
January 20, 2012THG 2012-1-20.v1

A Maintainer’s Guide

for the Datatype Module in HDF5 Library

Raymond Lu

This document explains the design, architecture, organiza�on, and algorithms of the
datatype module in the HDF5 library.

Introduc�on
The purpose of this document is to explain the basic design of the datatype module in the HDF5
library – its architecture, organiza�on, and algorithms. For the maintainers of the library, this
document should give them enough knowledge to understand, adjust, or fix the library if any problem
arises. For the users of the library, the exis�ng documents such as the User’s Guide, the Reference
Manual, and the File Format Specifica�on should give them sufficient knowledge to use the library.
But if any power user wants to find out how the library is designed, this document can be helpful to
some extent. This document is wri�en based on the HDF5 release 1.8.8.

The Way That the Library Defines Data Types

Integers

Integers generally have simple bit pa�erns. Using the twos-complement nota�on, a signed integer of
n bits in size will have a range from -2n-1 to 2n-1 – 1. The high-order bit is the sign bit. There are n-1
data bits. For unsigned integers, the high-order bit becomes a data bit. All the n bits are data bits. So
an unsigned integer of n bit in size has a range from 0 to 2n–1. An example bit sequence of (signed)
char of 1 byte long is like 10010111. The high-order (le�most) bit is set to 1, meaning the value is
nega�ve. If the same bit sequence represents an unsigned char, the high-order bit becomes a data
bit, making the value be 151.

In the HDF5 library, each integer data type, predefined or user-defined, has the following proper�es:

 Order The byte order – big or little endian

 Sign Signed or unsigned

 Size The size of the entire integer data type

 Page 9 of 23

January 20, 2012THG 2012-1-20.v1

 Precision The size of the actual data part of

the integer

 Offset The start of the actual data in the data

type

 Lsb padding The padding bit in the least significant

side

 Msb padding The padding bit in the most significant

side

These proper�es help the library define or iden�fy each integer type. For example, the following

These proper�es help the library define or iden�fy each integer type. For example, the following
proper�es define a four-byte li�le-endian signed integer:

 Order little-endian

 Sign signed

 Size 4 bytes

 Precision 32 bits

 Offset 0

 Lsb padding 0

 Msb padding 0

The library provides API func�ons to query or adjust these proper�es, such as H5Tset(get)_size,
H5Tset(get)_order, H5Tset(get)_precision, H5Tset(get)_offset, H5Tset(get)_sign, and
H5Tset(get)_pad. These func�ons also work for other atomic data types, i.e. floa�ng-point
numbers.

Floa�ng-Point Numbers

The floa�ng-point number representa�on is more complicated. A more thorough descrip�on of IEEE
standard floa�ng-point numbers can be found in the IEEE Standard 754 document. For IEEE standard
floa�ng-point numbers, there are three components for a floa�ng-point number - the sign, the
exponent, and the man�ssa. The diagram below shows the layouts of IEEE float and double types.

Type Sign Exponent Man�ssa Bias

Float 1[31] 8[30-23] 23[22-00] 127

Double 1[63] 11[62-52] 52[51-00] 1023

In the table, the numbers are the size of each component. The bit index is in the square brackets. To

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

calculate the true exponent value, the bias has to be subtracted from the value represented by the
bits of exponent. The man�ssa represents the precision bits. The leading bit has been implied. When
the true precision is calculated, this implicit bit will be restored. Consider this bit sequence for float in
li�le-endian order,

 Byte 3 byte 2 byte 1 byte 0

 11000011 11110000 00000000 00000000

The high-order (le�most) bit is the sign bit. It is set to indicate the number is nega�ve. The eight bits
a�er the sign bit, 10000111 in byte 3 and 2, is the exponent. The value of these eight bits is 135.
A�er subtrac�ng the bias 127, the true exponent is 8. The 23 bits a�er the exponent 1110000
00000000 00000000 in byte 2, 1, 0, is the man�ssa. A�er restoring the implicit leading bit and
adding the radix, the man�ssa becomes 1.1110000 00000000 00000000. The value of this float
number is 1.111 x 28 = 111100000.0 in binary. Adding the sign bit, that value is -480.0 in
decimal.

