
February 15, 2022 RFC THG 2012-08-28.v6

Page 1 of 14

RFC: New HDF5 API Routines for HPC Applications
Read/Write Multiple Datasets in an HDF5 file

Peter Cao
Quincey Koziol
Jonathan Kim
Neil Fortner

The HDF5 library allows a data access operation to access one dataset at a time, whether
access is collective or independent. However, accessing multiple datasets will require
the user to issue an I/O call for each dataset. This RFC proposes new routines to allow

users to access multiple datasets with a single I/O call.

This RFC describes the new API routines, H5Dread_multi() and H5Dwrite_multi(), which
perform a single access operation to multiple datasets in the file. The new routines can

improve performance, especially when data accessed across several datasets from all

processes can be aggregated in the HDF5 or MPI-I/O library.

This RFC was initially released in 2012, but has now been updated in 2022 to reflect a

renewed effort to finish implementing this feature.

1 Introduction

Parallel HDF5 (PHDF5) supports both independent and collective dataset access. When collective I/O is
used, all processes that have opened the dataset may do collective data access by calling H5Dread() or
H5Dwrite() on the dataset with the transfer property set for collective access. Accessing datasets

collectively using the MPIO VFD can improve I/O performance [1] since MPI can aggregate data into
large contiguous accesses to disk instead of small non-contiguous ones.

However, the current HDF5 library does not support a single I/O call for accessing multiple datasets.
For example, if one accesses five datasets in a file, one will need at least five I/O calls for each dataset.

We propose to add two new functions to the HDF5 library: H5Dread_multi() and H5Dwrite_multi().

With the proposed new read/write functions, users will make a single function call to read or write data
to multiple datasets in an HDF5 file. Note that the multiple datasets are located in the same HDF5 file

for the scope of this task. The new functions can be used for both independent and collective I/O

access, but this task’s primary purpose is to utilize the collective I/O case.

February 15, 2022 RFC THG 2012-08-28.v6

Page 2 of 14

1.1 Purpose

The purpose of the work is to implement two new functions to the HDF5 library: H5Dread_multi() and

H5Dwrite_multi(), which should give better I/O performance when collective I/O is used.

1.2 Scope

H5Dread_multi() will take information from multiple datasets and read data from a file for the datasets
requested. If collective I/O is used, a single I/O call is used for better performance. Overlapping data

selections are supported.

H5Dwrite_multi() will take information from multiple datasets and write data to a file for the datasets
requested. If collective I/O is used, a single I/O call is used for better performance. If data selections

from multiple ranks overlap, the behavior of the H5Dwrite_multi() is not defined. Therefore,
overlapping data selections should not be used.

Datasets requested in H5Dread_multi() and H5Dwrite_multi() must reside in the same file. The new

functions do not support datasets cross files.

Once the feature is fully productized, the benchmarks mentioned in this report will be rerun, along with
other standard I/O kernels, to fully determine the performance of the feature. The final deliverables

will also include a reference manual entry for each function and regression tests.

2 Use Case

This section presents two use cases: the FLASH I/O and E3SM. The primary purpose of the use cases is
to show how the new library functions can be used to improve I/O.

2.1 Improving FLASH I/O for an ANL project

FLASH code was designed to simulate thermonuclear flashes on a Cartesian, structured mesh. The
mesh consists of cells that contain physical quantities such as density, pressure and temperature (also
known as mesh variables). Each cell is assigned to a self-contained block. In the FLASH file layout, a

block is stored in an HDF5 file, and mesh variables are stored as 4D datasets in the file.

