and minimum range values for the data set identified by sds_id to
the values provided by the parameters max and min. The syntax of the routine is as follows:

C: status = SDsetrange(sds_id, max, min);

FORTRAN: status = sfsrange(sds_id, max, min)

SDsetrange does not compute the maximum and minimum range values, it only stores the values
as given. As a result, the maximum and minimum range values may not always reflect the actual

Routine Name
[Return Type]

(FORTRAN-
77)

Parame-
ter

Parameter Type

Description
C

FORTRAN-
77

SDsetdimstrs
[intn]

(sfsdmstr)

dim_id int32 integer Dimension identifier

label char * character*(*) Label describing the specified dimension

unit char * character*(*) Units to be used with the specified dimension

format char * character*(*) Format to use when displaying the scale values

SDgetdimstrs
[intn]

(sfgdmstr)

dim_id int32 integer Dimension identifier

label char * character*(*) Buffer for the dimension label

unit char * character*(*) Buffer for the dimension unit

format char * character*(*) Buffer for the dimension format

len intn integer Maximum length of the string attributes
June 2017 107

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
maximum and minimum range values in the data set data. Recall that the type of max and min is
assumed to be the same as that of the data set data.

SDsetrange returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further described
in Table 3Y.

3.10.4.2 Reading a Range Attribute: SDgetrange

SDgetrange reads the maximum and minimum valid values of a data set. The syntax of this rou-
tine is as follows:

C: status = SDgetrange(sds_id, &max, &min);

FORTRAN: status = sfgrange(sds_id, max, min)

The maximum and minimum range values are stored in the parameters max and min, respectively,
and must have previously been set by SDsetrange. Recall that the type of max and min is assumed
to be the same as that of the data set data.

SDgetrange returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further described
in Table 3Y.

TABLE 3Y SDsetrange and SDgetrange Parameter Lists

3.10.5Fill Values and Fill Mode

A fill value is the value used to fill the spaces between non-contiguous writes to SDS arrays; it can
be set with SDsetfillvalue. If a fill value is set before writing data to an SDS, the entire array is
initialized to the specified fill value. By default, any location not subsequently overwritten with
SDS data will contain the fill value.

A fill value must be of the same data type as the array to which it is written. To avoid conversion
errors, use data-specific fill values instead of special architecture-specific values, such as infinity
and Not-a-Number or NaN.

A fill mode specifies whether the fill value is to be written to all the SDSs in the file; it can be set
with SDsetfillmode.

Writing fill values to an SDS can involve more I/O overhead than is necessary, particularly in sit-
uations where the data set is to be contiguously filled with data before any read operation is made.
In other words, writing fill values is only necessary when there is a possibility that the data set will
be read before all gaps between writes are filled with data, i.e., before all elements in the array
have been assigned values. Thus, for a file that has only data sets containing contiguous data, the
fill mode should be set to SD_NOFILL (or 256). Avoiding unnecessary filling can substantially
increase the application performance.

Routine Name
[Return Type]

(FORTRAN-
77)

Parame-
ter

Parameter Type

Description
C FORTRAN-77

SDsetrange
[intn]

(sfsrange)

sds_id int32 integer Data set identifier

max VOIDP <valid data type> Maximum value to be stored

min VOIDP <valid data type> Minimum value to be stored

SDgetrange
[intn]

(sfgrange)

sds_id int32 integer Data set identifier

max VOIDP <valid data type> Buffer for the maximum value

min VOIDP <valid data type> Buffer for the minimum value
108 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
For a non-contiguous data set, the array elements that have no actual data values must be filled
with a fill value before the data set is read. Thus, for a file that has a non-contiguous data set, the
fill mode should be set to SD_FILL (or 0) and a fill value will be written to the all data sets in the
file.

Note that, currently, SDsetfillmode specifies the fill mode of all data sets in the file. Thus, either
all data sets are in SD_FILL mode or all data sets are in SD_NOFILL mode. However, when a spe-
cific SDS needs to be written with a fill value while others in the file do not, the following proce-
dure can be used: set the fill mode to SD_FILL, write data to the data set requiring fill values, then
set the fill mode back to SD_NOFILL. This procedure will produce one data set with fill values
while the remaining data sets have no fill values.

3.10.5.1 Writing a Fill Value Attribute: SDsetfillvalue

SDsetfillvalue assigns a new value to the fill value attribute for an SDS array. The syntax of this
routine is as follows:

C: status = SDsetfillvalue(sds_id, fill_val);

FORTRAN: status = sfsfill(sds_id, fill_val)

OR status = sfscfill(sds_id, fill_val)

The argument fill_val is the new fill value. It is recommended that you set the fill value before
writing data to an SDS array, as calling SDsetfillvalue after data is written to an SDS array only
changes the fill value attribute — it does not update the existing fill values.

There are two FORTRAN-77 versions of this routine: sfsfill and sfscfill. sfsfill writes numeric fill
value data and sfscfill writes character fill value data.

SDsetfillvalue returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further
described in (See Table 3Z on page 110).

3.10.5.2 Reading a Fill Value Attribute: SDgetfillvalue

SDgetfillvalue reads in the fill value of an SDS array as specified by a SDsetfillvalue call or its
equivalent. The syntax of this routine is as follows:

C: status = SDgetfillvalue(sds_id, &fill_val);

FORTRAN: status = sfgfill(sds_id, fill_val)

OR status = sfgcfill(sds_id, fill_val)

The fill value is stored in the argument fill_val which is previously allocated based on the data
type of the SDS data.

There are two FORTRAN-77 versions of this routine: sfgfill and sfgcfill. The sfgfill routine reads
numeric fill value data and sfgcfill reads character fill value data.

SDgetfillvalue returns a value of SUCCEED (or 0) if a fill value is retrieved successfully, or FAIL (or
-1) otherwise, including when the fill value has not been set. The parameters of SDgetfillvalue
are further described in Table 3Z.

3.10.5.3 Setting the Fill Mode for all SDSs in the Specified File: SDsetfillmode

SDsetfillmode sets the fill mode for all data sets contained in the file identified by the parameter
sd_id. The syntax of SDsetfillmode is as follows:

C: old_fmode = SDsetfillmode(sd_id, fill_mode);
June 2017 109

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
FORTRAN: old_fmode = sfsflmd(sd_id, fill_mode)

The argument fill_mode is the fill mode to be applied and can be set to either SD_FILL (or 0) or
SD_NOFILL (or 256). SD_FILL specifies that fill values will be written to all SDSs in the specified
file by default. If SDsetfillmode is never called before SDsetfillvalue, SD_FILL is the default fill
mode. SD_NOFILL specifies that, by default, fill values will not be written to all SDSs in the speci-
fied file. This can be overridden for a specific SDS by calling SDsetfillmode then writing data to
this data set before closing the file.

Note that whenever a file has been newly opened, or has been closed and then re-opened, the
default SD_FILL fill mode will be in effect until it is changed by a call to SDsetfillmode.

SDsetfillmode returns the fill mode value before it is reset or a value of FAIL (or -1). The param-
eters of this routine are further described in Table 3Z.

TABLE 3Z SDsetfillvalue, SDgetfillvalue, and SDsetfillmode Parameter Lists

3.10.6Calibration Attributes

The calibration attributes are designed to store calibration information associated with data set
data. When data is calibrated, the values in an array can be represented using a smaller data type
than the original. For instance, an array containing data of type float could be stored as an array
containing data of type 8- or 16-bit integer. Note that neither function performs any operation on
the data set.

3.10.6.1 Setting Calibration Information: SDsetcal

SDsetcal stores the scale factor, offset, scale factor error, offset error, and the data type of the
uncalibrated data set for the specified data set. The syntax of this routine is as follows:

C: status = SDsetcal(sds_id, cal, cal_error, offset, off_err, data_-
type);

FORTRAN: status = sfscal(sds_id, cal, cal_error, offset, off_err, data_type)

SDsetcal has six arguments; sds_id, cal, cal_error, offset, off_err, and data_type. The argument
cal represents a single value that when multiplied against every value in the calibrated data array
reproduces the original data array (assuming an offset of 0). The argument offset represents a sin-
gle value that when subtracted from every value in the calibrated array reproduces the original
data (assuming a cal of 1). The values of the calibrated data array relate to the values of the origi-
nal data array according to the following equation:

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C FORTRAN-77

SDsetfillvalue
[intn]

(sfsfill/
sfscfill)

sds_id int32 integer Data set identifier

fill_val VOIDP
<valid numeric data type>/

character*(*)
Fill value to be set

SDgetfillvalue
[intn]

(sfgfill/
sfgcfill)

sds_id int32 integer Data set identifier

fill_val VOIDP
<valid numeric data type>/

character*(*)
Buffer for the fill value

SDsetfillmode
[intn]

(sfsflmd)

sd_id int32 integer SD interface identifier

fill_mode intn integer Fill mode to be set
110 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
orig_value = cal * (cal_value - offset)

In addition to cal and offset, SDsetcal also includes the scale and offset errors. The argument
cal_err contains the potential error of the calibrated data due to scaling; offset_err contains the
potential error for the calibrated data due to the offset.

SDsetcal returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further described in
Table 3AA.

3.10.6.2 Reading Calibrated Data: SDgetcal

SDgetcal reads calibration attributes for an SDS array as previously written by SDsetcal. The
syntax of this routine is as follows:

C: status = SDgetcal(sds_id, &cal, &cal_error, &offset, &offset_err,
&data_type);

FORTRAN: status = sfgcal(sds_id, cal, cal_error, offset, offset_err, data_-
type)

Because the HDF library does not actually apply calibration information to the data, SDgetcal can
be called anytime before or after the data is read. If a calibration record does not exist, SDgetcal
returns FAIL. SDgetcal takes six arguments: sds_id, cal, cal_error, offset, offset_err, and data_-
type. Refer to Section 3.10.6.1 for the description of these arguments.

SDgetcal returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDgetcal are
described in Table 3AA.

TABLE 3AA SDsetcal and SDgetcal Parameter Lists

EXAMPLE 16. Calibrating Data.

Suppose the values in the calibrated array cal_val are the following integers:

cal_val[6] = {2, 4, 5, 11, 26, 81}

By applying the calibration equation orig = cal * (cal_val - offset) with cal = 0.50 and offset = -
2000.0, the calibrated array cal_val[] returns to its original floating-point form:

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

SDsetcal
[intn]

(sfscal)

sds_id int32 integer Data set identifier

cal float64 real*8 Calibration factor

cal_error float64 real*8 Calibration error

offset float64 real*8 Uncalibrated offset

offset_err float64 real*8 Uncalibrated offset error

data_type int32 integer Data type of uncalibrated data

SDgetcal
[intn]

(sfgcal)

sds_id int32 integer Data set identifier

cal float64 * real*8 Calibration factor

cal_error float64 * real*8 Calibration error

offset float64 * real*8 Uncalibrated offset

offset_err float64 * real*8 Uncalibrated offset error

data_type int32 * integer Data type of uncalibrated data
June 2017 111

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
original_val[6] = {1001.0, 1002.0, 1002.5, 1005.5, 1013.0, 1040.5}

3.11 Convenient Operations Related to File and Environment

The routines covered in this section provide methods for obtaining file name, object’s type, length
of object’s name, and number of opened files allowed.

SDgetfilename retrieves the name of the file. SDgetnamelen retrieves the length of an object’s
name. SDreset_maxopenfiles resets the maximum number of files that can be opened at a time.
SDget_maxopenfiles retrieves current limits on opened files. SDget_numopenfiles returns the
number of files currently open.

These routines are described individually in the following subsections.

3.11.1Obtaining the Name of a File: SDgetfilename

Given an identifier to a file, SDgetfilename returns its name via parameter filename. The user is
repsonsible for allocating sufficient space to hold the file name. It can be at most H4_MAX-
_NC_NAME characters in length. SDgetnamelen can be used to obtain the actual length of the
name. The syntax of SDgetfilename is as follows:

C: status = SDgetfilename(sd_id, filename);

FORTRAN: status = sfgetfname(sd_id, filename)

SDgetfilename returns the length of the file name, without '\0', or FAIL (or -1). The parameters
of SDgetfilename are specified in Table 3AB.

3.11.2Obtaining the Length of an HDF4 Object’s Name: SDgetnamelen

SDgetnamelen retrieves the length of an object’s name, given the object’s identifier, obj_id. The
object can be a file, a dataset, or a dimension. SDgetnamelen stores the length in the parameter
name_len. The length does not include the '\0' character. The syntax of this routine is as follows:

C: status = SDgetnamelen(obj_id, name_len);

FORTRAN: status = sfgetnamelen(obj_id, name_len)

SDgetnamelen returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDgetname-
len are specified in Table 3AB.

TABLE 3AB SDgetfilename and SDgetnamelen Parameter Lists

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type

Description
C

FORTRAN-
77

SDgetfilename
[intn]

(sfgetfname)

sd_id int32 integer SD interface identifier

filename char* character*(*) Name of the file

SDgetnamelen
[intn]

(sfgetnamelen)

obj_id int32 integer HDF4 object identifier

name_len uint16* integer Length of the name
112 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
3.11.3Resetting the Allowed Number of Opened Files: SDreset_maxopenfiles

SDreset_maxopenfiles resets the maximum number of files can be opened at the same time. The
syntax of the routine SDsetcompress is as follows:

C: curr_max = SDreset_maxopenfiles(req_max);

FORTRAN: curr_max = sfrmaxopenf(req_max)

Prior to release 4.2.2, the maximum number of files that can be opened at the same time was lim-
ited to 32. In HDF 4.2.2 and later versions, when this limit is reached, the library will increase it
to the system limit minus 3 to account for stdin, stdout, and stderr.

This function can be called anytime to change the maximum number of open files allowed in HDF
to req_max. If req_max is 0, SDreset_maxopenfiles will simply return the current maximum
number of open files allowed. If req_max exceeds system limit, SDreset_maxopenfiles will reset
the maximum number of open files to the system limit, and return that value.

Furthermore, if the system maximum limit is reached, the library will push the error code
DFE_TOOMANY onto the error stack. User applications can detect this after an SDstart fails.

SDreset_maxopenfiles returns the current maximum number of opened files allowed, or FAIL (or
-1). The parameters of SDreset_maxopenfiles are specified in Table 3AC on page 114.

3.11.4Obtaining Current Limits on Opened Files: SDget_maxopenfiles

SDget_maxopenfiles retrieves the current number of opened files allowed in HDF and the maxi-
mum number of opened files allowed on a system. The two parameters, curr_max and sys_limit,
contain the two values, respectively. The syntax of this routine is as follows:

C: status = SDget_maxopenfiles(curr_max, sys_limit);

FORTRAN: status = sfgmaxopenf(cur_max, sys_limit)

SDget_maxopenfiles returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of
SDget_maxopenfiles are specified in Table 3AC on page 114.

3.11.5Obtaining Number of Opened Files: SDget_numopenfiles

SDget_numopenfiles returns the number of files that are opened currently. The syntax of this rou-
tine is as follows:

C: num_opened = SDget_numopenfiles();

FORTRAN: num_opened = sfgnumopenf(cur_num)

SDget_numopenfiles returns the number of opened files or FAIL (or -1). The parameters of
SDget_numopenfiles are specified in Table 3AC on page 114.
June 2017 113

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
TABLE 3AC SDreset_maxopenfiles, SDget_maxopenfiles, andSDget_numopenfiles Parameter Lists

3.12 Chunked (or Tiled) Scientific Data Sets

NOTE: It is strongly encouraged that HDF users who wish to use the SD chunking routines first
read the section on SD chunking in Chapter 14, HDF Performance Issues. In that section the con-
cepts of chunking are explained, as well as their use in relation to HDF. As the ability to work with
chunked data has been added to HDF functionality for the purpose of addressing specific perfor-
mance-related issues, you should first have the necessary background knowledge to correctly
determine how chunking will positively or adversely affect your application.

This section will refer to both "tiled" and "chunked" SDSs as simply chunked SDSs, as tiled
SDSs are the two-dimensional case of chunked SDSs.

3.12.1Making an SDS a Chunked SDS: SDsetchunk

In HDF, an SDS must first be created as a generic SDS through the SDcreate routine, then
SDsetchunk is called to make that generic SDS a chunked SDS. Note that there are two restric-
tions that apply to chunked SDSs. The maximum number of chunks in a single HDF file is 65,535
and a chunked SDS cannot contain an unlimited dimension. SDsetchunk sets the chunk size and
the compression method for a data set. The syntax of SDsetchunk is as follows:

C: status = SDsetchunk(sds_id, c_def, flag);

FORTRAN: status = sfschnk(sds_id, dim_length, comp_type, comp_prm)

The chunking information is provided in the parameters c_def and flag in C, and the parameters
comp_type and comp_prm in FORTRAN-77.

In C:

The parameter c_def has type HDF_CHUNK_DEF which is defined as follows:
typedef union hdf_chunk_def_u {

int32 chunk_lengths[MAX_VAR_DIMS];
struct {

int32 chunk_lengths[MAX_VAR_DIMS];
int32 comp_type;
comp_info cinfo;

} comp;
struct {

int32 chunk_lengths[MAX_VAR_DIMS];
intn start_bit;
intn bit_len;
intn sign_ext;

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type

Description
C

FORTRAN-
77

SDreset_maxopenfiles
[intn]

(sfrmaxopenf)
req_max intn integer Requested maximum number of opened files

SDget_maxopenfiles
[intn]

(sfgmaxopenf)

curr_max intn* integer Current number of open files allowed

sys_limit intn* integer
Maximum number of open files allowed on a sys-
tem

SDget_numopenfiles
[intn]

(sfgnumopenf)
curr_num N/A integer

Current number of open files. C function has no
parameter
114 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
intn fill_one;
} nbit;

} HDF_CHUNK_DEF

Refer to the reference manual page for SDsetcompress for the definition of the structure com-
p_info.

The parameter flag specifies the type of the data set, i.e., if the data set is chunked or chunked and
compressed with either RLE, Skipping Huffman, GZIP, Szip, or NBIT compression methods.
Valid values of flag are HDF_CHUNK for a chunked data set, (HDF_CHUNK | HDF_COMP) for a chunked
data set compressed with RLE, Skipping Huffman, GZIP, and Szip compression methods, and
(HDF_CHUNK | HDF_NBIT) for a chunked NBIT-compressed data set.

There are three pieces of chunking and compression information which should be specified:
chunking dimensions, compression type, and, if needed, compression parameters.

If the data set is chunked, i.e., flag value is HDF_CHUNK, then the elements of the array
chunk_lengths in the union c_def (c_def.chunk_lengths[]) have to be initialized to the chunk
dimension sizes.

If the data set is chunked and compressed using RLE, Skipping Huffman, GZIP, or Szip methods
(i.e., flag value is set up to (HDF_CHUNK | HDF_COMP)), then the elements of the array
chunk_lengths of the structure comp in the union c_def (c_def.comp.chunk_lengths[])
have to be initialized to the chunk dimension sizes.

If the data set is chunked and NBIT compression is applied (i.e., flag values is set up to
(HDF_CHUNK | HDF_NBIT)), then the elements of the array chunk_lengths of the structure nbit
in the union c_def (c_def.nbit.chunk_lengths[]) have to be initialized to the chunk
dimension sizes.

The values of HDF_CHUNK, HDF_COMP, and HDF_NBIT are defined in the header file hproto.h.

Compression types are passed in the field comp_type of the structure cinfo, which is an element of
the structure comp in the union c_def (c_def.comp.cinfo.comp_type). Valid compression
types are: COMP_CODE_RLE for RLE, COMP_CODE_SKPHUFF for Skipping Huffman, COMP_CODE_DE-
FLATE for GZIP compression.

For Skipping Huffman, GZIP, and Szip compression methods, parameters are passed in corre-
sponding fields of the structure cinfo. Specify skipping size for Skipping Huffman compression in
the field c_def.comp.cinfo.skphuff.skp_size; this value cannot be less than 1. Specify
deflate level for GZIP compression in the field c_def.comp.cinfo.deflate_level. Valid
values of deflate levels are integers from 0 to 9 inclusive. Specify the Szip options mask and the
number of pixels per block in a chunked and Szip-compressed dataset in the fields
c_info.szip.options_mask and c_info.szip.pixels_per_block, respectively.

NBIT compression parameters are specified in the fields start_bit, bit_len, sign_ext, and fill_one
in the structure nbit of the union c_def.

In FORTRAN-77:

The dim_length array specifies the chunk dimensions.

The comp_type parameter specifies the compression type. Valid compression types and their val-
ues are defined in the hdf.inc file, and are listed below.

COMP_CODE_NONE (or 0) for uncompressed data
COMP_CODE_RLE (or 1) for data compressed using the RLE compression algorithm
COMP_CODE_NBIT (or 2) for data compressed using the NBIT compression algorithm
COMP_CODE_SKPHUFF (or 3) for data compressed using the Skipping Huffman com-

pression algorithm
June 2017 115

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
COMP_CODE_DEFLATE (or 4) for data compressed using the GZIP compression algo-
rithm

COMP_CODE_SZIP (or 5) for data compressed using the Szip compression algorithm

The parameter comp_prm(1) specifies the skipping size for the Skipping Huffman compression
method and the deflate level for the GZIP compression method.

For Szip compression, the Szip options mask and the number of pixels per block in a chunked and
Szip-compressed dataset must be specified in comp_prm(1) and comp_prm(2), respectively.

For NBIT compression, the four elements of the array comp_prm correspond to the four NBIT
compression parameters listed in the structure nbit. The array comp_prm should be initialized as
follows:

Refer to the description of the union HDF_CHUNK_DEF and of the routine SDsetnbitdataset for
NBIT compression parameter definitions.

SDsetchunk returns either a value of SUCCEED (or 0) or FAIL (or -1). Refer to Table 3AD and
Table 3AE for the descriptions of the parameters of both versions.

TABLE 3AD SDsetchunk Parameter List

TABLE 3AE sfschnk Parameter List

3.12.2Setting the Maximum Number of Chunks in the Cache:
SDsetchunkcache

To maximize the performance of the HDF library routines when working with chunked SDSs, the
library maintains a separate area of memory specifically for cached data chunks. SDsetchunk-

comp_prm(1) = value of option_mask

comp_prm(2) = value of pixels_per_-
block

comp_prm(1) = value of
start_bit

comp_prm(2) = value of bit_len

comp_prm(3) = value of sign_ext

comp_prm(4) = value of fill_one

Routine Name
[Return Type]

Parame-
ter

Parameter Type
Description

C

SDsetchunk
[intn]

sds_id int32 Data set identifier

c_def HDF_CHUNK_DEF Union containing information on how the chunks are to be defined

flag int32 Flag determining the behavior of the routine

Routine Name Parame-
ter

Parameter Type
Description

FORTRAN-77

sfschnk

sds_id integer Data set identifier

dim_length integer(*) Sizes of the chunk dimensions

comp_type integer Compression type

comp_prm integer(*) Array containing information needed by the compression algorithm
116 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
cache sets the maximum number of chunks of the specified SDS that are cached into this segment
of memory. The syntax of SDsetchunkcache is as follows:

C: status = SDsetchunkcache(sds_id, maxcache, flag);

FORTRAN: status = sfscchnk(sds_id, maxcache, flag)

When the chunk cache has been filled, any additional chunks written to cache memory are cached
according to the Least-Recently-Used (LRU) algorithm. This means that the chunk that has
resided in the cache the longest without being reread or rewritten will be written over with the
new chunk.

By default, when a generic SDS is made a chunked SDS, the parameter maxcache is set to the
number of chunks along the fastest changing dimension. If needed, SDsetchunkcache can then be
called again to reset the size of the chunk cache.

Essentially, the value of maxcache cannot be set to a value less than the number of chunks cur-
rently cached. If the chunk cache is not full, then the size of the chunk cache is reset to the new
value of maxcache only if it is greater than the current number of chunks cached. If the chunk
cache has been completely filled with cached data, SDsetchunkcache has already been called,
and the value of the parameter maxcache in the current call to SDsetchunkcache is larger than the
value of maxcache in the last call to SDsetchunkcache, then the value of maxcache is reset to the
new value.

Currently the only allowed value of the parameter flag is 0, which designates default operation. In
the near future, the value HDF_CACHEALL will be provided to specify that the entire SDS array is to
be cached.

SDsetchunkcache returns the maximum number of chunks that can be cached (the value of the
parameter maxcache) if successful and FAIL (or -1) otherwise. The parameters of SDsetchunk-
cache are further described in Table 3AF.

TABLE 3AF SDsetchunkcache Parameter List

3.12.3Writing Data to Chunked SDSs: SDwritechunk and SDwritedata

Both SDwritedata and SDwritechunk can be used to write to a chunked SDS. Later in this chap-
ter, situations where SDwritechunk may be a more appropriate routine than SDwritedata will be
discussed, but, for the most part, both routines achieve the same results. SDwritedata is discussed
in Section 3.5.1 on page 31. The syntax of SDwritechunk is as follows:

C: status = SDwritechunk(sds_id, origin, datap);

FORTRAN: status = sfwchnk(sds_id, origin, datap)

OR status = sfwcchnk(sds_id, origin, datap)

The location of data in a chunked SDS can be specified in two ways. The first is the standard
method used in the routine SDwritedata that access both chunked and non-chunked SDSs; this

Routine Name
[Return Type]

(FORTRAN-77)

Parame-
ter

Parameter Type

Description
C

FORTRAN-
77

SDsetchunkcache
[intn]

(sfscchnk)

sds_id int32 integer Data set identifier

maxcache int32 integer Maximum number of chunks to cache

flag int32 integer Flag determining the default caching behavior
June 2017 117

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
method refers to the starting location as an offset in elements from the origin of the SDS array
itself. The second method is used by the routine SDwritechunk that only access chunked SDSs;
this method refers to the origin of the chunk as an offset in chunks from the origin of the chunk
array itself. The parameter origin specifies this offset; it also may be considered as chunk’s coor-
dinates in the chunk array. Figure 3d on page 118 illustrates this method of chunk indexing in a 4-
by-4 element SDS array with 2-by-2 element chunks.

FIGURE 3d Chunk Indexing as an Offset in Chunks

SDwritechunk is used when an entire chunk is to be written and requires the chunk offset to be
known. SDwritedata is used when the write operation is to be done regardless of the chunking
scheme used in the SDS. Also, as SDwritechunk is written specifically for chunked SDSs and
does not have the overhead of the additional functionality supported by the SDwritedata routine,
it is much faster than SDwritedata. Note that attempting to use SDwritechunk for writing to a
non-chunked data set will return a FAIL (or -1).

The parameter datap must point to an array containing the entire chunk of data. In other words,
the size of the array must be the same as the chunk size of the SDS to be written to, or an error
condition will result.

There are two FORTRAN-77 versions of this routine: sfwchnk writes numeric data and sfwcchnk
writes character data.

SDwritechunk returns either a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDwri-
techunk are in Table 3AG. The parameters of SDwritedata are listed in (See Table 3D on
page 33).

(0,0) (1,0)

(1,1)(0,1)

3

2

1

0

0 1 2 3

X Dimension

Y Dimension

This chunk is in location (0, 0)
118 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
TABLE 3AG SDwritechunk Parameter List

3.12.4Reading Data from Chunked SDSs: SDreadchunk and SDreaddata

As both SDwritedata and SDwritechunk can be used to write data to a chunked SDS, both
SDreaddata and SDreadchunk can be used to read data from a chunked SDS. SDreaddata is
discussed in Section 3.5.1 on page 31. The syntax of SDreadchunk is as follows:

C: status = SDreadchunk(sds_id, origin, datap);

FORTRAN: status = sfrchnk(sds_id, origin, datap)

OR status = sfrcchnk(sds_id, origin, datap)

SDreadchunk is used when an entire chunk of data is to be read. SDreaddata is used when the
read operation is to be done regardless of the chunking scheme used in the SDS. Also, SDread-
chunk is written specifically for chunked SDSs and does not have the overhead of the additional
functionality supported by the SDreaddata routine. Therefore, it is much faster than SDreaddata.
Note that SDreadchunk will return FAIL (or -1) when an attempt is made to read from a non-
chunked data set.

As with SDwritechunk, the parameter origin specifies the coordinates of the chunk to be read,
and the parameter datap must point to an array containing enough space for an entire chunk of
data. In other words, the size of the array must be the same as or greater than the chunk size of the
SDS to be read, or an error condition will result.

There are two FORTRAN-77 versions of this routine: sfrchnk reads numeric data and sfrcchnk
reads character data.

SDreadchunk returns either a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDread-
chunk are further described in Table 3AH. The parameters of SDreaddata are listed in (See
Table 3K on page 59).

Routine Name
[Return Type]

(FORTRAN-
77)

Parame-
ter

Parameter Type

Description
C FORTRAN-77

SDwritechunk
[intn]

(sfwchnk/sfw-
cchnk)

sds_id int32 integer Data set identifier

origin int32 * integer
Coordinates of the origin of the chunk to
be written

datap VOIDP
<valid numeric data

type>(*)/character*(*)
Buffer containing the data to be written
June 2017 119

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
TABLE 3AH SDreadchunk Parameter List

3.12.5Obtaining Information about a Chunked SDS: SDgetchunkinfo

SDgetchunkinfo is used to determine whether an SDS is chunked and how the chunk is defined.
The syntax of this routine is as follows:

C: status = SDgetchunkinfo(sds_id, c_def, flag);

FORTRAN: status = sfgichnk(sds_id, dim_length, flag)

Currently, only information about chunk dimensions is retrieved into the corresponding structure
element c_def for each type of compression in C, and into the array dim_length in Fortran. No
information on compression parameters is available in the structure comp of the union
HDF_CHUNK_DEF. For specific information on c_def, refer to Section 3.12.1 on page 114.

The value returned in the parameter flag indicates the data set type (i.e., whether the data set is not
chunked, chunked, or chunked and compressed).

If the data set is not chunked, the value of flag will be HDF_NONE (or -1). If the data set is chunked,
the value of flag will be HDF_CHUNK (or 0). If the data set is chunked and compressed with either
RLE, Skipping Huffman, or GZIP compression algorithm, then the value of flag will be
HDF_CHUNK | HDF_COMP (or 1). If the data set is chunked and compressed with NBIT compression,
then the value of flag will be HDF_CHUNK | HDF_NBIT (or 2).

If the chunk length for each dimension is not needed, NULL can be passed in as the value of the
parameter c_def in C.

Note that if the data set is empty, SDgetchunkinfo will fail. Thus, application must first verify
that the data set has been written with data, before calling SDgetchunkinfo. SDcheckempty in
Section 3.7.10 on page 74 determines whether the data set is empty.

SDgetchunkinfo returns either a value of SUCCEED (or 0) or FAIL (or -1). Refer to Table 3AI and
Table 3AJ for the description of the parameters of both versions.

Routine Name
[Return Type]

(FORTRAN-
77)

Parame-
ter

Parameter Type

Description
C FORTRAN-77

SDreadchunk
[intn]

(sfrchnk/sfrcchnk)

sds_id int32 integer Data set identifier

origin int32 * integer(*)
Coordinates of the origin of the chunk to
be read

datap VOIDP
<valid numeric data type>(*)/

character*(*)
Buffer for the returned chunk data
120 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
TABLE 3AI SDgetchunkinfo Parameter List

TABLE 3AJ sfgichnk Parameter List

EXAMPLE 17. Writing and Reading a Chunked SDS.

This example demonstrates the use of the routines SDsetchunk/sfschnk, SDwritedata/sfwdata,
SDwritechunk/sfwchnk, SDgetchunkinfo/sfgichnk, SDreaddata/sfrdata, and SDreadchunk/
sfrchnk to create a chunked data set, write data to it, get information about the data set, and read
the data back. Note that the Fortran example uses transpose data to reflect the difference between
C and Fortran internal storage.

C:
#include "mfhdf.h"

#define FILE_NAME "SDSchunked.hdf"
#define SDS_NAME "ChunkedData"
#define RANK 2

main()
{
 /************************* Variable declaration **************************/

 int32 sd_id, sds_id, sds_index;
 intn status;
 int32 flag, maxcache, new_maxcache;
 int32 dim_sizes[2], origin[2];
 HDF_CHUNK_DEF c_def, c_def_out; /* Chunking definitions */
 int32 comp_flag, c_flags;
 int16 all_data[9][4];
 int32 start[2], edges[2];
 int16 chunk_out[3][2];
 int16 row[2] = { 5, 5 };
 int16 column[3] = { 4, 4, 4 };
 int16 fill_value = 0; /* Fill value */
 int i,j;
 /*
 * Declare chunks data type and initialize some of them.
 */
 int16 chunk1[3][2] = { 1, 1,
 1, 1,
 1, 1 };

Routine Name
[Return Type]

Parame-
ter

Parameter Type
Description

C

SDgetchunkinfo
[intn]

sds_id int32 Data set identifier

c_def HDF_CHUNK_DEF * Union structure containing information about the chunks in the SDS

flag int32 * Flag determining the behavior of the routine

Routine Name Parame-
ter

Parameter Type
Description

FORTRAN-77

sfgichnk
sds_id integer Data set identifier

dim_length integer(*) Sizes of the chunk dimensions

comp_type integer Compression type
June 2017 121

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
 int16 chunk2[3][2] = { 2, 2,
 2, 2,
 2, 2 };

 int16 chunk3[3][2] = { 3, 3,
 3, 3,
 3, 3 };

 int16 chunk6[3][2] = { 6, 6,
 6, 6,
 6, 6 };

 /********************* End of variable declaration ***********************/
 /*
 * Define chunk’s dimensions.
 *
 * In this example we do not use compression.
 * To use chunking with RLE, Skipping Huffman, and GZIP
 * compression, initialize
 *
 * c_def.comp.chunk_lengths[0] = 3;
 * c_def.comp.chunk_lengths[1] = 2;
 *
 * To use chunking with NBIT, initialize
 *
 * c_def.nbit.chunk_lengths[0] = 3;
 * c_def.nbit.chunk_lengths[1] = 2;
 *
 */
 c_def.chunk_lengths[0] = 3;
 c_def.chunk_lengths[1] = 2;

 /*
 * Create the file and initialize SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_CREATE);

 /*
 * Create 9x4 SDS.
 */
 dim_sizes[0] = 9;
 dim_sizes[1] = 4;
 sds_id = SDcreate (sd_id, SDS_NAME,DFNT_INT16, RANK, dim_sizes);

 /*
 * Fill the SDS array with the fill value.
 */
 status = SDsetfillvalue (sds_id, (VOIDP)&fill_value);

 /*
 * Create chunked SDS.
 * In this example we do not use compression (third
 * parameter of SDsetchunk is set to HDF_CHUNK).
 *
 * To use RLE compresssion, set compression type and flag
 *
 * c_def.comp.comp_type = COMP_CODE_RLE;
 * comp_flag = HDF_CHUNK | HDF_COMP;
 *
 * To use Skipping Huffman compression, set compression type, flag
 * and skipping size skp_size
 *
 * c_def.comp.comp_type = COMP_CODE_SKPHUFF;
122 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 * c_def.comp.cinfo.skphuff.skp_size = value;
 * comp_flag = HDF_CHUNK | HDF_COMP;
 *
 * To use GZIP compression, set compression type, flag and
 * deflate level
 *
 * c_def.comp.comp_type = COMP_CODE_DEFLATE;
 * c_def.comp.cinfo.deflate.level = value;
 * comp_flag = HDF_CHUNK | HDF_COMP;
 *
 * To use NBIT compression, set compression flag and
 * compression parameters
 *
 * comp_flag = HDF_CHUNK | HDF_NBIT;
 * c_def.nbit.start_bit = value1;
 * c_def.nbit.bit_len = value2;
 * c_def.nbit.sign_ext = value3;
 * c_def.nbit.fill_one = value4;
 */
 comp_flag = HDF_CHUNK;
 status = SDsetchunk (sds_id, c_def, comp_flag);

 /*
 * Set chunk cache to hold maximum of 3 chunks.
 */
 maxcache = 3;
 flag = 0;
 new_maxcache = SDsetchunkcache (sds_id, maxcache, flag);

 /*
 * Write chunks using SDwritechunk function.
 * Chunks can be written in any order.
 */

 /*
 * Write the chunk with the coordinates (0,0).
 */
 origin[0] = 0;
 origin[1] = 0;
 status = SDwritechunk (sds_id, origin, (VOIDP) chunk1);

 /*
 * Write the chunk with the coordinates (1,0).
 */
 origin[0] = 1;
 origin[1] = 0;
 status = SDwritechunk (sds_id, origin, (VOIDP) chunk3);

 /*
 * Write the chunk with the coordinates (0,1).
 */
 origin[0] = 0;
 origin[1] = 1;
 status = SDwritechunk (sds_id, origin, (VOIDP) chunk2);

 /*
 * Write chunk with the coordinates (1,2) using
 * SDwritedata function.
 */
 start[0] = 6;
 start[1] = 2;
 edges[0] = 3;
 edges[1] = 2;
June 2017 123

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP) chunk6);

 /*
 * Fill second column in the chunk with the coordinates (1,1)
 * using SDwritedata function.
 */
 start[0] = 3;
 start[1] = 3;
 edges[0] = 3;
 edges[1] = 1;
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP) column);

 /*
 * Fill second row in the chunk with the coordinates (0,2)
 * using SDwritedata function.
 */
 start[0] = 7;
 start[1] = 0;
 edges[0] = 1;
 edges[1] = 2;
 status = SDwritedata (sds_id, start, NULL, edges, (VOIDP) row);

 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);

 /*
 * Reopen the file and access the first data set.
 */
 sd_id = SDstart (FILE_NAME, DFACC_READ);
 sds_index = 0;
 sds_id = SDselect (sd_id, sds_index);

 /*
 * Get information about the SDS. Only chunk lengths and compression
 * flag can be returned. Compression information is not available if
 * NBIT, Skipping Huffman, or GZIP compression is used.
 */
 status = SDgetchunkinfo (sds_id, &c_def_out, &c_flags);
 if (c_flags == HDF_CHUNK)
 printf(" SDS is chunked\nChunk’s dimensions %dx%d\n",
 c_def_out.chunk_lengths[0],
 c_def_out.chunk_lengths[1]);
 else if (c_flags == (HDF_CHUNK | HDF_COMP))
 printf("SDS is chunked and compressed\nChunk’s dimensions %dx%d\n",
 c_def_out.comp.chunk_lengths[0],
 c_def_out.comp.chunk_lengths[1]);
 else if (c_flags == (HDF_CHUNK | HDF_NBIT))
 printf ("SDS is chunked (NBIT)\nChunk’s dimensions %dx%d\n",
 c_def_out.nbit.chunk_lengths[0],
 c_def_out.nbit.chunk_lengths[1]);

 /*
 * Read the entire data set using SDreaddata function.
 */
 start[0] = 0;
 start[1] = 0;
124 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 edges[0] = 9;
 edges[1] = 4;
 status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)all_data);

 /*
 * Print out what we have read.
 * The following information should be displayed:
 *
 * SDS is chunked
 * Chunk’s dimensions 3x2
 * 1 1 2
 * 1 1 2 2
 * 1 1 2 2
 * 3 3 0 4
 * 3 3 0 4
 * 3 3 0 4
 * 0 0 6 6
 * 5 5 6 6
 * 0 0 6 6
 */
 for (j=0; j<9; j++)
 {
 for (i=0; i<4; i++) printf (" %d", all_data[j][i]);
 printf ("\n");
 }

 /*
 * Read chunk with the coordinates (2,0) and display it.
 */
 origin[0] = 2;
 origin[1] = 0;
 status = SDreadchunk (sds_id, origin, chunk_out);
 printf (" Chunk (2,0) \n");
 for (j=0; j<3; j++)
 {
 for (i=0; i<2; i++) printf (" %d", chunk_out[j][i]);
 printf ("\n");
 }

 /*
 * Read chunk with the coordinates (1,1) and display it.
 */
 origin[0] = 1;
 origin[1] = 1;
 status = SDreadchunk (sds_id, origin, chunk_out);
 printf (" Chunk (1,1) \n");
 for (j=0; j<3; j++)
 {
 for (i=0; i<2; i++) printf (" %d", chunk_out[j][i]);
 printf ("\n");
 }

 /* The following information is displayed:
 *
 * Chunk (2,0)
 * 0 0
 * 5 5
 * 0 0
 * Chunk (1,1)
 * 0 4
 * 0 4
 * 0 4
 */
June 2017 125

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
 /*
 * Terminate access to the data set.
 */
 status = SDendaccess (sds_id);

 /*
 * Terminate access to the SD interface and close the file.
 */
 status = SDend (sd_id);
}

FORTRAN:
 program chunk_examples
 implicit none
C
C Parameter declaration.
C
 character*14 FILE_NAME
 character*11 SDS_NAME
 integer RANK
 parameter (FILE_NAME = ’SDSchunked.hdf’,
 + SDS_NAME = ’ChunkedData’,
 + RANK = 2)
 integer DFACC_CREATE, DFACC_READ, DFNT_INT16
 parameter (DFACC_CREATE = 4,
 + DFACC_READ = 1,
 + DFNT_INT16 = 22)
 integer COMP_CODE_NONE
 parameter (COMP_CODE_NONE = 0)
C
C This example does not use compression.
C
C To use RLE compression, declare:
C
C integer COMP_CODE_RLE
C parameter (COMP_CODE_RLE = 1)
C
C To use NBIT compression, declare:
C
C integer COMP_CODE_NBIT
C parameter (COMP_CODE_NBIT = 2)
C
C To use Skipping Huffman compression, declare:
C
C integer COMP_CODE_SKPHUFF
C parameter (COMP_CODE_SKPHUFF = 3)
C
C To use GZIP compression, declare:
C
C integer COMP_CODE_DEFLATE
C parameter (COMP_CODE_DEFLATE = 4)
C
C
C Function declaration.
C
 integer sfstart, sfcreate, sfendacc, sfend,
 + sfselect, sfsfill, sfschnk, sfwchnk,
 + sfrchnk, sfgichnk, sfwdata, sfrdata,
 + sfscchnk
C
C**** Variable declaration ***
126 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
C
 integer sd_id, sds_id, sds_index, status
 integer dim_sizes(2), origin(2)
 integer fill_value, maxcache, new_maxcache, flag
 integer start(2), edges(2), stride(2)
 integer*2 all_data(4,9)
 integer*2 row(3), column(2)
 integer*2 chunk_out(2,3)
 integer*2 chunk1(2,3),
 + chunk2(2,3),
 + chunk3(2,3),
 + chunk6(2,3)
 integer i, j
C
C Compression flag and parameters.
C
 integer comp_type, comp_flag, comp_prm(4)
C
C Chunk’s dimensions.
C
 integer dim_length(2), dim_length_out(2)
C
C Initialize four chunks
C
 data chunk1 /6*1/
 data chunk2 /6*2/
 data chunk3 /6*3/
 data chunk6 /6*6/
C
C Initialize row and column arrays.
C
 data row /3*4/
 data column /2*5/
C
C**** End of variable declaration ************************************
C
C
C Define chunk’s dimensions.
C
 dim_length(1) = 2
 dim_length(2) = 3
C
C Create the file and initialize SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_CREATE)

C
C Create 4x9 SDS
C
 dim_sizes(1) = 4
 dim_sizes(2) = 9
 sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT16,
 + RANK, dim_sizes)
C
C Fill SDS array with the fill value.
C
 fill_value = 0
 status = sfsfill(sds_id, fill_value)
C
C Create chunked SDS.
C
C In this example we do not use compression.
C

June 2017 127

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
C To use RLE compression, initialize comp_type parameter
C before the call to sfschnk function.
C comp_type = COMP_CODE_RLE
C
C To use NBIT, Skipping Huffman, or GZIP compression,
C initialize comp_prm array and comp type parameter
C before call to sfschnk function
C
C NBIT:
C comp_prm(1) = value_of(sign_ext)
C comp_prm(2) = value_of(fill_one)
C comp_prm(3) = value_of(start_bit)
C comp_prm(4) = value_of(bit_len)
C comp_type = COMP_CODE_NBIT
C
C Skipping Huffman:
C comp_prm(1) = value_of(skp_size)
C comp_type = COMP_CODE_SKPHUFF
C
C GZIP:
C comp_prm(1) = value_of(deflate_level)
C comp_type = COMP_CODE_DEFLATE
C
C
 comp_type = COMP_CODE_NONE
 status = sfschnk(sds_id, dim_length, comp_type, comp_prm)
C
C Set chunk cache to hold maximum 2 chunks.
C
 flag = 0
 maxcache = 2
 new_maxcache = sfscchnk(sds_id, maxcache, flag)
C
C Write chunks using SDwritechunk function.
C Chunks can be written in any order.
C
C Write chunk with the coordinates (1,1).
C
 origin(1) = 1
 origin(2) = 1
 status = sfwchnk(sds_id, origin, chunk1)
C
C Write chunk with the coordinates (1,2).
C
 origin(1) = 1
 origin(2) = 2
 status = sfwchnk(sds_id, origin, chunk3)
C
C Write chunk with the coordinates (2,1).
C
 origin(1) = 2
 origin(2) = 1
 status = sfwchnk(sds_id, origin, chunk2)
C
C Write chunk with the coordinates (2,3).
C
 origin(1) = 2
 origin(2) = 3
 status = sfwchnk(sds_id, origin, chunk6)
C
C Fill second row in the chunk with the coordinates (2,2).
C
 start(1) = 3
128 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
 start(2) = 3
 edges(1) = 1
 edges(2) = 3
 stride(1) = 1
 stride(2) = 1
 status = sfwdata(sds_id, start, stride, edges, row)
C
C Fill second column in the chunk with the coordinates (1,3).
C
 start(1) = 0
 start(2) = 7
 edges(1) = 2
 edges(2) = 1
 stride(1) = 1
 stride(2) = 1
 status = sfwdata(sds_id, start, stride, edges, column)
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)
C
C Reopen the file and access the first data set.
C
 sd_id = sfstart(FILE_NAME, DFACC_READ)
 sds_index = 0
 sds_id = sfselect(sd_id, sds_index)
C
C Get information about the SDS.
C
 status = sfgichnk(sds_id, dim_length_out, comp_flag)
 if (comp_flag .eq. 0) then
 write(*,*) ’SDS is chunked’
 endif
 if (comp_flag .eq. 1) then
 write(*,*) ’SDS is chunked and compressed’
 endif
 if (comp_flag .eq. 2) then
 write(*,*) ’SDS is chunked and NBIT compressed’
 endif
 write(*,*) ’Chunks dimensions are ’, dim_length_out(1),
 + ’ x’ ,dim_length_out(2)
C
C Read the whole SDS using sfrdata function and display
C what we have read. The following information will be displayed:
C
C
C SDS is chunked
C Chunks dimensions are 2 x 3
C
C 1 1 1 3 3 3 0 5 0
C 1 1 1 3 3 3 0 5 0
C 2 2 2 0 0 0 6 6 6
C 2 2 2 4 4 4 6 6 6
C
 start(1) = 0
 start(2) = 0
 edges(1) = 4
 edges(2) = 9
 stride(1) = 1
June 2017 129

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
 stride(2) = 1
 status = sfrdata(sds_id, start, stride, edges, all_data)
C
C Display the SDS.
C
 write(*,*)
 do 10 i = 1,4
 write(*,*) (all_data(i,j), j=1,9)
10 continue
C
C Read chunks with the coordinates (2,2) and (1,3) and display.
C The following information will be shown:
C
C Chunk (2,2)
C
C 0 0 0
C 4 4 4
C
C Chunk (1,3)
C
C 0 5 0
C 0 5 0
C
 origin(1) = 2
 origin(2) = 2
 status = sfrchnk(sds_id, origin, chunk_out)
 write(*,*)
 write(*,*) ’Chunk (2,2)’
 write(*,*)
 do 20 i = 1,2
 write(*,*) (chunk_out(i,j), j=1,3)
20 continue
C
 origin(1) = 1
 origin(2) = 3
 status = sfrchnk(sds_id, origin, chunk_out)
 write(*,*)
 write(*,*) ’Chunk (1,3)’
 write(*,*)
 do 30 i = 1,2
 write(*,*) (chunk_out(i,j), j=1,3)
30 continue
C
C Terminate access to the data set.
C
 status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
 status = sfend(sd_id)
 end

3.13 Ghost Areas

In cases where the size of the SDS array is not an even multiple of the chunk size, regions of
excess array space beyond the defined dimensions of the SDS will be created. Refer to the follow-
ing illustration.
130 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
FIGURE 3e Array Locations Created Beyond the Defined Dimensions of an SDS

These "ghost areas" can be accessed only by SDreadchunk and SDwritechunk; they cannot be
accessed by either SDreaddata or SDwritedata. Therefore, storing data in these areas is not rec-
ommended. Future versions of the HDF library may not include the ability to write to these areas.

If the fill value has been set, the values in these array locations will be initialized to the fill value.
It is highly recommended that users set the fill value before writing to chunked SDSs so that gar-
bage values won’t be read from these locations.

3.14 netCDF

HDF supports the netCDF data model and interface developed at the Unidata Program Center
(UPC). Like HDF, netCDF is an interface to a library of data access programs that store and
retrieve data. The file format developed at the UPC to support netCDF uses XDR (eXternal Data
Representation), a non-proprietary external data representation developed by Sun Microsystems
for describing and encoding data. Full documentation on netCDF and the Unidata netCDF inter-
face is available at http://www.unidata.ucar.edu/packages/netcdf/.

The netCDF data model is interchangeable with the SDS data model in so far as it is possible to
use the netCDF calling interface to place an SDS into an HDF file and conversely the SDS inter-
face will read from an XDR-based netCDF file. Because the netCDF interface has not changed
and netCDF files stored in XDR format are readable, existing netCDF programs and data are still
usable, although programs will need to be relinked to the new library. However, there are import-
ant conceptual differences between the HDF and the netCDF data model that must be understood
to effectively use HDF in working with netCDF data objects and to understand enhancements to
the interface that will be included in the future to make the two APIs much more similar.

In the HDF model, when a multidimensional SDS is created by SDcreate, HDF data objects are
also created that provide information about the individual dimensions — one for each dimension.
Each SDS contains within its internal structure the array data as well as pointers to these dimen-
sions. Each dimension is stored in a structure that is in the HDF file but separate from the SDS
array.

If more than one SDS have the same dimension sizes, they may share dimensions by pointing to
the same dimensions. This can be done in application programs by calling SDsetdimname to

1600 ints

2000
ints

In a 1600 by 2000 integer chunked
SDS array with 500 by 500 integer
chunks, a 400 by 2000 integer area
of array locations beyond the
defined dimensions of the SDS
is created (shaded area). These
areas are called "ghost areas".
June 2017 131

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
assign the same dimension name to all dimensions that are shared by several SDSs. For example,
suppose you make the following sequence of calls for every SDS in a file:

dim_id = SDgetdimid(sds_id, 0);
ret = SDsetdimname(dim_id, "Lat");
dim_id = SDgetdimid(sds_id, 1);
ret = SDsetdimname(dim_id, "Long");

This will create a shared dimension named "Lat" that is associated with every SDS as the first
dimension and a dimension named "Long" as the second dimension.

This same result is obtained differently in netCDF. Note that a netCDF "variable" is roughly the
same as an HDF SDS. The netCDF interface requires application programs to define all dimen-
sions, using ncdimdef, before defining variables. Those defined dimensions are then used to
define variables in ncvardef. Each dimension is defined by a name and a size. All variables using
the same dimension will have the same dimension name and dimension size.

Although the HDF SDS interface will read from and write to existing XDR-based netCDF files,
HDF cannot be used to create XDR-based netCDF files.

There is currently no support for mixing HDF data objects that are not SDSs and netCDF data
objects. For example, a raster image can exist in the same HDF file as a netCDF data object, but
you must use one of the HDF raster image APIs to read the image and the HDF SD or netCDF
interface to read the netCDF data object. The other HDF APIs are currently being modified to
allow multifile access. Closer integration with the netCDF interface will probably be delayed until
the end of that project.

3.14.1HDF Interface vs. netCDF Interface

Existing netCDF applications can be used to read HDF files and existing HDF applications can be
used to read XDR-based netCDF files. To read an HDF file using a netCDF application, the appli-
cation must be recompiled using the HDF library. For example, recompiling the netCDF utility
ncdump with HDF creates a utility that can dump scientific data sets from both HDF and XDR-
based files. To read an XDR-based file using an HDF application, the application must be relinked
to the HDF library.

The current version of HDF contains several APIs that support essentially the same data model:

• The multifile SD interface.

• The netCDF or NC interface.

• The single-file DFSD interface.

• The multifile GR interface.

The first three models can create, read, and write SDSs in HDF files. Both the SD and NC inter-
faces can read from and write to XDR-based netCDF files, but they cannot create them. This
interoperability means that a single program may contain both SD and NC function calls and thus
transparently read and write scientific data sets to HDF or XDR-based files.

The SD interface is the only HDF interface capable of accessing the XDR-based netCDF file for-
mat. The DFSD interface cannot access XDR-based files and can only access SDS arrays, dimen-
sion scales, and predefined attributes. A summary of file interoperability among the three
interfaces is provided in Table 3AK.
132 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
TABLE 3AK Summary of HDF and XDR File Compatibility for the HDF and netCDF APIs

A summary of NC function calls and their SD equivalents is presented in Table 3AL.

Files Created
by

DFSD inter-
face

Files Created
by

SD interface

Files Written by
NC Interface

HDF HDF HDF Library
Unidata
netCDF
Library

Accessed by DFSD Yes Yes Yes No

Accessed by SD Yes Yes Yes Yes

Accessed by NC Yes Yes Yes Yes
June 2017 133

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
TABLE 3AL NC Interface Routine Calls and their SD Equivalents

3.14.2ncdump and ncgen

The ncdump summary capability works on both HDF and netCDF files.

The ncgen summary capability works only on netCDF files.

3.14.2.1 Using ncdump on HDF Files

When used with an HDF file on some platforms (reported on SGI), ncdump may display signed
8-bit integer data (int8, with the intended signed range of -127 through 128) as unsigned 8-bit inte-
ger data (uint8, with the unsigned range 0 through 255). This is due to the mapping of int8 and
uint8 data types in HDF to a common data type, NC_BYTE, in netCDF.

Purpose

Routine Name
SD

Equivalent
Description

C
FORTRAN-

77

Operations

nccreate NCCRE SDstart Creates a file

ncopen NCOPN SDstart Opens a file

ncredef NCREDF Not Applicable Sets open file into define mode

ncendef NCENDF Not Applicable Leaves define mode

ncclose NCCLOS SDend Closes an open file

ncinquire NCINQ SDfileinfo Inquires about an open file

ncsync NCSNC Not Applicable Synchronizes a file to disk

ncabort NCABOR Not Applicable Backs out of recent definitions

ncsetfill NCSFIL Not Implemented Sets fill mode for writes

Dimensions

ncdimdef NCDDEF SDsetdimname Creates a dimension

ncdimid NCDID SDgetdimid Returns a dimension identifier from its name

ncdiminq NCDINQ SDdiminfo Inquires about a dimension

ncdimrename NCDREN Not Implemented Renames a dimension

Variables

ncvardef NCVDEF SDcreate Creates a variable

ncvarid NCVID
SDnametoindex
and SDselect

Returns a variable identifier from its name

ncvarinq NCVINQ SDgetinfo Returns information about a variable

ncvarput1 NCVPT1 Not Implemented Writes a single data value

ncvarget1 NCVGT1 Not Implemented Reads a single data value

ncvarput NCVPT SDwritedata Writes a hyperslab of values

ncvarget
NCVGT/
NCVGTC

SDreaddata Reads a hyperslab of values

ncvarrename NCVREN Not Implemented Renames a variable

nctypelen NCTLEN DFKNTsize Returns the number of bytes for a data type

Attributes

ncattput
NCAPT/
NCAPTC

SDsetattr Creates an attribute

ncattinq NCAINQ SDattrinfo Returns information about an attribute

ncattcopy NCACPY Not Implemented Copies attribute from one file to another

ncattget
NCAGT/
NCAGTC

SDreadattr Returns attributes values

ncattname NCANAM SDattrinfo Returns name of attribute from its number

ncattrename NCAREN Not Implemented Renames an attribute

ncattdel NCADEL Not Implemented Deletes an attribute
134 June 2017

Chapter 3 -- Scientific Data Sets (SD API) Table of Contents HDF User’s Guide
3.14.2.2 New error code from ncdump

Prior to 4.2.11, ncdump did not report failure in reading corrupted data even though the internal
reading function failed, thus, ncdump appeared to succeed when data corruption exists. Starting
in version 4.2.11, when corrupted data is encountered, ncdump will display the following message
for the variable with corrupted data and proceed to the next variable or exit if there are no more
variables to read:

 "Reading failed for variable <Variable name>, the data is possibly corrupted."
June 2017 135

The HDF Group Table of Contents Chapter 3 -- Scientific Data Sets (SD API)
136 June 2017

CHAPTER 4 -- Vdatas (VS API)
4.1 Chapter Overview

This chapter describes the vdata data model, the Vdata interface (also called the VS interface or
the VS API), and the vdata programming model.

4.2 The Vdata Model

The HDF Vdata model provides a framework for storing customized tables, or vdatas, in HDF
files. The term “vdata” is an abbreviation of “vertex data”, alluding to the fact that the object was
first implemented in HDF to store the vertex and edge information of polygon sets. The vdata
design has since been generalized to apply to a broader variety of applications.

A vdata is like a table that consists of a collection of records whose values are stored in fixed-
length fields. All records have the same structure and all values in each field have the same data
type. (See Figure 4a) The library does not check for uniqueness in vdata’s name, class, or field
names. For example, when two vdatas having the same name, the first vdata will always be
returned by VSfind().

FIGURE 4a Vdata Table Structure

A vdata name is a label typically assigned to describe the contents of a vdata. It often serves as a
search key to locate a vdata in a file. A vdata class further distinguishes a particular vdata by iden-
tifying the purpose or the use of its data. Finally, vdata field names are labels assigned to the
fields in the vdata.

Class

Vdata Name

Class_1

General vdata

Records

Field_3Field_2

Field Name

2.6 0.00

Fields

3.5 1.22

1.5 23.50

1.8

0.5

2.3

5.3 6.93

Field_1

6.9
June 2017 137

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
4.2.1 Records and Fields

Each record in a vdata is composed of one or more fixed-length fields. Vdata records and fields
are identified by an index. The record and field indexes are zero-based and are separately incre-
mented by one for each additional record and field in the vdata.

Every field in a vdata is assigned a data type when the vdata is created. The data type of a field
may be any basic HDF data type: character, 8-bit, 16-bit, and 32-bit signed and unsigned integers,
and 32-bit and 64-bit floating point numbers. The maximum length of a vdata record is 65,535
bytes.

The Vdata model allows multiple entries per field as long as they have the same data type. The
number of entries or components in a field is called the order of the field.

The organizational structure of a vdata is often determined by the data types of its data set or sets.
For example, given a data set describing the location (“X,Y”) and temperature (“Temp”) of points
in a plane, there are several ways to organize the data. (See Figure 4b) If the “X”, “Y” and “Temp”
values are of the same data type, they could be stored as three single-component fields, as a two-
component “X_Y” field and a single-component “Temp” field, or as a three-component
“X_Y_Temp” field. Generally, the “X,Y” data is stored in a single field, but HDF places no
restrictions on the organization of field data and there are no significant HDF performance issues
involved in choosing one organizational regime over another.

FIGURE 4b Three Different Vdata Structures for Data of the Same Number Type

4.3 The Vdata Interface

The Vdata interface consists of routines that are used to store and retrieve information about vda-
tas and their contents.

4.3.1 Header Files Used by the Vdata Interface

The header file “hdf.h” must be included in programs that invoke Vdata interface routines.

4.3.2 Vdata Library Routines

Vdata routines begin with the prefixes “VS”, “VF”, “VSQ”, and “VH” in C, and “vsf”, “vf”,
“vsq”, and “vh” in FORTRAN-77. Vdata routines perform most general vdata operations, VF rou-
tines query information about vdata fields, and VSQ routines query information about specific
vdatas. VH routines are high-level procedures that write to single-field vdatas.

Vdata routines let you define, organize and manipulate vdatas. They are categorized as follows
and are listed in Table 4A by their categories:

X_Y_Temp

2D_Temperature_Grid

Temp

0.00

Simulation Data 1

1.22

8.03

23.50

X

1.80

0.50

3.40

2.30

Y

2.60

3.50

5.70

1.50

2D_Temperature_Grid

Temp

0.00

Simulation Data 1

1.22

8.03

23.50

2D_Temperature_Grid

Simulation Data 1

1.80, 2.60, 0.00

0.50, 3.50, 1.22

3.40, 5.70, 8.03

2.30, 1.50, 23.50

1 Multi-component Field of Order 2
3 Single-component Fields 1 Multi-component Field of Order 3

X

1.80,

0.50,

3.40,

2.30,

_Y

2.60

3.50

5.70

1.50

1 Single-component Field
138 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
• Access routines control access to files and vdatas. Data transfer to and from a vdata can
only occur after the access to the vdata has been initiated and before it is terminated. Some
Vgroup interface routines are included since they are used interchangeably between the
Vdata and Vgroup interfaces. Refer to Chapter 5, Vgroups (V API), for a description of the
Vgroup interface.

• Read and write routines store and retrieve the contents of and the information about a
vdata.

• File inquiry routines provide information about how vdatas are stored in a file. They are
useful for locating vdatas in the file.

• Vdata inquiry routines provide specific information about a given vdata, including the
vdata’s name, class, number of records, tag and reference number pairs, size, and interlace
mode.

• Field inquiry routines provide specific information about the fields in a given vdata, includ-
ing the field’s size, name, order, and type, and the number of fields in the vdata.
June 2017 139

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
TABLE 4A Vdata Interface Routines

Category

Routine Names

Description
C

FORTRAN-
77

Access/Create

Vstart vfstart
Initializes the Vdata and the Vgroup interfaces (Section 4.3.5 on
page 143)

VSattach vsfatch
Establishes access to a specified vdata (Section 4.3.5 on
page 143)

VSdetach vsfdtch Terminates access to a specified vdata (Section 4.3.6 on page 143)

Vend vfend
Terminates access to the Vdata and the Vgroup interfaces
(Section 4.3.6 on page 143)

Read and Write

VSfdefine vsffdef Defines a new vdata field (Section 4.5.1.2 on page 156)

VSread
vsfrd/vsfrdc/
vsfread

Reads one record from a vdata (Section 4.6.2 on page 174)

VSseek vsfseek
Seeks to a specified record in a vdata (Section 4.5.2.1 on
page 160)

VSsetattr
vsfsnat/vsfs-
cat

Sets the attribute of a vdata field or vdata (Section 4.8.2 on
page 191)

VSsetclass vsfscls Assigns a class to a vdata (Section 4.5.1.1 on page 156)

VSsetfields vsfsfld
Specifies the vdata fields to be read or written (Section 4.5.1.3 on
page 157 and Section 4.6.1 on page 174)

VSsetinterlace vsfsint Sets the interlace mode for a vdata (Section 4.5.1.4 on page 157)

VSsetname vsfsnam Assigns a name to a vdata (Section 4.5.1.1 on page 156)

VHstoredata vhfsd/vhfscd
Writes data to a vdata with a single-component field (Section 4.4
on page 149)

VHstoredatam
vhfsdm/
vhfscdm

Writes data to a vdata with a multi-component field (Section 4.4
on page 149)

VSgetblockinfo vsfgetblinfo
Retrieves the block size and the number of blocks for a linked-
block vdata element (see HDF Reference Manual)

VSsetblocksize vsfsetblsz
Sets linked-block vdata element block size (see HDF Reference
Manual)

VSsetnumblocks vsfsetnmbl
Sets the number of blocks for a linked-block vdata element (see
HDF Reference Manual)

VSwrite
vsfwrt/vsf-
wrtc/
vsfwrit

Writes records to a vdata (Section 4.5.2.2 on page 161)
140 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
Vdata
Inquiry

VSattrinfo vsfainf
Retrieves information on a given attribute (Section 4.8.7 on
page 193)

VSelts vsfelts
Returns the number of records in the specified vdata
(Section 4.9.5 on page 205)

VSfexist vsfex
Locates a vdata given a list of field names (Section 4.7.4 on
page 184)

VSfindex vsffidx
Returns the index of a vdata field given the field name
(Section 4.8.1 on page 190)

VSfnattrs vsffnas
Returns the number of attributes of a vdata or vdata field
(Section 4.8.5 on page 192)

VSfindattr vsffdat
Retrieves the index of an attribute given the attribute name
(Section 4.8.6 on page 193)

VSgetattr
vsfgnat/vsfg-
cat

Retrieves the values of a given attribute (Section 4.8.3 on
page 191)

VSgetclass vsfgcls
Returns the class name of the specified vdata (Section 4.9.5 on
page 205)

VSgetfields vsfgfld
Retrieves all field names within the specified vdata (Section 4.9.5
on page 205)

VSgetinterlace vsfgint
Retrieves the interlace mode of the specified vdata (Section 4.9.5
on page 205)

VSgetname vsfgnam
Retrieves the name of the specified vdata (Section 4.9.5 on
page 205)

VSinquire vsfinq
Returns information about the specified vdata (Section 4.9.1 on
page 199)

VSisattr vsfisat
Determines whether the given vdata is an attribute (Section 4.8.8
on page 194)

VSnattrs vsfnats
Returns the total number of vdata attributes (Section 4.8.4 on
page 192)

VSQuerycount vsqfnelt
Returns the number of records in the specified vdata
(Section 4.9.4 on page 204)

VSQueryfields vsqfflds
Returns the field names of the specified vdata (Section 4.9.4 on
page 204)

VSQueryinter-
lace

vsqfintr
Returns the interlace mode of the specified vdata (Section 4.9.4
on page 204)

VSQueryname vsqfname
Returns the name of the specified vdata (Section 4.9.4 on
page 204)

VSQueryref vsqref
Retrieves the reference number of the specified vdata
(Section 4.9.4 on page 204)

VSQuerytag vsqtag
Retrieves the tag of the specified vdata (Section 4.9.4 on
page 204)

VSQueryvsize vsqfsiz
Retrieves the local size in bytes of the specified vdata record
(Section 4.9.4 on page 204)

VSsetattr
vsfsnat/vsfs-
cat

Sets the attribute of a vdata field or vdata (Section 4.8.2 on
page 191)

VSsizeof vsfsiz
Returns the size of the specified fields in a vdata (Section 4.9.5 on
page 205)
June 2017 141

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
4.3.3 Identifying Vdatas in the Vdata Interface

The Vdata interface identifies vdatas in several ways. Before an existing vdata is accessible, it is
uniquely identified by its reference number. The reference number of a vdata can be obtained
from the name or the class of the vdata, or by sequentially traversing the file. The concept of ref-
erence number is discussed in Section 2.2.2.1 on page 8.

When a vdata is attached, it is assigned with an identifier, called vdata id, which is used by the
Vdata interface routines in accessing the vdata.

4.3.4 Programming Model for the Vdata Interface

The programming model for accessing vdatas is as follows:

1. Open the file.

2. Initialize the Vdata interface.

3. Create a new vdata or open an existing one using its reference number.

4. Perform the desired operations on the vdata.

5. Terminate access to the vdata.

6. Terminate access to the Vdata interface.

7. Close the file.

To access a vdata, the calling program must contain the following calls, which are individually
explained in the following subsections:

C: file_id = Hopen(filename, file_access_mode, num_dds_block);
status = Vstart(file_id);
vdata_id = VSattach(file_id, vdata_ref, vdata_access_mode);
<Optional operations>
status = VSdetach(vdata_id);
status = Vend(file_id);
status = Hclose(file_id);

FORTRAN: file_id = hopen(filename, file_access_mode, num_dds_block)
status = vfstart(file_id)
vdata_id = vsfatch(file_id, vdata_ref, vdata_access_mode)

Field
Inquiry

VFfieldesize vffesiz
Returns the field size, as stored in a file, of a specified field
(Section 4.9.6 on page 206)

VFfieldisize vffisiz
Returns the field size, as stored in memory, of a specified field
(Section 4.9.6 on page 206)

VFfieldname vffname
Returns the name of the specified field in the given vdata
(Section 4.9.6 on page 206)

VFfieldorder vffordr
Returns the order of the specified field in the given vdata
(Section 4.9.6 on page 206)

VFfieldtype vfftype
Returns the data type for the specified field in the given vdata
(Section 4.9.6 on page 206)

VFnfields vfnflds
Returns the total number of fields in the specified vdata
(Section 4.9.6 on page 206)

File
Inquiry

VSfind vsffnd
Searches for a vdata in a file given the vdata’s name (Section 4.7.3
on page 183)

VSgetid vsfgid
Returns the reference number of the next vdata in the file
(Section 4.7.2 on page 183)

VSlone vsflone
Returns the reference number of vdatas that are not linked with
any vgroups (Section 4.7.1 on page 182)
142 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
<Optional operations>
status = vsfdtch(vdata_id)
status = vfend(file_id)
status = hclose(file_id)

4.3.5 Accessing Files and Vdatas: Vstart and VSattach

An HDF file must be opened by Hopen before it can be accessed using the Vdata interface.
Hopen is described in Chapter 2, HDF Fundamentals.

Vstart must be called for every file to be accessed. This routine initializes the internal vdata struc-
tures used by the Vdata interface. Vstart has only one argument, the file identifier (file_id)
returned by Hopen, and returns either SUCCEED (or 0) or FAIL (or -1). Note that the Vstart routine
is used by both the Vdata and Vgroup interfaces.

VSattach initiates access to a vdata and must be called before any operations on the vdata may
occur. VSattach takes three arguments: file_id, vdata_ref, and vdata_access_mode, and returns
either a vdata identifier or FAIL (or -1).

The argument file_id is the file identifier returned by Hopen and vdata_ref is the reference num-
ber that identifies the vdata to be accessed. Specifying vdata_ref with a value of -1 will create a
new vdata; specifying vdata_ref with a nonexistent reference number will return an error code of
FAIL (or -1); and specifying vdata_ref with a valid reference number will initiate access to the
corresponding vdata.

If an existing vdata’s reference number is unknown, it must be obtained prior to the VSattach
call. (Refer to Chapter 2, HDF Fundamentals, for a description of reference numbers.) The HDF
library provides two routines for this purpose, VSfind and VSgetid. VSfind can be used to obtain
the reference number of a vdata when the vdata’s name is known. VSgetid can be used to obtain
the reference number when only the location of the vdata within the file is known; this is often
discovered by sequentially traversing the file. These routines are discussed in Section 4.7.2 on
page 183 and Section 4.7.3 on page 183.

The argument vdata_access_mode specifies the access mode (“r” for read-only access or “w” for
read and write access) for subsequent operations on the specified vdata. Although several HDF
user programs may simultaneously read from one vdata, only one write access is allowed at a
time. The “r” access mode may only be used with existing vdatas; the “w” access mode is valid
with both new vdatas (vdata_ref = -1) and existing vdatas.

Note that, although a vdata can be created without being written with data, either the routine
VSsetname or VSsetfields must be called in order for the vdata to exist in the file.

The parameters for Vstart and VSattach are further defined in Table 4B on page 144.

4.3.6 Terminating Access to Vdatas and Files: VSdetach and Vend

VSdetach terminates access to a vdata by updating pertinent information and freeing all memory
associated with the vdata and initialized by VSattach. Once access to the vdata is terminated, its
identifier becomes invalid and any attempt to access it will result in an error condition. VSdetach
takes only one argument, the vdata identifier that is returned by VSattach, and returns either SUC-
CEED (or 0) or FAIL (or -1).

Vend releases all internal data structures allocated by Vstart. Vend must be called once for each
call to Vstart and only after access to all vdatas have been terminated (i.e., all calls to VSdetach
have been made). Attempts to call Vdata interface routines after calling Vend will result in an
error condition. Vend takes one argument, the file identifier that is returned by Hopen, and returns
June 2017 143

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
either SUCCEED (or 0) or FAIL (or -1). Note that the Vend routine is used by both the Vdata and
Vgroup interfaces.

In summary, successfully terminating access to a vdata requires one VSdetach call for each call to
VSattach and one Vend call for each call to Vstart.

The parameters for VSdetach and Vend are further defined in Table 4B.

Hclose terminates access to a file and should only be called after all Vend calls have been made to
close the Vdata interface. Refer to Chapter 2, HDF Fundamentals, for a description of Hclose.

TABLE 4B Vstart, VSattach, VSdetach, and Vend Parameter Lists

EXAMPLE 1. Accessing a Vdata in an HDF File

This example illustrates the use of Hopen/hopen, Vstart/vfstart, VSattach/vsfatch, VSdetach/
vsfdtch, Vend/vfend, and Hclose/hclose to create and to access different vdatas from different
HDF files.

The program creates an HDF file, named "General_Vdatas.hdf", containing a vdata. The program
also creates a second HDF file, named "Two_Vdatas.hdf", containing two vdatas. Note that, in
this example, the program does not write data to these vdatas. Also note that before closing the
file, the access to its vdatas and its corresponding Vdata interface must be terminated. These
examples request information about a specific vdata.

C:
#include "hdf.h"

#define FILE1_NAME "General_Vdatas.hdf"

#define FILE2_NAME "Two_Vdatas.hdf"

#define VDATA_NAME "Vdata 1"

#define VDATA_CLASS "Empty Vdatas"

main()

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

Vstart
[intn]

(vfstart)
file_id int32 integer File identifier

VSattach
[int32]

(vsfatch)

file_id int32 integer File identifier

vdata_ref int32 integer Reference number of the vdata

vdata_access_mode char * character*1 Vdata access mode

VSdetach
[int32]

(vsfdtch)
vdata_id int32 integer Vdata identifier

Vend
[intn]

(vfend)
file_id int32 integer File identifier
144 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
{

 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */

 int32 status_32, /* returned status for functions returning an int32 */

 file1_id, file2_id,

 vdata_id, vdata1_id, vdata2_id,

 vdata_ref = -1; /* ref number of a vdata, set to -1 to create */

 /********************** End of variable declaration **********************/

 /*

 * Create the first HDF file.

 */

 file1_id = Hopen (FILE1_NAME, DFACC_CREATE, 0);

 /*

 * Initialize the VS interface associated with the first HDF file.

 */

 status_n = Vstart (file1_id);

 /*

 * Create a vdata in the first HDF file.

 */

 vdata_id = VSattach (file1_id, vdata_ref, "w");

 /*

 * Assign a name to the vdata.

 */

 status_32 = VSsetname (vdata_id, VDATA_NAME);

 /*

 * Other operations on the vdata identified by vdata_id can be carried

 * out starting from this point.

 */
June 2017 145

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
 /*

 * Create the second HDF file.

 */

 file2_id = Hopen (FILE2_NAME, DFACC_CREATE, 0);

 /*

 * Initialize the VS interface associated with the second HDF file.

 */

 status_n = Vstart (file2_id);

 /*

 * Create the first vdata in the second HDF file.

 */

 vdata1_id = VSattach (file2_id, vdata_ref, "w");

 /*

 * Create the second vdata in the second HDF file.

 */

 vdata2_id = VSattach (file2_id, vdata_ref, "w");

 /*

 * Assign a class name to these vdatas.

 */

 status_32 = VSsetclass (vdata1_id, VDATA_CLASS);

 status_32 = VSsetclass (vdata2_id, VDATA_CLASS);

 /*

 * Other operations on the vdatas identified by vdata1_id and vdata2_id

 * can be carried out starting from this point.

 */

 /*

 * Terminate access to the first vdata in the second HDF file.

 */
146 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
 status_32 = VSdetach (vdata1_id);

 /*

 * Terminate access to the second vdata in the second HDF file.

 */

 status_32 = VSdetach (vdata2_id);

 /*

 * From this point on, any operations on the vdatas identified by vdata1_id

 and vdata2_id are invalid but not on the vdata identified by vdata_id.

 */

 /*

 * Terminate access to the VS interface associated with the second HDF file.

 */

 status_n = Vend (file2_id);

 /*

 * Close the second HDF file.

 */

 status_n = Hclose (file2_id);

 /*

 * Terminate access to the vdata in the first HDF file.

 */

 status_32 = VSdetach (vdata_id);

 /*

 * Terminate access to the VS interface associated with the first HDF file.

 */

 status_n = Vend (file1_id);

 /*

 * Close the first HDF file.

 */
June 2017 147

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
 status_n = Hclose (file1_id);

}

FORTRAN:
 program create_vdatas
 implicit none
C
C Parameter declaration
C
 character*18 FILE1_NAME
 character*14 FILE2_NAME
 character*7 VDATA_NAME
 character*12 VDATA_CLASS
C
 parameter (FILE1_NAME = ’General_Vdatas.hdf’,
 + FILE2_NAME = ’Two_Vdatas.hdf’,
 + VDATA_NAME = ’Vdata 1’,
 + VDATA_CLASS = ’Empty Vdatas’)
 integer DFACC_CREATE
 parameter (DFACC_CREATE = 4)
C
C Function declaration
C
 integer hopen, hclose
 integer vfstart, vsfatch, vsfsnam, vsfscls, vsfdtch, vfend

C
C**** Variable declaration ***
C
 integer status
 integer file1_id, file2_id
 integer vdata_id, vdata1_id, vdata2_id
 integer vdata_ref
C
C**** End of variable declaration ************************************
C
C
C Create the first HDF file.
C
 file1_id = hopen(FILE1_NAME, DFACC_CREATE, 0)
C
C Initialize the VS interface associated with the first HDF file.
C
 status = vfstart(file1_id)
C
C Create a vdata in the first HDF file.
C
 vdata_ref = -1
 vdata_id = vsfatch(file1_id, vdata_ref, ’w’)
C
C Assign a name to the vdata.
C
 status = vsfsnam(vdata_id, VDATA_NAME)
C
C Other operations on the vdata identified by vdata_id can be carried out
C starting from this point.
C
C Create the second HDF file.
C
 file2_id = hopen(FILE2_NAME, DFACC_CREATE, 0)
148 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
C
C Initialize the VS interface associated with the second HDF file.
C
 status = vfstart(file2_id)
C
C Create the first vdata in the second HDF file.
C
 vdata1_id = vsfatch(file2_id, vdata_ref, ’w’)
C
C Create the second vdata in the second HDF file.
C
 vdata2_id = vsfatch(file2_id, vdata_ref, ’w’)
C
C Assign a class name to these vdatas.
C
 status = vsfscls(vdata1_id, VDATA_CLASS)
 status = vsfscls(vdata2_id, VDATA_CLASS)
C
C Other operations on the vdatas identified by vdata1_id and vdata2_id
C can be carried out starting from this point.
C
C
C Terminate access to the first vdata in the second HDF file.
C
 status = vsfdtch(vdata1_id)
C
C Terminate access to the second vdata in the second HDF file.
C
 status = vsfdtch(vdata2_id)
C
C Terminate access to the VS interface associated with the second HDF file.
C
 status = vfend(file2_id)
C
C Close the second HDF file.
C
 status = hclose(file2_id)
C
C Terminate access to the vdata in the first HDF file.
C
 status = vsfdtch(vdata_id)
C
C terminate access to the VS interface associated with the first HDF file.
C
 status = vfend(file1_id)
C
C Close the first HDF file.
C
 status = hclose(file1_id)
 end

4.4 Creating and Writing to Single-Field Vdatas: VHstoredata and
VHstoredatam

There are two methods of writing vdatas that contain one field per record. One requires the use of
several VS routines and the other involves the use of VHstoredata or VHstoredatam, two high-
level routines that encapsulate several VS routines into one.
June 2017 149

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
The high-level VH routines are useful when writing one-field vdatas and complete information
about each vdata is available. If you cannot provide full information about a vdata, you must use
the VS routines described in the next section.

Figure 4c shows two examples of single-field vdatas. The fields can be single-component or
multi-component fields. With a multi-component field, they may contain one or more values of
the same data type.

FIGURE 4c Single- and Multi-component Vdatas

VHstoredata creates then writes a vdata with one single-component field. VHstoredatam creates
and writes a vdata with one multi-component field. In both cases the following steps are involved:

1. Open the file.

2. Initialize the Vdata interface.

3. Store (create then write to) the vdata.

4. Terminate access to the Vdata interface.

5. Close the file.

These steps correspond to the following sequence of function calls:

C: file_id = Hopen(filename, file_access_mode, num_dds_block);
status = Vstart(file_id);

/* Either VHstoredata or VHstoredatam can be called here. */
vdata_ref = VHstoredata(file_id, fieldname, buf, n_records,

data_type, vdata_name, vdata_class);
OR vdata_ref = VHstoredatam(file_id, fieldname, buf, n_records,

data_type, vdata_name, vdata_class, order);

status = Vend(file_id);
status = Hclose(file_id);

FORTRAN: file_id = hopen(filename, file_access_mode, num_dds_block)
status = vfstart(file_id)

C Either vhfsd/vhfscd or vhfsdm/vhfscdm can be called here.
vdata_ref = vhfsd(file_id, fieldname, buf, n_records, data_type,

vdata_name, vdata_class)
OR vdata_ref = vhfscd(file_id, fieldname, buf, n_records, data_type,

vdata_name, vdata_class)

Records

 Vdata with Single-component Field

comp_1

comp_1

comp_1

comp_1

 Vdata

Class X

Field 1

Records

 Vdata with Multi-component Field

comp_1, comp_2

comp_1, comp_2

comp_1, comp_2

comp_1, comp_2

Vdata

Class X

Field 1

Class Name

Vdata Name

Field Name
150 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
OR

vdata_ref = vhfsdm(file_id, fieldname, buf, n_records, data_type,
vdata_name, vdata_class, order)

OR vdata_ref = vhfscdm(file_id, fieldname, buf, n_records, data_type,
vdata_name, vdata_class, order)

status = vfend(file_id)
status = hclose(file_id)

The first seven parameters of VHstoredata and VHstoredatam are the same. The parameter
file_id is the file identifier returned by Hopen. The parameter fieldname specifies the name of the
vdata field. The parameter buf contains the data to be stored into the vdata. In C, the data type of
the parameter buf is uint8; in FORTRAN-77, it is the data type of the data to be stored. The
parameters n_records and data_type contain the number of records in the vdata and the data type
of the vdata data. The parameters vdata_name and vdata_class specify the name and class of the
vdata. The parameter order of VHstoredatam specifies the order of the field. The maximum
length of the vdata name is given by the VSNAMELENMAX (or 64) as defined in the header file “hlim-
its.h”.

Note that these two routines do not overwrite existing vdatas but only create new ones before stor-
ing the data.

The FORTRAN-77 version of VHstoredata has two routines: vhfsd for numeric data and vhfscd
for character data; the FORTRAN-77 version of VHstoredatam has two routines: vhfsdm for
numeric data and vhfscdm for character data.

Both routines return the reference number of the newly-created vdata or FAIL (or -1) if the opera-
tion is unsuccessful. The parameters for VHstoredata and VHstoredatam are further described
in Table 4C.
June 2017 151

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
TABLE 4C VHstoredata and VHstoredatam Parameter Lists

EXAMPLE 2. Creating and Storing One-field Vdatas Using VHstoredata and VHstoredatam

This example illustrates the use of VHstoredata/vhfscd and VHstoredatam/vhfsdm to create
single-field vdatas.

This example creates and writes two vdatas to the file "General_Vdatas.hdf". The first vdata is
named "First Vdata", contains 5 records, and belongs to a class named "5x1 Array". The second
vdata is named "Second Vdata", contains 6 records, and belongs to a class named "6x4 Array".
The field of the first vdata is a single-component field, i.e., order of 1, and named "Single-compo-
nent Field". The field of the second vdata has an order of 4 and is named "Multi-component
Field".

In these examples two vdatas are created. The first vdata has five records with one field of order 1
and is created from a 5 x 1 array in memory. The second vdata has six records with one field of
order 4 and is created from a 6 x 4 array in memory.

C:
#include "hdf.h"

#define FILE_NAME "General_Vdatas.hdf"
#define CLASS1_NAME "5x1 Array"
#define CLASS2_NAME "6x4 Array"
#define VDATA1_NAME "First Vdata"
#define VDATA2_NAME "Second Vdata"
#define FIELD1_NAME "Single-component Field"
#define FIELD2_NAME "Multi-component Field"
#define N_RECORDS_1 5 /* number of records the first vdata contains */
#define N_RECORDS_2 6 /* number of records the second vdata contains */
#define ORDER_2 4 /* order of the field in the second vdata */
 /* Note that the order of the field in the first vdata is 1 */

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C FORTRAN-77

VHstoredata
[int32]

(vhfsd/vhfscd)

file_id int32 integer File identifier

fieldname char * character*(*) String containing the name of the field

buf uint8 *
<valid numeric data

type>(*)/character*(*)
Buffer containing the data to be stored

n_records int32 integer Number of records to create in the vdata

data_type int32 integer Data type of the stored data

vdata_name char * character*(*) Name of the vdata

vdata_class char * character*(*) Class name of the vdata

VHstoredatam
[int32]

(vhfsdm/
vhfscdm)

file_id int32 integer File identifier

fieldname char * character*(*) String containing the name of the field

buf uint8 *
<valid numeric data

type>(*)/character*(*)
Buffer containing the data to be stored

n_records int32 integer Number of records to create in the vdata

data_type int32 integer Data type of the stored data

vdata_name char * character*(*) Name of the vdata

vdata_class char * character*(*) Class name of the vdata

order int32 integer Number of field components
152 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
main()
{
 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */
 int32 status_32; /* returned status for functions returning an int32 */
 int32 file_id, vdata1_ref, vdata2_ref;

 /*
 * Define an array to buffer the data of the first vdata.
 */
 char8 vdata1_buf [N_RECORDS_1] = {’V’, ’D’, ’A’, ’T’, ’A’};

 /*
 * Define an array to buffer the data of the second vdata.
 */
 int32 vdata2_buf [N_RECORDS_2][ORDER_2] = {{1, 2, 3, 4}, {2, 4, 6, 8},
 {3, 6, 9, 12}, {4, 8, 12, 16},
 {5, 10, 15, 20}, {6, 12, 18, 24}};

 /********************** End of variable declaration **********************/

 /*
 * Open the HDF file for writing.
 */
 file_id = Hopen (FILE_NAME, DFACC_WRITE, 0);

 /*
 * Initialize the VS interface.
 */
 status_n = Vstart (file_id);

 /*
 * Create the first vdata and populate it with data from the vdata1_buf
 * array. Note that the buffer vdata1_buf is cast to (uint8 *) for the
 * benefit of generic data type.
 */
 vdata1_ref = VHstoredata (file_id, FIELD1_NAME, (uint8 *)vdata1_buf,
 N_RECORDS_1, DFNT_CHAR8, VDATA1_NAME, CLASS1_NAME);

 /*
 * Create the second vdata and populate it with data from the vdata2_buf
 * array.
 */
 vdata2_ref = VHstoredatam (file_id, FIELD2_NAME, (uint8 *)vdata2_buf,
 N_RECORDS_2, DFNT_INT32, VDATA2_NAME, CLASS2_NAME, ORDER_2);

 /*
 * Terminate access to the VS interface and close the HDF file.
 */
 status_n = Vend (file_id);
 status_32 = Hclose (file_id);
}

FORTRAN:
 program create_onefield_vdatas
 implicit none
C
C Parameter declaration
C
 character*18 FILE_NAME
 character*9 CLASS1_NAME
June 2017 153

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
 character*9 CLASS2_NAME
 character*11 VDATA1_NAME
 character*12 VDATA2_NAME
 character*22 FIELD1_NAME
 character*21 FIELD2_NAME
 integer N_RECORDS_1, N_RECORDS_2
 integer ORDER_2
C
 parameter (FILE_NAME = ’General_Vdatas.hdf’,
 + CLASS1_NAME = ’5x1 Array’,
 + CLASS2_NAME = ’6x4 Array’,
 + VDATA1_NAME = ’First Vdata’,
 + VDATA2_NAME = ’Second Vdata’,
 + FIELD1_NAME = ’Single-component Field’,
 + FIELD2_NAME = ’Multi-component Field’)
 parameter (N_RECORDS_1 = 5,
 + N_RECORDS_2 = 6,
 + ORDER_2 = 4)

 integer DFACC_WRITE, DFNT_CHAR8, DFNT_INT32
 parameter (DFACC_WRITE = 2,
 + DFNT_CHAR8 = 4,
 + DFNT_INT32 = 24)
C
C Function declaration
C
 integer hopen, hclose
 integer vfstart, vhfscd, vhfsdm, vfend

C
C**** Variable declaration ***
C
 integer status
 integer file_id
 integer vdata1_ref, vdata2_ref
 character vdata1_buf(N_RECORDS_1)
 integer vdata2_buf(ORDER_2, N_RECORDS_2)
 data vdata1_buf /’V’,’D’,’A’,’T’,’A’/
 data vdata2_buf / 1, 2, 3, 4,
 + 2, 4, 6, 8,
 + 3, 6, 9, 12,
 + 4, 8, 12, 16,
 + 5, 10, 15, 20,
 + 6, 12, 18, 24/
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file for writing.
C
 file_id = hopen(FILE_NAME, DFACC_WRITE, 0)
C
C Initialize the VS interface.
C
 status = vfstart(file_id)
C
C Create the first vdata and populate it with data from vdata1_buf array.
C
 vdata1_ref = vhfscd(file_id, FIELD1_NAME, vdata1_buf, N_RECORDS_1,
 + DFNT_CHAR8, VDATA1_NAME, CLASS1_NAME)
C
C Create the second vdata and populate it with data from vdata2_buf array.
C
154 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
 vdata2_ref = vhfsdm(file_id, FIELD2_NAME, vdata2_buf, N_RECORDS_2,
 + DFNT_INT32, VDATA2_NAME, CLASS2_NAME,
 + ORDER_2)
C
C Terminate access to the VS interface and close the HDF file.
C
 status = vfend(file_id)
 status = hclose(file_id)
 end

4.5 Writing to Multi-Field Vdatas

There are several steps involved in creating general vdatas with more than one field: define the
vdata, define the fields of the vdata, and write the vdata to the file. These steps are usually exe-
cuted within a single program, although it is also possible to define an empty vdata in anticipation
of writing data to it at a later time.

4.5.1 Creating Vdatas

Creating an empty vdata involves the following steps:

1. Open a file.

2. Initialize the Vdata interface.

3. Create the new vdata.

4. Assign a vdata name. (optional)

5. Assign a vdata class. (optional)

6. Define the fields.

7. Initialize fields for writing.

8. Set the interlace mode.

9. Dispose of the vdata identifier.

10. Terminate access to the Vdata interface.

11. Close the file.

Like the high-level VH interface, the Vdata interface does not retain default settings from one
operation to the next or from one file to the next. Each time a vdata is created, its definitions must
be explicitly reset.

To create a multi-field vdata, the calling program must contain the following:

C: file_id = Hopen(filename, file_access_mode, num_dds_block);
status = Vstart(file_id);
vdata_id = VSattach(file_id, -1, vdata_access_mode);
status = VSsetname(vdata_id, vdata_name);
status = VSsetclass(vdata_id, vdata_class);
status = VSfdefine(vdata_id, fieldname1, data_type1, order1);

status = VSfdefine(vdata_id, fieldnameN, data_typeN, orderN);
status = VSsetfields(vdata_id, fieldname_list);
status = VSsetinterlace(vdata_id, interlace_mode);
status = VSdetach(vdata_id);
status = Vend(file_id);
status = Hclose(file_id);
June 2017 155

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
FORTRAN: file_id = hopen(filename, file_access_mode, num_dds_block)
status = vfstart(file_id)
vdata_id = vsfatch(file_id, -1, vdata_access_mode)
status = vsfsnam(vdata_id, vdata_name)
status = vsfscls(vdata_id, vdata_class)
status = vsffdef(vdata_id, fieldname1, data_type1, order1)

status = vsffdef(vdata_id, fieldnameN, data_typeN, orderN)
status = vsfsfld(vdata_id, fieldname_list)
status = vsfsint(vdata_id, interlace_mode)
status = vsfdtch(vdata_id)
status = vfend(file_id)
status = hclose(file_id)

In the routines that follow, vdata_id is the vdata identifier returned by VSattach.

4.5.1.1 Assigning a Vdata Name and Class: VSsetname and VSsetclass

VSsetname assigns a name to a vdata. If not explicitly named by a call to VSsetname, the name
of the vdata is set by default to NULL. A name may be assigned and reassigned at any time after the
vdata is created. The parameter vdata_name contains the name to be assigned to the vdata.

VSsetclass assigns a class to a vdata. If VSsetclass is not called, the vdata’s class is set by default
to NULL. As with the vdata name, the class may be assigned and reassigned any time after the vdata
is created. The parameter vdata_class contains the class name to be assigned to the vdata.

VSsetname and VSsetclass return either SUCCEED (or 0) or FAIL (or -1). The parameters for these
routines are further defined in (See Table 4E on page 159).

4.5.1.2 Defining a Field within a Vdata: VSfdefine

VSfdefine defines a field within a newly-created vdata. Each VSfdefine call assigns the name
contained in the argument fieldname, the data type contained in the argument data_type, and the
order contained in the argument order to one new field. Once data is written to a vdata, the name,
data type and order of the field may not be modified or deleted.

The Vdata interface also provides certain predefined fields. A predefined field has a specific
name, data type, and order, so there is no need to call VSfdefine to define a predefined field.
Some applications may require the use of predefined fields in vdatas. Available predefined fields
are discussed in Table 4D.

Note that VSfdefine does not allocate memory for the field, but simply introduces the field. The
field definition must be completed by VSsetfields, which is discussed in Section 4.5.1.3 on
page 157.

VSfdefine returns either SUCCEED (or 0) or FAIL (or -1). The parameters for VSfdefine are further
described in (See Table 4E on page 159).
156 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
TABLE 4D Predefined Data Types and Field Names for Vdata Fields

4.5.1.3 Initializing the Fields for Write Access: VSsetfields

VSsetfields initializes read and write access to the fields in a vdata. It must be called prior to read
or write operations. Initializing for read access is discussed in Section 4.6.1 on page 174. For writ-
ing, VSsetfields specifies the fields to be written and the order in which they are to be placed.

The parameter fieldname_list is a comma-separated list of the field names, with no white space
included. The fields can be either the predefined fields or the fields that have been previously
introduced by VSfdefine. VSfdefine allows a user to declare a field, along with its data type and
order, but VSsetfields finalizes the definition by allowing the user to select the fields that are to be
included in the vdata. Thus, any fields created by VSfdefine that are not in the parameter
fieldname_list of VSsetfields will be ignored. This feature was originally intended for interactive-
mode users. The combined width of the fields in the parameter fieldname_list is also the length of
the record and must be less than MAX_FIELD_SIZE (or 65535). An attempt to create a larger record
will cause VSsetfields to return FAIL (or -1).

VSsetfields returns either SUCCEED (or 0) or FAIL (or -1). The parameters for VSsetfields are fur-
ther defined in Table 4E on page 159.

4.5.1.4 Specifying the Interlace Mode: VSsetinterlace

The Vdata interface supports two types of interlacing: file interlacing and buffer interlacing. File
interlacing determines how data is stored in a file and buffer interlacing determines how data is
stored in memory. The Vdata interface can write data from a buffer to a file in an interlaced or
non-interlaced manner. It can also read data from a file in an interlaced or non-interlaced manner.

The VSread and VSwrite routines set the buffer’s interlace mode. The VSwrite routine will be
discussed in Section 4.5.2.2 on page 161 and the VSread routine will be discussed in
Section 4.6.2 on page 174.

VSsetinterlace sets the file interlacing mode for a vdata. Setting the parameter interlace_mode to
FULL_INTERLACE (or 0) fills the vdata by record, whereas specifying NO_INTERLACE (or 1) fills the
vdata by field. (See Figure 4d) For multi-component fields, all components are treated as a single
field.

As with file interlacing, the default buffer interlace mode is FULL_INTERLACE because it is more
efficient to write complete records than it is to write fields if the file and buffer interlace modes
are the same, although both require the same amount of disk space.

In Figure 4d, the illustrated vdata has four fields and three records.

Data Type

Coordinate Point Field Names Normal Component Field Names

x-coordinate
y-coordi-

nate
z-coordi-

nate
x-compo-

nent
y-compo-

nent
z-compo-

nent

float PX PY PZ NX NY NZ

integer IX IY IZ None None None
June 2017 157

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
FIGURE 4d Interlaced and Non-Interlaced Vdata Contents

VSsetinterlace can only be used for operations on new vdatas as the interlacing cannot be
changed once the data has been written to a vdata. Records in a fully interlaced vdata can be writ-
ten record-by-record and, thus, can be appended; however, all records in a non-interlaced vdata
must be written at the same time.

VSsetinterlace returns either SUCCEED (or 0) or FAIL (or -1). The parameters for VSsetinterlace
are further described in Table 4E.

4.5.1.5 Specifying External Storage Information: VSsetexternalfile

The HDF library allows applications to store vdata tables in an external file that is separate from
the primary file containing the metadata for the vdata. The library keeps track of the beginning of
the vdata and adds data at the appropriate position in the external file. When data is written or
appended, the HDF library writes data to the external file and updates the appropriate metadata in
the primary file.

VSsetexternalfile specifies that an external data file is to be used to store the data of the given
vdata. The parameter filename is the name of the external data file and offset is the number of
bytes from the beginning of the external file to the location where the first byte of data should be
written. The syntax for VSsetexternalfile is as followed:

C: status = VSsetexternalfile(vdata_id, filename, &offset)

FORTRAN: status = vsfsextf(vdata_id, filename, offset)

If a file with the name specified by filename exists in the current directory search path, the func-
tion will access it as the external file. It is the user's responsibility to make sure that the external
data file is kept with the primary HDF file.

VSsetexternalfile returns either SUCCEED (or 0) or FAIL (or -1). The parameters for VSsetexter-
nalfile are further described in (See Table 4E on page 159).

Mixed_Data_Type

Vdata

1.11
2.22
3.33

1
2
3

11.11
22.22
33.33

A
B
C

Interlacing Mode: FULL_INTERLACE

1.11 2.22 3.33

Mixed_Data_Type

Vdata

Interlacing Mode: NO_INTERLACE

1 2 3
11.11 22.22 33.33

A B C

Temp
Height
Speed
Ident

IdentSpeedHeightTemp
158 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
TABLE 4E VSsetname, VSsetclass, VSfdefine, VSsetfields, and VSsetinterlace Parameter Lists

4.5.2 Writing Data to Vdatas

This section describes the vdata writing operation (VSwrite), random access to vdata (VSseek),
and packing and unpacking mechanisms that allow storing vdata fields of different data types
(VSfpack).

Writing to a vdata requires the following steps:

1. Open a file.

2. Initialize the Vdata interface.

3. Initialize fields for writing.

4. Initiate access to the vdata.

5. Seek to the target record.

6. Write the data.

7. Dispose of the vdata identifier.

8. Terminate access to the Vdata interface.

9. Close the file.

These steps correspond to the following sequence of function calls:

C: file_id = Hopen(filename, file_access_mode, num_dds_block);
status = Vstart(file_id);
vdata_id = VSattach(file_id, vdata_ref, vdata_access_mode);
status = VSsetfields(vdata_id, fieldname_list);
record_pos = VSseek(vdata_id, record_index);
num_of_recs = VSwrite(vdata_id, databuf, n_records, interlace_mode);
status = VSdetach(vdata_id);
status = Vend(file_id);

 Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

VSsetname
[int32]

(vsfsnam)

vdata_id int32 integer Vdata identifier

vdata_name char * character*(*) Vdata name

VSsetclass
[int32]

(vsfscls)

vdata_id int32 integer Vdata identifier

vdata_class char * character*(*) Vdata name

VSfdefine
[intn]

(vsffdef)

vdata_id int32 integer Vdata identifier

fieldname char * character*(*) Name of the field to be defined

data_type int32 integer Type of the field data

order int32 integer Order of the new field

VSsetfields
[intn]

(vsfsfld)

vdata_id int32 integer Vdata identifier

fieldname_list char * character*(*) Names of the vdata fields to be accessed

VSsetinterlace
[intn]

(vsfsint)

vdata_id int32 integer Vdata identifier

interlace_mode int32 integer Interlace mode

VSsetexternalfile
[intn]

(vsfsextf)

vdata_id int32 integer Vdata identifier

filename char * character*(*) External file name

offset int32 integer Offset of external data
June 2017 159

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
status = Hclose(file_id);

FORTRAN: file_id = hopen(filename, file_access_mode, num_dds_block)
status = vfstart(file_id)
vdata_id = vsfatch(file_id, vdata_ref, vdata_access_mode)
status = vsfsfld(vdata_id, fieldname_list);
record_pos = vsfseek(vdata_id, record_index);

num_of_recs = vsfwrt(vdata_id, databuf, n_records, interlace_mode)
OR num_of_recs = vsfwrtc(vdata_id, databuf, n_records, interlace_mode)
OR num_of_recs = vsfwrit(vdata_id, databuf, n_records, interlace_mode)

status = vsfdtch(vdata_id)
status = vfend(file_id)
status = hclose(file_id)

4.5.2.1 Resetting the Current Position within Vdatas: VSseek

VSseek provides a mechanism for random access to fully-interlaced vdatas. Random-access for
non-interlaced vdatas is not available. The parameter record_index is the position of the record to
be written. The position of the first record in a vdata is specified by record_index = 0. Any vdata
operation will be performed on this record by default; vdata operations on other records require
that VSseek be called first to specify the target record.

Note that VSseek has been designed for the purpose of overwriting data, not appending data. That
means VSseek puts the current record pointer at the beginning of the sought record and the subse-
quent write will overwrite the record. To append data to a vdata, the current record pointer must be
put at the end of the last record. Thus, you must seek to the last record then read this record so that
the current record pointer will be put at the end of the record. A write operation will now start at
the end of the last record in the vdata. Figure 4e illustrates a situation where VSseek can be mis-
used while attempting to append data to the vdata and how VSread is called to correctly place the
record pointer at the end of the vdata for appending.

Note that, because the record location numbering starts at 0, the record location and the value of
the parameter record_index are off by 1. For example, reading the fourth record in the buffer
requires record_index to be set to 3.

See the notes regarding the potential performance impact of appendable data sets in Section
14.4.3, "Unlimited Dimension Data Sets (SDSs and Vdatas) and Performance"
160 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
FIGURE 4e Setting the Record Pointer to the End of a Vdata

In this illustration, the vdata to which we plan to append data contains 4 records. Using VSseek to
seek to the end of the fourth record by setting the parameter record_index to 4 results in an error
condition. Setting the parameter record_index to 3 places the current record pointer at the begin-
ning of the fourth record. We then use VSread to read the contents of the fourth record into a
buffer; this moves the current record pointer to the end of the fourth record. The contents of the
buffer can then be discarded and a write operation can be called to append data to the end of the
vdata.

VSseek returns the sought record location or FAIL (or -1). Its parameters are further defined in
Table 4F.

4.5.2.2 Writing to a Vdata: VSwrite

VSwrite writes buffered data to a specified vdata. The parameter databuf is a buffer containing
the records to be stored in the vdata. The parameter n_records specifies the number of records to
be stored.

Recall that the file interlacing is set by VSsetinterlace when the vdata is created, and the buffer
interlacing is specified by the parameter interlace_mode in the call to VSwrite when data is writ-
ten to the file. The array databuf is assumed to be organized in memory as specified by
interlace_mode. Setting interlace_mode to FULL_INTERLACE (or 0) indicates that the array in
memory is organized by record, whereas to NO_INTERLACE (or 1) indicates that the array is orga-
nized by field. (See Figure 4f) VSwrite will write interlaced or non-interlaced data to a vdata in a
file: interlaced data in the buffer can be written to the vdata in the file as non-interlaced data and
vice versa. If the data is to be stored with an interlace mode different from that of the buffer,
VSsetinterlace (described in Section 4.5.1.4 on page 157) must be called prior to VSwrite. Mul-
tiple write operations can only be used on fully-interlaced vdatas in the file.

Vdata Record 1 Vdata Record 2 Vdata Record 3 Vdata Record 4

0 1 2 3 4Read -
Records

Seeks to the end of
the vdata and buffers

Vdata Record 1 Vdata Record 2 Vdata Record 3 Vdata Record 4

0 1 2 3 4Location -
Record

Using: VSseek(vdata_id, 4); Seeks to the end of
the vdata - an error
condition for VSseek.

the fourth record.Using: VSseek(vdata_id, 3);

VSread(vdata_id, buffer, 1, FULL_INTERLACE);
June 2017 161

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
FIGURE 4f Writing Interlaced or Non-interlaced Buffers into Interlaced or Non-interlaced Vdatas

The data in the array databuf is assumed to contain the exact amount of data in the order needed to
fill the fields defined in the last call to VSsetfields. Because VSwrite writes the contents of
databuf contiguously to the vdata, any “padding” due to record alignment must be removed before
attempting to write from databuf to the vdata. For more information on alignment padding see
Section 4.5.2.4 on page 167.

It should be remembered that VSwrite writes whole records, not individual fields. If a modifica-
tion to one field within a previously-written record is needed, the contents of the record must first
be preserved by reading it to a buffer with VSread, which will be described in Section 4.6.2 on
page 174; the record must then be updated in the buffer and written back to the file with VSwrite.

To store a vdata to the file after being created, either VSsetname, VSsetfields, or VSwrite must
be called before VSdetach for the vdata. If VSwrite is not called, the vdata created will be empty.

The FORTRAN-77 version of VSwrite has three routines: vsfwrt is for buffered numeric data,
vsfwrtc is for buffered character data and vsfwrit is for generic packed data.

VSwrite returns the total number of records written or FAIL (or -1). Its parameters are further
defined in Table 4F.

Mixed_Data_Type

Complex vdata

1.11 2.2211.11 22.222 33.333.33 3 CA1 B

Buffer Interlacing: FULL_INTERLACE

1.11

2.22

3.33

1

2

3

11.11

22.22

33.33

A

B

C

Interlacing Mode: FULL_INTERLACE

1.11 2.22

11.11 22.222 33.33

3.33

3 CA1 B

Buffer Interlacing: NO_INTERLACE

Mixed_Data_Type

Complex vdata

Interlacing Mode: NO_INTERLACE

1 2 3

11.11 22.22 33.33

A B C

Temp

Height

Speed

Ident

IdentSpeedHeightTemp

1.11 2.22 3.33
162 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
TABLE 4F VSseek and VSwrite Parameter Lists

EXAMPLE 3. Writing a Vdata of Homogeneous Type

This example illustrates the use of VSfdefine/vsffdef, VSsetname/vsfsnam, VSsetclass/vsfscls,
VSsetfields/vsfsfld, and VSwrite/vsfwrt to create and write a three-field vdata to the file
"General_Vdatas.hdf". Although the fields have data of the same type, they have different orders.

To clarify the illustration, let us assume that the vdata is used to contain the data of some particles
collected from an experiment. Each record of the data includes the position of a particle, its
weight, and the minimum and maximum temperature the particle can endure. The vdata is named
"Solid Particle", contains 10 records, and belongs to a class, named "Particle Data". The fields of
the vdata include "Position", "Mass", and "Temperature". The field "Position" has an order of 3
for the x, y, and z values representing the position of a particle. The field "Mass" has an order of 1.
The field "Temperature" has an order of 2 for the minimum and maximum temperature. The pro-
gram creates the vdata, sets its name and class name, defines its fields, and then writes the data to
it.