There are a few special values for floa�ng-point numbers,

Denormalized – when exponent bits are all 0s but man�ssa bits are non-zero. There will be no
implicit bit for the man�ssa.

Zero – when exponent and man�ssa bits are all set to 0s. There can be both +0 and -0.

Infinity – when exponent bits are all 1s and man�ssa bits are all 0s. There can be both posi�ve
and nega�ve infini�es.

NaN(Not a Number) – when exponent bits are all 1s and man�ssa bits are not all 0s. NaN can

be either posi�ve or nega�ve.

For other predefined or used-defined types, they should be similar to IEEE standard. There should be
the sign, exponent, man�ssa, and bias. The bits of exponent or man�ssa should be con�guous. The
floa�ng-point numbers for VAX are different from IEEE standard. Their byte order is a mixture of li�le-
endian and big-endian. But that is the only difference from IEEE standard. So we will not discuss it in
detail here.

The proper�es of floa�ng-point number datatypes are more complicated than integer types. Each
floa�ng-point datatype, predefined or user-defined, has the following proper�es:

 Order The byte order – big endian, little

endian, or VAX

 Size The size of the entire data type

 Precision The size of the actual data part of the

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

data type

 Offset The start of the actual data in the data

type

 Lsb padding The padding bit in the least significant

side

 Msb padding The padding bit in the most significant

side

 Sign The position of the sign bit

 Exponent position The position of the start of exponent

bits

 Exponent size The number of the exponent bits

 Exponent bias The value of exponent bias

Mantissa position The position of the start of mantissa

bits

 Mantissa size The number of the mantissa bits

 Norm The flag for normalized floating number

 Padding The padding bit

For example, an IEEE standard li�le-endian single floa�ng-point number is four bytes in size and thirty-
two bits in precision. Its sign bit is at the thirty-first bit. The exponent is eight bits long and starts at
the twenty-third bits. The man�ssa is twenty-three bits long and starts at the beginning bit. We can
use the following diagram to illustrate this floa�ng number:

 byte 3 byte 2 byte 1 byte 0
 SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM

So it has the following proper�es:

 Order little-endian

 Size 4 bytes

 Precision 32 bits

 Offset 0

 Lsb padding 0

 Msb padding 0

 Sign 31

 Exponent position 23

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

 Exponent size 8

 Exponent bias 127

 Mantissa position 0

 Mantissa size 23

 Norm Implied

 Padding 0

Besides the API func�ons for atomic datatypes, the library provides several func�ons for floa�ng
numbers specifically. These func�ons are H5Tset(get)_fields, H5Tset(get)_ebias,
H5Tset(get)_norm, and H5Tset(get)_inpad.

The integer datatypes include all the library’s predefined integers and any user-defined integers. The
library’s predefined integers include standard, Unix-specific, Intel-specific, Alpha-specific, MIPS-
specific, ANSI C9x-specific, and na�ve data types. The HDF5 Predefined Datatypes sec�on in the HDF5
Reference Manual lists all these predefined data types.

The floa�ng-point datatypes include all the library’s predefined floa�ng numbers and any user-defined
floa�ng numbers. The library’s predefined floa�ng numbers include IEEE standard and C na�ve
datatypes. The HDF5 Predefined Datatypes sec�on in the HDF5 Reference Manual lists all these
predefined datatypes.

Users can define their own datatypes based on the default datatypes in the library. By adjus�ng the
proper�es of the existent data types through some API func�ons for data types, users can create new
datatypes. These API func�ons are listed under the Atomic Datatype Proper�es category of H5T
Datatype Interface. A�er defining the proper�es, users should call H5Tcommit to register the
datatype into the file.

For example, a user defines a two-byte big-endian unsigned integer. But its precision is only ten bits
long. The offset is four bits. The padding is one. We can represent this integer as

 Byte 0 byte 1

1111XXXX XXXXXX11

where X stands for the data part and 1 stands for the padding. This integer should have the following
proper�es:

 Order big-endian

2.3 Predefined Numerical Datatypes1)

2.3.1 Integers2)

2.3.2 Floa�ng-Point Numbers3)

2.4 User-Defined Numeric Datatypes4)

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

 Sign unsigned

 Size 2 bytes

 Precision 10 bits

 Offset 4 bits

Lsb padding 1

 Lsb padding 1

 Msb padding 1

Another example is a user-defined three bytes big-endian floa�ng number. Its precision is eighteen
bits. The offset is four bits. The other proper�es are displayed below:

