
RFC:	Dataset	Object	Header	Size	

Vailin	Choi	
John	Mainzer	

Jacob	(Jake)	Smith	

The	document	discusses	enhancement	to	the	HDF5	library	to	minimize	object	
header	 size	 when	 a	 dataset	 is	 created,	 and	 describes	 our	 proposed	
implementation	of	this	enhancement.		The	feature	minimizes	the	metadata	to	
raw	data	ratio	when	an	application	creates	large	numbers	of	tiny	datasets.		

	

Introduction					
For	one	of	The	HDF	Group	projects,	statistics	were	gathered	from	Axom	test	
data	files,	generated	by	a	run	of	MFEM’s	ex9p.cpp	application.	The	statistics	
show	 the	 amount	 of	 space	 used	 for	 the	 objects’	 metadata	 and	 also	 total	
metadata	space	allocated.			It	was	noted	that	there	was	a	high	percentage	of	
unused	space	in	dataset	object	headers	--	204	bytes	on	average.		The	amount	
of	unused	space	for	groups	was	negligible.		
The	HDF5	 library	uses	a	hard-coded	constant	 for	 the	dataset’s	 initial	object	
header	size	even	though	not	all	space	is	used.		Reducing	initial	dataset	object	
header	size	to	the	point	that	it	is	only	large	enough	for	the	required	messages	
should	 reduce	 the	metadata	 to	 raw	data	 ratio	 significantly	 for	 applications	
(such	 as	 Axom)	 which	 create	 many	 tiny	 datasets	 –	 albeit	 at	 the	 cost	 of	
inefficiencies,	should	additional	attributes	be	attached	to	the	datasets.	 	This	
RFC	describes	our	proposed	plan	for	implementing	this	change.	
As	the	HDF5	library	has	no	way	of	knowing	if	the	user	will	attach	attributes	to	
a	dataset	after	it	is	created,	we	propose	to	minimize	the	dataset	object	header	
size	only	when	directed	by	the	user.		We	do	this	for	two	reasons:	

• Reduction	in	dataset	object	header	size	is	irrelevant	unless	the	dataset	
is	tiny,	and		

• Minimization	of	object	header	size	will	result	in	immediate	allocation	
of	 an	 object	 header	 continuation	 block	 if	 an	 attribute	 is	 added	 to	 a	
dataset	whose	object	header	size	has	been	minimized.	

Current	implementation		
When	creating	a	dataset	in	an	HDF5	file,	the	library	will	first	allocate	memory	for	the	
H5D_t	data	structure	and	will	also	set	up	info	for	the	following	messages	for	a	
dataset:	

1) Dataspace	message	
2) Datatype	message	
3) Fill	value	message	
4) Layout	message	
5) Filter	pipeline	message	if	layout	is	chunked	and	filter	is	used	
6) External	file	list	message	if	external	file	list	is	defined	
7) Modification	time	message	if	the	object	header	is	tracking	time	and	the	

version	is	1	
Then	it	will	call	H5O_create()	with	the	parameter	size_hint	to	set	up	the	dataset’s	
object	header:	

• Allocate	memory	for	the	object	header	H5O_t	and	initialize	information	in	the	
data	structure		

• Allocate	file	space	via	H5MF_alloc()	for	the	object	header	prefix	plus	size_hint,	
which	is	the	estimated	size	for	the	first	chunk	of	object	header	messages.		File	
space	will	be	allocated	out	of	this	chunk	later	on	for	the	required	messages.	

• Allocate	memory	for	the	object	header	prefix	and	the	first	chunk	of	object	
header	messages	

The	callers	for	H5O_create()	can	be:	
• Group	

• Dataset	

• Committed	datatype	

• Superblock	
The	size_hint		parameter	passed	to	H5O_create()	for	a	dataset	is	a	set	define:	

/* Set the minimum object header size to create objects with */
#define H5D_MINHDR_SIZE 256

This	is	the	estimated	size	for	eight	possible	messages	when	a	dataset	is	created:	
#define H5O_NMESGS 8 /* initial number of messages */

The	eight	possible	messages	are	the	seven	messages	listed	above	plus	the	object	
header	continuation	message.	While	the	estimate	is	reasonable	and	efficient	for	a	
general	use	case,	it	can	cause	significant	file	space	inefficiencies	when	an	application	
(such	as	Axom)	creates	large	numbers	of	tiny	datasets.		This	RFC	addresses	the	issue	
of	the	size_hint	passed	to	H5O_create()	for	a	dataset.		