C:
#include "hdf.h"

#define FILE_NAME "General_Vdatas.hdf"
#define N_RECORDS 10 /* number of records the vdata contains */
#define ORDER_1 3 /* order of first field */
#define ORDER_2 1 /* order of second field */
#define ORDER_3 2 /* order of third field */
#define CLASS_NAME "Particle Data"
#define VDATA_NAME "Solid Particle"
#define FIELD1_NAME "Position" /* contains x, y, z values */
#define FIELD2_NAME "Mass" /* contains weight values */
#define FIELD3_NAME "Temperature" /* contains min and max values */
#define FIELDNAME_LIST "Position,Mass,Temperature" /* No spaces b/w names */

/* number of values per record */
#define N_VALS_PER_REC (ORDER_1 + ORDER_2 + ORDER_3)

main()
{
 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */
 int32 status_32, /* returned status for functions returning an int32 */
 file_id, vdata_id,

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C FORTRAN-77

VSseek
[int32]

(vsfseek)

vdata_id int32 integer Vdata identifier

record_index int32 integer Index of the record to seek to

VSwrite
[int32]

(vsfwrt/vsfwrtc/
vsfwrit)

vdata_id int32 integer Vdata identifier

databuf uint8*
<valid numeric data type>(*) /

character*(*) / integer
Buffer containing data to be written

n_records int32 integer Number of records to be written

interlace_mode int32 integer Interlace mode of the buffered data
June 2017 163

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
 vdata_ref = -1, /* ref number of a vdata, set to -1 to create */
 num_of_records; /* number of records actually written to vdata */
 int16 rec_num; /* current record number */
 float32 data_buf[N_RECORDS][N_VALS_PER_REC]; /* buffer for vdata values */

 /********************** End of variable declaration **********************/

 /*
 * Open the HDF file for writing.
 */
 file_id = Hopen (FILE_NAME, DFACC_WRITE, 0);

 /*
 * Initialize the VS interface.
 */
 status_n = Vstart (file_id);

 /*
 * Create a new vdata.
 */
 vdata_id = VSattach (file_id, vdata_ref, "w");

 /*
 * Set name and class name of the vdata.
 */
 status_32 = VSsetname (vdata_id, VDATA_NAME);
 status_32 = VSsetclass (vdata_id, CLASS_NAME);

 /*
 * Introduce each field’s name, data type, and order. This is the first
 * part in defining a field.
 */
 status_n = VSfdefine (vdata_id, FIELD1_NAME, DFNT_FLOAT32, ORDER_1);
 status_n = VSfdefine (vdata_id, FIELD2_NAME, DFNT_FLOAT32, ORDER_2);
 status_n = VSfdefine (vdata_id, FIELD3_NAME, DFNT_FLOAT32, ORDER_3);

 /*
 * Finalize the definition of the fields.
 */
 status_n = VSsetfields (vdata_id, FIELDNAME_LIST);

 /*
 * Buffer the data by the record for fully interlaced mode. Note that the
 * first three elements contain the three values of the first field, the
 * fourth element contains the value of the second field, and the last two
 * elements contain the two values of the third field.
 */
 for (rec_num = 0; rec_num < N_RECORDS; rec_num++)
 {
 data_buf[rec_num][0] = 1.0 * rec_num;
 data_buf[rec_num][1] = 2.0 * rec_num;
 data_buf[rec_num][2] = 3.0 * rec_num;
 data_buf[rec_num][3] = 0.1 + rec_num;
 data_buf[rec_num][4] = 0.0;
 data_buf[rec_num][5] = 65.0;
 }

 /*
 * Write the data from data_buf to the vdata with full interlacing mode.
 */
 num_of_records = VSwrite (vdata_id, (uint8 *)data_buf, N_RECORDS,
 FULL_INTERLACE);
164 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
 /*
 * Terminate access to the vdata and to the VS interface, then close
 * the HDF file.
 */
 status_32 = VSdetach (vdata_id);
 status_n = Vend (file_id);
 status_32 = Hclose (file_id);
}

FORTRAN:
 program write_to_vdata
 implicit none
C
C Parameter declaration
C
 character*18 FILE_NAME
 character*13 CLASS_NAME
 character*14 VDATA_NAME
 character*8 FIELD1_NAME
 character*4 FIELD2_NAME
 character*11 FIELD3_NAME
 character*27 FIELDNAME_LIST
 integer N_RECORDS
 integer ORDER_1, ORDER_2, ORDER_3
 integer N_VALS_PER_REC
C
 parameter (FILE_NAME = ’General_Vdatas.hdf’,
 + CLASS_NAME = ’Particle Data’,
 + VDATA_NAME = ’Solid Particle’,
 + FIELD1_NAME = ’Position’,
 + FIELD2_NAME = ’Mass’,
 + FIELD3_NAME = ’Temperature’,
 + FIELDNAME_LIST = ’Position,Mass,Temperature’)
 parameter (N_RECORDS = 10,
 + ORDER_1 = 3,
 + ORDER_2 = 1,
 + ORDER_3 = 2,
 + N_VALS_PER_REC = ORDER_1 + ORDER_2 + ORDER_3)

 integer DFACC_WRITE, DFNT_FLOAT32, FULL_INTERLACE
 parameter (DFACC_WRITE = 2,
 + DFNT_FLOAT32 = 5,
 + FULL_INTERLACE = 0)
C
C Function declaration
C
 integer hopen, hclose
 integer vfstart, vsfatch, vsfsnam, vsfscls, vsffdef, vsfsfld,
 + vsfwrt, vsfdtch, vfend

C
C**** Variable declaration ***
C
 integer status
 integer file_id, vdata_id
 integer vdata_ref, rec_num, num_of_records
 real data_buf(N_VALS_PER_REC, N_RECORDS)
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file for writing.
June 2017 165

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
C
 file_id = hopen(FILE_NAME, DFACC_WRITE, 0)
C
C Initialize the VS interface.
C
 status = vfstart(file_id)
C
C Create a new vdata.
C
 vdata_ref = -1
 vdata_id = vsfatch(file_id, vdata_ref, ’w’)
C
C Set name and class name of the vdata.
C
 status = vsfsnam(vdata_id, VDATA_NAME)
 status = vsfscls(vdata_id, CLASS_NAME)
C
C Introduce each field’s name, data type, and order. This is the
C first part in defining a field.
C
 status = vsffdef(vdata_id, FIELD1_NAME, DFNT_FLOAT32, ORDER_1)
 status = vsffdef(vdata_id, FIELD2_NAME, DFNT_FLOAT32, ORDER_2)
 status = vsffdef(vdata_id, FIELD3_NAME, DFNT_FLOAT32, ORDER_3)
C
C Finalize the definition of the fields.
C
 status = vsfsfld(vdata_id, FIELDNAME_LIST)
C
C Buffer the data by the record for fully interlaced mode. Note that the
C first three elements contain the three values of the first field,
C the forth element contains the value of the second field, and the last two
C elements contain the two values of the third field.
C
 do 10 rec_num = 1, N_RECORDS
 data_buf(1, rec_num) = 1.0 * rec_num
 data_buf(2, rec_num) = 2.0 * rec_num
 data_buf(3, rec_num) = 3.0 * rec_num
 data_buf(4, rec_num) = 0.1 + rec_num
 data_buf(5, rec_num) = 0.0
 data_buf(6, rec_num) = 65.0
10 continue
C
C Write the data from data_buf to the vdata with the full interlacing mode.
C
 num_of_records = vsfwrt(vdata_id, data_buf, N_RECORDS,
 + FULL_INTERLACE)
C
C Terminate access to the vdata and to the VS interface, and
C close the HDF file.
C
 status = vsfdtch(vdata_id)
 status = vfend(file_id)
 status = hclose(file_id)
 end

4.5.2.3 Setting Up Linked Block Vdatas: VSsetblocksize and VSsetnumblocks

Unless otherwise specified, Vdata data sets stored in linked blocks employ a default size and num-
ber of linked blocks, as set in HDF_APPENDABLE_BLOCK_LEN and HDF_APPENDABLE_BLOCK_NUM,
respectively. VSsetblocksize and VSsetnumblocks provide a mechanism for managing these val-
ues when the defaults are not appropriate.
166 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
VSsetblocksize and VSsetnumblocks can be called to change the default linked block settings.
The parameter vdata_id identifies the vdata. The size of blocks is specified in bytes in block_size
and number of blocks in num_blocks.

VSsetblocksize and VSsetnumblocks must be called before any data is written to a vdata; once a
linked block element has been created, neither the block size nor the number blocks can be
changed. Further note that VSsetblocksize sets the block size only for blocks following the first
block.

See the notes regarding the potential performance impact of block size in Section 14.4.2, "Tuning
Linked Block Size to Enhance Performance"

VSsetblocksize and VSsetnumblocks both return SUCCESS (or 0) upon successful completion or
FAIL (or -1). Their parameters are further defined in Table 4G.

TABLE 4G VSsetblocksize and VSsetnumblocks Parameter Lists

4.5.2.4 Packing or Unpacking Field Data: VSfpack

Storing fields of mixed data types is an efficient use of disk space and is useful in applications that
use structures. However, while data structures in memory containing fields of variable lengths can
contain alignment bytes, field data stored in a vdata cannot include them. This is true for both
fully-interlaced and non-interlaced data. Because of this storing limitation, when variable-length
field types are used, it is generally not possible to write data directly from a structure in memory
into a vdata in a file with a VSwrite call or to read data directly into a buffer from the vdata with a
call to VSread. Thus, when writing, VSfpack is used to pack field data into a temporary buffer by
removing the padding, or alignment bytes, and when reading, to unpack field data into vdata fields
by adding necessary alignment bytes. The syntax for VSfpack is as follows:

C: status = VSfpack(vdata_id, action, fields_in_buf, buf, buf_size,
n_records, fieldname_list, bufptrs);

FORTRAN: status = vsfcpak(vdata_id, action, fields_in_buf, buf, buf_size,
n_records, fieldname_list, bufptrs)

OR status = vsfnpak(vdata_id, action, fields_in_buf, buf, buf_size,
n_records, fieldname_list, bufptrs)

The process of removing the alignment bytes is called “packing the array.” An illustration of this
process is provided in Figure 4g. The data provided by the user is stored in the structure in mem-
ory. The field values are aligned with padded bytes. VSfpack packs the data into the array in
memory after removing the padded bytes. The packed data is then written to the vdata in the file
by VSwrite.

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C FORTRAN-77

VSsetblocksize
[intn]

(vsfsetblsz)

vdata_id int32 integer Vdata identifier

block_size int32 integer Size of each block, in bytes

VSsetnumblocks
[intn]

(vsfsetnmbl)

vdata_id int32 integer Vdata identifier

num_blocks int32 integer
Number of blocks to be used for the
linked-block element
June 2017 167

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
FIGURE 4g Removing Alignment Bytes When Writing Data From a C Structure to a Vdata

The process illustrated in Figure 4g can be read in the reverse direction for "unpacking the array,"
that is when using VSfpack to fill a structure in memory with vdata field data. In this case, align-
ment bytes are added to the field data to make the data conform to the specific alignment require-
ments of the platform.

VSfpack performs both tasks, packing and unpacking, and the parameter action specifies the
appropriate action for the routine. Valid values for the parameter action are _HDF_VSPACK (or 0) for
packing and _HDF_VSUNPACK (or 1) for unpacking.

The calling program must allocate sufficient space for the buffer buf to hold all packed or
unpacked fields. The parameter buf_size specifies the size of the buffer buf and should be at least
n_records *(the total size of all fields specified in fields_in_buf).

When VSfpack is called to pack field values into buf, the parameter fields_in_buf must specify all
fields of the vdata. This can be accomplished either by listing all of the field names in
fields_in_buf or by setting fields_in_buf to NULL in C or to one blank character in FORTRAN-77.

When VSfpack is called to unpack field values, the parameter fields_in_buf may specify a subset
of the vdata fields. The parameter fields_in_buf can be set to NULL in C or to one space character in
FORTRAN-77 to specify all fields in the vdata.

The parameter fieldname_list specifies the field(s) to be packed or unpacked. The parameter bufp-
trs provides pointers to the buffers for each field to be packed or unpacked. The calling program is
responsible for allocating sufficient space for each field buffer. Significant differences between
the C and FORTRAN-77 functionality are described in the following paragraphs.

In C, fieldname_list can list either all of the fields specified by fields_in_buf or a subset of those
fields. Only if fields_in_buf specifies all of the vdata fields, then fields_in_buf can be set to NULL
to specify all vdata fields. The parameter bufptrs contains an array of pointers to the buffers where
field data will be packed or unpacked.

The FORTRAN-77 routines can pack or unpack only one field at a time, so the parameter
fieldname_list contains only the name of that field. The parameter bufptrs is the buffer for that
field.

The FORTRAN-77 version of VSfpack has two routines: vsfcpak packs or unpacks character
data and vsfnpak packs or unpacks numeric data. Refer to the FORTRAN-77 version in Example
4 for a more specific illustration.

VSfpack returns either SUCCEED (or 0) or FAIL (or -1). The parameters for VSfpack are described
in Table 4H.

Mixed_Data_Type

Speed

Complex vdata

(4 bytes)

Structure

Ident
(1 byte)

Temp
(4 bytes)

Height
(2 bytes)

1.11

2.22

11.11

22.22
2

33.33

3.33
3

C

A

1

B

1.11
2.22

11.11
22.222
33.333.33 3 C

A1
B

Array

1.11
2.22
3.33

1
2
3

11.11
22.22
33.33

A
B
C

Vdata
(interlaced in memory) (interlaced in file)(aligned in memory)

1.11 2.22

11.11 22.22
2

33.33

3.33
3

CA

1

B
Array

(non-interlaced in memory)
168 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
TABLE 4H VSfpack Parameter List

EXAMPLE 4. Writing a Multi-field and Mixed-type Vdata with Packing

This example illustrates the use of VSfpack/vsfnpak/vsfcpak and VSwrite/vsfwrit to write a
vdata with data of different types. Note that the approach used in Example 3 makes it difficult for
the vdata to have mixed-type data.

In this example, the program creates an HDF file, named "Packed_Vdata.hdf", then defines a
vdata which is named "Mixed Data Vdata" and belongs to class "General Data Class". The vdata
contains four order-1 fields, "Temp", "Height", "Speed", and "Ident" of type float32, int16,
float32, and char8, respectively. The program then packs the data in fully interlaced mode into a
databuf and writes the packed data to the vdata. Note that, in the C example, a VSfpack call packs
all N_RECORDS and a VSwrite call writes out all N_RECORDS records. In the Fortran example,
N_RECORDS of each field are packed using separate calls to vsfnpak and vsfcpak; vsfwrit writes
packed data to the vdata.

C:
#include "hdf.h"

#define FILE_NAME "Packed_Vdata.hdf"
#define VDATA_NAME "Mixed Data Vdata"
#define CLASS_NAME "General Data Class"
#define FIELD1_NAME "Temp"
#define FIELD2_NAME "Height"
#define FIELD3_NAME "Speed"
#define FIELD4_NAME "Ident"
#define ORDER 1 /* number of values in the field */
#define N_RECORDS 20 /* number of records the vdata contains */
#define N_FIELDS 4 /* number of fields in the vdata */
#define FIELDNAME_LIST "Temp,Height,Speed,Ident" /* No spaces b/w names */

/* number of bytes of the data to be written, i.e., the size of all the
 field values combined times the number of records */
#define BUF_SIZE (2*sizeof(float32) + sizeof(int16) + sizeof(char)) * N_RECORDS

main()
{
 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

VSfpack
[intn]

(vsfcpak/vsfnpak)

vdata_id int32 integer Vdata identifier

action intn integer Action to be performed

fields_in_buf char * character*(*)
Fields in the buffer buf to write or read
from the vdata

buf VOIDP integer Buffer for the vdata values

buf_size intn integer Buffer size in bytes

n_records intn integer Number of records to pack or unpack

fieldname_list char * character*(*)
Names of the fields to be packed or
unpacked

bufptrs VOIDP
<valid numeric data

type>(*)/
character*(*)

Array of pointers to the field buffers in C
and field buffer in FORTRAN-77
June 2017 169

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
 int32 status_32, /* returned status for functions returning an int32 */
 file_id, vdata_id,
 vdata_ref = -1, /* vdata’s reference number, set to -1 to create */
 num_of_records; /* number of records actually written to the vdata */
 float32 temp[N_RECORDS]; /* buffer to hold values of first field */
 int16 height[N_RECORDS]; /* buffer to hold values of second field */
 float32 speed[N_RECORDS]; /* buffer to hold values of third field */
 char8 ident[N_RECORDS]; /* buffer to hold values of fourth field */
 VOIDP fldbufptrs[N_FIELDS];/*pointers to be pointing to the field buff-
ers*/
 uint16 databuf[BUF_SIZE]; /* buffer to hold the data after being packed*/
 int i;

 /********************** End of variable declaration **********************/

 /*
 * Create an HDF file.
 */
 file_id = Hopen (FILE_NAME, DFACC_CREATE, 0);

 /*
 * Initialize the VS interface.
 */
 status_n = Vstart (file_id);

 /*
 * Create a new vdata.
 */
 vdata_id = VSattach (file_id, vdata_ref, "w");

 /*
 * Set name and class name of the vdata.
 */
 status_32 = VSsetname (vdata_id, VDATA_NAME);
 status_32 = VSsetclass (vdata_id, CLASS_NAME);

 /*
 * Introduce each field’s name, data type, and order. This is the first
 * part in defining a vdata field.
 */
 status_n = VSfdefine (vdata_id, FIELD1_NAME, DFNT_FLOAT32, ORDER);
 status_n = VSfdefine (vdata_id, FIELD2_NAME, DFNT_INT16, ORDER);
 status_n = VSfdefine (vdata_id, FIELD3_NAME, DFNT_FLOAT32, ORDER);
 status_n = VSfdefine (vdata_id, FIELD4_NAME, DFNT_CHAR8, ORDER);

 /*
 * Finalize the definition of the fields of the vdata.
 */
 status_n = VSsetfields (vdata_id, FIELDNAME_LIST);

 /*
 * Enter data values into the field buffers by the records.
 */
 for (i = 0; i < N_RECORDS; i++)
 {
 temp[i] = 1.11 * (i+1);
 height[i] = i;
 speed[i] = 1.11 * (i+1);
 ident[i] = ’A’ + i;
 }

 /*
 * Build an array of pointers each of which points to a field buffer that
170 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
 * holds all values of the field.
 */
 fldbufptrs[0] = &temp[0];
 fldbufptrs[1] = &height[0];
 fldbufptrs[2] = &speed[0];
 fldbufptrs[3] = &ident[0];

 /*
 * Pack all data in the field buffers that are pointed to by the set of
 * pointers fldbufptrs, and store the packed data into the buffer
 * databuf. Note that the second parameter is _HDF_VSPACK for packing.
 */
 status_n = VSfpack (vdata_id,_HDF_VSPACK, NULL, (VOIDP)databuf,
 BUF_SIZE, N_RECORDS, NULL, (VOIDP)fldbufptrs);

 /*
 * Write all records of the packed data to the vdata.
 */
 num_of_records = VSwrite (vdata_id, (uint8 *)databuf, N_RECORDS,
 FULL_INTERLACE);

 /*
 * Terminate access to the vdata and the VS interface, then close
 * the HDF file.
 */
 status_32 = VSdetach (vdata_id);
 status_n = Vend (file_id);
 status_32 = Hclose (file_id);
}

FORTRAN:
 program write_mixed_vdata
 implicit none
C
C Parameter declaration
C
 character*16 FILE_NAME
 character*18 CLASS_NAME
 character*16 VDATA_NAME
 character*4 FIELD1_NAME
 character*6 FIELD2_NAME
 character*5 FIELD3_NAME
 character*5 FIELD4_NAME
 character*23 FIELDNAME_LIST
 integer N_RECORDS, N_FIELDS, ORDER
 integer BUF_SIZE
C
 parameter (FILE_NAME = ’Packed_Vdata.hdf’,
 + CLASS_NAME = ’General Data Class’,
 + VDATA_NAME = ’Mixed Data Vdata’,
 + FIELD1_NAME = ’Temp’,
 + FIELD2_NAME = ’Height’,
 + FIELD3_NAME = ’Speed’,
 + FIELD4_NAME = ’Ident’,
 + FIELDNAME_LIST = ’Temp,Height,Speed,Ident’)
 parameter (N_RECORDS = 20,
 + N_FIELDS = 4,
 + ORDER = 1,
 + BUF_SIZE = (4 + 2 + 4 + 1)*N_RECORDS)

 integer DFACC_WRITE, DFNT_FLOAT32, DFNT_INT16, DFNT_CHAR8,
 + FULL_INTERLACE, HDF_VSPACK
June 2017 171

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
 parameter (DFACC_WRITE = 2,
 + DFNT_FLOAT32 = 5,
 + DFNT_INT16 = 22,
 + DFNT_CHAR8 = 4,
 + FULL_INTERLACE = 0,
 + HDF_VSPACK = 0)
C
C Function declaration
C
 integer hopen, hclose
 integer vfstart, vsfatch, vsfsnam, vsfscls, vsffdef, vsfsfld,
 + vsfnpak, vsfcpak, vsfwrit, vsfdtch, vfend

C
C**** Variable declaration ***
C
 integer status
 integer file_id, vdata_id
 integer vdata_ref, num_of_records
 real temp(N_RECORDS)
 integer*2 height(N_RECORDS)
 real speed(N_RECORDS)
 character ident(N_RECORDS)
 integer i
C
C Buffer for packed data should be big enough to hold N_RECORDS.
C
 integer databuf(BUF_SIZE/4 + 1)
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file for writing.
C
 file_id = hopen(FILE_NAME, DFACC_WRITE, 0)
C
C Initialize the VS interface.
C
 status = vfstart(file_id)
C
C Create a new vdata.
C
 vdata_ref = -1
 vdata_id = vsfatch(file_id, vdata_ref, ’w’)
C
C Set name and class name of the vdata.
C
 status = vsfsnam(vdata_id, VDATA_NAME)
 status = vsfscls(vdata_id, CLASS_NAME)
C
C Introduce each field’s name, data type, and order. This is the
C first part in defining a field.
C
 status = vsffdef(vdata_id, FIELD1_NAME, DFNT_FLOAT32, ORDER)
 status = vsffdef(vdata_id, FIELD2_NAME, DFNT_INT16, ORDER)
 status = vsffdef(vdata_id, FIELD3_NAME, DFNT_FLOAT32, ORDER)
 status = vsffdef(vdata_id, FIELD4_NAME, DFNT_CHAR8, ORDER)
C
C Finalize the definition of the fields.
C
 status = vsfsfld(vdata_id, FIELDNAME_LIST)
C
C Enter data values into the field databufs by the records.
172 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
C
 do 10 i = 1, N_RECORDS
 temp(i) = 1.11 * i
 height(i) = i - 1
 speed(i) = 1.11 * i
 ident(i) = char(64+i)
10 continue
C
C Pack N_RECORDS of data into databuf. In Fortran, each field is packed
C using separate calls to vsfnpak or vsfcpak.
C
 status = vsfnpak(vdata_id, HDF_VSPACK, ’ ’, databuf, BUF_SIZE,
 + N_RECORDS, FIELD1_NAME, temp)
 status = vsfnpak(vdata_id, HDF_VSPACK, ’ ’, databuf, BUF_SIZE,
 + N_RECORDS, FIELD2_NAME, height)
 status = vsfnpak(vdata_id, HDF_VSPACK, ’ ’, databuf, BUF_SIZE,
 + N_RECORDS, FIELD3_NAME, speed)
 status = vsfcpak(vdata_id, HDF_VSPACK, ’ ’, databuf, BUF_SIZE,
 + N_RECORDS, FIELD4_NAME, ident)
C
C Write all the records of the packed data to the vdata.
C
 num_of_records = vsfwrit(vdata_id, databuf, N_RECORDS,
 + FULL_INTERLACE)
C
C Terminate access to the vdata and to the VS interface, and
C close the HDF file.
C
 status = vsfdtch(vdata_id)
 status = vfend(file_id)
 status = hclose(file_id)
 end

4.6 Reading from Vdatas

Reading from vdatas is more complicated than writing to vdatas, as it usually involves searching
for a particular vdata, then searching within that vdata, before actually reading data. The process
of reading from vdatas can be summarized as follows:

10. Identify the appropriate vdata in the file.

11. Obtain information about the vdata.

12. Read in the desired data.

Only Step 3 will be covered in this section assuming that the vdata of interest and its data informa-
tion is known. Step 1 is covered in Section 4.7 on page 182 and Step 2 is covered in Section 4.9 on
page 199.

Step 3 can be expanded into the following:

1. Open the file.

2. Initialize the Vdata interface.

3. Initiate access to the vdata.

4. Optionally seek to the appropriate record.

5. Initialize the fields to be read.

6. Read the data.

7. If the fields have different data types, unpack the field data.

8. Terminate access to the vdata.
June 2017 173

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
9. Terminate access to the Vdata interface.

10. Close the file.

The following sequence of function calls corresponds to the above steps:

C: file_id = Hopen(filename, file_access_mode, num_dds_block);
status = Vstart(file_id);
vdata_id = VSattach(file_id, vdata_ref, vdata_access_mode);
record_pos = VSseek(vdata_id, record_index);
status = VSsetfields(vdata_id, fieldname_list);
records_read = VSread(vdata_id, databuf, n_records, interlace_mode);
status = VSfpack(vdata_id, action, fields_in_buf, buf, buf_size,

n_records, fieldname_list, bufptrs);
status = VSdetach(vdata_id);
status = Vend(file_id);
status = Hclose(file_id);

FORTRAN: file_id = hopen(filename, file_access_mode, num_dds_block)
status = vfstart(file_id)
vdata_id = vsfatch(file_id, vdata_ref, vdata_access_mode)
record_pos = vsfseek(vdata_id, record_index)
status = vsfsfld(vdata_id, fieldname_list)

records_read = vsfrd(vdata_id, databuf, n_records, interlace_mode)
OR records_read = vsfrdc(vdata_id, databuf, n_records, interlace_mode)

status = vsfcpak(vdata_id, action, fields_in_buf, buf, buf_size,
n_records, fieldname_list, bufptrs)

OR status = vsfnpak(vdata_id, action, fields_in_buf, buf, buf_size,
n_records, fieldname_list, bufptrs)

status = vsfdtch(vdata_id)
status = vfend(file_id)
status = hclose(file_id)

4.6.1 Initializing the Fields for Read Access: VSsetfields

VSsetfields is used to establish access to the fields to be read by the next read operation. The
argument fieldname_list is a comma-separated string of the field names with no white space. The
order the field names occur in fieldname_list is the order in which the fields will be read. For
example, assume that a vdata contains fields named A, B, C, D, E, F in that order. The following
declarations demonstrate how to use fieldname_list to read a single field, a collection of random
fields, and all the fields in reverse order:

• Single field: fieldname_list = “B”

• Collection of fields: fieldname_list = “A,E”

• Reverse order: fieldname_list = “F,E,D,C,B,A”

VSsetfields returns either SUCCEED (or 0) or FAIL (or -1). The parameters for VSsetfields are fur-
ther defined in Table 4E on page 159.

4.6.2 Reading from the Current Vdata: VSread

VSread sequentially retrieves data from the records in a vdata. The parameter databuf is the
buffer to store the retrieved data, n_records specifies the number of records to retrieve, and
174 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
interlace_mode specifies the interlace mode, FULL_INTERLACE (or 0) or NO_INTERLACE (or 1), to
be used in the contents of databuf.

Prior to the first VSread call, VSsetfields must be called.

If a VSread call is successful, the data returned in databuf is formatted according to the interlace
mode specified by the parameter interlace_mode and the data fields appear in the order specified
in the last call to VSsetfields for that vdata.

By default, VSread reads from the first vdata record. To retrieve an arbitrary record from a vdata,
use VSseek to specify the record position before calling VSread. VSseek is described in
Section 4.5.2.1 on page 160.

The FORTRAN-77 version of VSread has three routines: vsfrd reads buffered numeric data,
vsfrdc reads buffered character data and vsfread reads generic packed data.

VSread returns the total number of records read if successful and FAIL (or -1) otherwise. The
parameters for VSread are further defined in Table 4I.

TABLE 4I VSread Parameter List

VSsetfields and VSread may be called several times to read from the same vdata. However, note
that VSread operations are sequential. Thus, in the following code segment, the first call to
VSread returns ten “A” data values from the first ten elements in the vdata, while the second call
to VSread returns ten “B” data values from the second ten elements (elements 10 to 19) in the
vdata.

status = VSsetfields(vdata_id, "A");
records_read = VSread(vdata_id, bufferA, 10, interlace_mode);

status = VSsetfields(vdata_id, "B");
records_read = VSread(vdata_id, bufferB, 10, interlace_mode);

To read the first ten “B” data values, the access routine VSseek must be called to explicitly posi-
tion the read pointer back to the position of the first record. The following code segment reads the
first ten “A” and “B” values into two separate float arrays bufferA and bufferB.

status = VSsetfields(vdata_id, "A");
records_read = VSread(vdata_id, bufferA, 10, interlace_mode);

record_pos = VSseek(vdata_id, 0); /* seeks to first record */
status = VSsetfields(vdata_id, "B");
records_read = VSread(vdata_id, bufferB, 10, interlace_mode);

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C FORTRAN-77

VSread
[int32]

(vsfrd/vsfrdc/
vsfread)

vdata_id int32 integer Vdata identifier

databuf uint8*
<valid numeric data type>(*) /

character*(*) / integer
Buffer for the retrieved data

n_records int32 integer Number of records to be retrieved

interlace_mode int32 integer Interlace mode of the buffered data
June 2017 175

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
EXAMPLE 5. Reading a Vdata of Homogeneous Type

This example illustrates the use of VSfind/vsffnd to locate a vdata given its name, VSseek/vsf-
seek to move the current position to a desired record, and VSread/vsfrd to read the data of several
records. The function VSfind will be discussed in Section 4.7.3. The approach used in this exam-
ple can only read data written by a program such as that in Example 3, i.e., without packing.
Reading mixed data vdatas must use the approach illustrated in Example 6.

The program reads 5 records starting from the fourth record of the two fields "Position" and "Tem-
perature" in the vdata "Solid Particle" from the file "General_Vdatas.hdf". After the program uses
VSfind/vsffnd to obtain the reference number of the vdata, it uses VSseek/vsfseek to place the
current position at the fourth record, then starts reading 5 records, and displays the data.

C:
#include "hdf.h"

#define FILE_NAME "General_Vdatas.hdf"
#define VDATA_NAME "Solid Particle"
#define N_RECORDS 5 /* number of records the vdata contains */
#define RECORD_INDEX 3 /* position where reading starts - 4th record */
#define ORDER_1 3 /* order of first field to be read */
#define ORDER_2 2 /* order of second field to be read */
#define FIELDNAME_LIST "Position,Temperature" /* only two fields are read */
#define N_VALS_PER_REC (ORDER_1 + ORDER_2)
 /* number of values per record */

main()
{
 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */
 int32 status_32, /* returned status for functions returning an int32 */
 file_id, vdata_id,
 vdata_ref, /* vdata’s reference number */
 num_of_records, /* number of records actually written to the vdata */
 record_pos; /* position of the current record */
 int16 i, rec_num; /* current record number in the vdata */
 float32 databuf[N_RECORDS][N_VALS_PER_REC]; /* buffer for vdata values */

 /********************** End of variable declaration **********************/

 /*
 * Open the HDF file for reading.
 */
 file_id = Hopen (FILE_NAME, DFACC_READ, 0);

 /*
 * Initialize the VS interface.
 */
 status_n = Vstart (file_id);

 /*
 * Get the reference number of the vdata, whose name is specified in
 * VDATA_NAME, using VSfind, which will be discussed in Section 4.7.3.
 */
 vdata_ref = VSfind (file_id, VDATA_NAME);

 /*
 * Attach to the vdata for reading if it is found, otherwise
 * exit the program.
 */
176 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
 if (vdata_ref == 0) exit;
 vdata_id = VSattach (file_id, vdata_ref, "r");

 /*
 * Specify the fields that will be read.
 */
 status_n = VSsetfields (vdata_id, FIELDNAME_LIST);

 /*
 * Place the current point to the position specified in RECORD_INDEX.
 */
 record_pos = VSseek (vdata_id, RECORD_INDEX);

 /*
 * Read the next N_RECORDS records from the vdata and store the data
 * in the buffer databuf with fully interlaced mode.
 */
 num_of_records = VSread (vdata_id, (uint8 *)databuf, N_RECORDS,
 FULL_INTERLACE);

 /*
 * Display the read data as many records as the number of records
 * returned by VSread.
 */
 printf ("\n Particle Position Temperature Range\n\n");
 for (rec_num = 0; rec_num < num_of_records; rec_num++)
 {
 printf (" %6.2f, %6.2f, %6.2f %6.2f, %6.2f\n",
 databuf[rec_num][0], databuf[rec_num][1], databuf[rec_num][2],
 databuf[rec_num][3], databuf[rec_num][4]);
 }

 /*
 * Terminate access to the vdata and to the VS interface, then close
 * the HDF file.
 */
 status_32 = VSdetach (vdata_id);
 status_n = Vend (file_id);
 status_32 = Hclose (file_id);
}

FORTRAN:
 program read_from_vdata
 implicit none
C
C Parameter declaration
C
 character*18 FILE_NAME
 character*14 VDATA_NAME
 character*20 FIELDNAME_LIST
 integer N_RECORDS, RECORD_INDEX
 integer ORDER_1, ORDER_2
 integer N_VALS_PER_REC
C
 parameter (FILE_NAME = ’General_Vdatas.hdf’,
 + VDATA_NAME = ’Solid Particle’,
 + FIELDNAME_LIST = ’Position,Temperature’)
 parameter (N_RECORDS = 5,
 + RECORD_INDEX = 3,
 + ORDER_1 = 3,
 + ORDER_2 = 2,
 + N_VALS_PER_REC = ORDER_1 + ORDER_2)
June 2017 177

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)

 integer DFACC_READ, FULL_INTERLACE
 parameter (DFACC_READ = 1,
 + FULL_INTERLACE = 0)
C
C Function declaration
C
 integer hopen, hclose
 integer vfstart, vsffnd, vsfatch, vsfsfld, vsfrd, vsfseek,
 + vsfdtch, vfend

C
C**** Variable declaration ***
C
 integer status
 integer file_id, vdata_id
 integer vdata_ref, rec_num, num_of_records, rec_pos
 real databuf(N_VALS_PER_REC, N_RECORDS)
 integer i
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file for reading.
C
 file_id = hopen(FILE_NAME, DFACC_READ, 0)
C
C Initialize the VS interface.
C
 status = vfstart(file_id)
C
C Get the reference number of the vdata, whose name is specified in
C VDATA_NAME, using vsffnd, which will be discussed in Section 4.7.3.
C
 vdata_ref = vsffnd(file_id, VDATA_NAME)
C
C Attach to the vdata for reading if it is found,
C otherwise exit the program.
C
 if (vdata_ref .eq. 0) stop
 vdata_id = vsfatch(file_id, vdata_ref, ’r’)
C
C Specify the fields that will be read.
C
 status = vsfsfld(vdata_id, FIELDNAME_LIST)
C
C Place the current point to the position specified in RECORD_INDEX.
C
 rec_pos = vsfseek(vdata_id, RECORD_INDEX)
C
C Read the next N_RECORDS from the vdata and store the data in the buffer
C databuf with fully interlace mode.
C
 num_of_records = vsfrd(vdata_id, databuf, N_RECORDS,
 + FULL_INTERLACE)
C
C Display the read data as many records as the number of records returned
C by vsfrd.
C
 write(*,*) ’ Particle Position Temperature Range’
 write(*,*)
 do 10 rec_num = 1, num_of_records
 write(*,1000) (databuf(i, rec_num), i = 1, N_VALS_PER_REC)
178 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
10 continue
1000 format(1x,3(f6.2), 8x,2(f6.2))
C
C Terminate access to the vdata and to the VS interface, and
C close the HDF file.
C
 status = vsfdtch(vdata_id)
 status = vfend(file_id)
 status = hclose(file_id)
 end

EXAMPLE 6. Reading a Multi-field and Mixed-type Vdata with Packing

This example illustrates the use of VSread/vsfread to read part of a mixed data vdata and VSf-
pack/vsfnpak/vsfcpak to unpack the data read.

The program reads the vdata "Mixed Data Vdata" that was written to the file "Packed_Vdata.hdf"
by the program in Example 4. In Example 6, all values of the fields "Temp" and "Ident" are read.
The program unpacks and displays all the values after reading is complete. Again, note that in C
only one call to VSread and one call to VSfpack are made to read and unpack all N_RECORDS
records. In Fortran, data is read with one call to vsfread, but each field is unpacked using separate
calls to vsfnpak and vsfcpak

C:
#include "hdf.h"

#define N_RECORDS 20 /* number of records to be read */
#define N_FIELDS 2 /* number of fields to be read */
#define FILE_NAME "Packed_Vdata.hdf"
#define VDATA_NAME "Mixed Data Vdata"
#define FIELDNAME_LIST "Temp,Ident"

/* number of bytes of the data to be read */
#define BUFFER_SIZE (sizeof(float32) + sizeof(char)) * N_RECORDS

main ()
{
 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */
 int32 status_32, /* returned status for functions returning an int32 */
 file_id, vdata_id,
 num_of_records, /* number of records actually read */
 vdata_ref, /* reference number of the vdata to be read */
 buffer_size; /* number of bytes the vdata can hold */
 float32 itemp[N_RECORDS]; /* buffer to hold values of first field */
 char idents[N_RECORDS]; /* buffer to hold values of fourth field */
 uint8 databuf[BUFFER_SIZE]; /* buffer to hold read data, still packed */
 VOIDP fldbufptrs[N_FIELDS];/*pointers to be pointing to the field buffers*/
 int i;

 /********************** End of variable declaration **********************/

 /*
 * Open the HDF file for reading.
 */
 file_id = Hopen (FILE_NAME, DFACC_READ, 0);

 /*
June 2017 179

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
 * Initialize the VS interface.
 */
 status_n = Vstart (file_id);

 /*
 * Get the reference number of the vdata, whose name is specified in
 * VDATA_NAME, using VSfind, which will be discussed in Section 4.7.3.
 */
 vdata_ref = VSfind (file_id, VDATA_NAME);

 /*
 * Attach to the vdata for reading.
 */
 vdata_id = VSattach (file_id, vdata_ref, "r");

 /*
 * Specify the fields that will be read.
 */
 status_n = VSsetfields(vdata_id, FIELDNAME_LIST);

 /*
 * Read N_RECORDS records of the vdata and store the values into the
 * buffer databuf.
 */
 num_of_records = VSread (vdata_id, (uint8 *)databuf, N_RECORDS,
 FULL_INTERLACE);

 /*
 * Build an array of pointers each of which points to an array that
 * will hold all values of a field after being unpacked.
 */
 fldbufptrs[0] = &itemp[0];
 fldbufptrs[1] = &idents[0];

 /*
 * Unpack the data from the buffer databuf and store the values into the
 * appropriate field buffers pointed to by the set of pointers fldbufptrs.
 * Note that the second parameter is _HDF_VSUNPACK for unpacking and the
 * number of records is the one returned by VSread.
 */
 status_n = VSfpack (vdata_id, _HDF_VSUNPACK, FIELDNAME_LIST, (VOIDP)databuf,
 BUFFER_SIZE, num_of_records, NULL, (VOIDP)fldbufptrs);

 /*
 * Display the read data being stored in the field buffers.
 */
 printf ("\n Temp Ident\n");
 for (i=0; i < num_of_records; i++)
 printf (" %6.2f %c\n", itemp[i], idents[i]);

 /*
 * Terminate access to the vdata and the VS interface, then close
 * the HDF file.
 */
 status_32 = VSdetach (vdata_id);
 status_n = Vend (file_id);
 status_32 = Hclose (file_id);
}

180 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
FORTRAN:
 program read_mixed_vdata
 implicit none
C
C Parameter declaration
C
 character*16 FILE_NAME
 character*16 VDATA_NAME
 character*4 FIELD1_NAME
 character*5 FIELD2_NAME
 character*10 FIELDNAME_LIST
 integer N_RECORDS, N_FIELDS
 integer BUFFER_SIZE
C
 parameter (FILE_NAME = ’Packed_Vdata.hdf’,
 + VDATA_NAME = ’Mixed Data Vdata’,
 + FIELD1_NAME = ’Temp’,
 + FIELD2_NAME = ’Ident’,
 + FIELDNAME_LIST = ’Temp,Ident’)
 parameter (N_RECORDS = 20,
 + N_FIELDS = 2,
 + BUFFER_SIZE = (4 + 1)*N_RECORDS)

 integer DFACC_READ, DFNT_FLOAT32, DFNT_CHAR8,
 + FULL_INTERLACE, HDF_VSUNPACK
 parameter (DFACC_READ = 1,
 + DFNT_FLOAT32 = 5,
 + DFNT_CHAR8 = 4,
 + FULL_INTERLACE = 0,
 + HDF_VSUNPACK = 1)
C
C Function declaration
C
 integer hopen, hclose
 integer vfstart, vsfatch, vsffnd, vsfsfld,
 + vsfnpak, vsfcpak, vsfread, vsfdtch, vfend

C
C**** Variable declaration ***
C
 integer status
 integer file_id, vdata_id
 integer vdata_ref, num_of_records
 real temp(N_RECORDS)
 character ident(N_RECORDS)
 integer i
C
C Buffer for read packed data should be big enough to hold N_RECORDS.
C
 integer databuf(BUFFER_SIZE/4 + 1)
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file for reading.
C
 file_id = hopen(FILE_NAME, DFACC_READ, 0)
C
C Initialize the VS interface.
C
 status = vfstart(file_id)
C

June 2017 181

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
C Get the reference number of the vdata, whose name is specified in
C VDATA_NAME, using vsffnd, which will be discussed in Section 4.7.3.
C
 vdata_ref = vsffnd(file_id, VDATA_NAME)
C
C Attach to the vdata for reading if it is found,
C otherwise exit the program.
C
 if (vdata_ref .eq. 0) stop
 vdata_id = vsfatch(file_id, vdata_ref, ’r’)
C
C Specify the fields that will be read.
C
 status = vsfsfld(vdata_id, FIELDNAME_LIST)

C
C Read N_RECORDS records of the vdata and store the values into the databuf.
C
 num_of_records = vsfread(vdata_id, databuf, N_RECORDS,
 + FULL_INTERLACE)
C
C Unpack N_RECORDS from databuf into temp and ident arrays.
C In Fortran, each field is unpacked using separate calls to
C vsfnpak or vsfcpak.
C
 status = vsfnpak(vdata_id, HDF_VSUNPACK, FIELDNAME_LIST, databuf,
 + BUFFER_SIZE, num_of_records, FIELD1_NAME, temp)
 status = vsfcpak(vdata_id, HDF_VSUNPACK, FIELDNAME_LIST, databuf,
 + BUFFER_SIZE, num_of_records, FIELD2_NAME, ident)
C
C Display the read data being stored in the field databufs.
C
 write (*,*) ’ Temp Ident’
 do 10 i = 1, num_of_records
 write(*,1000) temp(i), ident(i)
10 continue
1000 format (3x,F6.2, 4x, a)
C
C Terminate access to the vdata and to the VS interface, and
C close the HDF file.
C
 status = vsfdtch(vdata_id)
 status = vfend(file_id)
 status = hclose(file_id)
 end

4.7 Searching for Vdatas in a File

There are several HDF library routines that perform searches for a specific vdata in a file. In this
section, we introduce these routines; methods for obtaining information about the members of a
given vdata are described in the following section.

4.7.1 Finding All Vdatas that are Not Members of a Vgroup: VSlone

A lone vdata is one that is not a member of a vgroup. Vgroups are HDF objects that contain sets
of HDF objects, including vgroups. Vgroups are described in Chapter 5, Vgroups (V API).
182 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
VSlone searches an HDF file and retrieves the reference numbers of lone vdatas in the file. The
syntax of VSlone is as follows:

C: num_of_lone_vdatas = VSlone(file_id, ref_array, maxsize);

FORTRAN: num_of_lone_vdatas = vsflone(file_id, ref_array, maxsize)

The parameter ref_array is an array allocated to hold the retrieved reference numbers of lone vda-
tas and the argument maxsize specifies the maximum size of ref_array. At most, maxsize reference
numbers will be returned in ref_array.

The space that should be allocated for ref_array is dependent upon on how many lone vdatas are
expected in the file. A size of MAX_FIELD_SIZE (or 65535) integers is adequate to handle any case.
To use dynamic memory instead of allocating such a large array, first call VSlone with maxsize set
to a small value like 0 or 1, then use the returned value to allocate memory for ref_array to be
passed to a subsequent call to VSlone.

VSlone returns the number of lone vdatas or FAIL (or -1). The parameters for VSlone are listed in
Table 4J on page 184.

4.7.2 Sequentially Searching for a Vdata: VSgetid

VSgetid sequentially searches through an HDF file to obtain the vdata immediately following the
vdata specified by the reference number in the parameter vdata_ref. The syntax of VSgetid is as
follows:

C: ref_num = VSgetid(file_id, vdata_ref);

FORTRAN: ref_num = vsfgid(file_id, vdata_ref)

To obtain the reference number of the first vdata in the file, the user must set the parameter
vdata_ref to -1. Thus, VSgetid can be repeatedly called, with the initial value of vdata_ref set to -
1 so that the routine will sequentially return the reference number of each vdata in the file, starting
from the first vdata. After the last vdata is reached, subsequent calls to VSgetid will return FAIL
(or -1).

VSgetid returns a vdata reference number or FAIL (or -1). The parameters for VSgetid are listed
in Table 4J on page 184.

4.7.3 Determining a Reference Number from a Vdata Name: VSfind

VSfind searches an HDF file for a vdata with the specified name and returns the vdata reference
number. The syntax of VSfind is as follows:

C: ref_num = VSfind(file_id, vdata_name);

FORTRAN: ref_num = vsffnd(file_id, vdata_name)

The parameter vdata_name is the search key. Although there may be several identically named
vdatas in the file, VSfind will only return the reference number of the first vdata in the file with
the specified name.

VSfind returns either the vdata reference number if the named vdata is found or 0 otherwise. The
parameters for VSfind are listed in Table 4J.
June 2017 183

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
4.7.4 Searching for a Vdata by Field Name: VSfexist

VSfexist queries a vdata for a set of specified field names and is often useful for locating vdatas
containing particular field names. The syntax of the VSfexist function is as follows:

C: status = VSfexist(vdata_id, fieldname_list);

FORTRAN: status = vsfex(vdata_id, fieldname_list)

The parameter fieldname_list is a string of comma-separated field names containing no white
space, for example, “PX,PY,PZ”.

VSfexist returns SUCCEED (or 0) if all of the fields specified in the parameter fieldname_list are
found and FAIL (or -1) otherwise. The parameters for VSfexist are listed in Table 4J.

TABLE 4J VSlone, VSgetid, VSfind, and VSfexist Parameter Lists

EXAMPLE 7. Locating a Vdata Containing Specified Field Names

This example illustrates the use of VSgetid/vsfgid to obtain the reference number of each vdata in
an HDF file and the use of VSfexist/vsfex to determine whether a vdata contains specific fields.

In this example, the program searches the HDF file "General_Vdatas.hdf" to locate the first vdata
containing the fields "Position" and "Temperature". The HDF file is an output of the program in
Example 3.

C:
#include "hdf.h"

#define FILE_NAME "General_Vdatas.hdf"
#define SEARCHED_FIELDS "Position,Temperature"

main()
{
 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */
 int32 status_32, /* returned status for functions returning an int32 */
 file_id, vdata_id, vdata_ref,
 index = 0; /* index of the vdata in the file - manually kept */

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

VSlone
[int32]

(vsflone)

file_id int32 integer File identifier

ref_array int32 [] integer (*) Buffer for a list of lone vdata reference numbers

maxsize int32 integer Maximum number of reference numbers to be buffered

VSgetid
[int32]

(vsfgid)

file_id int32 integer File identifier

vdata_ref int32 integer Reference number of the vdata preceding the vdata

VSfind
[int32]

(vsffnd)

file_id int32 integer File identifier

vdata_name char * character*(*) Name of the vdata to find

VSfexist
[intn]

(vsfex)

vdata_id int32 integer Vdata identifier

fieldname_list char * character*(*) Names of the fields to be queried
184 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
 int8 found_fields; /* TRUE if the specified fields exist in the vdata */

 /********************** End of variable declaration **********************/

 /*
 * Open the HDF file for reading.
 */
 file_id = Hopen (FILE_NAME, DFACC_READ, 0);

 /*
 * Initialize the VS interface.
 */
 status_n = Vstart (file_id);

 /*
 * Set the reference number to -1 to start the search from
 * the beginning of file.
 */
 vdata_ref = -1;

 /*
 * Assume that the specified fields are not found in the current vdata.
 */
 found_fields = FALSE;

 /*
 * Use VSgetid to obtain each vdata by its reference number then
 * attach to the vdata and search for the fields. The loop
 * terminates when the last vdata is reached or when a vdata which
 * contains the fields listed in SEARCHED_FIELDS is found.
 */
 while ((vdata_ref = VSgetid (file_id, vdata_ref)) != FAIL)
 {
 vdata_id = VSattach (file_id, vdata_ref, "r");
 if ((status_n = VSfexist (vdata_id, SEARCHED_FIELDS)) != FAIL)
 {
 found_fields = TRUE;
 break;
 }

 /*
 * Detach from the current vdata before continuing searching.
 */
 status_32 = VSdetach (vdata_id);

 index++;/* advance the index by 1 for the next vdata */
 }

 /*
 * Print the index of the vdata containing the fields or a "not found"
 * message if no such vdata is found. Also detach from the vdata found.
 */
 if (!found_fields)
 printf ("Fields Position and Temperature were not found.\n");
 else
 {
 printf
 ("Fields Position and Temperature found in the vdata at position %d\n",
 index);
 status_32 = VSdetach (vdata_id);
 }

 /*
June 2017 185

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
 * Terminate access to the VS interface and close the HDF file.
 */
 status_n = Vend (file_id);
 status_32 = Hclose (file_id);
}

FORTRAN:
 program locate_vdata
 implicit none
C
C Parameter declaration
C
 character*18 FILE_NAME
 character*20 SEARCHED_FIELDS
C
 parameter (FILE_NAME = ’General_Vdatas.hdf’,
 + SEARCHED_FIELDS = ’Position,Temperature’)
 integer DFACC_READ
 parameter (DFACC_READ = 1)
C
C Function declaration
C
 integer hopen, hclose
 integer vfstart, vsfatch, vsfgid, vsfex, vsfdtch, vfend

C
C**** Variable declaration ***
C
 integer status
 integer file_id, vdata_id, vdata_ref
 integer index
 logical found_fields
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file for reading.
C
 file_id = hopen(FILE_NAME, DFACC_READ, 0)
C
C Initialize the VS interface.
C
 status = vfstart(file_id)
 index = 0
C
C Set the reference number to -1 to start the search from the beginning
C of the file.
C
 vdata_ref = -1
C
C Assume that the specified fields are not found in the current vdata.
C
 found_fields = .FALSE.
10 continue
C
C Use vsfgid to obtain each vdata by its reference number then
C attach to the vdata and search for the fields. The loop terminates
C when the last vdata is reached or when a vdata which contains the
C fields listed in SEARCHED_FIELDS is found.
C
 vdata_ref = vsfgid(file_id, vdata_ref)
 if (vdata_ref .eq. -1) goto 100
186 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
 vdata_id = vsfatch(file_id, vdata_ref, ’r’)
 status = vsfex(vdata_id, SEARCHED_FIELDS)
 if (status .ne. -1) then
 found_fields = .TRUE.
 goto 100
 endif
 status = vsfdtch(vdata_id)
 index = index + 1
 goto 10
100 continue
C
C Print the index of the vdata containing the fields or a ’not found’
C message if no such vdata is found. Also detach from the vdata found.
C
 if(.NOT.found_fields) then
 write(*,*) ’Fields Positions and Temperature were not found’
 else
 write(*,*)
 + ’Fields Positions and Temperature were found in the vdata’,
 + ’ at position ’, index
C
C Terminate access to the vdata
C
 status = vsfdtch(vdata_id)
 endif
C
C Terminate access to the VS interface and close the HDF file.
C
 status = vsfdtch(vdata_id)
 status = vfend(file_id)
 status = hclose(file_id)
 end

4.7.5 Retrieving Vdatas in a File or in a Vgroup: VSgetvdatas

VSgetvdatas retrieves a list containing reference numbers of vdatas in a file or in a vgroup, which
is identified by the parameter id. The syntax of VSgetvdatas is as follows:

C: status = VSgetvdatas(id, start_vd, vd_count, refarray);

FORTRAN: status = vsfgvdatas(id, start_vd, vd_count, refarray)

The library commonly use vgroups or vdatas to store HDF objects. For example, a vgroup is used
to represent an SDS and a vdata for an attribute. VSgetvdatas retrieves only the vdatas that were
previously created by user applications, not those that were created by the library internally. They
are referred to as user-created vdatas, for brevity.

When id is a vgroup identifier, only the immediate sub-vdatas will be retrieved; that is, the sub-
vgroups will not be traversed.

The parameter vd_count specifies the number of values that the refarray list can hold and can be
any positive number smaller than MAX_REF (65535). If vd_count is larger than the actual number
of user-created vdatas, then only the actual number of user-created vdatas will be retrieved.

The retrieval starts at the vdatas number start_vd going forward in the order which the vdatas
were created. For example, if there are 100 vdatas that can be retrieved, specifying start_vd as 90
and vd_count as 10 will retrieve the last ten vdatas. The value for start_vd must be non-negative
and smaller than the number of user-created vdatas, which can be obtained by invoking VSgetv-
datas passing in NULL for the array refarray. This number of user-created vdatas will also allow
applications to sufficiently allocate space for refarray.
June 2017 187

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
• When start_vd is 0, the retrieval will start at the beginning of the file or the first sub-vdata of
the specified vgroup.

• When start_vd is smaller than the number of user-created vdatas in the file or the specified
vgroup, VSgetvdatas will start retrieving vdatas from the vdata number start_vd.

• When start_vd equals or is greater than the number of user-created vdatas in the file or the
vgroup, VSgetvdatas will return FAIL (or -1).

Following are some examples of using VSgetvdatas to get the reference numbers of vdatas in a
file, assuming that the file has been opened for reading successfully:

C: /* Call VSgetvdatas the first time to get the number of vdatas in
 the file to allocate ref_array */
n_vds = VSgetvdatas(file_id, 0, 0, NULL);

/* Allocate space to retrieve reference numbers of n_vds vdatas */
ref_array = (uint16 *)HDmalloc(sizeof(uint16)*n_vds);

/* To get all the vdatas in the file: */
n_vds = VSgetvdatas(file_id, 0, n_vds, ref_array);

/* Assuming n_vds=100, to get the first 10 vdatas in the file: */
n_vds = VSgetvdatas(file_id, 0, 10, ref_array);

/* Assuming n_vds=100, to get the last 10 vdatas in the file: */
n_vds = VSgetvdatas(file_id, 90, 10, ref_array);

Following are some examples of using VSgetvdatas to get the reference numbers of vdatas in a
parent vgroup:

C: vdata_id = Vattach(file_id, vdata_ref, "r");
/* Call VSgetvdatas the first time to get the number of vdatas in the
 parent vgroup to allocate ref_array */
n_vds = VSgetvdatas(vgroup_id, 0, 0, NULL);

/* Allocate space to retrieve reference numbers of n_vds vdatas */
ref_array = (uint16 *)HDmalloc(sizeof(uint16)*n_vds);

/* Get all the vdatas in the parent vgroup */
n_vds = VSgetvdatas(vgroup_id, 0, n_vds, ref_array);

/* Close the vgroup */
status = Vdetach(vgroup_id);

Note that, in the FORTRAN-77 version, if vd_count is -1 then the function will return the number
of user-created vdatas and disregard refarray; equivalent to passing NULL for refarray in the C ver-
sion.

VSgetvdatas returns the number of user-created vdatas retrieved, if successful, or FAIL (or -1),
otherwise. The parameters of this routine are further defined in (See Table 4K on page 190).

4.7.6 Determining Internal Vdata: VSisinternal

The HDF library commonly uses vgroups and vdatas to store metadata or data for the library's
own use. For examples, vgroups are used to represent SDS or raster images, and vdatas are used
188 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
to store attributes or dimensions. Typically, a user is only interested in vgroups/vdatas that were
created by user applications, not by the library internally. VSisinternal allows an application to
find out if a vdata is internally created.

The syntax of VSisinternal is as follows:

C: is_internal = VSisinternal(vdata_id);

FORTRAN: Currently unavailable

VSisinternal checks the class name of the given vdata against the list HDF_INTERNAL_VDS to deter-
mine whether the vdata was previously created by the library instead of by a user application. The
names in HDF_INTERNAL_VDS are included:

DIM_VALS ("DimVal0.0")
DIM_VALS01 ("DimVal0.1")
_HDF_ATTRIBUTE ("Attr0.0")
HDF_SDSVAR ("SDSVar")
HDF_CRDVAR ("CoordVar")
_HDF_CHK_TBL_CLASS ("_HDF_CHK_TBL_")
RIGATTRCLASS("RIATTR0.0C")

VSisinternal returns TRUE (1) if the inquired vdata is one that was internally created by the library,
FALSE (0) otherwise, and FAIL (-1) if failure occurs. The parameters of this routine are further
defined in (See Table 4K on page 190).

4.7.7 Retrieving Vdatas in a File or in a Vgroup: VSofclass

VSofclass retrieves reference numbers of vdatas of the specified class in a file or in a vgroup. The
syntax of VSofclass is as follows:

C: status = VSofclass(id, vd_class, start_vd, vd_count, refarray);

FORTRAN: Unavailable

When id is a vgroup identifier, only the immediate sub-vdatas will be checked; that is, the sub-
vgroups will not be traversed. The parameter vd_count specifies the number of values that the
refarray list can hold and can be any positive number smaller than MAX_REF (65535). If vd_count is
larger than the actual number of vdatas that has the specified class, then only the actual number of
such vdatas will be retrieved.

The parameter start_vd is the index of the vdatas having the specified class, vd_class. The
retrieval starts at the vdata number start_vd going forward in the order which the vdatas were cre-
ated. The combination of start_vd and vd_count provide flexibility in the retrieval. For example,
if there are 100 vdatas that can be retrieved, specifying start_vd as 90 and vd_count as 10 will
retrieve the last ten such vdatas. The value for start_vd must be non-negative and smaller than the
number of vdatas having the specified class. This number can be obtained by invoking VSofclass
passing in NULL for the array refarray and will also allow applications to sufficiently allocate
space for refarray.

When start_vd is 0, the retrieval will start at the beginning of the file or the first sub-vdata of the
specified vgroup.

When start_vd is smaller than the number of vdatas having the specified class name, VSofclass
will start retrieving from the vdata number start_vd.

When start_vd equals or is greater than the number of vdatas having the specified class name,
VSofclass will return FAIL (or -1).

VSofclass returns the number of vdatas retrieved, if successful, or FAIL (or -1), otherwise. The
parameters of this routine are further defined in Table 4K.
June 2017 189

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
TABLE 4K VSgetvdatas, VSisinternal, and VSofclass Parameter Lists

4.8 Vdata Attributes

HDF version 4.1r1 and later include the ability to assign attributes to a vdata and/or a vdata field.
The concept of attributes is fully explained in Chapter 3, Scientific Data Sets (SD API). To review
briefly: an attribute has a name, a data type, a number of attribute values, and the attribute values
themselves. All attribute values must be of the same data type. For example, an integer cannot be
added to an attribute value consisting of ten characters, or a character value cannot be included in
an attribute value consisting of 2 32-bit integers.

Any number of attributes can be assigned to either a vdata or any single field in a vdata. However,
each attribute name should be unique within its scope. In other words, the name of a field’s
attribute must be unique among all attributes that belong to that same field, and the name of a
vdata’s attribute must be unique among all attributes assigned to the same vdata.

The following subsections describe routines that retrieve various information about vdata and
vdata field attributes. Those routines that access field attributes require the field index as a param-
eter (field_index.)

4.8.1 Querying the Index of a Vdata Field Given the Field Name: VSfindex

VSfindex retrieves the index of a field given its name, field_name, and stores the value in the
parameter field_index. The syntax of VSfindex is as follows:

C: status = VSfindex(vdata_id, field_name, &field_index);

FORTRAN: status = vsffidx(vdata_id, field_name, field_index)

The parameter field_index is the index number that uniquely identifies the location of the field
within the vdata. Field index numbers are assigned in increasing order and are zero-based: for
example, a field_index value of 4 would refer to the fifth field in the vdata.

VSfindex returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise. The parameters for
VSfindex are further defined in Table 4L.

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

VSgetvdatas
[intn]

(vsfgvdatas)

id int32 integer File or vgroup identifier

start_vd uintn integer Vdata index to start retrieving at

vd_count uintn integer Number of vdatas to be retrieved

refarray uint16 * integer (*) Array to hold reference numbers of retrieved vdatas

VSisinternal
[intn]

(unavailable)
vdata_id int32 N/A Vdata identifier

VSofclass
[intn]

(unavailable)

id int32 N/A File or vgroup identifier

vd_class const char * N/A Class name of vdatas to be retrieved

start_vd uintn N/A Vdata index to start retrieving at

vd_count uintn N/A Number of vdatas to be retrieved

*refarray uint16 N/A Array to hold reference numbers of retrieved vdatas
190 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
TABLE 4L VSfindex Parameter List

4.8.2 Setting the Attribute of a Vdata or Vdata Field: VSsetattr

VSsetattr attaches an attribute to a vdata or a vdata field. The syntax of VSsetattr is as follows:

C: status = VSsetattr(vdata_id, field_index, attr_name, data_type,
n_values, values);

FORTRAN: status = vsfsnat(vdata_id, field_index, attr_name, data_type,
n_values, values)

OR status = vsfscat(vdata_id, field_index, attr_name, data_type,
n_values, values)

If the attribute has already been attached, the new attribute values will replace the current values,
provided the data type and the number of attribute values (n_values) have not been changed. If
either of these have been changed, VSsetattr will return FAIL (or -1).

Set the parameter field_index to _HDF_VDATA (or -1) to set an attribute for a vdata or to a valid field
index to set attribute for a vdata field. A valid field index is a zero-based integer value represent-
ing the ordinal location of a field within the vdata.

The parameter attr_name specifies the name of the attribute to be set and can contain VSNAMELEN-
MAX (or 64) characters. The parameter data_type specifies the data type of the attribute values.
Data types supported by HDF are listed in Table 2F on page 14. The parameter values contains
attribute values to be written.

The FORTRAN-77 version of VSsetattr has two routines: vsfsnat sets numeric attribute data and
vsfscat sets character attribute data.

VSsetattr returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise. The parameters for
VSsetattr are described in Table 4M.

4.8.3 Querying the Values of a Vdata or Vdata Field Attribute: VSgetattr

VSgetattr returns all of the values of the specified attribute of the specified vdata field or vdata.
The syntax of VSgetattr is as follows:

C: status = VSgetattr(vdata_id, field_index, attr_index, values);

FORTRAN: status = vsfgnat(vdata_id, field_index, attr_index, values)

OR status = vsfgcat(vdata_id, field_index, attr_index, values)

Set the parameter field_index to _HDF_VDATA (or -1) to retrieve the values of the attribute attached
to the vdata identified by the parameter vdata_id. Set field_index to a zero-based integer value to
retrieve the values of an attribute attached to a vdata field; the value of field_index will be used as

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

VSfindex
[intn]

(vsffidx)

vdata_id int32 integer Vdata identifier

field_name char * character*(*) Name of the vdata field

field_index int32 * integer Index of the vdata field
June 2017 191

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
the index of the vdata field. In both cases, the values returned will be those of the attribute located
at the position specified by the parameter attr_index, the zero-based index of the target attribute.

The parameter values must be sufficiently allocated to hold the retrieved attribute values. Use
VSattrinfo to obtain information about the attribute values for appropriate memory allocation.

The FORTRAN-77 versions of VSgetattr has two routines: vsfgnat gets numeric attribute data
and vsfgcat gets character attribute data.

VSgetattr returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise. The parameters for
VSgetattr are described in Table 4M.

TABLE 4M VSsetattr and VSgetattr Parameter Lists

4.8.4 Querying the Total Number of Vdata and Vdata Field Attributes:
VSnattrs

VSnattrs returns the total number of attributes of the specified vdata and the fields contained in
the vdata. This is different from the VSfnattrs routine, which returns the number of attributes of
the specified vdata or a specified field contained in the specified vdata. The syntax of VSnattrs is
as follows:

C: num_of_attrs = VSnattrs(vdata_id);

FORTRAN: num_of_attrs = vsfnats(vdata_id)

VSnattrs returns the total number of attributes assigned to the vdata and its fields when success-
ful, and FAIL (or -1) otherwise. The parameters for VSnattrs are described in Table 4N.

4.8.5 Querying the Number of Attributes of a Vdata or a Vdata Field:
VSfnattrs

VSfnattrs returns the number of attributes attached to the vdata field specified by the parameter
field_index or the number of attributes attached to the vdata identified by vdata_id. This is differ-

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C FORTRAN-77

VSsetattr
[intn]

(vsfsnat/vsfscat)

vdata_id int32 integer Vdata identifier

field_index int32 integer _HDF_VDATA or index of the field

attr_name char * character*(*) Name of the attribute

data_type int32 integer Data type of the attribute

n_values int32 integer Number of values the attribute contains

values VOIDP
<valid numeric data

type>(*)/
character*(*)

Buffer containing the attribute values

VSgetattr
[intn]

(vsfgnat/vsfgcat)

vdata_id int32 integer Vdata identifier

field_index int32 integer _HDF_VDATA or index of the field

attr_index intn integer Index of the attribute

values VOIDP
<valid numeric data

type>(*)/
character*(*)

Buffer containing attribute values
192 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
ent from the routine VSnattrs, which returns the total number of attributes of the specified vdata
and the fields contained in it. The syntax of VSfnattrs is as follows:

C: num_of_attrs = VSfnattrs(vdata_id, field_index);

FORTRAN: num_of_attrs = vsffnas(vdata_id, field_index)

If field_index is set to a zero-based integer value, it will be used as the index of the vdata field, and
the number of attributes attached to that field will be returned. If field_index is set to _HDF_VDATA
(or -1), the number of attributes attached to the vdata specified by vdata_id will be returned.

VSfnattrs returns the number of attributes assigned to the specified vdata or to the specified vdata
field when successful, and FAIL (or -1) otherwise. The parameters for VSfnattrs are described in
Table 4N.

TABLE 4N VSnattrs and VSfnattrs Parameter Lists

4.8.6 Retrieving the Index of a Vdata or Vdata Field Attribute Given the
Attribute Name: VSfindattr

VSfindattr returns the index of an attribute with the specified name. The attribute must be
attached to either a vdata or one of its fields. The syntax of VSfindattrs is as follows:

C: attr_index = VSfindattr(vdata_id, field_index, attr_name);

FORTRAN: attr_index = vsffdat(vdata_id, field_index, attr_name)

If field_index is set to _HDF_VDATA (or -1), the index of the attribute identified by the parameter
attr_name and attached to the vdata specified by vdata_id will be returned.

If the parameter field_index is set to a zero-based integer value, the value will be used as the index
of the vdata field. Then, the index of the attribute named by the parameter attr_name and attached
to the field specified by the parameter field_index will be returned.

VSfindattr returns an attribute index if successful, and FAIL (or -1) otherwise. The parameters for
VSfindattr are described in Table 4O on page 194.

4.8.7 Querying Information on a Vdata or Vdata Field Attribute:
VSattrinfo

VSattrinfo returns the name, data type, number of values, and the size of the values of the speci-
fied attribute of the specified vdata field or vdata. The syntax of VSattrinfo is as follows:

C: status = VSattrinfo(vdata_id, field_index, attr_index, attr_name,
&data_type, &n_values, &size);

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

VSnattrs
[intn]

(vsfnats)
vdata_id int32 integer Vdata identifier

VSfnattrs
[int32]

(vsffnas)

vdata_id int32 integer Vdata identifier

field_index int32 integer _HDF_VDATA or index of the field
June 2017 193

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
FORTRAN: status = vsfainf(vdata_id, field_index, attr_index, attr_name,
data_type, n_values, size)

In C, the parameters attr_name, data_type, n_values, and size can be set to NULL, if the informa-
tion returned by these parameters are not needed.

The parameter field_index is the same as the parameter field_index in VSsetattr; it can be set
either to a nonnegative integer to specify the field or to _HDF_VDATA (or -1) to specify the vdata
referred to by vdata_id.

VSattrinfo returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise. The parameters for
VSattrinfo are described in Table 4O.

4.8.8 Determining whether a Vdata Is an Attribute: VSisattr

The HDF library stores vdata attributes and vdata field attributes as vdatas. HDF therefore pro-
vides the routine VSisattr to determine whether a particular vdata contains attribute data. The
syntax of VSisattr is as follows:

C: status = VSisattr(vdata_id);

FORTRAN: status = vsfisat(vdata_id)

VSisattr returns TRUE (or 1) if the vdata contains an attribute data and FALSE (or 0) otherwise. The
parameters for VSisattr are described in Table 4O.

TABLE 4O VSfindattr, VSattrinfo, and VSisattr Parameter Lists

EXAMPLE 8. Operations on Field and Vdata Attributes

This example illustrates the use of VSsetattr/vsfscat/vsfsnat to attach an attribute to a vdata and
to a field in a vdata, the use of VSattrinfo/vsfainf to get information about a field attribute and a
vdata attribute, and the use of VSgetattr/vsfgcat/vsfgnat to get the values of an attribute of a
vdata and the values of an attribute of a field in a vdata. The example also shows the use of

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C FORTRAN-77

VSfindattr
[intn]

(vsffdat)

vdata_id int32 integer Vdata identifier

field_index int32 integer _HDF_VDATA or index of the field

attr_name char * character*(*) Name of the attribute

VSattrinfo
[intn]

(vsfainf)

vdata_id int32 integer Vdata identifier

field_index int32 integer Index of the field

attr_index intn integer Index of the attribute

attr_name char * character*(*) Returned name of the attribute

data_type int32 * integer Returned data type of the attribute

n_values int32 * integer Number of values of the attribute

size int32 * integer Size, in bytes, of the values of the attribute

VSisattr
[intn]

(vsfisat)
vdata_id int32 integer Vdata identifier
194 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
VSfnattrs/vsffnas to obtain the number of attributes attached to a field of a vdata and the use of
VSnattrs/vsfnats to obtain the total number of attributes attached to both a vdata and its fields.

In this example, the program finds the vdata, named "Solid Particle", in the HDF file
"General_Vdatas.hdf" produced by Example 3. It then obtains the index of the field, named
"Mass", in the vdata. An attribute named "Site Ident" is attached to the vdata to contain the iden-
tification of the experiment sites. Another attribute named "Scales" is attached to the field for its
scale values. The vdata attribute has 3 character values and the field attribute has 4 integer values.

C:
#include "hdf.h"

#define FILE_NAME "General_Vdatas.hdf"
#define VDATA_NAME "Solid Particle"
#define FIELD_NAME "Mass"
#define VATTR_NAME "Site Ident" /* name of the vdata attribute */
#define FATTR_NAME "Scales" /* name of the field attribute */
#define VATTR_N_VALUES 3 /* number of values in the vdata attribute */
#define FATTR_N_VALUES 4 /* number of values in the field attribute */

main()
{
 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */
 int32 status_32, /* returned status for functions returning an int32 */
 file_id, vdata_ref, vdata_id,
 field_index, /* index of a field within the vdata */
 n_vdattrs, /* number of vdata attributes */
 n_fldattrs, /* number of field attributes */
 vdata_type, /* to hold the type of vdata’s attribute */
 vdata_n_values,/* to hold the number of vdata’s attribute values */
 vdata_size, /* to hold the size of vdata’s attribute values */
 field_type, /* to hold the type of field’s attribute */
 field_n_values,/* to hold the number of field’s attribute values */
 field_size; /* to hold the size of field’s attribute values */
 char vd_attr[VATTR_N_VALUES] = {’A’, ’B’, ’C’};/* vdata attribute values*/
 int32 fld_attr[FATTR_N_VALUES] = {2, 4, 6, 8}; /* field attribute values*/
 char vattr_buf[VATTR_N_VALUES]; /* to hold vdata attribute’s values */
 int32 fattr_buf[FATTR_N_VALUES]; /* to hold field attribute’s values */
 char vattr_name[30], /* name of vdata attribute */
 fattr_name[30]; /* name of field attribute */

 /********************** End of variable declaration **********************/

 /*
 * Open the HDF file for writing.
 */
 file_id = Hopen (FILE_NAME, DFACC_WRITE, 0);

 /*
 * Initialize the VS interface.
 */
 status_n = Vstart (file_id);

 /*
 * Get the reference number of the vdata named VDATA_NAME.
 */
 vdata_ref = VSfind (file_id, VDATA_NAME);

 /*
 * Attach to the vdata for writing.
June 2017 195

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
 */
 vdata_id = VSattach (file_id, vdata_ref, "w");

 /*
 * Attach an attribute to the vdata, i.e., indicated by the second parameter.
 */
 status_n = VSsetattr (vdata_id, _HDF_VDATA, VATTR_NAME, DFNT_CHAR,
 VATTR_N_VALUES, vd_attr);

 /*
 * Get the index of the field FIELD_NAME within the vdata.
 */
 status_n = VSfindex (vdata_id, FIELD_NAME, &field_index);

 /*
 * Attach an attribute to the field field_index.
 */
 status_n = VSsetattr (vdata_id, field_index, FATTR_NAME, DFNT_INT32,
 FATTR_N_VALUES, fld_attr);

 /*
 * Get the number of attributes attached to the vdata’s first
 * field - should be 0.
 */
 n_fldattrs = VSfnattrs (vdata_id, 0);
 printf ("Number of attributes of the first field of the vdata: %d\n",
 n_fldattrs);

 /*
 * Get the number of attributes attached to the field specified by
 * field_index - should be 1.
 */
 n_fldattrs = VSfnattrs (vdata_id, field_index);
 printf ("Number of attributes of field %s: %d\n", FIELD_NAME, n_fldattrs);

 /*
 * Get the total number of the field’s and vdata’s attributes - should be 2.
 */
 n_vdattrs = VSnattrs (vdata_id);
 printf ("Number of attributes of the vdata and its fields: %d\n",
 n_vdattrs);

 /*
 * Get information about the vdata’s first attribute, indicated
 * by the third parameter which is the index of the attribute.
 */
 status_n = VSattrinfo (vdata_id, _HDF_VDATA, 0, vattr_name,
 &vdata_type, &vdata_n_values, &vdata_size);

 /*
 * Get information about the first attribute of the field specified by
 * field_index.
 */
 status_n = VSattrinfo (vdata_id, field_index, 0, fattr_name, &field_type,
 &field_n_values, &field_size);

 /*
 * Get the vdata’s first attribute.
 */
 status_n = VSgetattr (vdata_id, _HDF_VDATA, 0, vattr_buf);
 printf("Values of the vdata attribute = %c %c %c\n", vattr_buf[0],
 vattr_buf[1], vattr_buf[2]);
196 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
 /*
 * Get the first attribute of the field specified by field_index.
 */
 status_n = VSgetattr (vdata_id, field_index, 0, fattr_buf);
 printf("Values of the field attribute = %d %d %d %d\n", fattr_buf[0],
 fattr_buf[1], fattr_buf[2], fattr_buf[3]);

 /*
 * Terminate access to the vdata and to the VS interface, then close
 * the HDF file.
 */
 status_32 = VSdetach (vdata_id);
 status_n = Vend (file_id);
 status_32 = Hclose (file_id);
}

FORTRAN:
 program vdata_attributes
 implicit none
C
C Parameter declaration
C
 character*18 FILE_NAME
 character*14 VDATA_NAME
 character*4 FIELD_NAME
 character*10 VATTR_NAME
 character*6 FATTR_NAME
 integer VATTR_N_VALUES, FATTR_N_VALUES
C
 parameter (FILE_NAME = ’General_Vdatas.hdf’,
 + VDATA_NAME = ’Solid Particle’,
 + FIELD_NAME = ’Mass’,
 + VATTR_NAME = ’Site Ident’,
 + FATTR_NAME = ’Scales’)
 parameter (VATTR_N_VALUES = 3,
 + FATTR_N_VALUES = 4)

 integer DFACC_WRITE, FULL_INTERLACE, HDF_VDATA
 integer DFNT_INT32, DFNT_CHAR8
 parameter (DFACC_WRITE = 2,
 + FULL_INTERLACE = 0,
 + HDF_VDATA = -1,
 + DFNT_INT32 = 24,
 + DFNT_CHAR8 = 4)
C
C Function declaration
C
 integer hopen, hclose
 integer vfstart, vsffnd, vsfatch, vsfscat, vsfsnat,
 + vsffnas, vsffidx, vsfnats, vsfainf, vsfgcat, vsfgnat,
 + vsfdtch, vfend

C
C**** Variable declaration ***
C
 integer status
 integer file_id, vdata_id, vdata_ref
 integer field_index, n_vdattrs, n_fldattrs
 integer vdata_type, vdata_n_values, vdata_size
 integer field_type, field_n_values, field_size
 character vd_attr(VATTR_N_VALUES)
 integer fld_attr(FATTR_N_VALUES)
June 2017 197

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
 character vattr_buf(VATTR_N_VALUES)
 integer fattr_buf(FATTR_N_VALUES)
 character vattr_name_out(30), fattr_name_out(30)
 data vd_attr /’A’, ’B’, ’C’/
 data fld_attr /2, 4, 6, 8/
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file for writing.
C
 file_id = hopen(FILE_NAME, DFACC_WRITE, 0)
C
C Initialize the VS interface.
C
 status = vfstart(file_id)
C
C Get the reference number of the vdata named VDATA_NAME.
C
 vdata_ref = vsffnd(file_id, VDATA_NAME)
C
C Attach to the vdata for writing.
C
 vdata_id = vsfatch(file_id, vdata_ref, ’w’)
C
C Attach an attribute to the vdata, as it is indicated by second parameter.
C
 status = vsfscat(vdata_id, HDF_VDATA, VATTR_NAME, DFNT_CHAR8,
 + VATTR_N_VALUES, vd_attr)
C
C Get the index of the field FIELD_NAME within the vdata.
C
 status = vsffidx(vdata_id, FIELD_NAME, field_index)
C
C Attach an attribute to the field with the index field_index.
C
 status = vsfsnat(vdata_id, field_index, FATTR_NAME, DFNT_INT32,
 + FATTR_N_VALUES, fld_attr)

C
C Get the number of attributes attached to the vdata’s first
C field - should be 0.
C
 n_fldattrs = vsffnas(vdata_id, 0)
 write(*,*) ’Number of attributes of the first field’
 write(*,*) ’ of the vdata: ’, n_fldattrs
C
C Get the number of the attributes attached to the field specified by
C index field_index - should be 1.
C
 n_fldattrs = vsffnas(vdata_id, field_index)
 write(*,*) ’Number of attributes of field ’, FIELD_NAME,
 + n_fldattrs
C
C Get the total number of the field’s and vdata’s attributes - should be 2.
C
 n_vdattrs = vsfnats(vdata_id)
 write(*,*) ’Number of attributes of the vdata and its fields: ’,
 + n_vdattrs
C
C Get information about the vdata’s first attribute, indicated by
C the third parameter, which is the index of the attribute.
C

198 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
 status = vsfainf(vdata_id, HDF_VDATA, 0, vattr_name_out,
 + vdata_type, vdata_n_values, vdata_size)
C
C Get information about the first attribute of the field specified by
C field_index.
C
 status = vsfainf(vdata_id, field_index, 0, fattr_name_out,
 + field_type, field_n_values, field_size)
C
C Get the vdata’s first attribute.
C
 status = vsfgcat(vdata_id, HDF_VDATA, 0, vattr_buf)
 write(*,*) ’Values of vdata attribute ’, vattr_buf
C
C Get the first attribute of the field specified by field_index.
C
 status = vsfgnat(vdata_id, field_index, 0, fattr_buf)
 write(*,*) ’Values of the field attribute = ’, fattr_buf
C
C Terminate access to the vdata and to the VS interface, and
C close the HDF file.
C
 status = vsfdtch(vdata_id)
 status = vfend(file_id)
 status = hclose(file_id)
 end

4.9 Obtaining Information about a Specific Vdata

Once a vdata has been located, its contents must be obtained. In this section four categories of
routines that obtain vdata information are described:

• A general inquiry routine named VSinquire.

• A set of vdata query routines with names prefaced by “VSQuery”.

• A set of vdata inquiry routines prefaced by “VS”. Some of these routines retrieve specific
vdata information which can also be retrieved by the general inquiry routine VSinquire.

• A set of field query routines with names prefaced by “VF”.

4.9.1 Obtaining Vdata Information: VSinquire

VSinquire retrieves information about the vdata identified by the parameter vdata_id. The routine
has the following syntax:

C: status = VSinquire(vdata_id, &n_records, &interlace_mode,
fieldname_list, &vdata_size, vdata_name);

FORTRAN: status = vsfinq(vdata_id, n_records, interlace_mode, fieldname_list,
vdata_size, vdata_name)

The parameter n_records contains the returned number of records in the vdata, the parameter
interlace_mode contains the returned interlace mode of the vdata contents, the parameter
fieldname_list is a comma-separated list of the returned names of all the fields in the vdata, the
parameter vdata_size is the returned size, in bytes, of the vdata record, and the parameter
vdata_name contains the returned name of the vdata.

If any of the parameters are set to NULL in C, the corresponding data will not be returned. VSin-
quire will return FAIL if it is called before VSdefine and VSsetfield on the same vdata.
June 2017 199

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
VSinquire returns either SUCCEED (or 0) or FAIL (or -1). The parameters for VSinquire are further
defined in Table 4P.

TABLE 4P VSinquire Parameter List

EXAMPLE 9. Obtaining Vdata Information

This example illustrates the use of VSgetid/vsfgid and VSinquire/vsfinq to obtain information
about all vdatas in an HDF file.

In this example, the program uses VSgetid to locate all vdatas in the HDF file
"General_Vdatas.hdf", which is the output of Example 3. For each vdata found, if it is not the
storage of an attribute, the program uses VSinquire/vsfinq to obtain information about the vdata
and displays its information. Recall that an attribute is also stored as a vdata; the function VSi-
sattr/vsfisat checks whether a vdata is a storage of an attribute.

C:
#include "hdf.h"

#define FILE_NAME "General_Vdatas.hdf"
#define FIELD_SIZE 80 /* maximum length of all the field names */

main()
{
 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */
 int32 status_32, /* returned status for functions returning an int32 */
 n_records, /* to retrieve the number of records in the vdata */
 interlace_mode,/* to retrieve the interlace mode of the vdata */
 vdata_size, /* to retrieve the size of all specified fields */
 file_id, vdata_ref, vdata_id;
 char fieldname_list[FIELD_SIZE], /* buffer to retrieve the vdata data */
 vdata_name[VSNAMELENMAX]; /* buffer to retrieve the vdata name */

 /********************** End of variable declaration **********************/

 /*
 * Open the HDF file for reading.
 */
 file_id = Hopen (FILE_NAME, DFACC_READ, 0);

 /*
 * Initialize the VS interface.
 */
 status_n = Vstart (file_id);

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

VSinquire
[intn]

(vsfinq)

vdata_id int32 integer Vdata identifier

n_records int32 * integer Number of records in the vdata

interlace_mode int32 * integer Interlace mode

fieldname_list char * character*(*) Buffer for the list of field names

vdata_size int32 * integer Size in bytes of the vdata record

vdata_name char * character*(*) Name of the vdata
200 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
 /*
 * Set vdata_ref to -1 to start the search from the beginning of file.
 */
 vdata_ref = -1;

 /*
 * Use VSgetid to obtain each vdata by its reference number then attach
 * to the vdata and get its information. The loop terminates when
 * the last vdata is reached.
 */
 while ((vdata_ref = VSgetid (file_id, vdata_ref)) != FAIL)
 {
 /*
 * Attach to the current vdata for reading.
 */
 vdata_id = VSattach (file_id, vdata_ref, "r");

 /*
 * Test whether the current vdata is not a storage of an attribute, then
 * obtain and display its information.
 */
 if(VSisattr (vdata_id) != TRUE)
 {
 status_n = VSinquire (vdata_id, &n_records, &interlace_mode,
 fieldname_list, &vdata_size, vdata_name);
 printf ("Vdata %s: - contains %d records\n\tInterlace mode: %s \
 \n\tFields: %s - %d bytes\n\t\n", vdata_name, n_records,
 interlace_mode == FULL_INTERLACE ? "FULL" : "NONE",
 fieldname_list, vdata_size);
 }

 /*
 * Detach from the current vdata.
 */
 status_32 = VSdetach (vdata_id);
 } /* while */

 /*
 * Terminate access to the VS interface and close the HDF file.
 */
 status_n = Vend (file_id);
 status_32 = Hclose (file_id);
}

FORTRAN:
 program vdata_info
 implicit none
C
C Parameter declaration
C
 character*18 FILE_NAME
 integer DFACC_READ, FULL_INTERLACE
 integer FIELD_SIZE
C
 parameter (FILE_NAME = ’General_Vdatas.hdf’,
 + DFACC_READ = 1,
 + FULL_INTERLACE = 0,
 + FIELD_SIZE = 80)

C
C Function declaration
June 2017 201

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
C
 integer hopen, hclose
 integer vfstart, vsfatch, vsfgid, vsfinq,
 + vsfisat, vsfdtch, vfend

C
C**** Variable declaration ***
C
 integer status
 integer file_id, vdata_id, vdata_ref
 integer n_records, interlace_mode, vdata_size
 character*64 vdata_name
 character*80 fieldname_list
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file for reading.
C
 file_id = hopen(FILE_NAME, DFACC_READ, 0)
C
C Initialize the VS interface.
C
 status = vfstart(file_id)
C
C Set the reference number to -1 to start the search from the beginning
C of the file.
C
 vdata_ref = -1
10 continue
C
C Use vsfgid to obtain each vdata by its reference number then
C attach to the vdata and get information. The loop terminates
C when the last vdata is reached.
C
 vdata_ref = vsfgid(file_id, vdata_ref)
 if (vdata_ref .eq. -1) goto 100
C
C Attach to the current vdata for reading.
C
 vdata_id = vsfatch(file_id, vdata_ref, ’r’)
C
C Test whether the current vdata is not a storage for an attribute,
C then obtain and display its information.
 if (vsfisat(vdata_id) .ne. 1) then
 status = vsfinq(vdata_id, n_records, interlace_mode,
 + fieldname_list, vdata_size, vdata_name)
 write(*,*) ’Vdata: ’, vdata_name
 write(*,*) ’contains ’, n_records, ’ records’
 if (interlace_mode .eq. 0) then
 write(*,*) ’Interlace mode: FULL’
 else
 write(*,*) ’Interlace mode: NONE’
 endif
 write(*,*) ’Fields: ’, fieldname_list(1:30)
 write(*,*) ’Vdata record size in bytes :’, vdata_size
 write(*,*)
 endif
C
C Detach from the current vdata.
C
 status = vsfdtch(vdata_id)
 goto 10
202 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
100 continue
C
C Terminate access to the vdata and to the VS interface, and
C close the HDF file.
C
 status = vsfdtch(vdata_id)
 status = vfend(file_id)
 status = hclose(file_id)
 end

4.9.2 Obtaining Linked Block Information: VSgetblockinfo

VSgetblockinfo retrieves the block size and number of blocks employed in a linked block vdata
data element. The parameter vdata_id identifies the vdata. The size of blocks, in bytes, is returned
in block_size and the number of blocks in num_blocks.

If either the block size or the number of blocks used in a particular vdata is likely to differ from
the default setting, VSgetblockinfo must be called before any data is read from a vdata.

VSgetblockinfo returns SUCCESS (or 0) upon successful completion or FAIL (or -1). Its parameters
are further defined in Table 4Q.

4.9.3 Obtaining Linked Block Information: VSgetblockinfo

VSgetexternalinfo retrieves external file and data information of a vdata, when the vdata has
external element. The information includes the external file’s name, the position, where the data
had been written in the external file, and the length of that external data. VSgetexternalinfo will
return 0 if the vdata does not have external element.

The syntax of VSgetexternalinfo is as follows:

C: status = VSgetexternalinfo(vdata_id, buf_size, filename, &offset,
&length);

FORTRAN: Currently unavailable

The application must provide sufficient buffer for the external file name. When the external file
name is available and buf_size is 0, VSgetexternalinfo simply returns the length of the external
file name. Thus, application can call VSgetexternalinfo passing in 0 for buf_size first, then allo-
cate the buffer sufficiently before calling VSgetexternalinfo again passing in the proper length
for buf_size and appropriately allocated buffer filename. VSgetexternalinfo stores the external
file name in filename up to the name’s length or the value in buf_size, whichever smaller.

VSgetexternalinfo stores in the parameter offset the number of bytes from the beginning of the
external file to the location where the first byte of data had been written and in the parameter
length the length of the data.

VSgetexternalinfo returns one of the following values:

• the actual length of the external file name or the length of the retrieved file name, if there is
external element

• 0, if there is no external element

• FAIL (or -1), if failure occurs

The parameters of VSgetexternalinfo are described in Table 4Q.
June 2017 203

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
TABLE 4Q VSgetblockinfo Parameter List

4.9.4 VSQuery Vdata Information Retrieval Routines

The syntax of the VSQuery routines are as follows:

C: status = VSQueryname(vdata_id, vdata_name);
status = VSQueryfields(vdata_id, fields);
status = VSQueryinterlace(vdata_id, &interlace_mode);
status = VSQuerycount(vdata_id, &n_records);
vdata_tag = VSQuerytag(vdata_id);
vdata_ref = VSQueryref(vdata_id);
status = VSQueryvsize(vdata_id, &vdata_vsize);

FORTRAN: status = vsqfname(vdata_id, vdata_name)
status = vsqfflds(vdata_id, fields)
status = vsqfintr(vdata_id, interlace_mode)
status = vsqfnelt(vdata_id, n_records)
vdata_tag = vsqtag(vdata_id)
vdata_ref = vsqref(vdata_id)
status = vsqfvsiz(vdata_id, vdata_vsize)

All VSQuery routines except VSQuerytag and VSQueryref have two arguments. The first argu-
ment identifies the vdata to be queried. The second argument is the type of vdata information
being requested.

• VSQueryname retrieves the name of the specified vdata.

• VSQueryfields retrieves the names of the fields in the specified vdata.

• VSQueryinterlace retrieves the interlace mode of the specified vdata.

• VSQuerycount retrieves the number of records in the specified vdata.

• VSQuerytag returns the tag of the specified vdata.

• VSQueryref returns the reference number of the specified vdata.

• VSQueryvsize retrieves the size, in bytes, of a record in the specified vdata.

VSQuerytag and VSQueryref return the tag and reference number, respectively, or FAIL (or -1).
All other routines return SUCCEED (or 0) or FAIL (or -1). The parameters for these routines are
listed in Table 4R.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

VSgetblockinfo
[intn]

(vsfgetblinfo)

vdata_id int32 integer Vdata identifier

block_size int32 integer Size of each block, in bytes

num_blocks int32 integer Number of linked blocks

VSgetexternalinfo
[intn]

(unavailable)

vdata_id int32 N/A Vdata identifier

buf_size int32 N/A Size of external file name’s buffer

filename char * N/A External file name

offset int32 * N/A Offset of external data

length int32 * N/A Length of external data
204 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
TABLE 4R VSQuery Routines Parameter Lists

4.9.5 Other Vdata Information Retrieval Routines

The routines described in this section, with names prefaced by “VS”, are used to obtain specific
types of vdata information. The syntax of these routines are as follows:

C: num_of_records = VSelts(vdata_id);
num_of_fields = VSgetfields(vdata_id, fieldname_list);
interlace_mode = VSgetinterlace(vdata_id);
size_of_fields = VSsizeof(vdata_id, fieldname_list);
status = VSgetname(vdata_id, vdata_name);
status = VSgetclass(vdata_id, vdata_class);

FORTRAN: num_of_records = vsfelts(vdata_id)
num_of_fields = vsfgfld(vdata_id, fieldname_list)
interlace_mode = vsfgint(vdata_id)
size_of_fields = vsfsiz(vdata_id, fieldname_list)
status = vsfgnam(vdata_id, vdata_name)
status = vsfcls(vdata_id, vdata_class)

With the exception of VSgetclass, the information obtained through these routines can also be
obtained through VSinquire. VSinquire provides a way to query commonly used vdata informa-
tion with one routine call. The VS routines in this section are useful in situations where the HDF
programmer wishes to obtain only specific information.

• VSelts returns the number of records in the specified vdata or FAIL (or -1).

• VSgetfields retrieves the names of all the fields in the specified vdata and returns the num-
ber of retrieved fields or FAIL (or -1).

• VSgetinterlace returns the interlace mode of the specified vdata or FAIL (or -1).

• VSsizeof returns the size, in bytes, of the specified fields or FAIL (or -1).

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

VSQueryname
[intn]

(vsqfname)

vdata_id int32 integer Vdata identifier

vdata_name char * character*(*) Name of the vdata

VSQueryfields
[intn]

(vsqfflds)

vdata_id int32 integer Vdata identifier

fields char * character*(*)
Comma-separated list of the field names in the
vdata

VSQueryinterlace
[intn]

(vsqfintr)

vdata_id int32 integer Vdata identifier

interlace_mode int32 * integer Interlace mode

VSQuerycount
[intn]

(vsqfnelt)

vdata_id int32 integer Vdata identifier

n_records int32 * integer Number of records in the vdata

VSQueryvsize
[intn]

(vsqfvsiz)

vdata_id int32 integer Vdata identifier

vdata_size int32 * integer Size in bytes of the vdata record

VSQuerytag
[int32]

(vsqtag)
vdata_id int32 integer Vdata identifier

VSQueryref
[int32]

(vsqref)
vdata_id int32 integer Vdata identifier
June 2017 205

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
• VSgetname retrieves the name of the specified vdata and returns either SUCCEED (or 0) or
FAIL (or -1).

• VSgetclass retrieves the class of the specified vdata and returns either SUCCEED (or 0) or
FAIL (or -1).

The parameters for these routines are described in Table 4S.

TABLE 4S VSelts, VSgetfields, VSgetinterlace, VSsizeof, VSgetname, and VSgetclass Parameter Lists

4.9.6 VF Field Information Retrieval Routines

Routines whose names are prefaced by “VF” are used for obtaining information about specific
fields in a vdata. The syntax of these routines are as follows:

C: field_name = VFfieldname(vdata_id, field_index);
field_file_size = VFfieldesize(vdata_id, field_index);
field_mem_size = VFfieldisize(vdata_id, field_index);
num_of_fields = VFnfields(vdata_id);
field_order = VFfieldorder(vdata_id, field_index);
field_type = VFfieldtype(vdata_id, field_index);

FORTRAN: field_name = vffname(vdata_id, field_index, field_name)
field_file_size = vffesiz(vdata_id, field_index)
field_mem_size = vffisiz(vdata_id, field_index)
num_of_fields = vfnflds(vdata_id)
field_order = vffordr(vdata_id, field_index)
field_type = vfftype(vdata_id, field_index)

The functionality of each of the VF routines is as follows:

• VFfieldname returns the name of the specified field.

• VFfieldesize returns the size of the specified field as stored in the HDF file. This is the size
of the field as tracked by the HDF library.

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C

FORTRAN -
77

VSelts
[int32]

(vsfelts)
vdata_id int32 integer Vdata identifier

VSgetfields
[int32]

(vsfgfld)

vdata_id int32 integer Vdata identifier

fieldname_list char * character*(*) List of field names to be queried

VSgetinterlace
[int32]

(vsfgint)
vdata_id int32 integer Vdata identifier

VSsizeof
[int32]
(vsfsiz)

vdata_id int32 integer Vdata identifier

fieldname_list char * character*(*) List of field names to be queried

VSgetname
[int32]

(vsfgnam)

vdata_id int32 integer Vdata identifier

vdata_name char * character*(*) Vdata name

VSgetclass
[int32]
(vsfcls)

vdata_id int32 integer Vdata identifier

vdata_class char * character*(*) Class name of the vdata to be queried
206 June 2017

Chapter 4 -- Vdatas (VS API) Table of Contents HDF User’s Guide
• VFfieldisize returns the size of the specified field as stored in memory. This is the native
machine size of the field.

• VFnfields returns the number of fields in the specified vdata.

• VFfieldorder returns the order of the specified field.

• VFfieldtype returns the data type of the specified field.

If the operations are unsuccessful, these routines return FAIL (or -1). The parameters for all of
these routines are described in Table 4T.

TABLE 4T VF Routines Parameter Lists

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

VFfieldname
[char *]

(vffname)

vdata_id int32 integer Vdata identifier

field_index int32 integer Field index

field_name character*(*) Field name (FORTRAN-77 only)

VFfieldesize
[int32]

(vffesiz)

vdata_id int32 integer Vdata identifier

field_index int32 integer Field index

VFfieldisize
[int32]

(vffisiz)

vdata_id int32 integer Vdata identifier

field_index int32 integer Field index

VFnfields
[int32]

(vfnflds)
vdata_id int32 integer Vdata identifier

VFfieldorder
[int32]

(vffordr)

vdata_id int32 integer Vdata identifier

field_index int32 integer Field index

VFfieldtype
[int32]

(vfftype)

vdata_id int32 integer Vdata identifier

field_index int32 integer Field index
June 2017 207

The HDF Group Table of Contents Chapter 4 -- Vdatas (VS API)
208 June 2017

CHAPTER 5 -- Vgroups (V API)
5.1 Chapter Overview

This chapter describes the vgroup data model and the Vgroup interface (also called the V interface
or the V API). The first section describes the vgroup data model. The second section introduces
the Vgroup interface, followed by a presentation of a programming model for vgroups. The next
three sections describe the use of the Vgroup interface in accessing and creating vgroups. The
final two sections cover vgroup attributes and obsolete Vgroup interface routines.

5.2 The Vgroup Data Model

A vgroup is a structure designed to associate related data objects. The general structure of a
vgroup is similar to that of the UNIX file system in that the vgroup may contain references to
other vgroups or HDF data objects just as the UNIX directory may contain subdirectories or files
(see Figure 5a). In previous versions of HDF, the data objects in a vgroup were limited to vdatas
and vgroups. The data objects that belong to a vgroup are often referred to as the vgroup’s mem-
bers.

FIGURE 5a Similarity of the HDF Vgroup Structure and the UNIX File System

5.2.1 Vgroup Names and Classes

A vgroup can have a name and/or a class associated with it. The vgroup name and class are useful
in describing and classifying the data objects belonging to the vgroup.

Vgroup

Data
object

Vgroup Vgroup

Data
object

Vgroup

Data
object

Data
object

Data
object

File

Directory

Directory Directory

File Directory

File File

File

UNIX File System Vgroup Structure
June 2017 209

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
A vgroup name is a character string and is used to semantically distinguish between vgroups in an
HDF file. Multiple vgroups in a file can have the same name; however, unique names make it eas-
ier to distinguish among vgroups and are recommended.

A vgroup class is a character string and can be used to classify data objects by their intended use.
For example, a vdata object named "Storm Tracking Data - 5/11/94" and another vdata object
named "Storm Tracking Data - 6/23/94" can be grouped together under a vgroup named "Storm
Tracking Data - 1994". If the data was collected in Anchorage, Alaska the class name might be
"Anchorage Data", particularly if other vgroups contain storm track data collected in different
locations.

The specific use of the vgroup name and class name is solely determined by HDF users.

5.2.2 Vgroup Organization

There are many ways to organize vgroups through the use of the Vgroup interface. Vgroups may
contain any number of vgroups and data objects, including data objects and vgroups that are mem-
bers of other vgroups. Therefore, a data object may have more than one parent vgroup. For exam-
ple, Data object A and Vgroup B, shown in Figure 5b, are members of multiple vgroups with
different organizational structures.

FIGURE 5b Sharing Data Objects among Vgroups

A vgroup can contain any combination of data objects. Figure 5c illustrates a vgroup that contains
two raster images and a vdata.

FIGURE 5c A Vgroup Containing Two 8-Bit Raster Images, or RIS8 Objects, and a Vdata

Data
object

Vgroup

Vgroup Vgroup

Data
object

Vgroup

Vgroup B

Data
object

Data
object

Data
object

Data
object A

RIS8 RIS8

Vdata

12.456 3456.78

1.4567 34.5678

.45678 3.456

34.5678 3.5678

PX PY

Vgroup
210 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
5.2.3 An Example Using Vgroups

Although vgroups can contain any combination of HDF data objects, it is often useful to establish
conventions on the content and structure of vgroups. This section, with the illustration in Figure
5d, describes an example of a vgroup convention that is used by scientific and graphics program-
mers to describe the surfaces of a mathematical or material object as well as its properties.

This vgroup consists of one list of coordinate data, one list of connectivity data, and one list of
node property data. These three lists are stored in separate vdata objects within the vgroup.

Each 2-dimensional coordinate in the list of coordinate data defines the relative location of a ver-
tex, or node. Each entry in the list of connectivity data is an ordered list of node numbers which
describes a polygon. This ordered list is referred to as the connectivity list. For example, the num-
ber "2" as an item in a connectivity list would represent the second entry in the node table. Node
properties are user-defined values attached to each node within the polygon and can be numbers
or characters.

For example, consider a heated mesh of 400 triangles formed by connecting 1000 nodes. A
vgroup describing this mesh might contain the coordinates of the vertices, the temperature value
of the vertices, and a connectivity list describing the edges of the triangles.

FIGURE 5d Vgroup Structure Describing a Heated Mesh

5.3 The Vgroup Interface

The Vgroup interface consists of routines for creating and accessing vgroups, and getting infor-
mation about vgroups and their members.

5.3.1 Vgroup Interface Routines

Vgroup interface routine names are prefaced by "V" in C and by "vf" in FORTRAN-77. These
routines are categorized as follows:

• Access/Create routines control access to the Vgroup interface and to individual vgroups.

• Manipulation routines modify vgroups’ characteristics, and add and delete vgroups’ mem-
bers.

• Vgroup inquiry routines obtain information about vgroups. Some of these routines are use-
ful for locating vgroups in a file.

Vgroup

"PX, PY"

(-1.5, 2.3)
(-1.5, 1.98)
(-2.4, .67)

 .
 .
 .

(-2.4, -2.5)

"TMP"

23.55
3.77
0.092

.

.

.
-3.23

"PLIST"

1, 2, 7
2, 7, 8
2, 8, 3

.

.

.
3, 8, 9

Temperature at
each node

Connectivity list

"Nodes"

Vdata Vdata Vdata

Node 1
Node 2
Node 3

.
 .
 .

Node 1000

Coordinates of the
nodes
June 2017 211

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
• Member inquiry routines obtain information about members of vgroups.

• Attributes routines provide information about vgroups’ attributes.

The Vgroup interface routines are listed in Table 5A below and described in the following sec-
tions.
212 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
TABLE 5A Vgroup Interface Routines

Category

Routine Name

Description
C

FORTRAN-
77

Access/Create

Vstart vfstart
Initializes the Vdata and Vgroup interfaces (Section 5.4.1 on
page 215)

Vattach vfatch Establishes access to a vgroup (Section 5.4.1 on page 215)

Vdetach vfdtch Terminates access to a vgroup (Section 5.4.2 on page 216)

Vend vfend
Terminates access to the Vdata and Vgroup interfaces (Section 5.4.2
on page 216)

Manipulation

VHmakegroup vhfmkgp
Builds a vgroup containing elements specified by their tags/refs
(Section 5.5.4 on page 224)

Vaddtagref vfadtr Adds an HDF data object to a vgroup (Section 5.5.2 on page 220)

Vdelete vdelete Removes a vgroup from a file (Section 5.7.1 on page 248)

Vdeleteta-
gref

vfdtr Detaches a member from a vgroup (Section 5.7.2 on page 248)

Vinsert vfinsrt
Adds a vgroup or vdata to an existing vgroup (Section 5.5.3 on
page 223)

Vsetclass vfscls
Assigns a class name to a vgroup (Section 5.5.1 on page 220)

Vsetname vfsnam Assigns a name to a vgroup (Section 5.5.1 on page 220)

Vgroup Inquiry

Vfind vfind
Returns the reference number of a vgroup given its name
(Section 5.6.1.9 on page 236)

Vfindclass vfndcls
Returns the reference number of a vgroup specified by class name
(Section 5.6.1.10 on page 236)

Vgetclass vfgcls Retrieves the class of a vgroup (Section 5.6.1.7 on page 235)

Vget-
classname-
len

[unavail-
able]

Retrieves the length of a vgroup’s class name (Section 5.6.1.8 on
page 235)

Vgetid vfgid
Returns the reference number for the next vgroup in the HDF file
(Section 5.6.1.2 on page 232)

Vgetname vfgnam Retrieves the name of a vgroup (Section 5.6.1.5 on page 234)

Vgetnamelen
[unavail-
able]

Retrieves the length of a vgroup’s name (Section 5.6.1.6 on
page 235)

Vgetversion vfgver Returns the vgroup version of a vgroup (Section 5.8.1 on page 249)

Vinquire vfinq
Retrieves general information about a vgroup (Section 5.9.2 on
page 258)

Vlone vflone
Retrieves the reference numbers of vgroups that are not members of
other vgroups (Section 5.6.1.1 on page 231)

Vntagrefs vfntr
Returns the number of tag/reference number pairs contained in the
specified vgroup (Section 5.6.2.1 on page 240)

VQueryref vqref
Returns the reference number of a vgroup (Section 5.6.2.9 on
page 247)

VQuerytag vqtag Returns the tag of a vgroup (Section 5.6.2.10 on page 247)
June 2017 213

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
5.3.2 Identifying Vgroups in the Vgroup Interface

The Vgroup interface identifies vgroups in several ways. In some cases, a vgroup can be accessed
directly through the use of its unique reference number. In other cases, the reference number and
the routine Vattach are used to obtain a vgroup identifier. The reference number of a vgroup can
be obtained from the name or the class of the vgroup, or by sequentially traversing the file. The
concept of reference number is discussed in Section 2.2.2.1 on page 8.

When a vgroup is attached or created, it is assigned an identifier, called vgroup id. After a vgroup
has been attached or created, its identifier is used by the Vgroup interface routines in accessing the
vgroup.

5.4 Programming Model for the Vgroup Interface

The programming model for accessing vgroups is as follows:

1. Open an HDF file.

2. Initialize the Vgroup interface.

3. Create a new vgroup or open an existing one.

4. Perform the desired operations on the vgroup.

5. Terminate access to the vgroup.

6. Terminate access to the Vgroup interface.

7. Close the file.

These steps correspond to the following sequence of function calls:

C: file_id = Hopen(filename, file_access_mode, num_dds_block);
status = Vstart(file_id);

Member Inquiry

Vflocate vffloc
Locates a vdata in a vgroup given a list of field names
(Section 5.6.2.7 on page 246)

Vgetnext vfgnxt
Returns the identifier of the next vgroup or vdata in a vgroup (Obso-
lete) (Section 5.9.1 on page 258)

Vgettagref vfgttr
Retrieves a tag/reference number pair for a data object in the vgroup
(Section 5.6.2.2 on page 240)

Vgettagrefs vfgttrs
Retrieves the tag/reference number pairs of all of the data objects
belonging to a vgroup (Section 5.6.2.3 on page 241)

Vinqtagref vfinqtr
Determines whether a data object belongs to a vgroup
(Section 5.6.2.4 on page 245)

Visvg vfisvg
Determines whether a data object is a vgroup within another vgroup
(Section 5.6.2.5 on page 245)

Visvs vfisvs
Determines whether a data object is a vdata within a vgroup
(Section 5.6.2.6 on page 246)

Vnrefs vnrefs
Retrieves the number of tags of a given tag type in a vgroup
(Section 5.6.2.8 on page 246)

Attributes

Vattrinfo vfainfo
Retrieves information of a vgroup attribute (Section 5.8.5 on
page 251)

Vfindattr vffdatt
Returns the index of a vgroup attribute given the attribute name
(Section 5.8.3 on page 249)

Vgetattr
vfgnatt/
vfgcatt

Retrieves the values of a vgroup attribute (Section 5.8.7 on page 253)

Vnattrs vfnatts
Returns the total number of vgroup attributes (Section 5.8.4 on
page 250)

Vsetattr
vfsnatt/
vfscatt

Sets the attribute of a vgroup (Section 5.8.2 on page 249)
214 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
vgroup_id = Vattach(file_id, vgroup_ref, vg_access_mode);
<Optional operations>
status = Vdetach(vgroup_id);
status = Vend(file_id);
status = Hclose(file_id);

FORTRAN: file_id = hopen(filename, file_access_mode, num_dds_block)
status = vfstart(file_id)
vgroup_id = vfatch(file_id, vgroup_ref, vg_access_mode)
<Optional operations>
status = vfdtch(vgroup_id)
status = vfend(file_id)
status = hclose(file_id)

The calling program must obtain a separate vgroup identifier for each vgroup to be accessed.

5.4.1 Accessing Files and Vgroups: Vstart and Vattach

An HDF file must be opened by Hopen before it can be accessed using the Vgroup interface.
Hopen is described in Chapter 2, HDF Fundamentals.

The Vgroup interface routines are used in a similar manner to the Vdata interface routines. Before
performing operations on a vgroup, a calling program must call Vstart for every file to be
accessed. Vstart initializes the internal vgroup structures in a file. Vstart takes one argument, the
file identifier returned by Hopen, and returns either SUCCEED (or 0) or FAIL (or -1). Note that the
Vstart routine is used by both the Vdata and Vgroup interfaces.

The calling program must also call one Vattach for every vgroup to be accessed. Vattach pro-
vides access to an individual vgroup for all read and write operations. Vattach takes three argu-
ments: file_id, vgroup_ref, and vg_access_mode, and returns either a vgroup identifier or FAIL (or
-1).

The argument file_id is the file identifier returned by Hopen. The parameter vgroup_ref is the ref-
erence number that identifies the vgroup to be accessed. Specifying vgroup_ref with a value of -1
will create a new vgroup; specifying vgroup_ref with a nonexistent reference number will return
an error code of FAIL (or -1); and specifying vgroup_ref with a valid reference number will ini-
tiate access to the corresponding vgroup.

When a new vgroup is created, it does not have any members. Additional operations must be per-
formed to add other HDF data objects to the vgroup. Refer to Section 5.5 on page 218 for infor-
mation.

To access an existing vdata, its reference number must be obtained. The Vgroup interface includes
two routines for this purpose, Vfind and Vgetid. Vfind can be used to obtain the reference num-
ber of a vgroup when the vgroup’s name is known. Vgetid can be used to obtain the reference
number by sequentially traversing the file. These routines are discussed in Section 5.6.1.9 on
page 236 and Section 5.6.1.2 on page 232.

The parameter vg_access_mode in Vattach specifies the type of access ("r" or "w") required for
operations on the selected vgroup.

Multiple attaches may be made to a vgroup, which will result in several vgroup identifiers being
assigned to the same vgroup. Termination must be properly handled as described in the next sec-
tion.

The parameters of Vstart and Vattach are defined in Table 5B on page 216.
June 2017 215

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
5.4.2 Terminating Access to Vgroups and Files: Vdetach and Vend

Successfully terminating access to a vgroup requires one Vdetach call for every Vattach call
made. Similarly, successfully terminating access to the Vgroup interface requires one Vend call
for every Vstart call made.

