
January 20, 2012THG 2012-1-20.v1

A Maintainer’s Guide

for the Datatype Module in HDF5 Library

Raymond Lu

This document explains the design, architecture, organization, and algorithms of the
datatype module in the HDF5 library.

Introduction
The purpose of this document is to explain the basic design of the datatype module in the HDF5
library – its architecture, organization, and algorithms. For the maintainers of the library, this
document should give them enough knowledge to understand, adjust, or fix the library if any problem
arises. For the users of the library, the existing documents such as the User’s Guide, the Reference
Manual, and the File Format Specification should give them sufficient knowledge to use the library.
But if any power user wants to find out how the library is designed, this document can be helpful to
some extent. This document is written based on the HDF5 release 1.8.8.

The Way That the Library Defines Data Types

Integers

Integers generally have simple bit patterns. Using the twos-complement notation, a signed integer of
n bits in size will have a range from -2n-1 to 2n-1 – 1. The high-order bit is the sign bit. There are n-1
data bits. For unsigned integers, the high-order bit becomes a data bit. All the n bits are data bits. So
an unsigned integer of n bit in size has a range from 0 to 2n–1. An example bit sequence of (signed)
char of 1 byte long is like 10010111. The high-order (leftmost) bit is set to 1, meaning the value is
negative. If the same bit sequence represents an unsigned char, the high-order bit becomes a data
bit, making the value be 151.

In the HDF5 library, each integer data type, predefined or user-defined, has the following properties:

	 Order		 	 	 The byte order – big or little endian

	 Sign	 	 	 	 Signed or unsigned

	 Size	 	 	 	 The size of the entire integer data type

 Page 9 of 23

January 20, 2012THG 2012-1-20.v1

	 Precision	 	 	 The size of the actual data part of

the integer

	 Offset	 	 	 The start of the actual data in the data

type	

	 Lsb padding		 	 The padding bit in the least significant

side

	 Msb padding		 	 The padding bit in the most significant

side

These properties help the library define or identify each integer type. For example, the following

These properties help the library define or identify each integer type. For example, the following
properties define a four-byte little-endian signed integer:

	 Order		 	 	 little-endian

	 Sign	 	 	 	 signed

	 Size	 	 	 	 4 bytes

	 Precision	 	 	 32 bits

	 Offset	 	 	 0

	 Lsb padding		 	 0

	 Msb padding		 	 0

The library provides API functions to query or adjust these properties, such as H5Tset(get)_size,
H5Tset(get)_order, H5Tset(get)_precision, H5Tset(get)_offset, H5Tset(get)_sign, and
H5Tset(get)_pad. These functions also work for other atomic data types, i.e. floating-point
numbers.

Floating-Point Numbers

The floating-point number representation is more complicated. A more thorough description of IEEE
standard floating-point numbers can be found in the IEEE Standard 754 document. For IEEE standard
floating-point numbers, there are three components for a floating-point number - the sign, the
exponent, and the mantissa. The diagram below shows the layouts of IEEE float and double types.

Type Sign Exponent Mantissa Bias

Float 1[31] 8[30-23] 23[22-00] 127

Double 1[63] 11[62-52] 52[51-00] 1023

In the table, the numbers are the size of each component. The bit index is in the square brackets. To

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

calculate the true exponent value, the bias has to be subtracted from the value represented by the
bits of exponent. The mantissa represents the precision bits. The leading bit has been implied. When
the true precision is calculated, this implicit bit will be restored. Consider this bit sequence for float in
little-endian order,

	 	 Byte 3	 byte 2	 byte 1	 byte 0

 11000011	 11110000	 00000000	 00000000

The high-order (leftmost) bit is the sign bit. It is set to indicate the number is negative. The eight bits
after the sign bit, 10000111 in byte 3 and 2, is the exponent. The value of these eight bits is 135.
After subtracting the bias 127, the true exponent is 8. The 23 bits after the exponent 1110000
00000000 00000000 in byte 2, 1, 0, is the mantissa. After restoring the implicit leading bit and
adding the radix, the mantissa becomes 1.1110000 00000000 00000000. The value of this float
number is 1.111 x 28 = 111100000.0 in binary. Adding the sign bit, that value is -480.0 in
decimal.

There are a few special values for floating-point numbers,

Denormalized – when exponent bits are all 0s but mantissa bits are non-zero. There will be no
implicit bit for the mantissa.

Zero – when exponent and mantissa bits are all set to 0s. There can be both +0 and -0.

Infinity – when exponent bits are all 1s and mantissa bits are all 0s. There can be both positive
and negative infinities.