Additions	to	the	API		
We	will	introduce	two	sets	of	public	routines	for	users	to	set	the	minimum	object	
header	size	for	a	dataset.			
The	first	set	H5Pset/get_dset_no_attrs_hint()	allows	the	user	to	set	the	minimization	
request	on	a	per	dataset	basis.		A	new	property	
H5D_CRT_MIN_DSET_HDR_SIZE_NAME	will	be	introduced	in	the	dataset	creation	
property	list.		
The	second	set	H5Fset/get_dset_no_attrs_hint	()	allows	the	user	to	set	the	
minimization	request	on	a	per	file	basis.		Users	can	set/unset	the	request	for	the	
creation	of	datasets	while	the	file	is	opened.	

H5Pset_	dset_no_attrs_hint	

The	new	API	will	be:		
herr_t H5Pset_dset_no_attrs_hint(hid_t dcpl_id, hbool_t minimize)

The	parameters	are:	
• dcpl_id:	the	dataset	creation	property	list		

• minimize:	TRUE	or	FALSE	in	using	the	minimum	object	header	size	when	
creating	the	dataset;	the	library	default	is	FALSE	

H5Pget_dset_no_attrs_hint	

The	new	API	will	be:		
herr_t H5Pget_dset_no_attrs_hint(hid_t dcpl_id, hbool_t *minimize)

The	parameters	are:	
• dcpl_id:	the	dataset	creation	property	list		

• minimize:		whether	the	minimum	object	header	size	is	used	or	not	when	
creating	the	dataset	

H5Fset_dset_no_attrs_hint	
The	new	API	will	be:		

herr_t H5Fset_dset_no_attrs_hint(hid_t file_id, hbool_t minimize)

The	parameters	are:	
• file_id:	the	file	identifier		

• status:	TRUE	or	FALSE	in	using	the	minimum	object	header	size	when	
creating	datasets	in	the	file;	the	library	default	is	FALSE	

H5Fget_dset_no_attrs_hint	

The	new	API	will	be:		
herr_t H5Fget_dset_no_attrs_hint(hid_t file_id, hbool_t *minimize)

The	parameters	are:	

• file_id:	the	file	identifier		

• minimize:		whether	the	minimum	object	header	size	is	used	or	not	when	
creating	datasets	in	the	file	

Library	Internal	Changes	
When	creating	a	dataset	in	the	file,	the	library	calls	H5O_create()	with	the	size_hint	
parameter	to	set	up	an	object	header	for	the	dataset.		To	determine	the	size	for	
size_hint,	the	library	will	first	access	the	H5D_CRT_MIN_DSET_HDR_SIZE_NAME	
property	from	the	dataset’s	creation	property	list	(DCPL).		It	will	then	decide	
whether	to	use	the	minimum	object	header	size	for	the	dataset	as	follows:	

• If	the	property	does	not	exist,	the	action	to	minimize	the	object	header	size	
will	depend	on	the	file-enabled	minimize	status.	

• If	the	property	does	exist,	the	library	will	retrieve	the	minimize	status	from	
the	DCPL.		The	action	to	minimize	the	object	header	size	will	depend	on	the	
dcpl-enabled	or	the	file-enabled	minimize	status.	