Vdetach terminates access to a vgroup by updating internal library structures and freeing all
memory associated with the vgroup and allocated by Vattach. Once a vgroup is detached, its
identifier is invalid and any attempts to access this vgroup identifier will result in an error condi-
tion. Vdetach takes one argument, vgroup_id, the vgroup identifier returned by Vattach, and
returns either SUCCEED (or 0) or FAIL (or -1).

Vend releases all internal data structures allocated by Vstart. Attempts to use the Vgroup inter-
face identifier after calling Vend will produce errors. Vend takes one argument, file_id, the file
identifier returned by Hopen, and returns either SUCCEED (or 0) or FAIL (or -1). Note that the first
Vend call to a file must occur after all Vdetach calls for the vgroups in the same file have been
made. Note also that the Vend routine is used by both the Vdata and Vgroup interfaces.

Hclose must be used to terminate access to the HDF file and only after all proper Vend calls are
made. Hclose is described in Chapter 2, HDF Fundamentals.

The parameters of Vdetach and Vend are also defined in Table 5B.

TABLE 5B Vstart, Vattach, Vdetach, and Vend Parameter Lists

EXAMPLE 1. Creating HDF Files and Vgroups

This example illustrates the use of Hopen/hopen, Vstart/vfstart, Vattach/vfatch, Vdetach/
vfdtch, Vend/vfend, and Hclose/hclose to create and to access two vgroups in an HDF file.

The program creates the HDF file, named "Two_Vgroups.hdf", and two vgroups stored in the file.
Note that, in this example, the program only create two empty vgroups.

C:
#include "hdf.h"

#define FILE_NAME "Two_Vgroups.hdf"

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

Vstart
[intn]

(vfstart)
file_id int32 integer File identifier

Vattach
[int32]

(vfatch)

file_id int32 integer File identifier

vgroup_ref int32 integer
Reference number for an existing vgroup or -1 to
create a new one

vg_access_mode char * character*(*) Access mode of the vgroup operation

Vdetach
[int32]

(vfdtch)
vgroup_id int32 integer Vgroup identifier

Vend
[intn]

(vfend)
file_id int32 integer File identifier
216 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
main()
{
 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */
 int32 status_32, /* returned status for functions returning an int32 */
 vgroup_ref = -1,
 vgroup1_id, vgroup2_id, file_id;

 /********************** End of variable declaration **********************/

 /*
 * Create the HDF file.
 */
 file_id = Hopen (FILE_NAME, DFACC_CREATE, 0);

 /*
 * Initialize the V interface.
 */
 status_n = Vstart (file_id);

 /*
 * Create the first vgroup. Note that the vgroup reference number is set
 * to -1 for creating and the access mode is "w" for writing.
 */
 vgroup1_id = Vattach (file_id, vgroup_ref, "w");

 /*
 * Create the second vgroup.
 */
 vgroup2_id = Vattach (file_id, vgroup_ref, "w");

 /*
 * Any operations on the vgroups.
 */

 /*
 * Terminate access to the first vgroup.
 */
 status_32 = Vdetach (vgroup1_id);

 /*
 * Terminate access to the second vgroup.
 */
 status_32 = Vdetach (vgroup2_id);

 /*
 * Terminate access to the V interface and close the HDF file.
 */
 status_n = Vend (file_id);
 status_n = Hclose (file_id);
}

FORTRAN:
 program create_vgroup
 implicit none
C
C Parameter declaration
C
 character*15 FILE_NAME
C
 parameter (FILE_NAME = ’Two_Vgroups.hdf’)
June 2017 217

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
 integer DFACC_CREATE
 parameter (DFACC_CREATE = 4)
C
C Function declaration
C
 integer hopen, hclose
 integer vfstart, vfatch, vfdtch, vfend

C
C**** Variable declaration ***
C
 integer status
 integer file_id
 integer vgroup1_id, vgroup2_id, vgroup_ref
C
C**** End of variable declaration ************************************
C
C
C Create the HDF file.
C
 file_id = hopen(FILE_NAME, DFACC_CREATE, 0)
C
C Initialize the V interface.
C
 status = vfstart(file_id)
C
C Create the first vgroup. Note that the vgroup reference number is set
C to -1 for creating and the access mode is ’w’ for writing.
C
 vgroup_ref = -1
 vgroup1_id = vfatch(file_id, vgroup_ref, ’w’)
C
C Create the second vgroup.
C
 vgroup2_id = vfatch(file_id, vgroup_ref, ’w’)
C
C Any operations on the vgroups.
C
C
C
C Terminate access to the first vgroup.
C
 status = vfdtch(vgroup1_id)
C
C Terminate access to the second vgroup.
C
 status = vfdtch(vgroup2_id)
C
C Terminate access to the V interface and close the HDF file.
C
 status = vfend(file_id)
 status = hclose(file_id)
 end

5.5 Creating and Writing to a Vgroup

There are two steps involved in the creation of a vgroup: creating the vgroup and inserting data
objects into it. Any HDF data object can be inserted into a vgroup. Creation and insertion opera-
tions are usually performed at the same time, but that is not required.
218 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
HDF provides two routines that insert an HDF data object into a vgroup, Vaddtagref and Vin-
sert. Vaddtagref can insert any HDF data object into a vgroup, but requires that the tag and refer-
ence number of the object be available. Refer to Section 2.2.2.1 on page 8 for the description of
tags and reference numbers for HDF data objects. Vinsert only inserts a vdata or a vgroup to a
vgroup, but only requires the identifier of the vdata or the vgroup.

Creating a vgroup with a member involves the following steps:

1. Open the HDF file.

2. Initialize the Vgroup interface.

3. Create the new vgroup.

4. Optionally assign a vgroup name.

5. Optionally assign a vgroup class.

6. Insert a data object.

7. Terminate access to the vgroup.

8. Terminate access to the Vgroup interface.

9. Close the HDF file.

These steps correspond to the following sequence of function calls:

C: file_id = Hopen(filename, file_access_mode, num_dds_block);
status = Vstart(file_id);
vgroup_id = Vattach(file_id, vgroup_ref, vg_access_mode);
status = Vsetname(vgroup_id, vgroup_name);
status = Vsetclass(vgroup_id, vgroup_class);

/* Use either Vinsert to add a vdata or a vgroup, or
 Vaddtagref to add any data object */
num_of_tag_refs = Vaddtagref(vgroup_id, obj_tag, obj_ref);

OR obj_pos = Vinsert(vgroup_id, v_id);

status = Vdetach(vgroup_id);
status = Vend(file_id);
status = Hclose(file_id);

FORTRAN: file_id = hopen(filename, file_access_mode, num_dds_block)
status = vfstart(file_id)
vgroup_id = vfatch(file_id, vgroup_ref, vg_access_mode)
status = vfsnam(vgroup_id, vdata_name)
status = vfscls(vgroup_id, vdata_class)

C Use either Vinsert to add a vdata or a vgroup, or Vaddtagref to
C add any data object

num_of_tag_refs = vfadtr(vgroup_id, obj_tag, obj_ref)
OR obj_pos = vfinsrt(vgroup_id, v_id)

status = vfdtch(vgroup_id)
status = vfend(file_id)
status = hclose(file_id)

The parameter v_id in the calling sequence is either a vdata or vgroup identifier. The parameter
vgroup_id is the vgroup identifier returned by Vattach.

When a new vgroup is created, the value of vgroup_ref must be set to -1 and the value of
vg_access_mode must be "w".
June 2017 219

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
5.5.1 Assigning a Vgroup Name and Class: Vsetname and Vsetclass

Vsetname assigns a name to a vgroup. The parameter vgroup_name is a character string with the
name to be assigned to the vgroup. If Vsetname is not called, the vgroup name is set to a zero-
length character string. A name may be assigned and reset any time after the vgroup is created.

Vsetclass assigns a class to a vgroup. The parameter vgroup_class is a character string with the
class name to be assigned to the vgroup. If Vsetclass is not called, the vgroup class is set to a zero-
length string. As with the vgroup names, the class may be set and reset at any time after the
vgroup is created.

Starting from release 4.2.4, the maximum length of vgroup’s name is no longer limited to VGNAME-
LENMAX (or 64) and release 4.2.5 for vgroup’s class name.

Vsetname and Vsetclass return either SUCCEED (or 0) or FAIL (or -1). The parameters of these
routines are further described in Table 5C on page 225.

5.5.2 Inserting Any HDF Data Object into a Vgroup: Vaddtagref

Vaddtagref inserts HDF data objects into the vgroup identified by vgroup_id. HDF data objects
may be added to a vgroup when the vgroup is created or at any point thereafter.

The parameters obj_tag and obj_ref in Vaddtagref are the tag and reference number, respec-
tively, of the data object to be inserted into the vgroup. Note that duplicated tag and reference
number pairs are allowed.

Vaddtagref returns the total number of tag and reference number pairs, i.e., the total number of
data objects, in the vgroup if the operation is successful, and FAIL (or -1) otherwise. The parame-
ters of Vaddtagref are further described in Table 5C.

Note that Vaddtagref does not verify that the tag and reference number exist.

EXAMPLE 2. Adding an SDS to a New Vgroup

This example illustrates the use of Vaddtagref/vfadtr to add an HDF data object, an SDS specif-
ically, to a vgroup.

In this example, the program first creates the HDF file "General_Vgroups.hdf", then an SDS in
the SD interface, and a vgroup in the Vgroup interface. The SDS is named "Test SD" and is a
one-dimensional array of type int32 of 10 elements. The vgroup is named "SD Vgroup" and is of
class "Common Vgroups". The program then adds the SDS to the vgroup using Vaddtagref/
vfadtr. Notice that, when the operations are complete, the program explicitly terminates access to
the SDS, the vgroup, the SD interface, and the Vgroup interface before closing the HDF file.
Refer to Chapter 3, Scientific Data Sets (SD API) for the discussion of the SD routines used in this
example.

Vgroup

N

General_Vgroups.hdf

SDS
220 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
C:
#include "hdf.h" /* Note: in this example, hdf.h can be omitted...*/
#include "mfhdf.h" /* ...since mfhdf.h already includes hdf.h */

#define FILE_NAME "General_Vgroups.hdf"
#define SDS_NAME "Test SD"
#define VG_NAME "SD Vgroup"
#define VG_CLASS "Common Vgroups"

main()
{
 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */
 int32 status_32, /* returned status for functions returning an int32 */
 sd_id, /* SD interface identifier */
 sds_id, /* data set identifier */
 sds_ref, /* reference number of the data set */
 dim_sizes[1], /* dimension of the data set - only one */
 rank = 1, /* rank of the data set array */
 vgroup_id, /* vgroup identifier */
 file_id; /* HDF file identifier, same for V interface */

 /********************** End of variable declaration **********************/

 /*
 * Create the HDF file.
 */
 file_id = Hopen (FILE_NAME, DFACC_CREATE, 0);

 /*
 * Initialize the V interface.
 */
 status_n = Vstart (file_id);

 /*
 * Initialize the SD interface.
 */
 sd_id = SDstart (FILE_NAME, DFACC_WRITE);

 /*
 * Set the size of the SDS’s dimension.
 */
 dim_sizes[0] = 10;

 /*
 * Create the SDS.
 */
 sds_id = SDcreate (sd_id, SDS_NAME, DFNT_INT32, rank, dim_sizes);

 /*
 * Create a vgroup and set its name and class.
 */
 vgroup_id = Vattach (file_id, -1, "w");
 status_32 = Vsetname (vgroup_id, VG_NAME);
 status_32 = Vsetclass (vgroup_id, VG_CLASS);

 /*
 * Obtain the reference number of the SDS using its identifier.
 */
 sds_ref = SDidtoref (sds_id);
June 2017 221

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
 /*
 * Add the SDS to the vgroup. Note: the tag DFTAG_NDG is used
 * when adding an SDS. Refer to Appendix A for the entire list of tags.
 */
 status_32 = Vaddtagref (vgroup_id, DFTAG_NDG, sds_ref);

 /*
 * Terminate access to the SDS and to the SD interface.
 */
 status_n = SDendaccess (sds_id);
 status_n = SDend (sd_id);

 /*
 * Terminate access to the vgroup and to the V interface, and
 * close the HDF file.
 */
 status_32 = Vdetach (vgroup_id);
 status_n = Vend (file_id);
 status_n = Hclose (file_id);
}

FORTRAN:
 program add_SDS_to_a_vgroup
 implicit none
C
C Parameter declaration
C
 character*19 FILE_NAME
 character*7 SDS_NAME
 character*9 VG_NAME
 character*13 VG_CLASS
C
 parameter (FILE_NAME = ’General_Vgroups.hdf’,
 + SDS_NAME = ’Test SD’,
 + VG_NAME = ’SD Vgroup’,
 + VG_CLASS = ’Common Vgroups’)
 integer DFACC_CREATE, DFACC_WRITE
 parameter (DFACC_CREATE = 4, DFACC_WRITE = 2)
 integer DFNT_INT32
 parameter (DFNT_INT32 = 24)
 integer DFTAG_NDG
 parameter (DFTAG_NDG = 720)
C
C Function declaration
C
 integer hopen, hclose
 integer vfstart, vfatch, vfsnam, vfscls, vfadtr, vfdtch, vfend
 integer sfstart, sfcreate, sfid2ref, sfendacc, sfend

C
C**** Variable declaration ***
C
 integer status
 integer file_id
 integer vgroup_id
 integer sd_id, sds_id, sds_ref
 integer dim_sizes(1), rank
C
C**** End of variable declaration ************************************
C
C
C Create the HDF file.
222 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
C
 file_id = hopen(FILE_NAME, DFACC_CREATE, 0)
C
C Initialize the V interface.
C
 status = vfstart(file_id)

C
C Initialize SD interface.
C
 sd_id = sfstart(FILE_NAME, DFACC_WRITE)
C
C Set the rank and the size of SDS’s dimension.
C
 rank = 1
 dim_sizes(1) = 10
C
C Create the SDS.
C
 sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT32, rank, dim_sizes)
C
C Create a vgroup and set its name and class.
C
 vgroup_id = vfatch(file_id, -1 , ’w’)
 status = vfsnam(vgroup_id, VG_NAME)
 status = vfscls(vgroup_id, VG_CLASS)
C
C Obtain the reference number of the SDS using its identifier.
C
 sds_ref = sfid2ref(sds_id)
C
C Add the SDS to the vgroup. Note: the tag DFTAG_NDG is used
C when adding an SDS. Refer to HDF Reference Manual, Section III, Table 3K,
C for the entire list of tags.
C
 status = vfadtr(vgroup_id, DFTAG_NDG, sds_ref)
C
C Terminate access to the SDS and to the SD interface.
C
 status = sfendacc(sds_id)
 status = sfend(sd_id)
C
C Terminate access to the vgroup.
C
 status = vfdtch(vgroup_id)
C
C Terminate access to the V interface and close the HDF file.
C
 status = vfend(file_id)
 status = hclose(file_id)
 end

5.5.3 Inserting a Vdata or Vgroup Into a Vgroup: Vinsert

Vinsert is a routine designed specifically for inserting vdatas or vgroups into a parent vgroup. To
use Vinsert, you must provide the identifier of the parent vgroup, vgroup_id, as well as the identi-
fier of the vdata or vgroup to be inserted, v_id.

The parameter v_id of Vinsert is either a vdata identifier or a vgroup identifier, depending on
whether a vdata or vgroup is to be inserted.
June 2017 223

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
Vinsert returns the index of the inserted vdata or vgroup if the operation is successful, and FAIL
(or -1) otherwise. The parameters of Vinsert are further defined in Table 5C.

5.5.4 Building a Vgroup with or without Elements: VHmakegroup

VHmakegroup is a high-level routine, designed to facilite the process of creating and inserting
elements into a vgroup. The vgroup will have a name and/or class name if these information are
provided to VHmakegroup. By using VHmakegroup, an application can by pass a number of
function calls such as Vattach, Vsetname, Vsetclass, Vinsert/Vaddtagref, and Vdetach.

VHmakegroup creates a vgroup with the name specified by the parameter vgroup_name and the
class name specified by the parameter vgroup_class in the file identified by the parameter file_id.
The routine inserts n_objects objects into the vgroup. The tag and reference numbers of the
objects to be inserted are specified in the arrays tag_array and ref_array.

Creating empty vgroups with VHmakegroup is allowed. VHmakegroup does not check if the
tag/reference number pair is valid, or if the corresponding data object exists. However, all of the
tag/reference number pairs must be unique.

Vstart must precede any calls to VHmakegroup.

The elements in the arrays tag_array and ref_array are the matching tag/reference number pairs
of the objects to be inserted, that means tag_array[0] and ref_array[0] refer to one data object,
and tag_array[1] and ref_array[1] to another, etc. If name and/or class name are not desired, the
parameters vgroup_name and/or vgroup_class can be NULL.

The syntax of VHmakegroup is as follows:

C: vgroup_ref = VHmakegroup(file_id, tag_array, ref_array, n_objects,
vgroup_name, vgroup_class);

FORTRAN: vgroup_ref = vhfmkgp(file_id, tag_array, ref_array, n_objects,
vgroup_name, vgroup_class)

VHmakegroup returns the reference number of the newly-created vgroup if successful, FAIL (or
-1) otherwise.

The parameters of VHmakegroup are further defined in Table 5F.
224 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
TABLE 5C Vsetname, Vsetclass, Vaddtagref, Vinsert, and VHmakegroup Parameter Lists

EXAMPLE 3. Adding Three Vdatas into a Vgroup

This example illustrates the use of Vinsert/vfinsrt to add a vdata to a vgroup. Note that Vadd-
tagref/vfadtrf, used in the previous example, performs the same task and only differs in the argu-
ment list.

In this example, the program creates three vdatas and a vgroup in the existing HDF file
"General_Vgroups.hdf" then adds the three vdatas to the vgroup. Notice that the vdatas and the
vgroup are created in the same interface that is initialized by the call Vstart/vfstart. The first
vdata is named "X,Y Coordinates" and has two order-1 fields of type float32. The second vdata is
named "Temperature" and has one order-1 field of type float32. The third vdata is named "Node
List" and has one order-3 field of type int16. The vgroup is named "Vertices" and is of class
"Vertex Set". The program uses Vinsert/vfinsrt to add the vdatas to the vgroup using the vdata
identifiers. Refer to Chapter 4, Vdatas (VS API), for the discussion of the VS routines used in this
example.

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

Vsetname
[int32]

(vfsnam)

vgroup_id int32 integer Vgroup identifier

vgroup_name char * character*(*) Vgroup name

Vsetclass
[int32]
(vfscls)

vgroup_id int32 integer Vgroup identifier

vgroup_class char * character*(*) Vgroup class

Vaddtagref
[int32]

(vfadtr)

vgroup_id int32 integer Vgroup identifier

obj_tag int32 integer Tag of the data object to be inserted

obj_ref int32 integer Reference number of the data object to be inserted

Vinsert
[int32]

(vfinsrt)

vgroup_id int32 integer Vgroup identifier

v_id int32 integer Identifier of the vgroup or vdata to be inserted

VHmakegroup
[int32]

(vhfmkgp)

file_id int32 integer File identifier

tag_array int32 * integer(*) Array of tags

ref_array int32 * integer(*) Array of reference numbers

n_objects int32 integer
Number of items in tag_array or ref_array (must be
the same)

vgroup_name char * character*(*) Name of the vgroup

vgroup_class char * character*(*) Class of the vgroup
June 2017 225

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
C:
#include "hdf.h"

#define FILE_NAME "General_Vgroups.hdf"
#define N_RECORDS 30 /* number of records in the vdatas */
#define ORDER 3 /* order of field FIELD_VD2 */
#define VG_NAME "Vertices"
#define VG_CLASS "Vertex Set"
#define VD1_NAME "X,Y Coordinates" /* first vdata to hold X,Y...*/
#define VD1_CLASS "Position" /*...values of the vertices */
#define VD2_NAME "Temperature" /* second vdata to hold the...*/
#define VD2_CLASS "Property List" /*...temperature field */
#define VD3_NAME "Node List" /* third vdata to hold...*/
#define VD3_CLASS "Mesh" /*...the list of nodes */
#define FIELD1_VD1 "PX" /* first field of first vdata - X values */
#define FIELD2_VD1 "PY"/* second field of first vdata - Y values */
#define FIELD_VD2 "TMP"/* field of third vdata */
#define FIELD_VD3 "PLIST"/* field of second vdata */
#define FIELDNAME_LIST "PX,PY" /* field name list for first vdata */
/* Note that the second and third vdatas can use the field names as
 the field name lists unless more fields are added to a vdata.
 Then a field name list is needed for that vdata */

main()
{
 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */
 int32 status_32, /* returned status for functions returning an int32 */
 file_id, vgroup_id,
 vdata1_id, vdata2_id, vdata3_id;
 int32 num_of_records, /* number of records actually written */
 vd_index; /* position of a vdata in the vgroup */
 int8 i, j, k = 0;
 float32 pxy[N_RECORDS][2] = /* buffer for data of the first vdata */

 {-1.5, 2.3, -1.5, 1.98, -2.4, .67,
 -3.4, 1.46, -.65, 3.1, -.62, 1.23,
 -.4, 3.8, -3.55, 2.3, -1.43, 2.44,
 .23, 1.13, -1.4, 5.43, -1.4, 5.8,
 -3.4, 3.85, -.55, .3, -.21, 1.22,
 -1.44, 1.9, -1.4, 2.8, .94, 1.78,
 -.4, 2.32, -.87, 1.99, -.54, 4.11,
 -1.5, 1.35, -1.4, 2.21, -.22, 1.8,
 -1.1, 4.55, -.44, .54, -1.11, 3.93,

Vdata
Name: PX,PY
Class: Node
List

Vdata
Name: PLIST
Class: Connec-
tivity List

PX

-1.5
-1.5
-2.4
.
.

PY

2.3
1.98
.67
.
.

PLIST

1,2,3
4,5,6
7,8,9
.
.

Vdata
Name: TMP
Class: Prop-
erty List

TMP

23.55
33.77
10.092
.
.

Vgroup
Name: Verti-
cesClass:
Vertex_set
226 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
 -.76, 1.9, -2.34, 1.7, -2.2, 1.21};
 float32 tmp[N_RECORDS]; /* buffer for data of the second vdata */
 int16 plist[N_RECORDS][3]; /* buffer for data of the third vdata */

 /********************** End of variable declaration ***********************/

 /*
 * Open the HDF file for writing.
 */
 file_id = Hopen (FILE_NAME, DFACC_WRITE, 0);

 /*
 * Initialize the V interface.
 */
 status_n = Vstart (file_id);

 /*
 * Buffer the data for the second and third vdatas.
 */
 for (i = 0; i < N_RECORDS; i++)
 for (j = 0; j < ORDER; j++)
 plist[i][j] = ++k;

 for (i = 0; i < N_RECORDS; i++)
 tmp[i] = i * 10.0;

 /*
 * Create the vgroup then set its name and class. Note that the vgroup’s
 * reference number is set to -1 for creating and the access mode is "w" for
 * writing.
 */
 vgroup_id = Vattach (file_id, -1, "w");
 status_32 = Vsetname (vgroup_id, VG_NAME);
 status_32 = Vsetclass (vgroup_id, VG_CLASS);

 /*
 * Create the first vdata then set its name and class. Note that the vdata’s
 * reference number is set to -1 for creating and the access mode is "w" for
 * writing.
 */
 vdata1_id = VSattach (file_id, -1, "w");
 status_32 = VSsetname (vdata1_id, VD1_NAME);
 status_32 = VSsetclass (vdata1_id, VD1_CLASS);

 /*
 * Introduce and define the fields of the first vdata.
 */
 status_n = VSfdefine (vdata1_id, FIELD1_VD1, DFNT_FLOAT32, 1);
 status_n = VSfdefine (vdata1_id, FIELD2_VD1, DFNT_FLOAT32, 1);
 status_n = VSsetfields (vdata1_id, FIELDNAME_LIST);

 /*
 * Write the buffered data into the first vdata with full interlace mode.
 */
 num_of_records = VSwrite (vdata1_id, (uint8 *)pxy, N_RECORDS,
 FULL_INTERLACE);

 /*
 * Insert the vdata into the vgroup using its identifier.
 */
 vd_index = Vinsert (vgroup_id, vdata1_id);

 /*
June 2017 227

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
 * Detach from the first vdata.
 */
 status_32 = VSdetach (vdata1_id);

 /*
 * Create, write, and insert the second vdata to the vgroup using
 * steps similar to those used for the first vdata.
 */
 vdata2_id = VSattach (file_id, -1, "w");
 status_32 = VSsetname (vdata2_id, VD2_NAME);
 status_32 = VSsetclass (vdata2_id, VD2_CLASS);
 status_n = VSfdefine (vdata2_id, FIELD_VD2, DFNT_FLOAT32, 1);
 status_n = VSsetfields (vdata2_id, FIELD_VD2);
 num_of_records = VSwrite (vdata2_id, (uint8 *)tmp, N_RECORDS,
 FULL_INTERLACE);
 vd_index = Vinsert (vgroup_id, vdata2_id);
 status_32 = VSdetach (vdata2_id);

 /*
 * Create, write, and insert the third vdata to the vgroup using
 * steps similar to those used for the first and second vdatas.
 */
 vdata3_id = VSattach (file_id, -1, "w");
 status_32 = VSsetname (vdata3_id, VD3_NAME);
 status_32 = VSsetclass (vdata3_id, VD3_CLASS);
 status_n = VSfdefine (vdata3_id, FIELD_VD3, DFNT_INT16, 3);
 status_n = VSsetfields (vdata3_id, FIELD_VD3);
 num_of_records = VSwrite (vdata3_id, (uint8 *)plist, N_RECORDS,
 FULL_INTERLACE);
 vd_index = Vinsert (vgroup_id, vdata3_id);
 status_32 = VSdetach (vdata3_id);

 /*
 * Terminate access to the vgroup "Vertices".
 */
 status_32 = Vdetach (vgroup_id);

 /*
 * Terminate access to the V interface and close the HDF file.
 */
 status_n = Vend (file_id);
 status_n = Hclose (file_id);
}

FORTRAN:
 program add_vdatas_to_a_vgroup
 implicit none
C
C Parameter declaration
C
 character*19 FILE_NAME
 character*8 VG_NAME
 character*10 VG_CLASS
 character*15 VD1_NAME
 character*8 VD1_CLASS
 character*11 VD2_NAME
 character*13 VD2_CLASS
 character*9 VD3_NAME
 character*4 VD3_CLASS
C
 parameter (FILE_NAME = ’General_Vgroups.hdf’,
 + VG_NAME = ’Vertices’,
228 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
 + VG_CLASS = ’Vertex Set’)
 parameter (VD1_NAME = ’X,Y Coordinates’,
 + VD2_NAME = ’Temperature’,
 + VD3_NAME = ’Node List’)
 parameter (VD1_CLASS = ’Position’,
 + VD2_CLASS = ’Property List’,
 + VD3_CLASS = ’Mesh’)
 character*2 FIELD1_VD1
 character*2 FIELD2_VD1
 character*3 FIELD_VD2
 character*4 FIELD_VD3
 character*5 FIELDNAME_LIST
 parameter (FIELD1_VD1 = ’PX’,
 + FIELD2_VD1 = ’PY’,
 + FIELD_VD2 = ’TMP’,
 + FIELD_VD3 = ’PLIST’,
 + FIELDNAME_LIST = ’PX,PY’)
 integer N_RECORDS
 parameter (N_RECORDS = 30)

 integer DFACC_WRITE
 parameter (DFACC_WRITE = 2)
 integer DFNT_FLOAT32, DFNT_INT16
 parameter (DFNT_FLOAT32 = 5, DFNT_INT16 = 22)
 integer FULL_INTERLACE
 parameter (FULL_INTERLACE = 0)
C
C Function declaration
C
 integer hopen, hclose
 integer vfstart, vfatch, vfsnam, vfscls, vfinsrt, vfdtch, vfend
 integer vsfatch, vsfsnam, vsfscls, vsffdef, vsfsfld,
 + vsfwrt, vsfwrtc, vsfdtch

C
C**** Variable declaration ***
C
 integer status
 integer file_id
 integer vgroup_id
 integer vdata1_id, vdata2_id, vdata3_id, vd_index
 integer num_of_records
 integer i, j, k
 real pxy(2,N_RECORDS), tmp(N_RECORDS)
 integer plist(3,N_RECORDS)
 data pxy /-1.5, 2.3, -1.5, 1.98, -2.4, .67,
 + -3.4, 1.46, -.65, 3.1, -.62, 1.23,
 + -.4, 3.8, -3.55, 2.3, -1.43, 2.44,
 + .23, 1.13, -1.4, 5.43, -1.4, 5.8,
 + -3.4, 3.85, -.55, .3, -.21, 1.22,
 + -1.44, 1.9, -1.4, 2.8, .94, 1.78,
 + -.4, 2.32, -.87, 1.99, -.54, 4.11,
 + -1.5, 1.35, -1.4, 2.21, -.22, 1.8,
 + -1.1, 4.55, -.44, .54, -1.11, 3.93,
 + -.76, 1.9, -2.34, 1.7, -2.2, 1.21/
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file for writing.
C
 file_id = hopen(FILE_NAME, DFACC_WRITE, 0)
C

June 2017 229

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
C Initialize the V interface.
C
 status = vfstart(file_id)
C
C Buffer the data for the third and second vdatas.
C
 do 20 i = 1, N_RECORDS
 do 10 j = 1, 3
 plist(j,i) = k
 k = k+1
10 continue
20 continue
 do 30 i = 1, N_RECORDS
 tmp(i) = (i-1) * 10.0
30 continue
C
C Create a vgroup and set its name and class.
C Note that the vgroup’s reference number is set to -1 for creating
C and the access mode is ’w’ for writing.
C
 vgroup_id = vfatch(file_id, -1 , ’w’)
 status = vfsnam(vgroup_id, VG_NAME)
 status = vfscls(vgroup_id, VG_CLASS)
C
C Create the first vdata then set its name and class. Note that the vdata’s
C reference number is set to -1 for creating and the access mode is ’w’ for
C writing.
C
 vdata1_id = vsfatch(file_id, -1, ’w’)
 status = vsfsnam(vdata1_id, VD1_NAME)
 status = vsfscls(vdata1_id, VD1_CLASS)
C
C Introduce and define the fields of the first vdata.
C
 status = vsffdef(vdata1_id, FIELD1_VD1, DFNT_FLOAT32, 1)
 status = vsffdef(vdata1_id, FIELD2_VD1, DFNT_FLOAT32, 1)
 status = vsfsfld(vdata1_id, FIELDNAME_LIST)
C
C Write the buffered data into the first vdata.
C
 num_of_records = vsfwrt(vdata1_id, pxy, N_RECORDS,
 + FULL_INTERLACE)
C
C Insert the vdata into the vgroup using its identifier.
C
 vd_index = vfinsrt(vgroup_id, vdata1_id)
C
C Detach from the first vdata.
C
 status = vsfdtch(vdata1_id)
C
C Create, write, and insert the second vdata to the vgroup using
C steps similar to those used for the first vdata.
C
 vdata2_id = vsfatch(file_id, -1, ’w’)
 status = vsfsnam(vdata2_id, VD2_NAME)
 status = vsfscls(vdata2_id, VD2_CLASS)
 status = vsffdef(vdata2_id, FIELD_VD2, DFNT_FLOAT32, 1)
 status = vsfsfld(vdata2_id, FIELD_VD2)
 num_of_records = vsfwrt(vdata2_id, tmp, N_RECORDS,
 + FULL_INTERLACE)
 vd_index = vfinsrt(vgroup_id, vdata2_id)
 status = vsfdtch(vdata2_id)
230 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
C
C Create, write, and insert the third vdata to the vgroup using
C steps similar to those used for the first and second vdatas.
C
 vdata3_id = vsfatch(file_id, -1, ’w’)
 status = vsfsnam(vdata3_id, VD3_NAME)
 status = vsfscls(vdata3_id, VD3_CLASS)
 status = vsffdef(vdata3_id, FIELD_VD3, DFNT_INT16, 3)
 status = vsfsfld(vdata3_id, FIELD_VD3)
 num_of_records = vsfwrtc(vdata3_id, plist, N_RECORDS,
 + FULL_INTERLACE)
 vd_index = vfinsrt(vgroup_id, vdata3_id)
 status = vsfdtch(vdata3_id)

C
C Terminate access to the vgroup ’Vertices’.
C
 status = vfdtch(vgroup_id)
C
C Terminate access to the V interface and close the HDF file.
C
 status = vfend(file_id)
 status = hclose(file_id)
 end

5.6 Reading from Vgroups

Reading from vgroups is more complicated than writing to vgroups. The process of reading from
vgroups involves two steps: locating the appropriate vgroup and obtaining information about the
member or members of a vgroup. This section describes routines that provide these functional-
ities.

5.6.1 Locating Vgroups and Obtaining Vgroup Information

There are several routines provided for the purpose of locating a particular vgroup, each corre-
sponding to an identifying aspect of a vgroup. These aspects include whether the vgroup has
vgroups included in it, the identification of the vgroup in the file based on its reference number,
and the name and class name of the vgroup. The routines are described in the following subsec-
tions.

5.6.1.1 Locating Lone Vgroups: Vlone

A lone vgroup is one that is not a member of any other vgroups, i.e., not linked with any other
vgroups. Vlone searches the file specified by the parameter file_id and retrieves the reference
numbers of lone vgroups in the file. This routine is useful for locating unattached vgroups in a file
or the vgroups at the top of a grouping hierarchy. The syntax of Vlone is as follows:

C: num_of_lones = Vlone(file_id, ref_array, maxsize);

FORTRAN: num_of_lones = vflone(file_id, ref_array, maxsize)

The parameter ref_array is an array allocated to hold the reference numbers of the found vgroups.
The argument maxsize specifies the maximum size of ref_array. At most maxsize reference num-
bers will be retrieved in ref_array. The value of max_size, the space allocated for ref_array,
depends on how many lone vgroups are expected to be found.

To use dynamic memory instead of allocating an unnecessarily large array (i.e., one that will hold
the maximum possible number of reference numbers), call Vlone twice. In the first call to Vlone,
June 2017 231

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
set maxsize to a small value, for example, 0 or 1, then use the returned value (the total number of
lone vgroups in the file) to allocate memory for ref_array. This array is then passed into the sec-
ond call to Vlone.

Vlone returns the total number of lone vgroups or FAIL (or -1). The parameters of this routine are
further defined in (See Table 5D on page 234).

5.6.1.2 Sequentially Searching for a Vgroup: Vgetid

Vgetid sequentially searches through an HDF file to obtain the reference number of the vgroup
immediately following the vgroup specified by the reference number, vgroup_ref. The syntax of
Vgetid is as follows:

C: ref_num = Vgetid(file_id, vgroup_ref);

FORTRAN: ref_num = vfgid(file_id, vgroup_ref)

To initiate a search, Vgetid may be called with vgroup_ref set to -1. Doing so returns the refer-
ence number of the first vgroup in the file. Any attempt to search past the last vgroup in a file will
cause Vgetid to return a value of FAIL (or -1).

Vgetid returns a vgroup reference number or FAIL (or -1). The parameters of Vgetid are further
defined in (See Table 5D on page 234).

5.6.1.3 Retrieving vgroups in a file or in a vgroup: Vgetvgroups

Vgetvgroups retrieves a list containing reference numbers of vgroups in a file or in a vgroup,
which is identified by the parameter id. The syntax of Vgetvgroups is as follows:

C: status = Vgetvgroups(id, start_vgroup, vgroup_count, refarray);

FORTRAN: status = vfgvgroups(id, start_vg, vg_count, refarray)

The library commonly use vgroups or vdatas to store HDF objects. For example, a vgroup is used
to represent an SDS and a vdata for an attribute. Vgetvgroups retrieves only the vgroups that
were previously created by user applications, not those that were created by the library internally.
They are referred to as user-created vgroups, for brevity.

When id is a vgroup identifier, only the immediate sub-vgroups will be retrieved; that is, the sub-
vgroups will not be traversed.

The parameter vgroup_count specifies the number of values that the refarray list can hold and can
be any positive number smaller than MAX_REF (65535). If vgroup_count is larger than the actual
number of user-created vgroups, then only the actual number of user-created vgroups will be
retrieved.

The retrieval starts at the vgroup number start_vgroup going forward in the order which the
vgroups were created. For example, if there are 100 vgroups that can be retrieved, specifying
start_vgroup as 90 and vgroup_count as 10 will retrieve the last ten vgroups. The value for
start_vgroup must be non-negative and smaller than or equal to the number of user-created
vgroups, which can be obtained by invoking Vgetvgroups passing in NULL for the array refarray.
This number of user-created vgroups will also allow applications to sufficiently allocate space for
refarray.

• When start_vgroup is 0, the retrieval will start at the beginning of the file or the first sub-
vgroup of the specified vgroup.

• When start_vgroup is smaller than the number of user-created vgroups in the file or the
specified vgroup, Vgetvgroups will start retrieving vgroups from the vgroup number
start_vgroup.
232 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
• When start_vgroup is greater than the number of user-created vgroups in the file or the
vgroup, Vgetvgroups will return FAIL (or -1).

Following are some examples of using Vgetvgroups to get the reference numbers of vgroups in a
file, assuming that the file has been opened for reading successfully:

C: /* Call Vgetvgroups the first time to get the number of vgroups in
 the file to allocate refarray */
n_vgs = Vgetvgroups(file_id, 0, 0, NULL);

/* Allocate space to retrieve reference numbers of n_vgs vgroups */
refarray = (uint16 *)HDmalloc(sizeof(uint16)*n_vgs);

/* To get all the vgroups in the file: */
n_vgs = Vgetvgroups(file_id, 0, n_vgs, refarray);

/* Assuming n_vgs=100, to get the first 10 vgroups in the file: */
n_vgs = Vgetvgroups(file_id, 0, 10, refarray);

/* Assuming n_vgs=100, to get the last 10 vgroups in the file: */
n_vgs = Vgetvgroups(file_id, 90, 10, refarray);

Following are some examples of using Vgetvgroups to get the reference numbers of vgroups in a
parent vgroup:

C: vgroup_id = Vattach(file_id, vgroup_ref, "r");
/* Call Vgetvgroups the first time to get the number of vgroups in
 the parent vgroup to allocate refarray */
n_vgs = Vgetvgroups(vgroup_id, 0, 0, NULL);

/* Allocate space to retrieve reference numbers of n_vgs vgroups */
refarray = (uint16 *)HDmalloc(sizeof(uint16)*n_vgs);

/* Get all the vgroups in the parent vgroup */
n_vgs = Vgetvgroups(vgroup_id, 0, n_vgs, refarray);

/* Close the vgroup */
status = Vdetach(vgroup_id);

Note that, in the FORTRAN-77 version, if vg_count is -1 then the function will return the number
of user-created vgroups and disregard refarray; equivalent to passing NULL for refarray in the C
version.

Vgetvgroups returns the number of user-created vgroups retrieved, if successful, or FAIL (or -1),
otherwise. The parameters of this routine are further defined in (See Table 5D on page 234).

5.6.1.4 Determining Internal Vgroup: Vgisinternal

The HDF library commonly uses vgroups and vdatas to store metadata or data for the library's
own use. For examples, vgroups are used to represent SDS or raster images, and vdatas are used
to store attributes or dimensions. Typically, a user is only interested in vgroups/vdatas that were
created by user applications, not by the library internally. Vgisinternal allows an application to
find out if a vgroup is internally created.

The syntax of Vgisinternal is as follows:
June 2017 233

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
C: is_internal = Vgisinternal(vgroup_id);

FORTRAN: Currently unavailable

Vgisinternal checks the class name of the given vgroup against the list HDF_INTERNAL_VGS to
determine whether the vgroup was previously created by the library instead of by a user applica-
tion. The names in HDF_INTERNAL_VGS are included:

_HDF_VARIABLE ("Var0.0")
_HDF_DIMENSION ("Dim0.0")
_HDF_UDIMENSION ("UDim0.0")
_HDF_CDF ("CDF0.0")
GR_NAME ("RIG0.0")
RI_NAME ("RI0.0")

There is one special case where an internal vgroup having a null class name and a name as
GR_NAME. This should be extremely rare, yet it is a possibility.

Vgisinternal returns TRUE (1) if the inquired vgroup is one that was internally created by the
library, FALSE (0) otherwise, and FAIL (-1) if failure occurs. The parameters of this routine are
further defined in (See Table 5D on page 234).

TABLE 5D Vlone, Vgetid, Vgetvgroups, and Vgisinternal Parameter Lists

5.6.1.5 Obtaining the Name of a Vgroup: Vgetname

Vgetname retrieves the name of the vgroup identified by the parameter vgroup_id into the param-
eter vgroup_name. The syntax of Vgetname is as follows:

C: status = Vgetname(vgroup_id, vgroup_name);

FORTRAN: status = vfgnam(vgroup_id, vgroup_name)

Starting from release 4.2.4, the maximum length of vgroup’s name is no longer limited to VGNAME-
LENMAX (or 64). When an application attempts to read a vgroup’s name that is longer than 64
characters with an insufficient buffer, the result will be unpredictable. Applications can use Vget-
namelen to get the length of the vgroup’s name prior to calling Vgetname.

Vgetname returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are further
defined in Table 5E on page 236.

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

Vlone
[int32]

(vflone)

file_id int32 integer File identifier

ref_array int32 * integer (*) Buffer for the reference numbers of lone vgroups

maxsize int32 integer Maximum number of vgroups to store in ref_array

Vgetid
[int32]
(vfgid)

file_id int32 integer File identifier

vgroup_ref int32 integer Reference number of the current vgroup

Vgetvgroups
[intn]

(vfgvgroups)

id int32 integer File or vgroup identifer

start_vgroup uintn integer Vgroup index to start retrieving at

vgroup_count uintn integer Number of vgroups to be retrieved

refarray int32 * integer (*) Array to hold reference numbers of retrieved vgroups

Vgisinternal
[intn]

(unavailable)
vgroup_id int32 N/A Vgroup identifier
234 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
5.6.1.6 Obtaining the Length of a Vgroup’s Name: Vgetnamelen

Vgetnamelen retrieves the length of a vgroup’s name and stores it in the parameter name_len.
The vgroup is identified by the parameter vgroup_id . The syntax of Vgetnamelen is as follows:

C: status = Vgetnamelen(vgroup_id, name_len);

FORTRAN: Currently unavailable

Vgetnamelen returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are fur-
ther defined in Table 5E on page 236.

5.6.1.7 Obtaining the Class Name of a Vgroup: Vgetclass

Vgetclass retrieves the class name of the vgroup specified by the parameter vgroup_id into the
parameter vgroup_class. The syntax of Vgetclass is as follows:

C: status = Vgetclass(vgroup_id, vgroup_class);

FORTRAN: status = vfgcls(vgroup_id, vgroup_class)

Starting from release 4.2.5, the maximum length of vgroup’s class name is no longer limited to
VGNAMELENMAX (or 64). When an application attempts to read a vgroup’s name that is longer than
64 characters with an insufficient buffer, the result will be unpredictable. Applications can use
Vgetclassnamelen to get the length of the vgroup’s class name prior to calling Vgetclass.

Vgetclass returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are further
defined in Table 5E.

5.6.1.8 Obtaining the Length of a Vgroup’s Class Name: Vgetclassnamelen

Vgetclassnamelen retrieves the length of a vgroup’s class name and stores it in the parameter
classname_len. The vgroup is identified by the parameter vgroup_id . The syntax of Vgetclass-
namelen is as follows:

C: status = Vgetclassnamelen(vgroup_id, classname_len);

FORTRAN: Currently unavailable

Vgetclassnamelen returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine
are further defined in Table 5E on page 236.
June 2017 235

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
TABLE 5E Vgetname, Vgetnamelen, Vgetclass, and Vgetclassnamelen Parameter Lists

5.6.1.9 Locating a Vgroup Given Its Name: Vfind

Vfind searches the file identified by file_id for a vgroup with the name specified by the parameter
vgroup_name. The syntax for Vfind is as follows:

C: vgroup_ref = Vfind(file_id, vgroup_name);

FORTRAN: vgroup_ref = vfind(file_id, vgroup_name)

Vfind returns the reference number of the vgroup if one is found, or 0 otherwise. If more than one
vgroup has the same name, Vfind will return the reference number of the first one.

The parameters of Vfind are further defined in Table 5F.

5.6.1.10 Locating a Vgroup Given Its Class Name: Vfindclass

Vfindclass searches the file identified by file_id for a vgroup with the class name specified by the
parameter vgroup_class. The syntax of Vfindclass is as follows:

C: vgroup_ref = Vfindclass(file_id, vgroup_class);

FORTRAN: vgroup_ref = vfndcls(file_id, vgroup_class)

Vfindclass returns the reference number of the vgroup if one is found, or 0 otherwise. If more
than one vgroup has the same class name, Vfindclass will return the reference number of the first
one.

The parameters of Vfindclass are further defined in Table 5F.

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

Vgetname
[int32]

(vfgnam)

vgroup_id int32 integer Vgroup identifier

vgroup_name char * character*(*) Buffer for the name of the vgroup

Vgetnamelen
[int32]

(unavailable)

vgroup_id int32 N/A Vgroup identifier

name_len uint16* N/A Buffer for the length of the vgroup’s name

Vgetclass
[int32]
(vfgcls)

vgroup_id int32 integer Vgroup identifier

vgroup_class char * character*(*) Buffer for the vgroup class

Vgetclassnamelen
[int32]

(unavailable)

vgroup_id int32 N/A Vgroup identifier

classname_len uint16* N/A Buffer for the length of the vgroup’s class name
236 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
TABLE 5F Vfind and Vfindclass Parameter Lists

EXAMPLE 4. Obtaining Information about Lone Vgroups

This example illustrates the use of Vlone/vflone to obtain the list of reference numbers of all lone
vgroups in the file and the use of Vgetname/vfgnam and Vgetclass/vfgcls to obtain the name and
the class of a vgroup.

In this example, the program calls Vlone/vflone twice. The first call is to obtain the number of
lone vgroups in the file so that sufficient space can be allocated; the later call is to obtain the
actual reference numbers of the lone vgroups. The program then goes through the list of lone
vgroup reference numbers to get and display the name and class of each lone vgroup. The file
used in this example is "General_Vgroups.hdf".

C:
#include "hdf.h"

#define FILE_NAME "General_Vgroups.hdf"

main()
{
 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */
 int32 status_32, /* returned status for functions returning an int32 */
 file_id, vgroup_id;
 int32 lone_vg_number, /* current lone vgroup number */
 num_of_lones = 0; /* number of lone vgroups */
 int32 *ref_array; /* buffer to hold the ref numbers of lone vgroups */
 char vgroup_name[VGNAMELENMAX], vgroup_class[VGNAMELENMAX];

 /********************** End of variable declaration **********************/

 /*
 * Open the HDF file for reading.
 */
 file_id = Hopen (FILE_NAME, DFACC_READ, 0);

 /*
 * Initialize the V interface.
 */
 status_n = Vstart (file_id);

 /*
 * Get and print the names and class names of all the lone vgroups.
 * First, call Vlone with num_of_lones set to 0 to get the number of
 * lone vgroups in the file, but not to get their reference numbers.

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

Vfind
[int32]
(vfind)

file_id int32 integer File identifier

vgroup_name char * character*(*) Buffer for the name of the vgroup

Vfindclass
[int32]

(vfndcls)

file_id int32 integer File identifier

vgroup_class char * character*(*) Buffer for the vgroup class
June 2017 237

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
 */
 num_of_lones = Vlone (file_id, NULL, num_of_lones);

 /*
 * Then, if there are any lone vgroups,
 */
 if (num_of_lones > 0)
 {
 /*
 * use the num_of_lones returned to allocate sufficient space for the
 * buffer ref_array to hold the reference numbers of all lone vgroups,
 */
 ref_array = (int32 *) malloc(sizeof(int32) * num_of_lones);

 /*
 * and call Vlone again to retrieve the reference numbers into
 * the buffer ref_array.
 */
 num_of_lones = Vlone (file_id, ref_array, num_of_lones);

 /*
 * Display the name and class of each lone vgroup.
 */
 printf ("Lone vgroups in this file are:\n");
 for (lone_vg_number = 0; lone_vg_number < num_of_lones;
 lone_vg_number++)
 {
 /*
 * Attach to the current vgroup then get and display its
 * name and class. Note: the current vgroup must be detached before
 * moving to the next.
 */
 vgroup_id = Vattach (file_id, ref_array[lone_vg_number], "r");
 status_32 = Vgetname (vgroup_id, vgroup_name);
 status_32 = Vgetclass (vgroup_id, vgroup_class);
 printf (" Vgroup name %s and class %s\n", vgroup_name,
 vgroup_class);
 status_32 = Vdetach (vgroup_id);
 } /* for */
 } /* if */

 /*
 * Terminate access to the V interface and close the file.
 */
 status_n = Vend (file_id);
 status_n = Hclose (file_id);

 /*
 * Free the space allocated by this program.
 */
 free (ref_array);
}

FORTRAN:
 program getinfo_about_vgroup
 implicit none
C
C Parameter declaration
C
 character*19 FILE_NAME
C
 parameter (FILE_NAME = ’General_Vgroups.hdf’)
238 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
 integer DFACC_READ
 parameter (DFACC_READ = 1)
 integer SIZE
 parameter(SIZE = 10)
C
C Function declaration
C
 integer hopen, hclose
 integer vfstart, vfatch, vfgnam, vfgcls, vflone, vfdtch, vfend

C
C**** Variable declaration ***
C
 integer status
 integer file_id
 integer vgroup_id
 integer lone_vg_number, num_of_lones
 character*64 vgroup_name, vgroup_class
 integer ref_array(SIZE)
 integer i
C
C**** End of variable declaration ************************************
C
C
C Initialize ref_array.
C
 do 10 i = 1, SIZE
 ref_array(i) = 0
10 continue
C
C Open the HDF file for reading.
C
 file_id = hopen(FILE_NAME, DFACC_READ, 0)
C
C Initialize the V interface.
C
 status = vfstart(file_id)
C
C Get and print the name and class name of all lone vgroups.
C First, call vflone with num_of_lones set to 0 to get the number of
C lone vgroups in the file and check whether size of ref_array is
C big enough to hold reference numbers of ALL lone groups.
C If ref_array is not big enough, exit the program after displaying an
C informative message.
C
 num_of_lones = 0
 num_of_lones = vflone(file_id, ref_array, num_of_lones)
 if (num_of_lones .gt. SIZE) then
 write(*,*) num_of_lones, ’lone vgroups is found’
 write(*,*) ’increase the size of ref_array to hold reference ’
 write(*,*) ’numbers of all lone vgroups in the file’
 stop
 endif
C
C If there are any lone groups in the file,
C
 if (num_of_lones .gt. 0) then
C
C call vflone again to retrieve the reference numbers into ref_array.
C
 num_of_lones = vflone(file_id, ref_array, num_of_lones)
C
C Display the name and class of each vgroup.
June 2017 239

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
C
 write(*,*) ’Lone vgroups in the file are:’

 do 20 lone_vg_number = 1, num_of_lones
C
C Attach to the current vgroup, then get and display its name and class.
C Note: the current vgroup must be detached before moving to the next.
C
 vgroup_name = ’ ’
 vgroup_class = ’ ’
 vgroup_id = vfatch(file_id, ref_array(lone_vg_number), ’r’)
 status = vfgnam(vgroup_id, vgroup_name)
 status = vfgcls(vgroup_id, vgroup_class)
 write(*,*) ’Vgroup name ’ , vgroup_name
 write(*,*) ’Vgroup class ’ , vgroup_class
 write(*,*)
 status = vfdtch(vgroup_id)
20 continue

 endif
C
C Terminate access to the V interface and close the HDF file.
C
 status = vfend(file_id)
 status = hclose(file_id)
 end

5.6.2 Obtaining Information about the Contents of a Vgroup

This section describes the Vgroup interface routines that allow the user to obtain various informa-
tion about the contents of vgroups.

5.6.2.1 Obtaining the Number of Objects in a Vgroup: Vntagrefs

Vntagrefs returns the number of tag/reference number pairs (i.e., the number of vgroup members)
stored in the specified vgroup. The syntax of Vntagrefs is as follows:

C: num_of_tagrefs = Vntagrefs(vgroup_id);

FORTRAN: num_of_tagrefs = vfntr(vgroup_id)

Vntagrefs can be used together with Vgettagrefs or Vgettagref to identify the data objects linked
to a given vgroup.

Vntagrefs returns 0 or a positive number representing the number of HDF data objects linked to
the vgroup if successful, or FAIL (or -1) otherwise. The parameter of Vntagrefs is further defined
in Table 5G on page 241.

5.6.2.2 Obtaining the Tag/Reference Number Pair of a Data Object within a Vgroup :
Vgettagref

Vgettagref retrieves the tag/reference number pair of a specified data object stored within the
vgroup identified by the parameter vgroup_id. The syntax of Vgettagref is as follows:

C: status = Vgettagref(vgroup_id, index, &obj_tag, &obj_ref);

FORTRAN: status = vfgttr(vgroup_id, index, obj_tag, obj_ref)
240 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
Vgettagref stores the tag and reference number in the parameters obj_tag and obj_ref, respec-
tively. The parameter index specifies the location of the data object within the vgroup and is zero-
based.

Often, this routine is called in a loop to identify the tag/reference number pair of each data object
belong to a vgroup. In this case, Vntagrefs is used to obtain the loop boundary.

Vgettagref returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are further
defined in Table 5G on page 241.

5.6.2.3 Obtaining the Tag/Reference Number Pairs of Data Objects in a Vgroup:
Vgettagrefs

Vgettagrefs retrieves the tag/reference number pairs of the members of a vgroup and returns the
number of pairs retrieved. The syntax of Vgettagrefs is as follows:

C: num_of_pairs = Vgettagrefs(vgroup_id, tag_array, ref_array, max-
size);

FORTRAN: num_of_pairs = vfgttrs(vgroup_id, tag_array, ref_array, maxsize)

Vgettagrefs stores the tags into the array tag_array and the reference numbers into the array
ref_array. The parameter maxsize specifies the maximum number of tag/reference number pairs
to return, therefore each array must be at least maxsize in size.

Vgettagrefs can be used to obtain the value of maxsize if the tag/reference number pairs for all
members of the vgroup are desired. To do this, set maxsize to 1 in the first call to Vgettagrefs.

Vgettagrefs returns the number of tag/reference number pairs or FAIL (or -1). The parameters of
this routine are further defined in Table 5G.

TABLE 5G Vntagrefs, Vgettagref, and Vgettagrefs Parameter Lists

EXAMPLE 5. Obtaining Information about the Contents of a Vgroup

This example illustrates the use of Vgetid/vfgid to get the reference number of a vgroup,
Vntagrefs/vfntr to get the number of HDF data objects in the vgroup, Vgettagref/vfgttr to get

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

Vntagrefs
[int32]
(vfntr)

vgroup_id int32 integer Vgroup identifier

Vgettagref
[intn]

(vfgttr)

vgroup_id int32 integer Vgroup identifier

index int32 integer Index of the tag/reference number pair to be retrieved

obj_tag int32 * integer Tag of the data object

obj_ref int32 * integer Reference number of the data object

Vgettagrefs
[int32]

(vfgttrs)

vgroup_id int32 integer Vgroup identifier

tag_array int32 [] integer (*) Buffer for the returned tags

ref_array int32 [] integer (*) Buffer for the returned reference numbers

maxsize int32 integer
Maximum number of tag/reference number pairs to be
returned
June 2017 241

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
the tag/reference number pair of a data object within the vgroup, and Visvg/vfisvg and Visvs/
vfisvs to determine whether a data object is a vgroup and a vdata, respectively.

In the example, the program traverses the HDF file "General_Vgroups.hdf" from the beginning
and obtains the reference number of each vgroup so it can be attached. Once a vgroup is attached,
the program gets the total number of tag/reference number pairs in the vgroup and displays some
information about the vgroup. The information displayed includes the position of the vgroup in
the file, the tag/reference number pair of each of its data objects, and the message stating whether
the object is a vdata, vgroup, or neither.

C:
#include "hdf.h"

#define FILE_NAME "General_Vgroups.hdf"

main()
{
 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */
 int32 status_32, /* returned status for functions returning an int32 */
 file_id, vgroup_id, vgroup_ref,
 obj_index, /* index of an object within a vgroup */
 num_of_pairs, /* number of tag/ref number pairs, i.e., objects */
 obj_tag, obj_ref, /* tag/ref number of an HDF object */
 vgroup_pos = 0; /* position of a vgroup in the file */

 /********************** End of variable declaration ***********************/

 /*
 * Open the HDF file for reading.
 */
 file_id = Hopen (FILE_NAME, DFACC_READ, 0);

 /*
 * Initialize the V interface.
 */
 status_n = Vstart (file_id);

 /*
 * Obtain each vgroup in the file by its reference number, get the
 * number of objects in the vgroup, and display the information about
 * that vgroup.
 */
 vgroup_ref = -1; /* set to -1 to search from the beginning of file */
 while (TRUE)
 {
 /*
 * Get the reference number of the next vgroup in the file.
 */
 vgroup_ref = Vgetid (file_id, vgroup_ref);

 /*
 * Attach to the vgroup for reading or exit the loop if no more vgroups
 * are found.
 */
 if (vgroup_ref == -1) break;
 vgroup_id = Vattach (file_id, vgroup_ref, "r");

 /*
 * Get the total number of objects in the vgroup.
 */
242 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
 num_of_pairs = Vntagrefs (vgroup_id);

 /*
 * If the vgroup contains any object, print the tag/ref number
 * pair of each object in the vgroup, in the order they appear in the
 * file, and indicate whether the object is a vdata, vgroup, or neither.
 */
 if (num_of_pairs > 0)
 {
 printf ("\nVgroup #%d contains:\n", vgroup_pos);
 for (obj_index = 0; obj_index < num_of_pairs; obj_index++)
 {
 /*
 * Get the tag/ref number pair of the object specified
 * by its index, obj_index, and display them.
 */
 status_n = Vgettagref (vgroup_id, obj_index, &obj_tag, &obj_ref);
 printf ("tag = %d, ref = %d", obj_tag, obj_ref);

 /*
 * State whether the HDF object referred to by obj_ref is a vdata,
 * a vgroup, or neither.
 */
 if (Visvg (vgroup_id, obj_ref))
 printf (" <-- is a vgroup\n");
 else if (Visvs (vgroup_id, obj_ref))
 printf (" <-- is a vdata\n");
 else
 printf (" <-- neither vdata nor vgroup\n");
 } /* for */
 } /* if */

 else
 printf ("Vgroup #%d contains no HDF objects\n", vgroup_pos);

 /*
 * Terminate access to the current vgroup.
 */
 status_32 = Vdetach (vgroup_id);

 /*
 * Move to the next vgroup position.
 */
 vgroup_pos++;
 } /* while */

 /*
 * Terminate access to the V interface and close the file.
 */
 status_n = Vend (file_id);
 status_n = Hclose (file_id);
}

FORTRAN:
 program vgroup_contents
 implicit none
C
C Parameter declaration
C
 character*19 FILE_NAME
C
 parameter (FILE_NAME = ’General_Vgroups.hdf’)
June 2017 243

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
 integer DFACC_ READ
 parameter (DFACC_READ = 1)
C
C Function declaration
C
 integer hopen, hclose
 integer vfstart, vfatch, vfgid, vntrc, vfgttr, vfisvg,
 + vfisvs, vfdtch, vfend

C
C**** Variable declaration ***
C
 integer status
 integer file_id
 integer vgroup_id, vgroup_ref, vgroup_pos
 integer obj_index, num_of_pairs
 integer obj_tag, obj_ref
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file for reading.
C
 file_id = hopen(FILE_NAME, DFACC_READ, 0)
C
C Initialize the V interface.
C
 status = vfstart(file_id)
C
C Obtain each vgroup in the file by its reference number, get the
C number of objects in the vgroup, and display the information
C about that vgroup.
C
 vgroup_ref = -1
 vgroup_pos = 0
10 continue
C
C Get the reference number of the next vgroup in the file.
C
 vgroup_ref = vfgid(file_id, vgroup_ref)
C
C Attach to the vgroup or go to the end if no additional vgroup is found.
C
 if(vgroup_ref. eq. -1) goto 100
 vgroup_id = vfatch(file_id, vgroup_ref , ’r’)
C
C Get the total number of objects in the vgroup.
C
 num_of_pairs = vntrc(vgroup_id)
C
C If the vgroup contains any object, print the tag/ref number
C pair of each object in vgroup, in the order they appear in the
C file, and indicate whether the object is a vdata, vgroup, or neither.
C
 if (num_of_pairs .gt. 0) then
 write(*,*) ’Vgroup # ’, vgroup_pos, ’ contains:’
 do 20 obj_index = 1, num_of_pairs
C
C Get the tag/ref number pair of the object specified by its index
C and display them.
C
 status = vfgttr(vgroup_id, obj_index-1, obj_tag, obj_ref)
C

244 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
C State whether the HDF object referred to by obj_ref is a vdata,
C a vgroup, or neither.
C
 if(vfisvg(vgroup_id, obj_ref) .eq. 1) then
 write(*,*) ’tag = ’, obj_tag, ’ ref = ’, obj_ref,
 + ’ <--- is a vgroup ’
 else if (vfisvs(vgroup_id, obj_ref) .eq. 1) then
 write(*,*) ’tag = ’, obj_tag, ’ ref = ’, obj_ref,
 + ’ <--- is a vdata ’
 else
 write(*,*) ’tag = ’, obj_tag, ’ ref = ’, obj_ref,
 + ’ <--- neither vdata nor vgroup ’
 endif
20 continue
 else
 write (*,*) ’Vgroup #’, vgroup_pos, ’ contains no HDF objects’
 endif
 write(*,*)
 vgroup_pos = vgroup_pos + 1
 goto 10
100 continue
C
C Terminate access to the vgroup.
C
 status = vfdtch(vgroup_id)
C
C Terminate access to the V interface and close the HDF file.
C
 status = vfend(file_id)
 status = hclose(file_id)
 end

5.6.2.4 Testing Whether a Data Object Belongs to a Vgroup: Vinqtagref

Vinqtagref determines whether a data object is a member of the vgroup specified by the parame-
ter vgroup_id. The syntax of Vinqtagref is as follows:

C: true_false = Vinqtagref(vgroup_id, obj_tag, obj_ref);

FORTRAN: true_false = vfinqtr(vgroup_id, obj_tag, obj_ref)

The data object is specified by its tag/reference number pair in the parameters obj_tag and
obj_ref. Vinqtagref returns TRUE (or 1) if the object belongs to the vgroup, and FALSE (or 0) other-
wise. The parameters of this routine are further defined in Table 5H on page 246.

5.6.2.5 Testing Whether a Data Object within a Vgroup is a Vgroup: Visvg

Visvg determines whether the data object specified by its reference number, obj_ref, is a vgroup
and is a member of the vgroup identified by the parameter vgroup_id. The syntax of Visvg is as
follows:

C: true_false = Visvg(vgroup_id, obj_ref);

FORTRAN: true_false = vfisvg(vgroup_id, obj_ref)

Visvg returns either TRUE (or 1) or FALSE (or 0). The parameters of this routine are further defined
in Table 5H on page 246.
June 2017 245

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
5.6.2.6 Testing Whether an HDF Object within a Vgroup is a Vdata: Visvs

Visvs determines whether the data object specified by its reference number, obj_ref, is a vdata and
is a member of the vgroup identified by the parameter vgroup_id. The syntax of Visvs is as fol-
lows:

C: true_false = Visvs(vgroup_id, obj_ref);

FORTRAN: true_false = vfisvs(vgroup_id, obj_ref)

Visvs returns either TRUE (or 1) or FALSE (or 0). The parameters of this routine are further defined
in Table 5H.

TABLE 5H Vinqtagref, Visvg, and Visvs Parameter Lists

5.6.2.7 Locating a Vdata in a Vgroup Given Vdata Fields: Vflocate

Vflocate locates a vdata that belongs to the vgroup identified by the parameter vgroup_id and
contains the fields specified in the parameter fieldname_list. The syntax of Vflocate is as follows:

C: vdata_ref = Vflocate(vgroup_id, fieldname_list);

FORTRAN: vdata_ref = vffloc(vgroup_id, fieldname_list)

The parameter fieldname_list is a string of comma-separated field names containing no white
space, for example, “PX,PY,PZ”. Note that a vdata must contain all of the fields specified in
fieldname_list to be qualified.

Vflocate returns the reference number of the vdata, if one is found, and FAIL (or -1) otherwise.
The parameters of this routine are further defined in Table 5I.

5.6.2.8 Retrieving the Number of Tags of a Given Type in a Vgroup: Vnrefs

Vnrefs returns the number of tags of the type specified by the parameter tag_type in the vgroup
identified by the parameter vgroup_id. The syntax of Vnrefs is as follows:

C: num_of_tags = Vnrefs(vgroup_id, tag_type);

FORTRAN: num_of_tags = vnrefs(vgroup_id, tag_type)

Possible values of the parameter tag_type are defined in Appendix A of this manual. Vnrefs
returns 0 or the number of tags if successful, and FAIL (or -1) otherwise. The parameters of this
routine are further defined in Table 5I.

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

Vinqtagref
[intn]

(vfinqtr)

vgroup_id int32 integer Vgroup identifier

obj_tag int32 integer Tag of the data object to be queried

obj_ref int32 integer Reference number of the data object to be queried

Visvg
[intn]

(vfisvg)

vgroup_id int32 integer Vgroup identifier

obj_ref int32 integer Data object reference number to be queried

Visvs
[intn]

(vfisvs)

vgroup_id int32 integer Vgroup identifier

obj_ref int32 integer Data object reference number to be queried
246 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
TABLE 5I Vflocate and Vnrefs Parameter Lists

5.6.2.9 Retrieving the Reference Number of a Vgroup: VQueryref

VQueryref returns the reference number of the vgroup identified by the parameter vgroup_id, or
FAIL (or -1) if unsuccessful. The syntax of VQueryref is as follows:

C: vgroup_ref = VQueryref(vgroup_id);

FORTRAN: vgroup_ref = vqref(vgroup_id)

VQueryref is further defined in Table 5J.

5.6.2.10 Retrieving the Tag of a Vgroup: VQuerytag

VQuerytag returns DFTAG_VG (or 1965), which would be the tag of the vgroup identified by the
parameter vgroup_id, or FAIL (or -1) if unsuccessful. The syntax of VQuerytag is as follows:

C: vgroup_tag = VQuerytag(vgroup_id);

FORTRAN: vgroup_tag = vqtag(vgroup_id)

VQuerytag is further defined in Table 5J.

TABLE 5J VQueryref and VQuerytag Parameter Lists

5.7 Deleting Vgroups and Data Objects within a Vgroup

The Vgroup interface includes two routines for deletion: one deletes a vgroup from a file and the
other deletes a data object from a vgroup. These routines are discussed in the following subsec-
tions.

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

Vflocate
[int32]
(vffloc)

vgroup_id int32 integer Vgroup identifier

fieldname_list char * character*(*) Buffer containing the names of the fields

Vnrefs
[int32]

(vnrefs)

vgroup_id int32 integer Vgroup identifier

tag_type int32 integer Tag type

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

VQueryref
[int32]
(vqref)

vgroup_id int32 integer Vgroup identifier

VQuerytag
[int32]
(vqtag)

vgroup_id int32 integer Vgroup identifier
June 2017 247

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
5.7.1 Deleting a Vgroup from a File: Vdelete

Vdelete removes the vgroup identified by the parameter vgroup_id from the file identified by the
parameter file_id. The syntax of Vdelete is as follows:

C: status = Vdelete(file_id, vgroup_id);

FORTRAN: status = vdelete(file_id, vgroup_id)

This routine will remove the vgroup from the internal data structures and from the file.

Vdelete returns either SUCCEED (or 0) or FAIL (or -1). The parameters of Vdelete are further
described in Table 5K on page 248.

5.7.2 Deleting a Data Object from a Vgroup: Vdeletetagref

Vdeletetagref deletes the data object, specified by the parameters obj_tag and obj_ref, from the
vgroup, identified by the parameter vgroup_id. The syntax of Vdeletetagref is as follows:

C: status = Vdeletetagref(vgroup_id, obj_tag, obj_ref);

FORTRAN: status = vfdtr(vgroup_id, obj_tag, obj_ref)

Vinqtagref should be used to determine whether the tag/reference number pair exists before call-
ing Vdeletetagref. If duplicate tag/reference number pairs are found in the vgroup, Vdeletetagref
deletes the first occurrence. Vinqtagref should also be used to determine whether duplicate tag/
reference number pairs exist in the vgroup.

Vdeletetagref returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are fur-
ther described in Table 5K.

TABLE 5K Vdelete and Vdeletetagref Parameter Lists

5.8 Vgroup Attributes

HDF version 4.1r1 and later include the ability to assign attributes to a vgroup. The concept of
attributes is fully explained in Chapter 3, Scientific Data Sets (SD API). To review briefly, an attri-
bute has a name, a data type, a number of attribute values, and the attribute values themselves. All
attribute values must be of the same data type. For example, an attribute value cannot consist of
ten characters and one integer, or a character value cannot be included in an attribute value con-
sisting of two 32-bit integers.

Any number of attributes can be assigned to a vgroup, however, each attribute name must be
unique among all attributes in the vgroup.

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

Vdelete
[int32]

(vdelete)

file_id int32 integer File identifier

vgroup_id int32 integer Vgroup identifier

Vdeletetagref
[int32]
(vfdtr)

vgroup_id int32 integer Vgroup identifier

obj_tag int32 integer Tag of the data object to be deleted

obj_ref int32 integer Reference number of the data object to be deleted
248 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
5.8.1 Obtaining the Vgroup Version Number of a Given Vgroup:
Vgetversion

The structure of the vgroup has gone through several changes since HDF was first written. Deter-
mining the version of any particular vgroup is necessary as some of the older versions of vgroups
do not support some of the newer features, such as attributes. Vgetversion returns the version
number of the vgroup identified by the parameter vgroup_id. The syntax of Vgetversion is as fol-
lows:

C: version_num = Vgetversion(vgroup_id);

FORTRAN: version_num = vfgver(vgroup_id)

There are three valid version numbers: VSET_OLD_VERSION (or 2), VSET_VERSION (or 3), and
VSET_NEW_VERSION (or 4).

VSET_OLD_VERSION is returned when the vgroup is of a version that corresponds to an HDF library
version before version 3.2.

VSET_VERSION is returned when the vgroup is of a version that corresponds to an HDF library ver-
sion between versions 3.2 and 4.0 release 2.

VSET_NEW_VERSION is returned when the vgroup is of a version that corresponds to an HDF library
version of version 4.1 release 1 or higher.

Vgetversion returns the vgroup version number if successful, and FAIL (or -1) otherwise. This
routine is further defined in Table 5L.

5.8.2 Setting the Attribute of a Vgroup: Vsetattr

Vsetattr attaches an attribute to the vgroup specified by the parameter vgroup_id. The syntax of
Vsetattr is as follows:

C: status = Vsetattr(vgroup_id, attr_name, data_type, n_values,
attr_values);

FORTRAN: status = vfsnatt(vgroup_id, attr_name, data_type, n_values,
attr_values)

OR status = vfscatt(vgroup_id, attr_name, data_type, n_values,
attr_values)

If the attribute with the name specified in the parameter attr_name already exists, the new values
will replace the current ones, provided the data type and count are not different. If either the data
type or the count have been changed, Vsetattr will return FAIL (or -1).

The parameter data_type is an integer number specifying the data type of the attribute values.
Refer to Table 2F on page 14 for the definition of the data types to interpret this value. The param-
eter n_values specifies the number of values to be stored in the attribute. The buffer attr_values
contains the values to be stored in the attribute.

Note that the FORTRAN-77 version of Vsetattr has two routines; vfsnatt sets a numeric value
attribute and vfscatt sets a character value attribute.

Vsetattr returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are further
defined in Table 5L.

5.8.3 Retrieving the Index of a Vgroup Attribute Given the Attribute Name:
June 2017 249

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
Vfindattr

Vfindattr searches the vgroup, identified by the parameter vgroup_id, for the attribute with the
name specified by the parameter attr_name, and returns the index of that attribute. The syntax of
this routine is as follows:

C: attr_index = Vfindattr(vgroup_id, attr_name);

FORTRAN: attr_index = vffdatt(vgroup_id, attr_name)

Vfindattr returns either an attribute index or FAIL (or -1). The parameters of this routine are fur-
ther defined in Table 5L.

TABLE 5L Vgetversion, Vsetattr, and Vfindattr Parameter Lists

5.8.4 Obtaining the Total Number of Vgroup Attributes: Vnattrs and
Vnattrs2

Both Vnattrs and Vnattrs2 return the number of attributes assigned to the vgroup specified by
the parameter vgroup_id, but Vnattrs2 is an updated version of Vnattrs. The syntax of both func-
tions are as follows:

C: num_of_attrs = Vnattrs(vgroup_id);
num_of_attrs = Vnattrs2(vgroup_id);

FORTRAN: num_of_attrs = vfnatts(vgroup_id)
Unvailable

There are two types of attributes for vgroups. One is the old-style that was created using methods
other than the standard attribute API function Vsetattr, which was introduced after HDF Version
4.0 Release 2, July 19, 1996. Without the use of Vsetattr, an application could simulate an
attribute for a vgroup by creating and writing a vdata of class _HDF_ATTRIBUTE and adding that
vdata to the vgroup via these calls:

vdata_ref = VHstoredatam(file_id, ATTR_FIELD_NAME, values, size, type,
attr_name, _HDF_ATTRIBUTE, order);

ret_value = Vaddtagref (vgroup_id, DFTAG_VH, vdata_ref);

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C FORTRAN-77

Vgetversion
[int32]

(vfgver)
vgroup_id int32 integer Vgroup identifier

Vsetattr
[intn]

(vfsnatt/vfscatt)

vgroup_id int32 integer Vgroup identifier

attr_name char * character*(*) Name of the attribute

data_type int32 integer Data type of the attribute

n_values int32 integer Number of values the attribute contains

attr_values VOIDP
<valid numeric data type>(*)/

character* (*)
Buffer containing the attribute values

Vfindattr
[intn]

(vffdatt)

vgroup_id int32 integer Vgroup identifier

attr_name char * character*(*) Name of the target attribute
250 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
While both types of attributes are stored as vdatas, the vdatas of the two types of attributes are
saved differently in the file. Because of the different storages, the new-style attribute functions,
such as Vnattrs, Vgetattr or Vattrinfo, would miss the old-style attributes. Starting in release
4.2.6, new functions were added to allow applications to get access to both types of attributes, i.e.,
Vnattrs2, Vattrinfo2, and Vgetattr2.

Note that, when a vgroup has both type of attributes, the old-style attributes will preceed the new
ones, regardless of when they were created. Applications that anticipate to access files that were
created by HDF Version 4.0 Release 2 and before (circa July 1996,) should use Vnattrs2 instead
of Vnattrs in order to include the old-style attributes if they exist and are desired.

Vnattrs and Vnattrs2 both returns the number of attributes, if successful, or FAIL (or -1), other-
wise. These routines are further defined in Table 5M.

TABLE 5M Vnattrs and Vnattrs2 Parameter Lists

5.8.5 Obtaining Information on a Given Vgroup Attribute: Vattrinfo

Vattrinfo retrieves the name, data type, number of values, and the size of the values of an
attribute that belongs to the vgroup identified by the parameter vgroup_id. The syntax of Vat-
trinfo is as follows:

C: status = Vattrinfo(vgroup_id, attr_index, attr_name, &data_type,
&n_values, &size);

FORTRAN: status = vfainfo(vgroup_id, attr_index, attr_name, data_type,
n_values, size)

Vattrinfo stores the name, data type, number of values, and the size of the value of the attribute
into the parameters attr_name, data_type, n_values, and size, respectively.

The attribute is specified by its index, attr_index. The valid values of attr_index range from 0 to
the total number of attributes attached to the vgroup - 1. The number of vgroup attributes can be
obtained using the routine Vnattrs.

The parameter data_type is an integer number. Refer to Table 2F on page 14 for the definitions of
the data types to interpret this value. The parameter size contains the number of bytes taken by an
attribute value.

In C, the parameters attr_name, data_type, n_values, and size can be set to NULL, if the informa-
tion returned by these parameters is not needed.

Note that, when working with HDF files that were created by HDF Version 4.0 Release 2 and
before (circa July 1996,) please refer to the section about Vattrinfo2.

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

Vnattrs
[intn]

(vfnatts)
vgroup_id int32 integer Vgroup identifier

Vnattrs2
[int32]

(Unavailable)
vgroup_id int32 integer Vgroup identifier
June 2017 251

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
Vattrinfo returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are further
described in (See Table 5N on page 253).

5.8.6 Obtaining Information on a Given Vgroup Attribute: Vattrinfo2

Vattrinfo2 is an updated version of Vattrinfo. Beside retrieving the name, datatype, number of
values, and value size of an attribute identified by its index, attr_index, in the vgroup, vgroup_id
as Vattrinfo, Vattrinfo2 also provides the reference number of and the number of fields in the
vdata that represents the attribute.

The syntax of Vattrinfo2 is as follows:

C: status = Vattrinfo2(vgroup_id, attr_index, attr_name, &data_type,
&n_values, &size, &n_fields, &ref_num);

FORTRAN: Unavailable

The attribute is specified by its index, attr_index. The valid values of attr_index range from 0 to
the total number of attributes attached to the vgroup - 1. The number of vgroup attributes can be
obtained using the routine Vnattrs2.

The parameter data_type is an integer number. Refer to Table 2F on page 14 for the definitions of
the data types to interpret this value. The parameter size contains the number of bytes taken by an
attribute value.

In C, the parameters attr_name, data_type, n_values, and size can be set to NULL, if the informa-
tion returned by these parameters is not needed.

Note that, this function should be used in place of Vattrinfo when working with HDF files that
were created by HDF Version 4.0 Release 2 and before (circa July 1996.) Please refer to
Section 5.8.4 on page 250 and the Appendix Attribute for more details about vgroup attributes.

Vattrinfo2 returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are further
described in Table 5N.
252 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
TABLE 5N Vattrinfo and Vattrinfo2 Parameter Lists

5.8.7 Retrieving the Values of a Given Vgroup Attribute: Vgetattr

Vgetattr retrieves the values of an attribute of the vgroup specified by the parameter vgroup_id.
The syntax of Vgetattr is as follows:

C: status = Vgetattr(vgroup_id, attr_index, attr_values);

FORTRAN: status = vfgnatt(vgroup_id, attr_index, attr_values)

OR status = vfgcatt(vgroup_id, attr_index, attr_values)

The attribute is specified by its index, attr_index. The valid values of attr_index range from 0 to
the total number of attributes attached to the vgroup - 1. The number of vgroup attributes can be
obtained using the routine Vnattrs.

The buffer attr_values must be sufficiently allocated to hold the retrieved attribute values. Use
Vattrinfo to obtain information about the attribute values for appropriate memory allocation.

Note that the FORTRAN-77 version of Vgetattr has two routines; vfgnatt gets a numeric value
attribute and vfgcatt gets a character value attribute.

Vgetattr returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are further
defined in Table 5O.

5.8.8 Retrieving the Values of a Given Vgroup Attribute: Vgetattr2

As Vgetattr, Vgetattr2 retrieves the values of an attribute of the vgroup specified by the parame-
ter vgroup_id. The syntax of Vgetattr2 are as follows:

C: status = Vgetattr2(vgroup_id, attr_index, attr_values);

FORTRAN: Currently unavailable

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

Vattrinfo
[intn]

(vfainfo)

vgroup_id int32 integer Vgroup identifier

attr_index intn integer Index of the attribute

attr_name char * character*(*) Returned name of the attribute

data_type int32 * integer Returned data type of the attribute

n_values int32 * integer Returned number of values of the attribute

size int32 * integer Returned size, in bytes, of the value of the attribute

Vattrinfo2
[intn]

(Unvailable)

vgroup_id int32 N/A Vgroup identifier

attr_index intn N/A Index of the attribute

attr_name char * N/A Returned name of the attribute

data_type int32 * N/A Returned data type of the attribute

n_values int32 * N/A Returned number of values of the attribute

size int32 * N/A Returned size, in bytes, of the value of the attribute

n_fields int32 * N/A Returned number of fields in the attribute vdata

ref_num uint16 * N/A Returned reference number of the attribute vdata
June 2017 253

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
Unlike Vgetattr, Vgetattr2 can also read values from attributes that were created by methods
other than Vsetattr. Please refer to Section 5.8.4 on page 250 and the Appendix Attribute for
information about the different types of vgroup attributes.

The attribute is specified by its index, attr_index. The valid values of attr_index range from 0 to
the total number of attributes attached to the vgroup - 1. The number of vgroup attributes can be
obtained using the routine Vnattrs2.

The buffer attr_values must be sufficiently allocated to hold the retrieved attribute values. Use
Vattrinfo2 to obtain information about the attribute values for appropriate memory allocation.

Vgetattr2 returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are further
defined in Table 5O.

TABLE 5O Vgetattr and Vgetattr2 Parameter Lists

EXAMPLE 6. Operations on Vgroup Attributes

This example illustrates the use of Vfind/vfind to locate a vgroup by its name, Vsetattr/vfscatt to
attach an attribute to the vgroup, Vattrinfo/vfainfo to obtain information about the vgroup
attribute, and Vgetattr/vfgcatt to obtain the attribute values.

The program obtains the version of the group then sets an attribute named "First Attribute" for the
vgroup named "SD Vgroup". Next, the program gets the number of attributes that the vgroup has,
and obtains and displays the name, the number of values, and the values of each attribute.

C:
#include "hdf.h"

#define FILE_NAME "General_Vgroups.hdf"
#define VGROUP_NAME "SD Vgroup"
#define VGATTR_NAME "First Attribute"
#define N_ATT_VALUES 7 /* number of values in the attribute */

main()
{
 /************************* Variable declaration **************************/

 intn status_n, /* returned status for functions returning an intn */
 n_attrs; /* number of attributes of the vgroup */
 int32 status_32, /* returned status for functions returning an int32 */
 file_id, vgroup_ref, vgroup_id,
 attr_index, i, vg_version,
 data_type, n_values, size;

Routine
Name

[Return Type]
(FORTRAN-

77)

Parameter

Parameter Type

Description
C FORTRAN-77

Vgetattr
[intn]

(vfgnatt/vfgcatt)

vgroup_id int32 integer Vgroup identifier

attr_index intn integer Index of the attribute

attr_values VOIDP
<valid numeric data type> (*)/

character*(*)
Buffer containing attribute values

Vgetattr2
[intn]

(unavailable)

vgroup_id int32 N/A Vgroup identifier

attr_index intn N/A Index of the attribute

attr_values VOIDP N/A Buffer containing attribute values
254 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
 char vg_attr[N_ATT_VALUES] = {’v’,’g’,’r’,’o’,’u’,’p’,’\0’};
 char vgattr_buf[N_ATT_VALUES], attr_name[30];

 /********************** End of variable declaration **********************/

 /*
 * Open the HDF file for writing.
 */
 file_id = Hopen (FILE_NAME, DFACC_WRITE, 0);

 /*
 * Initialize the V interface.
 */
 status_n = Vstart (file_id);

 /*
 * Get the reference number of the vgroup named VGROUP_NAME.
 */
 vgroup_ref = Vfind (file_id, VGROUP_NAME);

 /*
 * Attach to the vgroup found.
 */
 vgroup_id = Vattach (file_id, vgroup_ref, "w");

 /*
 * Get and display the version of the attached vgroup.
 */
 vg_version = Vgetversion (vgroup_id);
 switch (vg_version) {
 case VSET_NEW_VERSION:
 printf ("\nVgroup %s is of the newest version, version 4\n",
 VGROUP_NAME);
 break;
 case VSET_VERSION:
 printf ("Vgroup %s is of a version between 3.2 and 4.0r2\n",
 VGROUP_NAME);
 break;
 case VSET_OLD_VERSION:
 printf ("Vgroup %s is of version before 3.2\n", VGROUP_NAME);
 break;
 default:
 printf ("Unknown version = %d\n", vg_version);
 } /* switch */

 /*
 * Add the attribute named VGATTR_NAME to the vgroup.
 */
 status_n = Vsetattr (vgroup_id, VGATTR_NAME, DFNT_CHAR, N_ATT_VALUES,
 vg_attr);

 /*
 * Get and display the number of attributes attached to this vgroup.
 */
 n_attrs = Vnattrs (vgroup_id);
 printf ("\nThis vgroup has %d attribute(s)\n", n_attrs);

 /*
 * Get and display the name and the number of values of each attribute.
 * Note that the fourth and last parameters are set to NULL because the type
 * and the size of the attribute are not desired.
 */
 for (attr_index = 0; attr_index < n_attrs; attr_index++)
June 2017 255

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
 {
 status_n = Vattrinfo (vgroup_id, attr_index, attr_name, NULL,
 &n_values, NULL);
 printf ("\nAttribute #%d is named %s and has %d values: ",
 attr_index+1, attr_name, n_values);

 /*
 * Get and display the attribute values.
 */
 status_n = Vgetattr (vgroup_id, attr_index, vgattr_buf);
 for (i = 0; i < n_values; i++)
 printf ("%c ", vgattr_buf[i]);
 printf ("\n");
 }

 /*
 * Terminate access to the vgroup and to the V interface, and close
 * the HDF file.
 */
 status_32 = Vdetach (vgroup_id);
 status_n = Vend (file_id);
 status_n = Hclose (file_id);
}

FORTRAN:
 program vgroup_attribute
 implicit none
C
C Parameter declaration
C
 character*19 FILE_NAME
 character*9 VGROUP_NAME
 character*15 VGATTR_NAME
C
 parameter (FILE_NAME = ’General_Vgroups.hdf’,
 + VGROUP_NAME = ’SD Vgroup’,
 + VGATTR_NAME = ’First Attribute’)
 integer VSET_NEW_VERSION, VSET_VERSION, VSET_OLD_VERSION
 parameter (VSET_NEW_VERSION = 4,
 + VSET_VERSION = 3,
 + VSET_OLD_VERSION = 2)
 integer DFACC_WRITE
 parameter (DFACC_WRITE = 2)
 integer DFNT_CHAR
 parameter (DFNT_CHAR = 4)
 integer N_ATT_VALUES
 parameter (N_ATT_VALUES = 6)
C
C Function declaration
C
 integer hopen, hclose
 integer vfstart, vfatch, vfgver, vfscatt, vfnatts, vfainfo,
 + vfind, vfgcatt, vfdtch, vfend
C
C**** Variable declaration ***
C
 integer status, n_attrs
 integer file_id
 integer vgroup_id, vgroup_ref, vg_version
 integer attr_index, i
256 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
 integer data_type, n_values, size
 character vg_attr(N_ATT_VALUES)
 character vgattr_buf(N_ATT_VALUES), attr_name(30)
 data vg_attr /’v’,’g’,’r’,’o’,’u’,’p’/
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file for reading/writing.
C
 file_id = hopen(FILE_NAME, DFACC_WRITE, 0)
C
C Initialize the V interface.
C
 status = vfstart(file_id)
C
C Get the reference number of the vgroup named VGROUP_NAME.
C
 vgroup_ref = vfind(file_id, VGROUP_NAME)
C
C Attach to the vgroup found.
C
 vgroup_id = vfatch(file_id, vgroup_ref , ’w’)
C
C Get and display the version of the attached vgroup.
C
 vg_version = vfgver(vgroup_id)
 if (vg_version .eq. VSET_NEW_VERSION) write(*,*)
 + VGROUP_NAME, ’ is of the newest version, version 4’
 if (vg_version .eq. VSET_VERSION) write(*,*)
 + VGROUP_NAME, ’ is of a version between 3.2 and 4.0r2’
 if(vg_version .eq. VSET_OLD_VERSION) write(*,*)
 + VGROUP_NAME, ’ is of version before 3.2’
 if ((vg_version .ne. VSET_NEW_VERSION) .and.
 + (vg_version .ne. VSET_VERSION) .and.
 + (vg_version .ne. VSET_OLD_VERSION)) write(*,*)
 + ’Unknown version’
C
C Add the attribute named VGATTR_NAME to the vgroup.
C
 status = vfscatt(vgroup_id, VGATTR_NAME, DFNT_CHAR, N_ATT_VALUES,
 + vg_attr)
C
C Get and display the number of attributes attached to this group.
C
 n_attrs = vfnatts(vgroup_id)
 write(*,*) ’This group has’, n_attrs, ’ attributes’
C
C Get and display the name and the number of values of each attribute.
C
 do 10 attr_index=1, n_attrs
 status = vfainfo(vgroup_id, attr_index-1, attr_name, data_type,
 + n_values, size)
 write(*,*) ’Attribute #’, attr_index-1, ’ is named ’, attr_name
 write(*,*) ’and has’, n_values, ’ values: ’
C
C Get and display the attribute values.
C
 status = vfgcatt(vgroup_id, attr_index-1, vgattr_buf)
 write(*,*) (vgattr_buf(i), i=1,n_values)
10 continue
C
C Terminate access to the vgroup.
June 2017 257

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
C
 status = vfdtch(vgroup_id)
C
C Terminate accessto the V interface and close the HDF file.
C
 status = vfend(file_id)
 status = hclose(file_id)
 end

5.9 Obsolete Vgroup Interface Routines

The following routines have been replaced by newer routines with similar functionality. These
routines are still supported by the Vgroup interface, but their use is not recommended. HDF may
not support these routines in a future version.

5.9.1 Determining the Next Vgroup or Vdata Identifier: Vgetnext

Vgetnext gets the reference number of the next member of a vgroup. This member can be either a
vgroup or vdata. The syntax for Vgetnext is as follows:

C: ref_num = Vgetnext(vgroup_id, v_ref);

FORTRAN: ref_num = vfgnxt(vgroup_id, v_ref)

Vgetnext searches the vgroup, identified by the parameter vgroup_id, for the vgroup or vdata
whose reference number is specified by the parameter v_ref. If this vgroup or vdata is found,
Vgetnext finds the next vgroup or vdata and returns its reference number. If v_ref is set to -1, the
routine will return the reference number of the first vgroup or vdata in the vgroup.

Vgetnext is now obsolete as the routine Vgettagref provides the same functionality. In addition,
Vgettagref is not restricted to searching for members that are vgroups or vdatas.

Vgetnext returns a reference number if the next vgroup or vdata is found, or FAIL (or -1) when an
error occurs or when there are no more vdatas or vgroups in the vgroup. The parameters of Vget-
next are further defined in Table 5P.

5.9.2 Determining the Number of Members and Vgroup Name: Vinquire

Vinquire retrieves the number of data objects and the name of the vgroup identified by the
parameter vgroup_id. The syntax for Vinquire is as follows:

C: status = Vinquire(vgroup_id, &n_members, vgroup_name);

FORTRAN: status = vfinq(vgroup_id, n_members, vgroup_name)

Vinquire stores the number of data objects and the vgroup name in the parameters n_members
and vgroup_name, respectively. In C, if either n_members or vgroup_name is set to NULL, the cor-
responding data is not returned. The maximum length of the vgroup’s name is defined by VGNAME-
LENMAX (or 64).

Vinquire is now obsolete as the Vntagrefs routine can be used to get the number of data objects
in a vgroup and Vgetname can be used to retrieve the name of a vgroup.

Vinquire returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routines are further
defined in Table 5P.
258 June 2017

Chapter 5 -- Vgroups (V API) Table of Contents HDF User’s Guide
TABLE 5P Vgetnext and Vinquire Parameter Lists

Routine Name
[Return Type]

(FORTRAN-
77)

Parameter

Parameter Type

Description
C

FORTRAN-
77

Vgetnext
[int32]

(vfgnxt)

vgroup_id int32 integer Vgroup identifier of the parent vgroup

v_ref int32 integer Reference number for the target vgroup

Vinquire
[intn]

(vfinq)

vgroup_id int32 integer Vgroup identifier

n_members int32 * integer Pointer to the number of entries in the vgroup

vgroup_name char * character*(*) Buffer for the name of the vgroup
June 2017 259

The HDF Group Table of Contents Chapter 5 -- Vgroups (V API)
260 June 2017

CHAPTER 6 -- 8-Bit Raster Images (DFR8 API)
6.1 Chapter Overview

This chapter describes the 8-bit raster image data model and the single-file DFR8 interface rou-
tines. The DFR8 interface is a single-file interface that consists of routines for reading and writing
raster image sets.

Note: This interface is now deprecated and superseded by the General Raster Images (GR API)
interface (Chapter 8.)

The 8-Bit Raster Data Model

The data model for the 8-bit raster image set, or RIS8, an acronym for "Raster Image Set, 8-bit",
supports three types of objects; two-dimensional 8-bit raster images, dimensions and palettes. The
latter two items occur once per RIS8. The following figure shows the contents of an 8-bit raster
image set.

FIGURE 6a 8-Bit Raster Image Set Contents

6.1.1 Required 8-Bit Raster Image Data Set Objects

Every RIS8 object requires an image and dimension object. Required objects are created by the
HDF library using information provided at the time the image is written.

6.1.1.1 8-Bit Raster Image Data Representation

An 8-bit raster image is a two-dimensional array of 8-bit numbers which represent pixels or "pic-
ture elements".The first row of pixels corresponds to the top row of the image, the second row of
pixels to the second row of the image and so forth. Pixel values range from 0 to 255, and indicate
June 2017 261

The HDF Group Table of Contents Chapter 6 -- 8-Bit Raster Images (DFR8 API)
to the hardware which colors to use when mapping the corresponding pixels to the screen display.
A color lookup table, or palette, provides the means of correlating pixel values to colors.

As an example, consider a stream of 8-bit numbers representing a raster image. (See Figure 6b)
When the image is displayed, the color associated with the first number in the data stream is
placed in the upper left corner of the image. The remainder of the first line is then painted from
left-to-right using as many values from the data stream as is necessary to complete the line. The
remainder of the rows are similarly painted from left-to-right and top-to-bottom until every value
in the data stream appears is represented by one pixel in the image.

FIGURE 6b The Data Representation of an 8-Bit Raster Image

6.1.1.2 8-Bit Raster Image Dimension

The dimensions of an image are its height and width in pixels.

6.1.2 Optional 8-Bit Raster Image Data Set Objects

6.1.2.1 Palettes

A palette is a lookup table consisting of 256 unique numerical values, each of which map to the
256 possible pixel color values and is stored in a RIS8 object. For more details on HDF palettes
refer to Chapter 9, titled Palettes (DFP API).

6.1.3 Compression Method

The compression method indicates if and how the image is compressed. It can be, at the program-
mer’s option, explicitly set or left as its default setting of no compression. Compression schemes
supported by HDF version 4.0 are run-length encoding or RLE, joint photographic expert group
262 June 2017

Chapter 6 -- 8-Bit Raster Images (DFR8 API) Table of Contents HDF User’s Guide
compression, or JPEG, and image compression, or IMCOMP . The list of compression methods is
presented below. (See TABLE 6A) The HDF tags COMP_RLE, COMP_IMCOMP and COMP_JPEG are
respectively defined as the values 11, 12 and 2 in the "hcomp.h" header file.

TABLE 6A 8-Bit Raster Image Compression Method List

RLE Compression

The RLE method is a lossless compression method recommended for images where data retention
is critical. The RLE algorithm compresses images by condensing strings of identical pixel values
into two bytes. The first byte identifies the number of pixels in the string and the second byte
records the pixel value for the string.

The amount of space saved by RLE depends upon how much repetition there is among adjacent
pixels. If there is a great deal of repetition, more space is saved and if there is little repetition, the
savings can be very small. In the worst case when every pixel is different from the one that pre-
cedes it an extra byte is added for every 127 bytes in the image.

JPEG Compression

The JPEG, or Joint Photographic Expert Group, compression method is a lossy compression algo-
rithm whose use is recommended for photographic or scanned images. Using JPEG compression
to reduce the size of an image changes the values of the pixels and hence may alter the meaning of
the corresponding data. Version 5.0 of the JPEG library is available in HDF version 4.0.

JPEG compression requires two parameters, the first the level of image quality and the second,
compatibility. The quality factor determines how much of the data will be lost and thus directly
impacts the size of the compressed image. A quality factor of 1 specifies the lowest quality or
maximum image compression. A quality factor of 100 specifies the highest quality or minimum
image compression. Note that all images compressed using the JPEG algorithm are stored in a
lossy manner, even those stored with a quality factor of 100. Usually, it is best to experiment with
the quality factor to find the most acceptable one.

The baseline parameter determines whether the contents of the quantization tables used during
compression are forced into the range of 0 to 255. The baseline parameter is normally set to the
value 1 which forces baseline results. You should set the value of the baseline parameter to values
other than 1 only if you are familiar with the JPEG algorithm.

IMCOMP Compression

IMCOMP is a lossy compression method available in earlier versions of HDF. IMCOMP com-
pression is generally of inferior quality to JPEG compression and is not recommended unless your
images will be viewed on a 16-color monitor. For backward compatibility, IMCOMP compression
is supported in the HDF library. For details on IMCOMP refer to Appendix F, titled Backward
Compatibility Issues.

Compression Method Type Compression Code Requirements

None N/A COMP_NONE Image data only (default setting).

RLE Lossless COMP_RLE Image data only.

JPEG Lossy COMP_JPEG
Image data, quality factor and compatibility
factor.

IMCOMP Lossy COMP_IMCOMP Image data and palette.
June 2017 263

The HDF Group Table of Contents Chapter 6 -- 8-Bit Raster Images (DFR8 API)
6.2 The 8-Bit Raster Image Interface

The HDF library contains routines for reading and writing 8-bit raster image sets. The functions
DFR8addimage, DFR8putimage and DFR8getimage are sufficient for most reading and writing
operations.

6.2.1 8-Bit Raster Image Library Routines

The names of all C functions in the 8-bit raster image interface are prefaced by "DFR8" and the
names of the equivalent FORTRAN-77 functions are prefaced by "d8". These routines are divided
into the following categories:

• Write routines create raster image sets and store them in new files or append them to exist-
ing files.

• Read routines determine the dimensions and palette assignment for an image set, read the
actual image data and provide sequential or random read access to any raster image set.

The DFR8 function calls are further defined in Table 6B and in the HDF Reference Guide.

TABLE 6B DFR8 Library Routines

6.3 Writing 8-Bit Raster Images

The DFR8 programming model for writing an 8-bit raster image sets is as follows:

1. Set the compression type if the image is to be compressed. (optional)

2. Identify the palette if one is to be stored with the image. (optional)

3. Write the raster data to the file.

The two optional steps can be invoked in any order, as long as they are executed before Step 3. By
default, images are stored uncompressed with no associated palette.

Category
Routine Name

Description
C FORTRAN-77

Write

DFR8addimage d8aimg Appends an 8-bit raster image to a file.

DFR8putimage d8pimg Writes an 8-bit raster image to an existing file or creates the file.

DFR8setcompress d8setcomp Sets the compression type.

DFR8setpalette d8spal Sets palette for multiple 8-bit raster images.

DFR8writeref d8wref Stores the raster image using the specified reference number.

None
d8sjpeg

Passes the quality and compatibility factors needed for the JPEG
compression algorithm.

Read

DFR8getdims d8gdims Retrieves dimensions for an 8-bit raster image.

DFR8getimage d8gimg Retrieves an 8-bit raster image and its palette.

DFR8getpalref
None Returns the reference number of the palette associated with the

last image accessed.

DFR8lastref d8lref Returns reference number of the last element accessed.

DFR8nimages d8nims Returns number of raster images in a file.

DFR8readref d8rref Gets the next raster image with the specified reference number.

DFR8restart d8first
Ignores information about last file accessed and restarts from
beginning.
264 June 2017

Chapter 6 -- 8-Bit Raster Images (DFR8 API) Table of Contents HDF User’s Guide
6.3.1 Storing a Raster Image: DFR8putimage and DFR8addimage

To write a raster image to an HDF file, the calling program must contain the following:

C: status = DFR8putimage(filename, image, width, height, compress);

FORTRAN: status = d8pimg(filename, image, width, height, compress)

OR

C: status = DFR8addimage(filename, image, width, height, compress);

FORTRAN: status = d8aimg(filename, image, width, height, compress)

DFR8putimage and DFR8addimage write an 8-bit raster image to an HDF file named by the
filename parameter. When given a new filename, DFR8putimage and DFR8addimage create a
new file and write the raster image as the first raster image in the file. When given an existing file-
name, DFR8putimage overwrites the file whereas DFR8addimage appends data to the end of
the file.

In the DFR8putimage and DFR8addimage functions, the raster data is passed in the image
parameter and the width and height of the image are passed in the width and height parameters.
The compression algorithm used to store the image is passed in the compress parameter. Valid
compress values include COMP_NONE, COMP_RLE, COMP_JPEG and COMP_IMCOMP. COMP_NONE repre-
sents no compression (storage only), COMP_RLE represents run-length encoding, COMP_JPEG repre-
sents JPEG compression and COMP_IMCOMP represents IMCOMP encoding.

Parameters for DFR8putimage and DFR8addimage are further described below. (See Table 6C
on page 265)

TABLE 6C DFR8putimage and DFR8addimage Parameter List

EXAMPLE 1. Writing an 8-Bit Raster Image to an HDF File

In the following code examples, DFR8addimage and d8aimg are used to write an 8-bit image to
a file named "Example1.hdf". Note that the order in which the dimensions for the image array are
declared differs between C and FORTRAN-77.

C:
#include "hdf.h"

#define WIDTH 5
#define HEIGHT 6

main()
{

/* Initialize the image array */

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFR8putimage
[intn]

(d8pimg)
and

DFR8addimage
[intn]

(d8aimg)

filename char * character*(*)
Name of file the raster image will be
stored in.

image VOIDP <valid numeric data type> Image data array.

width int32 integer Number of columns in the raster image.

height int32 integer Number of rows in the raster image.

compress int16 integer Compression type.
June 2017 265

The HDF Group Table of Contents Chapter 6 -- 8-Bit Raster Images (DFR8 API)
static uint8 raster_data[HEIGHT][WIDTH] =
{ 1, 2, 3, 4, 5,
6, 7,8, 9, 10,
11, 12, 13,14, 15,
16, 17, 18, 19, 20,
21, 22, 23,24, 25,
26, 27, 28,29, 30 };

intn status;

/* Write the 8-bit raster image to file */
status = DFR8addimage("Example1.hdf", raster_data,

WIDTH, HEIGHT, 0);

}

FORTRAN:
 PROGRAM RASTER8

 character*1 raster_data(5,6)
 integer retn, d8aimg

 integer*4 WIDTH, HEIGHT
 parameter(WIDTH = 5, HEIGHT = 6)

C Initialize the image array
 data raster_data / 1, 2, 3, 4, 5,
 $ 6, 7, 8, 9, 10,
 $ 11, 12, 13, 14, 15,
 $ 16, 17, 18, 19, 20,
 $ 21, 22, 23, 24, 25,
 $ 26, 27, 28, 29, 30 /

C Write the 8-bit raster image to the file
 retn = d8aimg(’Example1.hdf’, raster_data, WIDTH, HEIGHT, 0)

 end

6.3.2 Adding a Palette to an RIS8 Object: DFR8setpalette

DFR8setpalette identifies the palette to be used for the subsequent write operations. It may be
used to assign a palette to a single image or several images. After a palette has been set, it acts as
the current palette until it is replaced by another call to DFR8setpalette. To create a raster image
set containing a palette, the calling program must contain the following:

C: status = DFR8setpalette(palette);
status = DFR8addimage(filename, image, width, height, compress);

FORTRAN: status = d8spal(palette)
status = d8aimg(filename, image, width, height, compress)

DFR8setpalette takes palette as its only parameter. To set the default palette to “no palette”, pass
NULL as the palette parameter. DFR8setpalette is further defined in the following table.
266 June 2017

Chapter 6 -- 8-Bit Raster Images (DFR8 API) Table of Contents HDF User’s Guide
TABLE 6D DFR8setpalette Parameter List

EXAMPLE 2. Writing a Palette and an Image in RIS8 Format

These examples demonstrate how a palette stored in the array colors and the raw image stored in
the 20 x 20 array picture is written to a RIS8 object. The image is not compressed and, in these
examples, uninitialized. The raster image set is stored as the first image in "Example2.hdf". Note
that because DFR8putimage recreates the file, anything previously contained in this file will be
erased.

C:
#include "hdf.h"

#define WIDTH 20
#define HEIGHT 20

main()
{

uint8 colors[256*3], picture[HEIGHT][WIDTH];
uint8 i, j;
int16 status;

/* Initialize image arrays. */
for (j = 0; j < WIDTH; j++) {

for (i = 0; i < HEIGHT; i++)
picture[j][i] = 1;

 }

/* Set the current palette. */
status = DFR8setpalette(colors);

/* Write the image data to the file. */
status = DFR8putimage("Example2.hdf", picture, WIDTH,

HEIGHT, COMP_NONE);

}

FORTRAN:
 PROGRAM WRITE UNCOMPRESSED RIS8

 integer d8spal, d8pimg, status, i, j
 integer colors(768)
 integer*4 WIDTH, HEIGHT, COMP_NONE
 parameter (COMP_NONE = 0,
 + WIDTH = 20,
 + HEIGHT = 20)
 integer picture(WIDTH, HEIGHT)

C Initialize the image data.
 do 20 j = 1, WIDTH
 do 10 i = 1, HEIGHT
 picture(j, i) = 1

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFR8setpalette
[intn]

(d8spal)
palette uint8 * character*(*) Palette to be assigned.
June 2017 267

The HDF Group Table of Contents Chapter 6 -- 8-Bit Raster Images (DFR8 API)
10 continue
20 continue

C Set the current palette.
 status = d8spal(colors)

C Write the image data to the file.
 status = d8pimg(’Example2.hdf’, picture, WIDTH, HEIGHT,
 + COMP_NONE)

 end

6.3.3 Compressing 8-Bit Raster Image Data: DFR8setcompress

The compression type is determined by the tag passed as the fifth argument in calls to the
DFR8putimage and DFR8addimage routines. DFR8setcompress is currently required only to
reset the default JPEG compression options. However, future versions of this routine will support
additional compression schemes.

To set non-default compression parameters, the calling program should contain the following
sequence of routines:

C: status = DFR8setcompress(type, c_info);
status = DFR8addimage(filename, image, width, height, compress);

FORTRAN: status = d8scomp(type)
<compression-specific code>
status = d8aimg(filename, image, width, height, compress)

Notice that the calling sequence for C differs from the calling sequence for FORTRAN-77. Once
the compression is set, the parameter type in the DFR8setcompress routine, or d8scomp in FOR-
TRAN-77, specifies the compression method that will be used when storing the raster images.
However, the c_info parameter, which is a pointer to a structure that contains information specific
to the compression scheme indicated by the type parameter in DFR8setcompress, is missing from
d8scomp. Because data structures of variable size are not supported in FORTRAN-77, another
routine specific to the compression library is required in the FORTRAN-77 calling sequence.

The c_info union is described in Chapter 3, titled Scientific Data Sets (SD API). The values con-
tained in this union are passed into the d8sjpeg FORTRAN-77-specific routine.

Parameters for DFR8setcompress and d8sjpeg are further described in Table 6E below.
268 June 2017

Chapter 6 -- 8-Bit Raster Images (DFR8 API) Table of Contents HDF User’s Guide
TABLE 6E DFR8setcompress Parameter List

EXAMPLE 3. Writing a Set of Compressed 8-Bit Raster Images

These examples contain a series of calls in which four 20 x 20 images are written to the same file.
The first two use palette paletteA and are compressed using the RLE method; the third and fourth
use palette paletteB and are not compressed.

C:
 #include "hdf.h"

#define WIDTH 20
#define HEIGHT 20

main ()
{

uint8 paletteA[256*3], paletteB[256*3];
uint8 picture1[HEIGHT][WIDTH], picture2[HEIGHT][WIDTH];
uint8 picture3[HEIGHT][WIDTH], picture4[HEIGHT][WIDTH];
uint8 i, j;
int16 status;

/* Initialize image arrays. */
for (j = 0; j < WIDTH; j++) {

for (i = 0; i < HEIGHT; i++) {
picture1[j][i] = 1;
picture2[j][i] = 1;
picture3[j][i] = 1;
picture4[j][i] = 1;

}
}

/* Set the first palette. */
status = DFR8setpalette(paletteA);

/* Write the compressed image data to the HDF file. */
status = DFR8putimage("Example3.hdf", (VOIDP)picture1, WIDTH, HEIGHT, \

COMP_RLE);
status = DFR8addimage("Example3.hdf", (VOIDP)picture2, WIDTH, HEIGHT, \

COMP_RLE);

/* Set the second palette. */
status = DFR8setpalette(paletteB);

/* Write the uncompressed image data to the HDF file. */
status = DFR8addimage("Example3.hdf", (VOIDP)picture3, WIDTH, HEIGHT, \

COMP_NONE);
status = DFR8addimage("Example3.hdf", (VOIDP)picture4, WIDTH, HEIGHT, \

COMP_NONE);

}

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFR8setcompress
[intn]

(d8scomp)

type int32 integer Compression method.

c_info comp_info * None Pointer to JPEG information structure.

