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Background 
 The HDF5 library currently stores variable-sized data in two different data 
structures in its files.  Variable-sized metadata (currently only the names of links) is 
stored in a “local” heap for each group  
(http://hdf.ncsa.uiuc.edu/HDF5/doc/H5.format.html#LocalHeap).  Variable-sized raw 
data for datasets (like variable-length and dataset region reference datatypes) is stored in 
the file’s “global” heap 
(http://hdf.ncsa.uiuc.edu/HDF5/doc/H5.format.html#GlobalHeap). 

 
Limitations of Current Heap Implementations 
  Local heaps have several limitations that need to be overcome: the heap 
data is stored in a single block and the heap IDs used to locate entries in a local heap is 
the offset of the entry within the data block.  Keeping the heap data in a single block 
requires that the data block be relocated in the file when it expands and currently requires 
that the entire data block be read from disk when any entry in it is accessed.  Using the 
offset of the entry within the data block as the heap ID allows for fast lookups of the 
entry’s data, but means that entries cannot be relocated within the data block. 
 Global heaps have different limitations to overcome: the heap’s data blocks are 
shared among all global heap users (currently only the datasets) in the file, the data 
blocks are not tracked by any data structure and an entry in a data block is located with a 
linear search.  Sharing the data blocks among all datasets in the file means that when a 
data block is brought into the cache in order to access a particular entry, it may contain 
only a single entry for the dataset being accessed.  Additionally, sharing data blocks 
among all datasets in the file makes deleting the heap entries used by a dataset being 
deleted very difficult and time consuming (each element of the dataset being deleted must 
be accessed and the individual heap entry must be released).  The lack of a data structure 
tracking all data blocks for a file’s global heap means that there is no way to locate 
existing data blocks when none are cached and new entries need to be stored in the heap 
(requiring a new heap data block to be allocated).  Locating an entry in a data block with 
a linear lookup is time-consuming when a data block is large and stores many small 
entries.  
 

Motivation for a Redesigned Heap 
 As the format for groups in HDF5 is being redesigned currently (in preparation 
for the 1.8.0 release), it’s a good time to update the design of the local heaps.  Moreover, 
it would be nice if there were only one type of heap in the file, so the redesigned heap 
should attempt to supplant the global heaps as well as the local heaps.  Each object in the 
file (dataset or group) that needed to store variable-length data would have it’s own heap, 
hence the new heaps are called “private” heaps throughout the rest of this document. 
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Use Cases for a Private Heap 
 Several use cases for the new heap data structure arise from replacing the local 
and global heaps in the file: 

• The new private heap should replace using a local heap for groups.  Thus, it needs 
to fill the current group operation use cases, in rough order of priority: 

o Looking up an entry by it’s heap ID should be very fast 
o Heaps should store small entries efficiently (most links for a group are 

estimated to be ~64 bytes in size) 
o Heaps should be able to store entries up to at least 64KB in size 
o The heap should have very small metadata overhead per entry (since the 

size of entries will be small) 
o Adding entries to the “end” of heap should be fast 
o The heap should allow storing 100,000+ entries 
o Deleting entries from the heap should be efficient 

• The new private heap should replace using global heaps for storing variable-
length data and region references in datasets.  Thus, it needs to fill the current 
dataset operation use cases, in rough order of priority: 

o Adding entries to the “end” of a heap should be fast 
o Looking up an entry by it’s heap ID should be fast 
o Heaps should store both large & small entries efficiently 
o Heaps should not impose upper limits on an entry’s size 
o Heaps should not impose upper limits on the number of entries stored 
o Entries in the heap should be able to be reference counted (so fill values in 

datasets can be implemented efficiently) 
o Deleting entries from the heap should be possible 
o Deleting an entire heap should be possible without iterating over each 

element in a dataset 
• Additionally, the existing local & global heaps are missing several capabilities 

that would be valuable in future development: 
o It should be possible to compress the entries in the heap 
o It should be possible to request storage of a collection of related entries, in 

a heap of a given size, to avoid fragmentation and improve I/O 
performance. 

 
Design Goals for a Private Heap 
 To replace both the local and global heaps, the new “private” heap should achieve 
the following goals: 

• The heap should be self-contained (not global to the entire file or required to be 
shared with other file objects) 

• The heap should track all of it’s data blocks (so that all the space in the file used 
by the object it belongs to can be accurately determined) 

• IDs for entries in the heap should be persistent (adding or removing entries in the 
heap should not change the ID of other entries) 

• Existing entries in the heap should be very fast to locate and read 



 3 

• Allocating space for and storing new entries in the heap should be very fast 
• The size of a entry should not be limited 
• The number of entries in a heap should not be limited  
• Entries should be able to be removed from the heap, but removal speed should not 

be a top priority 
• Each entry should have an optional reference count 

 
Design of the Private Heap 
 The new heap will be based on a novel data structure, the “doubling table”, which 
is described in Appendix 1.  An example of a doubling table with a width of 4 and a 
starting block size of 4096 is shown here: 
 

Row Blocks Added Array Size 

0 4,096 4,096 4,096 4,096 16,384 

1 4,096 4,096 4,096 4,096 32,768 

2 8,192 8,192 8,192 8,192 65,536 

3 16,384 16,384 16,384 16,384 131,072 

4 32,768 32,768 32,768 32,768 262,144 

5 65,536 65,536 65,536 65,536 524,288 

…      

 
 IDs of objects in the heap are the linear offset of the entry in the heap, as if it were 
an array.  So, an ID of 22384 would be located in the 2nd block in row 1, at offset 1904. 
 Each block in the doubling table represents a block in the heap, which the HDF5 
library brings in from disk when it is accessed.   
  