NaN(Not a Number) – when exponent bits are all 1s and mantissa bits are not all 0s. NaN can

be either positive or negative.

For other predefined or used-defined types, they should be similar to IEEE standard. There should be
the sign, exponent, mantissa, and bias. The bits of exponent or mantissa should be contiguous. The
floating-point numbers for VAX are different from IEEE standard. Their byte order is a mixture of little-
endian and big-endian. But that is the only difference from IEEE standard. So we will not discuss it in
detail here.

The properties of floating-point number datatypes are more complicated than integer types. Each
floating-point datatype, predefined or user-defined, has the following properties:

	 Order		 	 	 The byte order – big endian, little

endian, or VAX

	 Size	 	 	 	 The size of the entire data type

	 Precision	 	 	 The size of the actual data part of the

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

data type

	 Offset	 	 	 The start of the actual data in the data

type	

	 Lsb padding		 	 The padding bit in the least significant

side

	 Msb padding		 	 The padding bit in the most significant

side

	 Sign	 	 	 	 The position of the sign bit

	 Exponent position		 The position of the start of exponent

bits

	 Exponent size	 	 The number of the exponent bits

	 Exponent bias	 	 The value of exponent bias

Mantissa position		 The position of the start of mantissa

bits

	 Mantissa size	 	 The number of the mantissa bits

	 Norm	 	 	 	 The flag for normalized floating number

	 Padding	 	 	 The padding bit

For example, an IEEE standard little-endian single floating-point number is four bytes in size and thirty-
two bits in precision. Its sign bit is at the thirty-first bit. The exponent is eight bits long and starts at
the twenty-third bits. The mantissa is twenty-three bits long and starts at the beginning bit. We can
use the following diagram to illustrate this floating number:

 byte 3 byte 2 byte 1 byte 0
 SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM

So it has the following properties:

	 Order		 	 	 little-endian

	 Size	 	 	 	 4 bytes

	 Precision	 	 	 32 bits

	 Offset	 	 	 0	

	 Lsb padding		 	 0

	 Msb padding		 	 0

	 Sign	 	 	 	 31

	 Exponent position		 23

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

	 Exponent size	 	 8

	 Exponent bias	 	 127

	 Mantissa position		 0

	 Mantissa size	 	 23

	 Norm	 	 	 	 Implied

	 Padding	 	 	 0

Besides the API functions for atomic datatypes, the library provides several functions for floating
numbers specifically. These functions are H5Tset(get)_fields, H5Tset(get)_ebias,
H5Tset(get)_norm, and H5Tset(get)_inpad.

The integer datatypes include all the library’s predefined integers and any user-defined integers. The
library’s predefined integers include standard, Unix-specific, Intel-specific, Alpha-specific, MIPS-
specific, ANSI C9x-specific, and native data types. The HDF5 Predefined Datatypes section in the HDF5
Reference Manual lists all these predefined data types.

The floating-point datatypes include all the library’s predefined floating numbers and any user-defined
floating numbers. The library’s predefined floating numbers include IEEE standard and C native
datatypes. The HDF5 Predefined Datatypes section in the HDF5 Reference Manual lists all these
predefined datatypes.

Users can define their own datatypes based on the default datatypes in the library. By adjusting the
properties of the existent data types through some API functions for data types, users can create new
datatypes. These API functions are listed under the Atomic Datatype Properties category of H5T
Datatype Interface. After defining the properties, users should call H5Tcommit to register the
datatype into the file.

For example, a user defines a two-byte big-endian unsigned integer. But its precision is only ten bits
long. The offset is four bits. The padding is one. We can represent this integer as

	 	 Byte 0	 byte 1

1111XXXX XXXXXX11

where X stands for the data part and 1 stands for the padding. This integer should have the following
properties:

	 Order		 	 	 big-endian

2.3 Predefined Numerical Datatypes1)

2.3.1 Integers2)

2.3.2 Floating-Point Numbers3)

2.4 User-Defined Numeric Datatypes4)

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

	 Sign	 	 	 	 unsigned

	 Size	 	 	 	 2 bytes

	 Precision	 	 	 10 bits

	 Offset	 	 	 4 bits

Lsb padding 1

	 Lsb padding		 	 1

	 Msb padding		 	 1

Another example is a user-defined three bytes big-endian floating number. Its precision is eighteen
bits. The offset is four bits. The other properties are displayed below:

	 Order		 	 	 big-endian

	 Size	 	 	 	 3 bytes

	 Precision	 	 	 18 bits

	 Offset	 	 	 4 bits	

	 Lsb padding		 	 0

	 Msb padding		 	 0

	 Sign	 	 	 	 19

	 Exponent position		 13

	 Exponent size	 	 6

	 Exponent bias	 	 31

	 Mantissa position		 2

	 Mantissa size	 	 11

	 Norm	 	 	 	 Implied

	 Padding	 	 	 0

We can use the following diagram to illustrate this floating number:

 byte 0	 byte 1	 byte 2

 0000SEEE EEEMMMMM MMMMMM00

The datatypes (integers and floating-point numbers) we discussed above are numerical. There are
non-numerical datatypes in the library. Some of them are derived from the numerical datatypes, such
as enum and array types. The library does not have default data types for these non-numerical types.
Users must define them. It is necessary to define a few terms that we normally use to describe the
kinds of data types in the library. Please see the Terminology for the definitions of these terms.

2.5 Non-Numerical Datatypes5)

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

The string types are atomic datatypes. They have the following properties:

	 Cset	 	 	 	 ASCII or Unicode character set

	 Pad	 	 	 	 space or null padding for extra bytes

The reference types are another kind of atomic datatypes. A reference datatype only has one
property:

	 Rytpe		 	 	 object or region reference

A HDF5 compound datatype can contain any HDF5 data type as its member. All the properties for
d d l d i b h

2.5.1 String Datatypes6)

The functions that the library provides to query or adjust these properties are
H5Tset(get)_cset and H5Tset(get)_strpad.

7)

2.5.2 Reference Datatypes8)

The functions for reference datatypes are under the H5R interface, such as
H5Rcreate, H5Rdereference, and H5Rget_obj_type.

9)

2.5.3 Compound Datatypes10)

compound datatypes are related to its members, such as:

	 Nmembs	 	 	 The number of member types

	 Sorted	 	 	 How the members are sorted

	 Packed	 	 	 whether the members packed together

	 Members	 	 	 information about each member

Besides its own properties as a HDF5 datatype, each member has the following individual properties:

	

	 Name	 	 	 	 the name of this member

	 Size	 	 	 	 the size of this data type

	 Offset	 	 	 the offset from the beginning of the C

struct

The functions that the library provides to query or adjust these properties are H5Tinsert, H5Tpack,
H5Tget_nmembers, H5Tget_member_class, H5Tget_member_name, H5Tget_member_index,
H5Tget_member_offset, and H5Tget_member_type.

Enumerate datatypes are derived from integers. They have the following properties:

2.5.4 Enumerate Datatypes11)

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

	 Nmembs	 	 	 number of members

	 Sorted	 	 	 how the members are sorted

	 Names		 	 	 member names

	 Values	 	 	 member values

The variable-length datatype is a derived datatype. It has the following properties:

	 Type	 	 	 	 string or sequence of other type

	 Cset	 	 	 	 character type for VL string

	 Pad	 	 	 	 space or null padding for extra bytes for

	 	 	 	 	 VL string

The array data type is a derived data type. Its base type can be any HDF5 data type. The array
datatype has the following properties:

	 Nelem		 	 	 total number of elements in the array

	 Ndims		 	 	 number of dimensions

	 Dim[]	 	 	 sizes of dimensions

The opaque datatype only has one property:

The library provides these API functions to create enumerate datatypes or query
their properties: H5Tenum_create, H5Tenum_insert, H5Tenum_nameof,
H5Tenum_valueof, H5Tget_member_value, H5Tget_nmembers,
H5Tget_member_name, and H5Tget_member_index.

12)

2.5.5 Variable-length Datatypes13)

The API functions that the library provides to create and query variable-length
datatypes are H5Tvlen_create and H5Tis_variable_str.

14)

2.5.6 Array Datatypes15)

The API functions that the library provides to create or query array datatypes are
H5Tarray_create, H5Tget_array_ndims, and H5Tget_array_dims.

16)

2.5.7 Opaque Datatype17)

p q yp y p p y

	 Tag	 	 	 	 short description string

The library provides these two API functions, H5Tset(get)_tag, to query or adjust the property of
opaque datatypes.

Library’s Internal Design for Datatypes

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

The Architecture of Datatype Module

The following diagram illustrates the basic design of the data type module in the library. The left side
of the figure focuses on how the library creates data types and the conversion table. The right side of
the figure focuses on the relationship of the conversion table with the IO flow. We will explain the
detail of the library’s internal design using this diagram.

 Page 8 of 23

January 20, 2012THG 2012-1-20.v1

 Page 9 of 23

