
December 1, 2014RFC THG 2014-12-01.v1

RFC: Allocate/Free Mismatches in HDF5 Filter Code on Windows

Dana Robinson

As data pass through the filter chain on their way from the dataset to the user, the
buffers in which the data are stored may need to be re-allocated. This becomes a
problem when third-party filters link to a different memory manager than the HDF5
library. In this situa�on, the alloca�ng library will slowly leak memory and the freeing
library will corrupt its heap, exhibit failures, etc.

On POSIX systems, this is usually not a problem since the C library is a part of the
opera�ng system. An important excep�on is when debug or high-performance memory
managers are being used. On Windows, however, this is o�en a problem since
Microso� implements C library func�ons in a collec�on of Visual-Studio- and
configura�on-specific libraries, which do not share heap state.

This RFC describes this problem and steps the user can take to mi�gate the problem. It
also introduces the new H5(re)allocate_memory() func�ons, which will
appear in HDF5 1.8.15 (release date: May 2014).

Introduc�on

The Underlying Problem

In the HDF5 library, responsibility for the alloca�on and freeing of memory is usually the responsibility
of the same component; either the library or the user's code. When data that would normally be
stored in dynamically-allocated memory must be returned from the library, the user is usually asked to
allocate a buffer, which is passed to the func�on and then filled by the library. The complica�on is that
the user must be able to determine the buffer's size. The mechanism for this is for the user to make a
preliminary call, passing a NULL pointer in for the buffer. The func�on will then return the appropriate
number of bytes for the user to allocate.

Example:

ssize_t size;

size_t bufsize;

hid_t object_id;

char *comment;

…

size = H5Oget_comment(object_id, NULL, &bufsize); /*
determine size */

 Page 1 of 10

December 1, 2014RFC THG 2014-12-01.v1

bufsize = size;

comment = (char *)malloc(bufsize * sizeof(char));

size = H5Oget_comment(object_id, comment, &bufsize); /* fill
buffer */

There are, however, several API calls in which the buffer is allocated by the HDF5 library and returned
to the user, who is responsible for freeing it. This can be a problem when memory is managed via
different libraries as it can result in resource leaks or a corrupted heap. This heap corrup�on can result
in subtle bugs that can be very difficult to reproduce and diagnose. In most cases, having the library
allocate memory and the applica�on free it is not a problem since memory opera�ons will resolve
down to the opera�ng system's memory manager, however there are cases where this is not true. For
example, a debug memory manager may be in use by the applica�on code but not the library. A
complica�on that is unique to Windows is that the C standard library func�ons are implemented in
Visual-Studio-specific shared libraries. When different versions of Visual Studio are used to compile
the library and user code, the allocate and free calls are made in different libraries, which do not share
state, leading to the previously men�oned resource and corrup�on issues.

In an effort to mi�gate this problem, a new H5free_memory() call was added to the C API in HDF5
1.8.13 which exposes the library's free() call. This func�on can be used to ensure that memory
allocated by the library is freed by the library. Unfortunately, there is s�ll a situa�on where this
allocate/free mismatch can occur.

Memory Realloca�on In Third-Party Filters

From the H5Zregister() API documenta�on:

"The filter should perform the transforma�on in place if possible. If the transforma�on
cannot be done in place, then the filter should allocate a new buffer with malloc() and
assign it to *buf, assigning the allocated size of that buffer to *buf_size. The old buffer
should be freed by calling free()."

The problem with these instruc�ons is that, if the filter is linked to a different memory alloca�on
library (or C run-�me), then the memory allocated by the filter's library will be freed in the HDF5
library, and vice-versa. This is illustrated in the figure below.