The	table	below	lists	the	actions	to	be	taken.	
Property	exists	 dcpl-enabled	minimize	 file-enabled	minimize	 Action	
No	 --	 True	 Use	minimization	
No	 --	 False	 Use	library	default	
Yes	 True	 True	 Use	minimization	
Yes	 True	 False	 Use	minimization	
Yes	 False	 True	 Use	minimization	
Yes	 False	 False	 Use	library	default	
	
To	summarize:	the	minimized	object	header	size	will	be	used	if	either	DCPL	
property	or	file	setting	is	TRUE,	and	any	TRUE	setting	will	override	a	FALSE	(or	
undefined)	in	the	other	mode.	
If	the	action	is	to	use	the	library	default,	the	size	H5D_MINHDR_SIZE	of	256	will	be	
passed	in	size_hint.	
If	the	action	is	to	use	minimization,	the	library	will	determine	the	minimum	object	
header	size,	which	will	be	passed	in	size_hint,	by	summing	up	the	size	of	messages	
required1	for	the	dataset	at	creation.		It	will	call	the	existing	internal	routine	
H5O_msg_size_oh()	to	get	the	size	for	the	following	messages:	

• Dataspace	message	with	H5O_SDSPACE_ID	

• Datatype	message	with	H5O_DTYPE_ID	

• Fill	value	message	with	H5O_FILL_NEW_ID	
o It	may	also	create	the	old	fill	value	message	with	H5O_FILL_ID	for	

backward	compatibility	

																																																								
1	Which	is	typically	a	proper	subset	of	the	8	possible	messages	listed	in	Section	2	
above.	

• Layout	message	with	H5O_LAYOUT_ID	

• Filter	pipeline	message	with	H5O_PLINE_ID	
o If	layout	is	chunked	and	filter	is	used	

• External	file	list	message	with	H5O_EFL_ID	
o If	external	file	list	is	defined	

• Modification	time	message	with	H5O_MTIME_NEW_ID	
o If	the	object	header	is	tracking	time	(H5O_HDR_STORE_TIMES)	
o If	the	object	header	is	version	1	

• Object	header	continuation	message	with	H5O_CONT_ID	
Since	the	object	header	version	may	be	needed	to	determine	the	size	or	inclusion	of	
some	of	the	above	messages,	we	will	split	the	coding	in	H5O_create()	into	three	
parts:	

• Part	I:	Create	an	object	header	in	memory	and	assign	its	version.	
o H5O__create_ohdr()	

• Part	II:	Calculate	required	space	for	the	object	header.	

• Part	III:	Allocate	space	(including	space	for	compact	datasets),	complete	
header	initialization,	and	apply	the	header	to	the	file.	

o H5O__apply_ohdr()	

New	internal	functions	will	be	created	as	necessary	to	carry	out	these	operations.	
This	procedure	will	be	implemented	in	such	a	way	that	the	public	API	and	other	
types	of	object	header	creation	(groups,	e.g.)	are	unaffected.	

Implementation	Details	
The	file	setting	for	dataset	header	minimization	is	in	a	shared	structure,	so	multiple	
file	IDs	referring	to	the	same	underlying	file	will	all	have	the	most	recent	setting	
made	at	the	file	level	with	H5Fset_dset_no_attrs_hint().	
	
The	existing	API	call	to	instantiate	a	new	object	header,	H5O_create(),	will	be	
retained,	as	it	is	used	in	multiple	places	throughout	the	library	–	reducing	the	
amount	of	changes	to	be	made	–	and	provides	a	valuable	layer	of	abstraction.	
However,	as	we	need	a	way	to	override	the	size_hint	variable	it	expects,	and	to	
calculate	the	minimum	required	space	before	allocating	space	in	the	file	for	the	
object	header,	two	new	functions	are	created	at	the	internal	level,	
H5O__create_ohdr()	–	responsible	for	creating	a	header	object	and	assigning	bare-
minimum	setup	(such	as	version)	–	and	H5O__apply_ohdr()	–	responsible	for	
allocating	space	in	the	file	and	complete	initialization,	both	of	which	H5O_create()	
will	call	in	order,	passing	the	size	in	size_hint	to	H5O__apply_ohdr()	as	the	size	to	
allocate.	

	
When	using	a	minimized	dataset,	these	new	functions	–H5O__create_ohdr()	and	
H5O__apply_ohdr()	–	will	be	called	directly,	with	the	intervening	step	of	using	the	
created	object	header	to	calculate	the	size	to	be	allocated.	This	intermediary	step	is	
static	to	H5Dint.c,	H5D__calculate_minimum_header_size().	
	