(d8sjpeg)
[integer]

quality none integer JPEG quality factor.

baseline none integer JPEG baseline.
June 2017 269

The HDF Group Table of Contents Chapter 6 -- 8-Bit Raster Images (DFR8 API)
FORTRAN:
 PROGRAM WRITE IMAGE SETS

 integer d8spal, d8pimg, d8aimg, status
 integer*4 COMP_RLE, COMP_NONE, WIDTH, HEIGHT
 parameter (COMP_RLE = 11,
 + COMP_NONE = 0,
 + WIDTH = 20,
 + HEIGHT = 20)

 integer paletteA(768), paletteB(768)
 integer picture1(WIDTH, HEIGHT), picture2(WIDTH, HEIGHT)
 integer picture3(WIDTH, HEIGHT), picture4(WIDTH, HEIGHT)

C Initialize the image data.
 do 20 j = 1, WIDTH
 do 10 i = 1, HEIGHT
 picture1(j, i) = 1
 picture2(j, i) = 1
 picture3(j, i) = 1
 picture4(j, i) = 1
10 continue
20 continue

C Set the first palette.
 status = d8spal(paletteA)

C Write the compressed image data to the HDF file.
 status = d8pimg(’Example3.hdf’, picture1, WIDTH, HEIGHT,
 + COMP_RLE)
 status = d8aimg(’Example3.hdf’, picture2, WIDTH, HEIGHT,
 + COMP_RLE)

C Set the second palette.
 status = d8spal(paletteB)

C Write the uncompressed image data to the HDF file.
 status = d8aimg(’Example3.hdf’, picture3, WIDTH, HEIGHT,
 + COMP_NONE)
 status = d8aimg(’Example3.hdf’, picture4, WIDTH, HEIGHT,
 + COMP_NONE)

 end

EXAMPLE 4. Compressing and Writing a 8-Bit Raster Image

In the following examples, DFR8addimage and DFR8compress are used to compress an 8-bit
image and write it to an HDF file named "Example2.hdf". Notice that compressing an image in C
requires only one function call, whereas compressing an image using FORTRAN-77 requires two.
The second FORTRAN-77 call is required because it is not valid to pass a structure as a parameter
in FORTRAN-77.

C:
#include "hdf.h"
#include "hcomp.h"

#define WIDTH 3
#define HEIGHT 5
270 June 2017

Chapter 6 -- 8-Bit Raster Images (DFR8 API) Table of Contents HDF User’s Guide
#define PIXEL_DEPTH 3

main()
{

/* Initialize the image array. */
static uint8 raster_data[HEIGHT][WIDTH][PIXEL_DEPTH] =

{ 1, 2, 3, 4, 5, 6, 7, 8, 9,
 10,11,12, 13,14,15, 16,17,18,
 19,20,21, 22,23,24, 25,26,27,
 28,29,30, 31,32,33, 34,35,36,
 37,38,39, 40,41,42, 43,44,45 };

static comp_info compress_info;
intn status;

/* Initialize JPEG compression structure. */
compress_info.jpeg.quality = 60;
compress_info.jpeg.force_baseline = 1;

/* Set JPEG compression for storing the image. */
status = DFR8setcompress(COMP_JPEG, &compress_info);

/* Write the 8-bit image data to file. */
status = DFR8addimage("Example2.hdf", (VOIDP)raster_data, WIDTH,

 HEIGHT, COMP_JPEG);

}

FORTRAN:
 PROGRAM COMPRESS RIS8

 integer d8aimg, d8scomp, d8sjpeg, status
 integer*4 WIDTH, HEIGHT, PIXEL_DEPTH, COMP_JPEG

C COMP_JPEG is defined in hcomp.h.
 parameter(WIDTH = 3,
 + HEIGHT = 5,
 + COMP_JPEG = 1,
 + PIXEL_DEPTH = 3)
 character raster_data(PIXEL_DEPTH, WIDTH, HEIGHT)

C Initialize the image array.
 data raster_data
 + / 1, 2, 3, 4, 5, 6, 7, 8, 9,
 + 10,11,12, 13,14,15, 16,17,18,
 + 19,20,21, 22,23,24, 25,26,27,
 + 28,29,30, 31,32,33, 34,35,36,
 + 37,38,39, 40,41,42, 43,44,45 /

C Set compression.
 status = d8scomp(COMP_JPEG)

C Set JPEG parameters to quality = 60, and turn compatibility on.
 status = d8sjpeg(60, 1)

C Write the 8-bit image data to the HDF file.
 status = d8aimg(’Example2.hdf’, raster_data, WIDTH, HEIGHT,
 + COMP_JPEG)

 end
June 2017 271

The HDF Group Table of Contents Chapter 6 -- 8-Bit Raster Images (DFR8 API)
6.3.4 Specifying the Reference Number of an RIS8: DFR8writeref

DFR8writeref specifies the reference number of the image to be written when DFR8addimage
or DFR8putimage is called. Use the following calling sequence to invoke DFR8writeref:

C: status = DFR8writeref(filename, ref);
status = DFR8addimage(filename, image, width, height, compress);

FORTRAN: status = d8wref(filename, ref)
status = d8aimg(filename, image, width, height, compress)

DFR8writeref assigns the reference number passed in the ref parameter to the next image the file
specified by the filename parameter. If the value of ref is the same as the reference number of an
existing RIS8, the existing raster image data will be overwritten. The parameters for
DFR8writeref are further described below. (See TABLE 6F)

It is unlikely that you will need this routine, but if you do, use it with caution. It is not safe to
assume that a reference number indicates the file position of the corresponding image as there is
no guarantee that reference numbers appear in sequence in an HDF file.

TABLE 6F DFR8writeref Parameter List

6.4 Reading 8-Bit Raster Images

The DFR8 programming model for reading an 8-bit raster image set is as follows:

1. Determine the dimensions of the image if they are not known prior to the read opera-
tion.

2. Read the image from the file.

6.4.1 Reading a Raster Image: DFR8getimage

If dimensions of the image are known, DFR8getimage is the only function call needed to read a
raster image. If a file is being opened for the first time, DFR8getimage returns the first image in
the file. Additional calls will return successive images in the file, therefore images are read in the
order which they were written to the file. DFR8getdims is called before DFR8getimage so that
space allocations for the image and palette can be checked and the dimensions verified. If this
information is already known, DFR8getdims may be omitted.

To read a raster image from an HDF file, the calling program must contain the following:

C: status = DFR8getimage(filename, image, width, height, palette);

FORTRAN: status = d8gimg(filename, image, width, height, palette)

DFR8getimage retrieves the next 8-bit image from the HDF file name specified by the filename
parameter. If the image in the file is compressed, DFR8getimage first decompresses it then places
it in memory at the location pointed to by the image parameter. The dimensions of the array allo-
cated to hold the image are specified by the width and height parameters and may be larger than
the actual image.The palette, if present, is stored in memory at the location pointed to by the pal-

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type

Description
C

FORTRAN-
77

DFR8writeref
[intn]

(d8wref)

filename char * character*(*) Name of the HDF file containing the raster image.

ref uint16 integer Reference number for next call to DFR8getimage.
272 June 2017

Chapter 6 -- 8-Bit Raster Images (DFR8 API) Table of Contents HDF User’s Guide
ette parameter. If it contains a NULL value the palette is not loaded, even if there is one stored with
the image. The parameters for DFR8getimage are defined further in Table 6G below.

Notice that in Example 4, as in the case of DFR8addimage, the order in which the dimensions for
the image array are declared differs between C and FORTRAN-77. FORTRAN-77 declarations
require the width before the height while the C declaration requires the height before the width as
FORTRAN-77 arrays are stored in column-major order, while C arrays are stored in row-major
order. (row-major order implies that the second coordinate varies fastest). When d8gimg reads an
image from a file, it assumes column-major order.

6.4.2 Querying the Dimensions of an 8-Bit Raster Image: DFR8getdims

DFR8getdims opens a named file, finds the next image or the first image if the file is being
opened for the first time, retrieves the dimensions of the image and determines if there is a palette
associated with the image. If the file is being opened for the first time, DFR8getdims returns
information about the first image in the file. If an image has already been read, DFR8getdims
finds the next image. In this way, images are read in the same order in which they were written to
the file.

To determine the dimensions of an image before attempting to read it, the calling program must
include the following routines:

C: status = DFR8getdims(filename, width, height, haspalette);
status = DFR8getimage(filename, image, width, height, palette);

FORTRAN: status = d8gdim(filename, width, height, haspalette)
status = d8gimg(filename, image, width, height, palette)

DFR8getdims retrieves dimension and palette information about the next 8-bit image in the file
specified by filename. The returned information is pointed to by the width and height parameters.
The haspalette parameter determines the presence of a palette and returns a value of 1 if it exists
and 0 otherwise. The parameters for DFR8getdims are defined further in the following table.
June 2017 273

The HDF Group Table of Contents Chapter 6 -- 8-Bit Raster Images (DFR8 API)
TABLE 6G DFR8getdims and DFR8getimage Parameter List

EXAMPLE 5. Reading an 8-Bit Raster Image

The following examples search the "Example1.hdf" file created in Example 1 for the dimensions
of an 8-bit image. Although the DFR8getdims call is optional, it is included as a demonstration of
how to check the dimensions of an image. This example also assumes that the data set does not
include a palette, therefore NULL is passed as the palette parameter. If the palette argument is NULL
(or "0" in FORTRAN-77), all palette data is ignored.

C:
#include "hdf.h"

#define WIDTH 5
#define HEIGHT 6

main()
{

uint8 raster_data[HEIGHT][WIDTH];
int32 width, height;
intn haspal, status;

/* Get the dimensions of the image */
status = DFR8getdims("Example1.hdf", &width, &height, &haspal);

/* Read the raster data if the dimensions are correct */
if (width <= WIDTH && height <= HEIGHT)

status = DFR8getimage("Example1.hdf", (VOIDP)raster_data, width,
height, NULL);

}

FORTRAN:
 PROGRAM RASTER8

 character*1 image(5, 6)
 integer status, height, width, d8gimg, d8gdims, haspal
 integer*4 width, height

C Get the dimensions of the image.
 status = d8gdims(’Example1.hdf’, width, height, haspal)

C Read the raster data if the dimensions are correct.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFR8getdims
[intn]

(d8gdims)

filename char * character*(*)
Name of the HDF file containing the set of raster
images.

width int32 * integer Number of columns in the next raster image.

height int32 * integer Number of rows in the next raster image.

ispalette intn * integer “1” if a palette exists, otherwise “0”.

DFR8getimage
[intn]

(d8gimg)

filename char * character*(*) Name of HDF file with the raster image.

image uint8 * character*(*) Buffer for the raster image.

width int32 integer Width of the raster image buffer.

height int32 integer Height of the raster image buffer.

palette uint8 * character*(*) Palette assigned to the raster image.
274 June 2017

Chapter 6 -- 8-Bit Raster Images (DFR8 API) Table of Contents HDF User’s Guide
 if (width .le. 5 .and. height .le. 6) then
 status = d8gimg(’Example1.hdf’, image, width, height, 0)
 endif

 end

6.4.3 Reading an Image with a Given Reference Number: DFR8readref

DFR8readref accesses specific images that are stored in files containing multiple raster image
sets. It is an optionally used before DFR8getimage to set the access pointer to the specified raster
image. DFR8readref can be used in connection with vgroups, which identify their members by
tag/reference number pairs. See Chapter 5, titled Vgroups (V API), for a discussion of vgroups
and tag/reference number pairs.

To access a specific raster image set, use the following calling sequence:

C: status = DFR8readref(filename, ref);
status = DFR8getimage(filename, image, width, height, palette);

FORTRAN: status = d8rref(filename, ref)
status = d8gimg(filename, image, width, height, palette)

DFR8readref specifies that the target for the next read operation performed on the HDF file spec-
ified by the filename parameter is the object with the reference number named in the ref parame-
ter. The parameters required for DFR8readref are defined further in the following table.

TABLE 6H DFR8readref Parameter List

6.4.4 Specifying the Next 8-Bit Raster Image to be Read: DFR8restart

DFR8restart causes the next call to DFR8getimage or DFR8getdims to read the first raster
image set in the file. Use the following call to invoke DFR8restart:

C: status = DFR8restart();

FORTRAN: status = d8first()

6.5 8-Bit Raster Image Information Retrieval Routines

6.5.1 Querying the Total Number of 8-Bit Raster Images: DFR8nimages

DFR8nimages returns the total number of 8-bit raster image sets in a file and has the following
syntax:

C: num_of_images = DFR8nimages(filename);

FORTRAN: num_of_images = d8nimg(filename)

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFR8readref
[intn]

(d8rref)

filename char * character*(*) Name of HDF file containing the raster image.

ref uint16 integer Reference number for next call to DFR8getimage.
June 2017 275

The HDF Group Table of Contents Chapter 6 -- 8-Bit Raster Images (DFR8 API)
TABLE 6I DFR8nimages Parameter List

6.5.2 Determining the Reference Number of the Most-Recently-Accessed
8-Bit Raster Image: DFR8lastref

DFR8lastref returns the reference number most recently used in writing or reading an 8-bit raster
image. This routine is primarily used for attaching annotations to images and adding images to
vgroups. (See Chapters 8, titled Annotations (DFAN API) and Chapter 5, titled Vgroups (V API)
for more detailed information on how to use reference numbers in connection with these applica-
tions.)

The following calling sequence uses DFR8lastref to find the reference number of the 8-bit raster
image most recently added to an HDF file:

C: status = DFR8addimage(filename, image, width, height, compress);
lastref = DFR8lastref();

FORTRAN: status = d8aimg(filename, image, width, height, compress)
lastref = d8lref()

DFR8putimage or DFR8getimage can be used instead of DFR8addimage with similar results.

6.5.3 Determining the Reference Number of the Palette of the
Most-Recently-Accessed 8-Bit Raster Image: DFR8getpalref

DFR8getpalref returns the reference number of the palette associated with the most recently used
in writing or reading an 8-bit raster image. The DFR8getdims routine must be called before
DFR8getpalref, as DFR8getdims initializes internal structures required by DFR8getpalref.

There is currently no FORTRAN-77 version of the DFR8getpalref routine.

TABLE 6J DFR8nimages Parameter List

6.6 RIS8 Backward Compatibility Issues

6.6.1 Attribute "long_name" Included in HDF for netCDF Compatibility

In several routines of the RIS8 interface, the value returned by label is the value of the attribute
named "long_name" and that the value returned by coordsys is the value of the attribute named
"coordsys".

This was done in order to provide HDF with the ability to read netCDF files. While this aspect of
HDF functionality will not affect its ability to read HDF data files written by programs compiled

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type

Description
C

FORTRAN-
77

DFR8nimages
[intn]

(d8nims)
filename char * character*(*) Name of the HDF file.

Routine Name
[Return Type]

Parameter
Parameter Type

Description
C

DFR8getpalref
[intn]

pal_ref uint16 * Pointer to the returned reference number of the palette.
276 June 2017

Chapter 6 -- 8-Bit Raster Images (DFR8 API) Table of Contents HDF User’s Guide
with earlier versions of HDF, it is advisable for HDF users to know this to be aware of the signifi-
cance of the "long_name" and "coordsys" attribute names in a list of attributes.

6.6.2 Raster Image Group Implementation with New RIS8 Tags

As HDF has evolved, a variety of structures have been used to store raster image sets. For
instance, HDF first began grouping 8-bit raster images together with dimensions and palettes by
insuring that their reference numbers fell in a certain pattern. This method of organizing raster
images quickly lead to very complicated collections of images, dimension records, and palettes,
and eventually was replaced by an specific grouping structure known as a Raster Image Group,
or RIG, with a completely new set of tags.

To maintain backward compatibility with older versions of HDF, the RIS8 interface supported by
HDF version 4.1 and later recognizes raster images stored using either set of HDF tags. Details on
the different tags and structures used to store raster images can be found in the HDF Specifica-
tions and Developer’s Guide v3.2 from the HDF web site at http://www.hdfgroup.org/.
June 2017 277

The HDF Group Table of Contents Chapter 6 -- 8-Bit Raster Images (DFR8 API)
278 June 2017

CHAPTER 7 -- 24-bit Raster Images (DF24 API)
7.1 Chapter Overview

This chapter describes the 24-bit raster data model and the single-file DF24 routines available for
storing and retrieving 24-bit raster images.

Note: This interface is now deprecated and superseded by the General Raster Images (GR API)
interface (Chapter 8.)

7.2 The 24-Bit Raster Data Model

The 24-bit raster image set, or RIS24, data model supports two primary data objects: two-dimen-
sional 24-bit raster images and dimensions. The primary member of the set is the 24-bit raster
image, a two-dimensional array of pixels or picture elements. Each pixel is represented by three
8-bit numbers of image data. An optional compression method describes the method used, if any,
to compress the image. Figure 7a shows the contents of a 24-bit raster image set.

FIGURE 7a 24-Bit Raster Image Set Contents

7.2.1 Required 24-Bit Raster Image Data Set Objects

All 24-bit raster images must contain image data and a dimension record. These objects are cre-
ated by the HDF library using information provided at the time the image is written to file.

7.2.1.1 24-Bit Raster Image Data Representation

The 24-bit raster image object contains a set of 24-bit pixel values, each of which has three 8-bit
components; one for the red, one for the green, and one for the blue color component of the image.
These values, referred to as RGB values, are arranged in one of three specific ways, as described
in Section 7.2.2.2 on page 281. The pixel values are arranged in rows, painted from left-to-right,
June 2017 279

The HDF Group Table of Contents Chapter 7 -- 24-bit Raster Images (DF24 API)
top-to-bottom. As each pixel in a 24-bit image is represented in the image data by three 8-bit num-
bers, palettes are unnecessary and are not included in the 24-bit raster data model.

As an example, consider a stream of 24-bit numbers representing a raster image (Fig. 4.1a). To
display the image, the color associated with the first number in the data stream appears in the
upper left corner of the image. The remainder of the first line is then painted from left-to-right
using as many values from the data stream as necessary to complete the line. The remainder of the
rows are similarly painted from left-to-right, top-to-bottom until every value in the data stream
appears as one pixel in the image.

FIGURE 7b The Numerical Representation of a 24-Bit Raster Image

7.2.1.2 24-Bit Raster Image Dimension

The dimensions of an image are the height and width of the image in pixels.

7.2.2 Optional 24-Bit Raster Image Data Set Objects

7.2.2.1 Compression Method

The only 24-bit compression method currently available in HDF is the JPEG algorithm . The
applicable HDF compression tags are COMP_JPEG, and COMP_NONE. (See TABLE 7A) The HDF tags
COMP_JPEG and COMP_NONE are defined as the values 2, and 0 respectively in the "hdf.h" header
file.
280 June 2017

Chapter 7 -- 24-bit Raster Images (DF24 API) Table of Contents HDF User’s Guide
TABLE 7A 24-Bit Raster Image Compression Method List

JPEG Compression

The JPEG compression method is a lossy compression algorithm whose use is recommended for
photographic or scanned images. Using JPEG compression to reduce the size of an image changes
the values of the pixels and therefore may alter the meaning of the corresponding data.

For more information on the JPEG algorithm, refer to Chapter 6, 8-Bit Raster Images (DFR8
API).

7.2.2.2 Interlace Modes

Because graphics applications and hardware devices vary in the way they access image data, HDF
supports three interlace formats. By storing an image using a format that is consistent with the
expected application or device, it is possible to achieve substantial improvements in performance.

HDF provides three options for organizing the color components in 24-bit raster images. These
options consist of pixel interlacing, scan-line interlacing, and scan-plane interlacing. (See Figure
7c.) Storing the color components grouped by pixel, as in red-green-blue, red-green-blue, etc., is
called pixel interlacing. Storing the color components by line, as in one row of red, one row of
green, one row of blue, one row red, etc., is called scan-line interlacing. Finally, storing the color
components grouped by color plane, as in the red components first, the green components second,
and the blue components last, is called scan-plane interlacing. Unless otherwise specified, the
HDF 24-bit raster model assumes that all 24-bit images are stored using pixel interlacing.

FIGURE 7c RGB Interlace Format for 24-Bit Raster Images

An interlace format describes both the physical format of an image as it is stored in memory and
in the file. When writing to a file, HDF stores a 24-bit image using the same interlace format as it
has in memory. However, when reading from a file, it is possible to make the in-core interlacing
mode different from that used in the file. The following table contains a summary of the interlac-
ing format available in the DF24 interface.

Compression Method Type Compression Code Requirements

None Lossless COMP_NONE Image data only (default setting).

JPEG Lossy COMP_JPEG
Image data, quality factor and compatibility
factor.
June 2017 281

The HDF Group Table of Contents Chapter 7 -- 24-bit Raster Images (DF24 API)
TABLE 7B 24-Bit Raster Image Interlace Format

7.3 The 24-Bit Raster Interface

The HDF library currently contains several routines for storing 24-bit raster images in the HDF
format. The DF24addimage, DF24putimage, and DF24getimage routines are sufficient for most
reading and writing operations.

7.3.1 24-Bit Raster Image Library Routines

The names of all C routines in the 24-bit raster image interface are prefaced by "DF24". The
equivalent FORTRAN-77 routines are prefaced by "d2". These routines are divided into the fol-
lowing categories:

• Write routines create raster image sets and store them in new files or append them to exist-
ing files.

• Read routines determine the dimensions and interlace format of an image set, read the
actual image data, and provide sequential or random read access to any raster image set.

The DF24 function calls are more explicitly defined in Table 7C and on their respective pages in
the HDF Reference Manual.

format Description DF24setil or d2setil Parameter Size of Image Array

Pixel Components grouped by pixel. DFIL_PIXEL Width x Height x 3

Scan-line Components grouped by row. DFIL_LINE Width x 3 x Height

Scan-plane Components grouped by plane. DFIL_PLANE 3 x Width x Height
282 June 2017

Chapter 7 -- 24-bit Raster Images (DF24 API) Table of Contents HDF User’s Guide
TABLE 7C DF24 Library Routines

7.4 Writing 24-Bit Raster Images

The DF24 programming model for writing a 24-bit raster image set is as follows:

1. Set the interlace format if the interlacing is to be different from pixel interlacing.
(optional)

2. Set the compression type if the image is to be compressed. (optional)

3. Write the raster data to the file.

Steps 1 and 2 can be invoked in any order, as long as they are executed before Step 3. By default,
images are stored uncompressed using pixel interlacing.

7.4.1 Writing a 24-Bit Raster Image: DF24putimage and DF24addimage

To write a raster image to an HDF file, the calling program must contain one of the following
function calls:

C: status = DF24putimage(filename, image, width, height);

FORTRAN: status = d2pimg(filename, image, width, height)

OR

C: status = DF24addimage(filename, image, width, height);

FORTRAN: status = d2aimg(filename, image, width, height)

DF24putimage and DF24addimage write a 24-bit raster images to the HDF file specified by the
filename parameter. When given a new file name, DF24putimage and DF24addimage create a
new file and write the raster image as the first raster image in the file. If a file with the specified

Purpose
Routine Name

Description
C FORTRAN-77

Write

DF24addimage d2aimg Appends a 24-bit raster image to a file.

DF24lastref d2lref
Reports the last reference number assigned to a 24-bit raster
image.

DF24putimage d2pimg
Writes a 24-bit raster image to file by overwriting all existing
data.

DF24setcom-
press

d2scomp
Sets the compression method for the next raster image written
to the file.

DF24setdims d2sdims Sets the dimensions for the next raster image written to the file.

DF24setil d2setil
Sets the interlace format of the next raster image written to the
file.

None d2sjpeg
Fortran-specific routine for setting the parameters needed for
the JPEG compression algorithm.

Read

DF24getdims d2gdims Retrieves the dimensions before reading the next raster image.

DF24getimage d2gimg Reads the next 24-bit raster image.

DF24nimage d2nimg Reports the number of 24-bit raster images in a file.

DF24readref d2rref Reads 24-bit raster image with the specified reference number.

DF24reqil d2reqil
Retrieves the interlace format before reading the next raster
image.

DF24restart d2first Returns to the first 24-bit raster image in the file.
June 2017 283

The HDF Group Table of Contents Chapter 7 -- 24-bit Raster Images (DF24 API)
filename exists, DF24putimage overwrites the previous contents of the file whereas
DF24addimage appends data to the end of the file.

DF24putimage and DF24addimage passes the raster data in the image parameter and the width
and height of the image in the width and height parameters. The array image is assumed to be the
width times the height times three bytes in length for each color component. The parameters for
DF24putimage and DF24addimage are further defined below. (See Table 7D on page 284)

TABLE 7D DF24putimage and DF24addimage Parameter List

EXAMPLE 1. Writing a 24-Bit Raster Image to an HDF File

In the following examples, DF24addimage and d2aimg are used to write a 24-bit image to an
HDF file named "Example1.hdf." DF24addimage assumes row-major order. Therefore, the FOR-
TRAN-77 declaration requires the width (rows) before the height (columns), whereas the C decla-
ration requires the height before the width. The interlace format setting is the default (pixel
interlacing).

C:
#include "hdf.h"

#define WIDTH 5
#define HEIGHT 6
#define PIXEL_DEPTH 3

main()
{

/* Initialize the image array. */
static uint8 raster_data[HEIGHT][WIDTH][PIXEL_DEPTH] =
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12, 13,14,15,
 16,17,18, 19,20,21, 22,23,24, 25,26,27, 28,29,30,
 31,32,33, 34,35,36, 37,38,39, 40,41,42, 43,44,45,
 46,47,48, 49,50,51, 52,53,54, 55,56,57, 58,59,60,
 61,62,63, 64,65,66, 67,68,69, 70,71,72, 73,74,75,
 76,77,78, 79,80,81, 82,83,84, 85,86,87, 88,89,90 };

 intn status;

/* Write the 24-bit raster image to the HDF file. */
status = DF24addimage("Example1.hdf", (VOIDP)raster_data, WIDTH, \

 HEIGHT);

}

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DF24putimage
[intn]

(d2pimg)

filename char * character*(*) Name of file to store the raster image.

image VOIDP <valid numeric data type> Raster image to be written.

width int32 integer Number of columns in the image.

height int32 integer Number of rows in the image.

DF24addimage
[intn]

(d2aimg)

filename char * character*(*) Name of file to store the raster image.

image VOIDP <valid numeric data type> Raster image to be written.

width int32 integer Number of columns in the image.

height int32 integer Number of rows in the image.
284 June 2017

Chapter 7 -- 24-bit Raster Images (DF24 API) Table of Contents HDF User’s Guide
FORTRAN:
 PROGRAM WRITE RIS24

 integer status, d2aimg
 integer*4 WIDTH, HEIGHT, PIXEL_DEPTH
 parameter (WIDTH = 5,
 + HEIGHT = 6,
 + PIXEL_DEPTH = 3)

 character raster_data(PIXEL_DEPTH, WIDTH, HEIGHT)

C Initialize the image array.
 data raster_data
 + / 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12, 13,14,15,
 + 16,17,18, 19,20,21, 22,23,24, 25,26,27, 28,29,30,
 + 31,32,33, 34,35,36, 37,38,39, 40,41,42, 43,44,45,
 + 46,47,48, 49,50,51, 52,53,54, 55,56,57, 58,59,60,
 + 61,62,63, 64,65,66, 67,68,69, 70,71,72, 73,74,75,
 + 76,77,78, 79,80,81, 82,83,84, 85,86,87, 88,89,90 /

C Write the 24-bit raster image to the file.
 status = d2aimg(’Example1.hdf’, raster_data, WIDTH,
 + HEIGHT)

 end

7.4.2 Setting the Interlace Format: DF24setil

DF24setil indicates the interlace format to be used for all subsequent write operations. DF24setil
changes the default setting from pixel interlacing to the selected format. When the format is set, it
acts as the default until it is reset by another call to DF24setil. To change the default interlace for-
mat , the calling program must contain the following routines:

C: status = DF24setil(il);
status = DF24addimage(filename, image, width, height);

FORTRAN: status = d2setil(il)

DF24setil takes il as its only parameter. Valid values for il are DFIL_PIXEL, DFIL_LINE, and
DFIL_PLANE. The parameters for DF24setil are further defined below. (See Table 7E on page 287)

EXAMPLE 2. Writing 24-Bit Raster Images Using Scan-plane Interlacing

In the following examples, DF24addimage is used to write a 24-bit image to an HDF file called
"Example2.hdf". The DF24setil function used here to change the default format setting from pixel
interlacing to scan-plane interlacing.

C:
#include "hdf.h"
#include "hcomp.h"

#define WIDTH 5
#define HEIGHT 6
#define PIXEL_DEPTH 3

main()
{

June 2017 285

The HDF Group Table of Contents Chapter 7 -- 24-bit Raster Images (DF24 API)
/* Initialize the image array. */
static uint8 raster_data[HEIGHT][WIDTH][PIXEL_DEPTH] =
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12, 13,14,15,
16,17,18, 19,20,21, 22,23,24, 25,26,27, 28,29,30,
31,32,33, 34,35,36, 37,38,39, 40,41,42, 43,44,45,
46,47,48, 49,50,51, 52,53,54, 55,56,57, 58,59,60,
61,62,63, 64,65,66, 67,68,69, 70,71,72, 73,74,75,
76,77,78, 79,80,81, 82,83,84, 85,86,87, 88,89,90 };
intn status;

/* Change interlace from pixel to scan-plane. */
status = DF24setil(DFIL_PLANE);

/* Write the 24-bit image data to file. */
status = DF24addimage("Example2.hdf", (VOIDP)raster_data,

WIDTH, HEIGHT);

}

FORTRAN:
 PROGRAM CHANGE INTERLACE

 integer status, d2aimg, d2setil
 integer*4 WIDTH, HEIGHT, PIXEL_DEPTH, DFIL_PLANE
 parameter (WIDTH = 5,
 + HEIGHT = 6,
 + PIXEL_DEPTH = 3,
 + DFIL_PLANE = 2)

 integer raster_data(PIXEL_DEPTH, WIDTH, HEIGHT)

C Initialize the image array.
 data raster_data
 + / 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12, 13,14,15,
 + 16,17,18, 19,20,21, 22,23,24, 25,26,27, 28,29,30,
 + 31,32,33, 34,35,36, 37,38,39, 40,41,42, 43,44,45,
 + 46,47,48, 49,50,51, 52,53,54, 55,56,57, 58,59,60,
 + 61,62,63, 64,65,66, 67,68,69, 70,71,72, 73,74,75,
 + 76,77,78, 79,80,81, 82,83,84, 85,86,87, 88,89,90 /

C Change interlace from pixel to scan plane.
 status = d2setil(DFIL_PLANE)

C Write the 24-bit raster image to the file.
 status = d2aimg(’Example2.hdf’, raster_data, WIDTH,
 + HEIGHT)

 end

7.4.3 Compressing Image Data: DF24setcompress and d2sjpeg

DF24setcompress invokes JPEG compression and sets the JPEG quality and baseline options. To
store a 24-bit raster image using JPEG compression, the calling program must contain the follow-
ing function calls:

C: status = DF24setcompress(type, c_info);
status = DF24addimage(filename, image, width, height);

FORTRAN: status = d2scomp(type)
286 June 2017

Chapter 7 -- 24-bit Raster Images (DF24 API) Table of Contents HDF User’s Guide
OR status = d2sjpeg(quality, baseline)
status = d2aimg(filename, image, width, height, compress)

Notice that the calling sequence for C is different from the calling sequence for FORTRAN-77.
Once it is set, the parameter type in the DF24setcompress routine, or d2scomp in FORTRAN-
77, routine specifies the compression method that will be used to store the raster images. How-
ever, the c_info parameter in DF24setcompress is missing from d2scomp which is a pointer to a
structure that contains information specific to the compression method indicated by the type
parameter. Because data structures of variable size are not supported in FORTRAN-77, a second
compression-specific routine (d2sjpeg) is required in the FORTRAN-77 calling sequence.

For more information about the c_info structure refer to Chapter 6, 8-Bit Raster Images (DFR8
API).

Default values for quality and baseline (quality=75%, baseline=on) are used if c_info is a null
structure or d2sjpeg is omitted. Parameters for DF24setcompress and d24sjpeg are further
described in Table 7E below.

TABLE 7E DF24setil and DF24setcompress Parameter List

EXAMPLE 3. Compressing and Writing a 24-Bit Raster Image

In the following examples, DF24addimage and DF24compress are used to compress a 24-bit
image and write it to an HDF file named "Example2.hdf". Notice that compressing an image in C
requires only one function call, whereas compressing an image using FORTRAN-77 requires two.
The second FORTRAN-77 call is required because it is not valid to pass a structure as a parameter
in FORTRAN-77.

C:
#include "hdf.h"
#include "hcomp.h"

#define WIDTH 3
#define HEIGHT 5
#define PIXEL_DEPTH 3

main()
{

/* Initialize the image array. */
static uint8 raster_data[HEIGHT][WIDTH][PIXEL_DEPTH] =

{ 1, 2, 3, 4, 5, 6, 7, 8, 9,
 10,11,12, 13,14,15, 16,17,18,
 19,20,21, 22,23,24, 25,26,27,
 28,29,30, 31,32,33, 34,35,36,
 37,38,39, 40,41,42, 43,44,45 };

static comp_info compress_info;

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DF24setil
[intn]
(d2sil)

il int32 integer Interlace format to be set.

DF24setcompress
[intn]

(d2scomp)

type int32 integer COMP_JPEG.

c_info comp_info * None Pointer to JPEG information structure.

(d2sjpeg)
quality None integer JPEG compression quality specification.

baseline None integer JPEG compression baseline specification.
June 2017 287

The HDF Group Table of Contents Chapter 7 -- 24-bit Raster Images (DF24 API)
intn status;

/* Initialize JPEG compression structure. */
compress_info.jpeg.quality = 60;
compress_info.jpeg.force_baseline = 1;

/* Set JPEG compression for storing the image. */
status = DF24setcompress(COMP_JPEG, &compress_info);

/* Write the 24-bit image data to file. */
status = DF24addimage("Example2.hdf", (VOIDP)raster_data,

WIDTH, HEIGHT);

}

FORTRAN:
 PROGRAM COMPRESS RIS24

 integer d2aimg, d2scomp, d2sjpeg, status
 integer*4 WIDTH, HEIGHT, PIXEL_DEPTH
 parameter(WIDTH = 3,
 + HEIGHT = 5,
 + PIXEL_DEPTH = 3)
 character raster_data(PIXEL_DEPTH, WIDTH, HEIGHT)

C Initialize the image array.
 data raster_data
 + / 1, 2, 3, 4, 5, 6, 7, 8, 9,
 + 10,11,12, 13,14,15, 16,17,18,
 + 19,20,21, 22,23,24, 25,26,27,
 + 28,29,30, 31,32,33, 34,35,36,
 + 37,38,39, 40,41,42, 43,44,45 /

C Set compression.
 status = d2scomp(COMP_JPEG)

C Set JPEG parameters to quality = 60, and turn compatibility on.
 status = d2sjpeg(60, 1)

C Write the 24-bit image data to the HDF file.
 status = d2aimg(’Example2.hdf’, raster_data, WIDTH, HEIGHT)
 end

7.5 Reading 24-Bit Raster Images

The DF24 programming model for reading a 24-bit raster image set is as follows:

1. Determine the dimensions for an image if necessary.

2. Specify the interlace format to use when reading the image. (optional)

3. Read the image data from the file.

7.5.1 Reading a Raster Image: DF24getimage

If the dimensions and interlace format of the image are known, DF24getimage is the only func-
tion call required to read a raster image. If a file is being opened for the first time, DF24getimage
288 June 2017

Chapter 7 -- 24-bit Raster Images (DF24 API) Table of Contents HDF User’s Guide
returns the first image in the file. Additional calls will return successive images in the file, there-
fore images are read in the same order in which they were written to the file. Normally,
DF24getdims and DF24getil are called before DF24getimage so that, if necessary, space alloca-
tions and interlace format for the image can be checked and the dimensions verified. If this infor-
mation is already known, both function calls may be omitted.

The syntax of the DF24getimage routine is as follows:

C: status = DF24getimage(filename, image, width, height);

FORTRAN: status = d2gimg(filename, image, width, height)

DF24getimage retrieves the next 24-bit image from the HDF file specified by the filename
parameter. If the image is compressed, DF24getimage decompresses it and places it in memory at
the location pointed to by the image parameter. DF24getimage assumes the data is stored using
pixel interlacing. The space allocated to hold the image is specified by the width and height
parameters and may be larger than the actual image.The parameters for DF24getimage are further
defined below. (See Table 7F on page 290)

7.5.2 Determining the Dimensions of an Image: DF24getdims

DF24getdims opens a named file, finds the next image or the first image if the file is being
opened for the first time, retrieves the dimensions of the image, then determines the interlace for-
mat of the image. Images are read in the order they were written.

To determine the dimensions and interlace format for an image, the calling program must call the
following routines:

C: status = DF24getdims(filename, width, height, il);
status = DF24getimage(filename, image, width, height);

FORTRAN: status = d2gdim(filename, width, height, il)
status = d2gimg(filename, image, width, height)

DF24getdims takes four parameters: filename, width, height, and il. It retrieves dimension and
interlace format information of the next 24-bit image stored in the HDF file specified by the file-
name parameter. The width and height are returned in the space pointed to by the width and height
parameters respectively. The il parameter is used to determine the interlace format. The parame-
ters for DF24getdims are further defined below. (See TABLE 7F)

7.5.3 Modifying the Interlacing of an Image: DF24reqil

DF24reqil specifies an interlace format to be used when reading a 24-bit image from a file into
memory. Regardless of what interlace format is used to store the image, DF24reqil forces the
image to be loaded into memory using the specified interlace format.

To set or reset the interlace format, the calling program should call the following routines:

C: status = DF24reqil(il);
status = DF24getimage(filename, image, width, height);

FORTRAN: status = d2reqil(il)
status = d2gimg(filename, image, width, height)

DF24reqil takes il as its only parameter. Valid il values are DFIL_PIXEL, DFIL_LINE and
DFIL_PLANE. As a call to DF24reqil may require a substantial reordering of the data, a much
slower I/O performance than would be achieved if the interlace format wasn’t reset may result.
June 2017 289

The HDF Group Table of Contents Chapter 7 -- 24-bit Raster Images (DF24 API)
The parameters of DF24reqil is further defined below. (See TABLE 7F)

TABLE 7F DF24getimage, DF24getdims and DF24reqil Parameter List

EXAMPLE 4. Reading a 24-Bit Raster Image from an HDF File

The following examples read a 24-bit image from the "Example2.hdf" HDF file created in Exam-
ple 2. Although the DF24getdims function call is optional, it is included as a demonstration of
how to verify the image dimensions and interlace format before reading the image data. If the
image dimensions and interlace format are known, only the DF24getimage call is required.

C:
#include "hdf.h"

#define WIDTH 5
#define HEIGHT 6
#define PIXEL_DEPTH 3

main()
{

uint8 raster_data[PIXEL_DEPTH][HEIGHT][WIDTH];
int32 width, height;
intn interlace, status;

/* Get the image dimensions from the HDF file. */
status = DF24getdims("Example2.hdf", &width, &height,

&interlace);

/*
* Read raster data if the dimensions are
* correct.
*/
if (width <= WIDTH && height <= HEIGHT)
 status = DF24getimage("Example2.hdf", (VOIDP)raster_data,

width, height);
}

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DF24getimage
[intn]

(d2gimg)

filename char * character*(*)
Name of the HDF file containing the ras-
ter image.

image VOIDP <valid numeric data type> Buffer for the raster image.

width int32 integer Width of the raster image buffer.

height int32 integer Height of the raster image buffer.

DF24getdims
[intn]

(d2gdims)

filename char * character*(*)
Name of HDF file containing the raster
image.

width int32 * integer
Pointer to the number of columns in the
raster image.

height int32 * integer
Pointer to the number of rows in the ras-
ter image.

il intn integer
Pointer to the interlace format of the ras-
ter image.

DF24reqil
[intn]

(d2reqil)
il intn integer

Pointer to the interlace format of the ras-
ter image.
290 June 2017

Chapter 7 -- 24-bit Raster Images (DF24 API) Table of Contents HDF User’s Guide
FORTRAN:
 PROGRAM READ RIS24

 integer d2gimg, d2gdims, status, width, height, interlace
 integer*4 X_LENGTH, Y_LENGTH, PIXEL_DEPTH
 parameter(X_LENGTH = 5, Y_LENGTH = 6, PIXEL_DEPTH = 3)
 integer raster_data(PIXEL_DEPTH, X_LENGTH, Y_LENGTH)

C Read the dimensions raster image.
 status = d2gdims(’Example2.hdf’, width, height, interlace)

C Read image data from the HDF file if the dimensions are
C correct.
 if (width .eq. X_LENGTH .and. height .eq. Y_LENGTH) then
 status = d2gimg(’Example2.hdf’, raster_data, width, height)
 endif

 end

7.5.4 Reading a 24-Bit Raster Image with a Given Reference Number:
DF24readref

DF24readref is used to access specific images stored in files containing multiple raster image
sets. It is optionally used before DF24getimage. DF24readref can be used in connection with
vgroups, which identify their members by tag/reference number pairs. See Chapter 5, Vgroups (V
API), for a discussion of vgroups and tag/reference number pairs.

To access a specific raster image set, use the following sequence of routine calls:

C: status = DF24readref(filename, ref);
status DF24getimage(filename, image, width, height);

FORTRAN: status = d2rref(filename, ref)
status = d2gimg(filename, image, width, height)

DF24readref sets the reference number for the next read operation performed on the HDF file
filename to the reference number contained in ref. Because reference numbers are not always
assigned in sequence, it is not guaranteed that a reference number represents the location of the
image in the file.

The parameters of DF24readref are further described in the following table.

TABLE 7G DF24readref Parameter List

7.5.5 Specifying that the Next Image Read to be the First 24-Bit Raster

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type

Description
C

FORTRAN-
77

DF24readref
[intn]

(d2rref)

filename char * character*(*) Name of HDF file containing the raster image.

ref uint16 integer Reference number for the next call to DF24getimage.
June 2017 291

The HDF Group Table of Contents Chapter 7 -- 24-bit Raster Images (DF24 API)
Image in the File: DF24restart

DF24restart causes the next call to DF24getimage or DF24getdims to read from the first raster
image set in the file, rather than the RIS24 following the one that was most recently read. Use the
following call to invoke DF24restart:

C: status = DF24restart();

FORTRAN: status = d2first()

TABLE 7H DF24restart Parameter List

7.6 24-Bit Raster Image Information Retrieval Routines

7.6.1 Querying the Total Number of Images in a File: DF24nimages

DF24nimages returns the total number of 24-bit raster image sets in a file, and has the following
syntax:

C: num_of_images = DF24nimages(filename);

FORTRAN: num_of_images = d2nimg(filename)

TABLE 7I DF24nimages Parameter List

7.6.2 Querying the Reference Number of the Most Recently Accessed 24-Bit
Raster Image: DF24lastref

DF24lastref returns the reference number of the 24-bit raster image most recently read or written.
This routine is used for attaching annotations to images and adding images to vgroups. (See Chap-
ter 5, Vgroups (V API) and Chapter 10, Annotations (AN API) for details on how to use reference
numbers in connection with these applications.

The following calling sequence uses DF24lastref to find the reference number of the RIS24 most
recently added to an HDF file:

C: status = DF24addimage(filename, image, width, height, compress);
lastref = DF24lastref();

FORTRAN: status = d2aimg(filename, image, width, height, compress)
lastref = d2lref()

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type

Description
C

FORTRAN-
77

DF24restart
[intn]

(d2first)
None None None None.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type

Description
C

FORTRAN-
77

DF24nimages
[intn]

(d2nimg)
filename char * character*(*) Name of the HDF file.
292 June 2017

Chapter 7 -- 24-bit Raster Images (DF24 API) Table of Contents HDF User’s Guide
DF24putimage or DF24getimage can be used in place of DF24addimage with similar results.

TABLE 7J DF24lastref Parameter List

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type

Description
C

FORTRAN-
77

DF24lastref
[uint16]
(d2lref)

filename None None None.
June 2017 293

The HDF Group Table of Contents Chapter 7 -- 24-bit Raster Images (DF24 API)
294 June 2017

CHAPTER 8 -- General Raster Images (GR API)
8.1 Chapter Overview

This chapter describes the general raster (GR) data model, the GR interface (also called the
GR API), and the interface routines used to manipulate GR data objects. The GR data model is
designed to provide a flexible means of manipulating raster images. There were two other inter-
faces that worked with raster images, the DFR8 interface (Chapter 6, 8-Bit Raster Images (DFR8
API)) and the DF24 interface (Chapter 7, 24-bit Raster Images (DF24 API)) but the GR interface
supersedes them.

8.2 The GR Data Model

HDF users familiar with the SD interface will find certain aspects of the GR data model similar to
the SD data model. The interfaces are similar in that both interfaces support data storage in multi-
ple files, attributes, compression, and chunking. They are dissimilar in that palettes can be created
and attached to an image through GR interface routines, customized dimension information is not
supported in the GR interface, and GR dataset chunking is constrained to two dimensions.

FIGURE 8a GR Data Set Contents

The terms GR data set, raster image, and image are used interchangeably in this chapter.

Refer to Figure 8a on page 295 for a graphical overview of the raster image, or GR data set, struc-
ture. Note that GR data sets consist of required and optional components.

Required Components Optional Components

Name

Dimensions

2D Array of Pixels

Pixel Type

Palette

 Raster Image

Attribute
June 2017 295

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
8.2.1 Required GR Data Set Components

Every GR data set must contain the following components: image array, name, pixel type, and
dimensions. The name, dimensions, and pixel type must be supplied by the user at the time the
GR data set is defined.

Image Array

An image array is a two-dimensional array of pixels. This is the primary data component of the
GR model and will be discussed later in this section; it can be compressed, chunked, and/or stored
in external files. Refer to Section 8.6.2 on page 312 for a description of raster image compression
and Section 8.6.4 on page 313 for a description of external image storage.

A raster image has an index and a reference number associated with it. The index is a non-nega-
tive integer that describes the relative position of the raster image in the file. A valid index ranges
from 0 to the total number of images in the file minus 1. The reference number is a unique posi-
tive integer assigned to the raster image by the GR interface when the image is created. Various
GR interface routines can be used to obtain an image index or reference number depending on the
available information about the raster image. The index can also be determined if the sequence in
which the images are created in the file is known.

In the GR interface, a raster image identifier uniquely identifies a raster image within the file.
The identifier is generated by the GR interface access routines when a new GR data set is created
or an existing one is selected. The identifier is then used by other GR interface routines to access
the raster image until the access to this image is terminated. For an existing raster image, the index
of the image can be used to obtain the identifier.

Image Array Name

Each image array has a name consisting of a string of case-sensitive alphanumeric characters. The
name must be provided by the calling program at the time the image is created, and cannot be
changed afterward. Image array names do not have to be unique within a file, but if they are not it
can be difficult to distinguish among the raster images in the file.

Pixels and Pixel Type

Each element in an image array corresponds to one pixel and each pixel can consist of a number
of color component values or pixel components, e.g., Red-Green-Blue or RGB, Cyan-Magenta-
Yellow-Black or CMYK, etc. Pixel components can be represented by different methods (8-bit
lookup table or 24-bit direct representation, graphically depicted by Figure 6a on page 261 and
Figure 7b on page 280, respectively) and may have different data types.

The data type of pixel components and the number of components in each pixel are collectively
known as the pixel type. The GR data model supports all of the HDF-supported data types. A list
of these data types appears provided in (See Table 2F on page 14).

Pixels can be composed of any number of components.

Dimensions

Image array dimensions specify the shape of the image array. A raster image array has two limited
dimensions. The size of each dimension must be specified at the creation of the image and must be
greater than 0.

The GR library does not allow the HDF user to add attributes to a dimension or to set dimension
scale.
296 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
8.2.2 Optional GR Data Set Components

There are two types of optional components available for inclusion in a GR data set: palettes and
attributes. These components are only created when specifically requested by the calling pro-
gram; the GR interface does not provide predefined palettes or attributes.

Palettes

Palettes are lookup tables attached to images and define a set of color values for each pixel value
in the image array. The GR interface provides similar capabilities for storing and manipulating
palettes as the DFP interface described in Chapter 9, Palettes (DFP API). However, the DFP inter-
face is restricted to single-file operations while the GR interface allows multifile palette opera-
tions.

Eventually, all palette manipulation functionality will reside only within the GR interface. In the
meantime, the single-file DFP routines are fully compatible with palettes created with the GR pal-
ette routines. The GR palette routines are described in Section 8.11 on page 338.

Attributes

Attributes contain auxiliary information about a file, a raster image, or both. The concept of
attributes is described in Chapter 3, Scientific Data Sets (SD API).

The GR interface does not support dimension attributes.

8.3 The GR Interface

The GR consists of routines for storing, retrieving, and manipulating the data in GR data sets.

8.3.1 GR Interface Routines

All C routine names in the GR interface have the prefix GR and the equivalent FORTRAN-77
routine names are prefaced by mg. All GR routines are classifiable within one of the following
categories:

• Access routines initialize and terminate access to the GR interface and raster images.

• Raster image manipulation routines modify the data and metadata contained in a GR data
set.

• LUT manipulation routines modify the palettes, also called color lookup tables or LUTs,
contained in a GR data set.

• Maintenance routines create the data and metadata contained in a GR data set and modify
global settings governing the format of the stored data.

• Inquiry routines return information about data contained in a GR data set.

• Chunking routines are used to define data chunking parameters, to retrieve chunking infor-
mation, and to write and read chunked GR data sets.

The GR routines are listed in the following table and described further in subsequent sections of
this chapter.
June 2017 297

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
TABLE 8A GR Library Routines

Purpose
Routine Name7

Description
C FORTRAN-77

 Access

GRstart mgstart Initializes the GR interface (Section 8.5.1 on page 300)

GRcreate mgcreat Creates a new raster image (Section 8.5.1 on page 300)

GRselect mgselct Selects the raster image (Section 8.5.1 on page 300)

GRendaccess mgendac Terminates access to the raster image (Section 8.5.2 on page 301)

GRend mgend Terminates access to the GR interface (Section 8.5.2 on page 301)

Raster Image
Manipulation

GRgetattr
mggnatt/
mggcatt

Reads an attribute of a raster image or a file (Section 8.10.4 on
page 333)

GRidtoref mgid2rf
Maps a raster image identifier to a reference number (Section 8.9.3
on page 322)

GRnametoindex mgn2ndx
Maps the name of a raster image name to an index (Section 8.9.5 on
page 323)

GRreadimage
mgrdimg/
mgrcimg

Reads raster image data (Section 8.7.1 on page 315)

GRreftoindex mgr2idx
Maps the reference number of a raster image to its index
(Section 8.9.4 on page 323)

GRsetattr
mgsnatt/
mgscatt

Assigns an attribute to a raster image or a file (Section 8.10.2 on
page 329)

GRwriteimage
mgwrimg/
mgwcimg

Writes raster image data (Section 8.6.1 on page 302)

GRreqimageil mgrimil
Sets the interlace mode of the image read for subsequent read oper-
ations (Section 8.7.2 on page 315)

LUT
Manipulation

GRgetlutid mggltid
Gets a palette identifier given the palette’s index (Section 8.11.1 on
page 338)

GRluttoref mglt2rf
Maps a palette identifier to a reference number (Section 8.11.3 on
page 339)

GRreadlut
mgrdlut/
mgrclut

Reads palette data from a raster image (Section 8.11.7 on page 341)

GRwritelut
mgwrlut/
mgwclut

Writes palette data to a raster image (Section 8.11.5 on page 340)

GRreqlutil mgrltil
Sets the interlace mode of the next palette for subsequent read oper-
ations (Section 8.7.2 on page 315)

GRgetnluts mggnluts
Retrieves the number of palettes associated with an image (See the
HDF Reference Manual)

Miscenlaneous

GRsetcompress mgscomp
Specifies whether the raster image will be stored in a file as a com-
pressed raster image (Section 8.6.2 on page 312)

GRgetcompinfo
mggcom-
press

Retrieves image compression type and compression information
(Section 8.9.6 on page 323)

GRsetexternal-
file

mgsxfil
Specifies that the raster image will be written to an external file
(Section 8.6.4.1 on page 313)

GRsetaccess-
type

nmgsactp Sets the access for an RI to be either serial or parallel I/O ()

Inquiry

GRattrinfo mgatinf
Retrieves information about an attribute (Section 8.10.3 on
page 332)

GRfindattr mgfndat
Finds the index of a data object's attribute given an attribute name
(Section 8.10.3 on page 332)

GRfileinfo mgfinfo
Retrieves the number of raster images and the number of global
attributes in the file (Section 8.9.1 on page 321)

GRgetiminfo mggiinf
Retrieves general information about a raster image (Section 8.9.2
on page 322)

GRgetlutinfo mgglinf Retrieves information about a palette (Section 8.11.4 on page 339)
298 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
8.4 Header Files Required by the GR Interface
The header file "hdf.h" must be included in any program that utilizes GR interface routines.

8.5 Programming Model for the GR Interface

As with the SD interface, the GR interface relies on the calling program to initiate and terminate
access to files and data sets to support multifile access. The GR programming model for accessing
a raster image is as follows:

1. Open an HDF file.

2. Initialize the GR interface.

3. Open an existing raster image or create a new raster image.

4. Perform desired operations on the raster image.

5. Terminate access to the raster image.

6. Terminate access to the GR interface by disposing of the interface identifier.

7. Close the HDF file.

To access a single raster image data set in an HDF file, the calling program must contain the fol-
lowing calls:

C: file_id = Hopen(filename, access_mode, n_dds_block);
gr_id = GRstart(file_id);

ri_id = GRselect(gr_id, ri_index);
OR ri_id = GRcreate(gr_id, name, n_comps, data_type, interlace_mode,

dim_sizes);

<Optional operations>
status = GRendaccess(ri_id);
status = GRend(gr_id);
status = Hclose(file_id);

FORTRAN: file_id = hopen(filename, access_mode, n_dds_block)
gr_id = mgstart(file_id)

ri_id = mgselct(gr_id, ri_index)
OR ri_id = mgcreat(gr_id, name, n_comps, data_type, interlace_mode,

dim_sizes)

<Optional operations>
status = mgendac(ri_id)
status = mgend(gr_id)
status = hclose(file_id)

Chunking

GRsetchunk mgschnk Creates chunked raster image (Section 8.12.2 on page 350)

GRgetchunkinfo mggichnk
Retrieves information about a chunked raster image (Section 8.12.5
on page 360)

GRsetchunk-
cache

mgscchnk
Sets maximum number of chunks to be cached (Section 8.12.6 on
page 360)

GRreadchunk
mgrchnk/
mgrcchnk

Reads a data chunk from a chunked raster image (pixel-interlace
only) (Section 8.12.4 on page 358)

GRwritechunk
mgwchnk/
mgwcchnk

Writes a data chunk to a chunked raster image (pixel-interlace only)
(Section 8.12.3 on page 351)
June 2017 299

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
To access several files at the same time, a calling program must obtain a separate interface identi-
fier for each file to be opened. Similarly, to access more than one raster image, a calling program
must obtain a separate data set identifier for each data set.

Because every file and raster image is assigned its own identifier, the order in which files and data
sets are accessed is very flexible as long as all file and raster image identifiers are individually dis-
carded before the end of the calling program.

8.5.1 Accessing Images and Files: GRstart, GRselect, and GRcreate

In the GR interface, Hopen opens the files and GRstart initiates the GR interface. Note the con-
trast to the SD interface, where SDstart performs both tasks. For information on the use of
Hopen, refer to Chapter 2, HDF Fundamentals. For information on SDstart, refer to Chapter 3,
Scientific Data Sets (SD API).

GRstart initializes the GR interface and must be called once after Hopen and before any other
GR routines are called. It takes one argument, file_id, the file identifier returned by Hopen, and
returns the interface identifier gr_id or FAIL (or -1) upon unsuccessful completion. Hopen and
GRstart can be called several times to access more than one file.

GRselect specifies the given image as the current image to be accessed. It takes two arguments,
the GR interface identifier gr_id and the raster image index ri_index, and returns the raster image
identifier ri_id or FAIL (or -1) upon unsuccessful completion. The GR interface identifier is
returned by GRstart. The raster image index specifies the position of the image relative to the
beginning of the file; it is zero-based, meaning that the index of the first image in the file is 0. The
index of a raster image can be obtained from the image’s name using the routine GRnametoindex
or from the image’s reference number using GRreftoindex. These routines are discussed in
Section 8.9.4 on page 323 and Section 8.9.5 on page 323. The index value must be less than the
total number of raster images in the file; that number can be obtained using GRfileinfo, described
in Section 8.9.1 on page 321.

The parameters for GRstart and GRselect are further defined in (See Table 8B on page 302).

GRcreate defines a new raster image using the arguments gr_id, name, n_comps, data_type,
interlace_mode, and dim_sizes. Once a data set is created, you cannot change its name, data type,
dimension, or number of components. GRcreate does not actually write the image to the file; this
occurs only when GRendaccess is called. Thus, failing to call GRendaccess properly will cause a
loss of data.

The buffer name contains the name of the image; it must not exceed H4_MAX_GR_NAME (or 256).
The parameter n_comps specifies the number of pixel components in the raster image; it must
have a value of at least 1. The parameter data_type specifies the data type of the image data; it can
be any of the data types supported by the HDF library. The HDF supported data type are defined
in the header file “hntdefs.h” and listed in (See Table 2F on page 14).

The parameter interlace_mode specifies the interlacing in which the raster image is to be written;
it can be set to either MFGR_INTERLACE_PIXEL (or 0), MFGR_INTERLACE_LINE (or 1), or
MFGR_INTERLACE_COMPONENT (or 2). These definitions respectively correspond to pixel interlac-
ing, line interlacing, and component interlacing. The first two interlacing modes are illustrated for
the instance of 24-bit pixel representation in Figure 7c on page 281 of Chapter 7, 24-bit Raster
Images (DF24 API). Component interlacing, as the name implies, describes interlacing raster
data by color component. Note that images created with the GR interface are actually written to
disk in pixel interlace mode; any user-specified interlace mode is stored in the file with the image
and the image is automatically converted to that mode when it is read with a GR interface func-
tion.
300 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
The parameter dim_sizes specifies the size of the two dimensions of the image. The dimension
sizes must be specified; their values must be at least 1.

GRcreate returns the value of the raster image identifier if successful or FAIL (or -1) otherwise.
The parameters for GRstart, GRselect, and GRcreate are further defined in (See TABLE 8B).

8.5.2 Terminating Access to Images and Files: GRendaccess and GRend

GRendaccess disposes of the raster image identifier ri_id and terminates access to the data set
initiated by the corresponding call to GRselect or GRcreate. The calling program must make one
GRendaccess call for every GRselect or GRcreate call made during its execution. Failing to call
GRendaccess for each call to GRselect or GRcreate may result in a loss of data.

GRend disposes of the GR interface identifier gr_id and terminates access to the GR interface ini-
tiated by the corresponding call to GRstart. The calling program must make one GRend call for
every GRstart call made during its execution; failing to call GRend for each GRstart may result
in a loss of data.

GRendaccess and GRend return SUCCEED (or 0) or FAIL (or -1). The parameters of these routines
are further defined in Table 8B.

Hclose terminates access to an HDF file and should only be called after GRend has been called
properly. Refer to Chapter 2, HDF Fundamentals, for a description of Hclose.
June 2017 301

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
TABLE 8B GRstart, GRselect, GRcreate, GRendaccess, and GRend, Parameter Lists

8.6 Writing Raster Images

A raster image can be written partially or entirely. Partial writing includes writing to a contiguous
region of the image and writing to selected locations in the image according to patterns defined by
the user. This section describes the routine GRwriteimage and how it can write data to part of an
image or to an entire image. The section also illustrates the concepts of compressing raster images
and the use of external files to store image data.

8.6.1 Writing Raster Images: GRwriteimage

GRwriteimage is used to either completely or partially fill an image array.

Writing data to an image array involves the following steps:

1. Open a file and initialize the GR interface.

2. Select an existing raster image or create a new one.

3. Write data to the image array.

4. Terminate access to the raster image.

5. Terminate access to the GR interface and close the file.

The calling program must contain the following sequence of calls:

C: file_id = Hopen(filename, access_mode, num_dds_block);
gr_id = GRstart(file_id);

ri_id = GRselect(gr_id, ri_index);
OR ri_id = GRcreate(gr_id, name, n_comps, number_type, interlace_mode,

dim_sizes);

status = GRwriteimage(ri_id, start, stride, edges, data);
status = GRendaccess(gr_id);
status = GRend(ri_id);

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

GRstart
[int32]

(mgstart)
file_id int32 integer File identifier

GRselect
[int32]

(mgselct)

gr_id int32 integer GR interface identifier

ri_index int32 integer Position of the raster image within the file

GRcreate
[int32]

(mgcreat)

gr_id int32 integer GR interface identifier

name char * character*(*) Name of the image

n_comps int32 integer Number of components in each pixel

data_type int32 integer Data type of the pixel component

interlace_mode int32 integer
Interlace mode to be used when writing to the
data set

dim_sizes int32 [2] integer (2) Array defining the size of both dimensions

GRendaccess
[intn]

(mgendac)
ri_id int32 integer Raster image identifier

GRend
[intn]

(mgend)
gr_id int32 integer GR interface identifier
302 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
status = Hclose(file_id);

FORTRAN: file_id = hopen(filename, access_mode, num_dds_block)
gr_id = mgstart(file_id)

ri_id = mgselct(gr_id, ri_index);
OR ri_id = mgcreat(gr_id, name, n_comps, number_type, interlace_mode,

dim_sizes);

status = mgwrimg(ri_id, start, stride, edges, data)
OR status = mgwrcmg(ri_id, start, stride, edges, data)

status = mgendac(ri_id)
status = mgend(gr_id)
status = hclose(file_id)

As with SD arrays, whole raster images, subsamples, and slabs can be written. The data to be writ-
ten is defined by the values of the parameters start, stride, and edges, which correspond to the
coordinate location of the data origin, number of values to be skipped along each dimension dur-
ing write operation, and number of elements to be written along each dimension.

The array start specifies the starting location of the data to be written. Valid values of each ele-
ment in the array start are 0 to the size of the corresponding raster image dimension - 1. The first
element of the array start specifies an offset from the beginning of the array data along the fastest-
changing dimension, which is the second dimension in C and the first dimension in FORTRAN-
77. The second element of the array start specifies an offset from the beginning of the array data
along the second fastest-changing dimension, which is the first dimension in C and the second
dimension in FORTRAN-77. For example, if the first value of the array start is 2 and the second
value is 3, the starting location of the data to be written is at the fourth row and third column in C,
and at the third row and fourth column in FORTRAN-77. Note that the correspondence between
elements in the array start and the raster image dimensions in the GR interface is different from
that in the SD interface. See Section 3.6 on page 58 on SDreaddata for an example of this.

The array stride specifies the writing pattern along each dimension. For example, if one of the ele-
ments of the array stride is 1, then every element along the corresponding dimension of the array
data will be written. If one of the elements of the stride array is 2, then every other element along
the corresponding dimension of the array data will be written, and so on. The correspondence
between elements of the array stride and the dimensions of the array data is the same as described
above for the array start.

Note that the FORTRAN-77 version of GRwriteimage has two routines; mgwrimg writes buff-
ered numeric data and mgwcimg writes buffered character data.

GRwriteimage returns either SUCCEED (or 0) or FAIL (or -1). The parameters for GRwriteimage
are described in Table 8C.
June 2017 303

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
TABLE 8C GRwriteimage Parameter List

EXAMPLE 1. Creating and Writing a Raster Image

This example illustrates the use of the routines Hopen/hopen, GRstart/mgstart, GRcreate/
mgcreat, GRwriteimage/mgwrimg, GRendaccess/mgendac, GRend/mgend, and Hclose/
hclose to create an HDF file and store a raster image in it.

In this example, the program creates the HDF file called "General_RImages.hdf" and a raster
image in the file. The image created is of size 5x10 and named "Image Array 1", and has data of
the int16 data type, 2 components, and interlace mode MFGR_INTERLACE_PIXEL. Then the program
writes the image data, terminates access to the image and the GR interface, and closes the file.

C:
#include "hdf.h"

#define FILE_NAME "General_RImages.hdf"
#define IMAGE_NAME "Image Array 1"
#define X_LENGTH 10 /* number of columns in the image */
#define Y_LENGTH 5 /* number of rows in the image */
#define N_COMPS 2 /* number of components in the image */

main()
{
 /************************* Variable declaration **************************/

 intn status; /* status for functions returning an intn */
 int32 file_id, /* HDF file identifier */
 gr_id, /* GR interface identifier */
 ri_id, /* raster image identifier */
 start[2], /* start position to write for each dimension */
 edges[2], /* number of elements to be written
 along each dimension */
 dim_sizes[2], /* dimension sizes of the image array */
 interlace_mode, /* interlace mode of the image */
 data_type, /* data type of the image data */
 i, j;
 int16 image_buf[Y_LENGTH][X_LENGTH][N_COMPS];

 /********************** End of variable declaration **********************/

 /*

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

GRwriteimage
[intn]

(mgwrimg/
mgwcimg)

ri_id int32 integer
Raster image identifier returned by
GRcreate

start int32 [2] integer (2)
Array containing the x,y-coordinate
location where the write will start for
each dimension

stride int32 [2] integer (2)
Array containing the number of data
locations the current location is to be
moved forward before the next write

edges int32 [2] integer (2)
Array containing the number of data
elements that will be written along
each dimension

data VOIDP
<valid numeric data type>(*)/

character(*)
Buffer for the image data to be written
304 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
 * Create and open the file.
 */
 file_id = Hopen (FILE_NAME, DFACC_CREATE, 0);

 /*
 * Initialize the GR interface.
 */
 gr_id = GRstart (file_id);

 /*
 * Set the data type, interlace mode, and dimensions of the image.
 */
 data_type = DFNT_INT16;
 interlace_mode = MFGR_INTERLACE_PIXEL;
 dim_sizes[0] = X_LENGTH;
 dim_sizes[1] = Y_LENGTH;

 /*
 * Create the raster image array.
 */
 ri_id = GRcreate (gr_id, IMAGE_NAME, N_COMPS, data_type,
 interlace_mode, dim_sizes);

 /*
 * Fill the image data buffer with values.
 */
 for (i = 0; i < Y_LENGTH; i++)
 {
 for (j = 0; j < X_LENGTH; j++)
 {
 image_buf[i][j][0] = (i + j) + 1; /* first component */
 image_buf[i][j][1] = (i + j) + 1; /* second component */
 }
 }

 /*
 * Define the size of the data to be written, i.e., start from the origin
 * and go as long as the length of each dimension.
 */
 start[0] = start[1] = 0;
 edges[0] = X_LENGTH;
 edges[1] = Y_LENGTH;

 /*
 * Write the data in the buffer into the image array.
 */
 status = GRwriteimage(ri_id, start, NULL, edges, (VOIDP)image_buf);

 /*
 * Terminate access to the raster image and to the GR interface and,
 * close the HDF file.
 */
 status = GRendaccess (ri_id);
 status = GRend (gr_id);
 status = Hclose (file_id);
}

FORTRAN:
 program create_raster_image

 implicit none
C
C Parameter declaration
June 2017 305

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
C
 character*19 FILE_NAME
 character*13 IMAGE_NAME
 integer X_LENGTH
 integer Y_LENGTH
 integer N_COMPS
C
 parameter (FILE_NAME = ’General_RImages.hdf’,
 + IMAGE_NAME = ’Image Array 1’,
 + X_LENGTH = 10,
 + Y_LENGTH = 5,
 + N_COMPS = 2)
 integer DFACC_CREATE, DFNT_INT16, MFGR_INTERLACE_PIXEL
 parameter (DFACC_CREATE = 4,
 + DFNT_INT16 = 22,
 + MFGR_INTERLACE_PIXEL = 0)
C
C Function declaration
C
 integer hopen, hclose
 integer mgstart, mgcreat, mgwrimg, mgendac, mgend

C
C**** Variable declaration ***
C
 integer status
 integer file_id
 integer gr_id, ri_id, num_type, interlace_mode
 integer start(2), stride(2), edges(2), dimsizes(2)
 integer i, j, k
 integer*2 image_buf(N_COMPS, X_LENGTH, Y_LENGTH)
C
C**** End of variable declaration ************************************
C
C
C Create and open the file.
C
 file_id = hopen(FILE_NAME, DFACC_CREATE, 0)
C
C Initialize the GR interface.
C
 gr_id = mgstart(file_id)
C
C Set the number type, interlace mode, and dimensions of the image.
C
 num_type = DFNT_INT16
 interlace_mode = MFGR_INTERLACE_PIXEL
 dimsizes(1) = X_LENGTH
 dimsizes(2) = Y_lENGTH
C
C Create the raster image array.
C
 ri_id = mgcreat(gr_id, IMAGE_NAME, N_COMPS, num_type,
 + interlace_mode, dimsizes)
C
C Fill the image data buffer with values.
C
 do 30 i = 1, Y_LENGTH
 do 20 j = 1, X_LENGTH
 do 10 k = 1, N_COMPS
 image_buf(k,j,i) = (i+j) - 1
10 continue
20 continue
306 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
30 continue

C
C Define the size of the data to be written, i.e., start from the origin
C and go as long as the length of each dimension.
C
 start(1) = 0
 start(2) = 0
 edges(1) = X_LENGTH
 edges(2) = Y_LENGTH
 stride(1) = 1
 stride(2) = 1
C
C Write the data in the buffer into the image array.
C
 status = mgwrimg(ri_id, start, stride, edges, image_buf)

C
C Terminate access to the raster image and to the GR interface,
C and close the HDF file.
C
 status = mgendac(ri_id)
 status = mgend(gr_id)
 status = hclose(file_id)
 end

EXAMPLE 2. Modifying an Existing Raster Image

This example illustrates the use of the routines GRselect/mgselct to obtain an existing raster
image and GRwrite/mgwrimg to modify image data.

In this example, the program selects the only raster image in the file "General_RImages.hdf" cre-
ated and written in Example 1, and modifies image data. The program also creates another raster
image that is named "Image Array 2" and has 3 components with dimension size of 4x6, data type
of DFNT_CHAR8, and interlace mode of MFGR_INTERLACE_PIXEL.

C:
#include "hdf.h"

#define FILE_NAME "General_RImages.hdf"
#define X1_LENGTH 5 /* number of columns in the first image
 being modified */
#define Y1_LENGTH 2 /* number of rows in the first image
 being modified */
#define N1_COMPS 2 /* number of components in the first image */
#define IMAGE1_NAME "Image Array 1"
#define IMAGE2_NAME "Image Array 2"
#define X2_LENGTH 6 /* number of columns in the second image */
#define Y2_LENGTH 4 /* number of rows in the second image */
#define N2_COMPS 3 /* number of components in the second image */

main()
{
 /************************* Variable declaration **************************/

 intn status; /* status for functions returning an intn */
 int32 file_id, /* HDF file identifier */
 gr_id, /* GR interface identifier */
 ri1_id, /* raster image identifier */
 start1[2], /* start position to write for each dimension */
June 2017 307

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
 edges1[2], /* number of elements to be written along
 each dimension */
 ri2_id, /* raster image identifier */
 start2[2], /* start position to write for each dimension */
 edges2[2], /* number of elements to be written along
 each dimension */
 dims_sizes[2], /* sizes of the two dimensions of the image array */
 data_type, /* data type of the image data */
 interlace_mode; /* interlace mode of the image */
 int16 i, j; /* indices for the dimensions */
 int16 image1_buf[Y1_LENGTH][X1_LENGTH][N1_COMPS]; /* data of first image */
 char image2_buf[Y2_LENGTH][X2_LENGTH][N2_COMPS]; /* data of second image*/

 /********************** End of variable declaration **********************/

 /*
 * Open the HDF file for writing.
 */
 file_id = Hopen (FILE_NAME, DFACC_WRITE, 0);

 /*
 * Initialize the GR interface.
 */
 gr_id = GRstart (file_id);

 /*
 * Select the first raster image in the file.
 */
 ri1_id = GRselect (gr_id, 0);

 /*
 * Fill the first image data buffer with values.
 */
 for (i = 0; i < Y1_LENGTH; i++)
 {
 for (j = 0; j < X1_LENGTH; j++)
 {
 image1_buf[i][j][0] = 0; /* first component */
 image1_buf[i][j][1] = 0; /* second component */
 }
 }

 /*
 * Define the size of the data to be written, i.e., start from the origin
 * and go as long as the length of each dimension.
 */
 start1[0] = start1[1] = 0;
 edges1[0] = X1_LENGTH;
 edges1[1] = Y1_LENGTH;

 /*
 * Write the data in the buffer into the image array.
 */
 status = GRwriteimage (ri1_id, start1, NULL, edges1, (VOIDP)image1_buf);

 /*
 * Set the interlace mode and dimensions of the second image.
 */
 data_type = DFNT_CHAR8;
 interlace_mode = MFGR_INTERLACE_PIXEL;
 dims_sizes[0] = X2_LENGTH;
 dims_sizes[1] = Y2_LENGTH;
308 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
 /*
 * Create the second image in the file.
 */
 ri2_id = GRcreate (gr_id, IMAGE2_NAME, N2_COMPS, data_type,
 interlace_mode, dims_sizes);

 /*
 * Fill the second image data buffer with values.
 */
 for (i = 0; i < Y2_LENGTH; i++)
 {
 for (j = 0; j < X2_LENGTH; j++)
 {
 image2_buf[i][j][0] = ’A’; /* first component */
 image2_buf[i][j][1] = ’B’; /* second component */
 image2_buf[i][j][2] = ’C’; /* third component */
 }
 }

 /*
 * Define the size of the data to be written, i.e., start from the origin
 * and go as long as the length of each dimension.
 */
 for (i = 0; i < 2; i++) {
 start2[i] = 0;
 edges2[i] = dims_sizes[i];
 }

 /*
 * Write the data in the buffer into the second image array.
 */
 status = GRwriteimage (ri2_id, start2, NULL, edges2, (VOIDP)image2_buf);

 /*
 * Terminate access to the raster images and to the GR interface, and
 * close the HDF file.
 */
 status = GRendaccess (ri1_id);
 status = GRendaccess (ri2_id);
 status = GRend (gr_id);
 status = Hclose (file_id);
}

FORTRAN:
 program modify_image
 implicit none
C
C Parameter declaration
C
 character*19 FILE_NAME
 character*13 IMAGE1_NAME
 integer X1_LENGTH
 integer Y1_LENGTH
 integer N1_COMPS
 character*13 IMAGE2_NAME
 integer X2_LENGTH
 integer Y2_LENGTH
 integer N2_COMPS
C
 parameter (FILE_NAME = ’General_RImages.hdf’,
 + IMAGE1_NAME = ’Image Array 1’,
June 2017 309

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
 + IMAGE2_NAME = ’Image Array 2’,
 + X1_LENGTH = 5,
 + Y1_LENGTH = 2,
 + N1_COMPS = 2,
 + X2_LENGTH = 6,
 + Y2_LENGTH = 4,
 + N2_COMPS = 3)
 integer DFACC_WRITE, DFNT_INT16, DFNT_CHAR8,
 + MFGR_INTERLACE_PIXEL
 parameter (DFACC_WRITE = 2,
 + DFNT_CHAR8 = 4,
 + DFNT_INT16 = 22,
 + MFGR_INTERLACE_PIXEL = 0)
C
C Function declaration
C
 integer hopen, hclose
 integer mgstart, mgselct, mgcreat, mgwrimg, mgendac, mgend

C
C**** Variable declaration ***
C
 integer status
 integer file_id
 integer gr_id, ri1_id, ri2_id, data_type, interlace_mode
 integer start1(2), stride1(2), edges1(2)
 integer start2(2), stride2(2), edges2(2), dim_sizes(2)
 integer i, j, k
 integer*2 image1_buf(N1_COMPS, X1_LENGTH, Y1_LENGTH)
 character image2_buf(N2_COMPS, X2_LENGTH, Y2_LENGTH)
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file for writing.
C
 file_id = hopen(FILE_NAME, DFACC_WRITE, 0)
C
C Initialize the GR interface.
C
 gr_id = mgstart(file_id)
C
C Select the first raster image in the file.
C
 ri1_id = mgselct(gr_id, 0)
C
C Fill the buffer with values.
C
 do 20 i = 1, Y1_LENGTH
 do 10 j = 1, X1_LENGTH
 image1_buf(1,j,i) = 0
 image1_buf(2,j,i) = 0
10 continue
20 continue
C
C Define the part of the data in the first image that will be overwritten
C with the new values from image1_buf.
C
 start1(1) = 0
 start1(2) = 0
 edges1(1) = X1_LENGTH
 edges1(2) = Y1_LENGTH
 stride1(1) = 1
310 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
 stride1(2) = 1
C
C Write the data in the buffer into the image array.
C
 status = mgwrimg(ri1_id, start1, stride1, edges1, image1_buf)

C
C Set the number type, interlace mode, and dimensions of the second image.
C
 data_type = DFNT_CHAR8
 interlace_mode = MFGR_INTERLACE_PIXEL
 dim_sizes(1) = X2_LENGTH
 dim_sizes(2) = Y2_LENGTH
C
C Create the second image in the file.
C
 ri2_id = mgcreat(gr_id, IMAGE2_NAME, N2_COMPS, data_type,
 + interlace_mode, dim_sizes)
C
C Fill the image data buffer with values.
C
 do 60 i = 1, Y2_LENGTH
 do 50 j = 1, X2_LENGTH
 do 40 k = 1, N2_COMPS
 image2_buf(k,j,i) = char(65 + k - 1)
40 continue
50 continue
60 continue

C
C Define the size of the data to be written, i.e., start from the origin
C and go as long as the length of each dimension.
C
 start2(1) = 0
 start2(2) = 0
 edges2(1) = dim_sizes(1)
 edges2(2) = dim_sizes(2)
 stride2(1) = 1
 stride2(2) = 1
C
C Write the data in the buffer into the image array.
C
 status = mgwrimg(ri2_id, start2, stride2, edges2, image2_buf)

C
C Terminate access to the raster images and to the GR interface,
C and close the HDF file.
C
 status = mgendac(ri1_id)
 status = mgendac(ri2_id)
 status = mgend(gr_id)
 status = hclose(file_id)
 end
June 2017 311

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
8.6.2 Compressing Raster Images: GRsetcompress

Images can be compressed using the routine GRsetcompress. GRsetcompress compresses the
image data at the time it is called and supports all standard HDF compression algorithms. The
syntax of the routine GRsetcompress is as follows:

C: status = GRsetcompress(ri_id, comp_type, c_info);

FORTRAN: status = mgscompress(ri_id, comp_type, comp_prm)

The compression method is specified by the parameter comp_type. Valid values of the parameter
comp_type are:

COMP_CODE_NONE (or 0) for no compression
COMP_CODE_RLE (or 1) for RLE run-length encoding
COMP_CODE_SKPHUFF (or 3) for Skipping Huffman compression
COMP_CODE_DEFLATE (or 4) for GZIP compression
COMP_CODE_SZIP (or 5) for Szip compression (not for Fortran)
COMP_CODE_JPEG (or 7) for JPEG compression

The compression parameters are specified by the parameter c_info in C and the parameter
comp_prm in FORTRAN-77. The parameter c_info has type comp_info and contains algorithm-
specific information for the library compression routines. The type comp_info is described in the
header file hcomp.h and in the reference manual page for SDsetcompress. Compression parame-
ters are only needed when Skipping Huffman, GZIP, and Szip compression methods are applied.

If comp_type is set to COMP_CODE_NONE or COMP_CODE_RLE, the parameters c_info and comp_prm
are not used; c_info can be set to NULL and comp_prm can be undefined.

If comp_type is set to COMP_CODE_SKPHUFF, then the structure skphuff in the union comp_info in C
(comp_prm(1) in FORTRAN-77) must be provided with the size, in bytes, of the data elements.

If comp_type is set to COMP_CODE_DEFLATE, the deflate structure in the union comp_info in C
(comp_prm(1) in FORTRAN-77) must be provided with the information about the compression
effort.

Note that, as of HDF 4.2.2, Szip is not supported in Fortran GR interface yet.

GRsetcompress returns either SUCCEED (or 0) or FAIL (or -1). The GRsetcompress parameters
are further described in Table 8D.

8.6.3 Setting I/O Access Type for a Raster Image: GRsetaccesstype

GRsetaccesstype sets the access type to be either serial or parallel I/O for the raster image speci-
fied by ri_id.

The syntax of the routine GRsetaccesstype is as follows:

C: status = GRsetaccesstype(ri_id, access_type);

FORTRAN: status = mgsactp(ri_id, access_type)

The access type is specified by the parameter access_type and its valid values are DFACC_SERIAL
(or 1), DFACC_PARALLEL (or 11), and DFACC_DEFAULT (or 0.)

GRsetaccesstype returns either SUCCEED (or 0) or FAIL (or -1). The GRsetaccesstype parameters
are further described in Table 8D.
312 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
TABLE 8D GRsetcompress and GRsetaccesstype Parameter List

8.6.4 External File Operations Using the GR Interface

An external image array is one that is stored in a file that is not the file containing the metadata
for the image. The HDF file containing the metadata is known as the primary HDF file; the file
containing the external image array is known as an external file. The concept of externally stored
data is described in Chapter 3, Scientific Data Sets (SD API). The GR interface supports the same
external file functionality as the SD interface.

8.6.4.1 Creating a Raster Image in an External File: GRsetexternalfile

Creating an image with the data stored in an external file involves the same general steps as with
the SD interface:

1. Create the image array.

2. Specify that an external data file is to be used.

3. Write data to the image array.

4. Terminate access to the image.

To create a data set containing image array stored in an external file, the calling program must
make the following calls.

C: ri_id = GRcreate(gr_id, name, n_comps, data_type, interlace_mode,
dim_sizes);

status = GRsetexternalfile(ri_id, filename, offset);
status = GRwriteimage(ri_id, start, stride, edges, image_data);
status = GRendaccess(ri_id);

FORTRAN: ri_id = mgcreat(gr_id, name, n_comps, data_type, interlace_mode,
dim_sizes)

status = mgsxfil(ri_id, filename, offset)
status = mgwrimg(ri_id, start, stride, edges, image_data)
status = mgendac(ri_id)

GRsetexternalfile marks the image identified by the parameter ri_id as one whose data is to be
written to an external file. The parameter filename is the name of the external file, and the param-
eter offset specifies the number of bytes from the beginning of the external file to the location
where the first byte of data will be written.

GRsetexternalfile can only be called once per data set. If a file with the same name as filename
exists in the current directory, HDF will use it as the external file. If the file does not exist, HDF
will create one. Once the name of the external file is specified, it is impossible to change it with-
out breaking the association between the raster image and its data.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

GRsetcompress
[intn]

(mgscom-
press)

ri_id int32 integer Raster image identifier

comp_type int32 integer Compression method

c_info comp_info* N/A Pointer to compression information structure

comp_prm N/A integer Compression parameters array

GRsetaccesstype
[intn]

(mgsactp)

ri_id int32 integer Raster image identifier

access_type int32 integer I/O access type
June 2017 313

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
Use caution when writing to existing files because the routine GRwriteimage begins its write at
the specified offset without checking whether existing data is being overwritten. When different
data sets have arrays being stored the same external file, the calling program is responsible for
avoiding any overlap between them.

GRsetexternalfile returns either SUCCEED (or 0) or FAIL (or -1). The parameters of GRsetexter-
nalfile are further defined in Table 8E.

TABLE 8E GRsetexternalfile Parameter List

8.6.4.2 Moving Raster Images to an External File

Images can be moved from the primary HDF file to an external file. To do so requires the follow-
ing steps:

1. Select the image.

2. Specify the external data file.

3. Terminate access to the image.

The calling program must make the following calls:

C: ri_id = GRselect(gr_id, ri_index);
status = GRsetexternalfile(ri_id, filename, offset);
status = GRendaccess(ri_id);

FORTRAN: ri_id = mgselct(gr_id, ri_index);
status = mgsxfil(ri_id, filename, offset)
status = mgendac(ri_id);

When GRsetexternalfile is used in conjunction with GRselect, it will immediately write the
existing data to the external file; any data in the external file that occupies the space reserved for
the external array will be overwritten as a result of this operation. A data set can only be moved to
an external file once.

During the operation, the data is written to the external file as a contiguous stream regardless of
how it is stored in the primary file. Because data is moved “as is,” any unwritten locations in the
data set are preserved in the external file. Subsequent read and write operations performed on the
data set will access the external file.

8.7 Reading Raster Images

Image array data can be read as an entire array or as a subsample of the array. Raster image data is
read from an external file in the same way that it is read from a primary file; whether the image
array is stored in an external file is transparent to the user. This section describes how GRreadim-
age is used to read an entire image and part of an image. The section also describes the routine
GRreqimageil that sets the interlacing for reading image data.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

GRsetexternalfile
[intn]

(mgsxfil)

ri_id int32 integer Raster image identifier

filename char * character*(*) Name of the external file

offset int32 integer
Offset in bytes from the beginning of the external file to
the image data
314 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
8.7.1 Reading Data from an Image: GRreadimage

Reading data subsamples from an image array involves the following steps:

1. Select a data set.

2. Read data from the image array.

3. Terminate access to the data set.

To read data from an image array, the calling program must contain the following function calls:

C: ri_id = GRselect(gr_id, ri_index);
status = GRreadimage(ri_id, start, stride, edges, data);
status = GRendaccess(ri_id);

FORTRAN: ri_id = mgselct(gr_id, ri_index)

status = mgrdimg(ri_id, start, stride, edges, data)
OR status = mgrcimg(ri_id, start, stride, edges, data)

status = mgendac(gr_id)

GRreadimage can be used to read either an entire image or a subsample of the image. The ri_id
argument is the raster image identifier returned by GRselect. As with GRwriteimage, the argu-
ments start, stride, and edges respectively describe the starting location for the read operation, the
number of locations the current image array location will be moved forward after each read, and
the length of each dimension to be read. Refer to Section 8.6.1 on page 302 for detailed descrip-
tions of the parameters start, stride, and edges. If the image array is smaller than the data argu-
ment array, the amount of data read will be limited to the maximum size of the image array.

Note that the FORTRAN-77 version of GRreadimage has two routines; mgrdimg reads numeric
image data and mgrcimg reads character image data.

GRreadimage returns either SUCCEED (or 0) or FAIL (or -1). The parameters for GRreadimage
are further defined in (See TABLE 8F).

8.7.2 Setting the Interlace Mode for an Image Read: GRreqimageil

The GRreqimageil routine sets the interlace mode for the next image read. The syntax of this rou-
tine is as follows:

C: status = GRreqimageil(ri_id, interlace_mode);

FORTRAN: status = mgrimil(ri_id, interlace_mode)

GRreqimageil can be called at any time before the read operation and takes two parameters, ri_id
and interlace_mode. The parameter ri_id is the raster image identifier returned by the GRselect
routine and the parameter interlace_mode specifies the interlace mode that will be in effect for the
image read operation. Refer to Section 8.5.1 on page 300 for a description of the GR interlace
modes.

GRreqimagetil may be called more than once; the interlace mode setting specified by the last call
to the routine will be used for the next read operation.

GRreqimagetil returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are
further defined in Table 8F.
June 2017 315

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
TABLE 8F GRreadimage and GRreqimageil Parameter Lists

EXAMPLE 3. Reading a Raster Image.

This example illustrates the use of the routine GRreadimage/mgrdimg to read an image and its
subsets.

In this example, the program reads the image written by Example 1 and modified by Example 2 in
the file "General_RImages.hdf". Recall that this image has two components and has 5 rows and 10
columns. The program first reads the entire image, then reads a subset of the image, 3 rows and 2
columns starting at the 2nd row and the 4th column, and finally reads the image skipping all the
even rows and all the odd columns. Reading patterns are applied to all components.

C:
#include "hdf.h"

#define FILE_NAME "General_RImages.hdf"
#define N_COMPS 2
#define X_LENGTH 10 /* number of columns of the entire image */
#define Y_LENGTH 5 /* number of rows of the entire image */
#define PART_COLS 2 /* number of columns read for partial image */
#define PART_ROWS 3 /* number of rows read for partial image */
#define SKIP_COLS 5 /* number of columns read for skipped image */
#define SKIP_ROWS 3 /* number of rows read for skipped image */
#define COLS_PART_START 3 /* starting column to read partial image */
#define ROWS_PART_START 1 /* starting row to read partial image */
#define COLS_SKIP_START 1 /* starting column to read skipped image */
#define ROWS_SKIP_START 0 /* starting row to read skipped image */
#define N_STRIDES 2 /* number of elements to skip on each dim. */

main()
{
 /************************* Variable declaration **************************/

 intn status; /* status for functions returning an intn */
 int32 index;
 int32 file_id, gr_id, ri_id,
 start[2], /* start position to write for each dimension */
 edges[2], /* number of elements to bewritten along
 each dimension */
 stride[2], /* number of elements to skip on each dimension */

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

GRreadimage
[intn]

(mgrdimg/
mgrcimg)

ri_id int32 integer Raster image identifier

start int32[2] integer (2)
Array containing the starting read coordi-
nates

stride int32[2] integer (2)
Array specifying the interval between the
values that will be read along each dimen-
sion

edges int32[2] integer (2)
Array containing the number of data ele-
ments that will be read along each dimen-
sion

data VOIDP
<valid numeric data

type>(*)/character*(*)
Buffer for the image data to be read

GRreqimageil
[intn]

(mgrimil)

ri_id int32 integer Raster image identifier

interlace_mode intn integer
Interlace mode for the next image read oper-
ation
316 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
 dim_sizes[2]; /* dimension sizes of the image array */
 int16 entire_image[Y_LENGTH][X_LENGTH][N_COMPS],
 partial_image[PART_ROWS][PART_COLS][N_COMPS],
 skipped_image[SKIP_ROWS][SKIP_COLS][N_COMPS];
 int32 i, j;

 /********************** End of variable declaration **********************/

 /*
 * Open the HDF file for reading.
 */
 file_id = Hopen (FILE_NAME, DFACC_READ, 0);

 /*
 * Initialize the GR interface.
 */
 gr_id = GRstart (file_id);

 /*
 * Select the first raster image in the file.
 */
 ri_id = GRselect (gr_id, 0);

 /*
 * Define the size of the data to be read, i.e., start from the origin
 * and go as long as the length of each dimension.
 */
 start[0] = start[1] = 0;
 edges[0] = X_LENGTH;
 edges[1] = Y_LENGTH;

 /*
 * Read the data from the raster image array.
 */
 status = GRreadimage (ri_id, start, NULL, edges, (VOIDP)entire_image);

 /*
 * Display only the first component of the image since the two components
 * have the same data in this example.
 */
 printf ("First component of the entire image:\n");
 for (i = 0; i < Y_LENGTH; i++)
 {
 for (j = 0; j < X_LENGTH; j++)
 printf ("%d ", entire_image[i][j][0]);
 printf ("\n");
 }

 /*
 * Define the size of the data to be read.
 */
 start[0] = COLS_PART_START;
 start[1] = ROWS_PART_START;
 edges[0] = PART_COLS;
 edges[1] = PART_ROWS;

 /*
 * Read a subset of the raster image array.
 */
 status = GRreadimage (ri_id, start, NULL, edges, (VOIDP)partial_image);

 /*
 * Display the first component of the read sample.
June 2017 317

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
 */
 printf ("\nThree rows & two cols at 2nd row and 4th column");
 printf (" of the first component:\n");
 for (i = 0; i < PART_ROWS; i++)
 {
 for (j = 0; j < PART_COLS; j++)
 printf ("%d ", partial_image[i][j][0]);
 printf ("\n");
 }

 /*
 * Define the size and the pattern to read the data.
 */
 start[0] = COLS_SKIP_START;
 start[1] = ROWS_SKIP_START;
 edges[0] = SKIP_COLS;
 edges[1] = SKIP_ROWS;
 stride[0] = stride[1] = N_STRIDES;

 /*
 * Read all the odd rows and even columns of the image.
 */
 status = GRreadimage (ri_id, start, stride, edges, (VOIDP)skipped_image);

 /*
 * Display the first component of the read sample.
 */
 printf ("\nAll odd rows and even columns of the first component:\n");
 for (i = 0; i < SKIP_ROWS; i++)
 {
 for (j = 0; j < SKIP_COLS; j++)
 printf ("%d ", skipped_image[i][j][0]);
 printf ("\n");
 }

 /*
 * Terminate access to the raster image and to the GR interface, and
 * close the HDF file.
 */
 status = GRendaccess (ri_id);
 status = GRend (gr_id);
 status = Hclose (file_id);
}

FORTRAN:
 program read_raster_image
 implicit none
C
C Parameter declaration
C
 character*19 FILE_NAME
 integer X_LENGTH
 integer Y_LENGTH
 integer N_COMPS
C
 parameter (FILE_NAME = ’General_RImages.hdf’,
 + X_LENGTH = 10,
 + Y_LENGTH = 5,
 + N_COMPS = 2)
 integer PART_COLS, PART_ROWS, SKIP_COLS, SKIP_ROWS
 integer COLS_PART_START, ROWS_PART_START
 integer COLS_SKIP_START, ROWS_SKIP_START
318 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
 integer N_STRIDES
 parameter (PART_COLS = 3, PART_ROWS = 2,
 + SKIP_COLS = 3, SKIP_ROWS = 5,
 + COLS_PART_START = 1, ROWS_PART_START = 3,
 + COLS_SKIP_START = 0, ROWS_SKIP_START = 1,
 + N_STRIDES = 2)
 integer DFACC_READ
 parameter (DFACC_READ = 1)
C
C Function declaration
C
 integer hopen, hclose
 integer mgstart, mgselct, mgrdimg, mgendac, mgend

C
C**** Variable declaration ***
C
 integer status
 integer file_id
 integer gr_id, ri_id
 integer start(2), stride(2), edges(2)
 integer i, j
 integer*2 entire_image(N_COMPS, X_LENGTH, Y_LENGTH)
 integer*2 partial_image(N_COMPS, PART_ROWS, PART_COLS)
 integer*2 skipped_image(N_COMPS, SKIP_ROWS, SKIP_COLS)
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file for reading.
C
 file_id = hopen(FILE_NAME, DFACC_READ, 0)
C
C Initialize the GR interface.
C
 gr_id = mgstart(file_id)
C
C Select the first raster image in the file.
C
 ri_id = mgselct(gr_id, 0)
C
C Define the size of the data to be read, i.e., start from the origin
C and go as long as the length of each dimension.
C
 start(1) = 0
 start(2) = 0
 edges(1) = X_LENGTH
 edges(2) = Y_LENGTH
 stride(1) = 1
 stride(2) = 1
C
C Read the data from the raster image array.
C
 status = mgrdimg(ri_id, start, stride, edges, entire_image)
C
C Display only the first component of the image since the two components
C have the same data in this example.
C
 write(*,*) ’First component of the entire image’
 write(*,*)
 do 10 i = 1, X_LENGTH
 write(*,1000) (entire_image(1,i,j), j = 1, Y_LENGTH)
10 continue
June 2017 319

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
 write(*,*)
C
C Define the size of the data to be read.
C
 start(1) = ROWS_PART_START
 start(2) = COLS_PART_START
 edges(1) = PART_ROWS
 edges(2) = PART_COLS
 stride(1) = 1
 stride(2) = 1
C
C Read a subset of the raster image array.
C
 status = mgrdimg(ri_id, start, stride, edges, partial_image)
C
C Display only the first component of the read sample.
C
 write(*,*)
 + ’Two rows and three columns at 4th row and 2nd column’,
 + ’ of the first component’
 write(*,*)
 do 20 i = 1, PART_ROWS
 write(*,1000) (partial_image(1,i,j), j = 1, PART_COLS)
20 continue
 write(*,*)
C
C Define the size and the pattern to read the data.
C
 start(1) = ROWS_SKIP_START
 start(2) = COLS_SKIP_START
 edges(1) = SKIP_ROWS
 edges(2) = SKIP_COLS
 stride(1) = N_STRIDES
 stride(2) = N_STRIDES
C
C Read all the odd rows and even columns of the image.
C
 status = mgrdimg(ri_id, start, stride, edges, skipped_image)
C
C Display only the first component of the read sample.
C
 write(*,*) ’All even rows and odd columns of the first component’
 write(*,*)
 do 30 i = 1, SKIP_ROWS
 write(*,1000) (skipped_image(1,i,j), j = 1, SKIP_COLS)
30 continue
 write(*,*)
C
C Terminate access to the raster image and to the GR interface,
C and close the HDF file.
C
 status = mgendac(ri_id)
 status = mgend(gr_id)
 status = hclose(file_id)
1000 format(1x, 5(I4))
 end
320 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
8.8 Difference between the SD and GR Interfaces

There is a difference between the SD and GR interfaces that becomes important in applications or
tools that must manipulate both images and two-dimensional SDs.

The SD and GR interfaces differ in the correspondence between the dimension order in parameter
arrays such as start, stride, edge, and dimsizes and the dimension order in the data array. See the
SDreaddata and GRreadimage reference manual pages for discussions of the SD and GR
approaches, respectively.

When writing applications or tools to manipulate both images and two-dimensional SDs, this cru-
cial difference between the interfaces must be taken into account. While the underlying data is
stored in row-major order in both cases, the API parameters are not expressed in the same way.
Consider the example of an SD data set and a GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and GRreadimage functions,
respectively. Both functions take the parameters start, stride, and edge.

• For SDreaddata, those parameters are expressed in (y,x) or [row,column] order. For exam-
ple, start[0] is the starting point in the Y dimension and start[1] is the starting point in
the X dimension. The same ordering holds true for all SD data set manipulation functions.

• For GRreadimage, those parameters are expressed in (x,y) or [column,row] order. For
example, start[0] is the starting point in the X dimension and start[1] is the starting
point in the Y dimension. The same ordering holds true for all GR functions manipulating
image data.

8.9 Obtaining Information about Files and Raster Images

The routines covered in this section provide methods for obtaining information about all of the
images in a file, for identifying images that meet certain criteria, and for obtaining information
about specific raster images.

GRfileinfo retrieves the number of images and file attributes in a file. GRgetiminfo provides
information about individual images. To retrieve information about all images in a file, a calling
program can use GRfileinfo to determine the number of images, followed by repeated calls to
GRgetiminfo to obtain information about each image.

GRnametoindex or GRreftoindex can be used to obtain the index of a raster image in a file
knowing its name or reference number, respectively. Refer to Section 8.2.1 on page 296 for a
description of the raster image index and reference number. GRidtoref is used when the reference
number of an image is required by another routine and the raster image identifier is available.

These routines are described individually in the following subsections.

8.9.1 Obtaining Information about the Contents of a File: GRfileinfo

GRfileinfo retrieves the number of raster images and the number of file attributes contained in a
file. This information is often useful in index validation, sequential searches, or memory alloca-
tion. The syntax of GRfileinfo is as follows:

C: status = GRfileinfo(gr_id, &n_images, &n_file_attrs);

FORTRAN: status = mgfinfo(gr_id, n_images, n_file_attrs)

The number of images in the file and the total number of file attributes will be stored in the argu-
ments n_images and n_file_attrs, respectively.
June 2017 321

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
GRfileinfo returns SUCCEED (or 0) if successful or FAIL (or -1) otherwise. The parameters for
GRfileinfo are further described in (See Table 8G on page 322).

8.9.2 Obtaining Information about an Image: GRgetiminfo

It is impossible to allocate the proper amount of memory to buffer the image data when the num-
ber of components, dimension sizes, and/or data type of the image are unknown. The routine
GRgetiminfo retrieves this required information. To access information about an image, the call-
ing program must contain the following:

C: status = GRgetiminfo(ri_id, name, &n_comps, &data_type,
&interlace_mode, dim_sizes, &n_attrs);

FORTRAN: status = mggiinf(ri_id, name, n_comps, data_type, interlace_mode,
dim_sizes, n_attrs)

GRgetiminfo takes a raster image identifier as input, and returns the name, number of compo-
nents, data type, interlace mode, dimension size, and number of attributes for the corresponding
image in the arguments name, n_comps, data_type, interlace_mode, dim_sizes, and n_attrs
respectively. The number of components of an image array element corresponds to the order of a
vdata field, therefore this implementation of image components in the GR interface is flexible
enough to accommodate any representation of pixel data. The calling program determines this
representation; the GR interface recognizes only the raw byte configuration of the data. The
attribute count will only reflect the number of attributes assigned to the image array; file attributes
are not included.

GRgetiminfo returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are fur-
ther defined in Table 8G.

TABLE 8G GRfileinfo and GRgetiminfo Parameter Lists

8.9.3 Obtaining the Reference Number of a Raster Image from Its
Identifier: GRidtoref

GRidtoref returns either the reference number of the raster image identified by the parameter
ri_id, or FAIL (or -1) upon unsuccessful completion. The syntax of GRidtoref is as follows:

C: ref = GRidtoref(ri_id);

FORTRAN: ref = mgid2rf(ri_id)

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

GRfileinfo
[intn]

(mgfinfo)

gr_id int32 integer GR interface identifier

n_images int32 * integer Number of raster images in the file

n_file_attrs int32 * integer Number of global attributes in the file

GRgetiminfo
[intn]

(mggiinf)

ri_id int32 integer Raster image identifier

name char * character*(*) Name of the raster image

n_comps int32 * integer Number of pixel components in the pixel

data_type int32 * integer Pixel data type

interlace_mode int32 * integer Interlace mode of the data in the raster image

dim_sizes int32 [2] integer (2)
Array containing the size of each dimension in the
raster image

n_attrs int32 * integer Number of raster image attributes
322 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
This routine is further defined in (See Table 8H on page 325).

8.9.4 Obtaining the Index of a Raster Image from Its Reference Number:
GRreftoindex

GRreftoindex returns either the index of the raster image specified by its reference number, ref,
or FAIL (or -1) upon unsuccessful completion. The syntax of GRreftoindex is as follows:

C: ri_index = GRreftoindex(gr_id, ref);

FORTRAN: ri_index = mgr2idx(gr_id, ref)

This routine is further defined in Table 8H.

8.9.5 Obtaining the Index of a Raster Image from Its Name:
GRnametoindex

GRnametoindex returns the index of the raster image specified by its name or FAIL (or -1) upon
unsuccessful completion. The syntax of GRnametoindex is as follows:

C: ri_index = GRnametoindex(gr_id, name);

FORTRAN: ri_index = mgr2idx(gr_id, name)

This routine is further defined in Table 8H.

8.9.6 Obtaining Compression Information for a Raster Image:
GRgetcompinfo

GRgetcompinfo retrieves the type of compression used to store a raster image and, when appro-
priate, the required compression parameters. GRgetcompinfo replaces GRgetcompress because
this function has flaws, causing failure for some chunked and chunked/compressed data.

GRgetcompinfo takes one input parameter, ri_id, a raster image identifier, and two output param-
eters, comp_type, for the type of compression used when the image was written, and either c_info
(a C struct) or comp_prm (a FORTRAN-77 array) for the returned compression parameters.

Valid comp_type values are as follows:
COMP_CODE_NONE (or 0) for no compression
COMP_CODE_RLE (or 1) for RLE run-length encoding
COMP_CODE_SKPHUFF (or 3) for Skipping Huffman compression
COMP_CODE_DEFLATE (or 4) for GZIP compression
COMP_CODE_SZIP (or 5) for Szip compression (not for Fortran)
COMP_CODE_JPEG (or 7) for JPEG compression

The c_info struct is of type comp_info, contains algorithm-specific information for the library
compression routines, and is described in the hcomp.h header file.

The comp_prm parameter is an array of several elements.

For Skipping Huffman compression, comp_prm(1) contains the skip value, skphuff_skp_size.

For GZIP compression, comp_prm(1) contains the deflation value, deflate_value.

For other compression types, comp_prm is ignored. Currently, Szip is not yet supported in For-
tran GR interface.

GRgetcompinfo returns SUCCESS (or 0) if it is successful or FAIL (or -1) upon unsuccessful com-
pletion.
June 2017 323

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
The syntax of GRgetcompinfo is as follows:

C: status = GRgetcompinfo(ri_id, comp_type, c_info);

FORTRAN: status = mggcompress(ri_id, comp_type, comp_prm)

This routine is further defined in Table 8H.

8.9.7 Checking Whether a Raster Image Is To Be Mapped: GR2bmapped

This function was originally added to support the HDF4 File Content Project. The tool, produced
from the project, maps the contents of HDF4 files. Supporting for raster images was limited as
requested by the project’s sponsor. Thus, only certain types of images, which satisfy a set of con-
ditions, are to be mapped.

GR2bmapped will set tobe_mapped to TRUE if the given raster image, ri_id, satisfies the follow-
ing conditions:

• being an 8-bit raster image,

• having one component,

• being non-special or RLE compressed only, i.e., no other compressions or chunking,

or FAIL (or -1), otherwise. The syntax of GR2bmapped is as follows:

C: status = GR2bmapped(ri_id, &tobe_mapped, &name_generated);

FORTRAN: Unavailable

Another characteristic of the image to be reported by GR2bmapped is whether the image has
name that was generated by the library and, if so, name_generated will be set to TRUE. Old images
(or images created with pre-GR API) do not have a name and the library would generate a name
for it while reading in the file. The tool from the HDF4 File Content Project needs to make this
distinction.

GR2bmapped returns SUCCEED (or 0), if successful, or FAIL (or -1), otherwise. When failure
occurs, tobe_mapped and name_generated will be undefined. This routine is further defined in
Table 8H.
324 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
TABLE 8H GRidtoref, GRreftoindex, GRnametoindex, and GRgetcompinfo Parameter Lists

EXAMPLE 4. Obtaining File and Image Information.

This example illustrates the use of the routines GRfileinfo/mgfinfo and GRgetiminfo/mggiinf to
obtain information such as the number of images and attributes in an HDF file and the characteris-
tics of a raster image in the file.

In this example, the program gets the number of images in the file using the routine GRfileinfo/
mgfinfo. For each image, the program then obtains and displays its name, number of components,
data type, interlace mode, dimension sizes, and number of attributes using the routine GRgetim-
info/mggiinf.

