
July 8, 2021 RFC-THG-2019-04-10.v7

RFC: A Plugin Interface for HDF5 Virtual File
Drivers

Jake Smith
Jordan Henderson

There is increasing interest in dynamically-loadable Virtual File Drivers (VFDs)
to enable easy usage of different VFDs within an HDF5 application without
needing code modifications, as well as to greatly simplify the release of VFDs as
modules that are separate from the HDF5 library. This RFC proposes a general-
purpose API to load and run VFDs dynamically at runtime. In addition, several
approaches are proposed for configuring VFD plugins, with the intent that the
chosen approach(es) will supersede the existing driver configuration infrastructure.

Page 1 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

Contents

1. Introduction 4

2. Approach 5
2.1. Implementing a VFD plugin 5
2.2. Loading VFD plugins . 6

2.2.1. By FAPL . 6
2.2.2. By Environment Variable 7

2.3. Configuring VFD plugins . 8
2.3.1. By Generic H5P API Routine 8
2.3.2. By Configuration File 8
2.3.3. By Environment Variable 9
2.3.4. Storing and Accessing Runtime Configuration Data . . . 9
2.3.5. Remote Configuration 10

3. Implementation Details 10
3.1. Configuration String Format 10
3.2. File Access Property List (H5P) Changes 12
3.3. Virtual File Layer Changes . 14

3.3.1. VFD class structure changes 14
3.3.2. Addition of VFD class structure versioning 15

3.4. VFD Plugin Support Changes (H5PL) 16
3.5. Third Party Driver Maintainer Responsibility 18
3.6. Integration with HDF5’s Tools 19

4. Testing 19

5. Recommendation 19

Acknowledgements 19

A. Appendix: Configuration Grammar 21

B. Appendix: Configuration Grammar Examples 25

Page 2 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

C. Appendix: Configuration Examples 31
C.1. Accessing a File: Local vs AWS S3 (Amazon Simple Storage

Service) . 31
C.2. VFD Stacking: A Case Study with Family and Direct 32
C.3. Deeper Nesting with Splitter and Mirror 34

Page 3 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

1. Introduction

The primary goal for this RFC is to be able to release Virtual File Drivers (VFDs)
separately from the HDF5 library. The direct result of this is that HDF5 must
support VFDs as dynamically-loadable plugins. The indirect result of this is
that the configuration process for a given VFD becomes dynamic as well: driver
selection and configuration might no longer be achieved through dedicated API
routines available at compile time.

Because any details about the binary representation of a driver’s configuration
(such as through a structure) cannot be guaranteed at compile time, a mechanism
is required to identify and load a driver, and pass in a generalized configuration
blob for the individual drivers to use on file-open. This configuration blob will
take the form of a string with minimal syntax requirements, with runtime binary
data being supported through the use of HDF5’s property lists1. By HDF5 1.14,
string-based configuration will be the only supported method for all VFDs; the
current API for VFD selection and configuration will be retained for convenience,
supported by the string format internally. For the transition to strings, both binary
and string driver configuration internals may be supported concurrently2.

HDF5’s tools will be augmented to accept VFD configuration strings and describe
their use. The library and tools should also be able to accept a VFD ”default
driver” and ”default driver configuration” via environment variables or perhaps
configuration files.

This RFC targets the HDF5 v1.14 release, with consideration given towards
retaining the existing VFD API, primarily for the sake of third-party VFD authors.

1MPI Communicators and MPI Info objects are the only known use case of runtime data at this
time.

2Concurrent binary and string configuration is not ideal, as it increases the short-term complexity
of the implementation.

Page 4 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

2. Approach

The following sections discuss high-level details about the general approach
that will be taken to support the use of VFD plugins in an HDF5 application.
Implementation-specific details are outlined in section 3.

2.1. Implementing a VFD plugin

In order to be compatible with HDF5’s plugin infrastructure, an external VFD
plugin must link with a relevant version of the library, implement the external
H5PL functions and provide a VFL-compliant “class” structure. The external
H5PL functions to implement are as follows:

H5PL_type_t H5PLget_plugin_type(void);

This function must return the H5PL TYPE VFD type enumeration, as defined in
H5PLpublic.h.

const void * H5PLget_plugin_info(void);

This function must return the ”class” structure of the VFD, as defined in the
VFD’s source code.

Any VFD plugins external to HDF5 must also make some effort to inter-operate
with the HDF5 error stack using the available public H5E API. Examples of how
to do so may be seen in HDF5’s DAOS VOL connector.

Finally, any VFD that is to be used as a plugin should provide a reasonable default
configuration (if possible) for the case where a user does not explicitly provide one.
Doing so helps to make the plugin more compatible with the HDF5 ecosystem,
including the HDF5 library, test suite, tools, etc.

All of HDF5’s internal VFDs will be reviewed and updated with any modifications
needed from above as part of the work for this RFC. Any third-party VFDs that
wish to be compatible with HDF5 as a VFD plugin will need to be updated by the
driver’s author.