In	H5O__apply_ohdr(),	the	received	size	is	adjusted	as	necessary,	to	align	bytes	to	
expected	boundaries	(if	applicable),	and	–	through	the	macro	H5O_SIZEOF_HDR()	–	
add	space	for	a	compact	dataset.	

Fortran/C++/Java	
Update	Fortran,	C++,	and	Java	wrappers	for	the	four	new	public	routines.	

Testing	
Add	tests	to	test/dsets.c	for	H5Pset/get_dset_no_attrs_hint	and	add	tests	to	test/tfile.c	
for	H5Fset/get_dset_no_attrs_hint:	

• Verify	these	public	routines	set	and	get	the	minimize	status	correctly	

• Enable	minimum	object	header	size	for	datasets	via	
H5Fset_dset_no_attrs_hint()	or		H5Pset_dset_no_attrs_hint();	verify	the	object	
header	size	for	the	dataset	created	in	the	file	is	the	amount	expected.	

• Verify	that	a	dataset	whose	object	header	size	has	been	minimized	handles	
the	addition	of	user	attributes	correctly	(albeit	not	efficiently).	

• Interleave	the	creation	of	datasets	with	minimum	object	header	size	
enabled/disabled	via	dcpl	and/or	the	file;	verify	the	object	header	size	for	
datasets	is	the	amount	expected	

Requisite	additions	to	test/gen_plist	and	test/enc_dec_plist	will	be	made,	to	facilitate	
property	list	testing.	
Add	tests	in	test/ohdr,	test/tattr,	and	test/tsohm	to	verify	appropriate	behavior	of	
minimized	dataset	object	headers	in	various	situations	and	with	different	demands	
made	on	them.	

Documentation	
• Generate	reference	manual	entries	for	the	four	new	public	routines	

Other	consideration	
There	is	another	suggested	fix	to	resolve	this	jira	issue	via	the	existing	public	
routine	H5Pset_attr_phase_change(ocpl_id,	max_compact,	min_dense).		This	routine	
sets	the	threshold	values,	max_compact	and	min_dense,	for	attribute	storage.		These	
thresholds	determine	the	point	at	which	attribute	storage	changes	from	compact	

storage	(i.e.	storage	in	the	object	header)	to	dense	storage	(i.e.,	storage	in	a	heap	and	
indexed	with	a	B-tree).		The	default	for	max_compact	is	8	and	min_dense	is	6.	
The	suggested	fix	is	of	two-fold:	

• The	internal	library	will	calculate	the	minimum	object	header	size	at	dataset	
creation	as	the	total	of	the	following:	

o Size	for	the	dataset’s	required	messages	like	dataspace,	datatype	etc.		
o Size	of	attributes:	max_compact	*	H5D_ATTRHDR_SIZE		(a	new	

constant	define	probably	set	to	32	bytes)	

• User	application	will	set	max_compact	to	0	via	this	public	routine	indicating	
to	the	library	that	no	attributes	are	expected	for	the	object	

This	suggested	fix	has	the	benefit	of	no	changes	to	the	current	API.	However,	further	
investigation	indicates	the	following	ramifications:	

• The	setting	via	this	public	routine	is	associated	with	the	latest	format		

• Attributes	will	be	stored	densely	regardless	by	setting	max_compact	to	0	

• Obscure	the	original	purpose	of	this	public	routine	

• For	the	default	case	when	max_compact	is	8,	the	above	calculation	for	the	
minimum	object	header	size	will	be	greater	than	the	current	constant	define	
H5D_MINHDR_SIZE	

Revision	History	
	

May	12,	2018	 Version	0	–	Initial	draft	
May	15,	2018	 Version	1	–	after	John’s	review	and	edits	
May	18,	2018	 Version	2	–	Update	for	Fortran,	C++,	and	Java	wrappers	
June	20,	2018	
June	28	2018	
	
Dec.	28	2018	

Version	3—Add	H5Fset/get_minimize_dset_hdr_size	
Version	4	–	Renamed	H5F/Pget/set_minimize_dset_hdr_size	to	
H5F/Pget/set_dset_no_attrs_hint	
Version	5	–	Add	implementation	details	and	amend	testing	details	

	