The figure shows the alloca�on of a buffer in the library, into which data from storage are wri�en. This
buffer comes from the HDF5 library's allocator (the Windows C run-�me is used here). The buffer is
then passed to the filter, which may need to enlarge it since the processed data may be larger than
the raw data. This is shown in the center region as a free followed by an alloca�on. In this case, the
filter is linked to an independent memory allocator, which obviously does not track the original buffer
in its heap structures. Depending on the allocator, the free here could result in a memory leak, an
immediate crash, or heap corrup�on. If the program con�nues, the library will experience the same
problem when it a�empts to free the buffer allocated by the filter.

 Page 2 of 10

December 1, 2014RFC THG 2014-12-01.v1

The Windows C Run-Time (CRT)
Microso� implements the standard C library func�ons in debug and release libraries that are specific
to each version of Visual Studio. Each library is a separate en�ty and maintains its own internal CRT
object state, including file handles and heap informa�on. Crea�ng an object in one CRT and
destroying it in another CRT may appear to work but can cause corrup�on of one CRT and resource
leaks in the other.

 Page 3 of 10

December 1, 2014RFC THG 2014-12-01.v1

These problems are normally avoided on Windows by ensuring that all components that can return
CRT resources are linked to the same CRT dll. Unfortunately, even debug and release CRTs are housed
in separate dlls, so this is not an easy solu�on to implement. Using sta�c linkage does not avoid this
problem since separate copies of the CRT are created in each sta�cally linked component.

Note that it can be extraordinarily difficult to ensure that memory is allocated and freed in the same
library on Windows. Not only are there different dlls for shared vs. sta�c and the various versions of
Visual Studio, but you also have to deal with compa�bility libraries (Visual Studio 2012 can use a
special version of the C run-�me that is compa�ble with Windows XP, for example) and service pack
libraries. These "dll variants" will all have the exact same name, making them difficult to tell apart.
There are also poten�al path issues, where it looks like a par�cular dll is being used, but an incorrect
plugin search path causes an incorrect library to be loaded.

Mi�ga�on
There are several poten�al solu�ons to the problem of freeing memory allocated by the HDF5 library.

Use the Same Memory Manager/Correct C Run-Time Everywhere

Both filter code and the HDF5 library must use the same memory allocator. When using Visual Studio,
both the Visual Studio version and release/debug state must be iden�cal. As of HDF5 1.8.14, this is the
only available solu�on.

As noted previously, this can be very difficult to pull off in prac�ce. It can also be extremely difficult to
debug problems when things go awry.

 Page 4 of 10

December 1, 2014RFC THG 2014-12-01.v1

Create an H5(re)allocate_memory() and Func�ons

Like H5free_memory(), these func�ons would be thin wrappers around the HDF5 C library's
HDmalloc() and HDrealloc() func�ons. Op�onally, a Boolean parameter passed to
H5allocate_memory() could indicate whether the memory should be cleared or not.

herr_t H5allocate_memory(size_t size, hbool_t clear, /*out*/ void
**buf)

herr_t H5reallocate_memory(size_t size, /*in-out*/ void **buf)

As a historical note, the odd naming scheme (H5free_memory, etc.) is due to the "H5free()" not being
en�rely clear as to what was being freed. This would be par�cularly dangerous since it takes a void
pointer, allowing any buffer to be passed in without the compiler complaining.

These func�ons would be used to allocate memory that will later be freed by the library. Their only
intended use at this �me is by filter authors. The memory management schemes used by other API
calls will remain unchanged. This solu�on has the advantages of being extremely easy to implement
and intui�ve to use.

Tenta�ve reference manual pages for these func�ons are available as an appendix to this RFC.

Add Func�ons that Set/Get Memory Management Func�ons

These func�ons would probably be constructed along the lines of H5Pset_vlen_manager() and could
either be filter-pipeline-specific H5Z* func�ons or could be more generic H5* func�ons that apply to
the library as a whole, supplan�ng even the HDmalloc(), etc. func�ons.

Tes�ng
Ideally, the best way to test this func�onality would be to locate an open-source, pla�orm-
independent malloc/free replacement (perhaps Dmalloc) and link that to a purpose-built tes�ng filter
and plugin that always reallocates the input memory buffer.