C:
#include "hdf.h"

#define FILE_NAME "General_RImages.hdf"

main()
{
 /************************* Variable declaration **************************/

 intn status; /* status for functions returning an intn */
 int32 file_id, gr_id, ri_id,
 n_rimages, /* number of raster images in the file */
 n_file_attrs, /* number of file attributes */
 ri_index, /* index of a image */
 dim_sizes[2], /* dimensions of an image */
 n_comps, /* number of components an image contains */
 interlace_mode, /* interlace mode of an image */
 data_type, /* number type of an image */
 n_attrs; /* number of attributes belong to an image */
 char name[MAX_GR_NAME], /* name of an image */
 type_string, / mapped text of a number type */
 interlace_string; / mapped text of an interlace mode */

 /********************** End of variable declaration **********************/

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

GRidtoref
[uint16]

(mgid2rf)
ri_id int32 integer Raster image identifier

GRreftoindex
[int32]

(mgr2idx)

gr_id int32 integer GR interface identifier

ref uint16 integer Reference number of the raster image

GRnametoindex
[int32]

(mgn2ndx)

gr_id int32 integer GR interface identifier

name char * character *(*) Name of the raster image

GRgetcompinfo
[intn]

(mggcompress)

ri_id int32 integer Raster image identifier

comp_type comp_coder_t integer Type of compression

c_info comp_info N/A Pointer to compression information structure

comp_prm(1) N/A integer Compression parameter in array format

GR2bmapped
[intn]

(unavailable)

ri_id int32 integer Raster image identifier

tobe_mapped intn * integer TRUE if the image should be mapped

name_generated intn * N/A
TRUE if the image's name was generated by the
GR API, i.e., not given by applications
June 2017 325

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
 /*
 * Open the file for reading.
 */
 file_id = Hopen (FILE_NAME, DFACC_READ, 0);

 /*
 * Initialize the GR interface.
 */
 gr_id = GRstart (file_id);

 /*
 * Determine the contents of the file.
 */
 status = GRfileinfo (gr_id, &n_rimages, &n_file_attrs);

 /*
 * For each image in the file, get and display the image information.
 */
 printf ("RI# Name Components Type Interlace \
 Dimensions Attributes\n\n");
 for (ri_index = 0; ri_index < n_rimages; ri_index++)
 {
 ri_id = GRselect (gr_id, ri_index);
 status = GRgetiminfo (ri_id, name, &n_comps, &data_type,
 &interlace_mode, dim_sizes, &n_attrs);
 /*
 * Map the number type and interlace mode into text strings for output
 * readability. Note that, in this example, only two possible types
 * are considered because of the simplicity of the example. For real
 * problems, all possible types should be checked and, if reading the
 * data is desired, the size of the type must be determined based on the
 * machine where the program resides.
 */
 if (data_type == DFNT_CHAR8)
 type_string = "Char8";
 else if (data_type == DFNT_INT16)
 type_string = "Int16";
 else
 type_string = "Unknown";

 switch (interlace_mode)
 {
 case MFGR_INTERLACE_PIXEL:
 interlace_string = "MFGR_INTERLACE_PIXEL";
 break;
 case MFGR_INTERLACE_LINE:
 interlace_string = "MFGR_INTERLACE_LINE";
 break;
 case MFGR_INTERLACE_COMPONENT:
 interlace_string = "MFGR_INTERLACE_COMPONENT";
 break;
 default:
 interlace_string = "Unknown";
 break;
 } /* switch */

 /*
 * Display the image information for the current raster image.
 */
 printf ("%d %s %d %s %s %2d,%2d %d\n",
 ri_index, name, n_comps, type_string, interlace_string,
 dim_sizes[0], dim_sizes[1], n_attrs);
326 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
 /*
 * Terminate access to the current raster image.
 */
 status = GRendaccess (ri_id);
 }

 /*
 * Terminate access to the GR interface and close the HDF file.
 */
 status = GRend (gr_id);
 status = Hclose (file_id);
}

FORTRAN:
 program image_info
 implicit none
C
C Parameter declaration
C
 character*19 FILE_NAME
C
 parameter (FILE_NAME = ’General_RImages.hdf’)
 integer DFACC_READ
 parameter (DFACC_READ = 1)
C
C Function declaration
C
 integer hopen, hclose
 integer mgstart, mgselct, mgfinfo, mggiinf, mgendac, mgend

C
C**** Variable declaration ***
C
 integer status
 integer file_id, gr_id, ri_id
 integer n_rimages, n_file_attrs, ri_index
 integer n_comps, interlace_mode, n_attrs, data_type
 integer dim_sizes(2)
 character*10 type_string
 character*24 interlace_string
 character*64 name
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file for reading.
C
 file_id = hopen(FILE_NAME, DFACC_READ, 0)
C
C Initialize the GR interface.
C
 gr_id = mgstart(file_id)
C
C Determine the contents of the file.
C
 status = mgfinfo(gr_id, n_rimages, n_file_attrs)
C
C For each image in the file, get and display image information.
C
 do 100 ri_index = 0, n_rimages-1
 ri_id = mgselct(gr_id, ri_index)
June 2017 327

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
 status = mggiinf(ri_id, name, n_comps, data_type,
 + interlace_mode, dim_sizes, n_attrs)
C
C Map the number type and interlace mode into text strings for
C output readability.
C
 if(data_type .eq. 4) then
 type_string = ’DFNT_CHAR8’
 else if(data_type .eq. 22) then
 type_string = ’DFNT_INT16’
 else
 type_string = ’Unknown’
 endif
 if (interlace_mode .eq. 0) then
 interlace_string = ’MFGR_INTERLACE_PIXEL’
 else if(interlace_mode .eq. 1) then
 interlace_string = ’MFGR_INTERLACE_LINE’
 else if(interlace_mode .eq. 2) then
 interlace_string = ’MFGR_INTERLACE_COMPONENT’
 else
 interlace_string = ’Unknown’
 endif
C
C Display the image information for the current image.
C
 write(*,*) ’Image index: ’, ri_index
 write(*,*) ’Image name: ’, name
 write(*,*) ’Number of components: ’, n_comps
 write(*,*) ’Number type: ’, type_string
 write(*,*) ’Interlace mode: ’, interlace_string
 write(*,*) ’Dimnesions: ’, dim_sizes(1), dim_sizes(2)
 write(*,*) ’Number of image attributes: ’, n_attrs
 write(*,*)
C
C Terminate access to the current raster image.
C
 status = mgendac(ri_id)
100 continue
C
C Terminate access to the GR interface and close the HDF file.
 status = mgend(gr_id)
 status = hclose(file_id)
 end

8.10 GR Data Set Attributes

The GR interface provides tools that attach attributes to particular images. This capability is simi-
lar to, though more limited than, attribute function capabilities of the SD interface. The concepts
of user-defined and predefined attributes are explained in Chapter 3, Scientific Data Sets (SD
API). The GR implementation of attributes is similar to the SD implementation. Attributes are not
written out to a file until access to the object the attribute is attached to is terminated.

8.10.1Predefined GR Attributes

The GR API library has only one predefined attribute: FILL_ATTR. This attribute defines a fill
pixel, which is analogous to a fill value in the SD interface. It represents the default value that is
written to each element of an image array not explicitly written to by the calling program, i.e.,
328 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
when only a portion of the entire image array is filled with data. This value must of the same data
type as the rest of the initialized image data. The routine used to set the fill value, GRsetattr, is
explained in the next section.

8.10.2Setting User-defined Attributes: GRsetattr

GRsetattr creates or modifies an attribute for either a file or a raster image. If the attribute with
the specified name does not exist, GRsetattr creates a new one. If the named attribute already
exists, GRsetattr resets all the values that are different from those provided in its argument list.
The syntax of GRsetattr is as follows:

C: status = GRsetattr(obj_id, attr_name, data_type, n_values,
attr_value);

FORTRAN: status = mgsnatt(obj_id, attr_name, data_type, n_values, attr_value)
OR status = mgscatt(obj_id, attr_name, data_type, n_values, attr_value)

The first argument, obj_id, can either be the GR interface identifier or raster image identifier. The
argument attr_name contains the name of the attribute and can be no more than H4_MAX_GR_NAME
(or 256) characters in length. Passing the name of an existing attribute will overwrite the value
portion of that attribute.

The arguments data_type, n_values, and attr_value describe the right side of the label=value
equation. The attr_value argument contains one or more values of the same data type. The
data_type argument describes the data type for all values in the attribute and n_values contains the
total number of values in the attribute.

Note that the FORTRAN-77 version of GRsetattr has two routines; mgsnatt writes numeric
attribute data and mgscatt writes character attribute data.

GRsetattr returns either SUCCEED (or 0) or FAIL (or -1). The parameters for GRsetattr are further
described in (See Table 8I on page 334).

EXAMPLE 5. Operations on File and Raster Image Attributes.

This example illustrates the use of the routines GRsetattr/mgsnatt/mgscatt to assign attributes to
an HDF file and to an image.

In this example, the program sets two attributes to the existing file "General_RImages.hdf" and
two attributes to the image named "Image Array 2". The file is created by the program in Example
1 and the image is created by the program in Example 2. The values of the second attribute of the
image are of type int16 and the values of the other three attributes are of type char8.

C:
#include "hdf.h"

#define FILE_NAME "General_RImages.hdf"
#define IMAGE_NAME "Image Array 2"
#define F_ATT1_NAME "File Attribute 1"
#define F_ATT2_NAME "File Attribute 2"
#define RI_ATT1_NAME "Image Attribute 1"
#define RI_ATT2_NAME "Image Attribute 2"
#define F_ATT1_VAL "Contents of First FILE Attribute"
#define F_ATT2_VAL "Contents of Second FILE Attribute"
#define F_ATT1_N_VALUES 32
#define F_ATT2_N_VALUES 33
#define RI_ATT1_VAL "Contents of IMAGE’s First Attribute"
#define RI_ATT1_N_VALUES 35
June 2017 329

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
#define RI_ATT2_N_VALUES 6

main()
{
 /************************* Variable declaration **************************/

 intn status; /* status for functions returning an intn */
 int32 gr_id, ri_id, file_id,
 ri_index;
 int16 ri_attr_2[RI_ATT2_N_VALUES] = {1, 2, 3, 4, 5, 6};

 /********************** End of variable declaration **********************/

 /*
 * Open the HDF file.
 */
 file_id = Hopen (FILE_NAME, DFACC_WRITE, 0);

 /*
 * Initialize the GR interface.
 */
 gr_id = GRstart (file_id);

 /*
 * Set two file attributes to the file with names, data types, numbers of
 * values, and values of the attributes specified.
 */
 status = GRsetattr (gr_id, F_ATT1_NAME, DFNT_CHAR8, F_ATT1_N_VALUES,
 (VOIDP)F_ATT1_VAL);

 status = GRsetattr (gr_id, F_ATT2_NAME, DFNT_CHAR8, F_ATT2_N_VALUES,
 (VOIDP)F_ATT2_VAL);

 /*
 * Obtain the index of the image named IMAGE_NAME.
 */
 ri_index = GRnametoindex (gr_id, IMAGE_NAME);

 /*
 * Obtain the identifier of this image.
 */
 ri_id = GRselect (gr_id, ri_index);

 /*
 * Set two attributes to the image with names, data types, numbers of
 * values, and values of the attributes specified.
 */
 status = GRsetattr (ri_id, RI_ATT1_NAME, DFNT_CHAR8, RI_ATT1_N_VALUES,
 (VOIDP)RI_ATT1_VAL);

 status = GRsetattr (ri_id, RI_ATT2_NAME, DFNT_INT16, RI_ATT2_N_VALUES,
 (VOIDP)ri_attr_2);

 /*
 * Terminate access to the image and to the GR interface, and close the
 * HDF file.
 */
 status = GRendaccess (ri_id);
 status = GRend (gr_id);
 status = Hclose (file_id);
}

330 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
FORTRAN:
 program set_attribute
 implicit none
C
C Parameter declaration
C
 character*19 FILE_NAME
 character*13 IMAGE_NAME
 character*16 F_ATT1_NAME
 character*16 F_ATT2_NAME
 character*17 RI_ATT1_NAME
 character*17 RI_ATT2_NAME
 character*32 F_ATT1_VAL
 character*33 F_ATT2_VAL
 integer F_ATT1_N_VALUES
 integer F_ATT2_N_VALUES
 character*35 RI_ATT1_VAL
 integer RI_ATT1_N_VALUES
 integer RI_ATT2_N_VALUES
C
 parameter (FILE_NAME = ’General_RImages.hdf’,
 + IMAGE_NAME = ’Image Array 2’,
 + F_ATT1_NAME = ’File Attribute 1’,
 + F_ATT2_NAME = ’File Attribute 2’,
 + RI_ATT1_NAME = ’Image Attribute 1’,
 + RI_ATT2_NAME = ’Image Attribute 2’,
 + F_ATT1_VAL = ’Contents of First FILE Attribute’,
 + F_ATT2_VAL = ’Contents of Second FILE Attribute’,
 + F_ATT1_N_VALUES = 32,
 + F_ATT2_N_VALUES = 33,
 + RI_ATT1_VAL = ’Contents of IMAGE’’s First Attribute’,
 + RI_ATT1_N_VALUES = 35,
 + RI_ATT2_N_VALUES = 6)
 integer DFACC_WRITE, DFNT_INT16, DFNT_CHAR8
 parameter (DFACC_WRITE = 2,
 + DFNT_CHAR8 = 4,
 + DFNT_INT16 = 22)
C
C Function declaration
C
 integer hopen, hclose
 integer mgstart, mgscatt, mgsnatt , mgn2ndx,
 + mgselct, mgendac, mgend

C
C**** Variable declaration ***
C
 integer status
 integer file_id, gr_id, ri_id, ri_index
 integer*2 ri_attr_2(RI_ATT2_N_VALUES)
 integer i

 do 10 i = 1, RI_ATT2_N_VALUES
 ri_attr_2(i) = i
10 continue
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file.
C
 file_id = hopen(FILE_NAME, DFACC_WRITE, 0)
June 2017 331

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
C
C Initialize the GR interface.
C
 gr_id = mgstart(file_id)
C
C Set two file attributes to the file with names, data type, numbers of
C values, and values of attributes specified.
C
 status = mgscatt(gr_id, F_ATT1_NAME, DFNT_CHAR8,
 + F_ATT1_N_VALUES, F_ATT1_VAL)
 status = mgscatt(gr_id, F_ATT2_NAME, DFNT_CHAR8,
 + F_ATT2_N_VALUES, F_ATT2_VAL)
C
C Obtain the index of the image named IMAGE_NAMR.
C
 ri_index = mgn2ndx(gr_id, IMAGE_NAME)
C
C Obtain the identifier of this image.
C
 ri_id = mgselct(gr_id, ri_index)
C
C Set two attributes of the image with names, data types, number of
C values, and values of the attributes specified.
C
 status = mgscatt(ri_id, RI_ATT1_NAME, DFNT_CHAR8,
 + RI_ATT1_N_VALUES, RI_ATT1_VAL)
 status = mgsnatt(ri_id, RI_ATT2_NAME, DFNT_INT16,
 + RI_ATT2_N_VALUES, ri_attr_2)
C
C Terminate access to the image and to the GR interface,
C and close the HDF file.
C
 status = mgendac(ri_id)
 status = mgend(gr_id)
 status = hclose(file_id)
 end

8.10.3Querying User-Defined Attributes: GRfindattr and GRattrinfo

Each attribute associated with an object has a unique attribute index, a value ranging from 0 to the
total number of attributes attached to the object - 1. Given a GR interface or raster image identifier
and an attribute name, GRfindattr will return a valid attribute index of the file or raster image
attribute if the attribute exists. The attribute index can then be used to retrieve information about
the attribute or its values. Given a GR interface or raster image identifier and a valid attribute
index, GRattrinfo returns the name, data type, and number of values for the file or raster image
attribute if the attribute exists.

The syntax for GRfindattr and GRattrinfo is as follows:

C: attr_index = GRfindattr(obj_id, attr_name);
status = GRattrinfo(obj_id, attr_index, attr_name, &data_type,

&n_values);

FORTRAN: attr_index = mgfndat(obj_id, attr_name)
status = mgatinf(obj_id, attr_index, attr_name, data_type, n_values)

The parameter obj_id is either a GR interface identifier or a raster image identifier. The parameter
attr_name specifies the name of the attribute. The parameter attr_index specifies the index of the
attribute to be read. The attribute index is a zero-based integer and must be less than the total num-
332 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
ber of attributes assigned to the specified object. The parameter data_type specifies the data type
of the attribute. And the parameter n_values specifies the number of attribute values.

GRfindattr returns the attribute index if successful and FAIL (or -1) otherwise. GRattrinfo
returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise. The parameters for GRfind-
attr and GRattrinfo are further described in Table 8I.

8.10.4Reading User-defined Attributes: GRgetattr

GRgetattr reads the values of an attribute assigned to the object identified by the parameter
obj_id. The syntax for GRgetattr is as follows:

C: status = GRgetattr(obj_id, attr_index, values);

FORTRAN: status = mggnatt(obj_id, attr_index, values)

OR status = mggcatt(obj_id, attr_index, values)

The parameter obj_id is either a GR interface identifier or a raster image identifier. The parameter
attr_index specifies the index of the attribute to be read. The attribute index is a zero-based integer
and must be less than the total number of attributes assigned to the specified object.

It is assumed that the buffer values, allocated to hold the attribute values, is large enough to hold
the data; if not, the data read will be truncated to the size of the buffer. The size of the buffer
should be at least n_values*sizeof(data_type) bytes long. If an attribute contains multiple values,
GRgetattr will return all of them. It is not possible to read a subset of values.

Note that the FORTRAN-77 version of GRgetattr has two routines; mggnatt reads numeric
attribute data and mggcatt reads character attribute data.

GRgetattr returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise. The parameters for
GRgetattr are further described in Table 8I.
June 2017 333

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
TABLE 8I GRsetattr, GRfindattr, GRattrinfo, and GRgetattr Parameter Lists

EXAMPLE 6. Obtaining File and Image Attributes.

This example illustrates the use of the routines GRattrinfo/mgatinf, GRfindattr/mgfndat, and
GRgetattr/mggnatt/mggcatt to extract information and values of file and image attributes that
were set by the program in Example 5.

In this example, the program gets the information about each file attribute, then extracts its values.
The program then selects the second image in the file, finds the attribute named "Image Attribute
2", obtains the data type and the number of values in the attribute, and extracts its stored values.

C:
#include "hdf.h"

#define FILE_NAME "General_RImages.hdf"
#define RI_ATTR_NAME "Image Attribute 2"

main()
{
 /************************* Variable declaration **************************/

 intn status; /* status for functions returning an intn */
 int32 gr_id, ri_id, file_id,
 f_att_index, /* index of file attributes */
 ri_att_index, /* index of raster image attributes */
 data_type, /* image data type */
 n_values, /* number of values in an attribute */
 value_index, /* index of values in an attribute */
 n_rimages, /* number of raster images in the file */
 n_file_attrs; /* number of file attributes */
 char attr_name[MAX_GR_NAME]; /* buffer to hold the attribute name */
 VOIDP data_buf; /* buffer to hold the attribute values */
 int16 *int_ptr; /* int16 pointer to point to a void data buffer */
 char8 *char_ptr; /* char8 pointer to point to a void data buffer */

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

GRsetattr
[intn]

(mgsnatt/mgscatt)

obj_id int32 integer GR interface or raster image identifier

attr_name char * character*(*) Name assigned to the attribute

data_type int32 integer Data type of the attribute

n_values int32 integer Number of values in the attribute

values VOIDP
<valid numeric data

type>(*)/character*(*)
Buffer with the attribute values

GRfindattr
[int32]

(mgfndat)

obj_id int32 integer GR interface or raster image identifier

attr_name char * character*(*) Name of the attribute

GRattrinfo
[intn]

(mgatinf)

obj_id int32 integer GR interface or raster image identifier

attr_index int32 integer Index for the attribute to be read

attr_name char * character*(*) Name of the attribute

data_type int32 * integer Data type of the attribute values

n_values int32 * integer Total number of values in the attribute

GRgetattr
[intn]

(mggnatt/
mggcatt)

obj_id int32 integer GR interface or raster image identifier

attr_index int32 integer Index for the attribute to be read

values VOIDP
<valid numeric data

type>(*)/character*(*)
Buffer for the attribute values
334 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
 /********************** End of variable declaration **********************/

 /*
 * Open the HDF file.
 */
 file_id = Hopen (FILE_NAME, DFACC_READ, 0);

 /*
 * Initialize the GR interface.
 */
 gr_id = GRstart (file_id);

 /*
 * Determine the number of attributes in the file.
 */
 status = GRfileinfo (gr_id, &n_rimages, &n_file_attrs);

 if (status != FAIL && n_file_attrs > 0)
 {
 for (f_att_index = 0; f_att_index < n_file_attrs; f_att_index++)
 {
 /*
 * Get information about the current file attribute.
 */
 status = GRattrinfo (gr_id, f_att_index, attr_name, &data_type,
 &n_values);

 /*
 * Allocate a buffer to hold the file attribute data. In this example,
 * knowledge about the data type is assumed to be available from
 * the previous example for simplicity. In reality, the size
 * of the type must be determined based on the machine where the
 * program resides.
 */
 if (data_type == DFNT_CHAR8)
 {
 data_buf = malloc (n_values * sizeof (char8));
 if (data_buf == NULL)
 {
 printf ("Unable to allocate space for attribute data.\n");
 exit (1);
 }
 }
 else
 {
 printf ("Unable to determine data type to allocate data buffer.\n");
 exit (1);
 }

 /*
 * Read and display the attribute values.
 */
 status = GRgetattr (gr_id, f_att_index, (VOIDP)data_buf);
 char_ptr = (char8 *) data_buf;
 printf ("Attribute %s: ", attr_name);
 for (value_index = 0; value_index < n_values; value_index++)
 printf ("%c", char_ptr[value_index]);
 printf ("\n");

 /*
 * Free the space allocated for the data buffer.
 */
June 2017 335

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
 free (data_buf);
 } /* for */
 } /* if */

 /*
 * Select the second image in the file.
 */
 ri_id = GRselect (gr_id, 1);

 /*
 * Find the image attribute named RI_ATTR_NAME.
 */
 ri_att_index = GRfindattr (ri_id, RI_ATTR_NAME);

 /*
 * Get information about the attribute.
 */
 status = GRattrinfo (ri_id, ri_att_index, attr_name, &data_type, &n_values);

 /*
 * Allocate a buffer to hold the file attribute data. As mentioned above,
 * knowledge about the data type is assumed to be available from
 * the previous example for simplicity. In reality, the size of the
 * type must be determined based on the machine where the program resides.
 */
 if (data_type == DFNT_INT16)
 data_buf = malloc (n_values * sizeof (int16));

 /*
 * Read and display the attribute values.
 */
 status = GRgetattr (ri_id, ri_att_index, (VOIDP)data_buf);
 printf ("\nAttribute %s: ", RI_ATTR_NAME);
 int_ptr = (int16 *)data_buf;
 for (value_index = 0; value_index < n_values; value_index++)
 printf ("%d ", int_ptr[value_index]);
 printf ("\n");

 /*
 * Free the space allocated for the data buffer.
 */
 free (data_buf);

 /*
 * Terminate access to the raster image and to the GR interface, and
 * close the file.
 */
 status = GRendaccess (ri_id);
 status = GRend (gr_id);
 status = Hclose (file_id);
}

FORTRAN:
 program get_attribute
 implicit none
C
C Parameter declaration
C
 character*19 FILE_NAME
 character*17 RI_ATTR_NAME
C
 parameter (FILE_NAME = ’General_RImages.hdf’,
336 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
 + RI_ATTR_NAME = ’Image Attribute 2’)
 integer DFACC_READ, DFNT_INT16, DFNT_CHAR8
 parameter (DFACC_READ = 1,
 + DFNT_CHAR8 = 4,
 + DFNT_INT16 = 22)
C
C Function declaration
C
 integer hopen, hclose
 integer mgstart, mgfinfo, mgatinf, mggcatt, mggnatt , mgfndat,
 + mgselct, mgendac, mgend

C
C**** Variable declaration ***
C
 integer status
 integer file_id, gr_id, ri_id
 integer f_att_index, ri_att_index, data_type, n_values
 integer n_rimages, n_file_attrs
 integer*2 int_buf(10)
 character*17 attr_name
 character*80 char_buf
 integer i
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file.
C
 file_id = hopen(FILE_NAME, DFACC_READ, 0)
C
C Initialize the GR interface.
C
 gr_id = mgstart(file_id)
C
C Determine the number of attributes in the file.
C
 status = mgfinfo(gr_id, n_rimages, n_file_attrs)
 if ((status .NE. -1) .AND. (n_file_attrs .GT. 0)) then

 do 10 f_att_index = 0, n_file_attrs-1
C
C Get information about the current file attribute.
C
 status = mgatinf(gr_id, f_att_index, attr_name, data_type,
 + n_values)
C
C Check whether data type is DFNT_CHAR8 in order to use allocated buffer.
C
 if(data_type .NE. DFNT_CHAR8) then
 write(*,*)
 + ’Unable to determine data type to use allocated buffer’
 else
C
C Read and display the attribute values.
C
 status = mggcatt(gr_id, f_att_index, char_buf)
 write(*,*) ’Attribute ’, attr_name, ’ : ’,
 + char_buf(1:n_values)
 endif
10 continue

 endif
June 2017 337

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
C
C Select the second image in the file.
C
 ri_id = mgselct(gr_id, 1)
C
C Find the image attribute named RI_ATTR_NAME.
C
 ri_att_index = mgfndat(ri_id, RI_ATTR_NAME)
C
C Get information about the attribute.
C
 status = mgatinf(ri_id, ri_att_index, attr_name, data_type,
 + n_values)
C
C Read and display attribute values.
C
 status = mggnatt(ri_id, ri_att_index, int_buf)
 write(*,*) ’Attributes :’, (int_buf(i), i = 1, n_values)
C
C Terminate access to the image and to the GR interface,
C and close the HDF file.
C
 status = mgendac(ri_id)
 status = mgend(gr_id)
 status = hclose(file_id)
 end

8.11 Reading and Writing Palette Data Using the GR Interface

The GR API library includes routines that read, write, and access information about palette data
attached to GR images. Although this functionality is also provided by the HDF Palette API
library, it is not a recommended practice to use the Palette API to access and manipulate palette
objects created by GR interface routines.

The routines are named GRgetlutid, GRluttoref, GRgetlutinfo, GRwritelut, GRreqlutil, and
GRreadlut. Note that the routine names use the term LUT to refer to palettes; LUT stands for
color lookup tables.

8.11.1Obtaining a Palette Identifier: GRgetlutid

Given a palette index, the routine GRgetlutid is used to get the palette identifier for the specified
palette.

The GRgetlutid function takes two arguments, ri_id, the raster image identifier of the image that
has the palette attached to it, and lut_index, the index of the palette, and returns the value of the
palette identifier corresponding to the specified image. The syntax of GRgetlutid is as follows:

C: pal_id = GRgetlutid(ri_id, lut_index);

FORTRAN: pal_id = mggltid(ri_id, lut_index)

GRgetlutid returns the value of the palette identifier if successful and FAIL (or -1) otherwise. The
GRgetlutid parameters are further discussed in Table 8J.
338 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
8.11.2Obtaining the Number of Palettes Associated with an Image:
GRgetnluts

Given an image identifier, GRgetnluts is used to determne the number of palettes currently asso-
ciated with an image.

The GRgetnluts function takes one argument, ri_id, a raster image identifier, and returns the
number of palettes associated with that imare. The syntax of GRgetnluts is as follows:

C: n_luts = GRgetnluts(ri_id);

FORTRAN: n_luts = mggnluts(ri_id)

GRgetnluts returns the number of palettes associated with the identified image if successful and
FAIL (or -1) otherwise. The GRgetnluts parameters are further discussed in Table 8J.

8.11.3Obtaining the Reference Number of a Specified Palette: GRluttoref

Given a palette identifier, GRluttoref can be used to obtain the reference number of the specified
palette.

The GRluttoref routine takes one argument, pal_id, a palette identifier, and returns the reference
number of the palette. GRluttoref is commonly used to annotate the palette or to include the palette
within a vgroup. The syntax of GRgetlutid is as follows:

C: pal_ref = GRluttoref(pal_id);

FORTRAN: pal_ref = mglt2rf(pal_id)

GRluttoref returns the reference number of the palette if successful and 0 otherwise. The GRlut-
toref parameters are further discussed in Table 8J.

TABLE 8J GRgetlutid, GRgetlutinfo, and GRluttoref Parameter Lists

8.11.4Obtaining Palette Information: GRgetlutinfo

Given a palette identifier, GRgetlutinfo retrieves information about the palette and its compo-
nents.

The GRgetlutinfo function takes one input argument, pal_id, the identifier of the palette, and sev-
eral return parameters. The return parameters are n_comps, the number of components of the pal-
ette; data_type, the data type of the palette data; interlace_mode, the interlace mode of the stored
palette data; and num_entries, the number of entries in the palette. The syntax of GRgetlutinfo is
as follows:

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

GRgetlutid
[int32]

(mggltid)

ri_id int32 integer Raster image identifier

lut_index int32 integer Palette index

GRluttoref
[uint16]

(mglt2rf)
pal_id int32 integer Palette identifier

GRgetnluts
[intn]

(mggnluts)
ri_id int32 integer Raster image identifier
June 2017 339

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
C: status = GRgetlutinfo(pal_id, &n_comps, &data_type, &interlace_mode,
&num_entries);

FORTRAN: status = mgglinf(pal_id, n_comps, data_type, interlace_mode,
num_entries)

GRgetlutinfo returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise. The GRgetlutinfo
parameters are further discussed in Table 8J.

8.11.5Writing Palette Data: GRwritelut

GRwritelut writes palette data into the palette identified by the parameter pal_id. The syntax of
GRwritelut is as follows:

C: status = GRwritelut(pal_id, n_comps, data_type, interlace_mode,
num_entries, pal_data);

FORTRAN: status = mgwrlut(pal_id, n_comps, data_type, interlace_mode,
num_entries, pal_data)

OR status = mgwclut(pal_id, n_comps, data_type, interlace_mode,
num_entries, pal_data)

The parameter n_comps specifies the number of pixel components in the palette; it must have a
value of at least 1. The parameter data_type specifies the data type of the palette data. Refer to
(See Table 2F on page 14) for all data types supported by HDF.

The parameter interlace_mode specifies the interlacing in which the palette is to be written. The
valid values of interlace_mode are: MFGR_INTERLACE_PIXEL (or 0), MFGR_INTERLACE_LINE (or 1)
and MFGR_INTERLACE_COMPONENT (or 2). Refer to Section 8.5.1 on page 300 for further informa-
tion.

The parameter num_entries specifies the number of entries in the palette. The buffer pal_data
contains the palette data.

Note that the FORTRAN-77 version of GRwritelut has two routines; mgwrlut writes buffered
numeric palette data and mgwclut writes buffered character palette data.

GRwritelut returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are fur-
ther defined in (See Table 8K on page 342).

8.11.6Setting the Interlace Mode for a Palette: GRreqlutil

GRreqlutil sets the interlace mode for the next palette to be read. The syntax of GRreqlutil is as
follows:

C: status = GRreqlutil(pal_id, interlace_mode);

FORTRAN: status = mgrltil(pal_id, interlace_mode)

The parameter interlace_mode specifies the interlacing that will be in effect for the next palette
read operation. The valid values of interlace_mode are: MFGR_INTERLACE_PIXEL (or 0),
MFGR_INTERLACE_LINE (or 1) and MFGR_INTERLACE_COMPONENT (or 2). Refer to Section 8.5.1 on
page 300 for further information.

GRreqlutil may be called at anytime before the read operation of the specified palette. In addi-
tion, it may be called more than once; the interlace mode setting specified by the last call to the
routine will be used for the next read operation.
340 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
GRreqlutil returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are fur-
ther defined in (See Table 8K on page 342).

8.11.7Reading Palette Data: GRreadlut

GRreadlut reads data from the palette identified by the parameter pal_id. The syntax of GRread-
lut is as follows:

C: status = GRreadlut(pal_id, pal_data);

FORTRAN: status = mgrdlut(pal_id, pal_data)

OR status = mgrclut(pal_id, pal_data)

The read data will be stored in the buffer pal_data, which is assumed to be sufficient to store the
read palette data. The sufficient amount of space needed can be determined using the routine
GRgetlutinfo. The palette data is read according to the interlacing mode set by the last call to
GRreqlutil.

Note that the FORTRAN-77 version of GRreadlut has two routines; mgrdlut reads numeric pal-
ette data and mgrclut reads character palette data.

GRreadlut returns either SUCCEED (or 0) or FAIL (or -1). The parameters of this routine are further
defined in Table 8K.
June 2017 341

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
TABLE 8K GRgetlutid, GRwritelut, GRreqlutil, and GRreadlut Parameter Lists

EXAMPLE 7. Writing a Palette.

This example illustrates the use of the routines GRgetlutid/mggltid and GRwritelut/mgwclut to
attach a palette to a raster image and write data to it.

In this example, the program creates an image named "Image with Palette" in the file
"Image_with_Palette.hdf". A palette is then attached to the image and data is written to it.

C:
#include "hdf.h"

#define FILE_NAME "Image_with_Palette.hdf"
#define NEW_IMAGE_NAME "Image with Palette"
#define N_COMPS_IMG 2 /* number of image components */
#define X_LENGTH 5
#define Y_LENGTH 5
#define N_ENTRIES 256 /* number of entries in the palette */
#define N_COMPS_PAL 3 /* number of palette’s components */

main()
{
 /************************* Variable declaration **************************/

 intn status, /* status for functions returning an intn */
 i, j;
 int32 file_id, gr_id, ri_id, pal_id,
 interlace_mode,
 start[2], /* holds where to start to write for each dimension */
 edges[2], /* holds how long to write for each dimension */
 dim_sizes[2]; /* sizes of the two dimensions of the image array */

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

GRgetlutinfo
[intn]

(mgglinf)

pal_id int32 integer Palette identifier

n_comps int32* integer
Number of components in each pal-
ette element

data_type int32* integer Data type of the palette data

interlace_mode int32* integer Interlace mode of the palette data

num_entries int32* integer Buffer for the size of the palette

GRwritelut
[intn]

(mgwrlut/
mgwclut)

pal_id int32 integer Palette identifier

n_comps int32 integer
Number of components in each pal-
ette element

data_type int32 integer Type of the palette data

interlace_mode int32 integer Interlace mode of the palette data

num_entries int32 integer Number of entries in the palette

pal_data VOIDP
<valid numeric data type>(*)/

character*(*)
Buffer for the palette data to be
written

GRreqlutil
[intn]

(mgrltil)

pal_id int32 integer Palette identifier

interlace_mode intn integer
Interlace mode for the next palette
read operation

GRreadlut
[intn]

(mgrdlut/
mgrclut)

pal_id int32 integer Palette identifier

pal_data VOIDP
<valid numeric data type>(*)/

character*(*)
Buffer for the palette data to be read
342 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
 uint8 image_buf[Y_LENGTH][X_LENGTH][N_COMPS_IMG]; /* data of first image */
 uint8 palette_buf[N_ENTRIES][N_COMPS_PAL];

 /********************** End of variable declaration **********************/

 /*
 * Open the HDF file.
 */
 file_id = Hopen (FILE_NAME, DFACC_CREATE, 0);

 /*
 * Initialize the GR interface.
 */
 gr_id = GRstart (file_id);

 /*
 * Define the dimensions and interlace mode of the image.
 */
 dim_sizes[0] = X_LENGTH;
 dim_sizes[1] = Y_LENGTH;
 interlace_mode = MFGR_INTERLACE_PIXEL;

 /*
 * Create the image named NEW_IMAGE_NAME.
 */
 ri_id = GRcreate (gr_id, NEW_IMAGE_NAME, N_COMPS_IMG, DFNT_UINT8,
 interlace_mode, dim_sizes);

 /*
 * Fill the image data buffer with values.
 */
 for (i = 0; i < Y_LENGTH; i++)
 {
 for (j = 0; j < X_LENGTH; j++)
 {
 image_buf[i][j][0] = (i + j) + 1;
 image_buf[i][j][1] = (i + j) + 2;
 }
 }

 /*
 * Define the size of the data to be written, i.e., start from the origin
 * and go as long as the length of each dimension.
 */
 start[0] = start[1] = 0;
 edges[0] = X_LENGTH;
 edges[1] = Y_LENGTH;

 /*
 * Write the data in the buffer into the image array.
 */
 status = GRwriteimage (ri_id, start, NULL, edges, (VOIDP)image_buf);

 /*
 * Initialize the palette to grayscale.
 */
 for (i = 0; i < N_ENTRIES; i++) {
 palette_buf[i][0] = i;
 palette_buf[i][1] = i;
 palette_buf[i][2] = i;
 }

 /*
June 2017 343

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
 * Define palette interlace mode.
 */
 interlace_mode = MFGR_INTERLACE_PIXEL;

 /*
 * Get the identifier of the palette attached to the image NEW_IMAGE_NAME.
 */
 pal_id = GRgetlutid (ri_id, 0);

 /*
 * Write data to the palette.
 */
 status = GRwritelut (pal_id, N_COMPS_PAL, DFNT_UINT8, interlace_mode,
 N_ENTRIES, (VOIDP)palette_buf);

 /*
 * Terminate access to the image and to the GR interface, and
 * close the HDF file.
 */
 status = GRendaccess (ri_id);
 status = GRend (gr_id);
 status = Hclose (file_id);
}

FORTRAN:
 program write_palette
 implicit none
C
C Parameter declaration
C
 character*22 FILE_NAME
 character*18 NEW_IMAGE_NAME
 integer X_LENGTH
 integer Y_LENGTH
 integer N_ENTRIES
 integer N_COMPS_IMG
 integer N_COMPS_PAL
C
 parameter (FILE_NAME = ’Image_with_Palette.hdf’,
 + NEW_IMAGE_NAME = ’Image with Palette’,
 + X_LENGTH = 5,
 + Y_LENGTH = 5,
 + N_ENTRIES = 256,
 + N_COMPS_IMG = 2,
 + N_COMPS_PAL = 3)
 integer DFACC_CREATE, DFNT_CHAR8, DFNT_UINT8, MFGR_INTERLACE_PIXEL
 parameter (DFACC_CREATE = 4,
 + DFNT_CHAR8 = 4,
 + DFNT_UINT8 = 21,
 + MFGR_INTERLACE_PIXEL = 0)
C
C Function declaration
C
 integer hopen, hclose
 integer mgstart, mgcreat, mgwcimg, mggltid, mgwclut,
 + mgendac, mgend
C
C**** Variable declaration ***
C
 integer file_id, gr_id, ri_id, pal_id
 integer interlace_mode
 integer start(2), stride(2), edges(2), dim_sizes(2)
344 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
 integer status
 integer i, j
 character image_buf(N_COMPS_IMG, X_LENGTH, Y_LENGTH)
 character palette_buf(N_COMPS_PAL, N_ENTRIES)
C
C**** End of variable declaration ************************************
C
C
C Create and open the file.
C
 file_id = hopen(FILE_NAME, DFACC_CREATE, 0)
C
C Initialize the GR interface.
C
 gr_id = mgstart(file_id)
C
C Define interlace mode and dimensions of the image.
C
 interlace_mode = MFGR_INTERLACE_PIXEL
 dim_sizes(1) = X_LENGTH
 dim_sizes(2) = Y_lENGTH
C
C Create the raster image array.
C
 ri_id = mgcreat(gr_id, NEW_IMAGE_NAME, N_COMPS_IMG, DFNT_CHAR8,
 + interlace_mode, dim_sizes)
C
C Fill the image data buffer with values.
C
 do 20 i = 1, Y_LENGTH
 do 10 j = 1, X_LENGTH
 image_buf(1,j,i) = char(i + j - 1)
 image_buf(2,j,i) = char(i + j)
10 continue
20 continue

C
C Define the size of the data to be written, i.e., start from the origin
C and go as long as the length of each dimension.
C
 start(1) = 0
 start(2) = 0
 edges(1) = X_LENGTH
 edges(2) = Y_LENGTH
 stride(1) = 1
 stride(2) = 1
C
C Write the data in the buffer into the image array.
C
 status = mgwcimg(ri_id, start, stride, edges, image_buf)
C
C Initilaize the palette buffer to grayscale.
C
 do 40 i = 1, N_ENTRIES
 do 30 j = 1, N_COMPS_PAL
 palette_buf(j,i) = char(i)
30 continue
40 continue
C
C Get the identifier of the palette attached to the image NEW_IMAGE_NAME.
C
 pal_id = mggltid(ri_id, 0)
C

June 2017 345

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
C Set palette interlace mode.
C
 interlace_mode = MFGR_INTERLACE_PIXEL
C
C Write data to the palette.
C
 status = mgwclut(pal_id, N_COMPS_PAL, DFNT_UINT8, interlace_mode,
 + N_ENTRIES, palette_buf)
C
C Terminate access to the raster image and to the GR interface,
C and close the HDF file.
C
 status = mgendac(ri_id)
 status = mgend(gr_id)
 status = hclose(file_id)
 end

EXAMPLE 8. Reading a Palette.

This example illustrates the use of the routines GRgetlutinfo/mgglinf and GRreadlut/mgrclut to
obtain information about a palette and to read palette data.

In this example, the program finds and selects the image named "Image with Palette" in the file
"Image_with_Palette.hdf". Then the program obtains information about the palette and reads the
palette data.

C:
#include "hdf.h"

#define FILE_NAME "Image_with_Palette.hdf"
#define IMAGE_NAME "Image with Palette"
#define N_ENTRIES 256 /* number of elements of each color */

main()
{
 /************************* Variable declaration **************************/

 intn status, /* status for functions returning an intn */
 i, j;
 int32 file_id, gr_id, ri_id, pal_id, ri_index;
 int32 data_type, n_comps, n_entries, interlace_mode;
 uint8 palette_data[N_ENTRIES][3]; /* static because of fixed size */

 /************************* Variable declaration **************************/

 /*
 * Open the file.
 */
 file_id = Hopen (FILE_NAME, DFACC_READ, 0);

 /*
 * Initiate the GR interface.
 */
 gr_id = GRstart (file_id);

 /*
 * Get the index of the image IMAGR_NAME.
 */
 ri_index = GRnametoindex (gr_id, IMAGE_NAME);
346 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
 /*
 * Get image identifier.
 */
 ri_id = GRselect (gr_id, ri_index);

 /*
 * Get the identifier of the palette attached to the image.
 */
 pal_id = GRgetlutid (ri_id, ri_index);

 /*
 * Obtain and display information about the palette.
 */
 status = GRgetlutinfo (pal_id, &n_comps, &data_type, &interlace_mode,
 &n_entries);
 printf ("Palette: %d components; %d entries\n", n_comps, n_entries);

 /*
 * Read the palette data.
 */
 status = GRreadlut (pal_id, (VOIDP)palette_data);

 /*
 * Display the palette data. Recall that HDF supports only 256 colors.
 * Each color is defined by its 3 components. Therefore,
 * verifying the value of n_entries and n_comps is not necessary and
 * the buffer to hold the palette data can be static. However,
 * if more values or colors are added to the model, these parameters
 * must be checked to allocate sufficient space when reading a palette.
 */
 printf (" Palette Data: \n");
 for (i=0; i< n_entries; i++)
 {
 for (j = 0; j < n_comps; j++)
 printf ("%i ", palette_data[i][j]);
 printf ("\n");
 }
 printf ("\n");

 /*
 * Terminate access to the image and to the GR interface, and
 * close the HDF file.
 */
 status = GRendaccess (ri_id);
 status = GRend (gr_id);
 status = Hclose (file_id);
}

FORTRAN:
 program read_palette
 implicit none
C
C Parameter declaration
C
 character*22 FILE_NAME
 character*18 IMAGE_NAME
 integer N_ENTRIES
 integer N_COMPS_PAL
C
 parameter (FILE_NAME = ’Image_with_Palette.hdf’,
 + IMAGE_NAME = ’Image with Palette’,
 + N_COMPS_PAL = 3,
June 2017 347

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
 + N_ENTRIES = 256)
 integer DFACC_READ, DFNT_CHAR8, DFNT_UINT8, MFGR_INTERLACE_PIXEL
 parameter (DFACC_READ = 1,
 + DFNT_CHAR8 = 4,
 + DFNT_UINT8 = 21,
 + MFGR_INTERLACE_PIXEL = 0)
C
C Function declaration
C
 integer hopen, hclose
 integer mgstart, mgn2ndx, mgselct, mggltid, mgglinf,
 + mgrclut, mgendac, mgend
C
C**** Variable declaration ***
C
 integer file_id, gr_id, ri_id, ri_index, pal_id, pal_index
 integer interlace_mode
 integer data_type, n_comps, n_entries_out
 integer status
 integer i, j
 character palette_data(N_COMPS_PAL, N_ENTRIES)
C
C**** End of variable declaration ************************************
C
C
C Open the file.
C
 file_id = hopen(FILE_NAME, DFACC_READ, 0)
C
C Initialize the GR interface.
C
 gr_id = mgstart(file_id)
C
C Get the index of the image IMAGE_NAME.
C
 ri_index = mgn2ndx(gr_id, IMAGE_NAME)
C
C Get the image identifier.
C
 ri_id = mgselct(gr_id, 0)
C
C Get the identifier of the palette attached to the image.
C
 pal_index = 0
 pal_id = mggltid(ri_id, pal_index)
C
C Obtain information about the palette.
C
 status = mgglinf(pal_id, n_comps, data_type, interlace_mode,
 + n_entries_out)
 write(*,*) ’ Palette: ’, n_comps, ’ components; ’,
 + n_entries_out, ’ entries’
C
C Read the palette.
C
 status = mgrclut(pal_id, palette_data)
C
C Display the palette data.
C
 write(*,*) "Palette data"
 do 10 i = 1, n_entries_out
 write(*,*) (ichar(palette_data(j,i)), j = 1, n_comps)
10 continue
348 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
C
C Terminate access to the raster image and to the GR interface,
C and close the HDF file.
C
 status = mgendac(ri_id)
 status = mgend(gr_id)
 status = hclose(file_id)
 end

8.12 Chunked Raster Images

The GR interface also supports chunking in a manner similar to that of the SD interface. There is
one restriction on a raster image: it must be created with MFGR_INTERLACE_PIXEL (or 0) in the call
to GRcreate. We refer the reader to Section 3.11 of Chapter 3, Scientific Data Sets (SD API), and
to Chapter 14, HDF Performance Issues, for discussions of chunking concepts and performance
related topics. The GR interface provides three routines, GRsetchunk, GRsetchunkcache, and
GRgetchunkinfo, to create and maintain chunked raster images. The generic functions for read-
ing and writing GR images, GRwriteimage and GRreadimage, will write and read chunked ras-
ter images as well. However, the GR interface provides special write and read routines,
GRwritechunk and GRreadchunk, which are similar to SDwritechunk and SDreadchunk.
Compared to GRwriteimage and GRreadimage, GRwritechunk and GRreadchunk are low-
overhead but are only sutable for writing or reading complete chunks.

8.12.1Difference between a Chunked Raster Image and a Chunked SDS

Chunks of scientific datasets (SDSs) have the same dimensionality as the SDS itself and the
chunks can divide the SDS along any dimension. While raster images under the GR interface are
actually 3-dimensional arrays, 2 dimensions define the image while the third dimension (the stack
of 2-dimensional image planes) provides the composite definition of the color at each pixel of the
2-dimensional image. Chunking can be applied only across the 2-dimensions of the image; chunk-
ing cannot divide the array across the third dimension. In other words, all of the elements of the
raster image that define a single pixel must remain together in the same chunk.
June 2017 349

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
FIGURE 8b Chunks in a GR raster image dataset

8.12.2Making a Raster Image a Chunked Raster Image: GRsetchunk

GRsetchunk makes the raster image, identified by the parameter ri_id, a chunked raster image
according to the provided chunking and compression information. The syntax of GRsetchunk is
as follows:

C: status = GRsetchunk(ri_id, c_def, flags);

FORTRAN: status = mgschnk(ri_id, dim_length, comp_type, comp_prm)

The parameters c_def and flags in C or the parameters comp_type and comp_prm in FORTRAN-
77 provide the chunking and compression information and are discussed below.

In C:

The parameter c_def is a union of type HDF_CHUNK_DEF, which is defined as follows:

typedef union hdf_chunk_def_u
 {
 int32 chunk_lengths[2]; /* chunk lengths along each dim */

 struct
 {
 int32 chunk_lengths[2];
 int32 comp_type; /* compression type */
 struct comp_info cinfo;
 } comp;

 struct
 {
 /* is not used in GR interface */
 } nbit;
 } HDF_CHUNK_DEF

1c

5c

15c 16c

Multiple layers of a GR raster image.
For example, 1a, 1b, and 1c fully define
the color of pixel 1.

1b

5b

9c

13c

15b 16b

14c

9b

13b 14b

11a 12a

15a 16a

1a 2a 3a 4a

5a 6a 7a 8a

9a 10a

13a 14a

1c

5c

15c 16c

GR dataset chunking can divide a dataset only across the

1b

5b

9c

13c

15b 16b

14c

9b

13b 14b

11a 12a

15a 16a

1a 2a 3a 4a

5a 6a 7a 8a

9a 10a

13a 14a

1c

5c

15c 16c

1b

5b

9c

13c

15b 16b

14c

9b

13b 14b

15a 16a

1a 2a 3a 4a

5a 6a 7a 8a

9a 10a

13a 14a

11a 12a

2 dimensions of the image; the chunks cannot divide the
planes, which consitute the third dimension of the dataset.

Unchunked GR dataset Chunked GR dataset Alternate GR dataset
chunking format
350 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
Valid values of the parameter flags are HDF_CHUNK for chunked and uncompressed data and
(HDF_CHUNK | HDF_COMP) for chunked and compressed data. Data can be compressed using run-
length encoding (RLE), Skipping Huffman, GZIP, or Szip compression algorithms.

If the parameter flags has a value of HDF_CHUNK, the chunk dimensions must be specified in the
field c_def.chunk_lengths[]. If the parameter flags has a value of (HDF_CHUNK | HDF_COMP), the
chunk dimensions must be specified in the field c_def.comp.chunk_lengths[] and the compres-
sion type in the field c_def.comp.comp_type. Valid values of compression type values are:

COMP_CODE_NONE (or 0) for uncompressed data
COMP_CODE_RLE (or 1) for RLE compression
COMP_CODE_SKPHUFF (or 3) for Skipping Huffman compression
COMP_CODE_DEFLATE (or 4) for GZIP compression
COMP_CODE_SZIP (or 5) for Szip compression

For Skipping Huffman, GZIP, and Szip compression methods, parameters are passed in corre-
sponding fields of the structure cinfo. Specify skipping size for Skipping Huffman compression in
the field c_def.comp.cinfo.skphuff.skp_size; this value cannot be less than 1. Specify deflate
level for GZIP compression in the field c_def.comp.cinfo.deflate_level. Valid values of
deflate levels are integers from 0 to 9 inclusive. Specify the Szip options mask and the number of
pixels per block in a chunked and Szip-compressed dataset in the fields
c_info.szip.options_mask and c_info.szip.pixels_per_block, respectively.

Refer to the discussion of SDsetcompress routine in Section 3.5.2 on page 47 for the definition of
the structure comp_info.

In FORTRAN-77:

Chunk dimensions are specified in the array dim_length and the compression type in the parame-
ter comp_type. Valid compression types and their values are defined in the hdf.inc file and are
listed below:

COMP_CODE_NONE (or 0) for uncompressed data
COMP_CODE_RLE (or 1) for RLE compression
COMP_CODE_SKPHUFF (or 3) for Skipping Huffman compression
COMP_CODE_DEFLATE (or 4) for GZIP compression

The parameter comp_prm specifies the compression parameters for the Skipping Huffman and
GZIP compression methods. It contains only one element which is set to the skipping size for
Skipping Huffman compression or the deflate level for GZIP compression. Currently, Szip com-
pression is not yet supported by Fortran GR interface.

GRsetchunk returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise. The GRsetchunk
parameters are discussed further in (See Table 8L on page 361)

8.12.3Writing a Chunked Raster Image: GRwritechunk

GRwritechunk is used to write a chunk of a chunked raster image. The syntax of the GRwrite-
chunk routine is as follows:

C: status = GRwritechunk(ri_id, &origin, &datap);

FORTRAN: status = mgwchnk(ri_id, origin, datap)
status = mgwcchnk(ri_id, origin, datap)

GRwritechunk writes the entire chunk of data stored in the buffer datap to the chunked raster
image identified by the parameter ri_id. Writing starts at the location specified by the parameter
origin. This function has less overhead than GRwriteimage and should be used whenever an
entire chunk of data is to be written.
June 2017 351

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
The raster image must be stored in pixel-interlace mode.

The parameter origin is a two-dimensional array which specifies the coordinates of the chunk
according to the chunk position in the overall chunk array.

The datap buffer contains the chunk data. The data must be organized in pixel-interlace mode.

Note that the FORTRAN-77 version of GRwritechunk has two routines; mgwchnk writes buff-
ered numeric data and mgwcchnk writes buffered character data.

GRwritechunk returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise. The GRwrite-
chunk parameters are discussed further in Table 8L.
352 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
EXAMPLE 9. Creating and Writing a Chunked Raster Image

This example illustrates the use of the routines Hopen/hopen, GRstart/mgstart, GRcreate/
mgcreat, GRwritechunk/mgwchnk, GRendaccess/mgendac, GRend/mgend, and Hclose/
hclose to create an HDF file and store a raster image in it.

In this example, the program creates an image of 6 rows by 10 columns in C and 10 rows by 6 col-
umns in FORTRAN. The image is set up to be chunked with a chunk size of 3x2 in C and 2x3 in
FORTRAN and compressed with the GZIP method. Three chunks are then written to the image.
See Figure 8c through Figure 8d for illustrations.

FIGURE 8c Chunked GR image as written by C example

112 122

142

162
111 121

141

161

This image has 10 chunks, each 3x2 in size.

1010 1020

1030 1040

1050 1060

110 120

130 140

150 160

210 220

230 240

250 260

This program writes data to the first, second,
and last chunks, as indicated by the shading

Each chunk contains the
data for all three planes

110 120

130 140

150 160

of the images. The first

Upon completion of the program, the three planes of the

Plane 0

image contain the following data.

1011 1021

1031 1041

1051 1061

111 121

131 141

151 161

211 221

231 241

251 261

Plane 1

1012 1022

1032 1042

1052 1062

112 122

132 142

152 162

212 222

232 242

252 262

Plane 2

chunk, for example would
be illustrated as below.

to the right.
June 2017 353

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
FIGURE 8d Chunked GR image as written by FORTRAN example

C:
#include "hdf.h"

#define FILE_NAME “Image_Chunked.hdf”
#define IMAGE_NAME “Image with Chunks”
#define X_LENGTH 10 /* number of rows in the image */
#define Y_LENGTH 6 /* number of columns in the image */
#define NCOMPS 3 /* number of components in the image */

int main()
{
 /************************* Variable declaration **************************/

 intn status; /* status for functions returning an intn */
 int32 file_id, /* HDF file identifier */
 gr_id, /* GR interface identifier */
 ri_id, /* raster image identifier */
 dims[2], /* dimension sizes of the image array */
 origin[2], /* origin position to write each chunk */
 interlace_mode; /* interlace mode of the image */
 HDF_CHUNK_DEF chunk_def; /* Chunk defintion set */
 int32 chunk00[] = {1, 2, 3, 4, 5, 6,
 7, 8, 9, 10, 11, 12,
 13, 14, 15, 16, 17, 18 };

 int32 chunk01[] = {210, 211, 212, 220, 221, 222,

162

132 152112

161

131 151111

This image has 10 chunks, each

data to the first, second, and last

shading below.

Each chunk contains the data for all
three planes of the images. The first chunk,

140 160

for example would be illustrated as below.

Upon completion of the program, the three planes of the image contain

Plane 0
the following data.

Plane 1 Plane 2

2x3 in size. This program writes

chunks, as indicated by the

120

130 150110

140 160120

130 150110

240 260220

230 250210

1040 10601020

1030 10501010

142 162122

132 152112

242 262222

232 252212

1042 10621022

1032 10521012

141 161121

131 151111

241 261221

231 251211

1041 10611021

1031 10511011
354 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
 230, 231, 232, 240, 241, 242,
 250, 251, 252, 260, 261, 262};

 int32 chunk14[] = {1010, 1011, 1012, 1020, 1021, 1022,
 1030, 1031, 1032, 1040, 1041, 1042,
 1050, 1051, 1052, 1060, 1061, 1062};

 /********************** End of variable declaration **********************/

 /*
 * Create and open the file.
 */
 file_id = Hopen (FILE_NAME, DFACC_CREATE, 0);

 /*
 * Initialize the GR interface.
 */
 gr_id = GRstart (file_id);

 /*
 * Set dimensions of the image.
 */
 dims[0] = Y_LENGTH;
 dims[1] = X_LENGTH;

 /*
 * Create the raster image array.
 */
 ri_id = GRcreate (gr_id, IMAGE_NAME, NCOMPS, DFNT_INT32,
 MFGR_INTERLACE_PIXEL, dims);
 /*
 * Define chunked image.
 */
 chunk_def.comp.comp_type = COMP_CODE_DEFLATE;
 chunk_def.comp.cinfo.deflate.level = 6;
 chunk_def.comp.chunk_lengths[0] = 3;
 chunk_def.comp.chunk_lengths[1] = 2;
 status = GRsetchunk (ri_id, chunk_def, HDF_CHUNK | HDF_COMP);

 /*
 * Write first chunk(0,0).
 */
 origin[0] = 0;
 origin[1] = 0;
 status = GRwritechunk (ri_id, origin, (VOIDP)chunk00);

 /*
 * Write second chunk(0,1).
 */
 origin[0] = 0;
 origin[1] = 1;
 status = GRwritechunk (ri_id, origin, (VOIDP)chunk01);

 /*
 * Write third chunk(1,4).
 */
 origin[0] = 1;
 origin[1] = 4;
 status = GRwritechunk (ri_id, origin, (VOIDP)chunk14);

 /*
 * Terminate access to the raster image and to the GR interface and,
 * close the HDF file.
June 2017 355

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
 */
 status = GRendaccess (ri_id);
 status = GRend (gr_id);
 status = Hclose (file_id);
 return 0;
}

FORTRAN:
 program gr_chunking_example
 implicit none
C
C Parameter declaraction
C
 character*14 FILE_NAME
 character*14 DATASET_NAME
 parameter (FILE_NAME = ’gr_chunked.hdf’,
 . DATASET_NAME = ’gzip_comp_data’)
 integer NCOMP, MFGR_INTERLACE_PIXEL
 parameter(NCOMP = 3, MFGR_INTERLACE_PIXEL = 0)
 integer DFACC_CREATE, DFACC_READ, DFACC_WRITE
 parameter (DFACC_CREATE = 4,
 . DFACC_READ = 1,
 . DFACC_WRITE = 2)
 integer DFNT_INT32
 parameter (DFNT_INT32 = 24)
 integer X_LENGTH, Y_LENGTH, X_CH_LENGTH, Y_CH_LENGTH
 parameter (X_LENGTH = 6,
 . Y_LENGTH = 10,
 . X_CH_LENGTH = 3,
 . Y_CH_LENGTH = 2)
C
C Compression parameters.
C
 integer COMP_CODE_DEFLATE, DEFLATE_LEVEL
 parameter(COMP_CODE_DEFLATE = 4, DEFLATE_LEVEL = 6)
C
C Function declaration.
C
 integer mgstart, mgcreat, mgendac, mgend
 integer mgwchnk, mgschnk
 integer hopen, hclose
C
C**** Variable declaration ***
C
 integer ri_id, gr_id, file_id
 integer dims(2), start(2)
 integer status, il
 integer comp_prm(1), comp_type
C
C Data buffers.
C
 integer*4 chunk11(NCOMP* X_CH_LENGTH*Y_CH_LENGTH)
 integer*4 chunk21(NCOMP* X_CH_LENGTH*Y_CH_LENGTH)
 integer*4 chunk52(NCOMP* X_CH_LENGTH*Y_CH_LENGTH)
C
C Chunking dimension arrays
C
 integer ch_dims(2)
C
C**** End of variable declaration **
C
C

356 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
C Data initialization
C
 data chunk11 / 110, 111, 112, 120, 121, 122,
 . 130, 131, 132, 140, 141, 142,
 . 150, 151, 152, 160, 161, 162
 . /,
 . chunk21 /
 . 210, 211, 212, 220, 221, 222,
 . 230, 231, 232, 240, 241, 242,
 . 250, 251, 252, 260, 261, 262
 . /,
 . chunk52 /
 . 1010, 1011, 1012, 1020, 1021, 1022,
 . 1030, 1031, 1032, 1040, 1041, 1042,
 . 1050, 1051, 1052, 1060, 1061, 1062
 . /
C
C Define chunk dimensions.
C
 ch_dims(1) = Y_CH_LENGTH
 ch_dims(2) = X_CH_LENGTH
C
C Create and open the file and initiate GR interface..
C
 file_id = hopen(FILE_NAME, DFACC_CREATE, 0)
 gr_id = mgstart(file_id)
C
C Define the number of components and dimensions of the image.
C
 il = MFGR_INTERLACE_PIXEL
 dims(1) = X_LENGTH
 dims(2) = Y_LENGTH
C
C Create GR dataset.
C
 ri_id = mgcreat(gr_id, DATASET_NAME, NCOMP, DFNT_INT32, il, dims)
C

C Define chunked GR dataset using GZIP compression.
C
 comp_prm(1) = DEFLATE_LEVEL
 comp_type = COMP_CODE_DEFLATE
 status = mgschnk (ri_id, ch_dims, comp_type, comp_prm)
C
C Define the location of the first chunk and write the data.
C
 start(1) = 1
 start(2) = 1
 status = mgwchnk(ri_id, start, chunk11)
C
C Define the location of the second chunk and write the data.
C
 start(1) = 2
 start(2) = 1
 status = mgwchnk(ri_id, start, chunk21)
C
C Define the location of the third and write the data.
C
 start(1) = 5
 start(2) = 2
 status = mgwchnk(ri_id, start, chunk52)
C
C Terminate access to the array.
June 2017 357

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
C
 status = mgendac(ri_id)
C
C Terminate access to the GR interface.
C
 status = mgend(gr_id)
C
C Close the file.
C
 status = hclose(file_id)
 end

8.12.4Reading a Chunked Raster Image: GRreadchunk

GRreadchunk is used to read an entire chunk of data from a chunked raster image. The syntax of
the GRreadchunk routine is as follows:

C: status = GRreadchunk(ri_id, &origin, datap);

FORTRAN: status = mgrchnk(ri_id, origin, datap)

status = mgrcchnk(ri_id, origin, datap)

GRreadchunk reads the entire chunk of data stored from the chunked raster image identified by
the parameter ri_id and stores it in the buffer datap. The chunk to be read is specified by the
parameter origin. This function has less overhead than GRreadimage and should be used when-
ever an entire chunk of data is to be read.

The raster image must be stored in pixel-interlace mode.

The parameter origin is a two-dimensional array which specifies the coordinates of the chunk
according to the chunk position in the overall chunk array.

The datap buffer contains the chunk data. The data is organized in pixel-interlace mode.

Note that the FORTRAN-77 version of GRreadchunk has two routines; mgrchnk reads numeric
data and mgrcchnk reads character data to the buffer.

GRreadchunk returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise. GRreadchunk
will return FAIL (or -1) when an attempt is made to read from a non-chunked image. The
GRreadchunk parameters are discussed further in Table 8L.

EXAMPLE 10. Reading a Chunked Raster Image.

This example illustrates the use of the routines GRreadchunk/mgrchnk to read the raster
image’s chunked data.

In this example, the program finds and selects the image named "Image with Chunks" in the file
"Image_Chunked.hdf". Then the program obtains information about the image and reads the
image data. Only C example is available at this time.

C:
#include "hdf.h"

#define FILE_NAME "Image_Chunked.hdf"
#define IMAGE_NAME "Image with Chunks"
#define X_LENGTH 10 /* number of rows in the image */
#define Y_LENGTH 6 /* number of columns in the image */
358 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
#define NCOMPS 3 /* number of components in the image */

int main()
{
 /************************* Variable declaration **************************/

 intn status; /* status for functions returning an intn */
 int32 file_id, /* HDF file identifier */
 gr_id, /* GR interface identifier */
 ri_id, /* raster image identifier */
 dims[2], /* dimension sizes of the image array */
 origin[2], /* origin position to write each chunk */
 interlace_mode; /* interlace mode of the image */
 HDF_CHUNK_DEF chunk_def; /* Chunk defintion set */

 /************************* Variable declaration **************************/

 /*
 * Open the file.
 */
 file_id = Hopen (FILE_NAME, DFACC_READ, 0);

 /*
 * Initiate the GR interface.
 */
 gr_id = GRstart (file_id);

 /*
 * Get the index of the image IMAGR_NAME.
 */
 ri_index = GRnametoindex (gr_id, IMAGE_NAME);

 /*
 * Get image identifier.
 */
 ri_id = GRselect (gr_id, ri_index);

 /*
 * Set dimensions of the image.
 */
 dims[0] = X_LENGTH;
 dims[1] = Y_LENGTH;
 start[0] = start[1] = 0;
 edges[0] = dims[0];
 edges[1] = dims[1];

 /* Read the data in the image array. */
 status = GRreadimage (ri_id, start, NULL, edges, (VOIDP)image_data);

 /*
 * Terminate access to the image and to the GR interface, and
 * close the HDF file.
 */
 status = GRendaccess (ri_id);
 status = GRend (gr_id);
 status = Hclose (file_id);
}

June 2017 359

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
8.12.5Obtaining Information about a Chunked Raster Image:
GRgetchunkinfo

GRgetchunkinfo is used to determine whether a raster image is chunked and how chunking is
defined. The syntax of the GRgetchunkinfo routine is as follows:

C: status = GRgetchunkinfo(ri_id, &c_def, &flag);

FORTRAN: status = mggichnk(ri_id, dim_length, flag)

GRgetchunkinfo retrieves chunking information about the raster image into the parameters c_def
and flag in C and into the parameters dim_length and flag in FORTRAN-77. Note that only
chunk dimensions are retrieved; compression information is not available.

The value returned in the parameter flag indicates whether the raster image is not chunked,
chunked, or chunked and compressed. HDF_NONE (or -1) indicates that the raster image is not
chunked. HDF_CHUNK (or 0) indicates that the raster image is chunked and not compressed.
(HDF_CHUNK | HDF_COMP) (or 1) indicates that raster image is chunked and compressed with one of
the allowed compression methods: RLE, Skipping Huffman, or GZIP.

In C, if the raster image is chunked and not compressed, GRgetchunkinfo fills the array
chunk_lengths in the union c_def with the values of the corresponding chunk dimensions. If the
raster image is chunked and compressed, GRgetchunkinfo fills the array chunk_lengths in the
structure comp of the union c_def with the values of the corresponding chunk dimensions. Refer
to Section 8.12.2 on page 350 on GRsetchunk for specific information on the union
HDF_CHUNK_DEF. In C, if the chunk length for each dimension is not needed, NULL can be passed in
as the value of the parameter c_def.

In FORTRAN-77, chunk dimensions are retrieved into the array dim_length.

GRgetchunkinfo returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise. The
GRgetchunkinfo parameters are discussed further in Table 8L.

8.12.6Setting the Maximum Number of Chunks in the Cache:
GRsetchunkcache

GRsetchunkcache sets the maximum number of chunks to be cached for chunked raster image.
GRsetchunkcache has similar behavior to SDsetchunkcache. Refer to Section 3.12.2 on
page 116 for specific information. The syntax of GRsetchunkcache is as follows:

C: status = GRsetchunkcache(ri_id, maxcache, flags);

FORTRAN: status = mgscchnk(ri_id, maxcache, flags)

The maximum number of chunks is specified by the parameter maxcache. Currently, the only
valid value of the parameter flags is 0.

If GRsetchunkcache is not called, the maximum number of chunks in the cache is set to the num-
ber of chunks along the fastest-changing dimension. Since GRsetchunkcache is similar to the
routine SDsetchunkcache, refer to Section 3.12.2 on page 116 for more detailed discussion of the
routine’s behavior.

GRsetchunkcache returns the value of the parameter maxcache if successful and FAIL (or -1)
otherwise. The GRsetchunkcache parameters are discussed further in Table 8L.
360 June 2017

Chapter 8 -- General Raster Images (GR API) Table of Contents HDF User’s Guide
TABLE 8L GRsetchunk, GRgetchunkinfo, GRsetchunkcache, GRwritechunk, and
GRreadchunk Parameter Lists

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

GRsetchunk
[intn]

(mgschnk)

ri_id int32 integer Raster image identifier

c_def HDF_CHUNK_DEF N/A Chunk definition

flags int32* N/A Compression flags

dim_length N/A integer Chunk dimensions array

comp_type N/A integer Type of compression

comp_prm N/A integer Compression parameters array

GRgetchunkinfo
[intn]

(mggichnk)

ri_id int32 integer Raster image identifier

c_def HDF_CHUNK_DEF N/A Chunk definition

dim_length N/A integer Chunk dimensions array

flag int32 integer Compression flag

GRsetchunkcache
[intn]

(mgscchnk)

ri_id int32 integer Raster image identifier

maxcache int32 integer
Maximum number of chunks to
cache

flags int32 integer Flags determining routine behavior

GRreadchunk

(mgrchnk/
mgrcchnk)

ri_id int32 integer Raster image identifier

origin int32 integer
Array specifying the coordinates of
the chunk

datap VOIDP
<valid_numeric_or_

char_data_type>
Buffer with chunk data in pixel
interlace mode

GRwritechunk
[intn]

(mgwchnk/
mgwcchnk)

ri_id int32 integer Raster image identifier

origin int32 integer
Array specifying the coordinates of
the chunk

datap const VOIDP
<valid_numeric_or_

char_data_type>
Buffer with chunk data in pixel
interlace mode
June 2017 361

The HDF Group Table of Contents Chapter 8 -- General Raster Images (GR API)
362 June 2017

CHAPTER 9 -- Palettes (DFP API)
9.1 Chapter Overview

This chapter describes the routines available for storing and retrieving 8-bit palettes. An 8-bit pal-
ette is a look-up table with 256 entries, one entry for each of the 256 possible pixel values the sys-
tem hardware associates with a particular color. This chapter introduces and describes the HDF
palette data model and the DFP interface.

Note: This interface is now deprecated and superseded by the General Raster Images (GR API)
interface (Chapter 8.)

9.2 The Palette Data Model

A palette is the means by which color is applied to an image and is also referred to as a color
lookup table. It is a table in which every row contains the numerical representation of a particular
color. Palettes can be many different sizes, but HDF only supports palettes with 256 colors, corre-
sponding to the 256 different possible pixel values (0 to 255) in 8-bit raster images.

For each of the 256 colors in a palette, there are three 8-bit numbers describing its appearance.
(See Figure 9a) Each 8-bit color component represents the amount of red (or "R"), green (or "G"),
or blue (or "B") used to create a particular color. In HDF, 8-bit palettes are assumed to be orga-
nized as follows; each entry consists of three bytes: one each for R, G, and B value. The first group
of three bytes represent the R, G, and B values of the first color in the palette; the next three the R,
G, and B values of the second color; and so forth. Therefore, the 256 possible different pixel val-
ues in an image serve as an index for the 256 color entries stored in the palette.

FIGURE 9a Color Mapping Using a Palette

In the HDF library, there are four interfaces that support the reading and writing of palette data;
the raster image interfaces, covered in Chapter 6, 8-Bit Raster Images (DFR8 API), Chapter 7, 24-
June 2017 363

The HDF Group Table of Contents Chapter 9 -- Palettes (DFP API)
bit Raster Images (DF24 API), Chapter 9, Palettes (DFP API), and the DFP palette interface cov-
ered in this chapter. The raster image interfaces store palettes with raster images and the palette
interface reads and writes palettes outside of raster image sets. Palettes stored using the palette
interface are stored as isolated data objects. In other words they are not included as members of
any set, although they can be grouped with other objects using the Vgroup interface. For more
information on the Vgroup interface, refer to Chapter 5, Vgroups (V API).

9.3 The Palette API

The DFP interface consists of eight routines. The routines DFPaddpal and DFPgetpal are the pri-
mary routines for palette I/O and are used for most reading and writing operations.

9.3.1 Palette Library Routines

All C functions in the palette interface are prefaced by "DFP" and the equivalent FORTRAN-77
functions are prefaced by "dp". These routines are divided into the following categories:

• Write routines store palettes in new files or append them to existing files.

• Read routines sequentially or randomly locate palettes to be read from a named file.

The DFP function calls are more explicitly defined in the following table and in the HDF Refer-
ence Guide.

TABLE 9A DFP Library Routines

9.4 Writing Palettes

9.4.1 Writing a Palette: DFPaddpal and DFPputpal

To write a palette to an HDF file, the calling program must contain one of the following function
calls:

C: status = DFPaddpal(filename, palette);

FORTRAN: status = dpapal(filename, palette)
OR

C: status = DFPputpal(filename, palette, overwrite, filemode);

FORTRAN: status = dpppal(filename, palette, overwrite, filemode)

Category
Routine Names

Description
C FORTRAN-77

 Write

DFPaddpal dpapal Appends a palette to a file.

DFPputpal dpppal Writes a palette to a file.

DFPwrit-
eref

dpwref Sets the reference number for writing the next palette.

 Read

DFPgetpal dpgpal Retrieves the next palette in a file.

DFPlastref dplref Returns the value of the last reference number read or written.

DFPnpals dpnpals Returns the number of palettes in a file.

DFPreadref dprref Sets reference number for retrieving the next palette.

DFPrestart dprest Specifies that the next read call will get the first palette in the file.
364 June 2017

Chapter 9 -- Palettes (DFP API) Table of Contents HDF User’s Guide
DFPaddpal and DFPputpal will write a palette to an HDF file named by filename. When given a
new filename, DFPputpal and DFPaddpal creates a new file and writes the palette as the first
object in the file. When given an existing filename, DFPaddpal appends the palette to the end of
the file.

DFPputpal provides this functionality as well with additional options for how the data is handled,
providing more control over how a palette is written to file than DFPaddpal. Specifically, the
overwrite parameter determines whether or not to overwrite the last palette written to a file or to
append a new palette onto the file. The filemode parameter determines whether to create a new file
or to append the data to the previous file. Note the combination to overwrite a palette in a newly
created file is invalid and will generate an error. To overwrite a palette, filename must be the same
filename as the last file accessed through the DFP interface. The parameters for DFPaddpal and
DFPputpal are more explicitly defined in the following table.

TABLE 9B DFPputpal and DFPaddpal Parameter List

Calling DFPaddpal or DFPputpal immediately after writing an 8-bit raster image will not group
the palette with the preceding image. Palettes written to a file sequentially can be retrieved
sequentially. However, to maintain a higher level of organization between multiple palettes and
images stored in the same file, it’s a good idea to explicitly group each palette with the image to
which it belongs. To find out more about assigning a palette to an image, see Chapter 6, 8-Bit Ras-
ter Images (DFR8 API).

EXAMPLE 1. Writing a Palette

In the following code examples, DFPaddpal is used to write a palette to an HDF file named
"Example1.hdf".

C:
#include "hdf.h"

main()
{

uint8 palette_data[768];
intn i;
int32 status;

/* Initialize the palette to grayscale. */
for (i = 0; i < 256; i++) {
 palette_data[i * 3] = i;
 palette_data[i * 3 + 1] = i;
 palette_data[i * 3 + 2] = i;
}

/* Write the palette to file. */

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFPputpal
[intn]

(dpppal)

filename char * character*(*) Name of the HDF file.

palette VOIDP <valid numeric data type> 768-byte space for palette.

overwrite intn integer Palette write specification.

filemode char * character*(*) File write specification.

DFPaddpal
[intn]

(dpapal)

filename char * character*(*) Name of the HDF file.

palette VOIDP <valid numeric data type> 768-byte space with palette.
June 2017 365

The HDF Group Table of Contents Chapter 9 -- Palettes (DFP API)
status = DFPaddpal("Example1.hdf", (VOIDP)palette_data);

}

FORTRAN:
 PROGRAM WRITE PALETTE

 integer dpapal, status, i
 character palette_data(768)

C Initialize the palette to greyscale.
 do 10, i = 1, 256
 palette_data((i - 1) * 3 + 1) = char(i - 1)
 palette_data((i - 1) * 3 + 2) = char(i - 1)
 palette_data((i - 1) * 3 + 3) = char(i - 1)
10 continue

C Write the palette to the HDF file.
 status = dpapal(’Example1.hdf’, palette_data)

 end

9.4.2 Specifying the Reference Number of a Palette: DFPwriteref

DFPwriteref specifies the reference number of the palette to be written on the next call to
DFPaddpal or DFPputpal:

C: status = DFPwriteref(filename, ref);

status = DFPaddpal(filename, palette);

FORTRAN: status = dpwref(filename, ref)

status = dpapal(filename, palette)

DFPwriteref assigns the specified reference number to the next palette written to the file file-
name. If the value of ref is the same as the reference number of an existing palette, the existing
palette will be overwritten.

The parameters of DFPwriteref are further described in the following table.

TABLE 9C DFPwriteref Parameter List

9.5 Reading a Palette

The DFP programming model for reading a palette is similar to that for writing a palette - only the
palette read call is required.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type

Description
C

FORTRAN-
77

DFPwriteref
[intn]

(dpwref)

filename char * character*(*) Name of the HDF file containing the palette.

ref uint16 integer
Reference number for the next call to DFPaddpal or
DFPputpal.
366 June 2017

Chapter 9 -- Palettes (DFP API) Table of Contents HDF User’s Guide
9.5.1 Reading a Palette: DFPgetpal

DFPgetpal is the only function required to read a palette. If the file is being opened for the first
time, DFPgetpal returns the first palette in the file. Subsequent calls will return successive pal-
ettes in the file. In this way palettes are read in the same order in which they were written to the
file.

To read a palette from an HDF file, the calling program must contain the following routines:

C: status = DFPgetpal(filename, palette);

FORTRAN: status = dpgpal(filename,palette)

DFPgetpal retrieves the next palette from the HDF file specified by filename. The space allocated
for the palette is specified by palette and must be at least 768 bytes. When DFPgetpal is first
called, it returns the first palette in the file. Subsequent calls to DFPgetpal will return successive
palettes in the order in which they are stored in the file, including those stored via the DFR8 inter-
face.

The parameters of DFPgetpal are defined in the following table.

TABLE 9D DFPgetpal Parameter List

EXAMPLE 2. Reading a Palette

The following examples demonstrate the method used to read a palette from the "Example1.hdf"
HDF file created in Example 1.

C:
#include "hdf.h"

main()
{

uint8 palette_data[768];
intn status;

/* Read the palette data from a file. */
status = DFPgetpal("Example1.hdf", (VOIDP)palette_data);

}

FORTRAN:
 PROGRAM READ PALETTE

 integer dpgpal, status
 character palette_data(768)

C Read the palette from the HDF file.
 status = dpgpal(’Example1.hdf’, palette_data)

 end

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFPgetpal
[intn]

(dpapal)

filename char * character*(*) Name of the HDF file.

palette VOIDP <valid numeric data type> 768-byte buffer for the palette.
June 2017 367

The HDF Group Table of Contents Chapter 9 -- Palettes (DFP API)
9.5.2 Reading a Palette with a Given Reference Number: DFPreadref

DFPreadref is used to access specific palettes stored in files containing multiple palettes. It is the
optionally called before DFPgetpal to set the next palette to be accessed to be the specified pal-
ette. DFPreadref can be used in connection with vgroups, which identify their members by tag/
reference number pair.

To access a specific palette, use the following calling sequence:

C: true_false = DFPreadref(filename, ref);
status = DFPgetpal(filename, palette);

FORTRAN: true_false = dprref(filename, ref)
status = dpgpal(filename, palette)

DFPreadref specifies the reference number for the next read operation performed on the HDF file
filename to the reference number specified by ref.

Due to an oversight in the library, in very rare cases, a palette may not be seen by the DFP API,
the application may need to use GR API to obtain it. Please refer to Appendix D, Issue of Missing
Palettes of this document for a detailed description of the issue and for help in determining which
functions to use.

The parameters of DFPreadref are further defined in the following table.

TABLE 9E DFPreadref Parameter List

9.5.3 Specifying the Next Palette to be Accessed to be the First Palette:
DFPrestart

DFPrestart causes the next DFPgetpal to read from the first palette in the file, rather than the
palette following the one that was most recently read. DFPrestart has the following syntax:

C: status = DFPrestart();

FORTRAN: status = dprest()

9.6 Other Palette Routines

9.6.1 Querying the Number of Palettes in a File: DFPnpals

DFPnpals returns the total number palettes in a file and has the following syntax:

C: num_of_pals = DFPnpals(filename);

FORTRAN: num_of_pals = dpnpals(filename)

The parameter of DFPnpals is further defined in the following table.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type

Description
C

FORTRAN-
77

DFPreadref
[intn]

(dprref)

filename char * character*(*) Name of the HDF file.

ref uint16 integer Reference number of the next palette to be read.
368 June 2017

Chapter 9 -- Palettes (DFP API) Table of Contents HDF User’s Guide
TABLE 9F DFPnpals Parameter List

9.6.2 Obtaining the Reference Number of the Most Recently Accessed
Palette: DFPlastref

DFPlastref returns the reference number most recently used in writing or reading a palette. This
routine is used for attaching annotations to palettes and adding palettes to vgroups.

The following calling sequence uses DFPlastref to find the reference number of the palette most
recently written to an HDF file:

C: status = DFPaddpal(filename, palette, width, height, compress);
lastref = DFPlastref();

FORTRAN: status = dpapal(filename, palette, width, height, compress)
lastref = dplref()

DFPputpal or DFPgetpal can be used in place of DFPaddpal with similar results.

9.7 Backward Compatibility Issues

As HDF has evolved, a variety of internal structures have been used to store palettes, with differ-
ent tags used to represent them. To maintain backward compatibility with older versions of HDF,
the palette interface supported by HDF version 4.0 recognizes palettes stored using all previously-
used HDF tags. A detailed description of the tags and structures used to store palettes is in the
HDF Specifications and Developer’s Guide v3.2 which can be found from the HDF web site at
http://www.hdfgroup.org/.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type

Description
C

FORTRAN-
77

DFPnpals
[intn]

(dpnpals)
filename char * character*(*) Name of the HDF file.
June 2017 369

The HDF Group Table of Contents Chapter 9 -- Palettes (DFP API)
370 June 2017

CHAPTER 10 -- Annotations (AN API)
10.1 Chapter Overview

The HDF annotation interface, the AN interface, supports the storage of labels and descriptions to
HDF files and the data objects they contain. This chapter explains the methods used to read and
write file and data object annotations using the AN interface.

Note that the AN interface works with multiple files and supersedes the single-file annotations
interface, the DFAN interface, described in Chapter 11, Single-file Annotations (DFAN API). Fur-
ther note that the AN interface can also read files written by DFAN interface routines.

10.2 The Annotation Data Model

When working with different data types, it is often convenient to identify the contents of a file by
adding a short text description or annotation. An annotation serves as the explanation for a file or
data object, as in "COLLECTED 12/14/90" or "BLACK HOLE SIMULATION". The annotation can be as
short as a name or as long as a portion of source code. For example, if the data originated as satel-
lite data, the annotation might include the source of the data, pertinent environmental conditions,
or other relevant information. In the case of a hypothetical black hole simulation, the annotation
might contain source code for the program that produced the data.

HDF annotations are designed to accommodate a wide variety of information including titles,
comments, variable names, parameters, formulas, and source code. In fact, HDF annotations can
encompass any textual information regarding the collection, meaning, or intended use of the data.

Annotations can be attached to files or data objects, and are themselves data objects identifiable
by a tag/reference number pair. Refer to Chapter 2, HDF Fundamentals, for a description of tag/
reference number pairs.

10.2.1 Labels and Descriptions

Annotations come in two forms: labels and descriptions. Labels are short annotations used for
assigning things like titles or time stamps to a file or its data objects. Longer annotations are called
descriptions and typically contain more extensive information, such as a source code module or
mathematical formulae.

Labels are defined as a null-terminated string of characters. Descriptions may contain any
sequence of ASCII characters.

In addition to the distinction made between labels and descriptions, HDF distinguishes between
file annotations and object annotations.
June 2017 371

The HDF Group Table of Contents Chapter 10 -- Annotations (AN API)
10.2.2 File Annotations

File annotations are assigned to a file to describe the origin, meaning, or intended use of its data.
Any HDF file can be annotated with a label, description, or combination of both. (See Figure 10a)
The number of labels or descriptions an HDF file may contain is limited to the maximum number
of tag/reference number pairs. File annotations may be assigned in any order and at any time after
a file is created.

FIGURE 10a File and Object Annotations

Although it is possible to use a file annotation to describe a data object in a file, this practice is not
recommended. Each data object should be described by its own data object annotation as it is
added to the file.

10.2.3 Object Annotations

Object annotations are assigned to individual data objects to explain their origin, meaning, or
intended use. Because object annotations are assigned to individual objects, their use requires an
understanding of HDF tags and reference numbers (see Chapter 2, HDF Fundamentals).

The annotation interface takes advantage of this identification scheme by including the object’s
tag/reference number pair with the text of the annotation. Consider a scientific data set identified
by the tag DFTAG_NDG and the reference number 10. (See Figure 10b) All object annotations
assigned to this particular data set must be prefaced with the tag DFTAG_NDG followed by the refer-
ence number 10.

FIGURE 10b Object Annotations with Tag/Reference Number Pairs

File Annotations

HDF File

"This is a file label"

"This is a file description."

"This is another file label"

"This is another file description."

RIS8VgroupSDS

Object Annotations

"SDS_LABEL" "VG_LABEL" "This is a RIS8 description."

Object Annotations

Scientific Data Set

DFTAG_NDG, 10, "This is an object label." DFTAG_NDG, 10, "This is an object description."

tag = DFTAG_NDG, ref = 10
372 June 2017

Chapter 10 -- Annotations (AN API) Table of Contents HDF User’s Guide
10.2.4 Terminology

The following pairs of terms are used interchangeably in the following discussions: data object
annotation and data annotation; data object label and data label; data object description and
data description.

10.3 The AN interface

The AN interface permits concurrent operations on a set of annotations that exist in more than one
file rather than requiring the program to deal with the annotations on a file-by-file basis.

10.3.1 AN Library Routines

The C routine names of the AN interface are prefaced by the string "AN" and the FORTRAN-77
routine names are prefaced by "af". These routines are divided into the following categories:

• Access routines initialize and terminate access to the AN interface and the annotation.

• Read/write routines read and write file or object annotations.

• General inquiry routines return information about the annotations.

The AN routines are listed in Table 10A and are described in more detail in subsequent sections of
this chapter.
June 2017 373

The HDF Group Table of Contents Chapter 10 -- Annotations (AN API)
TABLE 10A AN Library Routines

10.3.2 Type and Tag Definitions Used in the AN Interface

The AN interface uses the four general annotation types used in HDF: the data label, the data
description, the file label and the file description. These annotation types correspondingly map to
the AN_DATA_LABEL (or 0), the AN_DATA_DESC (or 1), the AN_FILE_LABEL (or 2) and the
AN_FILE_DESC (or 3) definitions. Several routines in the AN interface require one of these type
definitions to be passed in as an argument to designate the kind of annotation to be created or
accessed.

10.3.3 Programming Model for the AN Interface

As with the GR and SD interfaces, the programming model for the AN interface allows several
files to be open concurrently. The contents of these files can be operated on simultaneously as
long as the calling program accurately keeps track of each interface. The file and object identifi-
ers returned by the interface. Each object identifier and file identifier must be explicitly disposed
of before the termination of the calling program.

The AN interface writes file labels, file descriptions, data object labels, and data object descrip-
tions according to the following programming model:

1. Open the HDF file.

2. Initialize the AN interface.

3. Create a file annotation or a data annotation.

Category
Routine Names

Description
C FORTRAN-77

Access

ANstart afstart Initializes the AN interface (Section 10.3.4 on page 375)

ANcreate afcreate Creates a new data annotation (Section 10.3.4 on page 375)

ANcreatef affcreate Creates a new file annotation (Section 10.3.4 on page 375)

ANselect afselect Obtains an existing annotation (Section 10.5.1 on page 381)

ANendaccess afendaccess Terminates access to an annotation (Section 10.3.4 on page 375)

ANend afend Terminates access to AN interface (Section 10.3.4 on page 375)

Read/write
ANreadann afreadeann Reads an annotation (Section 10.5.2 on page 382)

ANwriteann afwriteann Writes an annotation (Section 10.4 on page 376)

General Inquiry

ANannlen afannlen Returns the length of an annotation (Section 10.6.2 on page 386)

ANannlist afannlist
Retrieves the annotation identifiers of an object (Section 10.6.4
on page 387)

ANatype2tag afatypetag
Returns the annotation tag corresponding to an annotation type
(Section 10.6.8 on page 388)

ANfileinfo affileinfo
Retrieves the number of annotations of each type in a file
(Section 10.6.1 on page 386)

ANnumann afnumann
Returns the number of annotations of the given type attached to
an object (Section 10.6.3 on page 386)

ANget_tagref afgettagref
Retrieves the tag/reference number pair of an annotation speci-
fied by its index (Section 10.6.5 on page 387)

ANid2tagref afidtagref
Retrieves the tag/reference number pair of an annotation speci-
fied by its identifier (Section 10.6.6 on page 388)

ANtag2atype aftagatype
Returns the annotation type corresponding to an annotation tag
(Section 10.6.9 on page 389)

ANtagref2id aftagrefid
Returns the identifier of an annotation given its tag/reference
number pair (Section 10.6.7 on page 388)
374 June 2017

Chapter 10 -- Annotations (AN API) Table of Contents HDF User’s Guide
4. Perform the desired operations on the annotation.

5. Terminate access to the annotation.

6. Terminate access to the AN interface.

7. Close the HDF file.

To create a file or object annotation, the calling program must contain the following AN routine
calls:

C: file_id = Hopen(filename, file_access_mode, num_dds_block);
an_id = ANstart(file_id);

ann_id = ANcreatef(an_id, annot_type);
OR ann_id = ANcreate(an_id, obj_tag, obj_ref, annot_type);

<Optional operations>

status = ANendaccess(ann_id);
status = ANend(an_id);
status = Hclose(file_id);

FORTRAN: file_id = hopen(filename, file_access_mode, num_dds_block)
an_id = afstart(file_id)

ann_id = affcreate(an_id, annot_type)
OR ann_id = afcreate(an_id, obj_tag, obj_ref, annot_type)

<Optional operations>

status = afendaccess(ann_id)
status = afend(an_id)
status = hclose(file_id)

10.3.4 Accessing Files and Annotations: ANstart, ANcreatef, and ANcreate

An HDF file must be opened by Hopen before it can be accessed using the AN interface. Hopen
is described in Chapter 2, HDF Fundamentals.

ANstart initializes the AN interface for subsequent AN interface operations. ANstart takes one
argument, the file identifier, file_id, returned by Hopen, and returns an AN interface identifier,
an_id or FAIL (or -1) upon unsuccessful completion.

ANcreatef creates a file label or file description. It takes two parameters: the AN interface identi-
fier, an_id, returned by ANstart, and the type of the file annotation to be created, annot_type. The
parameter annot_type must be set to either AN_FILE_LABEL (or 2) or AN_FILE_DESC (or 3). ANcre-
atef returns the file annotation identifier (ann_id) if successful, and FAIL (or -1) otherwise.

ANcreate creates a data label or data description. It takes four parameters: an_id, obj_tag,
obj_ref, and annot_type. The parameter an_id is the AN interface identifier, returned by ANstart.
The parameters obj_tag and obj_ref are the tag/reference number pair of the object the annotation
will be assigned to. The parameter annot_type specifies the type of the data annotation. It must be
set to either AN_DATA_LABEL (or 0) or AN_DATA_DESC (or 1). The annotation type definitions are
defined in the header file "hdf.h".

ANcreate returns the data annotation identifier (ann_id) if successful and FAIL (or -1) otherwise.
The parameters of ANcreate, ANcreatef, and ANstart are further defined in Table 10B.

10.3.5 Terminating Access to Annotations and Files: ANendaccess and
June 2017 375

The HDF Group Table of Contents Chapter 10 -- Annotations (AN API)
ANend

ANendaccess terminates access to the annotation identified by the parameter ann_id, which is
returned by ANcreate or ANcreatef. Any subsequent attempts to access this annotation identifier
will result in a value of FAIL being returned. One ANendaccess must be called for every ANcre-
ate, ANcreatef, or ANattach. Each ANendaccess returns either SUCCEED (or 0) or FAIL (or -1).

ANend terminates access to the AN interface identified by the parameter an_id, which is returned
by ANstart. Any subsequent attempts to access the AN interface identifier or to use AN routines
will result in a value of FAIL being returned.

ANend returns either SUCCEED (or 0) or FAIL (or -1). The parameters of ANendaccess and
ANend are defined in Table 10B.

The HDF file must be closed by Hclose after all calls to ANend have been properly made. Hclose
is described in Chapter 2, HDF Fundamentals.

TABLE 10B ANstart, ANcreate, ANcreatef, ANendaccess and ANend Parameter Lists

10.4 Writing an Annotation: ANwriteann

The AN programming model for writing an annotation is as follows:

1. Create a file annotation or a data annotation.

2. Write to the annotation.

3. Terminate access to the annotation.

To write a file or data annotation, the calling program must contain the following routine calls:

C: file_id = Hopen(filename, file_access_mode, num_dds_block);
an_id = ANstart(file_id);

ann_id = ANcreatef(an_id, annot_type);
OR ann_id = ANcreate(an_id, obj_tag, obj_ref, annot_type);

status = ANwriteann(ann_id, ann_text, ann_length);
status = ANendaccess(ann_id);
status = ANend(an_id);

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

ANstart
[int32]

(afstart)
file_id int32 integer File identifier

ANcreate
[int32]

(afcreate)

an_id int32 integer AN interface identifier

obj_tag uint16 integer Tag of the object to be annotated

obj_ref uint16 integer Reference number of the object to be annotated

annot_type ann_type integer Data annotation type

ANcreatef
[int32]

(affcreate)

an_id int32 integer AN interface identifier

annot_type ann_type integer File annotation type

ANendaccess
[intn]

(afendaccess)
ann_id int32 integer Annotation identifier

ANend
[int32]
(afend)

an_id int32 integer AN interface identifier
376 June 2017

Chapter 10 -- Annotations (AN API) Table of Contents HDF User’s Guide
status = Hclose(file_id);

FORTRAN: file_id = hopen(filename, file_access_mode, num_dds_block)
an_id = afstart(file_id)

ann_id = affcreate(an_id, annot_type)
OR ann_id = afcreate(an_id, obj_tag, obj_ref, annot_type)

status = afwriteann(ann_id, ann_text, ann_length)
status = afendaccess(ann_id)
status = afend(an_id)
status = hclose(file_id)

ANwriteann writes the annotation text given in the parameter ann_text to the annotation specified
by ann_id. The parameter ann_length specifies the number of characters in the annotation text,
not including the NULL character. If the annotation has already been written with text, ANwrite-
ann will overwrite the current text.

ANwriteann returns either SUCCEED (or 0) or FAIL (or -1). The parameters of ANwriteann are
further defined in Table 10C.

TABLE 10C ANwriteann Parameter List

EXAMPLE 1. Creating File and Data Annotations

This example illustrates the use of ANcreatef/affcreate to create file annotations and ANcreate/
afcreate to create data annotations.

In this example, the program creates an HDF file named "General_HDFobjects.hdf" then attaches
to it two annotations, a file label and a file description. Within the HDF file, the program creates
a vgroup named "AN Vgroup" and attaches to it two annotations, a data label and a data descrip-
tion. Refer to Chapter 5, Vgroups (V API), for a discussion of the V interface routines used in this
example.

Note that the names AN_FILE_LABEL, AN_FILE_DESC, AN_DATA_LABEL, and AN_DATA_DESC are
defined by the library to specify the type of the annotation to be accessed.

C:
#include "hdf.h"

#define FILE_NAME "General_HDFobjects.hdf"
#define VG_NAME "AN Vgroup"
#define FILE_LABEL_TXT "General HDF objects"
#define FILE_DESC_TXT "This is an HDF file that contains general HDF objects"
#define DATA_LABEL_TXT "Common AN Vgroup"
#define DATA_DESC_TXT "This is a vgroup that is used to test data annota-
tions"

main()
{
 /************************* Variable declaration **************************/

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

ANwriteann
[int32]

(afwriteann)

ann_id int32 integer Annotation identifier

ann_text char * character*(*) Text of the annotation

ann_length int32 integer Number of characters in the annotation
June 2017 377

The HDF Group Table of Contents Chapter 10 -- Annotations (AN API)
 intn status_n; /* returned status for functions returning an intn */
 int32 status_32, /* returned status for functions returning an int32 */
 file_id, /* HDF file identifier */
 an_id, /* AN interface identifier */
 file_label_id, /* file label identifier */
 file_desc_id, /* file description identifier */
 data_label_id, /* data label identifier */
 data_desc_id, /* data description identifier */
 vgroup_id;
 uint16 vgroup_tag, vgroup_ref;

 /********************** End of variable declaration **********************/

 /*
 * Create the HDF file.
 */
 file_id = Hopen (FILE_NAME, DFACC_CREATE, 0);

 /*
 * Initialize the AN interface.
 */
 an_id = ANstart(file_id);

 /*
 * Create the file label.
 */
 file_label_id = ANcreatef(an_id, AN_FILE_LABEL);

 /*
 * Write the annotations to the file label.
 */
 status_32 = ANwriteann(file_label_id, FILE_LABEL_TXT,
 strlen (FILE_LABEL_TXT));

 /*
 * Create file description.
 */
 file_desc_id = ANcreatef(an_id, AN_FILE_DESC);

 /*
 * Write the annotation to the file description.
 */
 status_32 = ANwriteann(file_desc_id, FILE_DESC_TXT,
 strlen (FILE_DESC_TXT));

 /*
 * Create a vgroup in the V interface. Note that the vgroup’s ref number
 * is set to -1 for creating and the access mode is "w" for writing.
 */
 status_n = Vstart(file_id);
 vgroup_id = Vattach(file_id, -1, "w");
 status_32 = Vsetname (vgroup_id, VG_NAME);

 /*
 * Obtain the tag and ref number of the vgroup for subsequent
 * references.
 */
 vgroup_tag = (uint16) VQuerytag (vgroup_id);
 vgroup_ref = (uint16) VQueryref (vgroup_id);

 /*
 * Create the data label for the vgroup identified by its tag
378 June 2017

Chapter 10 -- Annotations (AN API) Table of Contents HDF User’s Guide
 * and ref number.
 */
 data_label_id = ANcreate(an_id, vgroup_tag, vgroup_ref, AN_DATA_LABEL);

 /*
 * Write the annotation text to the data label.
 */
 status_32 = ANwriteann(data_label_id, DATA_LABEL_TXT,
 strlen(DATA_LABEL_TXT));

 /*
 * Create the data description for the vgroup identified by its tag
 * and ref number.
 */
 data_desc_id = ANcreate(an_id, vgroup_tag, vgroup_ref, AN_DATA_DESC);

 /*
 * Write the annotation text to the data description.
 */
 status_32 = ANwriteann(data_desc_id, DATA_DESC_TXT, strlen(DATA_DESC_TXT));

 /*
 * Teminate access to the vgroup and to the V interface.
 */
 status_32 = Vdetach(vgroup_id);
 status_n = Vend(file_id);

 /*
 * Terminate access to each annotation explicitly.
 */
 status_n = ANendaccess(file_label_id);
 status_n = ANendaccess(file_desc_id);
 status_n = ANendaccess(data_label_id);
 status_n = ANendaccess(data_desc_id);

 /*
 * Terminate access to the AN interface and close the HDF file.
 */
 status_32 = ANend(an_id);
 status_n = Hclose(file_id);
}

FORTRAN:
 program create_annotation
 implicit none
C
C Parameter declaration
C
 character*22 FILE_NAME
 character*9 VG_NAME
 character*19 FILE_LABEL_TXT
 character*53 FILE_DESC_TXT
 character*16 DATA_LABEL_TXT
 character*54 DATA_DESC_TXT
C
 parameter (FILE_NAME = ’General_HDFobjects.hdf’,
 + VG_NAME = ’AN Vgroup’,
 + FILE_LABEL_TXT = ’General HDF objects’,
 + DATA_LABEL_TXT = ’Common AN Vgroup’,
 + FILE_DESC_TXT =
 + ’This is an HDF file that contains general HDF objects’,
 + DATA_DESC_TXT =
June 2017 379

The HDF Group Table of Contents Chapter 10 -- Annotations (AN API)
 + ’This is a vgroup that is used to test data annotations’)
 integer DFACC_CREATE
 parameter (DFACC_CREATE = 4)
 integer AN_FILE_LABEL, AN_FILE_DESC, AN_DATA_LABEL, AN_DATA_DESC
 parameter (AN_FILE_LABEL = 2,
 + AN_FILE_DESC = 3,
 + AN_DATA_LABEL = 0,
 + AN_DATA_DESC = 1)
C
C Function declaration
C
 integer hopen, hclose
 integer afstart, affcreate, afwriteann, afcreate,
 + afendaccess, afend
 integer vfstart, vfatch, vfsnam, vqref, vqtag, vfdtch, vfend

C
C**** Variable declaration ***
C
 integer status
 integer file_id, an_id
 integer file_label_id, file_desc_id
 integer data_label_id, data_desc_id
 integer vgroup_id, vgroup_tag, vgroup_ref
C
C**** End of variable declaration ************************************
C
C
C Create the HDF file.
C
 file_id = hopen(FILE_NAME, DFACC_CREATE, 0)
C
C Initialize the AN interface.
C
 an_id = afstart(file_id)
C
C Create the file label.
C
 file_label_id = affcreate(an_id, AN_FILE_LABEL)
C
C Write the annotation to the file label.
C
 status = afwriteann(file_label_id, FILE_LABEL_TXT,
 + len(FILE_LABEL_TXT))
C
C Create file description.
C
 file_desc_id = affcreate(an_id, AN_FILE_DESC)
C
C Write the annotation to the file description.
C
 status = afwriteann(file_desc_id, FILE_DESC_TXT,
 + len(FILE_DESC_TXT))
C
C Create a vgroup in the file. Note that the vgroup’s ref number is
C set to -1 for creating and the access mode is ’w’ for writing.
C
 status = vfstart(file_id)
 vgroup_id = vfatch(file_id, -1, ’w’)
 status = vfsnam(vgroup_id, VG_NAME)
C
C Obtain the tag and reference number of the vgroup for subsequent
C references.
380 June 2017

Chapter 10 -- Annotations (AN API) Table of Contents HDF User’s Guide
C
 vgroup_ref = vqref(vgroup_id)
 vgroup_tag = vqtag(vgroup_id)
C
C Create the data label for the vgroup identified by its tag and ref
C number.
C
 data_label_id = afcreate(an_id, vgroup_tag, vgroup_ref,
 + AN_DATA_LABEL)
C
C Write the annotation text to the data label.
C
 status = afwriteann(data_label_id, DATA_LABEL_TXT,
 + len(DATA_LABEL_TXT))

C
C Create the data description for the vgroup identified by its tag and ref.
C
 data_desc_id = afcreate(an_id, vgroup_tag, vgroup_ref,
 + AN_DATA_DESC)
C
C Write the annotation text to the data description.
C
 status = afwriteann(data_desc_id, DATA_DESC_TXT,
 + len(DATA_DESC_TXT))
C
C Terminate access to the vgroup and to the V interface.
C
 status = vfdtch(vgroup_id)
 status = vfend(file_id)
C
C Terminate access to each annotation explicitly.
C
 status = afendaccess(file_label_id)
 status = afendaccess(file_desc_id)
 status = afendaccess(data_label_id)
 status = afendaccess(data_desc_id)
C
C Terminate access to the AN interface and close the HDF file.
C
 status = afend(an_id)
 status = hclose(file_id)
 end

10.5 Reading Annotations Using the AN Interface

Reading an annotation is done by first selecting the desired annotation of the appropriate type
using ANselect, then reading the annotation text using ANreadann. These two routines are
described in this section.

10.5.1 Selecting an Annotation: ANselect

ANselect obtains the identifier of the annotation specified by its index, index, and by its annota-
tion type, annot_type. The syntax for ANselect is as follows:

C: ann_id = ANselect(an_id, index, annot_type);

FORTRAN: ann_id = afselect(an_id, index, annot_type)
June 2017 381

The HDF Group Table of Contents Chapter 10 -- Annotations (AN API)
The parameter index is a nonnegative integer and is less than the total number of annotations of
type annot_type in the file. Use ANfileinfo, described in Section 10.6.1 on page 386, to obtain the
total number of annotations of type annot_type in the file.

Possible valid values of annot_type are AN_DATA_LABEL (or 0) for a data label, AN_DATA_DESC (or
1) for a data description, AN_FILE_LABEL (or 2) for a file label, and AN_FILE_DESC (or 3) for a file
description.

ANselect returns an annotation identifier or FAIL (or -1) upon unsuccessful completion. The
parameters of ANselect are further described in Vdata .

10.5.2 Reading an Annotation: ANreadann

ANreadann reads the annotation specified by the parameter ann_id and stores the annotation text
in the parameter ann_buf. The syntax for ANreadann is as follows

C: status = ANreadann(ann_id, ann_buf, ann_length);

FORTRAN: status = afreadann(ann_id, ann_buf, ann_length)

The parameter ann_length specifies the size of the buffer ann_buf. If the length of the file or data
label to be read is greater than or equal to ann_length, the label will be truncated to ann_length - 1
characters. If the length of the file or data description is greater than ann_length, the description
will be truncated to ann_length characters. The HDF library adds a NULL character to the retrieved
label but not to the description. The user must add a NULL character to the retrieved description if
the C library string functions are to operate on this description.

ANreadann returns either SUCCEED (or 0) or FAIL (or -1). The parameters of ANreadann are fur-
ther described in Table 10D.

TABLE 10D ANselect and ANreadann Parameter Lists

EXAMPLE 2. Reading File and Data Annotations

This example illustrates the use of ANfileinfo/affileinfo to get the number of data and file annota-
tions in the file, ANselect/afselect to get an annotation, ANannlen/afannlen to get the length of
the annotation, and ANreadann/afreadann to read the contents of the annotation.

In this example, the program reads some of the annotations created in the file
"General_HDFobjects.hdf" by Example 1. The program first gets the information on the annota-
tions in the file so that the number of existing annotations of each kind is available prior to read-
ing. The program then gets the length of each annotation and allocates sufficient space for the
contents of the annotation to be read. For the simplicity of this example, only the data labels are

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

ANselect
[int32]

(afselect)

an_id int32 integer AN interface identifier

index int32 integer Index of the annotation

annot_type ann_type integer Type of the annotation

ANreadann
[int32]

(afreadann)

ann_id int32 integer Annotation identifier

ann_buf char * character*(*) Buffer for the returned annotation text

ann_length int32 integer
Number of characters to be retrieved from the
annotation
382 June 2017

Chapter 10 -- Annotations (AN API) Table of Contents HDF User’s Guide
read. Any other annotations can be read by adding the for loop with appropriate values as noted
below.

This example uses the ANfileinfo/affileinfo routine to get annotation information. This rouitne is
described in the Section 10.6.1

C:
#include "hdf.h"

#define FILE_NAME "General_HDFobjects.hdf"

main()
{
 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */
 int32 status_32, /* returned status for functions returning an int32 */
 file_id, /* HDF file identifier */
 an_id, /* AN interface identifier */
 ann_id, /* an annotation identifier */
 index, /* position of an annotation in all of the same type*/
 ann_length, /* length of the text in an annotation */
 n_file_labels, n_file_descs, n_data_labels, n_data_descs;
 char *ann_buf; /* buffer to hold the read annotation */

 /********************** End of variable declaration **********************/

 /*
 * Open the HDF file.
 */
 file_id = Hopen (FILE_NAME, DFACC_READ, 0);

 /*
 * Initialize the AN interface.
 */
 an_id = ANstart (file_id);

 /*
 * Get the annotation information, e.g., the numbers of file labels, file
 * descriptions, data labels, and data descriptions.
 */
 status_n = ANfileinfo (an_id, &n_file_labels, &n_file_descs,
 &n_data_labels, &n_data_descs);

 /*
 * Get the data labels. Note that this for loop can be used to
 * obtain the contents of each kind of annotation with the appropriate
 * number of annotations and the type of annotation, i.e., replace
 * n_data_labels with n_file_labels, n_file_descs, or n_data_descs, and
 * AN_DATA_LABEL with AN_FILE_LABEL, AN_FILE_DESC, or AN_DATA_DESC,
 * respectively.
 */
 for (index = 0; index < n_data_labels; index++)
 {
 /*
 * Get the identifier of the current data label.
 */
 ann_id = ANselect (an_id, index, AN_DATA_LABEL);

 /*
 * Get the length of the data label.
 */
June 2017 383

The HDF Group Table of Contents Chapter 10 -- Annotations (AN API)
 ann_length = ANannlen (ann_id);

 /*
 * Allocate space for the buffer to hold the data label text.
 */
 ann_buf = malloc ((ann_length+1) * sizeof (char));

 /*
 * Read and display the data label. Note that the size of the buffer,
 * i.e., the third parameter, is 1 character more than the length of
 * the data label; that is for the null character. It is not the case
 * when a description is retrieved because the description does not
 * necessarily end with a null character.
 *
 */
 status_32 = ANreadann (ann_id, ann_buf, ann_length+1);
 printf ("Data label index: %d\n", index);
 printf ("Data label contents: %s\n", ann_buf);

 /*
 * Terminate access to the current data label.
 */
 status_n = ANendaccess (ann_id);

 /*
 * Free the space allocated for the annotation buffer.
 */
 free (ann_buf);
 }

 /*
 * Terminate access to the AN interface and close the HDF file.
 */
 status_32 = ANend (an_id);
 status_n = Hclose (file_id);
}

FORTRAN:
 program read_annotation
 implicit none
C
C Parameter declaration
C
 character*22 FILE_NAME
C
 parameter (FILE_NAME = ’General_HDFobjects.hdf’)
 integer DFACC_READ
 parameter (DFACC_READ = 1)
 integer AN_DATA_LABEL
 parameter (AN_DATA_LABEL = 0)
C
C Function declaration
C
 integer hopen, hclose
 integer afstart, affileinfo, afselect, afannlen, afreadann,
 + afendaccess, afend
C
C**** Variable declaration ***
C
 integer status
 integer file_id, an_id, ann_id
 integer index, ann_length
384 June 2017

Chapter 10 -- Annotations (AN API) Table of Contents HDF User’s Guide
 integer n_file_labels, n_file_descs, n_data_labels, n_data_descs
 character*256 ann_buf
C
C**** End of variable declaration ************************************
C
C
C Open the HDF file for reading.
C
 file_id = hopen(FILE_NAME, DFACC_READ, 0)
C
C Initialize the AN interface.
C
 an_id = afstart(file_id)
C
C Get the annotation information, i.e., the number of file labels,
C file descriptions, data labels, and data descriptions.
C
 status = affileinfo(an_id, n_file_labels, n_file_descs,
 + n_data_labels, n_data_descs)
C
C Get the data labels. Note that this DO loop can be used to obtain
C the contents of each kind of annotation with the appropriate number
C of annotations and the type of annotation, i.e., replace
C n_data_labels with n_file_labels, n_files_descs, or n_data_descs, and
C AN_DATA_LABEL with AN_FILE_LABEL, AN_FILE_DESC, or AN_DATA_DESC,
C respectively.
C
 do 10 index = 0, n_data_labels-1
C
C Get the identifier of the current data label.
C
 ann_id = afselect(an_id, index, AN_DATA_LABEL)
C
C Get the length of the data label.
C
 ann_length = afannlen(ann_id)
C
C Read and display the data label. The data label is read into buffer
C ann_buf. One has to make sure that ann_buf has sufficient size to hold
C the data label. Also note, that the third argument to afreadann is
C 1 greater that the actual length of the data label (see comment to
C C example).
C
 status = afreadann(ann_id, ann_buf, ann_length+1)
 write(*,*) ’Data label index: ’, index
 write(*,*) ’Data label contents: ’, ann_buf(1:ann_length)
10 continue
C
C Terminate access to the current data label.
C
 status = afendaccess(ann_id)
C
C Terminate access to the AN interface and close the HDF file.
C
 status = afend(an_id)
 status = hclose(file_id)
 end
June 2017 385

The HDF Group Table of Contents Chapter 10 -- Annotations (AN API)
10.6 Obtaining Annotation Information Using the AN Interface

The HDF library provides various AN routines to obtain annotation information for the purpose of
locating either a particular annotation or a set of annotations that correspond to a set of search cri-
teria. The following sections describe these AN routines.