TODO:  
 describe recursive/fractal nature of heap as larger blocks are used, especially as 

difference from “standard” doubling table, along with the resulting indirect/direct 
blocks. 

 describe “tiny” object storage in heap ID itself 
 describe “huge” object storage outside the heap 
 describe optional direct block compression (huge objects too) 
  followup with use case & design goals met or compromised on
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Appendix 1 – Doubling Tables 
 A doubling table provides a mechanism for quickly extending an array data 
structure in a way that minimizes the number of empty elements in the array, while 
retaining very fast lookup of any element within the array.  They are described in this 
appendix. 
 The classic way to increase the size of an array in memory is to double it’s size 
each time the array needs to be extended.  This approaches O(n) memory element copy 
operations and the usage of the array varies between 50% and 100% full.  For example, 
see the table below:  (QAK: could use picture) 
 
Current 
Size 

New 
Size 

# of Elements 
Copied Now 

Total # of 
Elements Copied 

% Full Before 
Extend Occurs 

% Full After 
Extend Occurs 

256 512 256 256 100% 50% 
512 1024 512 768 100% 50% 
1024 2048 1024 1792 100% 50% 
2048 4096 2048 3840 100% 50% 
…      
  
 This scheme may be reasonable for memory arrays, but is difficult for arrays on 
disk, due to the time involved for repeated data copying, especially as the size of the 
array increases.  Additionally, because each new copy of the array is twice as large as the 
previous one, the existing space in the file can’t be re-used, if it is not at the end of the 
file, leading to a file that could be twice as large as necessary. 
 However, if we think about an array more abstractly, as an ordered collection of 
homogenous elements, we could perhaps store those abstract elements in a set of blocks 
of elements, to facilitate more interesting array algorithms.  Then, instead of copying the 
array elements each time the array’s size is increased, it would be possible to leave the 
old array block where it was when a new block was added to the array and to build up an 
index for locating array elements in blocks that are added.  For example, see the tables 
below: (QAK: could use a picture, showing index & blocks) 
 

Block # Block Size Array Size % Full After 
Extend Occurs 

0 256 256 50% 
1 256 512 50% 
2 512 1024 50% 
3 1024 2048 50% 
4 2048 4096 50% 

 
Element #’s Block # 

0 – 255 0 

256 – 511 1 

512 – 1023 2 
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1024 – 2047 3 

2048 – 4095 4 

 

 This approach reduces the amount of element copying, but when the array 
expands, the new “array” is still 50% empty.   

 Now, instead of doubling the block size each time, if we keep the same block size 
as several blocks are added to the array, we could increase the percent of the array that is 
full when each block is added.  For example, if we start with 256 byte blocks and have 
four blocks of the same size before doubling the size of the block to 512 bytes, etc., the 
blocks added and the percent full of the array would look like this: (QAK: could use a 
picture, showing relative block sizes, as the are added) 

Block size % Full when extend 
occurs 

256 0 

256 50% 

256 66.6% 

256 75% 

512 66.6% 

512 75% 

512 80% 

512 83.3% 

1024 75% 

 
 (QAK: add another example, with a different width) 

 If this trend is continued, it can be seen that the percent full when a new size of 
blocks is added approaches 80% full when adding four blocks of the same size (a “width” 
of 4 – the “width” is the # of blocks added of the same size, before doubling to the next 
size).  After some experimentation, the following table of percent full information was 
derived: 

Doubling Table 
Width 

Low % Full 
When New 
Block 
Added* 

High % Full 
When New 
Block 
Added* 

Low to High Range 

1 50.00000% 50.00000% 0.00000% 

2 66.66667% 75.00000% 8.33333% 
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4 80.00000% 87.50000% 7.50000% 

8 88.88889% 93.75000% 4.86111% 

16 94.11765% 96.87500% 2.75735% 

32 96.96970% 98.43750% 1.46780% 

64 98.46154% 99.21875% 0.75721% 

128 99.22481% 99.60938% 0.38457% 

256 99.61089% 99.80469% 0.19379% 

512 99.80507% 99.90234% 0.09728% 

1024 99.90244% 99.95117% 0.04873% 

* - “In the limit” as ‘infinite’ array size is reached. 

 (QAK: show graph of % Full for several widths, as blocks are added) 
 Clearly, making the table “wider” benefits the percent full when adding new 
blocks to the array.  Probably a point of diminishing returns is reached in the 16-64 range 
of widths.  Also, this progression is only shown for widths that are powers of two.  Other 
widths follow a similar progression, but are a poor match for implementing in software. 
 Additionally, in order to work out an easy algorithm for computing which block 
an array offset corresponds to, we found that it was better to make the first two “rows” of 
blocks in the table be the same size, before starting to double the blocks’ sizes.  An 
example for a table with width 4 is: 

Row Blocks Added Array Size 

0 256 256 256 256 1024 

1 256 256 256 256 2048 

2 512 512 512 512 4096 

3 1024 1024 1024 1024 8192 

4 2048 2048 2048 2048 16384 

5 4096 4096 4096 4096 32768 

…      

 
 This corresponds to “rolling up” all the blocks that are smaller than the initial 
block size and makes the array size a nice power of two also. 
 

TODO: 
 Show equation for looking up the block for an array element index 