An addi�onal, one-�me, test will be to ensure that the c-blosc filter and plugin work when its
configura�on does not match the HDF5 library's.

We may also want to use this replacement allocator to write a small test that exercises the memory-
returning func�ons that must use H5free_memory().

Recommenda�ons
The easiest, least painful solu�on is to add H5(re)allocate_memory() func�ons to the API, star�ng
with HDF5 1.8.15 (release date: May 2015). This solu�on is the most straigh�orward solu�on to the
"mul�ple CRT dlls" problem and will be easy for maintainers to implement. It's also the easiest to use
from managed languages since it's a simple API call and does not involve passing func�on pointers.

 Page 5 of 10

December 1, 2014RFC THG 2014-12-01.v1

Allowing memory management func�ons to be specified also holds a certain appeal, however this
would be a more complicated solu�on to implement. Given the need to get HDF5 1.10 out the door
next year, it's probably be�er to opt for the more expedient solu�on and save a more generalized
memory management scheme for HDF5 1.12.

Addi�onally, the H5Z sec�on of the reference manual will need to be updated to indicate that filter
implementers should use the new func�ons when they have to re-allocate a buffer.

We should also proac�vely contact the filter authors listed on our website to inform them of this
problem so they can fix their code.

Suggested Task List

Acknowledgements
This work is being internally funded by The HDF Group.

Revision History
December 1, 2014: Version 1 circulated for comment among selected members of The HDF Group.

References

Add H5allocate_memory() and H5reallocate_memory() func�ons to HDF5 C library.●

Evaluate a malloc() replacement for tes�ng purposes.●

Modify the malloc() replacement for inclusion in the library. This is likely to require wri�ng
CMakeLists.txt files for the library, storing the source in our version control system, etc.

●

Create a test filter and plugin that use the replacement memory alloca�on library.●

Create a test that exercises the filter and plugin to ensure that they do not corrupt the heap.●

Update the reference manual and user's guide with new best prac�ces.●

Contact known filter authors and suggest that they modify their code.●

(Op�onal) Create a test, linked to the replacement allocator, that ensures that H5free_memory
correctly frees memory without corrup�ng the heap.

●

(Op�onal) Inves�gate unifying our memory management func�ons/schemes for a future
release.

●

The HDF Group. "HDF5 Documenta�on", h�p://www.hdfgroup.org/HDF5/doc/doc-info.html
(December 1, 2014).

1.

Microso� MDSN. "Poten�al Errors Passing CRT Objects Across DLL Boundaries (Visual Studio
2012)", h�p://msdn.microso�.com/en-us/library/ms235460%28v=vs.110%29.aspx (December
1, 2014).

2.

 Page 6 of 10

http://www.hdfgroup.org/HDF5/doc/doc-info.html
http://msdn.microsoft.com/en-us/library/ms235460%28v=vs.110%29.aspx

December 1, 2014RFC THG 2014-12-01.v1

Microso� MDSN. "C Run-Time Libraries (Visual Studio 2012)", h�p://msdn.microso�.com/en-
us/library/abx4dbyh%28v=vs.110%29.aspx (December 1, 2014).

3.

Microso� MDSN. "How to link with the correct C Run-Time (CRT) library",
h�p://support.microso�.com/kb/140584 (December 1, 2014).

4.

The Dmalloc website. h�p://dmalloc.com/(December 1, 2014).5.

 Page 7 of 10

http://msdn.microsoft.com/en-us/library/abx4dbyh%28v=vs.110%29.aspx%20
http://support.microsoft.com/kb/140584%20
http://dmalloc.com/

December 1, 2014RFC THG 2014-12-01.v1

Name: H5allocate_memory

Signature:

 herr_t H5allocate_memory(size_t size, hbool_t clear,

/*OUT*/ void **buf)

Purpose:

 Allocates memory that will later be freed internally by the HDF5 library.