10.6.1 Obtaining the Number of Annotations: ANfileinfo

ANfileinfo retrieves the total number of file labels, file descriptions, data labels, and data descrip-
tions in the file identified by the parameter an_id. The syntax for ANfileinfo is as follows:

C: status = ANfileinfo(an_id, &n_file_labels, &n_file_descs,
&n_data_labels, &n_data_descs);

FORTRAN: status = affileinfo(an_id, n_file_labels, n_file_descs,
n_data_labels, n_data_descs)

The retrieved information will be stored in the parameters n_file_labels, n_file_descs,
n_data_labels, and n_data_descs, respectively. They can also be used as loop boundaries.

ANfileinfo returns either SUCCEED (or 0) or FAIL (or -1). The parameters of ANfileinfo are further
described in Table 10E.

10.6.2 Getting the Length of an Annotation: ANannlen

ANannlen returns either the length of the annotation, identified by the parameter ann_id, or FAIL
(or -1) upon unsuccessful completion. The syntax for ANannlen is as follows:

C: ann_len = ANannlen(ann_id);

FORTRAN: ann_len = afannlen(ann_id)

The parameters of ANannlen are further described in Table 10E.

TABLE 10E ANfileinfo and ANannlen Parameter Lists

10.6.3 Obtaining the Number of Specifically-typed Annotations of a Data
Object: ANnumann

ANnumann returns the total number of annotations that are of type annot_type and that are
attached to the object identified by its tag, obj_tag, and reference number, obj_ref. The syntax for
ANnumann is as follows:

C: ann_num = ANnumann(an_id, annot_type, obj_tag, obj_ref);

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

ANfileinfo
[intn]

(affileinfo)

an_id int32 integer AN interface identifier

n_file_labels int32 * integer Number of file labels in the file

n_file_descs int32 * integer Number of file descriptions in the file

n_data_labels int32 * integer Number of data labels in the file

n_data_descs int32 * integer Number of data descriptions in the file

ANannlen
[int32]

(afannlen)
ann_id int32 integer Annotation identifier
386 June 2017

Chapter 10 -- Annotations (AN API) Table of Contents HDF User’s Guide
FORTRAN: ann_num = afnumann(an_id, annot_type, obj_tag, obj_ref)

As this routine is implemented only to obtain the total number of data annotations and not file
annotations, the valid values of annot_type are AN_DATA_LABEL (or 0) and AN_DATA_DESC (or 1). To
obtain the total number of file annotations or all data annotations, use ANfileinfo.

ANnumann returns the total number of qualified annotations or FAIL (or -1). The parameters of
ANnumann are further described in Table 10F.

10.6.4 Obtaining the List of Specifically-typed Annotation Identifiers of a
Data Object: ANannlist

ANannlist retrieves the annotation identifiers for all of the annotations that are of type annot_type
and belong to the object identified by its tag, obj_tag, and its reference number, obj_ref. The syn-
tax for ANannlist is as follows:

C: status = ANannlist(an_id, annot_type, obj_tag, obj_ref, ann_list);

FORTRAN: status = afselect(an_id, annot_type, obj_tag, obj_ref, ann_list)

The identifiers of the retrieved annotations are stored in the parameter ann_list. The routine
ANnumann can be used to obtain the number of annotations to be retrieved for dynamic memory
allocation.

ANannlist returns the number of identifiers found, if succesful, or FAIL (or -1). The parameters of
ANannlist are further described in Table 10F.

TABLE 10F ANnumann and ANannlist Parameter Lists

10.6.5 Obtaining the Tag/Reference Number Pair of the Specified
Annotation Index and Type: ANget_tagref

ANget_tagref retrieves the tag and reference number of the annotation identified by its index,
specified by the parameter index, and by the annotation type, specified by the parameter
annot_type. The syntax for ANget_tagref is as follows:

C: status = ANget_tagref(an_id, index, annot_type, &ann_tag, &ann_ref);

FORTRAN: status = afgettagref(an_id, index, annot_type, ann_tag, ann_ref)

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

ANnumann
[intn]

(afnumann)

an_id int32 integer AN interface identifier

annot_type ann_type integer Type of the annotation

obj_tag uint16 integer Tag of the object the annotation is attached to

obj_ref uint16 integer
Reference number of the object the annotation is
attached to

ANannlist
[intn]

(afannlist)

an_id int32 integer AN interface identifier

annot_type ann_type integer Type of the annotation

obj_tag uint16 integer Tag of the object the annotation is attached to

obj_ref uint16 integer
Reference number of the object the annotation is
attached to

ann_list int32 * integer (*)
Buffer for returned annotation identifiers that match
the search criteria
June 2017 387

The HDF Group Table of Contents Chapter 10 -- Annotations (AN API)
The tag is stored in the parameter ann_tag and the reference number is stored in the parameter
ann_ref. The parameter index is a nonnegative value and is less than the total number of annota-
tions of type annot_type in the file. Use ANfileinfo to obtain the total number of annotations of
type annot_type in the file.

The value of annot_type can be either AN_DATA_LABEL (or 0), AN_DATA_DESC (or 1),
AN_FILE_LABEL (or 2), or AN_FILE_DESC (or 3).

ANget_tagref returns either SUCCEED (or 0) or FAIL (or -1). The parameters of ANget_tagref are
further described in (See Table 10G on page 390).

10.6.6 Obtaining the Tag/Reference Number Pair from a Specified
Annotation Identifier: ANid2tagref

ANid2tagref retrieves the tag/reference number pair of the annotation identified by the parameter
ann_id. The syntax for ANid2tagref is as follows:

C: status = ANid2tagref(ann_id, &ann_tag, &ann_ref);

FORTRAN: status = afidtagref(ann_id, ann_tag, ann_ref)

ANid2tagref stores the retrieved tag and reference number into the parameters ann_tag and
ann_ref. Possible values returned in ann_tag are DFTAG_DIL (or 104) for a data label, DFTAG_DIA
(or 105) for a data description, DFTAG_FID (or 100) for a file label, and DFTAG_FD (or 101) for a file
description.

ANid2tagref returns either SUCCEED (or 0) or FAIL (or -1). The parameters of ANid2tagref are
further described in (See Table 10G on page 390).

10.6.7 Obtaining the Annotation Identifier from a Specified Tag/Reference
Number Pair: ANtagref2id

ANtagref2id routine returns the identifier of the annotation that is specified by its tag/reference
number pair or FAIL (or -1). The syntax for ANtagref2id is as follows:

C: ann_id = ANtagref2id(an_id, ann_tag, ann_ref);

FORTRAN: ann_id = aftagrefid(an_id, ann_tag, ann_ref)

The parameters of ANtagref2id are further described in (See Table 10G on page 390).

10.6.8 Obtaining an Annotation Tag from a Specified Annotation Type:
ANatype2tag

ANatype2tag returns the tag that corresponds to the annotation type specified by the parameter
annot_type if successful, or DFTAG_NULL (or 0) otherwise. The syntax for ANatype2tag is as fol-
lows:

C: ann_tag = ANatype2tag(annot_type);

FORTRAN: ann_tag = afatypetag(annot_type)

The following table lists the valid values of annot_type in the left column and the corresponding
values for the returned annotation tag on the right.
388 June 2017

Chapter 10 -- Annotations (AN API) Table of Contents HDF User’s Guide
The parameters of ANatype2tag are further described in Table 10G.

10.6.9 Obtaining an Annotation Type from a Specified Object Tag:
ANtag2atype

ANtag2atype returns the annotation type corresponding to the annotation tag ann_tag if success-
ful, or AN_UNDEF (or -1) otherwise. The syntax for ANtag2atype is as follows:

C: annot_type = ANtag2atype(ann_tag);

FORTRAN: annot_type = aftagatype(ann_tag)

The following table lists the valid values of ann_tag in the left column and the corresponding val-
ues of the returned annotation type in the right column.

The parameters of ANtag2atype are further described in Table 10G.

Annotation Type Annotation Tag

AN_DATA_LABEL (or
0) DFTAG_DIL (or 104)

AN_DATA_DESC (or 1) DFTAG_DIA (or 105)

AN_FILE_LABEL (or
2) DFTAG_FID (or 100)

AN_FILE_DESC (or 3) DFTAG_FD (or 101)

Annotation Tag Annotation Type

DFTAG_DIL (or 104) AN_DATA_LABEL (or 0)

DFTAG_DIA (or 105) AN_DATA_DESC (or 1)

DFTAG_FID (or 100) AN_FILE_LABEL (or 2)

DFTAG_FD (or 101) AN_FILE_DESC (or 3)
June 2017 389

The HDF Group Table of Contents Chapter 10 -- Annotations (AN API)
TABLE 10G ANget_tagref, ANid2tagref, ANtagref2id, ANatype2tag, and ANtag2atype Parameter Lists

EXAMPLE 3. Obtaining Annotation Information

This example illustrates the use of ANnumann/afnumann to obtain the number of annotations of
an object, ANannlist/afannlist to obtain the list of annotation identifiers, and ANid2tagref/afid-
tagref, ANatype2tag/afatypetag, and ANtag2atype/aftagatype to perform some identifier con-
versions.

In this example, the program locates the vgroup named "AN Vgroup" that was created in the file
"General_HDFobjects.hdf" by Example 1. The program then gets the number of data descriptions
that this vgroup has and the list of their identifiers. If there are any identifers in the list, the pro-
gram displays the corresponding reference numbers. Finally, the program makes two simple con-
versions, from an annotation type to a tag and from a tag to an annotation type, and displays the
results.

C:
#include "hdf.h"

#define FILE_NAME "General_HDFobjects.hdf"
#define VG_NAME "AN Vgroup"

main()
{
 /************************* Variable declaration **************************/

 intn status_n; /* returned status for functions returning an intn */
 int32 status_32, /* returned status for functions returning an int32*/
 file_id, an_id, ann_id,
 n_annots, /* number of annotations */
 ann_list, / list of annotation identifiers */
 vgroup_ref, /* reference number of the vgroup */
 index; /* index of an annotation in the annotation list */
 ann_type annot_type = AN_DATA_DESC; /* annotation to be obtained*/
 uint16 ann_tag, ann_ref, /* tag/ref number of an annotation */

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

ANget_tagref
[int32]

(afgettagref)

an_id int32 integer AN interface identifier

ann_index int32 integer Index of the annotation

annot_type ann_type integer Annotation type of the annotation

ann_tag uint16 * integer Tag of the annotation

ann_ref uint16 * integer Reference number of the annotation

ANid2tagref
[int32]

(afidtagref)

ann_id int32 integer Identifier of the annotation

ann_tag uint16 * integer Tag of the annotation

ann_ref uint16 * integer Reference number of the annotation

ANtagref2id
[int32]

(aftagrefid)

an_id int32 integer AN interface identifier

ann_tag uint16 integer Tag of the annotation

ann_ref uint16 integer Reference number of the annotation

ANatype2tag
[uint16]

(afatypetag)
annot_type ann_type integer Annotation type

ANtag2atype
[ann_type]

(aftagatype)
ann_tag uint16 integer Annotation tag
390 June 2017

Chapter 10 -- Annotations (AN API) Table of Contents HDF User’s Guide
 vgroup_tag = DFTAG_VG; /* tag of the vgroup */

 /********************** End of variable declaration **********************/

 /*
 * Create the HDF file.
 */
 file_id = Hopen (FILE_NAME, DFACC_READ, 0);

 /*
 * Initialize the V interface.
 */
 status_n = Vstart (file_id);

 /*
 * Get the vgroup named VG_NAME.
 */
 vgroup_ref = Vfind (file_id, VG_NAME);

 /*
 * Initialize the AN interface and obtain an interface id.
 */
 an_id = ANstart (file_id);

 /*
 * Get the number of object descriptions. Note that, since ANnumann takes
 * the tag and reference number as being of type unit16, vgroup_ref must be
 * safely cast to uint16 by checking for FAIL value first.
 */
 if (vgroup_ref != FAIL)
 {
 n_annots = ANnumann (an_id, annot_type, vgroup_tag, (uint16)vgroup_ref);

 /*
 * Allocate space to hold the annotation identifiers.
 */
 ann_list = malloc (n_annots * sizeof (int32));

 /*
 * Get the list of identifiers of the annotations attached to the
 * vgroup and of type annot_type.
 */
 n_annots = ANannlist (an_id, annot_type, vgroup_tag, (uint16)vgroup_ref,
 ann_list);

 /*
 * Get each annotation identifier from the list then display the
 * tag/ref number pair of the corresponding annotation.
 */
 printf ("List of annotations of type AN_DATA_DESC:\n");
 for (index = 0; index < n_annots; index++)
 {
 /*
 * Get and display the ref number of the annotation from
 * its identifier.
 */
 status_32 = ANid2tagref (ann_list[index], &ann_tag, &ann_ref);
 printf ("Annotation index %d: tag = %s\nreference number= %d\n",
 index, ann_tag == DFTAG_DIA ? "DFTAG_DIA (data description)":
 "Incorrect", ann_ref);
 } /* for */
 } /* for */
June 2017 391

The HDF Group Table of Contents Chapter 10 -- Annotations (AN API)
 /*
 * Get and display an annotation type from an annotation tag.
 */
 annot_type = ANtag2atype (DFTAG_FID);
 printf ("\nAnnotation type of DFTAG_FID (file label) is %s\n",
 annot_type == AN_FILE_LABEL ? "AN_FILE_LABEL":"Incorrect");

 /*
 * Get and display an annotation tag from an annotation type.
 */
 ann_tag = ANatype2tag (AN_DATA_LABEL);
 printf ("\nAnnotation tag of AN_DATA_LABEL is %s\n",
 ann_tag == DFTAG_DIL ? "DFTAG_DIL (data label)":"Incorrect");

 /*
 * Terminate access to the AN interface and close the HDF file.
 */
 status_32 = ANend (an_id);
 status_n = Hclose (file_id);

 /*
 * Free the space allocated for the annotation identifier list.
 */
 free (ann_list);
}

FORTRAN:
 program annotation_info
 implicit none
C
C Parameter declaration
C
 character*22 FILE_NAME
 character*9 VG_NAME
C
 parameter (FILE_NAME = ’General_HDFobjects.hdf’,
 + VG_NAME = ’AN Vgroup’)
 integer DFACC_READ
 parameter (DFACC_READ = 1)
 integer AN_FILE_LABEL, AN_DATA_LABEL, AN_DATA_DESC
 parameter (AN_FILE_LABEL = 2,
 + AN_DATA_LABEL = 0,
 + AN_DATA_DESC = 1)
 integer DFTAG_DIA, DFTAG_FID, DFTAG_DIL
 parameter (DFTAG_DIA = 105,
 + DFTAG_FID = 100,
 + DFTAG_DIL = 104)
 integer DFTAG_VG
 parameter (DFTAG_VG = 1965)
C
C Function declaration
C
 integer hopen, hclose
 integer afstart, afnumann, afannlist, afidtagref, aftagatype,
 + afatypetag, afend
 integer vfstart, vfind

C
C**** Variable declaration ***
C
 integer status
 integer file_id, an_id
392 June 2017

Chapter 10 -- Annotations (AN API) Table of Contents HDF User’s Guide
 integer n_annots, ann_index, annot_type, ann_tag, ann_ref
 integer ann_list(10)
 integer vgroup_tag, vgroup_ref
C
C**** End of variable declaration ************************************
C
 annot_type = AN_DATA_DESC
 vgroup_tag = DFTAG_VG
C
C Open the HDF file for reading.
C
 file_id = hopen(FILE_NAME, DFACC_READ, 0)
C
C Initialize the V interface.
C
 status = vfstart(file_id)
C
C Get the group named VG_NAME.
C
 vgroup_ref = vfind(file_id, VG_NAME)
C
C Initialize the AN interface.
C
 an_id = afstart(file_id)

C
C Get the number of object descriptions.
C
 if (vgroup_ref .eq. -1) goto 100
 n_annots = afnumann(an_id, annot_type, vgroup_tag, vgroup_ref)
C
C Get the list of identifiers of the annotations attached to the
C vgroup and of type annot_type. Identifiers are read into ann_list
C buffer. One has to make sure that ann_list has the size big enough
C to hold the list of identifiers.
C
 n_annots = afannlist(an_id, annot_type, vgroup_tag, vgroup_ref,
 + ann_list)
C
C Get each annotation identifier from the list then display the
C tag/ref number pair of the corresponding annotation.
C
 write(*,*) ’List of annotations of type AN_DATA_DESC’
 do 10 ann_index = 0, n_annots - 1
C
C Get and display the ref number of the annotation from its
C identifier.
C
 status = afidtagref(ann_list(ann_index+1), ann_tag, ann_ref)
 write(*,*) ’Annotation index: ’, ann_index
 if (ann_tag .eq. DFTAG_DIA) then
 write(*,*) ’tag = DFTAG_DIA (data description)’
 else
 write(*,*) ’ tag = Incorrect’
 endif
 write(*,*) ’reference number = ’, ann_ref
10 continue
C
C Get and display an annotation type from an annotation tag.
C
 annot_type = aftagatype(DFTAG_FID)
 if (annot_type .eq. AN_FILE_LABEL) then
 write(*,*) ’Annotation type of DFTAG_FID (file label) is ’,
June 2017 393

The HDF Group Table of Contents Chapter 10 -- Annotations (AN API)
 + ’AN_FILE_LABEL ’
 else
 write(*,*) ’Annotation type of DFTAG_FID (file label) is ’,
 + ’Incorrect’
 endif
C
C Get and display an annotation tag from an annotation type.
C
 ann_tag = afatypetag(AN_DATA_LABEL)
 if (ann_tag .eq. DFTAG_DIL) then
 write(*,*) ’Annotation tag of AN_DATA_LABEL is ’,
 + ’DFTAG_DIL (data label)’
 else
 write(*,*) ’Annotation type of DFTAG_FID (file label) is ’,
 + ’Incorrect’
 endif
C
C Terminate access to the AN interface and close the HDF file.
C
100 continue
 status = afend(an_id)
 status = hclose(file_id)
 end
394 June 2017

CHAPTER 11 -- Single-file Annotations (DFAN API)
11.1 Chapter Overview

The original HDF annotation tools were the single-file tools that constitute the DFAN interface.
These tools, which are used to read and write file and data object annotations, are described in this
chapter.

Note that there is a multifile annotations interface, called the AN interface, for dealing with anno-
tations.

Note: The AN interface supersedes the DFAN interface and is described in Chapter 10, Annota-
tions (AN API).

11.2 The Single-file Annotation Interface

The functions and routines that comprise the single-file annotation interface have names that
begin with the string "DFAN" in C; the equivalent FORTRAN-77 routine names are prefaced by
"da". This interface is the older annotation interface and only supports annotation access within
one particular HDF file. It doesn’t support the concept of an annotation identifier used in the
newer multifile interface. Therefore, annotations created with the multifile interface cannot be
accessed or manipulated with DFAN interface functions.

11.2.1DFAN Library Routines

These functions are divided into the following categories:

• Write routines assign a file or object annotation.

• Read routines retrieve a file or object annotation.

• General inquiry routines return a list of all labels and reference numbers.

• Maintenance routine performs cleanup services.

The DFAN interface routines are listed in the following table and are discussed in the subsequent
sections of this document.
June 2017 395

The HDF Group Table of Contents Chapter 11 -- Single-file Annotations (DFAN API)
TABLE 11A DFAN Library Routines

11.2.2Tags in the Annotation Interface

Table 11B lists the annotation tags defined in HDF versions 2.0, 3.0, and 4.0. Newly-defined tag
names in each version are bolded. For a more complete list of tags, refer to the HDF Specifica-
tions and Developer’s Guide v3.2 from the HDF web site at http://www.hdfgroup.org/.

Purpose
Functions

Description
C FORTRAN-77

Write

DFANaddfds daafds Assigns a file description to a specific file

DFANaddfid daafid Assigns a file label to a specific file

DFANputdesc dapdesc Assigns an object description to a specific data object

DFANputlabel daplab Assigns an object label to a specific data object

Read

DFANgetdesc dagdesc Reads the text of an object description

DFANgetdes-
clen

dagdlen Returns the length of an object description

DFANgetfds dagfds Reads the text of a file description

DFANgetfdslen dagfdsl Returns the length of a file description

DFANgetfid dagfid Reads the text of a file label

DFANgetfidlen dagfidl Returns the length of a file label

DFANgetlabel daglab Reads the text of an object label

DFANgetlablen dagllen Returns the length of an object label

General Inquiry

DFANlablist dallist Gets a list of all the labels in a file for a particular tag

DFANlastref dalref
Returns the reference number of the last annotation
accessed

Maintenance DFANclear None
Clears the internal tables and structures used by the DFAN
interface
396 June 2017

Chapter 11 -- Single-file Annotations (DFAN API) Table of Contents HDF User’s Guide
TABLE 11B List of Annotation Interface Tags in HDF Versions 2.0, 3.0 and 4.0

11.3 Programming Model for the DFAN Interface

There are two general programming models for the DFAN interface; the first programming model
addresses file annotation while the second addresses object annotation. In the case of file annota-
tions, the DFAN interface relies on the calling program to initiate and terminate access to files.
This approach necessitates the following programming model:

1. Open the file.

2. Perform the desired file annotation operation.

3. Close the file.

The object annotation programming model is a simplified version of the file annotation program-
ming model:

1. Perform the desired object annotation operation.

Essentially, the difference between the two models is that file annotations require Hopen and
Hclose to open and close the target files whereas object annotations do not.

Interface Data Object
Tag Name

v2.0 v3.0 v4.0

DFR8

Raster Image: 8-bit (uncompressed) DFTAG_RI8 DFTAG_RI DFTAG_RI

Compressed Image: 8-bit DFTAG_CI8 DFTAG_CI DFTAG_CI

Image Dimension: 8-bit DFTAG_ID8 DFTAG_ID DFTAG_ID

Image Palette: 8-bit DFTAG_IP8 DFTAG_LUT DFTAG_LUT

DF24

Raster Image Group None DFTAG_RIG DFTAG_RIG

Raster Image (uncompressed) None DFTAG_RI DFTAG_RI

Compressed Image None DFTAG_CI DFTAG_CI

Image Dimension None DFTAG_ID DFTAG_ID

DFP Color Look-up Table DFTAG_LUT DFTAG_LUT DFTAG_LUT

DFSD

Scientific Data Group DFTAG_SDG DFTAG_SDG DFTAG_NDG

Scientific Data DFTAG_SD DFTAG_SD DFTAG_SD

Scientific Data Dimension DFTAG_SDD DFTAG_SDD DFTAG_SDD

Scientific Data Scale Attribute DFTAG_SDS DFTAG_SDS DFTAG_SDS

Scientific Data Label Attribute DFTAG_SDL DFTAG_SDL DFTAG_SDL

Scientific Data Unit Attribute DFTAG_SDU DFTAG_SDU DFTAG_SDU

Scientific Data Format Attribute DFTAG_SDF DFTAG_SDF DFTAG_SDF

Scientific Data Max/Min Attribute DFTAG_SDM DFTAG_SDM DFTAG_SDM

Scientific Data Coordinates Attribute DFTAG_SDC DFTAG_SDC DFTAG_SDC

DFAN

File Identifier DFTAG_FID DFTAG_FID DFTAG_FID

File Descriptor DFTAG_FD DFTAG_FD DFTAG_FD

Data Identifier Label DFTAG_DIL DFTAG_DIL DFTAG_DIL

Data Identifier Annotation DFTAG_DIA DFTAG_DIA DFTAG_DIA

Vdata Vdata Storage DFTAG_VS DFTAG_VS DFTAG_VS

Vgroups Vgroup Storage DFTAG_VG DFTAG_VG DFTAG_VG
June 2017 397

The HDF Group Table of Contents Chapter 11 -- Single-file Annotations (DFAN API)
11.4 Writing Annotations

The DFAN interface supports writes to file labels, file descriptions, object labels, and object
descriptions.

11.4.1Assigning a File Label: DFANaddfid

To write a file label, the calling program must call DFANaddfid:

C: status = DFANaddfid(file_id, label);

FORTRAN: status = daafid(file_id, label)

DFANaddfid has two parameters: file_id and label. The file_id parameter contains the file identi-
fier for the file to be annotated and the label parameter contains the annotation string. The label
array must be null-terminated. In the FORTRAN-77 version, the length of the label should be the
length of the label array as in FORTRAN-77 string lengths are assumed to be the declared length
of the array that holds the string.

The parameters of DFANaddfid are further defined in (See Table 11C on page 398).

11.4.2Assigning a File Description: DFANaddfds

To write a file description, the calling program must call DFANaddfds:

C: status = DFANaddfds(file_id, description, desc_length);

FORTRAN: status = daafds(file_id, description, desc_length)

DFANaddfds has three parameters: file_id, description, and desc_length. The file_id parameter
contains the file identifier. The parameter description can contain any sequence of ASCII charac-
ters and is not limited to a single string (e.g., a carriage return may appear anywhere in the
description). The desc_length parameter specifies the length of the description.

The parameters of DFANaddfds are defined in Table 11C.

TABLE 11C DFANaddfid and DFANaddfds Parameter List

EXAMPLE 1. Writing a File Label and a File Description

The following examples add a file label and description to the file named "Example1.hdf". Notice
that after the file is opened, the file_id may be used to add any combination of file annotations
before the file is closed.

C:
#include "hdf.h"

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFANaddfid
[intn]

(daafid)

file_id int32 integer File identifier

label char * character*(*) File label string

DFANaddfds
[intn]

(daafds)

file_id int32 integer File identifier

description char * character*(*) File description string

desc_length int32 integer Length of the description in bytes
398 June 2017

Chapter 11 -- Single-file Annotations (DFAN API) Table of Contents HDF User’s Guide
main()
{

int32 file_id;
intn status;
static char file_label[] = "This is a file label.";
static char file_desc[] = "This is a file description.";

/* Open the HDF file to write the annotations. */
file_id = Hopen("Example1.hdf", DFACC_CREATE, 0);

/* Write the label to the file. */
status = DFANaddfid(file_id, file_label);

/* Write the description to the file. */
status = DFANaddfds(file_id, file_desc, strlen(file_desc));

/* Close the file. */
status = Hclose(file_id);

}

FORTRAN:
 PROGRAM CREATE ANNOTATION

 character*50 file_label, file_desc
 integer daafid, daafds, status, file_id, hopen, hclose

 integer*4 DFACC_CREATE
 parameter (DFACC_CREATE = 4)

 file_label = "This is a file label."
 file_desc = "This is a file description."

C Open the HDF file to write the annotations.
 file_id = hopen(’Example1.hdf’, DFACC_CREATE, 0)

C Write the label to the file.
 status = daafid(file_id, file_label)

C Write the description to the file.
 status = daafds(file_id, file_desc, 26)

C Close the file.
 status = hclose(file_id)

 end

11.4.3Assigning an Object Label: DFANputlabel

To write a file label, the calling program must contain a call to DFANputlabel:

C: status = DFANputlabel(filename, tag, ref, label);

FORTRAN: status = daplab(filename, tag, ref, label)

DFANputlabel has four parameters: filename, tag, ref, and label. The label parameter contains a
single null-terminated string that defines the annotation.

The parameters of DFANputlabel are further defined in Table 11D.
June 2017 399

The HDF Group Table of Contents Chapter 11 -- Single-file Annotations (DFAN API)
11.4.4Assigning an Object Description: DFANputdesc

To write an object description, the calling program must contain a call to DFANputdesc:

C: status = DFANputdesc(filename, tag, ref, description, desc_len);

FORTRAN: status = dapdesc(filename, tag, ref, description, desc_len)

DFANputdesc has five parameters: filename, tag, ref, description, and desc_len. The filename
parameter is the name of the HDF file containing the object to be annotated. The tag and ref
parameters are the tag/reference number pair of the object to be annotated. The description param-
eter contains a buffer for the annotation text and the desc_len parameter specifies the length of the
buffer.

The parameters of DFANputdesc are further defined in Table 11D.

TABLE 11D DFANputlabel and DFANputdesc Parameter List

EXAMPLE 2. Writing an Object Label and Description to a Scientific Data Set

These examples illustrate the use of DFANputlabel and DFANputdesc to assign both an object
label and an object description to a scientific data set immediately after it is written to file. The tag
for scientific data sets is DFTAG_NDG.

C:
#include "hdf.h"

#define X_LENGTH 3
#define Y_LENGTH 2
#define Z_LENGTH 5

main()
{

/* Create the data array. */
static float32 sds_data[X_LENGTH][Y_LENGTH][Z_LENGTH] =
{ 1, 2, 3, 4, 5,
 6, 7, 8, 9, 10,
 11, 12, 13, 14, 15,
 16, 17, 18, 19, 20,
 21, 22, 23, 24, 25,
 26, 27, 28, 29, 30 };

/*

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFANputlabel
[intn]

(daplab)

filename char * character*(*) Name of the file to be accessed

tag uint16 integer Tag of the object to be annotated

ref uint16 integer Reference number of the object to be annotated

label char * character*(*) Object label string

DFANputdesc
[int]

(dapdesc)

filename char * character*(*) Name of the file to be accessed

tag uint16 integer Tag of the object to be annotated

ref uint16 integer Reference number of the object to be annotated

description char * character*(*) Object description string

desc_len int32 integer Length of the description in bytes
400 June 2017

Chapter 11 -- Single-file Annotations (DFAN API) Table of Contents HDF User’s Guide
* Create the array that will hold the dimensions of
* the data array.
*/
int32 dims[3] = {X_LENGTH, Y_LENGTH, Z_LENGTH};
intn refnum, status;
static char object_desc[] = "This is an object description.";
static char object_label[] = "This is an object label.";

/* Write the data to the HDF file. */
status = DFSDadddata("Example1.hdf", 3, dims, (VOIDP)sds_data);

/* Get the reference number for the newly written data set. */
refnum = DFSDlastref();

/* Assign the object label to the scientific data set. */
status = DFANputlabel("Example1.hdf", DFTAG_NDG, refnum, \

object_label);

/* Assign the object description to the scientific data set. */
status = DFANputdesc("Example1.hdf", DFTAG_NDG, refnum, \

object_desc, strlen(object_desc));

}

FORTRAN:
 PROGRAM ANNOTATE OBJECT

 integer dsadata, dims(3), status, refnum
 integer daplab, dapdesc, dslref

 integer*4 DFTAG_NDG, X_LENGTH, Y_LENGTH, Z_LENGTH
 parameter(DFTAG_NDG = 720,
 + X_LENGTH = 5,
 + Y_LENGTH = 2,
 + Z_LENGTH = 3)

C Create the data array.
 real*4 sds_data(X_LENGTH, Y_LENGTH, Z_LENGTH)
 data sds_data /
 + 1, 2, 3, 4, 5,
 + 6, 7, 8, 9, 10,
 + 11, 12, 13, 14, 15,
 + 16, 17, 18, 19, 20,
 + 21, 22, 23, 24, 25,
 + 26, 27, 28, 29, 30 /

C Create the array the will hold the dimensions of the data array.
 data dims /X_LENGTH, Y_LENGTH, Z_LENGTH/

C Write the data to the HDF file.
 ref = dsadata(’Example1.hdf’, 3, dims, sds_data)

C Get the reference number for the newly written data set.
 refnum = dslref()

C Assign the object label to the scientific data set.
 status = daplab(’Example1.hdf’, DFTAG_NDG, refnum,
 + ’This is an object label.’)

C Assign an object description to the scientific data set.
 status = dapdesc(’Example1.hdf’, DFTAG_NDG, refnum,
 + ’This is an object description.’, 30)
June 2017 401

The HDF Group Table of Contents Chapter 11 -- Single-file Annotations (DFAN API)
 end

11.5 Reading Annotations

The DFAN interface provides several functions for reading file and data object annotations, which
are described below.

11.5.1Reading a File Label: DFANgetfidlen and DFANgetfid

The DFAN programming model for reading a file label is as follows:

1. Get the length of the label.

2. Read the file label.

To read the first file label in a file, the calling program must contain the following function calls:

C: isfirst = 1;
label_length = DFANgetfidlen(file_id, isfirst);
label_buffer = HDgetspace(label_length);
fid_len = DFANgetfid(file_id, label_buffer, label_length, isfirst);

FORTRAN: isfirst = 1
label_length = dagfidl(file_id, isfirst)
fid_len = dagfid(file_id, label_buffer, label_length, isfirst)

DFANgetfidlen has two parameters: file_id and isfirst. The isfirst parameter specifies whether the
first or subsequent file annotations are to be read. To read the first file label length, isfirst should
be set to the value 1; to sequentially step through all the remaining file labels assigned to a file
isfirst should be set to 0.

When DFANgetfidlen is first called for a given file, it returns the length of the first file label. To
get the lengths of subsequent file labels, you must call DFANgetfid between calls to DFANget-
fidlen. Otherwise, additional calls to DFANgetfidlen will return the length of the same file label.

DFANgetfid has four parameters: file_id, label_buffer, label_length, and isfirst. The label_buffer
parameter is a pointer to a buffer for the label text. The label_length parameter is the length of the
buffer in memory, which can be shorter than the full length of the label in the file. If the
label_length is not large enough, the label is truncated to label_length - 1 characters in the buffer
label_buffer. The isfirst parameter is used to determine whether to read the first or subsequent file
annotations. To read the first file label, isfirst should be set to 1; to sequentially step through all
the remaining file labels assigned to a file, isfirst should be set to 0.

HDgetspace is described in Chapter 2, HDF Fundamentals.

The parameters of DFANgetfidlen and DFANgetfid are described in Table 11E.

11.5.2Reading a File Description: DFANgetfdslen and DFANgetfds

The DFAN programming model for reading a file description is as follows:

1. Get the length of the description.

2. Read the file description.

To read the first file description in a file, the calling program must contain the following calls:

C: isfirst = 1;
402 June 2017

Chapter 11 -- Single-file Annotations (DFAN API) Table of Contents HDF User’s Guide
desc_length = DFANgetfdslen(file_id, isfirst);
desc_buffer = HDgetspace(desc_length);
fds_len = DFANgetfds(file_id, desc_buf, desc_length, isfirst);

FORTRAN: isfirst = 1

desc_length = dagfdsl(file_id, isfirst)
fds_len = dagfds(file_id, desc_buf, desc_length, isfirst)

DFANgetfdslen has two parameters: file_id and isfirst. The isfirst parameter specifies whether the
first or subsequent file annotations are to be read. To read the first file description length, isfirst
should be set to the value 1; to sequentially step through all the remaining file descriptions
assigned to a file, isfirst should be set to 0.

When DFANgetfdslen is first called for a given file, it returns the length of the first file descrip-
tion. As with DFANgetfidlen, you must call DFANgetfds between calls to DFANgetfdslen to get
the lengths of successive file descriptions.

DFANgetfds has four parameters: file_id, desc_buf, desc_length, and isfirst. The desc_buffer
parameter is a pointer to a buffer for the description text. The desc_length parameter is the length
of the buffer in memory, which can be shorter than the full length of the description in the file. If
desc_length is not large enough, the description is truncated to desc_length characters in the
buffer desc_buf. The isfirst parameter specifies whether the first or subsequent file annotations are
to be read. To read the first file description, isfirst should be set to the value 1; to sequentially step
through all the remaining file descriptions assigned to a file, isfirst should be set to 0.

The parameters of these routines are described further in the following table.

TABLE 11E DFANgetfidlen, DFANgetfid, DFANgetfdslen, and DFANgetfds Parameter List

EXAMPLE 3. Reading a File Label and a File Description

The following examples read a file label from the HDF file named "Example1.hdf". The
DFANgetfidlen routine is used to verify the length of the label before the read operation is per-
formed. The argument "1" in both routines indicate the first description in the HDF file is the tar-
get. DFANgetfdslen and DFANgetfds can be directly substituted for DFANgetfidlen and
DFANgetfid in order to read a file description instead of a file label.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFANgetfidlen
[int32]

(dagfidl)

file_id int32 integer File identifier

isfirst intn integer Location of the next annotation

DFANgetfid
[int32]

(dagfid)

file_id int32 integer File identifier

desc_buf char * character*(*) File label buffer

buf_length int32 integer Label buffer length

isfirst intn integer Location of the next annotation

DFANgetfdslen
[int32]

(dagfdsl)

file_id int32 integer File identifier

isfirst intn integer Location of the next annotation

DFANgetfds
[int32]

(dagfds)

file_id int32 integer File identifier

description char * character*(*) File description buffer

desc_length int32 integer Description buffer length

isfirst intn integer Location of the next annotation
June 2017 403

The HDF Group Table of Contents Chapter 11 -- Single-file Annotations (DFAN API)
C:
#include "hdf.h"

main()
{

int32 file_id, file_label_len;
char *file_label;
intn status;

/* Open the HDF file containing the annotation. */
file_id = Hopen("Example1.hdf", DFACC_READ, 0);

/* Determine the length of the file label. */
file_label_len = DFANgetfidlen(file_id, 1);

/* Allocated memory for the file label buffer. */
file_label = HDgetspace(file_label_len);

/* Read the file label. */
file_label_len = DFANgetfid(file_id, file_label, file_label_len, 1);

/* Close the file */
status = Hclose(file_id);

}

FORTRAN:
 PROGRAM GET ANNOTATION

 integer status, file_id, label_length
 integer hopen, hclose, dagfidl, dagfid
 character file_label(50)

 integer*4 DFACC_READ
 parameter(DFACC_READ = 1)

C Open the HDF file containing the file label.
 file_id = hopen("Example1.hdf", DFACC_READ, 0)

C Determine the length of the file label.
 label_length = dagfidl(file_id, 1)

C Read the file label.
 status = dagfid(file_id, file_label, label_length, 1)

C Close the HDF file.
 status = hclose(file_id)

 end

11.5.3Reading an Object Label: DFANgetlablen and DFANgetlabel

The DFAN programming model for reading a data object label is as follows:

1. Get the length of the label.

2. Read the file label.

To read the first object label in a file, the calling program must contain the following routines:
404 June 2017

Chapter 11 -- Single-file Annotations (DFAN API) Table of Contents HDF User’s Guide
C: label_length = DFANgetlablen(filename, tag, ref);

label_buf = HDgetspace(label_length);
status = DFANgetlabel(filename, tag, ref, label_buf, label_length);

FORTRAN: label_length = daglabl(filename, tag, ref)

status = daglab(filename, tag, ref, label_buf, label_length)

DFANgetlablen returns the length of the label assigned to the object identified by the given tag/
reference number pair. DFANgetlabel must be called between calls to DFANgetlablen.
DFANgetlabel is the routine that actually returns the label and prepares the API to read the next
label.

DFANgetlabel has five parameters: filename, tag, ref, label_buf, and label_length. The label_buf
parameter is a pointer to a buffer that stores the label text. The label_length parameter is the
length of the buffer in memory. label_length can be shorter than the full length of the label in the
file, but if so, the label is truncated to label_length characters in the buffer label_buf. The length
of label_buf must be at least one greater than the anticipated length of the label to account for the
null termination appended to the label text.

The parameters of DFANgetlablen and DFANgetlabel are defined below.

11.5.4Reading an Object Description: DFANgetdesclen and DFANgetdesc

The DFAN programming model for reading a data object description is as follows:

1. Get the length of the description.

2. Read the file description.

To read the first object description in a file, the calling program must contain the following rou-
tines:

C: desc_length = DFANgetdesclen(filename, tag, ref);
desc_buf = HDgetspace(desc_length);
status = DFANgetdesc(filename, tag, ref, desc_buf, desc_length);

FORTRAN: label_length = dagdlen(filename, tag, ref)

status = dagdesc(filename, tag, ref, desc_buf, desc_length)

DFANgetdesclen returns the length of the description assigned to the object identified by the
specified tag/reference number pair. DFANgetdesc must be called between calls to DFANgetdes-
clen to reset the current object description to the next in the file.

DFANgetdesc takes five parameters: filename, tag, ref, desc_buf, and desc_length. The desc_buf
parameter is a pointer to the buffer that stores the description text. The desc_length parameter is
the length of the buffer in memory, which can be shorter than the full length of the description in
the file. If the desc_length is not large enough, the description is truncated to desc_length charac-
ters in the buffer desc_buf.

The parameters of DFANgetdesclen and DFANgetdesc are defined in the following table.
June 2017 405

The HDF Group Table of Contents Chapter 11 -- Single-file Annotations (DFAN API)
TABLE 11F DFANgetlablen, DFANgetlabel, DFANgetdesc and DFANgetdesclen Parameter List

EXAMPLE 4. Reading an Object Label and Description

The following examples demonstrate the use of DFANgetdesclen and DFANgetdesc to read an
object description assigned to a scientific data set. These examples assume that, in addition to
other data objects, the "Example1.hdf" HDF file also contains multiple scientific data sets, some
of which may not be annotated. Hfind is used to determine the reference number for the first
annotated scientific data object in the file.

C:
#include "hdf.h"

main()
{

intn desc_length = -1, status;
char desc[50];
int32 file_id;
uint16 tag = 0, ref = 0;
uint32 find_offset, find_length;

/* Open the file and initialize the searching parameters to 0. */
file_id = Hopen("Example1.hdf", DFACC_READ, 0);

/*
* Start a sequential forward search for the first reference
* number assigned to a scientific data set.
*/
while (Hfind(file_id, DFTAG_NDG, DFREF_WILDCARD, &tag, &ref, \

&find_offset, &find_length, DF_FORWARD) != FAIL) {

/*
* After discovering a valid reference number, check for an
* object description by returning the length of the description.
* If the inquiry fails, continue searching for the next valid

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFANgetlablen
[int32]

(dagllen)

filename char * character*(*) Name of the file to be accessed

tag uint16 integer Tag assigned to the annotated object

ref uint16 integer Reference number for the annotated object

DFANgetlabel
[intn]

(daglab)

filename char * character*(*) Name of the file to be accessed

tag uint16 integer Tag assigned to the annotated object

ref uint16 integer Reference number assigned to the annotated object

label_buf char * character*(*) Buffer for the returned annotation

label_length int32 integer Size of the buffer allocated to hold the annotation

DFANgetdesclen
[int32]

(dagdlen)

filename char * character*(*) Name of the file to be accessed

tag uint16 integer Tag assigned to the annotated object

ref uint16 integer Reference number for the annotated object

DFANgetdesc
[intn]

(dagdesc)

filename char * character*(*) Name of the file to be accessed

tag uint16 integer Tag assigned to the annotated object

ref uint16 integer Reference number assigned to the annotated object

desc_buf char * character*(*) Buffer for the returned annotation

desc_length int32 integer Size of the buffer allocated to hold the annotation
406 June 2017

Chapter 11 -- Single-file Annotations (DFAN API) Table of Contents HDF User’s Guide
* reference number assigned to a scientific data set.
*/
if ((desc_length = DFANgetdesclen("Example1.hdf", tag, ref)) \

== FAIL)
break;

/*
* If a description exists and it will fit in the description buffer,
* print it.
*/
if (desc_length != FAIL && desc_length <= 50) {

status = DFANgetdesc("Example1.hdf", tag, ref, desc, desc_length);
printf("Description: %s\n", desc);

}
}

/* Close the file. */
status = Hclose(file_id);

}

FORTRAN:

There is no FORTRAN-77 version of the Example 4 C code for this version of the documentation
as there is no FORTRAN-77 equivalent of Hfind.

11.6 Maintenance Routines

The DFAN interface provides one function for interface maintenance, DFANclear.

11.6.1Clearing the DFAN Interface Internal Structures and Settings:
DFANclear

DFANclear clears all internal library structures and parameters of the DFAN annotation interface.

When a file is regenerated in a single run by a library routine of another interface (such as DFSDput-
data), DFANclear should be called to reset the interface

DFANclear returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise. DFANclear takes no
parameters, as described in the following table.

TABLE 11G DFANclear Parameter List

11.7 Determining Reference Numbers

It is advisable to check the reference number before attempting to assign an object annotation, as
the overwriting of reference numbers is not prevented by the HDF library routines.

There are three ways to check a reference number for an object:

• Access the object with a read or write operation followed by DF*lastref.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFANclear
[intn]

(daclear)
None None None None
June 2017 407

The HDF Group Table of Contents Chapter 11 -- Single-file Annotations (DFAN API)
• Call DFANlablist to return a list of all assigned reference numbers for a given tag.

• Call Hfind to locate an object with a given tag/reference number pair.

11.7.1Determining a Reference Number for the Last Object Accessed:
DF*lastref and DF*writeref

There are two methods of obtaining a reference number through the use of a DF*lastref call. The
first approach is to obtain and store the reference number of an object immediately after the object
is created:

1. Create the data object.

2. Call DF*lastref to determine its reference number.

3. Read or write an object annotation.

The second approach is to determine the reference number at some time after the data object is
created. This approach requires repeated DF*read calls until the appropriate object is accessed,
followed by a call to DF*lastref:

1. Read the appropriate data object.

2. Call DF*lastref to determine its reference number.

3. Read or write and object annotation.

Most HDF interfaces provide one routine that assigns a specified reference number to a data
object and another routine that returns the reference number for the last data object accessed. (See
TABLE 11H) However, the SD interface doesn’t. Also, the DFAN annotation doesn’t include a
DF*lastref routine.

Although DF*writeref calls are designed to assign specific reference numbers, they are not rec-
ommended for general use because there is no protection against reassigning an existing reference
number and overwriting data. In general, it is better to determine a reference number for a data
object by calling DF*lastref immediately after reading or writing a data object.

The DF*lastref routines have no parameters. The DF*writeref routines have two: filename,
which is the name of the file that contains the data object, and ref, which is the reference number
for the next data object read operation.

The DF*lastref and DF*writeref routines are further described in the following table.
408 June 2017

Chapter 11 -- Single-file Annotations (DFAN API) Table of Contents HDF User’s Guide
TABLE 11H List and Descriptions of the DF*writeref and DF*lastref Routines

11.7.2Querying a List of Reference Numbers for a Given Tag: DFANlablist

Given a tag and two buffers, DFANlablist will fill one buffer with all reference numbers for the
given tag and the other with all labels assigned to the given tag. The programming model for
determining a list of reference numbers is as follows:

1. Determine the number of reference numbers that exist for a given tag.

2. Allocate a buffer to store the reference numbers.

3. Specify the maximum label length.

4. Allocate a buffer to store the labels.

5. Store the list of reference numbers and their labels.

To create a list of reference numbers and their labels for a given tag, the following routines should
be called:

C: num_refs = Hnumber(file_id, tag);

ref_buf = HDmalloc(sizeof(uint16*)*num_refs);
max_lab_len = 16;
label_buf = HDmalloc(max_lab_len * num_refs);
start_pos = 0;
num_of_refs = DFANlablist(filename, tag, ref_buf, label_buf,
num_refs, max_lab_len,
start_pos);

FORTRAN: num_refs = hnumber(file_id, tag)

max_lab_len = 16
start_pos = 0
num_of_refs = dallist(filename, tag, ref_buf, label_buf,
num_refs, max_lab_len, start_pos)

Hnumber determines how many objects with the specified tag are in a file. It is described in
Chapter 2, HDF Fundamentals.

HDF Data Object
Routine Name

(FORTRAN-77)
Description

8-bit Raster Image

DFR8writeref
(d8wref)

Assigns the specified number as the reference number for the next 8-bit raster write
operation and updates the write counter to the reflect highest reference number

DFR8lastref
(d8lref)

Returns the reference number for the last 8-bit raster image set accessed

24-bit Raster
Image

DF24writeref
(d2wref)

Assigns the specified number as the reference number for the next 24-bit raster write
operation and updates the write counter to reflect the highest reference number

DF24lastref
(d2lref)

Returns the reference number for the last 24-bit raster image set accessed

Palette

DFPwriteref
(dpwref)

Assigns the specified number as the reference number for the next palette write opera-
tion and updates the write counter to reflect the highest reference number

DFPlastref
(dplref)

Returns the reference number for the last palette accessed

DFSD Scientific
Data

DFSDwriteref
(dswref)

Assigns the specified number as the reference number for the next SDS write operation
and updates the write counter to reflect the highest reference number

DFSDlastref
(dslref)

Returns the reference number for the last scientific data set accessed

Annotation
DFANlastref
(dalref)

Returns the reference number for the last annotation accessed
June 2017 409

The HDF Group Table of Contents Chapter 11 -- Single-file Annotations (DFAN API)
DFANlablist has seven parameters: filename, tag, ref_list, label_buf, num_refs, max_lab_len, and
start_pos. The filename parameter specifies the name of the file to search and tag specifies the
search tag to use when creating the reference and label list. The ref_buf and label_buf parameters
are buffers used to store the reference numbers and labels associated with tag. The num_ref
parameter specifies the length of the reference number list and the max_lab_len parameter speci-
fies the maximum length of a label. The start_pos parameter specifies the first label to read. For
instance, if start_pos has a value of 1 all labels will be read; if it has a value of 4, all but the first
three labels will be read.

Taken together, the contents of ref_list and label_list constitute a directory of all objects and their
labels for a given tag. The contents of label_list can be displayed to show all of the labels for a
given tag or it can be searched to find the reference number of a data object with a certain label.
Once the reference number for a given label is found, the corresponding data object can be
accessed by invoking other HDF routines. Therefore, this routine provides a mechanism for direct
access to data objects in HDF files.

TABLE 11I DFANlablist Parameter List

EXAMPLE 5. Getting a List of Labels for All Scientific Data Sets

These examples illustrate the method used to get a list of all labels used in scientific data sets in an
HDF file using DFANlablist. The DFS_MAXLEN definition is located in the "hlimits.h" include file.

C:
#include "hdf.h"

#define LISTSIZE 20

main()
{

int i, num_of_labels, start_position = 1, list_length = 10;
uint16 ref_list[LISTSIZE];
char label_list[DFS_MAXLEN*LISTSIZE-1];

/* Get the total number of labels in the "Example1.hdf" file. */
num_of_labels = DFANlablist("Example1.hdf", DFTAG_NDG, ref_list, \

 label_list, list_length, DFS_MAXLEN, \
 start_position);

/*
* Print the reference numbers and label names for each label
* in the list.
*/

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFANlablist
[int]

(dallist)

filename char * character*(*) Name of the file to be accessed.

tag uint16 integer Tag assigned to the annotated object.

ref_list uint16 [] integer (*) Reference number for the annotated object.

label_list char * character*(*) Buffer for the labels.

list_len int integer Size of the reference number and label lists.

label_len intn integer Maximum label length.

start_pos intn integer
First entry in the reference number and label lists to be
returned.
410 June 2017

Chapter 11 -- Single-file Annotations (DFAN API) Table of Contents HDF User’s Guide
for (i = 0; i < num_of_labels; i++)
 printf("\n\t%d\tRef number: %d\tLabel: %s", i+1, ref_list[i], \
 label_list - (i * 13));

printf("\n");

}

FORTRAN:
 PROGRAM GET LABEL LIST

 integer dallist
 integer*4 DFTAG_NDG, LISTSIZE, DFS_MAXLEN

 parameter (DFTAG_NDG = 720,
 + LISTSIZE = 20,
 + DFS_MAXLEN = 255)

 character*60 label_list(DFS_MAXLEN*LISTSIZE)
 integer i, num_of_labels, start_position, ref_list(DFS_MAXLEN)

 start_position = 1

 num_of_labels = dallist(’Example1.hdf’, DFTAG_NDG, ref_list,
 + label_list, 10, DFS_MAXLEN,
 + start_position)

 do 10 i = 1, num_of_labels
 print *,’ Ref number: ’,ref_list(i),
 + ’ Label: ’,label_list(i)
10 continue

 end

11.7.3Locate an Object by Its Tag and Reference Number: Hfind

Instead of using DFANlablist to create a list of reference numbers to search, HDF provides a gen-
eral search routine called Hfind. Hfind is described in Chapter 2, HDF Fundamentals.
June 2017 411

The HDF Group Table of Contents Chapter 11 -- Single-file Annotations (DFAN API)
412 June 2017

CHAPTER 12 -- Single-File Scientific Data Sets

(DFSD API)
12.1 Chapter Overview

The DFSD interface was one of two interfaces in the HDF library that support the scientific data
model. With the release of HDF version 3.3, the multifile SD interface described in Chapter 3,
Scientific Data Sets (SD API), was made available. The DFSD interface is now deprecated, only
the SD interface should be used.

12.2 The DFSD Scientific Data Set Data Model

The scientific data set, or SDS, data model supports four primary data objects: arrays, dimensions,
dimension scales, and dimension attributes. As in the multifile SD SDS model, the fundamental
object of the data model is the SDS array. Unlike the SD multifile SDS model the DFSD SDS
model has, in addition to dimension attributes, attributes that refer to the SDS array itself.

FIGURE 12a The Contents of a Three-Dimensional DFSD Scientific Data Set

12.2.1 Required DFSD SDS Objects

The only required objects in the DFSD SDS model are the array and the data type of the array
data. Without this information, the data set is inaccessible. Required objects are created by the
library using the information supplied at the time the SDS is defined.

Descriptions of these objects are in Chapter 3, Scientific Data Sets (SD API).

Array Dimension X Dimension Y Dimension Z

Array Number
Type

Dimension X, Y, Z Dimension
Number Type

Dimension

Scientific Data Set

Dimension
Attributes

Dimension
Number Type

Dimension
Scale

Dimension
Attributes

Dimension
Number Type

Dimension

Dimension
Attributes
June 2017 413

The HDF Group Table of Contents Chapter 12 -- Single-File Scientific Data Sets (DFSD API)
12.2.1.1 Dimensions

Unlimited dimensions, supported in the multifile SD SDS model, aren’t supported in the single-
file DFSD SDS model.

12.2.2 Optional DFSD SDS Objects

There are two types of optional objects available for inclusion in an SDS: dimension scales and
attributes. Optional objects are only created when specified by the calling program.

12.2.2.1 Dimension Scales

Conceptually, a dimension scale is a series of numbers placed along a dimension to demarcate
intervals in a data set. They are assigned one per dimension. Structurally, each dimension scale is
a one-dimensional array with size and name equal to its assigned dimension name and size.

12.2.2.2 Predefined Attributes

Predefined attributes are attributes that have reserved labels and in some cases predefined num-
ber types. They are described in Chapter 3, Scientific Data Sets (SD API).

12.3 The Single-File Scientific Data Set Interface

The HDF library currently contains several routines for storing scientific data sets in the HDF for-
mat. DFSDadddata, DFSDputdata, and DFSDgetdata perform data I/O and by default assume
that all scientific data is uncompressed 32-bit floating-point data stored in row-major order. DFSD
library routines also read and write subsets and slabs of data, set defaults, determine the number of
data sets in a file, and inquire about or assigning reference numbers before reading or writing data.

12.3.1 DFSD Library Routines

The names of the C routines in the DFSD library are prefaced by "DFSD" and the names of the
equivalent FORTRAN-77 functions are prefaced by "ds". They are categorized as follows:

• Write routines create new data sets and add slabs to existing data sets.

• Read routines read whole scientific data sets.

• Slab routines read and write subsets and slabs of scientific data.

• Data set attribute routines read and write the predefined string and value attributes assigned
to data sets.

• Dimension attribute routines read and write the predefined string and value attributes
assigned to dimensions.

DFSD library routines are more explicitly defined in Table 12A and on their respective pages in
the HDF Reference Manual.
414 June 2017

Chapter 12 -- Single-File Scientific Data Sets (DFSD API) Table of Contents HDF User’s Guide
TABLE 12A DFSD Library Routines

12.3.2 File Identifiers in the DFSD Interface

File identifiers are handled internally by each routine and access to a file is granted simply by pro-
viding a filename. As the file identifier is handled by the function call, the calling program need
not keep track of how to open and close files.

Category
Routine Name

Description
C FORTRAN-77

Write

DFSDadddata dsadata Appends a data set to a file.

DFSDclear dsclear Clears all possible set values.

DFSDputdata dspdata Overwrites new data to a file.

DFSDsetdims dssdims Sets the rank and dimension for succeeding data sets.

DFSDsetNT dssnt Sets the number type for the data set.

DFSDwriteref dswref Assigns a reference number to the next data set written.

Read

DFSDgetdata dsgdata Retrieves the next data set in the file.

DFSDgetdims dsgdims Returns the number and dimensions for the next data set.

DFSDgetNT dsgnt Determines the number type for the data in the data set.

DFSDlastref dslref Returns the reference number of last data set accessed.

DFSDndatasets dsnum Returns the number of data sets in a file.

DFSDpre32sdg dsp32sd Determines if the data set was created before HDF version 3.2.

DFSDreadref dsrref Locates a data set with the specified reference number.

DFSDrestart dsfirst
Sets the location of the next access operation to be the first data set
in the file.

 Slabs

DFSDendslab dssslab Terminates a read or write slab operation.

DFSDreadslab dsrslab Reads a slab of data from a data set.

DFSDstartslab dssslab Begins a read or write slab operation.

DFSDwriteslab dswslab Writes a slab of data to a data set.

Data Set
Attribute

DFSDgetcal dsgcal Retrieves the calibration information for the data se.t

DFSDgetdatalen dsgdaln Retrieves the length of the attributes assigned to the data.

DFSDget-
datastrs

dsgdast Returns the label, unit, format and coordinate system for data.

DFSDgetfill-
value

dsgfill Retrieves the fill value used to complete the data set.

DFSDgetrange dsgrang Retrieves the range of values for the data set.

DFSDsetcal dsscal Sets the calibration information for the data set.

DFSDset-
datastrs

dssdast Sets label, unit, format and coordinate system for data.

DFSDsetfill-
value

dssfill Sets the fill value to use when completing a data set.

DFSDsetlengths dsslens Sets the length for the data set and dimension attributes.

DFSDsetrange dssrang Sets the range of values for the data set.

Dimension
Attribute

DFSDgetdimlen dsgdiln Retrieves the length of the attributes assigned to the dimension.

DFSDgetdims-
cale

dsgdisc Returns the scale for a dimension.

DFSDgetdimstrs dsgdist Returns the label, unit, and format for a dimension.

DFSDsetdims-
cale

dssdisc Sets the scale for a dimension.

DFSDsetdimstrs dssdist Sets the label, unit and format for the dimension.
June 2017 415

The HDF Group Table of Contents Chapter 12 -- Single-File Scientific Data Sets (DFSD API)
12.4 Writing DFSD Scientific Data Sets

The DFSD programming model for writing an SDS to an HDF file involves the following steps:

1. Define data set options. (optional)

2. Write all or part of the data set.

These steps are performed for every data set written to a file. However, it is not always necessary
to define data set options for every write operation as setting an option places information about
the data set in a structure in primary memory. This information is retained until explicitly altered
by another set call.

12.4.1 Creating a DFSD Scientific Data Set: DFSDadddata and
DFSDputdata

To define and write a single SDS, the calling program must contain of of the following routines:

C: status = DFSDadddata(filename, rank, dim_sizes, data);

FORTRAN: status = dsadata(filename, rank, dim_sizes, data)

OR

C: status = DFSDputdata(filename, rank, dim_sizes, data);

FORTRAN: status = dspdata(filename, rank, dim_sizes, data)

DFSDadddata appends data to a file when given an existing file name and creates a new file
when given a unique file name. DFSDputdata replaces the contents of a file when given an exist-
ing file name and creates a new file when given a unique file name. To avoid accidentally over-
writing data in a file, the use of DFSDadddata is recommended.

DFSDadddata and DFSDputdata have four parameters: filename, rank, dim_sizes, and data. In
both routines, the data set is written to the file specified by the filename parameter. The total num-
ber of dimensions in the array and the size of each dimension are passed in the rank and dim_sizes
parameters. A pointer to the data or slab of data written to the named file is passed in the data
parameter.

The parameters of DFSDadddata and DFSDputdata are further described in the following table.

TABLE 12B DFSDadddata and DFSDputdata Parameter List

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDadddata
[intn]

(dsadata)

filename char * character*(*) Name of the file containing the data set.

rank int32 integer Number of dimensions in the array.

dim_sizes int32 * integer(*) Size of each dimension in the data array.

data VOIDP
<valid numeric

data type>
Array containing the data.

DFSDputdata
[intn]

(dsadatas)

filename char * character*(*) Name of the file containing the data set.

rank int32 integer Number of dimensions in the array.

dim_sizes int32 * integer(*) Size of each dimension in the data array.

data VOIDP
<valid numeric

data type>
Array containing the data.
416 June 2017

Chapter 12 -- Single-File Scientific Data Sets (DFSD API) Table of Contents HDF User’s Guide
12.4.2 Specifying the Data Type of a DFSD SDS: DFSDsetNT

The default data type for scientific data is DFNT_FLOAT32. To change the default setting, the calling
program must contain calls to the following routines:

C: status = DFSDsetNT(number_type);
status = DFSDadddata(filename, rank, dim_sizes, data);

FORTRAN: status = dssnt(number_type)

status = dsadata(filename, rank, dim_sizes, data)

DFSDsetNT defines the data type for all subsequent DFSDadddata and DFSDputdata calls
until it is changed by a subsequent call to DFSDsetNT or reset to the default by DFSDclear.
DFSDsetNT’s only parameter is the data type.

EXAMPLE 1. Creating and Writing to a DFSD Scientific Data Set

In the following code examples, DFSDadddata is used to write an array of 64-bit floating-point
numbers to a file named "Example1.hdf". Although the DFSDsetNT function call is optional, it is
included here to demonstrate how to override the float32 default.

C:
#include "hdf.h"

#define LENGTH 3
#define HEIGHT 2
#define WIDTH 5

main()
{

/* Create data array - store dimensions in array ’dims’ */
static float64 scien_data[LENGTH][HEIGHT][WIDTH] =

 { 1., 2., 3., 4., 5.,
6., 7., 8., 9.,10.,
11.,12.,13.,14.,15.,
16.,17.,18.,19.,20.,
21.,22.,23.,24.,25.,
26.,27.,28.,29.,30. };

intn status;

int32 dims[3] = {LENGTH, HEIGHT, WIDTH};

/* Set number type to 64-bit float */
status = DFSDsetNT(DFNT_FLOAT64);

/* Write the data to file */
status = DFSDadddata("Example1.hdf", 3, dims, scien_data);

}

FORTRAN:
 PROGRAM WRITE SDS

 integer dsadata, dssnt, dims(3), status
 real*8 sci_data(5,2,3)

C Create array called ’sci_data’; store dimensions in array ’dims’.
June 2017 417

The HDF Group Table of Contents Chapter 12 -- Single-File Scientific Data Sets (DFSD API)
 data sci_data/ 1., 2., 3., 4., 5.,
 $ 6., 7., 8., 9.,10.,
 $ 11.,12.,13.,14.,15.,
 $ 16.,17.,18.,19.,20.,
 $ 21.,22.,23.,24.,25.,
 $ 26.,27.,28.,29.,30./

 data dims /3,2,5/

C Set number type to 64-bit float
 status = dssnt(6)

C Write the data to file
 status = dsadata(’Example1.hdf’, 3, dims, sci_data)

 end

12.4.3 Overwriting Data for a Given Reference Number: DFSDwriteref

DFSDwriteref is a highly specialized function call that overwrites data referred to by the speci-
fied reference number.

If DFSDwriteref is called with a reference number that doesn’t exist, an error return value of -1
will be returned.

The following series of function calls should appear in your program:

C: status = DFSDwriteref(filename, ref_number);

status = DFSDadddata(filename, rank, dim_sizes, data);

FORTRAN: status = dswref(filename, ref_number)

status = dsadata(filename, rank, dim_sizes, data)

If the filename passed to DFSDwriteref is different from the filename in the DFSDadddata or
DFSDputdata routine calls, it will be ignored. The next scientific data set written, regardless of
the filename, is assigned the reference number ref_number.

Care should be taken when using DFSDwriteref, as once the new data has been written the old
data cannot be retrieved.

The parameters of DFSDwriteref are described in the following table.

TABLE 12C DFSDsetNT and DFSDwriteref Parameter List

12.4.4 Writing Several Data Sets: DFSDsetdims and DFSDclear

The DFSD programming model for writing multiple data sets to an HDF file is identical to that for
writing individual data sets. (Refer to Section 12.4 on page 416). To understand how multiple data

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDsetNT
[intn]

(dssNT)
number_type int32 integer Number type tag.

DFSDwriteref
[intn]

(dswref)

filename char * character*(*) Name of the file containing the data.

ref_number int16 integer
Reference number to be assigned to the data set cre-
ated.
418 June 2017

Chapter 12 -- Single-File Scientific Data Sets (DFSD API) Table of Contents HDF User’s Guide
sets are written to file, it is first necessary to take a closer look at each step of the programming
model. First and most importantly, all DFSD routines that set a write option except DFSDsetNT
and DFSDsetfillvalue add information to a special structure in primary memory. This information
is used to determine how data is written to file for all subsequent write operations.

Information stored in primary memory is retained by the HDF library until explicitly changed by a
call to DFSDsetdims or reset to NULL by calling DFSDclear. DFSDsetdims and DFSDclear are
used to prevent assignments of attributes created for a group of data sets to data sets outside the
group. For more information on assigning attributes see Section 12.7.1 on page 426 and
Section 12.7.3 on page 433.

12.4.5 Preventing the Reassignment of DFSD Data Set Attributes:
DFSDsetdims

Information stored in primary memory is retained by the HDF library until explicitly changed by a
call to DFSDsetdims or reset to NULL by calling DFSDclear. DFSDsetdims and DFSDclear are
used to prevent assignments of attributes created for a group of data sets to data sets outside the
group.

The syntax of DFSDsetdims is the following:

C: status = DFSDsetdims(rank, dim_sizes);

FORTRAN: status = dssdims(rank, dim_sizes)

DFSDsetdims is not used here to define the rank and dimension sizes to be used in the next oper-
ation, but to alert the DFSD interface to stop the automatic assignment of attributes to the data sets
to be written to file. DFSDsetdims has two parameters: rank and dim_sizes. The rank of an array
is the total number of dimensions in the array and the dimension sizes are the length of each indi-
vidual dimension.

As a rule of thumb, DFSDsetdims should be called if any DFSDset* routine (DFSDsetNT, for
example) has been called. This insures that all attribute values that have been reset will be
assigned in future data set operations.

The parameters of DFSDsetdims are further defined in the following table.

TABLE 12D DFSDsetdims Parameter List

12.4.6 Resetting the Default DFSD Interface Settings: DFSDclear

The syntax for DFSDclear is as follows:

C: status = DFSDclear();

FORTRAN: status = dsclear()

The DFSDclear routine clears all interface settings defined by any of the DFSDset* routines
(DFSDsetNT, DFSDsetfillvalue, DFSDsetdims, DFSDsetdatastrs, DFSDsetdatalengths, DFS-
Dsetrange, DFSDsetcal, DFSDsetdimscale and DFSDsetdimstrs). After the DFSDclear has

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDsetdims
[intn]

(dssdims)

rank intn integer Number of dimensions in the array.

dim_sizes int32* integer (*) Size of each dimension in the array.
June 2017 419

The HDF Group Table of Contents Chapter 12 -- Single-File Scientific Data Sets (DFSD API)
been called, calls to any of the DFSDset* routines will result in the corresponding value not being
written. To write new values, call the appropriate DFSDset routine again.

TABLE 12E DFSDclear Parameter List

12.5 Reading DFSD Scientific Data Sets

The DFSD programming model for reading an SDS is also a two-step operation:

1. Obtain information about the data set if necessary.

2. Read all or part of the data set.

These steps are performed for every data set read. In some cases, calls to determine the data set
definition may be reduced or avoided completely. For example, if the data set dimensions are
known, the call that returns the data set dimensions may be eliminated.

12.5.1 Reading a DFSD SDS: DFSDgetdata

If the dimensions of the data set are known, DFSDgetdata is the only function call required to
read an SDS. If the file is being opened for the first time, DFSDgetdata returns the first data set in
the file. Any subsequent calls will return successive data sets in the file - data sets are read in the
same order they were written. Normally, DFSDgetdims is called before DFSDgetdata so that
space allocations for the array can be checked if necessary and the dimensions verified. If this
information is already known, DFSDgetdims may be omitted.

To read an SDS of known dimension and number type, the calling program should include the fol-
lowing routine:

C: status = DFSDgetdata(filename, rank, dim_sizes, data);

FORTRAN: status = dsgdata(filename, rank, dim_sizes, data)

DFSDgetdata has four parameters: filename, rank, dim_sizes, and data. DFSDgetdata returns a
data set specified by the parameter filename. The total number of dimensions is specified in rank
and the size of each dimension is specified in dim_sizes. DFSDgetdata returns the array in data.

The parameters of DFSDgetdata are further defined in the following table.

TABLE 12F DFSDgetdata Parameter List

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDclear
[intn]

(dsclear)
None None None Clears all DFSD interface settings.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDgetdata
[intn]

(dsgdata)

filename char character*(*)
Name of the file containing the
data.

rank int32 integer Number of dimensions.

dim_sizes int32 * integer (*) Buffer for the dimension sizes.

data VOIDP <valid numeric data type>
Buffer for the stored scientific
data.
420 June 2017

Chapter 12 -- Single-File Scientific Data Sets (DFSD API) Table of Contents HDF User’s Guide
12.5.2 Specifying the Dimensions and Data Type of an SDS: DFSDgetdims
and DFSDgetNT

When DFSDgetdims is first called, it returns dimension information of the first data set. Subse-
quent calls will return this information for successive data sets. If you need to determine the
dimensions or the data type of an array before reading it, call DFSDgetdims and DFSDgetNT.
DFSDgetNT gets the data type (or, in HDF parlance, number type) of the data retrieved in the
next read operation.

To determine the dimensions and data type of an array before attempting to read it, the calling pro-
gram must include the following:

C: status = DFSDgetdims(filename, rank, dimsizes, max_rank);

status = DFSDgetNT(number_type);

status = DFSDgetdata(filename, rank, dimsizes, data);

FORTRAN: status = dsgnt(filename, rank, dimsizes, max_rank)

status = dsgdims(number_type)

status = dsgdata(filename, rank, dimsizes, data)

DFSDgetdims has four parameters: filename, rank, dim_sizes, and maxrank. The number of
dimensions is returned in rank, the size of each dimension in the array dim_sizes, and the size of
the array containing the dimensions sizes in max_rank. DFSDgetNT has only one parameter:
number_type. As there is no way to specify the file or data set through the use of DFSDgetNT, it
is only valid if it is called after DFSDgetdims.

The parameters of DFSDgetdims and DFSDgetNT are further defined in the following table.

TABLE 12G DFSDgetNT and DFSDgetdims Parameter List

EXAMPLE 2. Reading from a DFSD Scientific Data Set

The following examples search the file named "Example1.hdf" for the dimensions and data type
of a DFSD array. Although use of DFSDgetdims and DFSDgetNT is optional, they are included
here as a demonstration of how to verify the array dimensions and number type before reading
any data. If the dimensions and type are known, only a call to DFSDgetdata is required.

C:
#include "hdf.h"

#define LENGTH 3
#define HEIGHT 2
#define WIDTH 5

main()

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDgetdims
[intn]

(dsgdims)

filename char * character*(*) Name of file containing the data.

rank intn * integer Number of dimensions.

dim_sizes int32 * integer Buffer for the dimension sizes.

max_rank int integer Size of the dimension size buffer.

DFSDgetNT
[intn]

(dsgnt)
number_type int32 * integer Data type of the data to be read.
June 2017 421

The HDF Group Table of Contents Chapter 12 -- Single-File Scientific Data Sets (DFSD API)
{

float64 scien_data[LENGTH][HEIGHT][WIDTH];
int32 number_type;
intn rank, status;
int32 dims[3];

/* Get the dimensions and number type of the array */
status = DFSDgetdims("Example1.hdf", &rank, dims, 3);
status = DFSDgetNT(&number_type);

/* Read the array if the dimensions are correct */
if (dims[0] <= LENGTH && dims[1] <= HEIGHT && dims[2] <= WIDTH)

 status = DFSDgetdata("Example1.hdf", rank, dims, scien_data);

}

FORTRAN:
 PROGRAM READ SDS

 integer dsgdata, dsgdims, dsgnt, dims(3), status
 integer rank, num_type
 real*8 sci_data(5, 2, 3)

C Get the dimensions and number type of the array.
 status = dsgdims(’Example1.hdf’, rank, dims, 3)
 status = dsgnt(num_type)

C Read the array if the dimensions are correct.
 if ((dims(1) .eq. 3) .and. (dims(2) .eq. 2) .and.
 + (dims(3) .eq. 5)) then
 status = dsgdata(’Example1.hdf’, rank, dims, sci_data)
 endif

 end

12.5.3 Determining the Number of DFSD Data Sets: DFSDndatasets and
DFSDrestart

DFSDgetdims and DFSDgetdata sequentially access DFSD data sets. By repeatedly calling
either function, a program can step through an entire file by reading one data set at a time. How-
ever, before attempting to sequentially access all of the data sets in a file the total number of data
sets in the file should be determined. To do so, the calling program must call the following rou-
tine:

C: num_of_datasets = DFSDndatasets(filename);

FORTRAN: num_of_datasets = dsnum(filename)

Once the total number of data sets is known, a calling program can at any time, reset the current
data set to the first data set in the file by calling the following routine:

C: status = DFSDrestart();

FORTRAN: status = dsfirst()

Use of DFSDndatasets and DFSDrestart is optional, it is usually more convenient than cycling
through the entire file one SDS at a time.
422 June 2017

Chapter 12 -- Single-File Scientific Data Sets (DFSD API) Table of Contents HDF User’s Guide
12.5.4 Obtaining Reference Numbers of DFSD Data Sets: DFSDreadref and
DFSDlastref

As the HDF library handles the assignment and tracking of reference numbers, reference numbers
must be explicitly returned. Obtaining the reference number is an operation best performed imme-
diately after data set creation.

The DFSD interface uses the function DFSDreadref to initiate access to individual scientific data
sets. DFSDreadref specifies the reference number of the next SDS to be read.

To access a specific SDS, the calling program must contain the following routines:

C: status = DFSDreadref(filename, ref);

status = DFSDgetdata(filename, rank, dim_sizes, data);

FORTRAN: status = dsrref(filename, ref)

status = dsgdata(filename, rank, dim_sizes, data)

DFSDreadref has two parameters: filename and ref. DFSDreadref specifies the reference num-
ber of the object to be next operated on in the HDF file filename as ref. Determining the correct
reference number is the most difficult part of this operation. As a result, DFSDreadref is often
used in conjunction with DFSDlastref, which determines the reference number of the last data set
accessed.

To syntax of DFSDadddata and DFSDlastref is:

C: status = DFSDadddata(filename, rank, dim_sizes, data);

ref_num = DFSDlastref();

FORTRAN: status = dsadata(filename, rank, dim_sizes, data)

ref_num = dslref()

DFSDputdata can also be used with DFSDlastref to obtain similar results. In any case, DFSD-
lastref can be used before any operation that requires identifying a scientific data set by reference
number, as in the assignment of annotations and inserting data sets into vgroups. For more infor-
mation about annotations and vgroups refer to, Chapter 10, Annotations (AN API) and Chapter 5,
Vgroups (V API).

TABLE 12H DFSDreadref Parameter List

12.6 Slabs in the DFSD Interface

To review, a slab is an n-dimensional array whose dimensions are smaller than those of the SDS
array into which it is written or from which it is read.

12.6.1 Accessing Slabs: DFSDstartslab and DFSDendslab

There are two routines required for every DFSD slab operation - DFSDstartslab and DFSDend-
slab. DFSDstartslab is used to initialize the slab interface and to initiate access to new or existing
data sets. DFSDendslab is used to terminate access to open data sets. DFSDstartslab must be

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDreadref
[intn]

(dsrref)

filename char * character*(*) Name of the file containing the data set.

ref_number uint16 integer Reference number of the next data set to be read.
June 2017 423

The HDF Group Table of Contents Chapter 12 -- Single-File Scientific Data Sets (DFSD API)
called before any read or write slab operation and DFSDendslab must be called after the slab
operation is completed. Both routines are required when reading and writing slabs.

Given a new filename, DFSDstartslab will create a new HDF file with the specified name. Given
an existing filename, it will open the named file and append the new data set to the end of the file.
Its only parameter is filename. DFSDendslab has no parameters and need only be called once per
file. DFSDendslab will write any attributes defined immediately before the data set is created.

For more information on assigning attributes, see Section 12.7.3 on page 433.

TABLE 12I DFSDstartslab Parameter List

12.6.2 Writing Slabs: DFSDwriteslab

In the DFSD interface, writing an entire data set array and writing slabs follow the same program-
ming model. The difference between the two is that calls to three routines is needed to write slabs,
while a call to one routine is needed to write whole data sets.

More specifically, the DFSD programming model for writing slabs to an SDS is as follows:

1. Set the appropriate options to define the new SDS or select an existing SDS.

2. Write the data set using three specialized slab routines.

In addition to writing slabs to both new and existing data sets, DFSDwriteslab can also perform
the following sequential write operations:

• Write slabs to a single data set when called repeatedly.

• Write slabs to sequential data sets when repeatedly called between calls to DFSDgetdims.

• Write slabs to selected data sets when repeatedly called between calls to DFSDwriteref.

Although not specifically defined as a slab routine, in practice, the DFSDsetfillvalue routine is
used to initialize array elements between non-contiguous slab write operations. Setting a fill value
places the same value in every array location before the first slab is written. Any hole created by
non-contiguous writes can then be recognized by identifying the known fill value. The fill value
must have the same number type as the values in the data set. For more information on fill values
refer to Section 12.7.1.2 on page 427.

To write a slab to a new data set, the calling program must include the following routine calls:

C: status = DFSDsetdims(rank, dimsizes);

status = DFSDsetNT(num_type);

status = DFSDstartslab(filename);

status = DFSDwriteslab(start, stride, count, data);

status = DFSDendslab();

FORTRAN: status = dssnt(num_type)

status = dssdims(rank, dim_sizes)

status = dssslab(filename)

status = dswslab(start, stride, edge, data)

status = dseslab()

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDstartslab
[intn]

(dssslab)
filename char * character*(*) Name of the file containing the data set.
424 June 2017

Chapter 12 -- Single-File Scientific Data Sets (DFSD API) Table of Contents HDF User’s Guide
When writing slabs to an existing data set, it is impossible to change the number type, array
boundaries, fill value, or calibration information. Consequently DFSDsetNT, DFSDsetdims,
DFSDsetcal, and DFSDsetfillvalue will generate errors if called for an existing data set.

To write a slab to an existing data set, your program should include the following calls:

C: status = DFSDwriteref(filename, ref);

status = DFSDstartslab(filename);

status = DFSDwriteslab(start, stride, count, data);

status = DFSDendslab();

FORTRAN: status = dswref(filename, ref)

status = dssslab(filename)

status = dswslab(start, stride, edge, data)

status = dseslab()

Because DFSDwriteslab offers no overwrite protection, the calling program is responsible for
eliminating overlap when arranging slabs within the newly defined data set.

DFSDwriteslab has four arguments: start, stride, edge, and data. The arguments start, stride, and
edge are defined as they are in the corresponding SD routines.

The DFSD SDS model does not support strides. Pass the start array as the stride parameter as a
place holder. Whatever is passed as the stride parameter will be ignored by the DFSD interface.

Although DFSDendslab need only be called once per file, it is required to write data to the file. It
will also write any attributes defined immediately before the data set is created.

TABLE 12J DFSDwriteslab Parameter List

12.6.3 Reading Slabs: DFSDreadslab

The programming model for reading one or more slabs involves the following steps:

1. Select an existing SDS.

2. Read the data set using three specialized slab routines.

In addition to reading single slabs of data, DFSDreadslab can perform the following sequential
access operations:

• Read multiple slabs from the first data set in a file when called repeatedly.

• Read multiple slabs from a specified data set when repeatedly called after DFSDreadref.

• Read multiple slabs from sequential data sets when repeatedly called between calls to DFS-
Dgetdims.

To read a slab, the calling program must include the following routine calls:

C: status = DFSDreadref(filename, ref);

status = DFSDstartslab(filename);

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDwriteslab
[intn]

(sdwslab)

start int32 * integer (*)
Array containing the starting coordinate the
write.

stride int32 * integer (*) Ignored parameter.

count int32 * integer (*) Array defining the boundaries of the slab.

data VOIDP <valid numeric data type> Buffer for the data to be written.
June 2017 425

The HDF Group Table of Contents Chapter 12 -- Single-File Scientific Data Sets (DFSD API)
status = DFSDreadslab(start, stride, edge, data);

status = DFSDendslab();

FORTRAN: status = dsrref(filename, ref)

status = dssslab(filename)

status = dsrslab(start, stride, edge, data)

status = dseslab()

In addition to DFSDreadref, DFSDgetdims may also be used to position the read pointer to the
appropriate data set. When DFSDreadslab is used to read slabs, the coordinates of the start array
must begin at 0 for each dimension (start={0,0, ... 0}) and the size of each dimension must equal
the size of the array itself (edge={dim_size_1, dim_size_2, dim_size_n}). As with DFSD-
writeslab, whatever is passed in as the stride parameter is ignored. Finally, the data buffer must
allocate enough space to hold the data: excess data is truncated.

All parameters of the DFSDreadslab routine assume FORTRAN-77-style one-based arrays - the
starting coordinates of the slab must be given as an offset from the origin of the data set where the
origin is defined as (dim 1 = 1, dim 2 = 1, . . . dim n-1 = 1, dim n = 1). The first element of the
slab will be the coordinates specified by the contents of the start array. DFSDreadslab will
extract elements in increasing order until the until the dimensional offset specified by the contents
of the edge array are encountered.

TABLE 12K DFSDreadslab Parameter List

12.7 Predefined Attributes and the DFSD Interface

Although they often contain important information, attributes are optional to the data set array and
the dimension record. Although both types of attributes use similar names, they are read and writ-
ten using different sets of routines. All attributes are predefined by the DFSD library.

12.7.1 Writing Data Set Attributes

Data set attributes are described in Chapter 3, Scientific Data Sets (SD API). There is a limit of
one string attribute per data set.

12.7.1.1 Assigning String Attributes to a DFSD SDS: DFSDsetlengths and DFSDsetdatastrs

The DFSD interface provides two function calls for creating data set string attributes: DFSD-
setlengths and DFSDsetdatastrs. DFSDsetlengths overrides the default string length and DFS-
Dsetdatastrs writes the string. DFSDsetlengths and DFSDsetdatastrs are optional and may be

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDreadslab
[intn]

(dswslab)

filename char * character*(*) Name of the HDF file.

start int32 * integer (*)
Array containing the coordinates for
start of the slab.

slab_size int32 integer (*)
Array of rank containing the size of each
dimension of the slab.

stride int32 * integer (*) Place holder array.

buffer VOIDP <valid numeric data type>
Array the will used to store the extracted
slab.

buffer_size int32 * integer (*)
Array containing the dimensions of the
buffer parameter.
426 June 2017

Chapter 12 -- Single-File Scientific Data Sets (DFSD API) Table of Contents HDF User’s Guide
called individually, or in any order as long as they precede calls to DFSDadddata or DFSDput-
data.

Predefined string attributes are defined as follows:

• Coordinate system attributes specify the coordinate system used to generate the original
data.

• Format attributes specify the format to use when displaying values for the data.

• Label attributes contains data array names.

• Unit attributes identifies the units of measurement associated with the data.

To assign a predefined attribute to an HDF file, the program must contain the following routine
calls:

C: status = DFSDsetlengths(label_len, unit_len, format_len, coords_len);
status = DFSDsetdatastrs(label, unit, format, coordsys);

status = DFSDadddata(filename, rank, dimsizes, data);

FORTRAN: status = dsslens(label_len, unit_len, format_len, coords_len)

status = dssdast(label, unit, format, coordsys)

status = dsadata(filename, rank, dimsizes, data)

DFSDsetlengths has four arguments: label_len, unit_len, format_len, and coords_len. Each
parameter reflects the maximum length for the string that will hold the label, unit, format, and
coordinate system. Use of DFSDsetlengths is optional and usually not necessary.

DFSDsetdatastrs writes null-terminated strings to an HDF file. It has the same four arguments:
label, unit, format, and coordsys. To avoid the assignment of a string, pass NULL as the appropriate
argument.

TABLE 12L DFSDsetlengths and DFSDsetdatastrs Parameter List

12.7.1.2 Assigning Value Attributes to a DFSD SDS: DFSDsetfillvalue, DFSDsetrange, and
DFSDsetcal

The DFSD interface provides the following routines for defining value attributes. All three func-
tion calls are optional and may be called in any order provided they precede a call to DFSDad-
ddata or DFSDputdata.

To assign a value attribute to a data set, the following routines must be called:

C: status = DFSDsetfillvalue(fill_val);

status = DFSDsetcal(scale, scale_err, offset, offset_err, num_type);
status = DFSDsetrange(max, min);

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDsetlengths
[intn]

(dsslens)

label_len intn integer Maximum length for any label string.

unit_len intn integer Maximum length for any unit string.

format_len intn integer Maximum length for any format string.

coords_len intn integer Maximum length for any coordinate system string.

DFSDsetdatastrs
[intn]

(dssdast)

label char * character*(*) Label describing the data.

unit char * character*(*) Unit to be applied to the data.

format char * character*(*) Format to be applied in displaying the data.

coordsys char* character*(*) Coordinate system of the data set.
June 2017 427

The HDF Group Table of Contents Chapter 12 -- Single-File Scientific Data Sets (DFSD API)
status = DFSDadddata(filename, rank, dimsizes, data);

FORTRAN: status = dssfill(fill_val)

status = dsscal(scale, scale_err, offset, offset_err, num_type)

status = dssrang(max, min)

status = dsadata(filename, rank, dimsizes, data)

DFSDsetrange sets a new range attribute for the current DFSD SDS. DFSDsetrange has two
arguments: max and min. The HDF library will not check or update the range attributes as new
data are added to the file, therefore max and min will always reflect the values supplied by the last
DFSDsetrange call. The parameters for DFSDsetrange is defined in Table 12K below.

DFSDsetfillvalue specifies a new value to the default fill value attribute for an SDS array. It’s
only argument is fill_val, which specifies the new fill value. The fill value must be of the same
number type as the array it’s written to. To avoid conversion errors, use data-specific fill values
instead of special architecture-specific values, such as infinity or Not-a-Number (or NaN). Setting
the fill value after data is written to the SDS will not update the fill values already written to the
data set - it will only change the attribute.

The parameters for DFSDsetfillvalue are further defined in Table 12K below.

The DFSDsetcal routine creates a calibration record for a specified array and by doing so adds
five attributes to the current data set. As the HDF library does not specifically apply calibration
information to the data, SDsetcal can be called anytime before or after the data is written. DFSD-
setcal has five arguments; scale, scale_error, offset, off_err, and num_type. The arguments scale
and offset are defined as they are for the multifile SD API routines.

In addition to the scale and offset, DFSDsetcal also includes both a scale and offset error. The
argument scale_err contains the potential error of the calibrated data due to scaling and offset_err
contains the potential error for the calibrated data due to the offset. The num_type parameter spec-
ifies the number type of the uncalibrated data.

The parameters of DFSDsetcal are defined in the following table.

TABLE 12M DFSDsetfillvalue, DFSDsetrange and DFSDsetcal Parameter List

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDsetfillvalue
[intn]

(dssfill)

label char * character*(*) Label describing the data.

unit char * character*(*) Unit to be applied to the data.

format char * character*(*)
Format to be applied in displaying the
data.

coordsys char * character*(*) Coordinate system of the data set.

DFSDsetrange
[intn]

(dssrang)

max VOIDP <valid numeric data type>
Highest value in the selected range of
data.

min VOIDP <valid numeric data type>
Lowest value in the selected range of
data.

DFSDsetcal
[intn]

(dsscal)

cal float64 real*8 Calibration scale.

cal_error float64 real*8 Calibration scale error.

off float64 real*8 Uncalibrated offset.

off_err float64 real*8 Uncalibrated offset error.

num_type int32 integer Number type of uncalibrated data.
428 June 2017

Chapter 12 -- Single-File Scientific Data Sets (DFSD API) Table of Contents HDF User’s Guide
EXAMPLE 3. Assigning Predefined String Attributes to a File

The following examples demonstrate the steps necessary to assign predefined string attributes to
the data set and stores the data set in the file "Example1.hdf". They create a string attribute using
DFSDsetdatastrs and a value attribute using DFSDsetrange. It also demonstrates the use of
DFSDsetlengths in altering the maximum string length from 255 characters to 50. It then writes
the SDS array by calling DFSDadddata.

C:
#include "hdf.h"

/*
 * Write an array of floating point values representing
 * pressure in a 3x2x5 array.
 */

main()
{

float32 data[3][2][5];
int32 dimsizes[3];
float32 max, min;
intn status, rank;
int i, j, k;

/* Set the rank and dimension sizes. */
rank = 3;
dimsizes[0] = 3;
dimsizes[1] = 2;
dimsizes[2] = 5;

/* Set the dimensions, to define the beginning of a data set. */
status = DFSDsetdims(rank, dimsizes);

/* Set the maximum string length to 50. */
status = DFSDsetlengths(50, 50, 50, 50);

/* Define the attribute strings and values. */
status = DFSDsetdatastrs("Pressure Data", "Millibars",

"F5.5", "None");
max = 1500.0;
min = 0.0;
status = DFSDsetrange(&max, &min);

/* Set the rank to 3. */
rank = 3;

/* Calculate the data values. */
for (i = 0; i < 3; i++)

for (j = 0; j < 2; j++)
for (k = 0; k < 5; k++)

data[i][j][k] = i*100.0 + j*10.0 + k;

/* Write the data set and its attributes to file. */
status = DFSDadddata("Example3.hdf", rank, dimsizes, data);

}

FORTRAN:
 PROGRAM SET ATTRIBS
June 2017 429

The HDF Group Table of Contents Chapter 12 -- Single-File Scientific Data Sets (DFSD API)
 real*8 data(5, 2, 3), max, min, i, j, k
 integer*4 dimsizes(3)
 integer status, rank

 integer dsslens, dssdast, dssrang, dsadata
 integer dssdims

 character*13 label /"Pressure Data"/
 character*9 unit /"Millibars"/
 character*4 format /"F5.5"/
 character*4 coordsys /"None"/

C Set the dimensions, to define the beginning of a data set.
 rank = 3
 dimsizes(1) = 5
 dimsizes(2) = 2
 dimsizes(3) = 3
 status = dssdims(rank, dimsizes)

C Set the maximum string lengths to 50.
 status = dsslens(50, 50, 50, 50)

C Define the attribute strings and values.
 status = dssdast(label, unit, format, coordsys)
 max = 1500.0
 min = 0.0
 status = dssrang(max, min)

C Fill the data array with values.
 do 30 k = 1, 3
 do 20 j = 1, 2
 do 10 i = 1, 5
 data(i, j, k) = i*100.0 + j*10.0 + k
10 continue
20 continue
30 continue

C Write the data set and its attributes to file.
 status = dsadata("Example3.hdf", rank, dimsizes, data)

 end

12.7.2 Reading DFSD Data Set Attributes

The DFSD interface provides two function calls for reading predefined data set attribute strings.

12.7.2.1 Reading Data Set Attributes: DFSDgetdatalen and DFSDgetdatastrs

DFSDgetdatalen returns the length of each string in the attribute. It is useful for determining the
length of an attribute before reading it. DFSDgetdatastrs reads the label, unit, format, and coordi-
nate system strings.

Attribute data is not read by DFSDgetdatastrs until the appropriate routine is called to read the
array and its dimension record. If DFSDgetdatastrs and DFSDgetrange are not called, the array
and its dimension record can be read without reading its associated data set attributes. It is also
possible to read string and value attributes individually. As attribute data is not actually read by
DFSDgetdatastrs or DFSDgetrange, these calls must be made before calling DFSDgetdata.

Reading the attributes of a data set involves the following steps:
430 June 2017

Chapter 12 -- Single-File Scientific Data Sets (DFSD API) Table of Contents HDF User’s Guide
1. Determine the length of each attribute string.

2. Read the attribute strings.

3. Read the maximum and minimum values.

4. Read the remainder of the data set.

To assign a predefined attribute to an HDF file, the following routines should be called:

C: status = DFSDgetdatalen(label_len, unit_len, format_len, coords_len);
status = DFSDgetdatastrs(label, unit, format, coordsys);

status = DFSDgetrange(max, min);

status = DFSDgetdata(filename, rank, dimsizes, data);

FORTRAN: status = dsgdghaln(label_len, unit_len, format_len, coords_len)

status = dsgdast(label, unit, format, coordsys)

status = dsgrang(max, min)

status = dsgdata(filename, rank, dimsizes, data)

The parameters of DFSDgetdatalen and DFSDgetdatastrs are described in the following table.

TABLE 12N DFSDgetdatalen and DFSDgetdatastrs Parameter List

EXAMPLE 4. Reading a Data Set and its Attribute Record

These examples read the pressure data set and the dimension attribute record stored in the
"Example1.hdf" file into the arrays pointed to by the data, datalabel, dataunit, datafmt and coord-
sys pointer variables. It assumes the dimension sizes and rank are correct and data strings are less
than 10 characters long, with one additional character for the null termination.

C:
#include "hdf.h"

main()
{

intn rank, maxrank, status;
int32 dimsizes[3];
char datalabel[50], dataunit[50], datafmt[50], coordsys[50];
float64 data[3][2][5];

maxrank = 3;
status = DFSDgetdims("Example3.hdf", &rank, dimsizes,

maxrank);
status = DFSDgetdatastrs(datalabel, dataunit, datafmt,

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDgetdatalen
[intn]

(dsgdaln)

label_len intn * integer Length of any label string.

unit_len intn * integer Length of any unit string.

format_len intn * integer Length of any format string.

coords_len intn * integer Length of any coordinate system string.

DFSDgetdatastrs
[intn]

(dsgdast)

label char * character*(*) Label describing the data.

unit char * character*(*) Unit applied to the data.

format char * character*(*) Format applied to the data.

coordsys char * character*(*) Coordinate system of the data set.
June 2017 431

The HDF Group Table of Contents Chapter 12 -- Single-File Scientific Data Sets (DFSD API)
coordsys);
status = DFSDgetdata("Example3.hdf", rank, dimsizes, data);

}

FORTRAN:
 PROGRAM READ SD INFO

 integer dsgdata, dsgdast, dsgdims
 integer*4 dimsizes(3)
 integer status, rank, maxrank
 character*50 datalabel, dataunit, datafmt
 character*10 coordsys
 real*8 data(5, 2, 3)

 maxrank = 3
 status = dsgdims(’Example3.hdf’, rank, dimsizes, maxrank)
 status = dsgdast(datalabel, dataunit, datafmt, coordsys)
 status = dsgdata(’Example3.hdf’, rank, dimsizes, data)

 end

12.7.2.2 Reading the Value Attributes of a DFSD Data Set: DFSDgetfillvalue and
DFSDgetcal

There are three routines in the DFSD interface that retrieve the fill value, range and calibration
information of a data set array: DFSDgetfillvalue, DFSDgetrange, and DFSDgetcal.

The syntax of these routines are as follows:

C: status = DFSDgetfillvalue(sds_id, fill_val);

status = DFSDgetrange(max, min);

status = DFSDgetcal(cal, cal_err, offset, offset_err, num_type);

FORTRAN: status = dsgfill(fill_value)

status = dsgrang(max, min)

status = dsadata(cal, cal_err, offset, offset_err, num_type)

DFSDgetfillvalue has two arguments; sds_id and fill_val. The sds_id is the data set identifier and
fill_val is the space allocated to store the fill value.

The maximum range of values in the data set isn’t automatically stored with the data set data; it is
explicitly stored through a call to DFSDgetrange. The defined range of values can be less than
the actual range of values stored in the data set. The value of the max parameter is the maximum
value of the defined range and the value of the min parameter is the minimum value. These values
must be of the same number type as the values stored in the data array. In C, the max and min
parameters are indirect pointers specifying the range values, while in FORTRAN-77 they are vari-
ables set to the range values.

DFSDgetcal reads the calibration record of the current data set, if one exists. Each of the parame-
ters of DFSDgetcal correspond to the five elements of the calibration record; - four 64-bit float-
ing-point integers followed by a 32-bit integer. The cal, offset, offset_err and cal_err parameters
are defined as they are in the multifile SD API. This calibration record exists for information only.

The parameters for DFSDgetfillvalue, DFSDgetcal, and DFSDgetrange are defined in the fol-
lowing table.
432 June 2017

Chapter 12 -- Single-File Scientific Data Sets (DFSD API) Table of Contents HDF User’s Guide
TABLE 12O DFSDgetfillvalue, DFSDgetcal and DFSDgetrange Parameter List

12.7.3 Writing the Dimension Attributes of a DFSD SDS

Dimension attributes are described in Chapter 3, Scientific Data Sets (SD API).

12.7.3.1 Writing the String Attributes of a Dimension: DFSDsetlengths and DFSDsetdimstrs

The DFSD interface provides two routines for creating dimension string attributes: DFSD-
setlengths and DFSDsetdimstrs. DFSDsetlengths overwrites the default string length and DFS-
Dsetdimstrs is defines the string text. DFSDsetdatalengths and DFSDsetdimstrs are optional
and must precede calls to DFSDadddata or DFSDputdata.

Predefined dimension string attributes are limited to one per dimension and contain the following:

• Format attributes specify the format to use when displaying values for the dimension.

• Label attributes contain dimension names.

• Unit attributes identify the unit of measurement associated with the dimension.

To assign a predefined attribute to a dimension, the following routines should be called:

C: status = DFSDsetlengths(label_len, unit_len, format_len, coords_len);
status = DFSDsetdimstrs(label, unit, format);

status = DFSDadddata(filename, rank, dimsizes, data);

FORTRAN: status = dsslens(label_len, unit_len, format_len, coords_len)

status = dssdist(label, unit, format)

status = dsadata(filename, rank, dimsizes, data)

DFSDsetlengths has four arguments: label_len, unit_len, format_len, and coords_len. Each
parameter specifies the maximum length of the string that defines the label, unit, format, and coor-
dinate system. As mentioned earlier in this chapter, attribute lengths seldom need to be reset.

DFSDsetdimstrs also has four arguments; dim, label, unit, and format. The parameter dim = 1 for
the first dimension, dim = 2 for the second dimension, etc. To avoid assigning a string to the coor-
dinate length, pass NULL in the appropriate parameter. DFSDsetdimstrs writes null-terminated
strings to a file.

The parameters for DFSDsetlengths and DFSDsetdimstrs are further defined in the following
table.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDgetfillvalue
[intn]

(dsgfill)

sds_id int32 integer Data set identifier.

fill_val VOIDP <valid numeric data type> Buffer for the fill value.

DFSDgetcal
[int32]

(dsgcal)

cal float64 * real*8 Calibration factor.

cal_err float64 * real*8 Calibration error.

offset float64 * real*8 Uncalibrated offset.

offset_err float64 * real*8 Uncalibrated offset error.

num_type int32 * integer Type of the uncalibrated data.

DFSDgetrange
[intn]

(dsgrang)

max VOIDP <valid numeric data type> Highest value of the selected range.

min VOIDP <valid numeric data type> Lowest value of the selected range.
June 2017 433

The HDF Group Table of Contents Chapter 12 -- Single-File Scientific Data Sets (DFSD API)
TABLE 12P DFSDsetlengths and DFSDsetdimstrs Parameter List

12.7.3.2 Writing a Dimension Scale of a DFSD SDS: DFSDsetdimscale

The syntax of the two routines needed to write a dimension scale is the following:

C: status = DFSDsetdimscale(dim, dimsize, scale);

status = DFSDadddata(filename, rank, dimsizes, data);

FORTRAN: status = dssdisc(dim, dimsize, scale)

status = dsadata(filename, rank, dimsizes, data)

DFSDsetdimscale has three arguments; dim, dimsize, and scale. These arguments identify the
dimension, specify its size, and assign a value to each of its grid points. The parameter dim = 1 for
the first dimension, and dim = 2 for the second dimension. The dimsize argument must contain a
value equal to the dimension it describes in order for the scale to be applied correctly.

The parameters of DFSDsetdiscale are further described in the following table.

TABLE 12Q DFSDsetdimscale Parameter List

12.7.4 Reading the Dimension Attributes of a DFSD SDS

The DFSD interface provides three routines for reading dimension attributes: DFSDgetdimlen,
DFSDgetdimstrs and DFSDgetdimscale. DFSDgetdimlen returns the string length for each
string in the attribute record. It is a useful routine to call before reading an attribute. DFSDget-
dimstrs and DFSDgetdimscale are used as instructions for reading the dimension attributes.
DFSDgetdimstrs reads the dimension strings and DFSDgetdimscale reads the dimension scale.
By avoiding calls to DFSDgetdimstrs and DFSDgetdimscale, it is possible to read an array and
its dimension record without reading the data set attributes associated with it. It is also possible to
omit one function call in order to read one attribute without the other. Also, note that DFSDget-
dimstrs and DFSDgetdimscale must be called before DFSDgetdata.

Reading data set attributes involves the following steps:

1. Determine the length of each attribute string.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDsetlengths
[intn]

(dsslen)

label_len intn integer Maximum length of any label string.

unit_len intn integer Maximum length of any unit string.

format_len intn integer Maximum length of any format string.

coords_len intn integer Maximum length of any coordinate system string.

DFSDsetdimstrs
[intn]

(dssdist)

dim intn integer
Dimension of the attribute strings.specified by the
remaining three parameters

label char * character*(*) Label describing the data.

unit char * character*(*) Unit to be applied to the data.

format char * character*(*) Format to be applied in displaying the data.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDsetdimscale
[intn]

(dssdisc)

dim intn integer Dimension of the current scale.

dim_size int32 integer Size of the current scale.

scale VOIDP <valid numeric data type> Values of the current scale.
434 June 2017

Chapter 12 -- Single-File Scientific Data Sets (DFSD API) Table of Contents HDF User’s Guide
2. Read the attribute strings.

3. Read the scale values.

4. Read the remainder of the data set.

These steps are translated into the following function calls:

C: status = DFSDgetdimlen(label_len, unit_len, format_len, coords_len);
status = DFSDgetdimstrs(label, unit, format);
status = DFSDgetdimscale(dim, dim_size, scale);
status = DFSDgetdata(filename, rank, dimsizes, data);

FORTRAN: status = dsgdiln(label_len, unit_len, format_len, coords_len)
status = dsgdist(label, unit, format)
status = dsgdisc(dim, dim_size, scale)
status = dsgdata(filename, rank, dimsizes, data)

The parameters for DFSDgetdimlen, DFSDgetdimstrs and DFSDgetdimscale are described in
the following table.

TABLE 12R DFSDgetdimlen, DFSDgetdimstrs and DFSDgetdimscale Parameter List

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

DFSDgetdimlen
[intn]

(dsgdiln)

dim intn integer
Dimension of the string attributes
describe.

label_len intn * integer Length of the label attribute string.

unit_len intn * integer Length of the unit attribute string.

format_len intn * integer Length of the format attribute string.

DFSDgetdimstrs
[intn]

(dsgdist)

dim intn integer
Dimension the string attributes
describe.

label char * character*(*) Label of the dimension.

unit char * character*(*) Unit to be applied to this dimension.

format char * character*(*)
Format to be applied when displaying
the scale.

DFSDgetdimscale
[intn]

(dsgdisc)

dim intn integer
Dimension the current scale is
attached to

dim_size int32 integer Size of the current scale.

scale VOIDP <valid numeric data type> Values of the current scale.
June 2017 435

The HDF Group Table of Contents Chapter 12 -- Single-File Scientific Data Sets (DFSD API)
436 June 2017

CHAPTER 13 -- Error Reporting
13.1 Chapter Overview

This chapter describes the main error reporting routines designed for general HDF use and the
types of errors handled by the error reporting API and the general structure of the API.

13.2 The HDF Error Reporting API

The HDF error reporting API consists of routines that query error stack information, the names of
which are prefaced by “HE”. They are described briefly in Table 13A. Some are primarily for use
by HDF developers while others are available to HDF users. In this chapter, three error reporting
functions are covered: HEprint, HEvalue and HEstring. Note that only one C error reporting
routine has a FORTRAN-77 counterpart: heprnt/heprntf (heprntf is the newer function, sup-
ported on all platforms; heprnt is the original function, supported on non-Microsoft Windows
platforms).

TABLE 13A Error Reporting Routine List

13.3 Error Reporting in HDF

Most HDF error reporting routines return FAIL (or -1) if the operation is successful and SUCCEED
(or 0) otherwise. Each time a FAIL code is returned one or more error codes are pushed onto the
error code stack. The following pseudo-code will demonstrate the two methods commonly used to
access and print the contents of this stack.

if (<general HDF function() >= FAIL) {
<HDF error reporting API routines>

}

OR

status = <general HDF function();
if (status == FAIL) {

<HDF error reporting API routines>

Category
Routine Name

Description
C FORTRAN-77

Error Reporting

HEprint
heprnt
heprntf

Prints the errors on the error stack to a specified file.

HEstring hestringf Returns the error message associated with an error code.

HEvalue None Returns the nth most recent error reported.
June 2017 437

The HDF Group Table of Contents Chapter 13 -- Error Reporting
}

A list of error codes is included at the end of this chapter.

13.3.1Writing Errors to a File: HEprint

HEprint writes the errors on the stack to the specified file. There are four sections of an HEprint
error report:

1. A description of the error.

2. The routine in which the error was detected.

3. The source file in which the error was detected.

4. The line number in which the error was detected.

The syntax for HEprint is as follows:

C: HEprint(stream, level);

FORTRAN: status = heprnt(level)

The stream parameter is a UNIX file handle indicating the output stream the error information
will be written to. The level parameter specifies the amount of error information to report. In
FORTRAN-77, heprnt (supported on non-Microsoft Windows platforms) always writes to the
standard error stream, or stderr; therefore the only parameter is level. To facilitate Microsoft Win-
dows support, a newer function heprntf (supported on all platforms) requires two parameters,
filename to identify the file to which the error information is to be written and level.

Errors are written in sequential order starting from the bottom of the stack. Consequently, specify-
ing a level parameter value of 1 will write the first error that occurred, or the first error pushed
onto the stack. Specifying a level parameter of value 0 will write all errors on the stack to the spec-
ified file. For example, the following C code will write all errors on the stack to the file named
“errors”.

f = fopen("errors", "w");
HEprint(f, 0);

As an example of the output of HEprint, suppose an attempt is made to open an nonexistent file
with Hopen. Calling HEprint(stdout, 0) or heprnt(0) will produce the following output:

HDF error: <error opening file>
Detected in Hopen() [hfile.c line 305]

13.3.2Returning the Code of the Nth Most Recent Error: HEvalue

HEvalue returns the error code for the nth most recent error and is only available as a C routine.
The level parameter specifies the number of errors to regress from the top of the error stack, i.e.,
HEvalue(1) will return the error code at the top of the stack. Refer to (See Table 13B on
page 440) for a complete list of HDF4 error codes.

The syntax for HEvalue is as follows:

C: status = HEvalue(level);

13.3.3Returning the Description of an Error Code: HEstring/hestringf

HEstring returns the error description associated with the error code specified by the error_code
parameter as a character string.
438 June 2017

Chapter 13 -- Error Reporting Table of Contents HDF User’s Guide
The syntax for HEstring is as follows:

C: error_message = HEstring(error_code);

FORTRAN: status = hestringf(error_code, error_message)

13.3.4Clearing the error stack: HEclear

HEclear clears all information on reported errors from the error stack and is only available as a C
routine. The syntax for HEclear is as follows:

C: status = HEclear();

Note that every HDF4 API calls HEclear to clear the error stack.

EXAMPLE 1. Writing Errors to a Console Window

The following C code fragment will copy errors from the stack to a console window.

C:
#include "hdf.h"

main()
{

int32 i, e;
const char *str;
...
i = 0;
while ((e = HEvalue(i)) != DFE_NONE) {

str = HEstring(e);
<device-specific code to print the string to a console>
i++

...
}

June 2017 439

The HDF Group Table of Contents Chapter 13 -- Error Reporting
TABLE 13B HDF Error Codes

Error Code Code Definition

DFE_NONE No error.

DFE_FNF File not found.

DFE_DENIED Access to file denied.

DFE_ALROPEN File already open.

DFE_TOOMANY Too many AID's or files open.

DFE_BADNAME Bad file name on open.

DFE_BADACC Bad file access mode.

DFE_BADOPEN Miscellaneous open error.

DFE_NOTOPEN File can't be closed because it hasn’t been opened.

DFE_CANTCLOSE fclose error

DFE_READERROR Read error.

DFE_WRITEERROR Write error.

DFE_SEEKERROR Seek error.

DFE_RDONLY File is read only.

DFE_BADSEEK Attempt to seek past end of element.

DFE_PUTELEM Hputelement error.

DFE_GETELEM Hgetelement error.

DFE_CANTLINK Cannot initialize link information.

DFE_CANTSYNC Cannot synchronize memory with file.

DFE_BADGROUP Error from DFdiread in opening a group.

DFE_GROUPSETUP Error from DFdisetup in opening a group.

DFE_PUTGROUP Error on putting a tag/reference number pair into a group.

DFE_GROUPWRITE Error when writing group contents.

DFE_DFNULL Data file reference is a null pointer.

DFE_ILLTYPE Data file contains an illegal type: internal error.