Page 5 of 41

https://github.com/HDFGroup/vol-daos/blob/master/src/util/daos_vol_err.h#L97-L313

July 8, 2021 RFC-THG-2019-04-10.v7

2.2. Loading VFD plugins

To load and use a VFD plugin in an HDF5 application, some effort will need to be
made by the application or the user in order to tell HDF5 which driver to use and
how to have that driver be configured. Below are some proposed approaches to
this end; in each case, the VFD plugin loading process will search HDF5’s plugin
path when trying to find a plugin. More information about HDF5’s plugin path
can be found at Dynamic Plugins in HDF5.

2.2.1. By FAPL

To support explicit loading of a VFD plugin in an HDF5 application, this RFC
proposes that two new H5P routines should be added to the library. These routines
would allow the application to specify a VFD plugin by name or by ID, while
providing the appropriate (and possibly stacked) configuration information. The
application would create a FAPL, set the driver and its configuration on the FAPL
with one of the new routines, and then pass that FAPL to the H5Fcreate or
H5Fopen call. The proposed signatures for these routines is discussed in 3.2.

There will be major changes to the user’s interaction with FAPL driver manip-
ulation and the user’s responsibility of child VFD configuration. At present,
such as with the multi or family VFDs, the programmer creates the FAPL for
any child VFD, and then sets that FAPL ID in the parent VFD. Upon cleanup,
the programmer is likewise responsible for closing all FAPLs. This approach
is possible because the user, at compile time, is aware of all the relevant VFD
configuration calls – e.g., H5Pset fapl <driver>() – and has access to
any structure or specially-defined types that a driver’s FAPL driver-set function
requires. With VFD plugins, however, neither dedicated FAPL driver-set functions
nor configuration information definitions are guaranteed at compile time. As such,
any passthrough VFD must be able to configure, retrieve, and close itself and any
child VFD, plugin or otherwise, without the user’s direct intervention.

A generic FAPL driver-set function must therefore wrap both built-in and plugin
VFD FAPL driver-set calls, with a single ”stackable” configuration element.

Page 6 of 41

http://portal.hdfgroup.org/display/HDF5/Dynamic+Plugins+in+HDF5

July 8, 2021 RFC-THG-2019-04-10.v7

Using the family driver as an example, the programmer would call the generic
FAPL driver-set function with a configuration element that includes both the
family driver and any child (member) driver information, and the resulting FAPL
would be used to create the complete VFD stack on file open. The user will be
responsible solely for this “top-level” FAPL. Similarly, the user must be able to
use a generic get function and receive a complete configuration element, including
any VFD stacking – this should be possible regardless of how the top-level VFD
was set. Built-in VFDs may still be set with their dedicated FAPL driver-set
function, but the provision must be made for configuring with a string, in order to
inter-operate with passthrough VFD plugins. These dedicated FAPL manipulation
functions will be maintained as a convenience to the user.

2.2.2. By Environment Variable

For convenience, it is proposed that the HDF5 DRIVER environment variable
should also be available to specify the name of a VFD plugin3. By using an
environment variable to specify the VFD name, no code modifications will need
to be made to an HDF5 application, allowing one to easily switch between dif-
ferent VFDs before running the application. In the same manner as HDF5’s
HDF5 VOL CONNECTOR environment variable, setting HDF5 DRIVER would
replace the default VFD for File Access Property Lists. Thus, any HDF5 appli-
cation that passes H5P DEFAULT for an HDF5 API’s fapl id parameter, or
which supplies a FAPL that has not specifically had a VFD set on it, will use the
driver specified by this environment variable.

If this environment variable is implemented, one would naturally want a way
to specify configuration information for a VFD in a similar manner, so as to
avoid needing application code modifications. Provisions for this are discussed in
sections 2.3.2 and 2.3.3.

3Note that the HDF5 DRIVER environment variable already exists in the HDF5 library, but is
currently only used for testing code; this proposal would simply re-purpose the environment
variable.

Page 7 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

2.3. Configuring VFD plugins

The following sections contain details about configuring VFD plugins and dis-
cusses the particular uses for each of the proposed approaches that could be
implemented. In each case, configuration is done completely via configuration
strings; configuring a VFD with binary runtime data is discussed in 2.3.4. Further,
covered here is simply a high-level overview of how the configuration string
should be passed into HDF5 and, subsequently, the underlying VFD structure.
Discussion around the format of these configuration strings can be found in 3.1.
While only one of the proposed approaches below must be adopted for the pur-
pose of this feature, it may good to consider implementing more (or all) of these
methods in order to give an HDF5 library user more freedom on how to configure
a VFD plugin.

