
April 5, 2016RFC THG 2015-02-05.v6

HDF5 Fortran Wrappers Maintenance:

Dropping Support for Non-Fortran 2003 Standard Compliant Compilers

M. Scot Breitenfeld and Elena Pourmal

The HDF5 Fortran library is a thin layer of Fortran and C wrapper func�ons on top of
the HDF5 C library. When the HDF5 Fortran library was first released in 2001, the
Fortran 90 compilers didn’t provide a standard for handling interoperability with the C
language. Therefore, special code had to be maintained to make the HDF5 Fortran
library portable between UNIX and Windows pla�orms.

The introduc�on of the new Fortran 2003 standard enabled The HDF Group developers
to extend Fortran support for advanced HDF5 library’s features requiring, for example,
usage of callback func�ons, itera�ons, and complex HDF5 datatypes. Also, Fortran 2003
introduced a standard for C interoperability.

Most –if not all– of the Fortran compilers available today are Fortran 2003 compliant.
Hence, the HDF Group developers have taken advantage of the Fortran 2003 standard
in order to greatly simplify the HDF5 Fortran library code. The changes described in this
document became available in the HDF5 library version 1.10.0 released in March 2016.

As a result of these changes, the HDF5 1.10 Fortran library requires a Fortran compiler
that has a specified subset of the Fortran 2003 features implemented. However, the
described changes are transparent to the exis�ng HDF5 Fortran applica�ons.

This document outlines the reasoning for and implica�ons of the implemented change
on the HDF5 Fortran library source code and provides guidance for future maintenance.

Introduc�on
The Fortran 2003 (F2003) standard greatly simplifies the interoperability with C and it: (1) improves
the portability of the Fortran wrappers with the main C HDF5 library, (2) reduces the �me invested in
Fortran development and (3) reduces the effort in maintaining the Fortran wrappers. The HDF Group
made use of these improvements in the v1.10.0 release of HDF5. The majority, if not all, of the
current compilers now have, and have had for some �me, the C interoperability features
implemented. Therefore, The HDF Group requires a minimum implementa�on of F2003
interoperability features in order to compile HDF5 v1.10.0 and later.

Fortran prac�ces in HDF5 1.8 and earlier

Currently, HDF5 v1.8 handles non-F2003 compila�on using configure op�on –enable-fortran. The

 Page 1 of 5

April 5, 2016RFC THG 2015-02-04.v6

F2003 features are enabled if both the configure op�ons –enable-fortran and –enable-fortan2003 are
used. The Fortran files are organized in the fortran/src directory as follows:

The appropriate set of files to compile are chosen at build �me depending on which set of configure
flags were set. If, during configure of a F2003 build, the build process detects that the compiler does
not meet the F2003 standard requirements then the build process is terminated with an error. The
user then has to specify only –enable-fortran and rebuild.

Con�nued support prac�ces in HDF5

It is important to note that HDF5 con�nues support for F90/F95 standard compliant codes calling
HDF5. Except for the currently required use of a Fortran 90 module (i.e. USE HDF5), all F90/F95
standard compliant code will remain compa�ble with the HDF5 library. However, some newer HDF5
APIs will require F2003 standard features in order to be used. All Fortran codes using HDF5 will not
have to change any API currently supported. The adop�on of F2003 in HDF5 should be transparent in
terms of the impact on user’s HDF5 Fortran codes.

Moving to the F2003 standard in HDF5 1.10

Required F2003 features

The Fortran compiler needs not to have the en�re F2003 standard implemented in order to compile
HDF5 v1.10. The list of required features needing to be implemented are:

Known compilers not mee�ng F2003 requirements

Known compilers not mee�ng the F2003 requirements as described in 2.1 are:

Note, the HDF Group dropped support for those compilers as of May 15, 2015 a�er the HDF5 1.8.15
release.

Build behavior in v1.10

Specifying the compiler op�on –enable-fortran will compile all the Fortran wrappers. The op�on –
enable-fortran2003 will be discon�nued.

Source files ending in .f90 contain APIs which are both F90 and F2003 compa�ble,●

Source files ending in _F90.f90 contain F90 APIs which also have a F2003 equivalent (if
available) API,

●

Source files ending in _F03.f90 contain F2003 APIs that require a F2003 compiler.●

The ISO_C_BINDING module must be available,●

C_PTR, C_FUNPTR must be implemented,●

BIND(C) must be implemented.●

gfortran version 4.1 and earlier.●

 Page 2 of 5

April 5, 2016RFC THG 2015-02-04.v6

Benefits of adop�ng F2003 standards

The maintainability of the Fortran wrappers improves: (1) the development of new wrappers and (2)
reduces the complexity of the current implementa�on.

Use of BIND(C)

In HDF5 1.8 the Fortran wrappers naming conven�on with the C library are handled internally by
configure and an internal HDF5 conven�on. For example, the Fortran API interface for h5awrite_f_c is:

INTERFACE
 INTEGER FUNCTION h5awrite_f_c(attr_id, mem_type_id, buf)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : c_ptr
 !DEC$IF DEFINED(HDF5F90_WINDOWS)
 !DEC$ATTRIBUTES C,reference,decorate,alias:'H5AWRITE_F_C'::h5awrite_f_c
 !DEC$ENDIF
 ...
 END FUNCTION h5awrite_f_c
END INTERFACE

The !DEC$ is required to provided portability between UNIX and Windows pla�orms with Intel Fortran
compile. With the use of BIND(C) in HDF5 1.10, the new interface does not require the !DEC$
declara�ons.