DFE_BADDDLIST The DD list is non-existent: internal error.

DFE_NOTDFFILE The current file is not an HDF file and it is not zero length.

DFE_SEEDTWICE The DD list already seeded: internal error.

DFE_NOSUCHTAG No such tag in the file: search failed.

DFE_NOFREEDD There are no free DDs left: internal error.

DFE_BADTAG Illegal WILDCARD tag.

DFE_BADREF Illegal WILDCARD reference number.

DFE_NOMATCH No DDs (or no more DDs) that match the specified tag/reference number pair.

DFE_NOTINSET Warning: Set contained unknown tag. Ignored.

DFE_BADOFFSET Illegal offset specified.

DFE_CORRUPT File is corrupted.

DFE_NOREF No more reference numbers are available.

DFE_DUPDD The new tag/reference number pair has been allocated.

DFE_CANTMOD Old element doesn’t exist. Cannot modify.

DFE_DIFFFILES Attempt to merge objects in different files.

DFE_BADAID An invalid AID was received.

DFE_OPENAID Active AIDs still exist.

DFE_CANTFLUSH Cannot flush DD back to file.

DFE_CANTUPDATE Cannot update the DD block.

DFE_CANTHASH Cannot add a DD to the hash table.
440 June 2017

Chapter 13 -- Error Reporting Table of Contents HDF User’s Guide
DFE_CANTDELDD Cannot delete a DD in the file.

DFE_CANTDELHASH Cannot delete a DD from the hash table.

DFE_CANTACCESS Cannot access specified tag/reference number pair.

DFE_CANTENDACCESS Cannot end access to data element.

DFE_TABLEFULL Access table is full.

DFE_NOTINTABLE Cannot find element in table.

DFE_UNSUPPORTED Feature not currently supported.

DFE_NOSPACE malloc failed.

DFE_BADCALL Routine calls were in the wrong order.

DFE_BADPTR NULL pointer argument was specified.

DFE_BADLEN Invalid length was specified.

DFE_NOTENOUGH Not enough space for the data.

DFE_NOVALS Values were not available.

DFE_ARGS Invalid arguments passed to the routine.

DFE_INTERNAL Serious internal error.

DFE_NORESET Too late to modify this value.

DFE_GENAPP Generic application level error.

DFE_UNINIT Interface was not initialized correctly.

DFE_CANTINIT Cannot initialize the interface the operation requires.

DFE_CANTSHUTDOWN Cannot shut down the interface the operation requires.

DFE_BADDIM Negative number of dimensions, or zero dimensions, was specified.

DFE_BADFP File contained an illegal floating point number.

DFE_BADDATATYPE Unknown or unavailable data type was specified.

DFE_BADMCTYPE Unknown or unavailable machine type was specified.

DFE_BADNUMTYPE Unknown or unavailable number type was specified.

DFE_BADORDER Unknown or illegal array order was specified.

DFE_RANGE Improper range for attempted access.

DFE_BADCONV Invalid data type conversion was specified.

DFE_BADTYPE Incompatible types were specified.

DFE_BADSCHEME Unknown compression scheme was specified.

DFE_BADMODEL Invalid compression model was specified.

DFE_BADCODER Invalid compression encoder was specified.

DFE_MODEL Error in the modeling layer of the compression operation.

DFE_CODER Error in the encoding layer of the compression operation.

DFE_CINIT Error in encoding initialization.

DFE_CDECODE Error in decoding compressed data.

DFE_CENCODE Error in encoding compressed data.

DFE_CTERM Error in encoding termination.

DFE_CSEEK Error seeking in an encoded data set.

DFE_MINIT Error in modeling initialization.

DFE_COMPINFO Invalid compression header.

DFE_CANTCOMP Cannot compress an object.

DFE_CANTDECOMP Cannot decompress an object.

DFE_NOENCODER Encoder not available.

DFE_NOSZLIB SZIP library not available.

DFE_COMPVERSION
Version error from zlib
Note: when Z_VERSION_ERROR (-6) returned from zlib.

Error Code Code Definition
June 2017 441

The HDF Group Table of Contents Chapter 13 -- Error Reporting
DFE_READCOMP

Error in reading compressed data.
Note: when one of the following error codes returned from zlib:
Z_ERRNO (-1)
Z_STREAM_ERROR (-2)
Z_DATA_ERROR (-3)
Z_MEM_ERROR (-4)
Z_BUF_ERROR (-5)

DFE_NODIM A dimension record was not associated with the image.

DFE_BADRIG Error processing a RIG.

DFE_RINOTFOUND Cannot find raster image.

DFE_BADATTR Invalid attribute.

DFE_BADTABLE The nsdg table has incorrect information.

DFE_BADSDG Error in processing an SDG.

DFE_BADNDG Error in processing an NDG.

DFE_VGSIZE Too many elements in the vgroup.

DFE_VTAB Element not in vtab[].

DFE_CANTADDELEM Cannot add the tag/reference number pair to the vgroup.

DFE_BADVGNAME Cannot set the vgroup name.

DFE_BADVGCLASS Cannot set the vgroup class.

DFE_BADFIELDS Invalid fields string passed to vset routine.

DFE_NOVS Cannot find the vset in the file.

DFE_SYMSIZE Too many symbols in the users table.

DFE_BADATTACH Cannot write to a previously attached vdata.

DFE_BADVSNAME Cannot set the vdata name.

DFE_BADVSCLASS Cannot set the vdata class.

DFE_VSWRITE Error writing to the vdata.

DFE_VSREAD Error reading from the vdata.

DFE_BADVH Error in the vdata header.

DFE_VSCANTCREATE Cannot create the vdata.

DFE_VGCANTCREATE Cannot create the vgroup.

DFE_CANTATTACH Cannot attach to a vdata or vset.

DFE_CANTDETACH Cannot detach a vdata or vset with write access.

DFE_BITREAD A bit read error occurred.

DFE_BITWRITE A bit write error occurred.

DFE_BITSEEK A bit seek error occurred.

DFE_TBBTINS Failed to insert the element into tree.

DFE_BVNEW Failed to create a bit vector.

DFE_BVSET Failed when setting a bit in a bit vector.

DFE_BVGET Failed when getting a bit in a bit vector.

DFE_BVFIND Failed when finding a bit in a bit vector.

Error Code Code Definition
442 June 2017

CHAPTER 14 -- HDF Performance Issues
14.1 Chapter Overview and Introduction

This chapter describes many of the concepts the HDF user should understand to gain better per-
formance from their applications that use the HDF library. It also covers many of the ways in
which HDF can be used to cause impaired performance and methods for correcting these prob-
lems.

As stated earlier in this manual, HDF has been designed to be very general-purpose, and it has
been used in many different applications involving scientific data. Each application has its own
set of software and hardware resource constraints that will affect performance in a different way,
and to a different extent, from the resource constraints in other applications.

Therefore, it is impossible to outline all of the performance issues that may relate to a particular
application of HDF. However, this chapter should give the reader sufficient knowledge of the
most common performance issues encountered by the HDF Group. This knowledge should enable
the reader to explore different ways of storing data on the platforms they use for the purpose of
increasing library performance.

14.2 Examples of HDF Performance Enhancement

In this section, four pairs of HDF object models along with their C implementations will be pre-
sented. Each pair will illustrate a specific aspect of HDF library performance as it relates to scien-
tific data sets. They will be employed here as general pointers on how to model scientific data sets
for optimized performance.

In developing and testing these examples, the Sun Solaris OS version supported by HDF version
4.1 release 1 was used. Version 2.0 of the Quantify performance profiler was used to measure the
relative differences in library performance between the SDS models in each pair. It should be
noted that, while the examples reliably reflect which SDS configurations result in better perfor-
mance, the specifics of how much performance will be improved depend on many factors such as
OS configuration, compiler used and profiler used. Therefore, any specific measurements of per-
formance mentioned in the chapter should be interpreted only as general indicators.

The reader should keep in mind that the following examples have been designed for illustrative
purposes only, and should not be considered as real-world examples. It is expected that the reader
will apply the library performance concepts covered by these examples to their specific usage of
the HDF library.
June 2017 443

The HDF Group Table of Contents Chapter 14 -- HDF Performance Issues
14.2.1 One Large SDS versus Several Smaller SDSs

The scientific data set is an example of what in HDF parlance is referred to as a primary object.
The primary objects accessed and manipulated by the HDF library include, beside scientific data
sets, raster images, annotations, vdatas and vgroups. Each primary object has metadata, or data
describing the data, associated with it. Refer to the HDF Specifications Manual for a description
of the components of this metadata and how to calculate its size on disk.

An opportunity for performance enhancement can exist when the size of the metadata far exceeds
the size of the data described by the metadata. In this situation, more CPU time and disk space
will be used to maintain the metadata than the data contained in the SDS. Consolidating the data
into fewer, or even one, SDS can increase performance.

To illustrate this, consider 1,000 1 x 1 x 1 element scientific data sets of 32-bit floating-point num-
bers. No user-defined dimension, dimension scales or fill values have been defined or created.

FIGURE 14a 1,000 1 x 1 x 1 Element Scientific Data Sets

In this example, 1,000 32-bit floating-point numbers are first buffered in-core, then written as
1,000 SDSs.

In Table 14A, the results of this operation are reflected in two metrics: the total number of CPU
cycles used by the example program, and the size of the HDF file after the write operation.

TABLE 14A Results of the Write Operation to 1,000 1x1x1 Element Scientific Data Sets

Now the 1,000 32-bit floating point numbers that were split into 1,000 SDSs are combined into
one 10 x 10 x 10 element SDS. This is illustrated in the following figure.

Total Number of CPU Cycles Size of the HDF File (in bytes)

136,680,037 896,803

. . .

SDS 1 SDS 2 SDS 3 SDS 4 SDS 5 SDS 6 SDS 7 SDS 1000
444 June 2017

Chapter 14 -- HDF Performance Issues Table of Contents HDF User’s Guide
FIGURE 14b One 10 x 10 x 10 Element Scientific Data Set

As with the last example, 1,000 32-bit floating-point numbers are first buffered in-core, then writ-
ten to a single SDS. The following table contains the performance metrics of this operation.

TABLE 14B Results of the Write Operation to One 10x10x10 Element Scientific Data Set

It is apparent from these results that merging the data into one scientific data set results in a sub-
stantial increase in I/O efficiency - in this case, a 99.9% reduction in total CPU load. In addition,
the size of the HDF file is dramatically reduced by a factor of more than 100, even through the
amount of SDS data stored is the same.

The extent to which the data consolidation described in this section should be done is dependent
on the specific I/O requirements of the HDF user application.

14.2.2 Sharing Dimensions between Scientific Data Sets

When several scientific data sets have dimensions of the same length, name and data type, they
can share these dimensions to reduce storage overhead and CPU cycles in writing out data.

To illustrate this, again consider the example of 1,000 1 x 1 x 1 scientific data sets of 32-bit float-
ing point numbers. Three dimensions are attached by default to each scientific data set by the
HDF library. The HDF library assigns each of these dimensions a default name prefaced by the
string fakeDim. See Chapter 3, Scientific Data Sets (SD API), for a specific explanation of default
dimension naming conventions.

Total Number of CPU Cycles Size of the HDF File (in bytes)

205,201 7,258

10
elements

10
elements

10
elements
June 2017 445

The HDF Group Table of Contents Chapter 14 -- HDF Performance Issues
FIGURE 14c 1,000 1 x 1 x 1 Element Scientific Data Sets

One 32-bit floating point number is written to each scientific data set. The following table lists the
performance metrics of this operation.

TABLE 14C Results of the Write Operation to 1,000 1x1x1 Element Scientific Data Sets

Now consider the 1,000 SDSs described previously in this section. In this case, the 1,000 SDSs
share the program-defined X_Axis, Y_Axis and Z_Axis dimensions as illustrated in the following
figure.

FIGURE 14d 1,000 1 x 1 x 1 Element Scientific Data Sets Sharing Dimensions

The performance metrics that result from writing one 32-bit floating-point number to each dataset
are in the following table.

Total Number of CPU Cycles Size of the HDF File (in bytes)

136,680,037 896,803

. . .

SDS 1 SDS 2 SDS 3 SDS 1,000

Default Dimensions

. . .

SDS 1 SDS 2 SDS 3 SDS 1,000

Dimension Named Y_Axis

Dimension Named X_AxisDimension Named Z_Axis
446 June 2017

Chapter 14 -- HDF Performance Issues Table of Contents HDF User’s Guide
TABLE 14D Results of the Write Operation to 1,000 1x1x1 SDSs with Shared Dimensions

An 82% performance improvement in this example program can be seen from the information in
this table, due to the fewer write operations involved in writing dimension data to shared dimen-
sions. Also, the HDF file is significantly smaller in this case, due to the smaller amount of dimen-
sion data that is written.

14.2.3 Setting the Fill Mode

When a scientific data set is created, the default action of the HDF library is to fill every element
with the default fill value. This action can be disabled, and reenabled once it has been disabled, by
a call to the SDsetfillmode routine.

The library’s default writing of fill values can degrade performance when, after the fill values
have been written, every element in the dataset is written to again. This operation involves writing
every element in the SDS twice. This section will demonstrate that disabling the initial fill value
write operation by calling SDsetfillmode can improve library performance.

Consider 50 10 x 10 x 10 scientific data sets of 32-bit floating-point numbers.

FIGURE 14e 50 10 x 10 x 10 Element Scientific Data Sets

By default, the fill value is written to every element in all 50 SDSs. The contents of a two-dimen-
sional buffer containing 32-bit floating-point numbers is then written to these datasets. The way
these two-dimensional slices are written to the three-dimensional SDSs is illustrated in the follow-
ing figure. Each slice (represented by each shaded area in the figure) is written along the third
dimension of each SDS, or if the dimensions are related to a Cartesian grid, the z-dimension, until
the entire SDS is filled.

Total Number of CPU Cycles Size of the HDF File (in bytes)

24,724,384 177,172

SDS 1 SDS 2 SDS 3 SDS 50

. . .
June 2017 447

The HDF Group Table of Contents Chapter 14 -- HDF Performance Issues
FIGURE 14f Writing to the 50 10 x 10 x 10 Element Scientific Data Sets

It should be noted that the reason each SDS is not rewritten to in one write operation is because
the HDF library will detect this and automatically disable the initial write of the fill values as a
performance-saving measure. Hence, the partial writes in two-dimensional slabs.

The following table shows the number of CPU cycles needed in our tests to perform this write
operation with the fill value write enabled. The "Size of the HDF File" metric has been left out of
this table, because it will not change substantially regardless of whether the default fill value write
operation is enabled.

TABLE 14E Results of the Write Operation to the 50 10x10x10 SDSs with the Fill Value Write Enabled

The following table shows the number of CPU cycles needed to perform the same write operation
with the fill value write disabled.

TABLE 14F Results of the Write Operation to the 50 SDSs with the Fill Value Write Disabled

The information in these tables demonstrate that eliminating the I/O overhead of the default fill
value write operation when an entire SDS is rewritten to results in a substantial reduction of the
CPU cycles needed to perform the operation -- in this case, a reduction of 33%.

14.2.4 Disabling Fake Dimension Scale Values in Large One-dimensional
Scientific Data Sets

In versions 4.0 and earlier of the HDF library, dimension scales were represented by a vgroup con-
taining a vdata. This vdata consisted of as many records as there are elements along the dimen-
sion. Each record contained one number which represented each value along the dimension scale,
and these values are referred to as fake dimension scale values.

In HDF version 4.0 a new representation of the dimension scale was implemented alongside the
old one -- a vdata containing only one value representing the total number of values in the dimen-
sion scale. In version 4.1 release 2, this representation was made the default. A compatible mode
is also supported where both the older and newer representations of the dimension scale are writ-
ten to file.

Total Number of CPU Cycles

584,956,078

Total Number of CPU Cycles

390,015,933

SDS 1 SDS 2 SDS 3 SDS 50

. . .

Z Dimension
448 June 2017

Chapter 14 -- HDF Performance Issues Table of Contents HDF User’s Guide
In the earlier representation, a substantial amount of I/O overhead is involved in writing the fake
dimension scale values into the vdata. When one of the dimensions of the SDS array is very large,
performance can be improved, and the size of the HDF file can be reduced, if the old representa-
tion of dimension scales is disabled by a call to the SDsetdimval_comp routine. The examples in
this section will illustrate this.

First, consider one 10,000 element array of 32-bit floating point numbers, as shown in the follow-
ing figure. Both the new and old dimension scale representations are enabled by the library.

FIGURE 14g One 10,000 Element Scientific Data Set with Old- and New-Style Dimension Scales

10,000 32-bit floating-point numbers are buffered in-core, then written to the scientific data set. In
addition, 10,000 integers are written to the SDS as dimension scale values. The following table
contains the results of this operation from our tests.

TABLE 14G Results of the SDS Write Operation with the New and Old Dimension Scales

Now consider the same SDS with the fake dimension scale values disabled. The following figure
illustrates this.

FIGURE 14h One 10,000 Element Scientific Data Set with the Old-Style Dimension Scale Disabled

The following table contains the performance metrics of this write operation.

Total Number of CPU Cycles Size of the HDF File (in bytes)

439,428 82,784

.

.

. . .

10,000 element array

.

9,999

0

1

2

3

10,000

Vdata Containing 1 Dimension Scale Value (New-style)

Vdata Containing 10,000 Fake Dimension Scale Values
(Old-style)

10,000

 Vdata Containing One Dimension Scale Value (New-style)

. . .

10,000 element array
June 2017 449

The HDF Group Table of Contents Chapter 14 -- HDF Performance Issues
TABLE 14H Results of the SDS Write Operation with Only the New Dimension Scale

The old-style dimension scale is not written to the HDF file, which results in the size of the file
being reduced by nearly 50%. There is also a marginal reduction in the total number of CPU
cycles.

14.3 Data Chunking

14.3.1 What Is Data Chunking?

Data chunking is a method of organizing data within an SDS where data is stored in chunks of a
predefined size, rather than contiguously by array element. Its two-dimensional instance is some-
times referred to as data tiling. Data chunking is generally beneficial to I/O performance in very
large arrays, e.g., arrays with thousands of rows and columns.

If correctly applied, data chunking may reduce the number of seeks through the SDS data array to
find the data to be read or written, thereby improving I/O performance. However, it should be
remembered that data chunking, if incorrectly applied, can significantly reduce the performance
of reading and/or writing to an SDS. Knowledge of how chunked SDSs are created and accessed
and application-specific knowledge of how data is to be read from the chunked SDSs are neces-
sary in avoiding situations where data chunking works against the goal of I/O performance opti-
mization.

The following figure illustrates the difference between a non-chunked SDS and a chunked SDS.

FIGURE 14i Comparison between Chunked and Non-chunked Scientific Data Sets

Total Number of CPU Cycles Size of the HDF File

318,696 42,720

1 2 3
4 5 6

7 8 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 2526 27 28 2930 31 32

1 2 3
4 5 6

7 8 9

Non-Chunked SDS Chunked SDS (chunk size is 3 x 3 x 3)

While the data in a non-chunked SDS is written to,
and organized in, a contiguous fashion, a chunked
SDS is written to, and organized in, equally-sized
regions of data -- or chunks.
450 June 2017

Chapter 14 -- HDF Performance Issues Table of Contents HDF User’s Guide
14.3.2 Writing Concerns and Reading Concerns in Chunking

There are issues in working with chunks that are related to the reading process and others that are
related to the writing process.

Specifically, the issues that affect the process of reading from chunked SDSs are

• Compression

• Subsetting

• Chunk sizing

• Chunk cache sizing

The issues that affect the process of writing to chunked SDSs are

• Compression

• Chunk cache sizing

14.3.3 Chunking without Compression

Accessing Subsets According to Storage Order

The main consideration to keep in mind when subsetting from chunked and non-chunked SDSs is
that if the subset can be accessed in the same order as it was stored, subsetting will be efficient. If
not, subsetting may result in less-than-optimal performance considering the number of elements
to be accessed.

To illustrate this, the instance of subsetting in non-chunked SDSs will first be described. Consider
the example of a non-chunked, two-dimensional, 2,000 x 1,600 SDS array of integer data. The fol-
lowing figure shows how this array is filled with data in a row-wise fashion. (Each square in the
array shown represents 100 x 100 integers.)

FIGURE 14j Filling a Two-dimensional Array with Data Using Row-major Ordering

The most efficient way an application can read a row of data, or a portion of a row, from this array,
is a contiguous, row-wise read of array elements. This is because this is the way the data was orig-
inally written to the array. Only one seek is needed to perform this. (See Figure 14k)

In C, a two dimensional array is
filled row-wise.

1,600 ints

2,000 ints
June 2017 451

The HDF Group Table of Contents Chapter 14 -- HDF Performance Issues
FIGURE 14k Number of Seeks Needed to Access a Row of Data in a Non-chunked SDS

If the subset of data to be read from this array is one 2,000 integer column, then 2,000 seeks will
be required to complete the operation. This is the most inefficient method of reading this subset as
nearly all of the array locations will be accessed in the process of seeking to a relatively small
number of target locations.

FIGURE 14l Number of Seeks Needed to Access a Column of Data in a Non-chunked SDS

Now suppose this SDS is chunked, and the chunk size is 400 x 400 integers. A read of the afore-
mentioned row is performed. In this case, four seeks are needed to read all of the chunks that con-
tain the target locations. This is less efficient than the one seek needed in the non-chunked SDS.

One seek is needed to find the
starting location of a 1,400 integer
row of data.

2,000 seeks are needed to find the
starting location of each element in a
2,000 integer column of data. (Each
arrow represents 100 seeks.)
452 June 2017

Chapter 14 -- HDF Performance Issues Table of Contents HDF User’s Guide
FIGURE 14m Number of Seeks Needed to Access a Row of Data in a Chunked SDS

To read the aforementioned column of data, five chunks must be read into memory in order to
access the 2,000 locations of the subset. Therefore, five seeks to the starting location of each of
these chunks are necessary to complete the read operation, far fewer than the 2,000 needed in the
non-chunked SDS.

FIGURE 14n Number of Seeks Needed to Access a Column of Data in a Chunked SDS

These examples show that, in many cases, chunking can be used to reduce the I/O overhead of
subsetting, but in certain cases, chunking can impair I/O performance.

The efficiency of subsetting from chunked SDSs is partly determined by the size of the chunk: the
smaller the chunk size, the more seeks will be necessary. Chunking can substantially improve I/O
performance when data is read along the slowest-varying dimension. It can substantially degrade
performance when data is read along the fastest-varying dimension.

4 seeks are needed to find the
starting location of a 1,400
integer row of data in a
chunked data array with 400
x 400 integer chunks.

5 seeks are needed to find the
starting location of a 2,000
integer column of data in a
chunked data array with 400 x
400 integer chunks. (Each arrow
represents one seek.)
June 2017 453

The HDF Group Table of Contents Chapter 14 -- HDF Performance Issues
14.3.4 Chunking with Compression

Chunking can be particularly effective when used in conjunction with compression. It allows sub-
sets to be read (or written) without having to uncompress (or compress) the entire array.

Consider the example of a tiled, two-dimensional SDS containing one million bytes of image
data. Each tile of image data has been compressed as illustrated in the following figure.

FIGURE 14o Compressing and Writing Chunks of Data to a Compressed and Tiled SDS

When it becomes necessary to read a subset of the image data, the application passes in the loca-
tion of a tile, reads the entire tile into a buffer, and extracts the data-of-interest from that buffer.

FIGURE 14p Extracting a Subset from a Compressed and Tiled SDS

In a compressed and non-tiled SDS, retrieving a subset of the compressed image data necessitates
reading the entire contents of the SDS array into a memory buffer and uncompressing it in-core.
(See Figure 14q) The subset is then extracted from this buffer. (Keep in mind that, even though the

Compressed and Tiled SDS in the File

Uncompressed Tiles of Image Data

Compressed Tiles of Image Data

in Memory

in Memory

Compressed and Tiled SDS in FileUncompressed Tile of Image Data

Compressed Tile of SDS Data in Memory

With Marked Subset in Memory

Subset in Memory
454 June 2017

Chapter 14 -- HDF Performance Issues Table of Contents HDF User’s Guide
illustrations show two-dimensional data tiles for clarity, this process can be extended to data
chunks of any number of dimensions.)

FIGURE 14q Extracting a Subset from a Compressed Non-tiled SDS

As compressed image files can be as large as hundreds of megabytes in size, and a gigabyte or
more uncompressed, it is clear that the I/O requirements of reading to and writing from non-tiled,
compressed SDSs can be immense, if not prohibitive. Add to this the additional I/O burden inher-
ent in situations where portions of several image files must be read at the same time for compari-
son, and the benefits of tiling become even more apparent.

NOTE: It is recommended that the SDwritechunk routine be used to write to a compressed and
chunked SDS. SDwritechunk can perform this operation more efficiently than the combination
of SDsetcompress and SDwritedata. This is because the chunk information provided by the user
to the SDwritechunk routine must be retrieved from the file by SDwritedata, and therefore
involves more computational overhead.

14.3.5 Effect of Chunk Size on Performance

The main concern in modelling data for chunking is that the chunk size be approximately equal to
the average expected size of the data block needed by the application.

If the chunk size is substantially larger than this, increased I/O overhead will be involved in read-
ing the chunk and increased performance overhead will be involved in the decompression of the
data if it is compressed. If the chunk size is substantially smaller than this, increased performance
and memory/disk storage overhead will be involved in the HDF library’s operations of accessing
and keeping track of more chunks, as well as the danger of exceeding the maximum number of
chunks per file. (64K)

It is recommended that the chunk size be at least 8K bytes.

14.3.6 Insufficient Chunk Cache Space Can Impair Chunking Performance

The HDF library provides caching chunks. This can substantially improve I/O performance when
a particular chunk must be accessed more than once.

Compressed and Non-Tiled SDS
with Marked Subset in File

Array Containing Uncompressed SDS Data with
Marked Subset in Memory

Subset in Memory
June 2017 455

The HDF Group Table of Contents Chapter 14 -- HDF Performance Issues
There is a potential performance problem when subsets are read from chunked datasets and insuf-
ficient chunk cache space has been allocated. The cause of this problem is the fact that two sepa-
rate levels of the library are working to read the subset into memory and these two levels have a
different perspective on how the data in the dataset is organized.

Specifically, higher-level routines like SDreaddata access the data in a strictly row-wise fashion,
not according to the chunked layout. However, the lower-level code that directly performs the
read operation accesses the data according to the chunked layout.

As an illustration of this, consider the 4 x 12 dataset depicted in the following figure.

FIGURE 14r Example 4 x 12 Element Scientific Data Set

Suppose this dataset is untiled, and the subset shown in the following figure must be read.

FIGURE 14s 2 x 8 Element Subset of the 4 x 12 Scientific Data Set

As this dataset is untiled, the numbers are stored in linear order. SDreaddata finds the longest
contiguous stream of numbers, and requests the lower level of the library code to read it into
memory. First, the first row of numbers will be read:

3 4 5 6 7 8 9 10

Then the second row:

23 24 25 26 27 28 29 30

This involves two reads, two disk accesses and sixteen numbers.

Now suppose that this dataset is tiled with 2 x 2 element tiles. On the disk, the data in this dataset
is stored as twelve separate tiles, which for the purposes of this example will be labelled A
through L.

1 2 3 4 5 6 7 8 9 10 11 12

21 22 23 24 25 26 27 28 29 30 31 32

41 42 43 44 45 46 47 48 49 50 51 52

61 62 63 64 65 66 67 68 69 70 71 72

1 2 3 4 5 6 7 8 9 10 11 12

21 22 23 24 25 26 27 28 29 30 31 32

41 42 43 44 45 46 47 48 49 50 51 52

61 62 63 64 65 66 67 68 69 70 71 72
456 June 2017

Chapter 14 -- HDF Performance Issues Table of Contents HDF User’s Guide
FIGURE 14t 4 x 12 Element Data Set with 2 x 2 Element Tiles

Also, the chunk cache size is set to 2.

A request is made to read the aforementioned subset of numbers into memory. As before,
SDreaddata will determine the order the numbers will be read in. The routine has no information
about the tiled layout. The higher-level code will again request the values in the first rows of tiles
B through E from the lower level code on the first read operation.

In order to access those numbers the lower level code must read in four tiles: B, C, D, E. It reads
in tiles B and C, retrieving the values 3, 4, 5, and 6. However, as the cache space is now com-
pletely filled, it must overwrite tile B in the cache to access the values 7 and 8, which are in tile D.
It then has to overwrite tile C to access the values 9 and 10, which are in tile E. Note that, in each
case, half of the values from the tiles that are read in are unused, even though those values will be
needed later.

Next, the higher-level code requests the second row of the subset. The lower-level code must
reread tile B to access the values 23 and 24. But tile B is no longer in the chunk cache. In order to
access tile B, the lower-level code must overwrite tile D, and so on. By the time the subset read
operation is complete, it has had to read in each of the tiles twice. Also, it has had to perform 8
disk accesses and has read 32 values.

Now consider a more practical example with the following parameters:

• A scientific data set has 3,000 rows and 8,400 columns.

• The target subset is 300 rows by 1,000 columns, and contains 300,000 numbers.

If the dataset is untiled the numbers are read into memory row-by-row. This involves 300 disk
accesses for 300 rows, with each disk access reading in 1,000 numbers. The total number of num-
bers that will be read is 300,000.

Suppose the dataset is tiled as follows:

• The tile size is 300 rows by 200 columns, or 60,000 numbers.

• The size of the chunk cache is 2.

Each square in the following figure represents one 100 x 100 element region of the dataset. Five
tiles span the 300 x 1,000 target subset. For the purposes of this example, they will be labelled A,
B, C, D and E.

1 2 3 4 5 6 7 8 9 10 11 12

21 22 23 24 25 26 27 28 29 30 31 32

41 42 43 44 45 46 47 48 49 50 51 52

61 62 63 64 65 66 67 68 69 70 71 72

Tile
A

Tile
B

Tile
C

Tile
D

Tile
E

Tile
F

Tile
G

Tile
H

Tile
I

Tile
J

Tile
K

Tile
L

June 2017 457

The HDF Group Table of Contents Chapter 14 -- HDF Performance Issues
FIGURE 14u 5 200 x 300 Element Tiles Labelled A, B, C, D and E

First, the higher-level code instructs the lower-level code to read in the first row of subset num-
bers. The lower-level code must read all five tiles (A through E) into memory, as they all contain
numbers in the first row. Tiles A and B are read into the cache without problem, then the follow-
ing set of cache overwrites occurs.

1. Tile A is overwritten when tile C is read.

2. Tile B is overwritten when tile D is read.

3. Tile C is overwritten when tile E is read.

When the first row has been read, the cache contains tiles D and E.

The second row is then read. The higher-level code first requests tile A, however the cache is full,
so it must overwrite tile D to read tile A. Then the following set of cache overwrites occur.

1. Tile E is overwritten when tile B is read.

2. Tile A is overwritten when tile C is read.

3. Tile B is overwritten when tile D is read.

4. Tile C is overwritten when tile E is read.

For each row, five tiles must be read in. No actual caching results from this overwriting. When the
subset read operation is complete, 300 * 5 = 1,500 tiles have been read, or 60,000 * 1,500 =
90,000,000 numbers.

Essentially, five times more disk accesses are being performed and 900 times more data is being
read than with the untiled 3,000 x 8,400 dataset. The severity of the performance degradation
increases in a non-linear fashion as the size of the dataset increases.

Tile
B D E

...

...

...

...

...

...

...

...

...

CA

...

...
458 June 2017

Chapter 14 -- HDF Performance Issues Table of Contents HDF User’s Guide
From this example it should be apparent that, to prevent this kind of chunk cache "thrashing" from
occurring, the size of the chunk cache should be made equal to, or greater than, the number of
chunks along the fastest-varying dimension of the dataset. In this case, the chunk cache size
should be set to 4.

When a chunked SDS is opened for reading or writing, the default cache size is set to the number
of chunks along the fastest-varying dimension of the SDS. This will prevent cache thrashing from
occurring in situations where the user does not set the size of the the chunk cache. Caution should
be exercised by the user when altering this default chunk cache size.

14.4 Block Size Tuning Issues

A key to I/O performance in HDF is the number of disk accesses that must be made during any
I/O operation. If you can decrease significantly the number of disk accesses required, you may be
able to improve performance correspondingly. In this section we examine two such strategies for
improving HDF I/O performance.

14.4.1 Tuning Data Descriptor Block Size to Enhance Performance

HDF objects are identified in HDF files by 12-byte headers called data descriptors (DDs). Most
composite HDF objects, such as SDSs, are made up of many small HDF objects, so it is not
unusual to have a large number of DDs in an HDF file. DDs are stored in blocks called data
descriptor blocks (DD blocks).

When an HDF file is created, the file’s DD block size is specified. The default size is 16 DDs per
DD block. When you start putting objects into an HDF file, their DDs are inserted into the first
DD block. When the DD block gets filled up, a new DD block is created, stored at some other
location in the file, and linked with the previous DD block. If a large number of objects are stored
in an HDF file whose DD block size is small, a large number of DD blocks will be needed, and
each DD block is likely to be stored on a different disk page.

Consider, for example, an HDF file with 1,000 SDSs and a DD block size of 16. Each SDS could
easily require 10 DDs to describe all the objects comprising the SDS, so the entire file might con-
tain 10,000 DDs. This would require 625 (10,000/16) DD blocks, each stored on a different disk
page.

Whenever an HDF file is opened, all of the DDs are read into memory. Hence, in our example,
625 disk accesses might be required just to open the file.

Fortunately, there is a way we can use this kind of information to improve performance. When we
create an HDF file, we can specify the DD block size. If we know that the file will have many
objects stored in it, we should choose a large DD block size so that each disk access will read in a
large number of DDs, and hence there will be fewer disk accesses. In our example, we might have
chosen the DD block size to be 10,000, resulting in only one disk access. (Of course, this example
goes deliberately to a logical extreme. For a variety of reasons, a more common approach would
be to set the DD block size to something between 1,000 and 5,000 DDs.)

From this discussion we can derive the following rules of thumb for achieving good performance
by altering the DD block size.

• Increasing the size of the data descriptor block may improve performance when opening a
file, especially when working with large HDF files with lots of objects. It will reduce the
number of times that HDF has to go out and read another DD block. This will be particularly
valuable in code that does large numbers of HDF file opens.
June 2017 459

The HDF Group Table of Contents Chapter 14 -- HDF Performance Issues
• The same principle applies when closing an HDF file that has been written to. Since all
DDs are flushed to an HDF file when it is written to and then closed, the DD block size can
similarly impact performance.

• Notice that these actions only affect the opening and closing of a file. Once a file is opened,
DDs are accessed in memory; no further disk accesses are required.

• Large DD blocks can negatively affect storage efficiency, particularly if very large DD
blocks are used. Since the last DD block may only be partially filled up, you probably
should not use large DD blocks for very small HDF files.

14.4.2 Tuning Linked Block Size to Enhance Performance

Linked blocks get created whenever compression, chunking, external files, or appendable datasets
are used. They provide a means of linking new data blocks to a pre-existing data element. If you
have ever looked at an HDF file and seen Special Scientific Data or Linked Block Indicator
tags with strange tag values, these are used in specifying linked blocks. As with DD blocks,
linked block size can affect both storage efficiency and I/O performance.

You can change the linked block size for SDSs by use of the function SDsetblocksize. To change
the linked block size for Vdatas, prior to version 4.1r5, you must edit the hlimits.h file, change
the value of HDF_APPENDABLE_BLOCK_LEN, and re-build the HDF library. However, starting in ver-
sion 4.1r5, applications can use the public function VSsetblocksize for the same purpose. Chang-
ing the linked block size only affects the size of the linked blocks used after the change is made; it
does not affect the size of blocks that have already been written.

There is a certain amount of overhead when creating linked blocks. For every linked block that is
added there will be a specified number of block accesses, disk space used, and reference numbers
added to the file. If you increase the size of the linked block, it will decrease the number of block
accesses, disk space used, and reference numbers added to the file. Making the linked block size
larger will decrease the number of reference numbers required; this is sometimes necessary
because there are a limited number of available reference numbers.

Linked block size can also affect I/O performance, depending on how the data is accessed. If the
data will typically be accessed in large chunks, then making the linked block size large could
improve performance. If the data is accessed in small chunks, then making the linked block size
small could improve performance.

If data will be randomly accessed in small amounts, then it is better to have small linked blocks.

Ideally one might say that making the linked block size equal to the size of the dataset that will
typically be accessed, is the best solution. However, there are other things that will affect perfor-
mance, such as the operating system being used, the sector size on the disk being accessed, the
amount of memory available, and access patterns.

Here are some rules of thumb for specifying linked block size:

• Linked block size should be at least as large as the smallest number of bytes accessed in a
single disk access. This amount varies from one system to another, but 4K bytes is probably
a safe minimum.

• Linked block size should be a power of 2.

• Linked blocks should be approximately equal to the number of bytes accessed in a typical
access. This rule should be mitigated by the amount of locality from one disk access to
another, however, as the next rule indicates.

• If memory is large, it may be possible to take advantage of caching that your operating sys-
tem does by using a large block size. If successive accesses are close to one another, blocks
460 June 2017

Chapter 14 -- HDF Performance Issues Table of Contents HDF User’s Guide
may be cached by the OS, so that actual physical disk accesses are not always required. If
successive accesses are not close to one another, this strategy could backfire, however.

• Although very large blocks can result in efficient access, they can also result in inefficient
storage. For instance if the block size is 100K bytes, and 101K bytes of data are stored per
SDS in an HDF file, the file will be twice as large as necessary.

Unfortunately, there are so many factors affected by block size that there is no simple formula that
you can follow for deciding what the linked block size should be. A little experimentation on the
target platform can help a great deal in determining the ideal block size for your situation.

14.4.3 Unlimited Dimension Data Sets (SDSs and Vdatas) and Performance

In some circumstances, repeatedly appending to unlimited dimension data sets can lead to signifi-
cant performance problems.

Each time data is appended to a Vdata or an unlimited dimension SDS, a new linked block may be
created. Eventually, the linked block list may become so large that data seeking performance dete-
riorates substantially. In the worst case, one can exceed the allowable number of reference num-
bers, corrupting the HDF file.

In many such instances, increasing the linked block size (see Section 14.4.2 in this User’s Guide
or, for SDSs only, SDsetblocksize/sfsblsz in the HDF Reference Manual or DD block size (see
Section 14.4.1) will alleviate the reference number problems and improve performance.
June 2017 461

http://www.hdfgroup.org/release4/doc/RefMan_html/RM_Section_II_SD.html#wp441569

The HDF Group Table of Contents Chapter 14 -- HDF Performance Issues
462 June 2017

CHAPTER 15 -- HDF Command-line Utilities
15.1 Chapter Overview

This chapter describes a number of command-line utilities that are available for working with
HDF files.

The HDF command-line utilities are application programs that are executed from the UNIX shell
prompt. These utilities serve the following needs of the HDF developer.

• They make it possible to perform, at the command line level, common operations on HDF
files without having to resort to custom-programmed utilities to do these operations.

• They provide the capability for performing operations on HDF files that would be very dif-
ficult to do with custom-programmed utilities.

Table 15A lists the names and descriptions of the utilities described in this chapter.

TABLE 15A The HDF Command-line Utilities

Utility Type Name Description

File content
display tools

hdp
Also known as HDF dumper. Displays general information about the contents of an HDF
file (Section 15.2 on page 464)

hdiff Displays the differences between the contents of two HDF files (Section 15.3 on page 468)

vshow Displays vset information (Section 15.4 on page 469)

Raw data to HDF
conversions

hdfimport

Converts floating-point and/or integer data to HDF scientific data sets (SDS) and/or HDF 8-
bit raster image sets (RIS8) format, storing the results in an HDF file (Section 15.5 on
page 470)
[This utility replaces fp2hdf.]

r8tohdf
Converts one or more 8-bit raster images in raw format to the HDF RIS8 format and writes
them to a file, optionally with palettes (Section 15.6 on page 474)

r24hdf8 Converts raw RGB 24-bit images to an RIS8 with a palette (Section 15.7 on page 475)

paltohdf Converts a raw palette to the HDF format (Section 15.8 on page 476)

HDF to raw data
conversions

hdftor8
Converts raster images and/or palettes from the HDF format to the raw format and stores
them in two sets of files - one for images and the other for palettes (Section 15.9 on
page 476)

hdftopal Converts a palette in an HDF file to a raw palette format (Section 15.10 on page 477)

Raster 8 and 24
image operations

ristosds
Converts a set of RIS8 HDF files into a single three-dimensional SDS HDF file
(Section 15.11 on page 477)

hdf24hdf8
Converting an RIS24 HDF image to an RIS8 HDF image with a 256-color palette
(Section 15.12 on page 478)

hdfcomp
Compresses 8-bit raster images from an HDF file, storing them in a new HDF file
(Section 15.13 on page 478)
June 2017 463

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
15.2 Displaying the Contents of an HDF File: hdp (or HDF Dumper)

15.2.1 General Description

The hdp utility, also known as the HDF dumper, provides quick and general information about
all objects in the specified HDF file. It can list the contents of HDF files at various levels with dif-
ferent details. It can also dump the data of one or more specific objects in the file.

15.2.2 Command-line Syntax

hdp [[-H command] | [command]] filelist

The hdp option flags are described in Table 15B.

TABLE 15B hdp Option Flags

Like hdfed, hdp provides a set of commands that allow the user to determine what kind of infor-
mation is to be displayed.

TABLE 15C The hdp Command Set

HDF file
maintenance
operations

hdfpack
Compresses an HDF file, reading all of the objects in the file and writing them to a new HDF
file (Section 15.14 on page 479)

hrepack
Performs a logical copy of an input HDF4 file to an output HDF4 file, copying all high level
objects while optionally rewriting the objects with or without compression and/or with or
without chunking (Section 15.15 on page 479)

vmake Creates vsets (Section 15.16 on page 481)

Miscellaneous
utilities

hdfls Displays information about HDF data onjects (Section 15.17 on page 482)

hdfed
Displays the contents of an HDF file and allows limited manipulation of the data
(Section 15.18 on page 484)

HDF5 / HDF4
file conversion

h4toh5,
h5toh4,
etc

Tools to assist HDF5 users working with HDF4 files and HDF4 users working with HDF5
files (Section 15.19 on page 494) (These tools are not included in this HDF4 distribution)

HDF-to-GIF and
GIF-to-HDF
conversion

hdf2gif Converts an HDF file to a GIF file (Section 15.20 on page 495)

gif2hdf Converts a GIF file to an HDF file (Section 15.22 on page 496)

HDF4 Library
configuration and

management

h4cc Simplifies the compilation of HDF4 programs written in C (Section 15.23 on page 498)

h4fc
Simplifies the compilation of HDF5 programs written in Fortran90 (Section 15.24 on
page 499)

h4redeploy
Updates HDF4 compiler tools after an HDF4 software installation in a new location
(Section 15.25 on page 500)

-H Help: Displays usage information about the specified command. If no
command is listed, information about all commands are displayed.

Name Description

list Displays the contents of the HDF files in the specified format.

dumpsds Displays the contents of the SDSs in the listed files.

dumpgr Displays the contents of the raster images in the listed files.

dumpvd Displays the contents of the vdata objects in the listed files.

dumpvg Displays the contents of the vgroup objects in the listed files.

dumprig Displays the contents of the RIGs in the listed files.

Utility Type Name Description
464 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
The list command
Syntax: list [-acensldg] [-o<f|g|t|n>] [-t tag] filelist

Flags:

-a Print annotations of selected items. (Sets long output)

-c Print classes of selected items. (Sets long output)

-n Print names or labels of selected items. (Sets long output)

-e Print special element information for selected items. (Sets
long output)

-s Set output to short format. (default)

-l Set output to long format.

-d Set output to debugging format.

-g Display information for groups only.

-t number Display information for objects with the given tag number.

-t name Display information for objects with the given name.

-of Print items in the order found in the file.

-og Print items in group order.

-ot Print items in tag order. (default)

filelist Names of HDF input files, separated by spaces.

Description: Displays the contents of the HDF files in the specified format. As with the
hdfed info command, the listing for special elements will contain a special tag value (for
DFTAG_VS, it is 18347) and the text Unknown Tag.

The dumpsds command
Syntax: hdp dumpsds [-a | -i indices | -r refs | -n names] [-v | -h | -d]

[-o filename] [-bx] filelist

Flags: -a Dump all SDSs in the file(s). (default)

-k Dump chosen SDSs in the same order they were specified.

-i indices Dump the SDSs at the positions listed in indices.

-r refs Dump the SDSs with reference numbers listed in refs.

-n names Dump the SDSs with names listed in names.

-v Dump all SDS contents, including annotations. (default)

-h Dump SDS header information only, no data or element
annotations.

-d Dump SDS data only, no tag/ref or header information. Out-
put is formatted for input to fp2hdf.

-c Print space characters as they are, not \<digit>.

-g Do not print data of file (global) attributes.

-l Do not print data of local attributes.

-s Do not add carriage return to a long line, i.e. dump it as a
stream.
June 2017 465

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
-o filename Print output to the file filename.

-b Output in binary format.

-x Output in ASCII format. (default)

filelist Names of HDF input files, separated by spaces.

Description: Displays SDS information and/or data in the specified format. The -r, -i,
and -n flags can be selected together. When -k is specified, it must be in front of -r, -i,
and -n to keep the order in which the SDSs are specified by those flags.

The dumpgr command

Syntax: hdp dumpgr [-a | -i indices | -r refs | -n names] [-m] [-v | -h | -d
| -p] [-c] [-g] [-l] [-s] [-o filename] [-bx] filelist

Flags: -a Dump all raster images (RIs) in the file(s). (default)

-i indices Dump the RIs indicated in indices.

-r refs Dump the RIs with reference numbers listed in refs.

-n names Dump the RIs with names listed in names. Note: currently, a
name that contains a ’,’ (comma) will be treated as two dif-
ferent names.

-m interlaceDump data in interlace mode interlace=0, 1, or 2.

-v Dump all RI contents, including all annotations. (default)

-h Dump RI header information only, no data or element anno-
tations.

-d Dump RI data only, no tag/ref or header information. Output
is formatted for input to fp2hdf.

-p Dump palette information for the requested images or for all
images if no specific image is requested.

With -d, dump palette data only.

With or without -v and without -d, dump palette data and
header information.

-c Print space characters as they are, not \<digit>.

-g Do not print data of file (global) attributes.

-l Do not print data of local attributes.

-s Do not add carriage return to a long line, i.e. dump it as a
stream.

-o filename Print output to file filename.

-b Output in binary format.

-x Output in ASCII format. (default)

filelist Names of HDF input files, separated by spaces.

Description: Displays GR raster image information in the specified format. The -r, -i,
and -n flags can be selected together. GR images are always stored in pixel interlace
mode (see Section 8.5.1 on page 300).

The dumpvd command
466 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
Syntax: hdp dumpvd [-a | -i indices | -r refs | -n names | -c classes | -f
f1, f2,...] [-v | -h | -d] [-o filename] [-bx] filelist

Flags: -a Dump all vdatas in the file(s). (default)

-i indices Dump the vdatas at positions listed in indices.

-r refs Dump the vdatas with the reference numbers listed in refs.

-n names Dump all the vdatas with names listed in names. Note: cur-
rently, a name that contains a ’,’ (comma) will be treated as
two different names.

-c classes Dump all the vdatas with the classes listed in classes. Note:
same issue as with names regarding commas.

-f f1,f2,...Dump data based on the indicated fields in the vdata header.

-v Dump everything, including annotations. (default)

-h Dump vdata header information only, no data or element
annotations.

-d Dump vdata data only, no tag/ref or header information. Out-
put is formatted for input to fp2hdf.

-o filename Print output to file filename.

-b Output in binary format.

-x Output in ASCII format. (default)

filelist Names of HDF input files, separated by spaces.

Description: Displays vdata information in the specified format. The -r, -i, -n, and -c
flags can be selected together.

The dumpvg command

Syntax: dumpvg [-a | -i indices | -r refs | -n names | -c classes] [-v | -h]
[-o filename] filelist

Flags: -a Dump all vgroups in the file(s). (default)

-i indices Dump the vgroups at positions listed in indices.

-r refs Dump the vgroups with the reference numbers listed in refs.

-n names Dump all the vgroups with names listed in names. Note: cur-
rently, a name that contains a ’,’ (comma) will be treated as
two different names.

-c classes Dump all the vgroups with classes listed in classes. Note:
same issue as with names regarding commas.

-v Dump everything, including annotations. (default)

-h Dump vgroup header information only, no data or element
annotations.

-o filename Print output to file filename.

filelist Names of HDF input files, separated by spaces.

Description: Displays vgroup information in the specified format. The -r, -i, -n, and -
c flags can be selected together. This command has no binary output option; it produces
only ASCII text output.

The dumprig command
June 2017 467

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
Syntax: dumprig [-a | -i indices | -m n | -r refs] [-dhv]

[-o filename [-b | -x]] filelist

Flags: -a Dump all RIGs in the specified file(s). (default)

-i indices Dump theRIGs with the positions listed in indices.

-m n Dump only RIGs with the specified data length. n can have a
value of 8 or 24, for 8- or 24-bit raster images, respectively.

-r refs Dump the RIGs with the reference numbers listed in refs.

-d Dump RIG data only, no tag/ref or header information. Out-
put is formatted for input to fp2hdf.

-h Dump RIG header information only, no data or element
annotations.

-v Dump everything, including annotations. (default)

-c Do not add carriage return to a long line, i.e. dump it as a
stream.

-o filename Print output to file filename.

-b Output in binary format.

-x Output in ASCII format. (default)

filelist Names of HDF input files, separated by spaces.

Description: Displays RIG information in the specified format. The -r, -i, and -m
flags can be selected together.

15.3 Comparing two HDF Files: hdiff

15.3.1 General Description

The hdiff utility compares two HDF files and reports differences between them. Only datasets,
attributes, and vdata objects are compared. Hdiff returns 0 when no differences are found and 1,
otherwise.

15.3.2 Command-line Syntax

The hdiff command line syntax is as follows:
hdiff [-V][-b][-g][-s][-d][-S][-D] [-v var1[, var2...]] [-u var1[, var2...]]

[-e count] [-t limit] [-p relative] file1 file2

The hdiff command line options and usage are described in Table 15D.

TABLE 15D hdiff Option Flags

-b Verbose mode

-g Attributes: Compare global attributes only.

-s Compare SD local attributes only.

-d Data: Compare SD data only.

-D Compare Vdata data only.

-v var1 [, var2...] Variables: Compare SD data on the variable(s) var1, var2, etc.
468 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
15.3.3 Examples

This section provides some examples of hdiff usage.

Example 1: to compare global attributes only
hdiff -g hdifftst1.hdf hdifftst2.hdf

Example 2: to compare SD local attributes only
hdiff -s hdifftst1.hdf hdifftst2.hdf

Example 3: to compare SDS data only
hdiff -d hdifftst1.hdf hdifftst2.hdf

Example 4: to compare Vdata data only
hdiff -D hdifftst1.hdf hdifftst2.hdf

Example 5: to print statistics
hdiff -d -S hdifftst1.hdf hdifftst2.hdf

Example 6: to compare SDS data on specific variable
hdiff -d -v dset1 hdifftst1.hdf hdifftst2.hdf

Example 7: to compare vdata data on specific variable
hdiff -D -u vdata1 hdifftst1.hdf hdifftst2.hdf

Example 8: to print up to 2 differences for each variable
hdiff -d -e 2 hdifftst1.hdf hdifftst2.hdf

Example 9: to print differences when there are more than 2

hdiff -d -t 2 hdifftst1.hdf hdifftst2.hdf

15.4 Displaying Vdata Information: vshow

15.4.1 General Description

Displays information about either one Vdata object or all Vdata objects in an HDF file.

15.4.2 Command-line Syntax

vshow input HDF filename [+|+vdata id]

-u var1 [, var2...] Compare Vdata data on the variable(s) var1, var2,
etc.

-S Output: Print statistics.

-e count Print difference up to count instances for each vari-
able. count is a positive integer.

-t limit Print difference when it is greater thanlimit. limit is
a positive floating point value.

-p relative Print difference when it is greater than a relative
limit.

file1

file2
Filenames: First and

second HDF input files to be compared.
June 2017 469

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
The vshow option flags are described in Table 15E.

TABLE 15E vshow Option Flags

15.4.3 Examples

The following command will display information about all of the Vdata objects in the HDF file
named image012.hdf.

vshow image012.hdf +

15.5 Converting Floating-point or Integer Data to SDS or RIS8:
hdfimport

Note that hdfimport replaces the fp2hdf utility that was distributed with earlier HDF releases.

15.5.1 General Description

The hdfimport utility converts data from ASCII text files, 32-bit or 64-bit native floating point
data files, 8-bit, 16-bit or 32-bit integer files, or HDF floating-point scientific data sets to either
HDF floating-point scientific data sets or 8-bit HDF raster image datasets, or both, and stores the
results in an HDF file. (See Figure 15a) The images can be scaled on a user-specified mean value.

+ All Vdatas: The utility will display information about all Vdata objects
in the HDF file.

+vdata_id One Vdata: The utility will display information about the Vdata object
corresponding to the specified vdata id.
470 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
FIGURE 15a The hdfimport Utility

15.5.2 Command-line Syntax

The syntax of hdfimport is as follows.

hdfimport -h[elp]
hdfimport input-file [[-t[ype] output-type |-n]

[input-file[-t[ype] output-type | -n]]]
-o[utfile] output-file
[-r[aster] [raster-options . . .]
[-f[loat]]

The input-file parameter specifies the name of the file containing the unconverted data set. The
file may contain a single two-dimensional or three-dimensional array in ASCII text, native float-
ing point, native integer, or HDF SDS format. If an HDF file is used for input, it must contain an
SDS. The SDS need only contain a dimension record and the data, but if it also contains maxi-
mum and minimum values and/or scales for each axis, these will be used. If the format is ASCII
text, native floating point, or native integer, see Table 15G and the accompanying discussion
regarding the required structure of the data.

Floating Point
Data Set: SDS

Floating-Point
Data Set: Text

or

RIS8

SDS

RIS8 and SDS

hdfimport

Floating-Point
Data Set: Binary

32/64-bit Native

Integer Data
Set: SDS

Integer Data
Set: Text

or

SDS

hdfimport

Data Set: Binary
8/16/32-bit Integer
June 2017 471

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
Data from one or more input files will be stored as datasets and/or images in a single output file,
the HDF file specified in the parameter output-file. The output file will contain one SDS and/or
one image for each input file.

The hdfimport options and parameters are described in Table 15F.

TABLE 15F hdfimport Options and Parameters

-h Help: Prints a usage summary, then exits.

-t output-type

-type output-type

Output datatype: Optionally used with each ASCII input file to
specify the data type of the data set to be written.
Can be any of the following values: FP32
(default), FP64, INT8, INT16, or INT32. If not
specified, the default value of FP32 is assumed.

-n 64-bit output: Used only if a binary input file contains 64-bit
foating point data and the default behavior of
writing the output as a 32-bit dataset should be
overridden to write it as a 64-bit dataset.

-r raster-options

-raster
raster-options

Raster: Stores the data as a raster image set in the output
file. The available raster-options are described
below.

-f

-float

Float: Stores the data as a scientific data set, an SDS, in
the output file. (Default if the -r option is not
specified.)

32-bit binary input data will be stored to a 32-bit
SDS.
64-bit binary input data will be stored to a 64-bit
SDS.

raster-options Raster options: Additional options that accompany the -r (or
-raster) option are as follows:

-e horiz vert
[depth]

-expand horiz vert
[depth]

Expand: Expands the floating point data via pixel replica-
tion to produce the output image(s).

horiz and vert specify the horizontal and vertical
resolutions of the image(s) to be produced. The
optional parameter depth is used only with 3-
dimensional input data and specifies the number
of images or depth planes.

If max, the maximum value, and min, the mini-
mum value, are supplied in the input file, this
option clips values that are greater than max or
less then min, setting them to the max and min,
respectively.

Cannot be used with the -i option.
472 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
The -e and the -i flags cannot be used simultaneously. Either pixel interpolation or bilinear inter-
polation can be chosen for image expansion, but not both.

Data from several input files (with one data set per input file) are stored as several data sets and/or
images in one output HDF file. Alternatively, a shell script can be used to call hdfimport repeat-
edly to convert data from multiple input files to corresponding output HDF files.

15.5.3 Structure of Data in non-HDF Input Files

If the format ofinput-file is ASCII text, native floating point, or native integer (i.e., input-file
is not an HDF file), the data must be structured in fields as described below.

TABLE 15G hdfimport ASCII Text, Native Floating Point, or Native Integer Input Fields

-i horiz vert
[depth]

-interp horiz vert
[depth]

Interpolation: Applies bilinear or trilinear interpolation when
expanding floating-point data.

The values of the horiz, vert, and depth parame-
ters specify the horizontal, vertical, and depth
resolutions of the dataset(s) to be produced and
must be greater than or equal to the dimensions
of the original dataset.

If a maximum value, max, and/or a minimum
value, min, are supplied in the input file, this
option clips values that are greater than max or
less then min, setting them to the max and min,
respectively.

Cannot be used with the -e option.

-p palette

-palfile palette

Palette: Stores the palette with the image. The palette
parameter names the file containing the palette
data. This may be an HDF file containing a pal-
ette or a file containing a raw palette.

-m mean

-mean mean

Mean: Causes the data to be scaled around a user-speci-
fied mean when generating the image.

The new maximum and minimum values, newmax
and newmin, will be equidistant from mean and
determined by the following formulae:
newmax = mean + max(abs(max - mean), abs(mean - min))

newmin = mean - max(abs(max - mean), abs(mean - min))

If no mean value is specified, then the mean will
be 0.5*(max + min).

format Must contain exactly one format designator:
TEXT, FP32, FP64, IN32, IN16, or IN08

rank Dimension ranks, the next three fields, are specified in the
order of slowest-changing dimension first. For two-
dimensional input, please see note in the number of
planes cell below.

number_of_columns Rank of the fastest-changing dimension, the horizontal
axis, or X-axis, in a 3-dimensional scale
June 2017 473

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
format, number_of_columns, number_of_rows, and number_of_planes are native integers. format is
the integer representation of the appropriate 4-character string (0x46503332 for FP32, 0x46503634
for FP64).

If the data input format is FP32 or FP64, the remaining input fields are composed of native 32-bit
floating point values for FP32 input format, or native 64-bit floating point values for FP64 input
format data.

If the data input format is IN08, IN16, or IN32, the remaining input fields are composed of native
8-bit integer values for IN08 input format, native 16-bit integer values for IN16 input format, or
native 32-bit integer values for IN32 input format data.

The term scale refers to the spacing between points on the axes. If the spacing is uniform, i.e., the
gaps are of equal size, a uniform scale is specified -- for example, 1.0, 2.0, 3.0, Scales
may be omitted in an HDF file; they must be included in a text file.

The arrays containing the plane, row, and column scales must have a size equal to the values spec-
ified in the number_of_rows , number_of_columns, and number_of_planes positions, respectively.

15.6 Converting 8-Bit Raster Images to the HDF Format: r8tohdf

15.6.1 General Description

The r8tohdf utility converts a set of raw raster images to the HDF RIS8 format and writes them to
a file.

15.6.2 Command-line Syntax

r8tohdf [number-of-rows number-of-columns] output-filename [-p palette-filename]
[-c|-r|-i] raw-raster-image-filename-1, raw-raster-image-file-
name-2, ... raw-raster-image-filename-n

The option flags are described in Table 15H.

number_of_rows Rank of the vertical axis, or Y-axis, in a 3-dimensional
scale

number_of_planes Rank of the slowest-changing dimension, the depth axis,
or Z-axis, in a 3-dimensional scale. Note: it must contain
the value 1 for two-dimensional input.

max Maximum data value

min Minimum data value

plane1 plane2 plane3 ... Scales for the depth axis

row1 row2 row3 ... Scales for the vertical axis

col1 col2 col3 ... Scales for the horizontal axis

data1 data2 data3 ... Raw data ordered by rows, left to right and top to bottom;
then optionally by planes, front to back

... Data continues...
474 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
TABLE 15H r8tohdf Option Flags

15.6.3 Examples

A file named rawras contains a 256 x 512-byte raw raster image, and its palette is stored in a file
name mypal. To convert the information in these files to an RIS8 without compression and store
the RIS8 in a file named ras.hdf, enter the following r8tohdf command:

r8tohdf 256 512 ras.hdf -p mypal rawras

A 800 x 1000-byte raw raster image is stored in a file named bigpic. This data must be converted
to a RIS8 without a palette, compressing it using run-length encoding, then stored in a file named
bigpic.hdf. The following command will do this:

r8tohdf 800 1000 bigpic.hdf -c bigpic

A 300 x 400 raw raster image is contained in each of the files named pic1, pic2, and pic3. To con-
vert all three files to RIS8s, compress them using the IMCOMP method, and store them in a file
named pic.hdf, enter

r8tohdf 300 400 pic.hdf -i pic1 pic2 pic3

Different types of raster image data are to be stored in a file named ras.hdf. The image data in the
file rawras1 will be stored without a palette. The image data sets from the file named rawras2 are
to be stored with a palette extracted from a file named mypal. The images from the rawras1 and
rawras2 files are to be compressed using run-length encoding, and the image in the rawras3 file is
not to be compressed. The size of all images are 256 x 512 bytes. The following command is used
to do this:

r8tohdf 256 512 ras.hdf -c rawras1 -p mypal rawras2 -r rawras3

15.7 Converting 24-Bit Raw Raster Images to RIS8 Images: r24hdf8

15.7.1 General Description

The r24hdf8 utility quantizes a raw RGB 24-bit raster image, creating an 8-bit image with a 256-
color palette, then it stores the palette and raster image data in an HDF file.

15.7.2 Command-line Syntax

r24hdf8 [x-dimension-length y-dimension-length] raw-24-bit-image-filename-hdf
ris8-image-filename

The pixel order in the raw 24-bit image file is left-to-right and top-to-bottom. Each pixel data ele-
ment consists of three contiguous bytes, the first representing the red intensity value, the second
the green intensity value, and the third the blue intensity value. Use the ptox filter to convert the
raster image data from a pixel-interlaced format to scan-plane interlaced.

-p Palette File Inserts a palette stored in the file palette-filename in the
RIS8. If the -p flag is not specified, a palette is not stored
with the RIS8.

-c Run-length Encoding Compresses the output data using run-length encoding.

-i IMCOMP Compression Compresses the output data using the IMCOMP method.

-r No Compression No compression is applied to the output data. (the
default)
June 2017 475

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
15.7.3 Examples

A file named rawraster containing 24-bit raw raster images with x and y-dimensions of 480 x
640, respectively, must be converted to the HDF RIS8 format and stored in a file named
hdfraster. The following command is used to do this:

r24hdf8 480 640 rawraster hdfraster

15.8 Converting Raw Palette Data to the HDF Palette Format:
paltohdf

15.8.1 General Description

The paltohdf utility converts raw palette data to the HDF palette format. The raw palette data
must have 768 bytes organized in the following order: first, 256 contiguous red intensity values,
then 256 contiguous green intensity values, then 256 contiguous blue intensity values. The palette
in the HDF file will have the RGB values pixel-interlaced, as follows.

red-value green-value blue-value red-value green-value blue-value ...

This is the standard HDF format for 8-bit palettes.

15.8.2 Command-line Syntax

paltohdf raw-format-palette-filename HDF-format-palette-filename

If an HDF palette format file is specified that does not exist, it is created before the converted data
is stored. If an HDF palette format file is specified that already exists, the converted data is
appended to the file.

15.9 Extracting 8-Bit Raster Images and Palettes from HDF Files:
hdftor8

15.9.1 General Description

The hdftor8 utility extracts the raster images and/or palettes from an HDF file and stores them in
one file that contains the raster image data and another that contains the palette data.

15.9.2 Command-line Syntax

hdftor8 input-HDF-filename [-i] [-v] [-r raster-image-filename] [-p palette-
filename]

The option flags are described in Table 15I.

TABLE 15I hdftor8 Option Flags

-i Interactive Mode: Program is executed in interactive mode.

-v Verbose Mode: Program is executed in verbose mode. Diagnostic
messages are displayed during the session.

-r Raster Image File Name: The raster image file name immediately follows this
flag.

-p Palette File Name: The palette file name immediately follows this flag.
476 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
The names given as the HDF format file, raster image file, and palette file are interpreted by
hdftor8 as follows: For each raster image file, the file name is given the extension

.#.@.%

where # represents the raster image number from the HDF file, @ represents the x-dimension of the
raster image and % represents the y-dimension of the raster image. For each palette file, the file
name is given the extensions .#, where # represents the palette number from the HDF format file.

If no name is given for the raster image file, the default name img.#.@.% is assigned, where #, @,
and % are defined as in the preceding paragraph. The default name for a palette file, if no name is
specifically given in the command, is pal.#.

15.9.3 Examples

A file named denm.hdf contains three 512 x 256 raster images and three palettes. To store these
images and palettes in separate raster image and palette files, use the following hdftor8 com-
mand:

hdftor8 denm.hdf

Six files are created, named img1.512.256, img2.512.256, img3.512.256, pal.1, pal.2, and pal.3.

15.10Extracting Palette Data from an HDF File: hdftopal

15.10.1 General Description

The hdftopal utility converts a palette in an HDF file to a raw palette in an non-HDF file. The raw
palette will have 768 bytes with the first 256 bytes representing red intensity values, the second
256 bytes representing green intensity values, and the third 256 bytes representing blue intensity
values. The utility performs the converse operation of the paltohdf utility.

15.10.2 Command-line Syntax

hdftopal HDF-format-palette-filename raw-format-palette-filename

15.11Converting Several RIS8 Images to One 3D SDS: ristosds

15.11.1 General Description

The ristosds utility creates a single HDF file consisting of a three-dimensional SDS from a set of
HDF files containing one or more raster images. All images in the input HDF files must have the
same dimensions. If a palette is to be included with the images, it should be in the first HDF input
file. Only one palette can be associated with the images; any additional palette data encountered
by the utility after the first palette has been processed will be ignored.

15.11.2 Command-line Syntax

ristosds input-filename-1, input-filename-2, ... input-filename-n [-o output-
filename]
June 2017 477

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
15.11.3 Examples

The contents of a directory consists of 20 files named storm001.hdf, storm002.hdf, ...
storm020.hdf. Each file contains a single RIS8 with a 100 x 200 raster image. A file that combines
these 20 raster images into a 32-bit floating-point SDS with the dimensions 100 x 200 x 20 can be
created with the following ristosds command:

ristosds storm*.hdf -o storm.hdf

15.12Converting an HDF RIS24 Image to an HDF RIS8 Image:
hdf24hdf8

15.12.1 General Description

The hdf24hdf8 utility quantizes an HDF RGB RIS24 pixel-interlaced image, producing an HDF
RIS8 image with a 256-color palette and stores the palette and raster image data in an HDF file.

15.12.2 Command-line Syntax

hdf24hdf8 ris24-image-filename ris8-image-filename

15.13Compressing RIS8 Images in an HDF File: hdfcomp

15.13.1 General Description

The hdfcomp utility reads RIS8 images from a set of HDF files, compresses them and stores the
compressed data in a second HDF file. If the output HDF file exists, the compressed images will
be appended to it.

15.13.2 Command-line Syntax

hdfcomp output-filename [-c|-r|-i] input-filename-1, [-c|-r|-i]input-filename-2,
... [-c|-r|-i] input-filename-n

The option flags are described in Table 15J

TABLE 15J hdfcomp Option Flags

15.13.3 Examples

A directory contains twenty files named storm001, storm002, ... storm020. Each of these files con-
tains a single RIS8 image. To compress these images using run-length encoding and store them in
a file named altcomp.hdf, use the following hdfcomp command:

hdfcomp allcomp.hdf -c storm*.hdf

-r No compression: The raster image data is not compressed. (the default)

-c Run-length Encoding: The raster image data is compressed using run-length
encoding.

-i IMCOMP Compression: The raster image data is compressed using the
IMCOMP algorithm.
478 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
15.14Compressing an HDF File: hdfpack

15.14.1 General Description

The hdfpack utility compacts an HDF file by reading in all the data elements in the file and writ-
ing them out to a new HDF file, eliminating waste spaces. It does not compress the file as in using
a compression algorithm to compress the data.

15.14.2 Command-line Syntax

hdfpack [-i|-b] [-d number-of-data-descriptors-per-block] [-t number-of-linked-
blocks-per-table-entry] input-HDF-filename output-HDF-filename

The hdfpack option flags are described in Table 15K.

TABLE 15K hdfpack Option Flags

15.14.3 Examples

To compress the data in the file named aa.hdf and store the compressed data in the file named
aa.cmp, use the following hdfpack command:

hdfpack aa.hdf aa.cmp

Suppose a file named bb.hdf contains data elements stored as sequences of linked blocks. The fol-
lowing hdfpack command compresses the file while leaving the linked-block elements intact, and
writes the compressed data to a file named bb.blk.

hdfpack -b bb.hdf bb.blk

15.15Reformatting an HDF File: hrepack

15.15.1 General Description

hrepack is a command line utility that performs a logical copy of an input HDF4 file to an output
HDF4 file, copying all the high level objects while optionally rewriting the objects with or with-
out compression and/or with or without chunking.

Note that compression is supported only for data sets and images in HDF4. In addition, hrepack
only compresses objects of size 1024 bytes or greater, by default. Option -m can be used to spec-
ify a different minimum object size.

-b Non-coalesced blocks: The utility will not coalesce linked-block ele-
ments.

-i Interactive mode: The utility will prompt for each linked-block
element.

-d Data descriptors per block: The output file will be created with the specified
number of data descriptors per block of data
descriptors.

-t Linked-blocks per table entry: The output file will be created with the specified
number of linked blocks per table entry.
June 2017 479

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
Prior to HDF version 4.2.11, an output file from hrepack would contain a vgroup of class RIG0.0
eventhough the original file did not have any raster image elements. This is no longer true starting
in 4.2.11.

15.15.2 Command-line Syntax

The hrepack syntax is as follows:

hrepack -i input -o output [-h] [-v] [-t "comp_info"]
[-c "chunk_info"] [-f cfile] [-m number]

The hrepack options and usage are as follows:

-i input The input HDF file.

-o output The output HDF file.

-h Print usage, or help, message.

-v Print verbose.

-t "comp_info" Specifies the compression type.

"comp_info" is a string with the format

"list_of_objects : type_of_compression compression_parameters"

list_of_objects is a comma-separated list of object names, indicati-
ing to apply the specified type of compression only to those objects.
"*" means to apply the specified type of compression to all objects.

type_of_compression should be one of the following values:
• RLE for RLE compression
• HUFF for Huffman compression
• GZIP for gzip compression
• JPEG for JPEG compression
• SZIP for Szip compression
• NONE to uncompress the object

compression_parameters contains optional compression information
as follows:

• for RLE, no additional information
• for HUFF, the skip-size
• for GZIP, the deflation level
• for JPEG, the quality factor
• for SZIP, no additional information

-c "chunk_info" Specifies the objects to which to apply chunking.

"chunk_info" is a string with the format

"list_of_objects : chunk_information"

list_of_objects is a comma-separated list of object names, indicati-
ing to apply chunking only to those objects. "*" means to apply
chunking to all objects.

chunk_information specifies the chunk size of each dimension and is
of the format dim_1 x dim_2 x ... dim_n. The value NONE indicates
that the object is not to be chunked, i.e., stored as a contiguous data
set, even it was stored as a chunked data set in the orignal file.
480 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
15.15.3 Examples

This section provides some examples of hrepack usage.

Example 1: to compress all objects in the file file1.hdf, using RLE compression
hrepack -v -i file1.hdf -o file2.hdf -t '*:RLE'

Example 2: to apply Skipping Huffman compression with skip factor of 1, for objects /group1/A,

/group2/B and C
hrepack -v -i file1.hdf -o file2.hdf -t '/group1/A,/group2/B,C:HUFF 1'

Example 3: to apply RLE compression for object /group1/D and chunking to objects D and E

using a chunk size of 10 for the 2 dimensions

hrepack -v -i file1.hdf -o file2.hdf -t '/group1/D:RLE' -c 'D,E:10x10'

15.16Creating Vgroups and Vdatas: vmake

15.16.1 General Description

The vmake utility creates Vgroup and Vdata objects in the specified HDF file.

15.16.2 Command-line Syntax

To create a new Vgroup:

vmake <output_HDF_filename> "Vgroup_name"

To create a new Vdata object:

vmake <output_HDF_filename> <Vdata_object_name> <Vdata_field_data_type>

The Vdata_field_data_type argument consists of a Vdata field name followed by an equal sign
and one of the following characters:

• c for character data (char in the HDF file)

• b for byte data (int8 in the HDF file)

• s for short integer data (int16 in the HDF file)

• l for long integer data (int32 in the HDF file)

• f for floating point data (float32 in the HDF file)

Any of these characters may be preceded by a decimal number specifying an element size other
than one.

To create links from one or more Vdatas to a specified Vgroup:

vmake <output_HDF_filename> [-1] "Vgroup_ref_number" "Vdata1_ref_number"
"Vdata2_ref_number" ... "Vdatan_ref_number"

-f comp_file Specifies a file, comp_file, containing the compression information.
This option is used in lieu of the -c and -t options.

-m number Do not compress objects of a size less than number bytes.
If -m is not specified, a minimum size of 1024 bytes is assumed.
June 2017 481

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
Vgroup_ref_number is the reference number of the Vgroup to which the Vdatas are to be linked.
Vdata1_ref_number through Vdatan_ref_number are the reference numbers of the Vdatas being
linked to the Vgroup.

Note that all vmake arguments, except the output HDF filename, are surrounded by double
quotes.

15.16.3 Examples

Assume the following. A file containing storm data is named storm.dat. A Vdata object named
Storm Data B must be created in an HDF file named sdata.hdf using vmake. The new Vdata
object is to contain a field named PLIST with an element size of three long integers. And finally,
the data in storm.dat is to be loaded into the Vdata object Storm Data B.

This can be accomplished with the following command:

vmake sdata.hdf "Storm Data B" "PLIST=3l" < storm.dat

15.17Listing Basic Information about Data Objects in an HDF File:
hdfls

15.17.1 General Description

The hdfls utility provides general information about the tags, reference numbers, and if requested,
lengths of the data elements.

The hdfls utility provides general information about the HDF data objects in a file. This informa-
tion includes the tags and reference numbers of the data objects, the lengths and offsets of the
HDF object's data elements, the contents of DD blocks, and information regarding special ele-
ments. In situations where the DD block information is not needed, we recommend the hdp utility
with the list command and its options.

15.17.2 Command-line Syntax

hdfls [-o][-l][-d][-v][-g][-s][-h][-t #] filename

When no flags are used, hdfls displays data objects ordered by the tags and reference numbers.
Contents of the DD blocks and lengths and offsets of the data elements are not displayed.

The option flags are described in Table 15L.

TABLE 15L hdfls Option Flags

-o Order off: Turns off ordering. Displays data objects in the order
in which they are listed in the DD block. Sequential
data objects in the DD block with the same tag are
grouped together.

-l Long format: Displays data objects in ascending tag and reference
number order along with the length of each data ele-
ment.
482 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
15.17.3 Examples

The file SDSchunked.hdf, created by the Example 17, in Chapter 3, contains one chunked data set.

hdfls -s can be used to display information about the data objects and special elements in this
file. Note that data objects are listed in tag and reference number ascending order.

For example, the command

hdfls -s SDSchunked.hdf

would display the following output:

SDSchunked.hdf:
File library version: Major= 4, Minor=1, Release=2
String=NCSA HDF post Version 4.1 Release 2, March 1998

Linked Blocks Indicator : (tag 20)
 Ref no 1 12 bytes
 Ref no 2 34 bytes
 Ref no 3 4096 bytes

Version Descriptor : (tag 30)
 Ref no 1 92 bytes

Data Chunk : (tag 61)
 Ref no 1 12 bytes
 Ref no 2 12 bytes
 Ref no 3 12 bytes
 Ref no 4 12 bytes
 Ref no 5 12 bytes
 Ref no 6 12 bytes

Number type : (tag 106)
 Ref no 12 4 bytes

SciData dimension record : (tag 701)

-d Offset/length: Displays two lists.

Displays tags and reference numbers of the data objects
and offsets and lengths of the corresponding data ele-
ments in the order in which the objects appear in the
DD blocks.

Then lists data objects in ascending tag and reference
number order

-v Verbose: Displays annotation and label text, along with the infor-
mation triggered by the -l flag

-g Group contents: Displays the contents of each group, along with the
information triggered by the -l flag.

-s Special elements: Displays information about each special element, along
with the information triggered by the -l flag

-h DD block: Displays DD block header information and DD block
contents followed by the list of data objects in tag and
reference number ascending order.

-t Tag: Lists information about the data objects with the speci-
fied tag. Must be followed by a tag number.
June 2017 483

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
 Ref no 12 22 bytes

Numeric Data Group : (tag 720)
 Ref no 2 16 bytes

Vdata : (tag 1962)
 Ref no 4 116 bytes
 Ref no 7 60 bytes
 Ref no 9 60 bytes
 Ref no 11 60 bytes

Vdata Storage : (tag 1963)
 Ref no 7 4 bytes
 Ref no 9 4 bytes
 Ref no 11 2 bytes

Vgroup : (tag 1965)
 Ref no 8 33 bytes
 Ref no 10 33 bytes
 Ref no 13 60 bytes
 Ref no 14 47 bytes

Special Scientific Data : (tag 17086)
 Ref no 3 72 bytes
 Chunked Element:
 logical size: 12
 number of dimensions: 2
 array of chunk lengths for each dimension: 3 2

Special Vdata Storage : (tag 18347)
 Ref no 4 72 bytes
 Linked Block: first 12 standard 4096 per unit 16

15.18Editing the Contents of an HDF File: hdfed

15.18.1 General Description

The hdfed utility allows experienced HDF users to manipulate the elements of an HDF file. These
manipulations include

• Selecting groups and showing information about them.

• Dumping group information to output files.

• Writing group data to output files.

• Deleting groups from HDF files.

• Inserting groups in HDF files.

• Replacing elements of HDF files.

• Editing the labels and descriptions of any element in an HDF file.

It is designed primarily for users who need to know about HDF files at the level of individual data
elements. It is not designed to provide a comprehensive high-level view of the contents of an HDF
file -- other tools and utilities should be used for that purpose. To use hdfed one should be famil-
iar with the components of an HDF file covered in the HDF Specifications manual.

The hdfed utility is loosely modeled on ed, the UNIX line editor. When hdfed is invoked, it
prompts the user for commands, as does ed. Also, basic command syntax and description infor-
mation is available to the user through hdfed. The most common hdfed commands are used to
control the position in the HDF file and the format of the information provided.
484 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
The initial view of the file under hdfed consists of a set of tag/reference number pairs. Although
hdfed allows modification of tags and reference numbers within strict constraints, it will not
allow the user to arbitrarily modify binary data in the file.

The following terms and concepts must be understood in order to use hdfed correctly and will be
used in the following discussion about hdfed.

• The data object or object refers to an HDF data object and the data descriptor of that object.
(i.e., tags, reference numbers, offsets, or lengths.)

• The data or data element refers to the record that the data descriptor points to. For a precise
definition of the data that is associated with a given tag consult the HDF Specifications and
Developer’s Guide v3.2 from the HDF web site at http://www.hdfgroup.org/.

• The group refers to a predefined collection of data objects that correspond to a particular
application. For example, a raster image group refers to the collection of objects that are
used to store all of the information in a raster image set.

Once an HDF file has been opened by hdfed, the following operations can be performed on the
data file, among others:

• Select an HDF object to examine more closely.

• Move forward or backward within the HDF file.

• Get information about an object. (tag, reference number, size, label)

• Display a raster image using the ICR protocol.

• Display the contents of any object.

• Delete an object.

• Annotate an object with a label or description.

• Write an object to a second HDF file.

• Write data elements in binary form to a non-HDF file.

• Close the file and exit, or open a new file.

15.18.2 Command-line Syntax

The syntax of hdfed is

hdfed [-nobackup][-batch] filename

If a file named filename exists, it is opened and a backup is made of the file. Files may also be
opened from within the editor.

The option flags are described in Table 15M.

TABLE 15M hdfed Option Flags

The -batch flag is useful when a group of commonly-used commands are included in a UNIX
shell script. The following is an example of such a script, using the C-shell, that lists information
about the groups in a specified HDF file.

#!/bin/csh -f
set file=$1

-nobackup Specifies that no backup file is to be made. If this option is omitted, a
backup file is automatically created.

-batch Specifies that input to hdfed is to be input via a stream of hdfed com-
mands, rather than interactively.
June 2017 485

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
shift
hdfed -batch $file -nobackup << EOF
info -all group $*
close
quit
EOF
echo ""

To receive usage information, as well as a quick list of the hdfed commands, type the command
hdfed -help

While in hdfed, the standard command prompt is displayed.
hdfed>

Many hdfed commands have qualifiers, or flags. For example, the command info may be fol-
lowed by the -all, -long, -group, or -label flags.

All of the commands and flags can be abbreviated to the extent that their abbreviations are unique.
For example, -he is ambiguous as it could stand for either the -hexadecimal or the -help flags, but
-hel is not ambiguous.

TABLE 15N The hdfed Command Set

To obtain information about the usage of any hdfed command, type the following at the hdfed
prompt.

any-hdfed-command -help

Name Description

help Displays general hdfed help information.

open Opens an HDF file.

close Closes an HDF file.

revert Reverts to the original HDF file.

next Goes to the next object or group that satisfies the predicate.

prev Goes to the previous object or group that satisfies the predicate.

info Displays information about the current data object.

dump
Displays information about the current data object in non-default formats.
(i.e., binary, ASCII, etc.). The default is octal.

display Displays a raster image using ICR.

put
Writes the current data element in a non-HDF file with the specified file-
name in binary format.

putr8
Writes the current RIS8 group into a non-HDF file with the specified file-
name.

getr8 Reads a RIS8 group from a non-HDF file with the specified filename.

delete Deletes an object or group.

write Writes an object or group to an HDF file.

annotate Annotates an object.

if Conditional statement.

select Loop for each object.

alias Defines an alias or display the alias list.

unalias Deletes an alias.

wait Prints a message and wait for a carriage return.
486 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
Note that usage information cannot be obtained by typing only the command, with no flags. There
are other hdfed commands, such as delete, that do not require an argument, so watch out for this
kind of error.

There is a subset of hdfed commands where predicates, items, and comparators are used. Items
are used to denote an HDF object type and can be any of the following identifiers; tag, ref,
image_size, or label. A comparator is an expression used to compare an item with a user-defined
value, and can be any of the following:

User-defined values can be either a number (with or without a decimal point) or a string of charac-
ters delimited by double-quotes. Predicates consist of items, comparators and user-defined values
and are of the syntax:

item comparator-value

Or they may consist of the identifier group, as in the next group command. Some examples of
predicates are:

next group
next (same as "next group" as "group" is the default identifier)
next tag = 720
next ref = 2
next image_size < 1000
next label = "abc"

The following is a more inclusive description of the hdfed commands.

The help command

Syntax: help

Flags: None

Description: Prints a help screen describing the basic purpose and functional-
ity of the hdfed utility.

Usage Example:

hdfed> help
hdfed allows sophisticated HDF users the ability to manipulate the
elements in an HDF file. These manipulations include selecting groups
...

The open command

Syntax: open [-nobackup] filename

Flags: -nobackup The specified file name is not backed up.

Description: Opens the specified HDF file.

Usage Example:

hdfed> open -help
open <file> [-nobackup]
-nobackup Don’t make a backup for this file.
hdfed>
hdfed> open h1
hdfed>

= equal != not equal

< less than <= less than or equal

> greater than >= greater than or equal
June 2017 487

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
The info command

Syntax: info [-all] [-long] [-group] [-label]

Flags: -all Displays information for all of the objects in the cur-
rent file.

-long Displays the long form of the information.

-group Organizes the information into groups.

-label Shows any labels.

Description: Displays information for a data object. The listing for special
elements will contain a special tag value (in Item 13
below it’s 18347, which corresponds to DFTAG_VS) and
the text "Unknown Tag".

Usage Example:

hdfed> info -all -label -long
(1) Version Descriptor: (Tag 30)

Ref: 1, Offset: 202, Length:92 (bytes)
(2) Scientific Data: (Tag 702)

Ref: 2, Offset: 294, Length : 200 (bytes)
(3) Number type: (Tag 106)

Ref: 2, Offset: 494, Length: 4 (bytes)
(4) SciData description: (Tag 701)

Ref: 2, Offset: 498, Length: 2 (bytes)
(5) SciData max/min: (Tag 707)

Ref: 2, Offset: 520, Length: 4 (bytes)
*(6)Numeric Data Group: (Tag 720)

Ref: 2, Offset: 524, Length: 12 (bytes)
Label: Experiment #1

(7) Data Id Label: (Tag 104)
Ref: 3, Offset: 536, Length: 17 (bytes)

(8) Scientific Data: (Tag 702)
Ref: 4, Offset: 553, Length: 400 (bytes)

(9) Number type: (Tag 106)
Ref: 4, Offset: 953, Length: 4 (bytes)

(10)SciData description: (Tag 701)
Ref: 4, Offset:957, Length: 22 (bytes)

(11)Numeric Data Group: (Tag 720)
Ref: 4, Offset: 979, Length: 8 (bytes)
Label: Experiment #2

(12)Data Id Label: (Tag 104)
Ref: 5, Offset: 987, Length: 17 (bytes)

(13)Unknown Tag: (Tag 18347)
Ref: 8, Offset: 0, Length: 40(bytes

hdfed>
hdfed> info -group -all
**Group 1:

Numeric Data Group: (Tag 720) Ref 2
Scientific Data: (Tag 702) Ref 2
SciData description : (Tag 701) Ref 2
SciData max/min : (Tag 707) Ref 2

**Group 2:
Numeric Data Group: (Tag 720) Ref 4
Scientific Data : (Tag 702) Ref 4
SciData description : (Tag 701) Ref 4

**These do not belong to any group:
Version Descriptor: (Tag 30) Ref 1
Number Type : (Tag 106) Ref 2
Data Id Label: (Tag 104) Ref 3
Number Type : (Tag 106) Ref 4
Data Id Label: (Tag 104) Ref 5
488 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
hdfed>

The prev command

Syntax: prev predicate-list

Flags: None.

Description: Moves to the next object that satisfies the predicate list.

Usage Example:

hdfed> info -all
(1) Version Descriptor: (Tag 30) Ref 1
(2) Scientific Data: (Tag 702) Ref 2
(3) Number type : (Tag 106) Ref 2
(4) SciData description: (Tag 701) Ref 2
(5) SciData max/min : (Tag 707) Ref 2
*(6) Numeric Data Group : (Tag 720) Ref 2
(7) Data Id Label: (Tag 104) Ref 3
(8) Scientific Data: (Tag 702) Ref 4
(9) Number type : (Tag 106) Ref 4
(10) SciData description: (Tag 701) Ref 4
(11) Numeric Data Group: (Tag 720) Ref 4
(12) Data Id Label: (Tag 104) Ref 5

hdfed>
hdfed> ! The ’*’ in the first column marks the current
hdfed> ! position.
hdfed> ! The ’next’ and ’prev’ commands work with predicates.
hdfed> ! If I want to move to the max/min element,
hdfed> ! I can use the ’tag=’ predicate.
hdfed>
hdfed> prev tag=707
hdfed> info

(5) SciData max/min (SciData) : (Tag 707) Ref:2
hdfed>

The next command

Syntax: next predicate-list

Flags: None.

Description: Moves to the next object that satisfies the predicate.

Usage Example:

hdfed> ! Move in the file using next and prev
hdfed> ! The move direction depends on the relative positions.
hdfed> ! so it is often necessary to do an ’info -all’ first.
hdfed> info -all

(1) Version Descriptor: (Tag 30) Ref 1
(2) Scientific Data : (Tag 702) Ref 2
(3) Number type : (Tag 106) Ref 2
(4) SciData description : (Tag 701) Ref 2
*(5) SciData max/min : (Tag 707) Ref 2
(6) Numeric Data Group : (Tag 720) Ref 2
(7) Data Id Label: (Tag 104) Ref 3
(8) Scientific Data : (Tag 702) Ref 4
(9) Number type : (Tag 106) Ref 4
(10) SciData description: (Tag 701) Ref 4
(11) Numeric Data Group: (Tag 720) Ref 4
(12) Data Id Label : (Tag 104) Ref 5

hdfed>
hdfed> ! This predicate persists for the next and prev
hdfed> ! commands. That means if I now type another ’next’
hdfed> ! command, it will look for a tag that equals 707.
June 2017 489

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
hdfed>
hdfed> next
Reached end of file. Not moved.
hdfed> info

(5) SciData max.min (SciData): (Tag 707) Ref: 2
hdfed>
hdfed> next group
hdfed> next group
hdfed> info

(11) Numeric Data Group : (Tag 720) Ref 4
hdfed>

The dump command

Syntax: dump [-offset offset] [-length length] [-decimal|-short|-byte|-
octal|-hexadecimal|-float|-double|-ascii]

Flags: -offset Starting offset

-length Length of the object to dump.

-decimal Decimal format (32-bit integers)

-short Decimal format (16-bit integers)

-byte Decimal format (8-bit integers)

-octal Octal format (the default)

-hexadecimalHexadecimal format

-float Single-precision floating-point format (32-bit floats)

-double Double-precision floating-point format (16-bit floats)

-ascii ASCII format

Description: Displays the contents of the current object in the specified for-
mat.

Usage Example:

hdfed> ! to see the binary representation of this element
hdfed>
hdfed> dump
0: 257400004 257200004
hdfed>
hdfed> dump -short
hdfed>
0: 702 4 701 4
hdfed>

The delete command

Syntax: delete
Flags: None.

Description: Deletes the current object or group.

Usage Example:

hdfed> ! deleting groups
hdfed>
hdfed> ! If an element is required by other group it is alone.
hdfed> ! However, this is not perfect as the method by which group
hdfed> ! membership is determined can be pretty ad hoc.
hdfed>
hdfed> delete
hdfed> ! This deletes the Scientific Data Group
hdfed> info -all

(1) Version Descriptor: (Tag 30) Ref 1
490 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
(2) Scientific Data: (Tag 702) Ref 2
(3) Number type: (Tag 106) Ref 2
(4) SciData description : (Tag 701) Ref 2
(5) SciData max/min: (Tag 707) Ref 2
(6) Numeric Data Group : (Tag 720) Ref 2
(7) Data Id Label : (Tag 104) Ref 3
(8) Number type : (Tag 106) Ref 4
(9) Data Id Label : (Tag 104) Ref 5

hdfed>
hdfed> ! Notice that the Numeric Data Group with reference
hdfed> ! number 4 is missing, and now there are only 9
hdfed> ! objects in the file.
hdfed>

The annotate command

Syntax: annotate [-label] [-descriptor] [-editor editor]

Flags: -label Edit a label (the default)

-descriptor Edit a descriptor.

-editor Use an editor. (Default is the editor referred to by
the EDITOR environment variable.

Description: Edits an annotation.

Usage Example:

hdfed>
hdfed> ! Annotations are labels and descriptors
hdfed>
hdfed> prev -group
hdfed> info -label

(6) Numeric Data Group: (Tag 720) Ref 2
Label: Experiment #1

hdfed> annotate -editor /usr/ucb/ex
"/tmp/he5091.1" 1 line, 14 characters
:p
Experiment #1
:s/$/<more stuff>/
Experiment #1<more stuff>
:wq
"/tmp/he5091.1" 1 line 27 characters
hdfed> info -label

(6) Numeric Data Group: (Tag 720) Ref 2
Label: Experiment #1 <more stuff>

hdfed>

The write command

Syntax: write [-attachto tag-reference-number] filename

Flags: -attachto Which element the annotation will be attached to. (only
for writing annotations)

Description: Writes an element or group into another HDF file.

Usage Example:

hdfed>
hdfed> ! Write object or group to another HDF file.
hdfed>
hdfed> write test
hdfed>
hdfed> ! Let’s take a look at the file ’test’
hdfed> close; open test; info -all

(1) Version Descriptor(Tag 30) Ref 1
June 2017 491

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
(2) Scientific Data(Tag 702) Ref 2
(3) Number type (Tag 106) Ref 2
(4) SciData description(Tag 701) Ref 2
(5) SciData max/min(Tag 707) Ref 2
*(6) Numeric Data Group (Tag 720) Ref 2

hdfed>
hdfed> close;
hdfed>

The display command

Syntax: display [-position x-position y-position] [-expansion expansion] [-
large]

Flags: -position Image position on console screen

-expansion Image expansion factor

-large Make image as large as possible

Description: Displays image on screen.

Usage Example:

hdfed> ! We will open a file with some RIS8 images.
hdfed>
hdfed> open denm,HDF
hdfed> display
hdfed>
hdfed> ! The ’display’ command displays the current RIS8
hdfed> ! group image via ICR. I.e. if you are using NCSA Telnet
hdfed> ! on a Mac II, this would display the images from denm.HDF
hdfed> ! on your screen.
hdfed> ! NOTE: not guaranteed to work otherwise.
hdfed>

The putr8 command

Syntax: putr8 [-image image_filename palette _ilename -verbose]

Flags: -image Image file name template (Default is "img#.@.%")

-palette Palette file name template (Default is "pal#")

-verbose To give output of steps taken.

Description: Writes a RIS8 group into raw image and palette files.

Usage Example:

hdfed> ! putr8 puts an RIS8 group into raw files
hdfed>
hdfed> putr8 -image my_image.#.@.% -palette testPalettes# -verbose
Writing to file: my_image8.10.10
Writing to file: my_palette
hdfed>

The close command

Syntax: close [-keep]

Flags: -keep The backup file is not deleted.

Description: Closes the HDF file opened by the last open command.

Usage Example:

hdfed> close
hdfed>

The select command
492 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
Syntax: select predicate_list command_list

Flags: None.

Description: Step through all the elements in the HDF file that satisfies the
predicates, and execute the command list.

Usage Example:

hdfed> ! To step through a file and, for example, putr8 on all
hdfed> ! RIS8 groups we can use the select command.
hdfed>
hdfed> select tag=306
>> putr8 -image testImages# -palette testPalettes# -verbose
>> end
Writing to file: testImages8
Writing to file: testPalettes8
Writing to file: test Images14
Writing to file: testPalettes14
Writing to file: testImages21
Writing to file: testPalettes21
hdfed>
hdfed> ! The ’select’ and ’if’ commands take the same
hdfed> ! predicates as ’next’ and ’pref’. There are also
hdfed> ! the predicates ’succeed" and "fail" that test the
hdfed> ! return status of the ’last’ command.
hdfed>

The put command

Syntax: put [-file filename] [-verbose]

Flags: -file Output file name (Default is "elt#.@")

-verbose Output diagnostic information.

Description: Writes the raw binary image of the current object to a file.

Usage Example:

hdfed> ! The ’put’ command writes an element into a binary file.
hdfed> ! This is a dumb routine and does not know about the
hdfed> ! formats of an element.
hdfed>
hdfed> put -file binary#
hdfed> put -file myBinary -verbose
Writing to file: myBinary
hdfed>

The revert command

Syntax: revert

Flags: None.

Description: Discards all changes made in the current hdfed session.

Usage Example:

hdfed> revert

hdfed>

The getr8 command

Syntax: getr8 image-file-name [x-dimension y-dimension] [-palette palette-
file-name] [-raster|-rle|-imcomp]

Flags: -palette Palette will be read from a binary file.
June 2017 493

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
-raster No compression will be performed during the write. (the
default)

-rle Run-length compression will be performed during the
write.

-imcomp IMCOMP compression will be performed during the write.

Description: Reads a RIS8 group from binary files.

The if conditional

Syntax: if predicate-list command-list end

Flags: None.

Description: Executes commands in a loop if predicates are satisfied for each
element processed.

The select loop command

Syntax: select predicate-list command-list end

Flags: None.

Description: Executes the list of commands for each element that satisfies the
predicates.

The wait command

Syntax: wait message

Flags: None.

Description: Prints a message, then waits for a carriage return to be typed.

15.19Working with Both HDF4 and HDF5 File Formats

The document Mapping HDF4 Objects to HDF5 Objects defines a complete mapping between
HDF4 and HDF5 objects. This document is available at http://www.hdfgroup.org/HDF5/doc/
ADGuide/H4toH5Mapping.pdf.

This mapping is implemented by the H4toH5 Conversion Library and the h4toh5 and h5toh4
conversion utilities. These tools and further information regarding download, installation, and
usage are available at http://www.hdfgroup.org/h4toh5/.

The H4toH5 Conversion Library is a C library providing APIs for customized conversion of indi-
vidual objects from an HDF4 file to equivalent objects in an HDF5 file. The conversion follows
the default mapping defined in the specification document, Mapping HDF4 Objects to HDF5
Objects. The library uses both the HDF4 and HDF5 libraries. Further information is available at
http://www.hdfgroup.org/h4toh5/libh4toh5.html.

The h4toh5 and h5toh4 utilities are special-purpose tools developed for users who must convert
files created with either an HDF4 or an HDF5 library to files that can be opened and manipulated
by applications built on the other library. These utilities convert all supported objects in entire
files and do not require the user to write any additional software. These utilities are documented in
the Tools section of the HDF5 Reference Manual, which is available at http://www.hdfgroup.org/
products/hdf5_tools/.
494 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
15.20Converting an HDF File to a GIF File: hdf2gif

15.20.1 General Description

hdf2gif is a command line utility that converts files from the Hierarchical Data Format (HDF)
(http://www.hdfgroup.org) to the Compuserve Graphics Interchange Format (GIF)
(http://www.w3.org/Graphics/GIF/spec-gif89a.txt)

15.20.2 Command-line Syntax and Requirements:

hdf2gif takes two arguments: the name of the HDF file to read and the name of the GIF file to
write.

hdf2gif <HDF file> <GIF file>

Inputs: HDF file Name of the HDF file

Outputs: GIF file Name of the GIF file

Requirements:

This utility requires the HDF library.

The HDF file is expected to contain 8-bit raster images which are consecutively converted to GIF
images. At this time, this utility cannot be used to convert higher resolution images (16-bit, 24-bit,
or 32-bit) to GIF images, which have a maximum resolution of 8-bit.

15.20.3 Structure of the GIF File

The GIF file may be of either GIF 87a or 89a formats. The choice between the two formats
depends on the number of images stored in the HDF file. If there is only one image in the HDF
file, then a GIF 87a file is written. If there are multiple images, a GIF89a file is written and it is
animated with a time delay of 15ms between two consecutive images. The animation is set to loop
indefinitely. The only exception occurs in case the HDF file was generated from a previous GIF
file using the gif2hdf utility. In this case the original GIF file's values for animation and time out
are taken into account instead of the preset defaults.

Depending on the version of the GIF file generated, the structure of the output file is as follows:

GIF87a: The GIF file consists of a header, logical screen descriptor, image descriptor, local
color table, image data, and the trailer. There is no global color table.

GIF89a: The GIF file consists of a header, logical screen descriptor, and the Netscape 2.0
application extension. This is followed by graphic control extension, image descrip-
tor, local color table, and raw image data, in that order and repeated for every image
present in the HDF file. The trailer follows and signifies the end of the GIF file. As
in the GIF87a format, there is no global color table.

The Netscape 2.0 application extension is present to inform the GIF renderer the
number of times the GIF animation should loop.

15.20.4 Building the Utility

hdf2gif is made when the utilites in the HDF 4 libraries are made.

Please refer to the instructions on how to make the HDF 4 libraries in order to make these utilities.
June 2017 495

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
15.21Converting an HDF File to a JPEG File: hdf2jpeg

15.21.1 General Description

hdf2jpeg is a command line utility that extracts JPEG images from an HDF file and writes them
to a JPEG file.

15.21.2 Command-line Syntax and Requirements

hdf2jpeg takes two arguments: the name of the HDF file to read and the name of the JPEG file to
write.

hdf2jpeg <HDF file> <JPEG file>

Inputs: HDF file Name of the HDF file

Outputs: JPEG file Name of the JPEG file

Requirements:

This utility requires the HDF library.

The HDF file is expected to contain JPEG images

Note that the utility only extracts JPEG images. If the HDF file also contains any non-JPEG
images, hdf2jpeg will not extract them. If the HDF file does not contain any JPEG image,
hdf2jpeg will display: "Error, no JPEG images found in HDF file".

15.21.3 Building the Utility

hdf2jpeg is created when the utilites in the HDF libraries are built.

Please refer to the instructions on how to build the HDF libraries in order to make these utilites.

15.22Converting a GIF File to an HDF File: gif2hdf

15.22.1 General Description

gif2hdf is a command line utility to convert files from the Compuserve Graphics Interchange For-
mat (GIF) (http://www.w3.org/Graphics/GIF/spec-gif89a.txt) to the Hierarchical Data
Format (HDF) (http://www.hdfgroup.org).

15.22.2 Command-line Syntax and Requirements

gif2hdf takes two arguments: the name of the GIF file to read and the name of the HDF file to
write.

gif2hdf <GIF file> <HDF file>

Inputs: GIF file Name of the GIF file

Outputs: HDF file Name of the HDF file

Requirements:

This utility requires the HDF library.
496 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
The amount of memory used by the program depends on the size of the GIF file and to some
extent the type and quality of the image stored.

The GIF file being used as input must be a valid GIF87a or GIF89a file. If the file has multiple
images (e.g., animated GIF), then the corresponding HDF file will contain all the images in a sin-
gle Vgroup. Since HDF was not intended to be a format for animation, some information, such as
the time between two consecutive images of an animation which is present in the GIF file, cannot
be used by HDF tools. That information is, however, stored in the HDF file as an attribute.

15.22.3 Structure of the GIF and HDF Files and the Mapping between Them

FIGURE 15b Structure of the GIF and HDF files

GIF File HDF File

The GIF file structure consists of a compulsory header followed by a logical screen descriptor. If
the GIF file has a global color table, it follows the logical screen descriptor. The image descriptor
precedes the raw image data. If the file is a GIF89a file, a graphic control extension may precede
the image descriptor.

The comment extension, application extension, and plain text extension blocks are not compul-
sory and may appear any number of times within the GIF file. There is no preset order in which
they must appear. These blocks are restricted to GIF89a files.

The final block is the trailer that consists only of one byte and signifies the end of the file. This
block is compulsory.

For further information on the structure of a GIF file, refer to the GIF format specification at
http://www.w3.org/Graphics/GIF/spec-gif89a.txt.
June 2017 497

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
The GIF images are stored in the HDF file in a Vgroup with Class="GIF" and Name being the
name of the original GIF file. Prior to HDF version 4.2.4, the name and class are restricted to 64
characters, as set by VSNAMELENMAX. Starting from release 4.2.4, the maximum length of vgroup’s
name is no longer limited to VGNAMELENMAX (or 64) and release 4.2.5 for vgroup’s class name.

The GIF file contains a number of extensions that are all stored as attributes to the Vgroup, with
the exception of the graphic control extension which is stored as an attribute to the individual
image. In the case of comment extension, application extension, and plain text extension, there are
two Vgroup attributes for every extension block: the extension dump attribute and the extension
data attribute.

Each image in the GIF file is stored as a compressed GR image, using gzip compression, under
the Vgroup in the HDF file. A palette is stored with each image in the HDF file. If the original
GIF image contained a local color table, this table is stored as a palette. If the images contained
only a global color table, each GR image in the HDF file has the global color table associated with
it. This association of color tables enables an HDF viewer (such as HDFview, available from
http://www.hdfgroup.org/) to correctly render the corresponding image. The image descriptor
and the graphic control extension, if present, of the GIF file are attached to the GR image as
attributes. If this HDF file is reconverted to the GIF format, the graphic control extension contains
important information regarding the animation of those images.

15.22.4 Building the Utility

gif2hdf is made when the utilities in the HDF libraries are made.

Please refer to the instructions on how to make the HDF libraries.

15.23Compiling C applications that Use HDF4: h4cc

15.23.1 General Description

Compiling the HDF4 library and HDF4 applications is a complex task, encompassing environ-
ment settings, particular use of compiler flags, many include files, etc. h4cc is a helper script, or
wrapper, designed to assist in the task of compiling C applications that use HDF4 by providing
several default settings and required flags and listing all of the required include files. Using h4cc,
the user can take advantage of these defaults while retaining the options of setting environment
variables to override the default compiler and linker and overriding the HDF4 include file and
library locations on the command line.

h4cc subsumes all other compiler commands in that if a certain command has been used to com-
pile the HDF4 library, then h4cc also uses that command. For example, if HDF4 was built using
gcc, then h4cc will use gcc in compiling the new program.

Some programs use HDF4 in only a few modules. It is not necessary to use h4cc to compile those
modules which do not use HDF4. In fact, since h4cc is only a convenience script, HDF4 modules
can still be compiled in the normal way, taking care to properly specify the HDF4 libraries and
include paths.

15.23.2 Command-line Syntax

The h4cc command-line syntax is as follows:

h4cc -help
h4cc [-echo] [-prefix=dir] [-show] compile_line
498 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
TABLE 15O h4cc Options and Compiler Options

Several environment variables, listed in the following table, are available that provide another
level of control over h4cc. When set, they override some of the built-in h4cc defaults.

TABLE 15P Environment Variables

15.23.3 Examples

The following example illustrates the use of h4cc to compile the program hdf_prog, which con-
sists of modules prog1.c and prog2.c:

h4cc -c prog1.c
h4cc -c prog2.c
h4cc -o hdf_prog prog1.o prog2.o

15.24Compiling Fortran applications that Use HDF4: h4fc

15.24.1 General Description

Compiling the HDF4 library and HDF4 applications is a complex task, encompassing environ-
ment settings, particular use of compiler flags, many include files, etc. h4fc is a helper script, or
wrapper, designed to assist in the task of compiling Fortran applications that use HDF4 by provid-
ing several default settings and required flags and listing all of the required include files. Using
h4fc, the user can take advantage of these defaults while retaining the options of setting environ-
ment variables to override the default compiler and linker and overriding the HDF4 include file
and library locations on the command line.

h4cc subsumes all other compiler commands in that if a certain cpmmand has been used to com-
pile the HDF4 library, then h4fc also uses that command. For example, if HDF4 was built using
f77, then h4cc will use f77 in compiling the new program.

Some programs use HDF4 in only a few modules. It is not necessary to use h4fc to compile those
modules which do not use HDF4. In fact, since h4fc is only a convenience script, HDF4 modules
can still be compiled in the normal way, taking care to properly specify the HDF4 libraries and
include paths.

-help Prints a help message.

-echo Shows all the shell commands executed.

-prefix=dir The directory dir specifies the location of the HDF4 lib/ and
include/ subdirectories.
Default: the prefix specified when configuring HDF4.

-show Shows the shell commands to be executed without actually executing
them.

compile_line The normal compile line options. h4cc uses the same compiler other-
wise used to compile HDF4. Check the compiler manual for more
information regarding the options required.

HDF4_CC Use a different C compiler.

HDF4_CLINKER Use a different linker.
June 2017 499

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
15.24.2 Command-line Syntax

The h4fc command-line syntax is as follows:

h4fc [-help]
h4fc [-echo] [-prefix=dir] [-show] compile_line

TABLE 15Q h4fc Option Flags

Several environment variables, listed in the following table, are available that provide another
level of control over h4fc. When set, they override some of the built-in h4fc defaults.

TABLE 15R Environment Variables

15.24.3 Example

The following example illustrates the use of h4fc to compile the program hdf_prog, which con-
sists of modules prog1.f and prog2.f and uses the HDF Fortran library:

h4fc -c prog1.f
h4fc -c prog2.f
h4fc -o hdf_prog prog1.o prog2.o

15.25Updating HDF4 Compiler Tools after an Installation in a New
Location: h4redeploy

15.25.1 General Description

h4redeploy updates the HDF4 compiler tools after the HDF4 software has been installed in a new
location.

15.25.2 Command-line Syntax

The h4redploy command-line syntax is as follows:

h4redeploy [help | -help]
h4redeploy [-echo] [-force] [-prefix=dir] [-tool=tool] [-show]

-help Prints a help message.

-echo Shows all the shell commands executed.

-prefix=dir The directory dir specifies the location of the HDF4 lib/ and
include/ subdirectories.
Default: the prefix specified when configuring HDF4.

-show Shows the shell commands to be executed without actually executing
them.

compile_line The normal compile line options. h4fc uses the same compiler other-
wise used to compile HDF4. Check the compiler manual for more
information regarding the options required.

HDF4_F77 Use a different Fortran compiler.

HDF4_F77LINKER Use a different linker.
500 June 2017

Chapter 15 -- HDF Command-line Utilities Table of Contents HDF User’s Guide
TABLE 15S h4redeploy Option Flags

-help
help

Prints a help message.

-echo Shows all the shell commands executed.

-show Shows the shell commands to be executed without actually executing
them.

-force Performs the requested actions without offering any prompt
requesting confirmation.

-prefix=dir The directory dir specifies the location of the HDF4 lib/ and
include/ subdirectories.
Default: the current working directory.