The time spent on file I/O in a FLASH simulation is a common bottleneck. Using collective I/O[1]
improves I/O performance for HPC applications like FLASH. Current parallel HDF5 performs collective

I/O on a single dataset and requires many I/O calls in FLASH simulations since many variables are
frequently accessed during each time step. Using the proposed collective I/O on multiple datasets will

reduce the number of I/O calls. In an experimental study, Rob Latham, Chris Daley, etc.[2] have shown
that the average time for writing a file is reduced by half when collective I/O on multiple variables is

used:

“The standard file layout approach (storing application data in multiple library objects), however,
offers a slight performance trade-off. Each function call represents a relatively expensive I/O

operation. All other factors aside, if the goal is to achieve the highest I/O performance a better
approach would describe the entire application I/O pattern and then execute a single call. If the

application places all mesh variables into a single I/O library object, as in the experimental file
layout approach, then a single I/O library call could be issued to service all application variables

instead of N separate calls. Experiments confirm that this approach does improve performance .”[2]

February 15, 2022 RFC THG 2012-08-28.v6

Page 3 of 14

The following figure shows the I/O results for standard file layout (storing mesh variables in multiple
datasets) and the experimental file layout approach (placing all mesh variables into a single I/O library
object). The results generally show that the single I/O approach (the experimental file layout) reduces
the time to write checkpoint files by half.

2.2 Investigating E3SM performance improvements for the Exascale Computing Project

The Energy Exascale Earth System Model (E3SM) is a large-scale Earth modeling code that couples
ocean, atmosphere, and ice models. As part of the Exascale Computing Project, the performance

of the existing multi dataset I/O prototype in HDF5 was evaluated for two different cases in E3SM,
as well as in a synthetic I/O benchmark[3]. We briefly summarize these cases here; for full results,
see the reference.

Two cases were evaluated for the E3SM benchmark: the “F” and “G” cases. The F case involved
large numbers of datasets, contiguous smaller amounts of data per dataset. The G case involved
smaller numbers of datasets with large amounts of data per dataset. This means the F case is more

likely to benefit from multi dataset I/O since more I/O operations can be combined, and it is not
as limited by raw bandwidth. We indeed see a significant performance improvement of

approximately 10x in the F case with only a minor improvement in the G case:

February 15, 2022 RFC THG 2012-08-28.v6

Page 4 of 14

The synthetic benchmark pushes this further by increasing the number of non-contiguous blocks
in the datasets, while having as many datasets as the E3SM F case and a total amount of data in

between the E3SM cases. This, similarly to the E3SM F case, shows substantial performance

improvement from multi dataset I/O:

While a different system using GPFS showed even greater improvements:

February 15, 2022 RFC THG 2012-08-28.v6

Page 5 of 14

3 Functional requirements

The two main purposes of the H5Dread/write_multi() functions are: better I/O performance and
convenient function calls for multiple datasets. In addition, the two new functions should meet the

following specific requirements other than the standard HDF5 API function requirements.

3.1 H5Dread_multi()

This function will read data from a file to memory buffers for multiple datasets. This function should

attain no less I/O performance than reading data from individual datasets.

3.2 H5Dwrite_multi()

This function will write data in memory to a file for multiple datasets. The selection of data regions to
be written cannot overlap. This function should attain no less I/O performance than writing data for

individual datasets.

4 Implementation design

The basic approach for multi-dataset collective I/O is similar to the POSIX lio_listio() call, which takes a

list of buffers, offsets and lengths to perform a series of read and write operations on a file in a single
call. The primary difference from the typical HDF5 API call is that the new routines add information

from multiple datasets to the I/O mapping list and construct larger MPI-derived datatypes for collective
I/O operations for read and write operations in a separate manner. Internally, the multi-dataset

implementation will be similar to the current implementation of collective chunk I/O on a single
dataset.

4.1 Top-level design

The following example chart shows the conceptual implementation approach for the new API functions.

February 15, 2022 RFC THG 2012-08-28.v6

Page 6 of 14

Note that sorting the list by file addresses is necessary because MPI requires the file type to consist of

derived datatypes whose displacements are monotonically non-decreasing.