INTERFACE
 INTEGER FUNCTION h5awrite_f_c(attr_id, mem_type_id, buf) BIND(C, NAME='h5awrite_f_c')
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : c_ptr
 ...
 END FUNCTION h5awrite_f_c
END INTERFACE

Besides now being standard compliant, the name of the C API is also specified directly. Therefore, the
current conven�on of defining a name space alias in H5f90proto.h,

#define nh5awrite_f_c H5_FC_FUNC_(h5awrite_f_c, H5AWRITE_F_C)
H5_FCDLL int_f nh5awrite_f_c (hid_t_f *attr_id, hid_t_f *mem_type_id, void *buf);

is simplified by removing the need to use #define and by using the name of the C API wrappers
directly,

H5_FCDLL h5awrite_f_c (hid_t_f *attr_id, hid_t_f *mem_type_id, void *buf);

Furthermore, most – if not all – of the C wrappers can be eliminated by calling the HDF5 C APIs
directly from the Fortran wrappers. Doing so also enables Fortran programs to call the HDF5 C APIs
directly, avoiding the Fortran wrappers all together, if needed. Finally, as discussed in Sec�on 1.1, the
need to maintain and develop both F90 and F2003 compliant wrappers is eliminated.

Implemented Changes to the Fortran Structure in HDF5 1.10

 Page 3 of 5

April 5, 2016RFC THG 2015-02-04.v6

Use of BIND(C)

Switching to using BIND(C) requires:

Removal of Dual Func�oning Fortran Files and Future Maintenance

All duplicate Fortran 90 APIs, which have an equivalent Fortran 2003, were eliminated. The _F03.f90
APIs were combined with the .f90 files and the _F90.f90 files were eliminated. All the autotools and
CMake related files were updated to reflect these changes.

Configure automa�cally generates the Fortran 90 APIs in order to handle backward compa�bility of
F90 APIs. At configure, all valid integer and real KINDs are determined, in addi�on to the maximum
decimal precision for reals and floats in Fortran and C, respec�vely. The valid KINDs for integers and
reals found by configure are used in H5_buildiface.F90 (fortran/src) via the preprocess include file
H5config_f.inc. During make, H5_buildiface.F90 generates all the valid F90 KIND interfaces for
h5awrite_f, h5aread_f, h5dwrite_f, h5dread_f, h5pset_fill_value_f, h5pget_fill_value_f, h5pset_f,
h5pget_f, h5pregister_f and h5pinsert_f to handle up to, and including, rank 7 arrays. No new Fortran
APIs should be added to H5_buildiface.F90 since new Fortran APIs should not use F90 specifica�ons,
but should instead use F2003. The source file generated by H5_buildiface.F90 is H5_gen.F90 and is the
Fortran module “H5_GEN”. This module is included in the HDF5 module.

The Fortran HL implementa�on mirrors the low-level Fortran APIs as described above. During make,
H5HL_buildiface.F90 (hl/fortran/src) generates all the valid F90 KIND interfaces, found in
H5config_f.inc, i.e., it generates all the valid F90 KIND interfaces h5ltread_dataset_f,
h5ltread_dataset_int_f, h5ltmake_dataset_int_f, h5ltmake_dataset_float_f,
h5ltmake_dataset_double_f, h5ltread_dataset_float_f, h5ltread_dataset_double_f,
h5tbwrite_field_name_f, h5tbwrite_field_index_f, h5tbread_field_index_f and h5tbinsert_field_f. This
implementa�on fixes the generic procedure viola�on in HDF5 1.8 when an 8-byte REAL is used as the
default. The source file generated by H5HL_buildiface.F90 is H5LTff_gen.F90 and contains the modules
“H5LT” and “H5TB”.

The maximum precision value is used in H5match_types.c to match the Fortran real KIND to an
interoperable C data type.

Fortran File Preprocessing

Fortran files were renamed from .f90 to .F90 in order to indicate that the files should be pre-
processed. In HDF5 1.8 no Fortran source code allows for preprocessing direc�ves. The preprocessor
direc�ves allow for the inclusion of Fortran standard dependent intrinsic func�ons and features in a

All current Fortran APIs to use the BIND(C, name=) conven�on,●

All !DEC$ lines are eliminated,●

The use of #define is eliminated,●

The C API matchs the name given in the BIND(C, name=) specifica�on.●

 Page 4 of 5

April 5, 2016RFC THG 2015-02-04.v6

common source file. This is opposed to the HDF5 1.8 prac�ce of including separate source files,
chosen at build �me, depending on the availability of, or lack thereof, the intrinsic func�on or feature.

Acknowledgements
The HDF Group internally funded this work.

Revision History
February 5, 2015: Version 1 circulated within The HDF Group Fortran developers.

April 3, 2015: Version 2 circulated within The HDF Group Fortran developers.

April 9, 2015 Version 3 sent to The HDF Group HDF5 developers.

April 10, 2015 Version 4 sent to the Forum.

March 28, 2015 Version 5 updated with final implementa�on details.

April 5, 2016 Version 6 updated to take into considera�on HDF5 1.10.0 release

1)

 Page 5 of 5