-tool=tool Specifies the tool to update. tool must be in the current working direc-
tory and must be writeable.
Default: h4fc
June 2017 501

The HDF Group Table of Contents Chapter 15 -- HDF Command-line Utilities
502 June 2017

CHAPTER 16 -- Raw Data Information
16.1 Chapter Overview

In 2011, to support the HDF4 File Content Map Project, HDF 4.2.6 introduced a set of routines
that allow applications to access the raw data directly by providing the locations and sizes (i.e.,
offsets and lengths) of the data in an HDF file. The data can be all in one block or scattered in var-
ious locations due to linked-block or chunking storage scheme. This chapter describes these data
information retrieval functions and provide examples of their usage.

16.2 The Data Information Retrieval Routines

There are several of the data information retrieval functions across the AN, SD, GR, V, and VS
interfaces and the prefix of each function’s name follows the same rule as other functions in the
same interface. They all have "datainfo" in their names because their purpose is data information
retrieval. Table 16A lists these routines. Currently, there is no implementation of the Fortran ver-
sions for these functions.
June 2017 503

The HDF Group Table of Contents Chapter 16 -- Raw Data Information
TABLE 16A Raw Data Information Retrieval Routines

There is no additional header file required for these new functions. As with existing API func-
tions, the header file mfhdf.h must be included in programs that invoke SD interface routines, and
hdf.h for non-SD ones.

16.3 Addition to the AN Interface

There is one routine added to the AN API for raw data information retrieval, ANgetdatainfo, and
it is described in the following sub-section.

16.3.1Retrieving Data Information of an Annotation: ANgetdatainfo

ANgetdatainfo retrieves the offset and length locating the data in a specified annotation. The
syntax of ANgetdatainfo is as follows:

C: status = ANgetdatainfo(ann_id, &offset, &length);

FORTRAN: Currently unavailable

The annotation is specified by its identifier, ann_id. The offset and length are retrieved into the
user-supplied buffers offset and length. Note that annotation’s data is stored in one contiguous
block only.

ANgetdatainfo returns SUCCEED (or 0), if successful, or FAIL (or -1), otherwise. The parameters
of ANgetdatainfo are specified in Table 16B.

Interface
Routine Name

Description and Reference
C FORTRAN-77

AN ANgetdatainfo unavailable
Retrieves data information of an annotation’s data (Section 16.3.1
on page 504)

SD

SDgetanndatainfo unavailable
Retrieves data information of an DFSD API annotation’s data
(Section 16.4.4 on page 508)

SDgetattdatainfo unavailable
Retrieves offset and length of an SD API attribute’s data
(Section 16.4.2 on page 506)

SDgetdatainfo unavailable
Retrieves offset and length of a data set’s data (Section 16.4.1 on
page 505)

SDgetoldat-
tdatainfo

unavailable
Retrieves offset and length of a DFSD API attribute’s data
(Section 16.4.3 on page 506)

GR

GRgetattdatainfo unavailable
Retrieves offset and length of a GR API attribute’s data
(Section 16.5.2 on page 510)

GRgetdatainfo unavailable
Retrieves offset and length of a raster image’s data (Section 16.5.1
on page 509)

V Vgetattdatainfo unavailable
Retrieves offset and length of a V API attribute’s data
(Section 16.6.1 on page 510)

VS

VSgetattdatainfo unavailable
Retrieves offset and length of a VS API attribute’s data
(Section 16.7.2 on page 512)

VSgetdatainfo unavailable
Retrieves offset and length of a vdata or a vdata field’s data
(Section 16.7.1 on page 511)
504 June 2017

Chapter 16 -- Raw Data Information Table of Contents HDF User’s Guide
TABLE 16B ANgetdatainfo Parameter List

16.4 Addition to the SD Interface

There are several functions added to the SD API for raw data information retrieval:

• SDgetdatainfo gets offsets/lengths of a data set’s data

• SDgetattdatainfo gets offset/length of SD API attribute’s data

• SDgetoldattdatainfo gets offset/length of DFSD API attribute’s data

• SDgetanndatainfo gets offset/length of an DFSD API annotation’s data

These functions are described in the following sub-sections.

16.4.1Retrieving Data Information of an SDS: SDgetdatainfo

SDgetdatainfo retrieves offset and length of data blocks in a specified data set. The syntax of
SDgetdatainfo is as follows:

C: info_count = SDgetdatainfo(sds_id, origin, start_block, info_count,
offsetarray, lengtharray);

FORTRAN: Currently unavailable

The offsets and lengths are retrieved into the user-supplied lists offsetarray and lengtharray.

• When the data set is contiguous, i.e., only one block of data, SDgetdatainfo will return a
single pair of offset and length specifying the position of that data block.

• When the data set’s data is stored in linked-blocks, SDgetdatainfo will return a list of off-
sets and a list of lengths, each matching offset/length pair specifying the position of a linked
block.

• When the data set has chunked data without linked-block storage, SDgetdatainfo will
return a single pair of offset and length and, with linked-block storage, two list of offsets
and lengths specifying the blocks in the chunk.

The parameter origin must be NULL when the data is not stored in chunking layout. When the data
is chunked, SDgetdatainfo can be called on a single chunk and origin is used to specify the coor-
dinates of the chunk.

The parameter info_count specifies the maximum number of items the offset and length lists are
allocated to hold. Applications, however, can pass in 0 for info_count and NULL for these arrays
when only the actual number of data blocks in the data set is desired.

The purpose of the parameter start_block was to allow retrieval to start at a random block in the
data. Applications would be able to start retrieving at the begining of the data by specifying
start_block as 0, or at a block of data by specifying start_block as a value between 1 and the num-
ber of blocks in the data. However, in release 2.6, start_block has no effect except for contiguous
data, in which case, SDgetdatainfo will fail when start_block is greater than 1. The supporting
project did not need this specific feature. Thus, until the feature is supported, applications should

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

ANgetdatainfo
[intn]

(unavailable)

ann_id int32 N/A Annotation identifier

offset int32 * N/A Buffer for offset of annotation’s data

length int32 * N/A Buffer for length of annotation’s data
June 2017 505

The HDF Group Table of Contents Chapter 16 -- Raw Data Information
pass 0 in for start_block to start retrieving at the beginning of the data and up to info_count or the
total number of data blocks, whichever smaller.

SDgetdatainfo returns the number of offset/length pairs retrieved, if successful, or FAIL (or -1),
otherwise. The parameters of SDgetdatainfo are specified in Table 16C.

TABLE 16C SDgetdatainfo Parameter List

16.4.2Retrieving Data Information of an Attribute: SDgetattdatainfo

SDgetattdatainfo retrieves offset and length of the data in a specified attribute. The syntax of
SDgetattdatainfo is as follows:

C: info_count = SDgetattdatainfo(id, attr_index, &offset, &length);

FORTRAN: Currently unavailable

The attribute is specified by its index and can be one that belongs to an SD file, a data set, or a
dimension. The offset and length are retrieved into the user-supplied buffers offset and length.
Note that attribute’s data is stored in one contiguous block only.

There are attributes created by SDsetattr and those created by the DFSD API functions. Refer to
Appendix C, Attributes in HDF, for more details. SDgetattdatainfo can only retrieve data infor-
mation of attributes that were created by SDsetattr. If the inquired attribute was created by the
DFSD API functions, SDgetattdatainfo will return to the caller with error code DFE_NOVGREP and
the caller can call SDgetoldattdatainfo to get the attribute’s data information.

SDgetattdatainfo returns the number of offset/length pair retrieved, which should be 1, if suc-
cessful, or FAIL (or -1), otherwise. The parameters of SDgetattdatainfo are specified in Table
16D.

TABLE 16D SDgetattdatainfo Parameter List

16.4.3Retrieving Data Information of a DFSD API Attribute:

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDgetdatainfo
[intn]

(unavailable)

sds_id int32 N/A Data set identifier

origin int32 * N/A
Coordinates of the origin of the chunk to
be read

start_block uintn N/A Indicating where to start reading offsets

info_count uintn N/A Length of the offset and length lists

offsetarray int32 * N/A Array to hold offsets of the data blocks

lengtharray int32 * N/A Array to hold lengths of the data blocks

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDgetattdatainfo
[intn]

(unavailable)

id int32 N/A SD, SDS, or dimension identifier

attr_index int32 N/A Index of the attribute being inquired

offset int32 * N/A Buffer for offset of attribute’s data

length int32 * N/A Buffer for length of attribute’s data
506 June 2017

Chapter 16 -- Raw Data Information Table of Contents HDF User’s Guide
SDgetoldattdatainfo

SDgetoldattdatainfo retrieves offset and length of the data in a specified attribute, which was
created by the DFSD API routines. The attributes created in this manner were not stored as vdatas
like those created by SDsetattr. These type of attributes are often seen in some older files, circa
1993. However, later files may still contain them if the file was written with the DFSD API rou-
tines. In addition, this type of attributes can only be predefined; there are no user-defined
attributes in DFSD API.

SDgetoldattdatainfo only works on DFSD-created attributes while its counter part SDgetatt-
datainfo only works on attributes created with SDsetattr. An application might call SDgetatt-
datainfo initially. When a DFSD-created attribute is encountered, SDgetattdatainfo will fail
with the error code DFE_NOVGREP, which means there is no vgroup representation for the SDS and
the SDS' attributes are stored differently than when they are created with SDsetattr. The applica-
tion must call SDgetoldattdatainfo to get the data information of those attributes, if such error
code is detected. For further information about this attribute issue, please refer to the Appendix C,
Attributes in HDF, in this document. The syntax of SDgetoldattdatainfo is as follows:

C: info_count = SDgetoldattdatainfo(dim_id, sds_id, attr_name, &offset,
&length);

FORTRAN: Currently unavailable

SDgetoldattdatainfo takes both SDS identifier and dimension identifier if the inquired attribute
belongs to a dimension. When the inquired attribute belongs to an SDS, the dimension identifier
will not be needed, and should be 0.

The attribute can be one that belongs to a data set or a dimension and is specified by its name,
which can be one of the predefined names in (See Table 16E on page 508). The offset and length
are retrieved into the user-supplied buffers offset and length. Note that attribute’s data is stored in
one contiguous block only.
June 2017 507

The HDF Group Table of Contents Chapter 16 -- Raw Data Information
TABLE 16E HDF4 Predefined Attributes

SDgetoldattdatainfo returns the number of offset/length pair retrieved, which should be 1, if suc-
cessful, or FAIL (or -1), otherwise. The parameters of SDgetoldattdatainfo are specified in Table
16F.

TABLE 16F SDgetoldattdatainfo Parameter List

16.4.4Retrieving Data Information of an Annotation in SD API:
SDgetanndatainfo

SDgetanndatainfo retrieves offsets and lengths of the data belonging to the annotations of a
given type. These annotations were created with the DFAN API. The syntax of SDget-
anndatainfo is as follows:

C: info_count = SDgetanndatainfo(id, annotype, size, offsetarray,
lengtharray);

FORTRAN: Currently unavailable

The parameter id can be an SD or SDS identifier. However, when id is an SD identifier, the anno-
tation’s type must be either AN_FILE_LABEL (or 2) or AN_FILE_DESC (or 3), and when it is an
SDS identifier, the type must be AN_DATA_LABEL (or 0) or AN_DATA_DESC (or 1). The offsets and
lengths of the specified annotations are retrieved into the user-supplied buffers offsetarray and
lengtharray. Note that annotation’s data is stored in one contiguous block only, but there can be

Predefined Name Actual Text Applicable To

_HDF_LongName "long_name" Dimension & SDS

_HDF_Units "units" Dimension & SDS

_HDF_Format "format" Dimension & SDS

_HDF_CoordSys "coordsys" Only SDS

_HDF_ScaleFactorErr "scale_factor_err" Only SDS

_HDF_AddOffset "add_offset" Only SDS

_HDF_ValidRange "valid_range" Only SDS

_HDF_ScaleFactor "scale_factor" Only SDS

_HDF_AddOffsetErr "add_offset_err" Only SDS

_HDF_CalibratedNt "calibrated_nt" Only SDS

_HDF_ValidMax "valid_max" Only SDS

_HDF_ValidMin "valid_min" Only SDS

_FillValue "_FillValue" Only SDS

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDgetoldattdatainfo
[intn]

(unavailable)

dim_id int32 N/A Dimension identifier

sds_id int32 N/A SDS identifier

attr_name char * N/A Name of the attribute being inquired

offset int32 * N/A Buffer for offset of attribute’s data

length int32 * N/A Buffer for length of attribute’s data
508 June 2017

Chapter 16 -- Raw Data Information Table of Contents HDF User’s Guide
more than one annotation of the specified type. The parameter size specifies the number of ele-
ments offsetarray and lengtharray can hold.

SDgetanndatainfo returns the number of offset/length pairs retrieved, if successful, or FAIL (or -
1), otherwise. The parameters of SDgetanndatainfo are specified in Table 16G.

TABLE 16G SDgetanndatainfo Parameter List

16.5 Addition to the GR Interface

There are two routines added to the GR API for raw data information retrieval, GRgetdatainfo
and GRgetattdatainfo, and they are described in the following sub-sections.

16.5.1Retrieving Data Information of a Raster Image: GRgetdatainfo

GRgetdatainfo retrieves offset and length of data blocks in a specified raster image. The syntax
of GRgetdatainfo is as follows:

C: info_count = GRgetdatainfo(ri_id, start_block, info_count, offsetar-
ray, lengtharray);

FORTRAN: Currently unavailable

The offsets and lengths are retrieved into the user-supplied lists offsetarray and lengtharray.

• When the raster image is contiguous, i.e., only one block of data, GRgetdatainfo will return
a single pair of offset and length specifying the position of that data block.

• When the raster image’s data is stored in linked-blocks, GRgetdatainfo will return a list of
offsets and a list of lengths, each matching offset/length pair specifying the position of a
linked block.

• GRgetdatainfo does not work with chunked images. (The HDF4 File Content Map Project
did not need this feature.)

The parameter info_count specifies the maximum number of items the offset and length lists are
allocated to hold. Applications, however, can pass in 0 for info_count and NULL for these arrays
when only the actual number of data blocks in the data set is desired.

The purpose of the parameter start_block was to allow retrieval to start at a random block in the
data. Applications would be able to start retrieving at the begining of the data by specifying
start_block as 0, or at a block of data by specifying start_block as a value between 1 and the num-
ber of blocks in the data. However, in release 2.6, start_block has no effect except for contiguous
data, in which case, GRgetdatainfo will fail when start_block is greater than 1. The supporting
project did not need this specific feature. Thus, until the feature is supported, applications should
pass 0 in for start_block to start retrieving at the beginning of the data and up to info_count or the
total number of data blocks, whichever smaller.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

SDgetanndatainfo
[intn]

(unavailable)

id int32 N/A SD or SDS identifier

annotype ann_type N/A Type of annotations to retrieve data info

size uintn N/A Length of the offset and length arrays

offsetarray int32 * N/A Buffer for offset of annotations’ data

lengtharray int32 * N/A Buffer for length of annotations’ data
June 2017 509

The HDF Group Table of Contents Chapter 16 -- Raw Data Information
GRgetdatainfo returns the number of offset/length pairs retrieved, if successful, or FAIL (or -1),
otherwise. The parameters of GRgetdatainfo are specified in Table 16H.

TABLE 16H GRgetdatainfo Parameter List

16.5.2Retrieving Data Information of a GR API Attribute: GRgetattdatainfo

GRgetattdatainfo retrieves offset and length of the data in a specified attribute. The syntax of
GRgetattdatainfo is as follows:

C: info_count = GRgetattdatainfo(id, attr_index, &offset, &length);

FORTRAN: Currently unavailable

The attribute is specified by its index and can be one that belongs to a GR file or a raster image.
The offset and length are retrieved into the user-supplied buffers offset and length. Note that
attribute’s data is stored in one contiguous block only.

GRgetattdatainfo returns the number of offset/length pair retrieved, which should be 1, if suc-
cessful, or FAIL (or -1), otherwise. The parameters of GRgetattdatainfo are specified in Table
16I.

TABLE 16I GRgetattdatainfo Parameter List

16.6 Addition to the V Interface

There is one routine added to the V API for raw data information retrieval, Vgetattdatainfo, and
it is described in the following sub-section.

16.6.1Retrieving Data Information of a V API Attribute: Vgetattdatainfo

Vgetattdatainfo retrieves the offset and length locating the data in a specified attribute. The syn-
tax of Vgetattdatainfo is as follows:

C: status = Vgetattdatainfo(vgroup_id, attr_index, &offset, &length);

FORTRAN: Currently unavailable

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

GRgetdatainfo
[intn]

(unavailable)

ri_id int32 N/A Raster image identifier

start_block uintn N/A Indicating where to start reading offsets

info_count uintn N/A Length of the offset and length lists

offsetarray int32 * N/A Array to hold offsets of the data blocks

lengtharray int32 * N/A Array to hold lengths of the data blocks

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

GRgetattdatainfo
[intn]

(unavailable)

id int32 N/A GR or raster image identifier

attr_index int32 N/A Index of the attribute being inquired

offset int32 * N/A Buffer for offset of attribute’s data

length int32 * N/A Buffer for length of attribute’s data
510 June 2017

Chapter 16 -- Raw Data Information Table of Contents HDF User’s Guide
The annotation is specified by its identifier, ann_id. The offset and length are retrieved into the
user-supplied buffers offset and length. Note that annotation’s data is stored in one contiguous
block only.

There are two types of attributes for vgroups; those created by Vsetattr (new style) and those cre-
ated by non-Vsetattr approaches (old style.) Please refer to the section about Vnattrs and
Vnattrs2 and the Appendix Attribute in this HDF User’s Guide for details. Vgetattdatainfo can
access both type of attributes. However, an application must use Vnattrs2 to get the number of
attributes instead of Vnattrs in order to include both types. Note that, when a vgroup has both
types of attributes, the old-style attributes will preceed the new ones, regardless of when they
were created. The best way to access these attributes is through a loop.

Vgetattdatainfo returns the number of data blocks, which should be 1, if successful, or FAIL (or -
1), otherwise. The parameters of Vgetattdatainfo are specified in Table 16J.

TABLE 16J Vgetattdatainfo Parameter List

16.7 Addition to the VS Interface

There are two routines added to the VS API for raw data information retrieval, VSgetdatainfo
and VSgetattdatainfo, and they are described in the following sub-sections.

16.7.1Retrieving Data Information of a Vdata: VSgetdatainfo

VSgetdatainfo retrieves offset and length of data blocks in a specified vdata. The syntax of
VSgetdatainfo is as follows:

C: info_count = VSgetdatainfo(vdata_id, start_block, info_count, offse-
tarray, lengtharray);

FORTRAN: Currently unavailable

The offsets and lengths are retrieved into the user-supplied lists offsetarray and lengtharray.

• When the vdata has is contiguous data, i.e., only one block of data, VSgetdatainfo will
return a single pair of offset and length specifying the position of that data block.

• When the vdata’s data is stored in linked-blocks, VSgetdatainfo will return a list of offsets
and a list of lengths, each matching offset/length pair specifying the position of a linked
block.

The parameter info_count specifies the maximum number of items the offset and length lists are
allocated to hold. Applications, however, can pass in 0 for info_count and NULL for these arrays
when only the actual number of data blocks in the data set is desired.

The purpose of the parameter start_block was to allow retrieval to start at a random block in the
data. Applications would be able to start retrieving at the begining of the data by specifying
start_block as 0, or at a block of data by specifying start_block as a value between 1 and the num-
ber of blocks in the data. However, in release 2.6, start_block has no effect except for contiguous

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

Vgetattdatainfo
[intn]

(unavailable)

vgroup_id int32 N/A Annotation identifier

attr_index intn N/A Index of the inquired attribute

offset int32 * N/A Buffer for offset of attribute’s data

length int32 * N/A Buffer for length of attribute’s data
June 2017 511

The HDF Group Table of Contents Chapter 16 -- Raw Data Information
data, in which case, VSgetdatainfo will fail when start_block is greater than 1. The supporting
project did not need this specific feature. Thus, until the feature is supported, applications should
pass 0 in for start_block to start retrieving at the beginning of the data and up to info_count or the
total number of data blocks, whichever smaller.

VSgetdatainfo returns a the number of offset/length pairs retrieved, if successful, or FAIL (or -1),
otherwise. The parameters of VSgetdatainfo are specified in Table 16K.

TABLE 16K VSgetdatainfo Parameter List

16.7.2Retrieving Data Information of a VS API Attribute: VSgetattdatainfo

VSgetattdatainfo retrieves offset and length of the data in a specified attribute. The syntax of
VSgetattdatainfo is as follows:

C: info_count = VSgetattdatainfo(vdata_id, findex, attr_index, &offset,
&length);

FORTRAN: Currently unavailable

The attribute is specified by its index, attr_index, and can be one that belongs to a vdata or a field
of the vdata. If findex is _HDF_VDATA (or -1), then the attribute is associated with the vdata. If fin-
dex is an index of the vdata field, then the attribute is one that is associated with the vdata field.
The parameter attr_index specifies the attribute's index within the vdata's or the field's attribute
list. Thus, its value must be within [0-number of attributes of the associated list].

The offset and length are retrieved into the user-supplied buffers offset and length. Note that
attribute’s data is stored in one contiguous block only.

VSgetattdatainfo returns the number of offset/length pair retrieved, which should be 1, if suc-
cessful, or FAIL (or -1), otherwise. The parameters of VSgetattdatainfo are specified in Table
16L.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

VSgetdatainfo
[intn]

(unavailable)

vdata_id int32 N/A Vdata identifier

start_block uintn N/A Indicating where to start reading offsets

info_count uintn N/A Length of the offset and length lists

offsetarray int32 * N/A Array to hold offsets of the data blocks

lengtharray int32 * N/A Array to hold lengths of the data blocks
512 June 2017

Chapter 16 -- Raw Data Information Table of Contents HDF User’s Guide
TABLE 16L VSgetattdatainfo Parameter List

EXAMPLE 1. Getting Data Information of SDS.

This example demonstrates the use of the routine SDgetdatainfo with simple and contiguous data
in a data set.

C:

#include "mfhdf.h"
#define SIMPLE_FILE "datainfo_simple.hdf" /* data file previously written */
main()
{
 /*********************** Variable Declaration **************************/
 int32 sd_id, sds_id;
 int32 offset, length;
 uintn info_count = 0;
 intn status;

 /*
 * Open the file for reading.
 */
 sd_id = SDstart(SIMPLE_FILE, DFACC_READ);

 /***
 Read data info for later accessing data without the use of HDF4 library
 ***/

 /*
 * Open the second dataset, get the number of data block, which is 1, then
 * retrieve and record the offset/length
 */
 sds_id = SDselect(sd_id, 1);

 /*
 * Passing in 0 for the info count and NULL for the offset and length
 * arrays to get the number of data blocks in the data set. Note that
 * the second parameter is for chunk coordinates and because this data
 * set is not chunked, NULL should be passed in. The third parameter
 * indicates to start retrieval at the beginning of the data.
 */
 info_count = SDgetdatainfo(sds_id, NULL, 0, 0, NULL, NULL);

 /*
 * Call SDgetdatainfo again to retrieve the offset and length of the
 * data block. The info count is now 1 to specify the number of elements
 * in the offset and length arrays.
 */
 status = SDgetdatainfo(sds_id, NULL, 0, info_count, &offset, &length);

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

VSgetattdatainfo
[intn]

(unavailable)

vdata_id int32 N/A Vdata identifier

findex int32 N/A Vdata's field index or _HDF_VDATA

attr_index int32 N/A Index of the attribute being inquired

offset int32 * N/A Buffer for offset of attribute’s data

length int32 * N/A Buffer for length of attribute’s data
June 2017 513

The HDF Group Table of Contents Chapter 16 -- Raw Data Information
 /*
 * Terminate access to the data set.
 */
 status = SDendaccess(sds_id);

 /*
 * Close the file.
 */
 status = SDend(sd_id);

 /**
 Read data using previously obtained data info without HDF4 library
 **/

 /* Open file and read in data without using SD API */
 {
 int fd; /* for open */
 int32 ret32; /* for DFKconvert */
 ssize_t readlen = 0; /* for read */
 int32 *readibuf, *readibuf_swapped;

 /*
 * Open the file for reading without SD API.
 */
 fd = open(SIMPLE_FILE, O_RDONLY);

 /*
 * Forward to the position of the data.
 */
 lseek(fd, (off_t)offset, SEEK_SET);

 /*
 * Allocate buffers for SDS' data.
 */
 readibuf = (int32 *) HDmalloc(N_VALUES * sizeof(int32));
 readibuf_swapped = (int32 *) HDmalloc(N_VALUES * sizeof(int32));

 /*
 * Read in this block of data.
 */
 readlen = read(fd, (VOIDP) readibuf, (size_t)length);

 /*
 * Convert data back to format on local machine.
 */
 ret32 = DFKconvert(readibuf, readibuf_swapped, DFNT_INT32,
 N_VALUES, DFACC_WRITE, 0, 0);

 /*
 * Free resources.
 */
 HDfree (readibuf_swapped);
 HDfree (readibuf);

 /*
 * Close the file.
 */
 close(fd);
 }
}

514 June 2017

Appendices
Appendix AReserved HDF Tags

A.1 Overview

This appendix includes tables containing brief descriptions of most of the tags that have been
reserved for general use. This list will be expanded in future editions to include new tags as they
are assigned. A more detailed description of the tags can be found in the HDF Specification and
Developer’s Guide. Also see the HDF Specification and Developer’s Guide for a description of
extended tags, which are not discussed in this Appendix.

Each table contains a list of tags within one category. The titles of the tables, with a functional
description of each table, are:

• Table A: The HDF Utility Tags. Used by the HDF utilties.

• Table B: The HDF General Raster Image Tags. Used to describe aspects of raster image
data.

• Table C: The HDF Composite Image Tags. Used to describe aspects of composite image
data.

• Table D: The HDF Scientific Data Set Tags: Used to describe aspects of scientific data set
(SDS) data.

• Table E: The HDF Vset Tags. Used to describe aspects of HDF Vset data.

• Table F: The Obsolete HDF Tags: Used to describe aspects of HDF data elements that
have been replaced by newer tags or discontinued.

A.2 Tag Types and Descriptions

The following tables have five columns:

Tag Name contains the abbreviated symbolic names of tags that are often used in an aug-
mented form in HDF programs.

Short Description contains a brief (four word maximum) description of the tag that is com-
monly used to describe to the tag in HDF manuals and in-line code documentation.

Data Size describes the type of data that is associated with the tag and, where possible, lists the
data size.

Tag Value lists the numeric value of the tag symbol in the hdf.h header file.

Long Description contains a general description of the tag.

In the tables, the term String refers to a sequence of ASCII characters with the null byte possibly
occurring at the end, but nowhere else. The term Text also refers to a sequence of ASCII charac-
ters, but it may contain null characters anywhere in the sequence. An n in the Data Size column
June 2017 515

The HDF Group Table of Contents Appendices
describes a data unit of variable-length. For more detailed descriptions of these units of data, refer
to the appropriate tag entry in the HDF Specification and Developer’s Guide.

TABLE AA The HDF Utility Tags

TABLE AB The HDF General Raster Image Tags

Tag Name Short Description Data Size
Tag

Value
Long Description

DFTAG_NULL No Data None 001
Used for place holding and filling up empty
portions of the Data Descriptor Block.

DFTAG_VERSION
Library Version
Number

4 bytes + string 030
Specifies the latest version of the HDF
library used to write to the file.

DFTAG_NT Number Type 4 bytes 106
Used by any other element in the file to spe-
cifically indicate what a numeric value
looks like.

DFTAG_MT Machine Type 0 bytes 107
Specifies that all unconstrained or partially
constrained values in this HDF file are of
the default type for that hardware.

DFTAG_FID File Identifier String 100
Points to a string that the user wants to asso-
ciate with this file. This supports the inclu-
sion of a user-supplied title for the file.

DFTAG_FD File Descriptor Text 101
Points to a block of text describing the over-
all file contents. It is intended to be user-
supplied comments about the file.

DFTAG_TID Tag Identifier String 102
Provides a way to determine the meaning of
a tag stored in the file.

DFTAG_TD Tag Descriptor Text 103
Similar to DFTAG_TD, but allows more
text to be included.

DFTAG_DIL Data Identifier Label String 104

Associates the string with the Data Identi-
fier as a label for whatever the identifier
points to. By including DILs, any data ele-
ment can be given a label for future refer-
ence. For example, this tag is often used to
give titles to raster image data sets.

DFTAG_DIA
Data Identifier Anno-
tation

Text 105

Associates the text block with the Data
Identifier as an annotation for whatever that
Data Identifier points to. With DIAs, and
Data Identifier can have a lengthy, user-pro-
vided description of why that particular data
element is in the file.

DFTAG_RLE Run-length Encoding 0 bytes 011
Specifies that run-length encoding (RLE) is
used to compress a raster image.

DFTAG_IMC
IMCOMP
Compression

0 bytes 012
Specifies that IMCOMP compression is
used to compress a raster image.

DFTAG_JPEG
24-bit JPEG
Compression

n bytes 013
Provides header information for 24-bit
JPEG-compressed raster images.

DFTAG_GREYPEG
8-bit JPEG
Compression

n bytes 014
Provides header information for 8-bit
JPEG-compressed raster images.

Tag Name Short Description Data Size
Tag

Value
Long Description

DFTAG_RIG Raster Image Group n*4 bytes 306
Lists the Data Identifiers (tag/reference num-
ber pairs) that uniquely describe a raster
image set.

DFTAG_ID Image Dimension 20 bytes 300
Defines the dimensions of the two-dimen-
sional array the corresponding RI tag refers
to.
516 June 2017

Appendices Table of Contents HDF User’s Guide
TABLE AC The HDF Composite Image Tags

TABLE AD The HDF Scientific Data Set Tags

DFTAG_LD LUT Dimension 20 bytes 307
Defines the dimensions of the two-dimen-
sional array the corresponding LUT tag
refers to.

DFTAG_MD Matte Dimension 20 bytes 308
Defines the dimensions of the two-dimen-
sional array the corresponding MA tag refers
to.

DFTAG_RI Raster Image x*y bytes 302 Points to a raster image data set.

DFTAG_CI Compressed Image n bytes 303 Points to a compressed raster image data set.

DFTAG_LUT Lookup Table n bytes 301
Table to be used by the hardware for the pur-
pose of assigning RGB or HSV colors to data
values.

DFTAG_MA Matte Data n bytes 309 Points to matte data.

DFTAG_CCN Color Correction n bytes 310
Specifies the gamma correction for the raster
image and color primaries used in the gener-
ation of the image.

DFTAG_CFM Color Format String 311
Indicates the interpretation to be given to
each element of each pixel in a raster image.

DFTAG_AR Aspect Ratio 4 bytes 312 Indicates the aspect ratio of the image.

DFTAG_XYP XY Position 8 bytes 500

Specifies the screen X-Y coordinate for ras-
ter image sets. (Also used for composite
image sets - See the entry for DFTAG_XYP
in Table 12.6)

Tag Name Short Description Data Size
Tag

Value
Long Description

DFTAG_DRAW Draw n*4 bytes 400
Specifies a list of Data Identifiers (tag/ref-
erence number pairs) which define a com-
posite image.

DFTAG_XYP XY Position 8 bytes 500

Specifies the screen X-Y coordinate for
composite image sets. (Also used for ras-
ter image sets - See the entry for
DFTAG_XYP in Table 12.5)

DFTAG_RUN Run n bytes 401
Identifies code that is to be executes as a
program or script.

DFTAG_T14 Tektronix 4014 n bytes 602

Used as a vector image tag. Points to a
Tektronix 4014 data. The bytes in the data
field, when read and sent to a Tektronix
4014 terminal, will be displayed as a vec-
tor image.

DFTAG_T10S Tektronix 4015 n bytes 603

Used as a vector image tag. Points to a
Tektronix 4015 data. The bytes in the data
field, when read and sent to a Tektronix
4015 terminal, will be displayed as a vec-
tor image.

Tag Name Short Description Data Size
Tag

Value
Long Description

DFTAG_NDG Numeric Data Group n*4 bytes 720
Lists the Data Identifiers (tag/reference
number pairs) that describe a scientific
data set. Supersedes DFTAG_SDG.

DFTAG_SDD
SDS Dimension
Record

n bytes 701
Defines the rank and dimensions of the
array the corresponding SD refers to.

Tag Name Short Description Data Size
Tag

Value
Long Description
June 2017 517

The HDF Group Table of Contents Appendices
TABLE AE The HDF Vset Tags

TABLE AF The Obsolete HDF Tags

DFTAG_SD Scientific Data Real Number 702 Points to scientific data.

DFTAG_SDS SCales Real Number 703
Identifies the scales to be used when inter-
preting and displaying data.

DFTAG_SDL Labels String 704 Labels all dimensions and data.

DFTAG_SDU Units String 705 Displays units for all dimensions and data.

DFTAG_SDF Formats String 706 Displays formats for axes and data.

DFTAG_SDM Maximum/minimum 2 Real Numbers 707
Displays the maximum and minimum val-
ues for the data.

DFTAG_SDC Coordinate system String 708
Displays the coordinate system to be used
in interpreting data.

DFTAG_SDLNK SDS Link 8 bytes 710

Links and old-style DFTAG_SDG and a
DFTAG_NDG in cases where the
DFTAG_NDG meets all criteria for a
DFTAG_SDG.

DFTAG_CAL
Calibration Informa-
tion

36 bytes 731
The calibration record for the correspond-
ing DFTAG.SD.

DFTAG_FV Fill Value n bytes 732
The value which has been used to indicate
unset values in the corresponding
DFTAG_SD.

Tag Name Short Description Data Size
Tag

Value
Long Description

DFTAG_VG Vgroup 14+n bytes 1965
Provides a general-purpose grouping
structure.

DFTAG_VH Vdata Description 22+n bytes 1962
Provides information necessary to process
a DFTAG_VS.

DFTAG_VS Vdata n bytes 1963
Contains a block of data that is to be inter-
preted according to the information in the
corresponding DFTAG_VH.

Tag Name Short Description Data Size
Tag

Value
Long Description

DFTAG_IDS Image Dimension-8 4 bytes 200
Two 16-bit integers that represent the
width and height of an 8-bit raster image
in bytes.

DFTAG_IP8 Image Palette-8 768 bytes 201
A 256 x 3 byte array representing the red,
green and blue elements of the 256-color
palette respectively.

DFTAG_RI8 Raster Image-8 x*y bytes 202
A row-oriented representation of the ele-
mentary 8-bit image data.

DFTAG_CI8 Compressed Image-8 n bytes 203

A row-oriented representation of the ele-
mentary 8-bit raster image data, with each
row compressed using a form of run-
length encoding.

DFTAG_II8 IMCOMP Image-8 n bytes 204
A 4:1 8-bit raster image, compressed
using the IMCOMP algorithm.

DFTAG_SDG
Scientific Data
Group

n*4 bytes 700
List the Data Identifiers (tag/reference
number pairs) that uniquely describe a
scientific data set.

DFTAG_SDT Transpose 0 bytes 709
Indicates that data is transposed in the
file.

Tag Name Short Description Data Size
Tag

Value
Long Description
518 June 2017

Appendices Table of Contents HDF User’s Guide
Appendix B HDF Installation Overview

B.1 General HDF Installation Overview

B.1.1 Acquiring the HDF Library Source

You may obtain the HDF source code and/or selected binaries at no charge from The HDF
Group's server:

 http://www.hdfgroup.org/products/hdf4

 http://www.hdfgroup.org/release4/obtain.html

For reference, the unpacked HDF source code can be found at

 ftp://ftp.hdfgroup.org/HDF/HDF_Current/src/unpacked/.

B.1.2 Building the HDF Library Source

For instructions on building HDF from the source code, please refer to the INSTALL file in the
top directory of the unpacked HDF source tree.
June 2017 519

The HDF Group Table of Contents Appendices
Appendix C Attributes in HDF

This Appendix gives an overview of attributes in HDF and describes some issues in the library
regarding attributes. The information is more helpful when users are working with files produced
by older versions of the library.

C.1 Attribute Overview

Attributes are optional components in the HDF data model. They can be used to describe the
nature and/or the intended usage of various HDF elements. This type of information is sometimes
called user-created metadata because it is data about data. The HDF elements that can be
assigned with attributes include:

• File, data set, and dimension in SD API

• File and raster image in GR API

• Vgroup in V API

• Vdata and vdata field in VS API

At the creation, an HDF attribute requires a name, data values, number type, and number of val-
ues. The attribute name is an ASCII string of any length from 1 to H4_MAX_NC_NAME (or 256). The
attribute data contains one or more values, in which case all the values must have the same num-
ber type as defined at the time the attribute is created. Attributes take the form label=value, where
label is the attribute’s name and value is the attribute’s data. Number of values declares how
many data entries the attribute has. The number type can be any type supported by the HDF
library. These number types are listed in Table 1A, "Number Type Definitions" in Section I of the
HDF4 Reference Manual.

For each attribute, an attribute count is maintained that identifies the number of values in the
attribute. Each attribute has a unique attribute index, the value of which ranges from 0 to the total
number of attributes minus 1. The attribute index is used to locate an attribute in the object which
the attribute is attached to. Once the attribute is identified, its values and information can be
retrieved.

There are two types of attributes in HDF: predefined attributes and user-defined attributes.

 Predefined attributes have reserved names and, in some cases, predefined number types and/or
number of data entries. Predefined attributes are useful because they establish conventions that
applications can depend on. They were first introduced in DFSD interface and later in the SD
interface. They are further described in Section 3.10, "Predefined Attributes," of the HDF User’s
Guide. The GR interface was added in 1995 and has only one predefined attribute: FILL_ATTR,
which is described in Section 8.10.1, "Predefined GR Attributes," of the HDF User’s Guide.

User-defined attributes are defined by the calling program and contain auxiliary information
about the element to which the attributes attach. HDF library provides in each interface of SD,
GR, V, and VS a set of functions to add and access attributes. They are fully described in the asso-
ciated chapters.

C.2 Underlaying storage issues

In general, users should not need the details described in this section, unless one is working with
older HDF files (circa prior to 1993) and with raw data which relies on the knowledge of data lay-
out in the file. The inclusion of this section in this User’s Guide was prompted by the HDF4 File
Content Map Project because various API functions being added to support this project require
explanation that involves the layout of attributes in the file.
520 June 2017

Appendices Table of Contents HDF User’s Guide
In the early years of HDF, in addition to the predefined attributes such as label, unit, and format,
annotations were used to attach metadata to an HDF element such as data set and raster image.
When the library was expanded to include user-defined attributes to SD and GR interfaces, meta-
data once stored as an annotation could be more conveniently stored as an attribute. This expan-
sion introduced the difference in the ways predefined attributes were stored in DFSD interface and
in SD/GR interfaces. The user-defined attribute feature then extended into the V and VS inter-
faces. Along the way, an incompatibility was inadvertently produced in the storage of attributes
and their information. The next sections briefly explains these issues and their effects.

C.2.1 Predefined Attributes in DFSD API

Beginning in 1993, when the SD interface and user-created attribute were introduced, an attribute
has been stored in a vdata of class _HDF_ATTRIBUTE (or "Attr0.0",) regardless it is a predefined or
user-created attribute. However, prior to this period, there were only predefined attributes in
DFSD API and they can be assigned to a data set or a dimension. This early predefined attribute
of the data set is stored using tag/ref approach, that is, a pair of tag and ref would point to a string
containing the values of the data set’s attribute and the dimensions’ attributes. The dimension
attributes are stored following the SDS attribute. All attributes are separated by null characters.
For example, in file myfile, there is a two-dimensional data set. The SDS and its dimensions
were assigned with pre-defined attributes as followed:

Data set: label = "SDS label", unit = "SDS unit", format = <no attribute assigned>

Dimension 1: label = "Dim1 label", unit = <no attribute assigned>, format = "Dim1 format"

Dimension 2: label = "Dim2 label", unit = "Dim2 unit", format = "Dim2 format"

In the file, the attributes’ values are stored as followed:

Data set’s label attribute tag/ref (DFTAG_SDL/<ref#>)

| (point to)

--> "SDS label<null>Dim1 label<null>Dim2 label<null>"

Data set’s unit attribute tag/ref (DFTAG_SDU/<ref#>)

| (point to)

--> "SDS unit<null><null>Dim2 unit"

Data set’s format attribute tag/ref (DFTAG_SDF/<ref#>)

| (point to)

--> "<null>Dim1 format<null>Dim2 format"

A complete list of pre-defined attribute tags are provided in Table AG below.

TABLE AG Pre-defined Attributes in the DFSD and SD APIs

Tag Name Description Data Size Applicable to

DFTAG_SDL Labels String SDS and dimensions

DFTAG_SDU Units String SDS and dimensions

DFTAG_SDF Formats String SDS and dimensions

DFTAG_SDM Maximum/minimum 2 Real Numbers Only SDS

DFTAG_SDC Coordinate system String Only SDS
June 2017 521

The HDF Group Table of Contents Appendices
The HDF library handles the situation properly, so the difference in storage approaches does not
effect general applications, which simply read the values of these predefined attributes. It would
only become significant when an application needs to get access to the raw data. The HDF4 File
Content Map Project is an example. The raw data of this type of attribute is not accessible by the
function SDgetattdatainfo, which was added to support the HDF4 File Content Map Project.
Thus, when such an attribute is encountered, SDgetattdatainfo will return the error code
DFE_NOVGREP to the caller, which will in turn call SDgetoldattdatainfo to get the data information
of that attribute.

C.2.2 Vgroup Attribute Without Vsetattr

HDF Version 4.0.2, July 19, 1996, and prior did not support attributes in Vgroup and Vdata as for
SD and GR interfaces. However, an application could simulate an attribute for a vgroup by creat-
ing and writing a vdata of class _HDF_ATTRIBUTE, and then adding that vdata to the vgroup via
these calls:

vdata_ref = VHstoredatam(file_id, ATTR_FIELD_NAME, values, size, type,

 attr_name, _HDF_ATTRIBUTE, order);

ret_value = Vaddtagref (vgroup_id, DFTAG_VH, vdata2_ref);

For simplicity, this type of attributes is referred to as old-style attributes in this document.

A vgroup and vdata were having version number as VSET_VERSION (3). Starting in version 4.1.1,
HDF began to support attributes in Vgroup and Vdata interfaces. Applications were able to add
and manipulate attributes via public functions such as Vsetattr/VSsetatt, Vgetattr/VSgetattr,
Vattrinfo/VSattrinfo,… This type of attributes is referred to as new-style attributes in this docu-
ment. The version number of a vgroup or a vdata that has new-style attributes got promoted from
VSET_VERSION (3) to VSET_NEW_VERSION (4).

In addition, the file format was changed for the vgroup/vdata header to store the number of
attributes and the tag/reference number of each attribute. The new attribute API functions use this
new information to get access to the attributes, but they are not aware of the old-style attributes.
Thus, Vnattrs misses counting them and other functions like Vattrinfo and Vgetattr are unable
to get to them.

Starting in version 4.2.6, the library provides the updated functions Vnattrs2, Vattrinfo2, and
Vgetattr2 for applications to get access to attributes that were not created by Vsetattr. These
functions access both types of attributes. In addition, the HDF library provides the function Vnol-
dattrs to get the number of old-style attributes in a vgroup. The old-style attributes are likely to
present in older files or files that were modified by older applications. Please refer to Section 5.8,
"Vgroup Attributes," of the HDF User’s Guide for details on these functions.

DFTAG_CAL
Calibration Informa-
tion

36 bytes Only SDS

DFTAG_FV Fill Value n bytes Only SDS
522 June 2017

Appendices Table of Contents HDF User’s Guide
Appendix D Issue of Missing Palettes

This Appendix describes an issue regarding palettes in old and new raster image interfaces, that is,
DF interfaces versus GR interface. The information may be helpful when users are working with
files produced by older versions of the library.

D.1 Description

HDF4’s representation of palettes and rasters has evolved over the lifetime of the library. As new
representations were adopted, “old-style” representations were also written to the HDF4 file for
backward compatibility. This practice occasionally introduce some issues inadvertently. This
appendix presents one of those situations.

As discussed in Chapter 2 of the HDF4 Specification and Developer’s Guide, the basic building
blocks of an HDF4 file are data objects. A data object has two parts – a data descriptor (DD) and
a data element (DE).

The original representation for palettes in HDF4 used DDs with tag DFTAG_IP8 (201) while the
later representation used DDs with tag DFTAG_LUT (301). Typically, when an HDF4 file has a pair
of DDs with [tag 201, ref=R] and [tag 301, ref=R], they are old/new representations of the same
palette and both refer to the same DE at the same offset. The DFP APIs and other GR APIs deal-
ing with LUTs expect this behavior.

In some cases, an HDF4 file will have a 201 DD and a 301 DD that have the same reference num-
ber, but that refer to DEs at different offsets. In these cases, it is impossible to retrieve all the pal-
ette information in the file using the DFP and other GR APIs.

DFPgetpal attempts to read a DD with tag 201 first, and only attempts to read a DD with tag 301
and the same reference number if failure occurs for the first read. This effectively means that
DFPgetpal cannot be used to retrieve a DD with tag 301/ref=R if a DD with tag 201/ref=R exists
– even if the two DDs reference DEs at different offsets.

Another limitation of the DFP APIs is rooted in the fact that multiple palette DDs (for example
201/ref=2 and 201/ref=3) may refer to the same DE. This can be an issue even if both DDs in any
201/301 pair have the same offset.

DFPnpals returns the number of palette Data Elements in the file, not the number of palette Data
Descriptors. Because multiple palette DDs can reference the same DE, the value (N) returned by
DFPnpals cannot reliably be used as the upper bound on the number of calls needed to DFPget-
pal to retrieve all the palettes in the file. Internally, DFPgetpal gets the next Palette DD and then
uses the offset to retrieve the palette data. If multiple Palette DDs reference the same DE, then
making N calls to DFPgetpal will not retrieve all of the DDs in the file (there will be more DDs
than DEs). If the missed DDs reference DEs that don’t appear in the first N DDs, then the palette
data in those DEs will never be read.

D.2 Work-Around

To avoid changing the behavior of existing functions, GRgetpalinfo was added, starting in release
4.2.8, to get access to all palette DDs in an HDF4 file. With this information, the Hgetelement
function can be used to retrieve the palette data from the DE associated with each DD. In addition,
GRgetpalinfo also provides a way to retrieve palettes that are not associated with any raster
image.
June 2017 523

The HDF Group Table of Contents Appendices
524 June 2017

: Table of Contents HDF User’s Guide
Index
 Joint Photographic Expert Group compression. See JPEG compression
 RIS8. See 8-bit raster image data set
 Run-length encoding compression. See RLE compression

Numerics

24-bit raster image 277–291
compressing , data 284
data representation 277
determining the dimensions of a 287
modifying the interlace mode of a 287
querying the reference number of the most-recently-accessed 290
querying the total number of , in a file 290
reading 286–290
reading a , with a given reference number 289
routines for obtaining information about 290
setting the interlace mode for a 283
specifying that the next , read to be the first 289
writing 281–286

24-bit Raster Image API
description 4

24-bit raster image API 280
routine categories 280
routine list 281

24-bit raster image data set
compression methods 278
contents of a 277
description 277
interlace modes 279
optional objects 278–280
required objects 277–278

24-bit raster image data set dimension
description 278

8-bit raster image
compressing 266
data representation 259, 260
description 259
determining the reference number of the most-recently-accessed 274
determining the reference number of the palette of the most-recently-accessed 274
querying the dimensions of a 271
querying the total number of , in a file 273
reading 270–273
reading a , with a given reference number 273
routines for obtaining information about 273
specifying the next , to be read 273
specifying the reference number for a 270
writing 262–270

8-bit Raster Image API
June 2017 i

The HDF Group Table of Contents :
description 4
8-bit raster image API 262

routine categories 262
routine list 262

8-bit raster image data set 259–274
compression methods 260
description 259
optional objects 260–261
required objects 259–260

8-bit raster image data set data model 259–261
8-bit raster image data set dimension

description 260
8-bit raster image data set palette

description 260

A
AN API. See multifile annotation API
ANannlen

description 382
parameter list 382

ANannlist
description 383
parameter list 383

ANatype2tag
description 384
parameter list 386

ANcreate
description 371
parameter list 372

ANcreatef
description 371
parameter list 372

ANend
parameter list 372

ANendaccess
parameter list 372

ANfileinfo
description 382
parameter list 382

ANget_tagref
description 383
parameter list 386

ANid2tagref
description 384
parameter list 386

Annotation 367–383, 391–407
creating and writing an , using the multifile annotation API 371–377
description 367
getting the length of an , using the multifile annotation API 382
obtaining a list of , corresponding to given search criteria using the multifile annotation API 383
ii June 2017

: Table of Contents HDF User’s Guide
obtaining annotation information using the multifile annotation interface 382–388
obtaining information about every , in a file using the multifile annotation API 382
obtaining the number of , corresponding to given search criteria using the multifile annotation API 382
reading , using the single-file annotation API 398–403
reading an , using the multifile annotation API 377–378
selecting an , using the multifile annotation API 377
writing , using the single-file API 394–398
writing an , using the multifile annotation API 372

Annotation API
description 4

Annotation data model
description 367

ANnumann
description 382
parameter list 383

ANreadann
description 378
parameter list 378

ANselect
description 377
parameter list 378

ANstart
description 371
parameter list 372

ANtag2atype
description 385
parameter list 386

ANtagref2id
description 384
parameter list 386

ANwriteann
description 373
parameter list 373

Array rank 20
Attribute index

description 330

B
Block size

setting the , for unlimited SDS dimensions 42
Buffer interlacing

description 157

C
Calibrated data

reading 111
writing 110

Calibration attribute 110–112
description 103, 110

Color lookup table
description 336
June 2017 iii

The HDF Group Table of Contents :
Command-line utilities 457–??
categories of 5
description 457
list of 457
purpose 457

COMP_JPEG define
description 278

COMP_NONE define
description 278

Composite image tags
list of 509

Compressing an HDF file 472
Compressing RIS8 images in an HDF file 471
Converting 24-bit raw raster images to RIS8 images 468
Converting 8-bit raster images to the HDF format 467
Converting an HDF RIS24 image to an HDF RIS8 image 471
Converting floating-point data to an SDS or RIS8 object 463
Converting raw palette data to the HDF palette format 469
Converting several RIS8 images to one 3D SDS 470
Coordinate system attribute

description 103, 423

D
D24readref

parameter list 289
Data element

description 477
Data object

description 477
Description annotation

description 367
DF*lastref routine

list and descriptions of all 405
methods of determining a reference number through the use of a 404

DF24addimage
description 281
parameter list 282

DF24getdims
description 287
parameter list 288

DF24getimage
description 286
parameter list 288

DF24lastref
description 290
parameter list 291

DF24nimages
description 290
parameter list 290

DF24putimage
description 281
iv June 2017

: Table of Contents HDF User’s Guide
parameter list 282
DF24readref

description 289
DF24reqil

description 287
parameter list 288

DF24restart
description 290
parameter list 290

DF24setcompress
description 284
parameter list 285

DF24setil
description 283
parameter list 285

DFAN API. See Single-file annotation API
DFANaddfds

description 394
parameter list 394

DFANaddfid
description 394
parameter list 394

DFANgetdesc
description 401
parameter list 402

DFANgetdesclen
description 401
parameter list 402

DFANgetfds
description 399
parameter list 399

DFANgetfdslen
description 398
parameter list 399

DFANgetfid
description 398
parameter list 399

DFANgetfidlen
description 398
parameter list 399

DFANgetlabel
description 401
parameter list 402

DFANgetlablen
description 401
parameter list 402

DFANlablist
description 405
parameter list 403, 406

DFANputdesc
description 396
June 2017 v

The HDF Group Table of Contents :
parameter list 396
DFANputlabel

description 395
parameter list 396

DFPaddpal
description 361
parameter list 361

DFPgetpal
description 363
parameter list 363

DFPlastref
description 365

DFPnpals
description 364
parameter list 365

DFPputpal
description 361
parameter list 361

DFPreadref
description 364
parameter list 364

DFPrestart
description 364

DFPwriteref
description 362
parameter list 362

DFR8addimage
description 263
parameter list 263

DFR8getdims
description 271
parameter list 272

DFR8getimage
description 270
parameter list 272

DFR8getpalref
description 274

DFR8lastref
description 274

DFR8nimages
description 273
parameter list 274

DFR8putimage
description 263
parameter list 263

DFR8readref
description 273
parameter list 273

DFR8restart
description 273

DFR8setcompress
vi June 2017

: Table of Contents HDF User’s Guide
description 266
parameter list 267

DFR8setpalette
description 264
parameter list 265

DFR8writeref
description 270
parameter list 270

DFSD scientific data set 409–??
assigning string attributes to a 422
assigning value attributes to a 423
contents of a 409
creating a 412
description 409
determining the number of , in a file 418
obtaining reference numbers for a 419
optional objects 410
preventing the reassignment of , attributes 415
reading 416–??
reading the attributes of a 426–429
reading the dimension attributes of a 430–??
reading the value attributes of a 428
required objects 409
resetting the default interlace settings for a 415
specifying the data type of a 413
specifying the dimensions and data type of a 417
writing 412–??
writing several 414
writing the dimension attributes of a 429–430
writing the dimension scale of a 430

DFSD scientific data set API
description 4, 410
routine categories 410
routine list 411
use of file identifiers in the 411
use of predefined attributes in the 422–??
use of slabs in the 419–422

DFSD scientific data set dimension
writing the string attributes of a 429

DFSDadddata
description 412
parameter list 412

DFSDclear
description 415
parameter list 416

DFSDendslab
description 419

DFSDgetcal
description 428
June 2017 vii

The HDF Group Table of Contents :
parameter list 429
DFSDgetdata

description 416
parameter list 416

DFSDgetdatalen
description 426
parameter list 427

DFSDgetdatastrs
description 426
parameter list 427

DFSDgetdimlen
description 430

DFSDgetdims
description 417
parameter list 417

DFSDgetdimscale
description 430

DFSDgetdimstrs
description 430

DFSDgetfillvalue
description 428
parameter list 429

DFSDgetNT
description 417
parameter list 417

DFSDgetrange
description 428
parameter list 429

DFSDlastref
description 419

DFSDndatasets
description 418

DFSDputdata
description 412
parameter list 412

DFSDreadref
description 419
parameter list 419

DFSDreadslab
description 421
parameter list 422

DFSDrestart
description 418

DFSDsetcal
description 424
parameter list 424

DFSDsetdatastrs
description 422
parameter list 423

DFSDsetdims
description 415
viii June 2017

: Table of Contents HDF User’s Guide
parameter list 415
DFSDsetdimscale

description 430
parameter list 430

DFSDsetdimstrs
description 429
parameter list 430

DFSDsetfillvalue
description 424
parameter list 424

DFSDsetlengths
description 422, 429
parameter list 423, 430

DFSDsetNT
description 413
parameter list 414

DFSDsetrange
description 424
parameter list 424

DFSDstartslab
description 419
parameter list 420

DFSDwriteref
description 414
parameter list 414

DFSDwriteslab
description 420
parameter list 421

Dimension attribute 92
Dimension compatbility mode

determining the current 81
Dimension compatibility mode

description 80
setting the future 80

Dimension format attribute
description 429

Dimension label attribute
description 429

Dimension name
description 21

Dimension record
creation of a 91

Dimension scale
description 22

Dimension unit attribute
description 429

Displaying general information about the contents of an HDF file 458, 462
Displaying vdata information 463
dumper 458
June 2017 ix

The HDF Group Table of Contents :
E

Editing the contents of an HDF file 477
Error reporting 431–436
Error reporting API

description 431
returning the code of the nth-most-recent error 432
returning the description of an error code 432
routine list 431
writing error stack information to a file 432
writing errors to a console window 433

External data file
creating a data set in a 52, 54
definition 52, 158
getting information 55
moving data to a 56
reading from a 58
specifying the directory search path in a 52
specifying the location of the next, to be created 53
writing to a 52, 158

External SDS array
definition 52

Extracting 8-bit raster images and palettes from HDF files 469
Extracting palette data from an HDF file 470

F
Field data

packing or unpacking 167
File annotation

comparison with object annotation 368
description 368

File attribute
description 92

File description annotation
assigning a , using the single-file annotation API 394
reading a , using the single-file annotation API 398

File interlacing
description 157

File label annotation
assigning a , using the single-file annotation API 394
reading a 378
reading a , using the single-file annotation API 398

fill mode
description 108

fill value
description 108

Fill value attribute 108–110
description 103

fill value attribute
reading a 109
writing a 109

FILL_ATTR define
x June 2017

: Table of Contents HDF User’s Guide
description 326
Format attribute

description 103, 423
fptohdf 463

G

General raster image 293–351
accessing 298
compressing 310
creating a , in an external file 311
getting the index of a 320
I/O access type 310
obtaining information about a 320
reading 313
setting the interlace mode for a , or image read 313
terminating access to 299

General raster image API
chunking 347
description 4
external file operations using the 311
obtaining a palette identifier using the 336
obtaining information about the contents of a file using , routines 319
obtaining palette information using the 337
reading and writing palette data using the 336–344
reading palette data using the 339
routine list 296
writing palette data using the 338

General raster image array
description 294

General raster image array name
description 294

General raster image attribute 326–336
predefined 326
querying user-defined 330
reading user-defined 331
setting user-defined 327

General raster image attributes
description 295

General raster image data model 293–295
General raster image data set

optional objects 295
required objects 294

General raster image data set API 295
programming model 297
routine categories 295

General raster image index
description 294

General raster image palettes
description 295

General raster image pixel type
June 2017 xi

The HDF Group Table of Contents :
data type 294
description 294

General raster image reference number
description 294

General raster image tags
list of 508

Global attribute
description 92

GRattrinfo
description 330
parameter list 332

GRcreate
description 298
parameter list 300

GRend
description 299
parameter list 300

GRendaccess
description 299
parameter list 300

GRfileinfo
description 319
parameter list 320

GRfindattr
description 330
parameter list 332

GRgetattr
description 331
parameter list 332

GRgetchunkinfo
description 356
parameter list 358

GRgetiminfo
description 319, 320
parameter list 320

GRgetlutid
description 336
parameter list 340

GRgetlutinfo
description 337

GRidtoref
description 320

GRluttoref
description 337
parameter list 337

GRnametoindex
parameter list 323

Group object
description 477

GRreadchunk
description 349, 356
xii June 2017

: Table of Contents HDF User’s Guide
GRreadimage
description 313
parameter list 314

GRreadlut
description 339
parameter list 340

GRreftoindex
description 321
parameter list 323

GRreqimageil
parameter list 314

GRrequtil
description 338

GRselect
description 298
parameter list 300

GRsetaccesstype
parameter list 311

GRsetaccestype
description 310

GRsetattr
description 327
parameter list 332

GRsetchunk
description 348
parameter list 358

GRsetchunkcache
description 357
parameter list 358

GRsetcompress
description 310
parameter list 311

GRsetexternalfile
description 311
parameter list 312

GRstart
description 298
parameter list 300

GRwriteimage
description 300
parameter list 302

GRwritelut
description 338
parameter list 340

H
HDF

description 1
purpose 1, 3

HDF API
description 2, 4
June 2017 xiii

The HDF Group Table of Contents :
HDF dumper 458
HDF installation overview 511–??
HDF interface vs. netCDF interface 133–135
HDF_CHUNK_DEF union

definition of 115
hdf24hdf8 471
hdfcomp 471
hdfed 477

annotate command 483
close command 485
delete command 483
display command 484
dump command 482
getr8 command 486
help command 480
if conditional 486
info command 480
next command 482
open command 480
prev command 481
put command 486
putr8 command 485
revert command 486
select command 485, 486
wait command 486
write command 484

hdfed command set 479
hdfls 475
hdfpack 472
hdftopal 470
hdftor8 469
hdiff 462
hdp 458

command set 458
dumprig command 461
dumpsds command 459
dumpvd command 460
dumpvg command 461
list command 459

HEclear
description 433

HEprint
description 432

HEstring
description 432

HEvalue
description 432

Hishdf/hishdff 13
history attribute
xiv June 2017

: Table of Contents HDF User’s Guide
description 104
HXsetcreatedir

description 53
HXsetdir and HXsetcreatedir

parameter list 54

I
I/O access type

setting the 43
Image compression. See IMCOMP compression
IMCOMP compression

description 261
interlace mode 157

J
JPEG compression

description 261, 279
JPEG compression quality factor

description 261

L
Label annotation

description 367
Label attribute

description 103, 423
Listing basic information about an HDF file 475
Local attribute

description 92
Lone vdata

description 182
Lone vgroup

description 231
Low-level interface 2
LUT. See Color lookup table

M
MFGR_INTERLACE_LINE define

description 298
MFGR_INTERLACE_PIXEL define

description 298, 347
MFGR_INTERLACE_PLANE define

description 298
missing_value attribute

description 104
Multifile annotation API 369–383

description of the 369
list of tags used in 393
programming model for the 370
routine categories 369
routine list 370
type definitions specific to the 370
June 2017 xv

The HDF Group Table of Contents :
N

Native format option 14
netCDF 132–135
netCDF data model

HDF support of 132
netCDF interface vs. HDF interface 133–135
Not-a-Number 108

O
Object annotation

comparison with file annotation 368
description 368

Object description annotation
assigning a , using the single-file annotation API 396
reading a , using the single-file annotation API 401

Object label annotation
assigning a , using the single-file annotation API 395
reading a , using the single-file annotation API 400

Obsolete tags
list of 510

Old and new dimension implementation 80

P

Packing or unpacking field data 167
Palette 359–365

adding to a RIS8 object 264
backward compatibility issues 365
color mapping using a 359
description 359
obtaining the reference number of the most recently accessed 365
querying the number of , in a file 364
reading 362–364
reading a , with a given reference number 364
retrieving the reference number of the specified 337
specifying the next palette to be accessed to be the first 364
specifying the reference number of a 362
writing 360–362

Palette API
description 4, 360
routine categories 360
routine list 360

paltohdf 469
Performance Issues 437–??
Pixel interlacing

description 279
Pixels

description 259
Predefined attribute 103–112

accessing a 104
description 22, 103, 512
xvi June 2017

: Table of Contents HDF User’s Guide
list of , with labels and descriptions 104
list of parameters 105
naming conventions for 104

Predefined dimension string attribute
types of 429

Predefined string attribute
types of 423

R

r24hdf8 468
r8tohdf 467
Range attribute

description 103
reading a 108
writing a 107

Range attributes 107
Raster image id

see Raster image identifier 294
Raw data information

retrieving 497, 498, 500, 501, 502, 503, 504
Record variable

determining whether an SDS is a 42
Reference number

checking before assigning an object annotation 403
determining 403
determining the , for the last object accessed 404
querying a list of , for a given tag 405

Reference number, overwriting data for a specified 414
RGB values

description 277
RIS24. See 24-bit raster image data set
ristosds 470
RLE compression

description 261

S
Scan-line interlacing

description 279
Scan-plane interlacing

description 279
Scientific data set tags

list of 509
SD scientific data model

annotations and the 22
SD scientific data set 19–135

appending data to a 41
chunked 115
chunked , obtaining information about a 121
chunked , reading data from a 120
chunked , writing to a 118
chunks , setting the maximum number to cache 117
June 2017 xvii

The HDF Group Table of Contents :
compressing data in a 47
contents 132, 444, 445, 446, 447, 448, 449
contents of a 19
creating , with non-standard-length data 77, 113
data type 20
default data representation 14
dimension scales for more than one , 91
establishing access to a 26
locating a , by reference number 73
making a chunked , from a generic 115
obtaining information about a 66, 112
obtaining information about a specific 66, 112
obtaining information about each , in a file 66, 112
optional objects 21
reading from a 58
required objects 20
string attributes of dimensions 106
terminating access to a 28
writing to a 31

SD scientific data set API
compression methods supported 47
description 4, 22
routine categories 22
routine list 24

SD scientific data set array
description 20
distinguishing from a coordinate variable 88

SD scientific data set array name
description 20

SD scientific data set attribute 92
SD scientific data set dimension

description 20
naming a 79
obtaining information about a 82
selecting a 78

SD scientific data set dimension index
description 21

SD scientific data set dimension scales
description 81
writing 81

SD scientific data set dimension string attribute
reading a 107
writing a 106

SD scientific data set string attribute
description 105
reading a 105
writing a 105

SD scientific data set tag 26, 297
SD scientific data sets
xviii June 2017

: Table of Contents HDF User’s Guide
related , definition 91
SDattrinfo

description 96
parameter list 98

SDdiminfo
description 82

SDend
description 29
parameter list 29

SDendaccess
description 28
parameter list 29

SDexternalfile
description 54

SDfileinfo
description 66, 112
parameter list 68, 74

SDfindattr
description 96
parameter list 98

SDget_numopenfiles
description 113

SDgetcal
description 111
parameter list 111

SDgetChunkInfo
description 121

SDgetdatastrs
description 105
parameter list 106

SDgetdimid
description 79
parameter list 80

SDgetdimstrs
description 107
parameter list 107

SDgetexternalfile
description 55, 203

SDgetfillvalue
description 109
parameter list 110

SDgetinfo
description 66, 112
parameter list 68, 74, 113

SDgetrange
description 108
parameter list 108

SDidtoref
description 73

SDiscoordvar
description 88
June 2017 xix

The HDF Group Table of Contents :
SDisrecord
description 42

SDnametoindex
description 71, 72
parameter list 73

SDreadattr
description 97
parameter list 98

SDreadChunk
description 120
parameter list 121

SDreaddata
description 58
parameter list 59

SDreftoindex
description 73
parameter list 73

SDS id
see SD scientific data set identifier 20

SDselect
parameter list 29

SDsetaccesstype
description 43
parameter list 43

SDsetattr
description 93
parameter list 98

SDsetblocksize
description 42
parameter list 43

SDsetcal
description 110
parameter list 111

SDsetChunk
description 115
parameter list 117, 122

SDsetChunkCache
description 117
parameter list 118

SDsetcompress
description 47
parameter list 49, 117, 118, 120, 121, 122, 497, 498, 500, 501, 502, 503, 504

SDsetdatastrs
description 105

SDsetdimname
description 79
parameter list 80

SDsetdimstrs
parameter list 107

SDsetdimval_bwcomp
description 81
xx June 2017

: Table of Contents HDF User’s Guide
parameter list 81
SDsetdimval_comp

description 80
SDsetexternalfile

parameter list 56
SDsetfillmode

parameter list 110
SDsetfillvalue

description 109
parameter list 110

SDsetnbitdataset
description 77, 114
parameter list 78, 115

SDsetrange
description 107
parameter list 108

SDstart
description 27

SDwriteChunk
parameter list 120

SDwritechunk
description 119

SDwritedata
description 31
parameter list 33
writing data to chunked SDSs using 118

Self-description
definition 1

sfgcfill
description of 109

sfgfill
description of 109

sfrcatt
description of 97

sfrnatt
description of 97

sfwcdata
description of 33

sfwdata
description of 33

Single-file Annotation API
routine categories 391

Single-file annotation API 391–407
list of tags used in 393
programming model for the 393
routine list 392

Slab
accessing a , using the single-file scientific data set API 419
description 32
reading a , using the single-file scientific data set API 421–422
writing , using the single-file scientific data set API 420–421
June 2017 xxi

The HDF Group Table of Contents :
Strides
description 32
support of , in the single-file scientific data set API 421

T
title attribute

description 104

U
Unit attribute

description 103, 423
Unlimited dimension 21
User_defined attribute

allowed data types for a 92
writing a 93

User-defined attribute 92–??
count 92, 512
description 21, 22, 92, 512
index 92, 512
naming rules 92
querying for a 96
reading a 97

Utility tags
list of 508

V
Vaddtagref

description 218
parameter list 219

Vattach
description 215
parameter list 216

Vattrinfo
description 251
parameter list 252

Vdata ??–207
attributes of a 190
creating 155
creating and writing to multifield 155–173
creating and writing to single-field 149–155
description 137
determining if the given , is an attribute 194
determining the reference number from a , name 183
multi-component field 138
obtaining information about a 199–203
querying information on a given , attribute 193
querying the number of attributes of a 192
querying the total number of , attributes 192
querying the values of a given , attribute 191
reading from a 173–182
xxii June 2017

: Table of Contents HDF User’s Guide
resetting the current position within a 160
resetting the current record position within a 161
retrieving the index of a , attribute given the attribute name 193
searching for 182–187
searching for a , by field name 184
searching for lone , 182
searching for the reference number of a 183
selecting the set of , to be read 174
setting the attribute of a , 191
writing buffers into 162
writing to a 161
writing to a multifield 159

Vdata API
description 4
routine categories 139

Vdata class
assigning to a vdata 156
description 137

Vdata data model
description 137

Vdata field
defining 156
description 138
description of a predefined 156
initializing for write access 157
locating a , within a vdata stored in a vgroup 242
querying the index of a , given the field name 190
querying the number of attributes of a 192
removing alignment bytes when writing to a 168
setting the attribute of a , 191

Vdata field name
description 137

Vdata field order
description 138

Vdata identifier
determining the next 257

Vdata interlace mode
specifying the 157

Vdata name
assigning to a vdata 156
description 137

Vdata record
description 138

Vdelete
description 247
parameter list 248

Vdeletetagref
description 247
parameter list 248

Vdetach
June 2017 xxiii

The HDF Group Table of Contents :
description 216
parameter list 216

Vend
description 216
parameter list 216

VF field information retrieval routine set 206
VFfieldesize

description 206
VFfieldisize

description 207
VFfieldname

description 206
VFfieldorder

description 207
VFfieldtype

description 207
Vfind

description 235
parameter list 236

Vfindattr
description 249
parameter list 250

Vfindclass
description 235
parameter list 236

Vflocate
description 242
parameter list 243

VFnfields
description 207

Vgetattr
description 252
parameter list 253

Vgetclass
description 234
parameter list 235

Vgetclassnamelen
parameter list 235

Vgetid
description 231
parameter list 234

Vgetname
description 234
parameter list 235

Vgetnamelen
description 234, 235
parameter list 235

Vgetnext
description 257
parameter list 258

Vgettagref
xxiv June 2017

: Table of Contents HDF User’s Guide
description 240
parameter list 241

Vgettagrefs
description 240
parameter list 241

Vgetversion
description 248

Vgroup ??–258
accessing a 215
assigning a class to a 217
assigning a name to a 217
attributes of a 248
containing two RIS8 objects and a vdata 210
conventions on content and structure 211
creating and writing to a 216–230
description 209
determining the name of a 257
inserting a HDF object into a 218
inserting a vdata or vgroup into a 218
locating a 231
locating a , given the class name 235
locating a field within a vdata stored in a 242
locating a lone 231
means of uniquely identifying a 214
obtaining information about the contents of a 239–247
organization of 210
querying the number of , members 257
querying the total number of , attributes 250
querying the values of a given , attribute 252, 253
querying the version of a given , 248
reading from a 230–239
retrieving the index of a , attribute given the attribute name 249
retrieving the reference number of a 243
retrieving the tag of a 243
returning , member information 241
returning the tag/reference number pairs of , contents 239, 240
setting the attribute of a 249
sharing of vgroups and vdatas between more than one 210
similarity to the Unix file system 209
terminating access to 216
testing whether an HDF object within a , is a vdata 241
testing whether an HDF object within a , is a vgroup 241

Vgroup API 211–215
description 4
obsolete routines 257–258
routine categories 211
routine list 213

Vgroup API programming model 214
Vgroup class
June 2017 xxv

The HDF Group Table of Contents :
description 210
Vgroup identifier 214

determining the next 257
VHmakegroup

description 219
parameter list 219

Vinqtagref
description 241
parameter list 242

Vinquire
description 257
parameter list 258

Vinsert
description 218
parameter list 219

Visvg
description 241
parameter list 242

Visvs
description 241
parameter list 242

Vlone
description 231

Vnattrs
description 250

Vnrefs
description 242
parameter list 243

Vntagrefs
description 239
parameter list 241

VQueryref
description 243
parameter list 243

VQuerytag
description 243
parameter list 243

VS vdata information retrieval routine set 205
VSattrinfo

description 193
parameter list 194

VSelts
description 205
parameter list 206

Vset
describing a heated mesh 211

Vset node
description 211

Vset tags
list of 510

Vsetattr
xxvi June 2017

: Table of Contents HDF User’s Guide
description 249
parameter list 250

Vsetclass
description 218
parameter list 219

Vsetname
description 217
parameter list 219

VSfdefine
description 156
parameter list 159

VSfexist
description 184
parameter list 184

VSfind
description 183
parameter list 184
when to use , in obtaining a vdata’s reference number 143

VSfindattr
description 193
parameter list 194

VSfindex
description 190
parameter list 191

VSfnattrs
description 192
parameter list 193

VSfpack
description 167
parameter list 169

VSgetattr
description 191
parameter list 192

VSgetclass
description 206
parameter list 206

VSgetfields
description 205
parameter list 206

VSgetid
description 183
parameter list 184
when to use , in obtaining a vdata’s reference number 143

VSgetinterlace
description 205
parameter list 206

VSgetname
description 206
parameter list 206

vshow 463
VSinquire
June 2017 xxvii

The HDF Group Table of Contents :
description 199
parameter list 200

VSisattr
description 194
parameter list 194

VSlone
description 183
parameter list 184

VSnattrs
description 192
parameter list 193

VSQuery vdata information retrieval routine set 204
VSQuerycount

parameter list 205
VSQueryfields

description 204
parameter list 205

VSQueryinterlace
description 204
parameter list 205

VSQueryname
description 204
parameter list 205

VSQueryref
description 204
parameter list 205

VSQuerytag
description 204
parameter list 205

VSQueryvsize
description 204
parameter list 205

VSread
description 174
parameter list 175
setting the file interlace mode using 157

VSseek
description 175
misused to append data 160
parameter list 160, 163

VSsetattr
description 191
parameter list 192

VSsetclass
description 156
parameter list 159

VSsetfields
description 157, 174
parameter list 159

VSsetinterlace
description 157
xxviii June 2017

: Table of Contents HDF User’s Guide
parameter list 159
VSsetname

description 156
parameter list 159

VSsizeof
description 205
parameter list 206

Vstart
parameter list 216

VSwrite
description 161
parameter list 163
setting the file interlace mode using 157
June 2017 xxix

The HDF Group Table of Contents :
xxx June 2017

	HDF User’s Guide
	Chapter 1 -- Introduction to HDF
	1.1 Chapter Overview
	1.2 What is HDF?
	1.3 Why Was HDF Created?
	1.4 High-Level HDF APIs
	1.5 HDF Command-Line Utilities and Visualization Tools
	1.6 Primary HDF Platforms
	1.7 HDF4 versus HDF5

	Chapter 2 -- HDF Fundamentals
	2.1 Chapter Overview
	2.2 HDF File Format
	2.2.1 File Header
	2.2.2 Data Object
	2.2.2.1 Data Descriptor
	2.2.2.2 Data Elements

	2.2.3 Data Descriptor Block
	2.2.4 Grouping Data Objects in an HDF File

	2.3 Basic Operations on HDF Files Using the Multifile Interfaces
	2.3.1 File Identifiers
	2.3.2 Opening HDF Files: Hopen
	2.3.3 Closing HDF Files: Hclose
	2.3.4 Getting the HDF Library and File Versions: Hgetlibversion and Hgetfileversion

	2.4 Determining whether a File Is an HDF File: Hishdf/hishdff
	2.5 Programming Issues
	2.5.1 Header File Information
	2.5.2 HDF Definitions
	2.5.2.1 Standard HDF Data Types
	2.5.2.2 Native Format Data Types
	2.5.2.3 Little-Endian Data Types
	2.5.2.4 Tag Definitions
	2.5.2.5 Limit Definitions

	2.5.3 FORTRAN-77 and C Language Issues

	Chapter 3 -- Scientific Data Sets (SD API)
	3.1 Chapter Overview
	3.2 The Scientific Data Set Data Model
	3.2.1 Required SDS Components
	3.2.2 Optional SDS Components
	3.2.3 Annotations and the SD Data Model

	3.3 The SD Interface
	3.3.1 Header Files Required by the SD Interface
	3.3.2 SD Interface Routines
	3.3.3 Tags in the SD Interface

	3.4 Programming Model for the SD Interface
	3.4.1 Establishing Access to Files and Data Sets: SDstart, SDcreate, and SDselect
	3.4.2 Terminating Access to Files and Data Sets: SDendaccess and SDend

	3.5 Writing Data to an SDS
	3.5.1 Writing Data to an SDS Array: SDwritedata
	3.5.1.1 Filling an Entire Array
	3.5.1.2 Writing Slabs to an SDS Array
	3.5.1.3 Appending Data to an SDS Array along an Unlimited Dimension
	3.5.1.4 Determining whether an SDS Array is Appendable: SDisrecord
	3.5.1.5 Setting the Block Size: SDsetblocksize
	3.5.1.6 Setting the I/O Access Type of an SDS: SDsetaccesstype

	3.5.2 Compressing SDS Data: SDsetcompress
	3.5.3 External File Operations
	3.5.3.1 Specifying the Directory Search Path of an External File: HXsetdir
	3.5.3.2 Specifying the Location of the Next External File to be Created: HXsetcreatedir
	3.5.3.3 Creating a Data Set with Data Stored in an External File: SDsetexternalfile
	3.5.3.4 Getting External File Information of a Data Set: SDgetexternalinfo
	3.5.3.5 Moving Existing Data to an External File

	3.6 Reading Data from an SDS Array: SDreaddata
	3.7 Obtaining Information about SD Data Sets
	3.7.1 Obtaining Information about the Contents of a File: SDfileinfo
	3.7.2 Obtaining Information about a Specific SDS: SDgetinfo
	3.7.3 Obtaining Data Set Compression Information: SDgetcompinfo
	3.7.4 Locating an SDS by Name: SDnametoindex
	3.7.5 Locating More Than One SDS by the Same Name: SDnametoindices
	3.7.6 Getting Number of Data Sets Given a Name: SDgetnumvars_byname
	3.7.7 Locating an SDS by Reference Number: SDreftoindex
	3.7.8 Obtaining the Reference Number Assigned to the Specified SDS: SDidtoref
	3.7.9 Obtaining the Type of an HDF4 Object: SDidtype
	3.7.10 Determining whether an SDS is empty: SDcheckempty
	3.7.11 Creating SDS Arrays Containing Non-standard Length Data: SDsetnbitdataset

	3.8 SDS Dimension and Dimension Scale Operations
	3.8.1 Selecting a Dimension: SDgetdimid
	3.8.2 Naming a Dimension: SDsetdimname
	3.8.3 Old and New Dimension Implementations
	3.8.3.1 Setting the Future Compatibility Mode of a Dimension: SDsetdimval_comp
	3.8.3.2 Determining the Current Compatibility Mode of a Dimension: SDisdimval_bwcomp

	3.8.4 Dimension Scales
	3.8.4.1 Writing Dimension Scales: SDsetdimscale
	3.8.4.2 Obtaining Dimension Scale and Other Dimension Information: SDdiminfo
	3.8.4.3 Reading Dimension Scales: SDgetdimscale
	3.8.4.4 Distinguishing SDS Arrays from Dimension Scales: SDiscoordvar

	3.8.5 Related Data Sets

	3.9 User-defined Attributes
	3.9.1 Creating or Writing User-defined Attributes: SDsetattr
	3.9.2 Querying User-defined Attributes: SDfindattr and SDattrinfo
	3.9.3 Reading User-defined Attributes: SDreadattr

	3.10 Predefined Attributes
	3.10.1 Accessing Predefined Attributes
	3.10.2 SDS String Attributes
	3.10.2.1 Writing String Attributes of an SDS: SDsetdatastrs
	3.10.2.2 Reading String Attributes of an SDS: SDgetdatastrs

	3.10.3 String Attributes of Dimensions
	3.10.3.1 Writing a String Attribute of a Dimension: SDsetdimstrs
	3.10.3.2 Reading a String Attribute of a Dimension: SDgetdimstrs

	3.10.4 Range Attributes
	3.10.4.1 Writing a Range Attribute: SDsetrange
	3.10.4.2 Reading a Range Attribute: SDgetrange

	3.10.5 Fill Values and Fill Mode
	3.10.5.1 Writing a Fill Value Attribute: SDsetfillvalue
	3.10.5.2 Reading a Fill Value Attribute: SDgetfillvalue
	3.10.5.3 Setting the Fill Mode for all SDSs in the Specified File: SDsetfillmode

	3.10.6 Calibration Attributes
	3.10.6.1 Setting Calibration Information: SDsetcal
	3.10.6.2 Reading Calibrated Data: SDgetcal

	3.11 Convenient Operations Related to File and Environment
	3.11.1 Obtaining the Name of a File: SDgetfilename
	3.11.2 Obtaining the Length of an HDF4 Object’s Name: SDgetnamelen
	3.11.3 Resetting the Allowed Number of Opened Files: SDreset_maxopenfiles
	3.11.4 Obtaining Current Limits on Opened Files: SDget_maxopenfiles
	3.11.5 Obtaining Number of Opened Files: SDget_numopenfiles

	3.12 Chunked (or Tiled) Scientific Data Sets
	3.12.1 Making an SDS a Chunked SDS: SDsetchunk
	3.12.2 Setting the Maximum Number of Chunks in the Cache: SDsetchunkcache
	3.12.3 Writing Data to Chunked SDSs: SDwritechunk and SDwritedata
	3.12.4 Reading Data from Chunked SDSs: SDreadchunk and SDreaddata
	3.12.5 Obtaining Information about a Chunked SDS: SDgetchunkinfo

	3.13 Ghost Areas
	3.14 netCDF
	3.14.1 HDF Interface vs. netCDF Interface
	3.14.2 ncdump and ncgen
	3.14.2.1 Using ncdump on HDF Files
	3.14.2.2 New error code from ncdump

	Chapter 4 -- Vdatas (VS API)
	4.1 Chapter Overview
	4.2 The Vdata Model
	4.2.1 Records and Fields

	4.3 The Vdata Interface
	4.3.1 Header Files Used by the Vdata Interface
	4.3.2 Vdata Library Routines
	4.3.3 Identifying Vdatas in the Vdata Interface
	4.3.4 Programming Model for the Vdata Interface
	4.3.5 Accessing Files and Vdatas: Vstart and VSattach
	4.3.6 Terminating Access to Vdatas and Files: VSdetach and Vend

	4.4 Creating and Writing to Single-Field Vdatas: VHstoredata and VHstoredatam
	4.5 Writing to Multi-Field Vdatas
	4.5.1 Creating Vdatas
	4.5.1.1 Assigning a Vdata Name and Class: VSsetname and VSsetclass
	4.5.1.2 Defining a Field within a Vdata: VSfdefine
	4.5.1.3 Initializing the Fields for Write Access: VSsetfields
	4.5.1.4 Specifying the Interlace Mode: VSsetinterlace
	4.5.1.5 Specifying External Storage Information: VSsetexternalfile

	4.5.2 Writing Data to Vdatas
	4.5.2.1 Resetting the Current Position within Vdatas: VSseek
	4.5.2.2 Writing to a Vdata: VSwrite
	4.5.2.3 Setting Up Linked Block Vdatas: VSsetblocksize and VSsetnumblocks
	4.5.2.4 Packing or Unpacking Field Data: VSfpack

	4.6 Reading from Vdatas
	4.6.1 Initializing the Fields for Read Access: VSsetfields
	4.6.2 Reading from the Current Vdata: VSread

	4.7 Searching for Vdatas in a File
	4.7.1 Finding All Vdatas that are Not Members of a Vgroup: VSlone
	4.7.2 Sequentially Searching for a Vdata: VSgetid
	4.7.3 Determining a Reference Number from a Vdata Name: VSfind
	4.7.4 Searching for a Vdata by Field Name: VSfexist
	4.7.5 Retrieving Vdatas in a File or in a Vgroup: VSgetvdatas
	4.7.6 Determining Internal Vdata: VSisinternal
	4.7.7 Retrieving Vdatas in a File or in a Vgroup: VSofclass

	4.8 Vdata Attributes
	4.8.1 Querying the Index of a Vdata Field Given the Field Name: VSfindex
	4.8.2 Setting the Attribute of a Vdata or Vdata Field: VSsetattr
	4.8.3 Querying the Values of a Vdata or Vdata Field Attribute: VSgetattr
	4.8.4 Querying the Total Number of Vdata and Vdata Field Attributes: VSnattrs
	4.8.5 Querying the Number of Attributes of a Vdata or a Vdata Field: VSfnattrs
	4.8.6 Retrieving the Index of a Vdata or Vdata Field Attribute Given the Attribute Name: VSfindattr
	4.8.7 Querying Information on a Vdata or Vdata Field Attribute: VSattrinfo
	4.8.8 Determining whether a Vdata Is an Attribute: VSisattr

	4.9 Obtaining Information about a Specific Vdata
	4.9.1 Obtaining Vdata Information: VSinquire
	4.9.2 Obtaining Linked Block Information: VSgetblockinfo
	4.9.3 Obtaining Linked Block Information: VSgetblockinfo
	4.9.4 VSQuery Vdata Information Retrieval Routines
	4.9.5 Other Vdata Information Retrieval Routines
	4.9.6 VF Field Information Retrieval Routines

	Chapter 5 -- Vgroups (V API)
	5.1 Chapter Overview
	5.2 The Vgroup Data Model
	5.2.1 Vgroup Names and Classes
	5.2.2 Vgroup Organization
	5.2.3 An Example Using Vgroups

	5.3 The Vgroup Interface
	5.3.1 Vgroup Interface Routines
	5.3.2 Identifying Vgroups in the Vgroup Interface

	5.4 Programming Model for the Vgroup Interface
	5.4.1 Accessing Files and Vgroups: Vstart and Vattach
	5.4.2 Terminating Access to Vgroups and Files: Vdetach and Vend

	5.5 Creating and Writing to a Vgroup
	5.5.1 Assigning a Vgroup Name and Class: Vsetname and Vsetclass
	5.5.2 Inserting Any HDF Data Object into a Vgroup: Vaddtagref
	5.5.3 Inserting a Vdata or Vgroup Into a Vgroup: Vinsert
	5.5.4 Building a Vgroup with or without Elements: VHmakegroup

	5.6 Reading from Vgroups
	5.6.1 Locating Vgroups and Obtaining Vgroup Information
	5.6.1.1 Locating Lone Vgroups: Vlone
	5.6.1.2 Sequentially Searching for a Vgroup: Vgetid
	5.6.1.3 Retrieving vgroups in a file or in a vgroup: Vgetvgroups
	5.6.1.4 Determining Internal Vgroup: Vgisinternal
	5.6.1.5 Obtaining the Name of a Vgroup: Vgetname
	5.6.1.6 Obtaining the Length of a Vgroup’s Name: Vgetnamelen
	5.6.1.7 Obtaining the Class Name of a Vgroup: Vgetclass
	5.6.1.8 Obtaining the Length of a Vgroup’s Class Name: Vgetclassnamelen
	5.6.1.9 Locating a Vgroup Given Its Name: Vfind
	5.6.1.10 Locating a Vgroup Given Its Class Name: Vfindclass

	5.6.2 Obtaining Information about the Contents of a Vgroup
	5.6.2.1 Obtaining the Number of Objects in a Vgroup: Vntagrefs
	5.6.2.2 Obtaining the Tag/Reference Number Pair of a Data Object within a Vgroup : Vgettagref
	5.6.2.3 Obtaining the Tag/Reference Number Pairs of Data Objects in a Vgroup: Vgettagrefs
	5.6.2.4 Testing Whether a Data Object Belongs to a Vgroup: Vinqtagref
	5.6.2.5 Testing Whether a Data Object within a Vgroup is a Vgroup: Visvg
	5.6.2.6 Testing Whether an HDF Object within a Vgroup is a Vdata: Visvs
	5.6.2.7 Locating a Vdata in a Vgroup Given Vdata Fields: Vflocate
	5.6.2.8 Retrieving the Number of Tags of a Given Type in a Vgroup: Vnrefs
	5.6.2.9 Retrieving the Reference Number of a Vgroup: VQueryref
	5.6.2.10 Retrieving the Tag of a Vgroup: VQuerytag

	5.7 Deleting Vgroups and Data Objects within a Vgroup
	5.7.1 Deleting a Vgroup from a File: Vdelete
	5.7.2 Deleting a Data Object from a Vgroup: Vdeletetagref

	5.8 Vgroup Attributes
	5.8.1 Obtaining the Vgroup Version Number of a Given Vgroup: Vgetversion
	5.8.2 Setting the Attribute of a Vgroup: Vsetattr
	5.8.3 Retrieving the Index of a Vgroup Attribute Given the Attribute Name: Vfindattr
	5.8.4 Obtaining the Total Number of Vgroup Attributes: Vnattrs and Vnattrs2
	5.8.5 Obtaining Information on a Given Vgroup Attribute: Vattrinfo
	5.8.6 Obtaining Information on a Given Vgroup Attribute: Vattrinfo2
	5.8.7 Retrieving the Values of a Given Vgroup Attribute: Vgetattr
	5.8.8 Retrieving the Values of a Given Vgroup Attribute: Vgetattr2

	5.9 Obsolete Vgroup Interface Routines
	5.9.1 Determining the Next Vgroup or Vdata Identifier: Vgetnext
	5.9.2 Determining the Number of Members and Vgroup Name: Vinquire

	Chapter 6 -- 8-Bit Raster Images (DFR8 API)
	6.1 Chapter Overview
	6.1.1 Required 8-Bit Raster Image Data Set Objects
	6.1.1.1 8-Bit Raster Image Data Representation
	6.1.1.2 8-Bit Raster Image Dimension

	6.1.2 Optional 8-Bit Raster Image Data Set Objects
	6.1.2.1 Palettes

	6.1.3 Compression Method

	6.2 The 8-Bit Raster Image Interface
	6.2.1 8-Bit Raster Image Library Routines

	6.3 Writing 8-Bit Raster Images
	6.3.1 Storing a Raster Image: DFR8putimage and DFR8addimage
	6.3.2 Adding a Palette to an RIS8 Object: DFR8setpalette
	6.3.3 Compressing 8-Bit Raster Image Data: DFR8setcompress
	6.3.4 Specifying the Reference Number of an RIS8: DFR8writeref

	6.4 Reading 8-Bit Raster Images
	6.4.1 Reading a Raster Image: DFR8getimage
	6.4.2 Querying the Dimensions of an 8-Bit Raster Image: DFR8getdims
	6.4.3 Reading an Image with a Given Reference Number: DFR8readref
	6.4.4 Specifying the Next 8-Bit Raster Image to be Read: DFR8restart

	6.5 8-Bit Raster Image Information Retrieval Routines
	6.5.1 Querying the Total Number of 8-Bit Raster Images: DFR8nimages
	6.5.2 Determining the Reference Number of the Most-Recently-Accessed 8-Bit Raster Image: DFR8lastref
	6.5.3 Determining the Reference Number of the Palette of the Most-Recently-Accessed 8-Bit Raster Image: DFR8getpalref

	6.6 RIS8 Backward Compatibility Issues
	6.6.1 Attribute "long_name" Included in HDF for netCDF Compatibility
	6.6.2 Raster Image Group Implementation with New RIS8 Tags

	Chapter 7 -- 24-bit Raster Images (DF24 API)
	7.1 Chapter Overview
	7.2 The 24-Bit Raster Data Model
	7.2.1 Required 24-Bit Raster Image Data Set Objects
	7.2.1.1 24-Bit Raster Image Data Representation
	7.2.1.2 24-Bit Raster Image Dimension

	7.2.2 Optional 24-Bit Raster Image Data Set Objects
	7.2.2.1 Compression Method
	7.2.2.2 Interlace Modes

	7.3 The 24-Bit Raster Interface
	7.3.1 24-Bit Raster Image Library Routines

	7.4 Writing 24-Bit Raster Images
	7.4.1 Writing a 24-Bit Raster Image: DF24putimage and DF24addimage
	7.4.2 Setting the Interlace Format: DF24setil
	7.4.3 Compressing Image Data: DF24setcompress and d2sjpeg

	7.5 Reading 24-Bit Raster Images
	7.5.1 Reading a Raster Image: DF24getimage
	7.5.2 Determining the Dimensions of an Image: DF24getdims
	7.5.3 Modifying the Interlacing of an Image: DF24reqil
	7.5.4 Reading a 24-Bit Raster Image with a Given Reference Number: DF24readref
	7.5.5 Specifying that the Next Image Read to be the First 24-Bit Raster Image in the File: DF24restart

	7.6 24-Bit Raster Image Information Retrieval Routines
	7.6.1 Querying the Total Number of Images in a File: DF24nimages
	7.6.2 Querying the Reference Number of the Most Recently Accessed 24-Bit Raster Image: DF24lastref

	Chapter 8 -- General Raster Images (GR API)
	8.1 Chapter Overview
	8.2 The GR Data Model
	8.2.1 Required GR Data Set Components
	8.2.2 Optional GR Data Set Components

	8.3 The GR Interface
	8.3.1 GR Interface Routines

	8.4 Header Files Required by the GR Interface
	8.5 Programming Model for the GR Interface
	8.5.1 Accessing Images and Files: GRstart, GRselect, and GRcreate
	8.5.2 Terminating Access to Images and Files: GRendaccess and GRend

	8.6 Writing Raster Images
	8.6.1 Writing Raster Images: GRwriteimage
	8.6.2 Compressing Raster Images: GRsetcompress
	8.6.3 Setting I/O Access Type for a Raster Image: GRsetaccesstype
	8.6.4 External File Operations Using the GR Interface
	8.6.4.1 Creating a Raster Image in an External File: GRsetexternalfile
	8.6.4.2 Moving Raster Images to an External File

	8.7 Reading Raster Images
	8.7.1 Reading Data from an Image: GRreadimage
	8.7.2 Setting the Interlace Mode for an Image Read: GRreqimageil

	8.8 Difference between the SD and GR Interfaces
	8.9 Obtaining Information about Files and Raster Images
	8.9.1 Obtaining Information about the Contents of a File: GRfileinfo
	8.9.2 Obtaining Information about an Image: GRgetiminfo
	8.9.3 Obtaining the Reference Number of a Raster Image from Its Identifier: GRidtoref
	8.9.4 Obtaining the Index of a Raster Image from Its Reference Number: GRreftoindex
	8.9.5 Obtaining the Index of a Raster Image from Its Name: GRnametoindex
	8.9.6 Obtaining Compression Information for a Raster Image: GRgetcompinfo
	8.9.7 Checking Whether a Raster Image Is To Be Mapped: GR2bmapped

	8.10 GR Data Set Attributes
	8.10.1 Predefined GR Attributes
	8.10.2 Setting User-defined Attributes: GRsetattr
	8.10.3 Querying User-Defined Attributes: GRfindattr and GRattrinfo
	8.10.4 Reading User-defined Attributes: GRgetattr

	8.11 Reading and Writing Palette Data Using the GR Interface
	8.11.1 Obtaining a Palette Identifier: GRgetlutid
	8.11.2 Obtaining the Number of Palettes Associated with an Image: GRgetnluts
	8.11.3 Obtaining the Reference Number of a Specified Palette: GRluttoref
	8.11.4 Obtaining Palette Information: GRgetlutinfo
	8.11.5 Writing Palette Data: GRwritelut
	8.11.6 Setting the Interlace Mode for a Palette: GRreqlutil
	8.11.7 Reading Palette Data: GRreadlut

	8.12 Chunked Raster Images
	8.12.1 Difference between a Chunked Raster Image and a Chunked SDS
	8.12.2 Making a Raster Image a Chunked Raster Image: GRsetchunk
	8.12.3 Writing a Chunked Raster Image: GRwritechunk
	8.12.4 Reading a Chunked Raster Image: GRreadchunk
	8.12.5 Obtaining Information about a Chunked Raster Image: GRgetchunkinfo
	8.12.6 Setting the Maximum Number of Chunks in the Cache: GRsetchunkcache

	Chapter 9 -- Palettes (DFP API)
	9.1 Chapter Overview
	9.2 The Palette Data Model
	9.3 The Palette API
	9.3.1 Palette Library Routines

	9.4 Writing Palettes
	9.4.1 Writing a Palette: DFPaddpal and DFPputpal
	9.4.2 Specifying the Reference Number of a Palette: DFPwriteref

	9.5 Reading a Palette
	9.5.1 Reading a Palette: DFPgetpal
	9.5.2 Reading a Palette with a Given Reference Number: DFPreadref
	9.5.3 Specifying the Next Palette to be Accessed to be the First Palette: DFPrestart

	9.6 Other Palette Routines
	9.6.1 Querying the Number of Palettes in a File: DFPnpals
	9.6.2 Obtaining the Reference Number of the Most Recently Accessed Palette: DFPlastref

	9.7 Backward Compatibility Issues

	Chapter 10 -- Annotations (AN API)
	10.1 Chapter Overview
	10.2 The Annotation Data Model
	10.2.1 Labels and Descriptions
	10.2.2 File Annotations
	10.2.3 Object Annotations
	10.2.4 Terminology

	10.3 The AN interface
	10.3.1 AN Library Routines
	10.3.2 Type and Tag Definitions Used in the AN Interface
	10.3.3 Programming Model for the AN Interface
	10.3.4 Accessing Files and Annotations: ANstart, ANcreatef, and ANcreate
	10.3.5 Terminating Access to Annotations and Files: ANendaccess and ANend

	10.4 Writing an Annotation: ANwriteann
	10.5 Reading Annotations Using the AN Interface
	10.5.1 Selecting an Annotation: ANselect
	10.5.2 Reading an Annotation: ANreadann

	10.6 Obtaining Annotation Information Using the AN Interface
	10.6.1 Obtaining the Number of Annotations: ANfileinfo
	10.6.2 Getting the Length of an Annotation: ANannlen
	10.6.3 Obtaining the Number of Specifically-typed Annotations of a Data Object: ANnumann
	10.6.4 Obtaining the List of Specifically-typed Annotation Identifiers of a Data Object: ANannlist
	10.6.5 Obtaining the Tag/Reference Number Pair of the Specified Annotation Index and Type: ANget_tagref
	10.6.6 Obtaining the Tag/Reference Number Pair from a Specified Annotation Identifier: ANid2tagref
	10.6.7 Obtaining the Annotation Identifier from a Specified Tag/Reference Number Pair: ANtagref2id
	10.6.8 Obtaining an Annotation Tag from a Specified Annotation Type: ANatype2tag
	10.6.9 Obtaining an Annotation Type from a Specified Object Tag: ANtag2atype

	Chapter 11 -- Single-file Annotations (DFAN API)
	11.1 Chapter Overview
	11.2 The Single-file Annotation Interface
	11.2.1 DFAN Library Routines
	11.2.2 Tags in the Annotation Interface

	11.3 Programming Model for the DFAN Interface
	11.4 Writing Annotations
	11.4.1 Assigning a File Label: DFANaddfid
	11.4.2 Assigning a File Description: DFANaddfds
	11.4.3 Assigning an Object Label: DFANputlabel
	11.4.4 Assigning an Object Description: DFANputdesc

	11.5 Reading Annotations
	11.5.1 Reading a File Label: DFANgetfidlen and DFANgetfid
	11.5.2 Reading a File Description: DFANgetfdslen and DFANgetfds
	11.5.3 Reading an Object Label: DFANgetlablen and DFANgetlabel
	11.5.4 Reading an Object Description: DFANgetdesclen and DFANgetdesc

	11.6 Maintenance Routines
	11.6.1 Clearing the DFAN Interface Internal Structures and Settings: DFANclear

	11.7 Determining Reference Numbers
	11.7.1 Determining a Reference Number for the Last Object Accessed: DF*lastref and DF*writeref
	11.7.2 Querying a List of Reference Numbers for a Given Tag: DFANlablist
	11.7.3 Locate an Object by Its Tag and Reference Number: Hfind

	Chapter 12 -- Single-File Scientific Data Sets (DFSD API)
	12.1 Chapter Overview
	12.2 The DFSD Scientific Data Set Data Model
	12.2.1 Required DFSD SDS Objects
	12.2.1.1 Dimensions

	12.2.2 Optional DFSD SDS Objects
	12.2.2.1 Dimension Scales
	12.2.2.2 Predefined Attributes

	12.3 The Single-File Scientific Data Set Interface
	12.3.1 DFSD Library Routines
	12.3.2 File Identifiers in the DFSD Interface

	12.4 Writing DFSD Scientific Data Sets
	12.4.1 Creating a DFSD Scientific Data Set: DFSDadddata and DFSDputdata
	12.4.2 Specifying the Data Type of a DFSD SDS: DFSDsetNT
	12.4.3 Overwriting Data for a Given Reference Number: DFSDwriteref
	12.4.4 Writing Several Data Sets: DFSDsetdims and DFSDclear
	12.4.5 Preventing the Reassignment of DFSD Data Set Attributes: DFSDsetdims
	12.4.6 Resetting the Default DFSD Interface Settings: DFSDclear

	12.5 Reading DFSD Scientific Data Sets
	12.5.1 Reading a DFSD SDS: DFSDgetdata
	12.5.2 Specifying the Dimensions and Data Type of an SDS: DFSDgetdims and DFSDgetNT
	12.5.3 Determining the Number of DFSD Data Sets: DFSDndatasets and DFSDrestart
	12.5.4 Obtaining Reference Numbers of DFSD Data Sets: DFSDreadref and DFSDlastref

	12.6 Slabs in the DFSD Interface
	12.6.1 Accessing Slabs: DFSDstartslab and DFSDendslab
	12.6.2 Writing Slabs: DFSDwriteslab
	12.6.3 Reading Slabs: DFSDreadslab

	12.7 Predefined Attributes and the DFSD Interface
	12.7.1 Writing Data Set Attributes
	12.7.1.1 Assigning String Attributes to a DFSD SDS: DFSDsetlengths and DFSDsetdatastrs
	12.7.1.2 Assigning Value Attributes to a DFSD SDS: DFSDsetfillvalue, DFSDsetrange, and DFSDsetcal

	12.7.2 Reading DFSD Data Set Attributes
	12.7.2.1 Reading Data Set Attributes: DFSDgetdatalen and DFSDgetdatastrs
	12.7.2.2 Reading the Value Attributes of a DFSD Data Set: DFSDgetfillvalue and DFSDgetcal

	12.7.3 Writing the Dimension Attributes of a DFSD SDS
	12.7.3.1 Writing the String Attributes of a Dimension: DFSDsetlengths and DFSDsetdimstrs
	12.7.3.2 Writing a Dimension Scale of a DFSD SDS: DFSDsetdimscale

	12.7.4 Reading the Dimension Attributes of a DFSD SDS

	Chapter 13 -- Error Reporting
	13.1 Chapter Overview
	13.2 The HDF Error Reporting API
	13.3 Error Reporting in HDF
	13.3.1 Writing Errors to a File: HEprint
	13.3.2 Returning the Code of the Nth Most Recent Error: HEvalue
	13.3.3 Returning the Description of an Error Code: HEstring/hestringf
	13.3.4 Clearing the error stack: HEclear

	Chapter 14 -- HDF Performance Issues
	14.1 Chapter Overview and Introduction
	14.2 Examples of HDF Performance Enhancement
	14.2.1 One Large SDS versus Several Smaller SDSs
	14.2.2 Sharing Dimensions between Scientific Data Sets
	14.2.3 Setting the Fill Mode
	14.2.4 Disabling Fake Dimension Scale Values in Large One-dimensional Scientific Data Sets

	14.3 Data Chunking
	14.3.1 What Is Data Chunking?
	14.3.2 Writing Concerns and Reading Concerns in Chunking
	14.3.3 Chunking without Compression
	14.3.4 Chunking with Compression
	14.3.5 Effect of Chunk Size on Performance
	14.3.6 Insufficient Chunk Cache Space Can Impair Chunking Performance

	14.4 Block Size Tuning Issues
	14.4.1 Tuning Data Descriptor Block Size to Enhance Performance
	14.4.2 Tuning Linked Block Size to Enhance Performance
	14.4.3 Unlimited Dimension Data Sets (SDSs and Vdatas) and Performance

	Chapter 15 -- HDF Command-line Utilities
	15.1 Chapter Overview
	15.2 Displaying the Contents of an HDF File: hdp (or HDF Dumper)
	15.2.1 General Description
	15.2.2 Command-line Syntax

	15.3 Comparing two HDF Files: hdiff
	15.3.1 General Description
	15.3.2 Command-line Syntax
	15.3.3 Examples

	15.4 Displaying Vdata Information: vshow
	15.4.1 General Description
	15.4.2 Command-line Syntax
	15.4.3 Examples

	15.5 Converting Floating-point or Integer Data to SDS or RIS8: hdfimport
	15.5.1 General Description
	15.5.2 Command-line Syntax
	15.5.3 Structure of Data in non-HDF Input Files

	15.6 Converting 8-Bit Raster Images to the HDF Format: r8tohdf
	15.6.1 General Description
	15.6.2 Command-line Syntax
	15.6.3 Examples

	15.7 Converting 24-Bit Raw Raster Images to RIS8 Images: r24hdf8
	15.7.1 General Description
	15.7.2 Command-line Syntax
	15.7.3 Examples

	15.8 Converting Raw Palette Data to the HDF Palette Format: paltohdf
	15.8.1 General Description
	15.8.2 Command-line Syntax

	15.9 Extracting 8-Bit Raster Images and Palettes from HDF Files: hdftor8
	15.9.1 General Description
	15.9.2 Command-line Syntax
	15.9.3 Examples

	15.10 Extracting Palette Data from an HDF File: hdftopal
	15.10.1 General Description
	15.10.2 Command-line Syntax

	15.11 Converting Several RIS8 Images to One 3D SDS: ristosds
	15.11.1 General Description
	15.11.2 Command-line Syntax
	15.11.3 Examples

	15.12 Converting an HDF RIS24 Image to an HDF RIS8 Image: hdf24hdf8
	15.12.1 General Description
	15.12.2 Command-line Syntax

	15.13 Compressing RIS8 Images in an HDF File: hdfcomp
	15.13.1 General Description
	15.13.2 Command-line Syntax
	15.13.3 Examples

	15.14 Compressing an HDF File: hdfpack
	15.14.1 General Description
	15.14.2 Command-line Syntax
	15.14.3 Examples

	15.15 Reformatting an HDF File: hrepack
	15.15.1 General Description
	15.15.2 Command-line Syntax
	15.15.3 Examples

	15.16 Creating Vgroups and Vdatas: vmake
	15.16.1 General Description
	15.16.2 Command-line Syntax
	15.16.3 Examples

	15.17 Listing Basic Information about Data Objects in an HDF File: hdfls
	15.17.1 General Description
	15.17.2 Command-line Syntax
	15.17.3 Examples

	15.18 Editing the Contents of an HDF File: hdfed
	15.18.1 General Description
	15.18.2 Command-line Syntax

	15.19 Working with Both HDF4 and HDF5 File Formats
	15.20 Converting an HDF File to a GIF File: hdf2gif
	15.20.1 General Description
	15.20.2 Command-line Syntax and Requirements:
	15.20.3 Structure of the GIF File
	15.20.4 Building the Utility

	15.21 Converting an HDF File to a JPEG File: hdf2jpeg
	15.21.1 General Description
	15.21.2 Command-line Syntax and Requirements
	15.21.3 Building the Utility

	15.22 Converting a GIF File to an HDF File: gif2hdf
	15.22.1 General Description
	15.22.2 Command-line Syntax and Requirements
	15.22.3 Structure of the GIF and HDF Files and the Mapping between Them
	15.22.4 Building the Utility

	15.23 Compiling C applications that Use HDF4: h4cc
	15.23.1 General Description
	15.23.2 Command-line Syntax
	15.23.3 Examples

	15.24 Compiling Fortran applications that Use HDF4: h4fc
	15.24.1 General Description
	15.24.2 Command-line Syntax
	15.24.3 Example

	15.25 Updating HDF4 Compiler Tools after an Installation in a New Location: h4redeploy
	15.25.1 General Description
	15.25.2 Command-line Syntax

	Chapter 16 -- Raw Data Information
	16.1 Chapter Overview
	16.2 The Data Information Retrieval Routines
	16.3 Addition to the AN Interface
	16.3.1 Retrieving Data Information of an Annotation: ANgetdatainfo

	16.4 Addition to the SD Interface
	16.4.1 Retrieving Data Information of an SDS: SDgetdatainfo
	16.4.2 Retrieving Data Information of an Attribute: SDgetattdatainfo
	16.4.3 Retrieving Data Information of a DFSD API Attribute: SDgetoldattdatainfo
	16.4.4 Retrieving Data Information of an Annotation in SD API: SDgetanndatainfo

	16.5 Addition to the GR Interface
	16.5.1 Retrieving Data Information of a Raster Image: GRgetdatainfo
	16.5.2 Retrieving Data Information of a GR API Attribute: GRgetattdatainfo

	16.6 Addition to the V Interface
	16.6.1 Retrieving Data Information of a V API Attribute: Vgetattdatainfo

	16.7 Addition to the VS Interface
	16.7.1 Retrieving Data Information of a Vdata: VSgetdatainfo
	16.7.2 Retrieving Data Information of a VS API Attribute: VSgetattdatainfo

	Appendix A Reserved HDF Tags
	A.1 Overview
	A.2 Tag Types and Descriptions

	Appendix B HDF Installation Overview
	B.1 General HDF Installation Overview
	B.1.1 Acquiring the HDF Library Source
	B.1.2 Building the HDF Library Source

	Appendix C Attributes in HDF
	C.1 Attribute Overview
	C.2 Underlaying storage issues
	C.2.1 Predefined Attributes in DFSD API
	C.2.2 Vgroup Attribute Without Vsetattr

	Appendix D Issue of Missing Palettes
	D.1 Description
	D.2 Work-Around

	Index