4.2 Code-level design

4.2.1 Existing code

The current implementation achieves multi dataset I/O by creating a new structure, H5D_dset_info_t,

which contains all the information necessary for I/O on a single dataset. This information was
previously contained in structs specific to each layout type. H5D__read() and H5D__write() then

allocate an array of these structs, iterate over all the datasets in the operation, passing the

corresponding element of the H5D_dset_info_t struct to each dataset’s layout’s io_init operation.

The io_init operations operate mostly as before, except they place info in the H5D_dset_info_t struct,
and place info on I/O within a single chunk or contiguous dataset in an H5D_piece_info_t struct, then
insert that struct into a skip list sorted by address. This is analogous to how the chunk map worked
before, except it has been extended to work with a mixture of contiguous datasets and chunks. A single

chunk or contiguous dataset is called a “piece”. This way, the chunks and datasets are sorted by address
for MPI, and the only sorting that needs to be done is within individual selections (in the case of point

selections), which is accomplished in H5S_mpio_space_type() as called by
H5D__all_piece_collective_io(), again analogous to how it worked before.

February 15, 2022 RFC THG 2012-08-28.v6

Page 7 of 14

We may remove the skip list and instead store pieces in an unsorted array, and shift responsibility for
sorting to lower levels of code. The need for the pieces to be sorted by address is specific to MPI I/O,
and we are trying to minimize the amount of MPI-specific code in the higher levels of the library, to
make it easier to develop high performance backends for HDF5 that do not use MPI.

4.2.2 Plan for merge

A great deal of development has occurred on HDF5 since the last time the multi dataset branch was

brought up to date in 2016. Therefore, it will require a substantial effort to complete this feature and
bring it into the mainline develop branch for HDF5. This work has already begun, and the most effective

method has been to use the git merge command, but still inspect most of the changes individually. It
is also necessary to keep in mind pieces of code that have changed or added that might need to be

updated to work with multi dataset even if they don’t cause conflicts.

Two new features that will need special consideration are parallel compression and selection I/O1. We
will initially fall back to performing I/O on one dataset at a time for parallel compression since it will

take some effort to implement parallel compression in the multi dataset case. In addition, the “multi
chunk” pathway in H5Dmpio.c was removed in the multi dataset branch. The pathway performs I/O on

each chunk individually instead of together in a single operation. We may need to reinstate this
pathway to support the current parallel compression code, and we should investigate if it is useful for

other cases as well.

We intend to support selection I/O with multi dataset fully. This feature introduces a new Virtual File
Driver (VFD) interface to pass HDF5 selections to the file driver instead of byte offsets and lengths. We
will pass one selection for each piece (chunk or contiguous dataset). The chunk I/O functions that were
extended to handle selection I/O were also extended to support multi dataset I/O in the multi dataset
branch, so extending this new selection I/O code to handle the multi dataset case will be a natural part

of the merge process. The code that currently builds a list of chunk offsets, buffers and chunk
file/memory dataspaces will be extended to build a list of piece offsets, buffers, and file/memory

dataspaces spanning multiple datasets, with the lists stored in the io_info struct which is global to the
I/O operation.

4.3 New API functions

Two new functions, H5Dread_multi() and H5Dwrite_multi() are proposed here.

A common type structure is defined below and used to keep multiple datasets’ information for both
APIs.

1. typedef struct H5D_rw_multi_t
2. {
3. hid_t dataset_id;

4. hid_t file_space_id;
5. void * rbuf; /* data buffer for read */
6. const void * wbuf; /* data buffer for write */

7. hid_t mem_type_id;
8. hid_t mem_space_id;

1 https://docs.hdfgroup.org/hdf5/rfc/selection_io_RFC_210610.pdf

February 15, 2022 RFC THG 2012-08-28.v6

Page 8 of 14

9. } H5D_rw_multi_t;

4.3.1 H5Dread_multi()

The API function description is as shown below.

1. herr_t H5Dread_multi(hid_t file_id,
2. size_t count,

3. H5D_rw_multi_t info[],

4. hid_t dxpl_id);

 Parameters:

• file_id: file or group id for the location of datasets

• count: the number of accessing datasets.