 Order big-endian

 Size 3 bytes

 Precision 18 bits

 Offset 4 bits

 Lsb padding 0

 Msb padding 0

 Sign 19

 Exponent position 13

 Exponent size 6

 Exponent bias 31

 Mantissa position 2

 Mantissa size 11

 Norm Implied

 Padding 0

We can use the following diagram to illustrate this floa�ng number:

 byte 0 byte 1 byte 2

 0000SEEE EEEMMMMM MMMMMM00

The datatypes (integers and floa�ng-point numbers) we discussed above are numerical. There are
non-numerical datatypes in the library. Some of them are derived from the numerical datatypes, such
as enum and array types. The library does not have default data types for these non-numerical types.
Users must define them. It is necessary to define a few terms that we normally use to describe the
kinds of data types in the library. Please see the Terminology for the defini�ons of these terms.

2.5 Non-Numerical Datatypes5)

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

The string types are atomic datatypes. They have the following proper�es:

 Cset ASCII or Unicode character set

 Pad space or null padding for extra bytes

The reference types are another kind of atomic datatypes. A reference datatype only has one
property:

 Rytpe object or region reference

A HDF5 compound datatype can contain any HDF5 data type as its member. All the proper�es for
d d l d i b h

2.5.1 String Datatypes6)

The func�ons that the library provides to query or adjust these proper�es are
H5Tset(get)_cset and H5Tset(get)_strpad.

7)

2.5.2 Reference Datatypes8)

The func�ons for reference datatypes are under the H5R interface, such as
H5Rcreate, H5Rdereference, and H5Rget_obj_type.

9)

2.5.3 Compound Datatypes10)

compound datatypes are related to its members, such as:

 Nmembs The number of member types

 Sorted How the members are sorted

 Packed whether the members packed together

 Members information about each member

Besides its own proper�es as a HDF5 datatype, each member has the following individual proper�es:

 Name the name of this member

 Size the size of this data type

 Offset the offset from the beginning of the C

struct

The func�ons that the library provides to query or adjust these proper�es are H5Tinsert, H5Tpack,
H5Tget_nmembers, H5Tget_member_class, H5Tget_member_name, H5Tget_member_index,
H5Tget_member_offset, and H5Tget_member_type.

Enumerate datatypes are derived from integers. They have the following proper�es:

2.5.4 Enumerate Datatypes11)

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

 Nmembs number of members

 Sorted how the members are sorted

 Names member names

 Values member values

The variable-length datatype is a derived datatype. It has the following proper�es:

 Type string or sequence of other type

 Cset character type for VL string

 Pad space or null padding for extra bytes for

 VL string

The array data type is a derived data type. Its base type can be any HDF5 data type. The array
datatype has the following proper�es:

 Nelem total number of elements in the array

 Ndims number of dimensions

 Dim[] sizes of dimensions

The opaque datatype only has one property:

The library provides these API func�ons to create enumerate datatypes or query
their proper�es: H5Tenum_create, H5Tenum_insert, H5Tenum_nameof,
H5Tenum_valueof, H5Tget_member_value, H5Tget_nmembers,
H5Tget_member_name, and H5Tget_member_index.

12)

2.5.5 Variable-length Datatypes13)

The API func�ons that the library provides to create and query variable-length
datatypes are H5Tvlen_create and H5Tis_variable_str.

14)

2.5.6 Array Datatypes15)

The API func�ons that the library provides to create or query array datatypes are
H5Tarray_create, H5Tget_array_ndims, and H5Tget_array_dims.

16)

2.5.7 Opaque Datatype17)

p q yp y p p y

 Tag short description string

The library provides these two API func�ons, H5Tset(get)_tag, to query or adjust the property of
opaque datatypes.

Library’s Internal Design for Datatypes

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

The Architecture of Datatype Module

The following diagram illustrates the basic design of the data type module in the library. The le� side
of the figure focuses on how the library creates data types and the conversion table. The right side of
the figure focuses on the rela�onship of the conversion table with the IO flow. We will explain the
detail of the library’s internal design using this diagram.

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

 Page 9 of 23