Descrip�on:

In order to avoid heap corrup�on, allocated memory should be freed using the same library
that ini�ally allocated it. In most cases, the HDF5 API uses resources that are allocated and
freed en�rely by either the user or the library so this is not a problem. In rare cases, however,
HDF5 API calls will free memory that the user allocated. This func�on allows the user to safely
allocate this memory.

At this �me, the only intended use for this func�on is for alloca�ng memory that will be
returned to the library (and eventually the user) as a data buffer from a third-party filter.

Note:

This func�on is intended to have the seman�cs of malloc() and calloc().

It is par�cularly important to use this func�on to allocate memory on Windows. The C
standard library is implemented in dynamic link libraries (dlls) known as the C run-�me (CRT).
Each version of Visual Studio comes with mul�ple versions of the CRT dlls (debug, release, etc.)
and alloca�ng and freeing memory across dll boundaries can cause resource leaks and subtle
bugs due to heap corrup�on.

Only use this func�on to allocate memory inside third-party HDF5 filters. It will generally not
be safe to use this func�on to allocate memory for any other purpose.

Even when using this func�on, it is s�ll best to ensure that all components of a C applica�on
are built with the same version of Visual Studio and configura�on (Debug or Release) and thus
linked against the same CRT.

Parameters:

 size_t size Size of the buffer that will be allocated.

 hbool_t clear Whether or not the new buffer should be memset to zero.

 void **mem OUT: Pointer to a buffer that will be allocated.

Returns:

 Returns a non-nega�ve value if successful. Otherwise returns a nega�ve value.

 The mem parameter will be set to NULL on failure.

Appendix: Proposed H5allocate_memory() Reference Manual Page1)

 Page 8 of 10

December 1, 2014RFC THG 2014-12-01.v1

Name: H5reallocate_memory

Signature:

 herr_t H5reallocate_memory(size_t size,

/*IN-OUT*/ void **buf)

Purpose:

 Resizes (possibly realloca�ng) memory that will later be freed internally by the HDF5 library.

Descrip�on:

In order to avoid heap corrup�on, allocated memory should be freed using the same library
that ini�ally allocated it. In most cases, the HDF5 API uses resources that are allocated and
freed en�rely by either the user or the library so this is not a problem. In rare cases, however,
HDF5 API calls will free memory that the user allocated. This func�on allows the user to safely
resize this memory.

At this �me, the only intended use for this func�on is for resizing memory that will be
returned to the library (and eventually the user) as a data buffer from a third-party filter.

Note:

This func�on is intended to have the seman�cs of realloc().

If the input buffer is NULL, the func�on works like H5allocate_memory() with a clear
parameter of FALSE.

The input buffer MUST either be NULL or have been allocated by H5allocate_memory() since
the input buffer may be freed by the library.

It is par�cularly important to use this func�on to resize memory on Windows. The C standard
library is implemented in dynamic link libraries (dlls) known as the C run-�me (CRT). Each
version of Visual Studio comes with mul�ple versions of the CRT dlls (debug, release, etc.) and
alloca�ng and freeing memory across dll boundaries can cause resource leaks and subtle bugs
due to heap corrup�on.

Only use this func�on to resize memory inside third-party HDF5 filters. It will generally not be
safe to use this func�on to resize memory for any other purpose.

Even when using this func�on, it is s�ll best to ensure that all components of a C applica�on
are built with the same version of Visual Studio and configura�on (Debug or Release) and thus
linked against the same CRT.

Parameters:

 size_t size Size of the buffer that will be allocated.

 void **mem IN-OUT: Pointer to a buffer that will be allocated.

Appendix: Proposed H5allocate_memory() Reference Manual Page2)

 Page 9 of 10

December 1, 2014RFC THG 2014-12-01.v1

 May be NULL.

Returns:

 Returns a non-nega�ve value if successful. Otherwise returns a nega�ve value.

 The mem parameter will be le� unchanged on failure.

 Page 10 of 10