• Info: the array of dataset information and read buffer.

• dxpl_id: dataset transfer property.

 Return:
• A non-negative value if successful; otherwise returns a negative value.

This routine performs collective or independent I/O reads from multiple datasets. In collective mode,
all process members of the communicator associated with the HDF5 file must participate in the call.

Each process creates the information required to perform each read in the array of H5D_rw_multi_t
structures and passes the array through to H5Dread_multi().

Brief description for internals after being called:

• Each process obtains the list of dataset information from the info[] array structure, and

constructs an MPI-derived datatype describing the sections from multiple datasets in an HDF5
file to be read.

• All processes end up calling MPI_File_read_at_all() once each for collective I/O or

MPI_File_read_at() once each for independent I/O.

• Each process tidies up and then returns the desired data into the buffer of the info[] array

structure.

When an application issues the multi-read call, H5D_rw_multi_t array elements are expected to differ
among processes participating in the collective operation due to different selections. This means that

not only the actual data in the buffers can be distinct (like most collective I/O operations), but the
dataset (dataspaces, datatypes, etc…) values for every process can be distinct.

All processes are required to pass the same file_id and the same property values for the dxpl_id.

February 15, 2022 RFC THG 2012-08-28.v6

Page 9 of 14

Refer to the example section for a better understanding of usage.

The same rule applies to H5Dwrite_multi(), detailed in the following section.

4.3.2 H5Dwrite_multi()

The API function description is as shown below.

1. herr_t H5Dwrite_multi(hid_t file_id,
2. size_t count,
3. H5D_rw_multi_t info[],

4. hid_t dxpl_id);

 Parameters:

• file_id: file or group id for the location of datasets

• count: the number of accessing datasets.

• Info: the array of dataset information and write buffer.

• dxpl_id: dataset transfer property.

 Returns:
• A non-negative value if successful; otherwise returns a negative value.

This routine performs collective or independent I/O writes to multiple datasets. In collective mode, all
process members of the communicator associated with the HDF5 file must participate in the call.

Each process creates the information required to perform each write in the array of H5D_rw_multi_t

structures, and passes the array through to H5Dwrite_multi().

Note that when overlapping selections are used, the data stored in the file for the overlapping regions

is undefined (as is the case for H5Dwrite).

Brief description for internals after being called:

• Each process obtains the list of dataset information from the info[] array structure, and

constructs an MPI derived type describing the sections from multiple datasets in an HDF5 file
to be written.

• All processes ends up calling MPI_File_write_at_all() once each for collective I/O or

MPI_File_write_at() once each for independent I/O.

4.4 Example cases

February 15, 2022 RFC THG 2012-08-28.v6

Page 10 of 14

These examples are based on the assumption that using multi read API on an HDF5 file with four
datasets, ‘d1’, ‘d2’, ‘d3’ and ‘d4’. Using multi write API would be practically identical.

Pseudocode is used to show how the API can be used in a simplified manner focusing on this task’s

scope.

4.4.1 Example1: all processes read from the same datasets ‘d1’, ’d2’ and ‘d3’

Consider the following as an example running with two processes:

• Rank 0 process (P0) reads data portions from datasets ‘d1’, ‘d2’, and ‘d3’.

• Rank 1 process (P1) reads data portions from datasets ‘d1’, ‘d2’ and ‘d3’.

Chart view:

 An HDF5 file

Pseudocode below:

 Open datasets ‘d1’, ‘d2’ and ’d3’

 Make selections from each dataset.

 Set ‘dxpl’ for collective operation.

 size_t count = 3 /* three datasets */
 If (mpi_rank == 0) /* P0 */

 H5D_rw_multi_t info[3] = { {d1’s P0 select…}, {d2’s P0 select…}, {d3’s P0 select…} }

 If (mpi_rank == 1) /* P1 */
 H5D_rw_multi_t info[3] = { {d1’s P1 select…}, {d2’s P1 select…}, {d3’s P1 select…} }

 H5Dread_multi (file_id, count, info, dxpl) /* get data via info’s buf */

4.4.2 Example2: each process read from different datasets or none

Consider the following as an example running with three processes:

P0 P1

d1

P0
P1

d2

P1

d3

p0

d4

February 15, 2022 RFC THG 2012-08-28.v6

Page 11 of 14

• Rank 0 process (P0) reads data portions from datasets ‘d1’, ‘d2’, and ‘d3’.
• Rank 1 process (P1) reads data portions from datasets ‘d3’ and ‘d4’.

• Rank 2 process (P2) does not read anything.

Chart view:

 An HDF5 file

Pseudo code below:

 Open datasets ‘d1’, ‘d2’,’d3’ and ‘d4’

 Make selections from each dataset.

 Set ‘dxpl’ for collective operation.

 If (mpi_rank == 0) /* P0 */

 count = 3; /* three datasets */
 info[3] = { {d1’s P0 select…}, {d2’s P0 select…}, {d3’s P0 select…} }

 If (mpi_rank == 1) /* P1 */

 count = 2; /* two datasets */
 info[2] = { {d3’s P1 select…}, {d4’s P1 select…} }

 If (mpi_rank >= 2) /* P2 */
 count = 0 /* no dataset access */
 Info = NULL

 H5Dread_multi (file_id, count, info, dxpl) /* get data via info’s buf */

5 Limitations

While the API will work for any datasets and any I/O, the initial implementation will fall back to simply
performing I/O for one dataset at a time in some cases. It will only perform simultaneous multi dataset
I/O using MPI I/O and only in collective mode. It will only support contiguous and chunked datasets
and may not support compression depending on available time for implementation. Note that any

d1

P0

d2

P1

d3 d4

P0
P0

P1

February 15, 2022 RFC THG 2012-08-28.v6

Page 12 of 14

other conditions that break collective I/O (datatype conversion, etc.) will also break simultaneous multi
dataset I/O.

6 Future Consideration

In addition to addressing the limitations outlined above, according to some discussions, we may be

able to consider developing H5Dcreate_multi(), H5Dopen_multi() and H5Dclose_multi() APIs in the
future as separate tasks if necessary or requested by the user.

February 15, 2022 RFC THG 2012-08-28.v6

Page 13 of 14

[1] Yang M and Koziol Q, 2006. Using collective IO inside a high performance IO software package—
HDF5 Technical Report National Center of Supercomputing Applications

[2] Rob Latham, Chris Daley, etc., March 2012. A case study for scientific I/O: improving the FLASH

astrophysics code, http://iopscience.iop.org/1749-4699/5/1/015001/article

[3] Qiao Kang, Scot Breitenfeld, Kaiyuan Hou, Wei-keng Liao, Robert Ross, and Suren Byna, December

2021. Optimizing Performance of Parallel I/O Accesses to Non-contiguous Blocks in Multiple Array
Variables, 2021 IEEE International Conference on Big Data (Big Data),
https://ieeexplore.ieee.org/document/9671638

February 15, 2022 RFC THG 2012-08-28.v6

Page 14 of 14

Revision History

August 28, 2012: Version 1 by Peter Cao. Circulated internally.

Sep 27, 2012: Version 2: updated based on internal reviews.

Feb 15, 2013: Version 3: Updated based on internal reviews. Revised APIs and related
contents.

The task entry is HDFFV-8313 in JIRA.

March 04, 2013: Version 3.1: Updates based on internal reviews. More updates and add an

example section.

March 07, 2013: Version 3.2: Some minor updates. Add chart view in the example section.

March 12, 2013 Version 3.3: Some updates from an internal presentation on 03-08-2013.

March 21, 2013 Version 4: revised based on the comments from the internal presentation

on 03-08-2013.

January 24, 2022 Version 5: Updated to reflect the status in early 2022.

February 15, 2022 Version 6: Updated based on internal reviews.