2.3.1. By Generic H5P API Routine

As mentioned previously, this RFC proposes that two new H5P routines should be
added to HDF5 to facilitate specifying a VFD by name or by ID. Those routines
would accept a configuration string as a parameter and would be the generally
preferred method for passing configuration strings to HDF5. The configuration
string would be stored as part of the FAPL specified and would be later retrieved
from the FAPL internally.

2.3.2. By Configuration File

Configuration strings might also be passed in via configuration files residing in
storage. A configuration file would simply contain the entire configuration string,
formatted in the manner decided upon in 3.1. Parsing of a configuration file could
either be done by HDF5 itself (which may introduce a library dependency), or
could be deferred to the top-level VFD in the VFD stacking structure. To allow
HDF5 to locate a configuration file at runtime, several approaches could again be
used:

Page 8 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

� A standard file name/location pair could be decided upon, which HDF5
would look for at runtime

� A new H5P routine could be introduced to point to the file

� An environment variable, HDF5 DRIVER CONFIG FILE could be used
to point to the configuration file

2.3.3. By Environment Variable

For convenience, it is proposed that the environment variable HDF5 DRIVER CONFIG
should be available for use. This would contain the entire configuration string
needed by the application and would mostly be helpful in simple cases where the
string itself is not very large or complicated. This environment variable is meant to
serve as a companion to the previously-mentioned HDF5 DRIVER environment
variable, allowing a compiled HDF5 application to easily switch between different
VFDs without needing to be modified.

2.3.4. Storing and Accessing Runtime Configuration Data

As a VFD may need access to information that exists at runtime and cannot
be easily encoded as a string, it is important to provide a mechanism to store
this runtime information. The primary known use case for storing this kind of
opaque runtime data pertains to MPI Communicator and Info objects. To retain
compatibility with existing HDF5 applications, MPI Communicator and Info
objects should continue to be set on a FAPL within the application. This is done via
either the H5Pset fapl mpio()API routine if the MPI I/O VFD is being used,
or via the H5Pset mpi params()API routine if a different VFD is being used.
A VFD may later retrieve the MPI Communicator and Info objects by using the
H5Pget mpi params() API routine. For convenience and simplicity, a VFD
plugin may also choose to translate common values from representative values in a
given configuration string, e.g. ”MPI COMM WORLD”, ”MPI COMM SELF”,
”MPI INFO NULL”, etc.

Page 9 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

Other runtime information that needs to be passed to a VFD should be inserted
as a new property on a FAPL via the H5Pinsert() API routine. That runtime
information can be retrieved later by the VFD via the H5Pget() API routine.

2.3.5. Remote Configuration

Any driver that has child operations ”over the wire”, such as a remote VFD with
mirror sock (a socket-based mirror VFD), will be responsible for communicating
with the remote process. This includes transmitting the child configuration on
file open, directing remote operations (read/write) throughout the file’s lifespan,
and handling remote file close. The remote process must be able to respond
appropriately to the parent process’s instructions.

3. Implementation Details

The following sections contain lower-level details about how support for VFD
plugins will be implemented.

3.1. Configuration String Format

Configuration strings must contain all information for a VFD’s operation, in-
cluding the driver’s name, its settings and the information needed for any child
file driver(s), such as the underlying driver as part of the family or multi drivers.
Unlike filters, the primary user of VFD selection will be the user, rather than
the library, which puts a premium on the ability of the programmer to recognize
and/or remember which driver they intend, and how it operates. Keeping this
in mind, an important choice must be made about the format that configuration
strings will be expected to conform to.

The first approach would be to adopt an existing configuration format standard,
such as JSON, YAML, etc. While this approach is convenient in that several
libraries exist for both parsing and generating configuration strings/files in these

Page 10 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

standardized formats, it also means that a dependency on one of these libraries
would have to be added to either HDF5 itself, or to each VFD that will interact
with configuration strings. This approach also carries the risk that the chosen
format may fall out of use in the future, leading to questions about how far into
the future this style of VFD configuration can be supported.

If the previous approach proves unfeasible, then configuration strings may instead
follow the grammar proposed in Appendix A. Examples of how configuration
strings might be formatted for each existing HDF5 VFD are provided in Appendix
B. New parsing routines would need to be added to the HDF5 library and would
be available as public API routines that any VFD would have access to. The
associated API would deal specifically with string management for VFD config-
uration strings, but could be generalized in the future to handle VOL connector
configuration as well. Given the tuple-based syntax proposed in Appendix A,
the proposed API for parsing and inspecting elements of a configuration string is
described with two simple ”parse” and ”cleanup” routines:

herr_t H5FDconfig_str_unwrap(const char *str,
H5FD_config_tuple_t **unwrapped);

herr_t H5FDconfig_free(H5FD_config_tuple_t *unwrapped);

Given a configuration string, H5FDconfig str unwrap would unwrap the
’top level’ tuple of the string, extracting all values in the tuple. For each value
extracted from the tuple, if that element is another tuple, a subsequent call to
H5FDconfig str unwrap will need to be made to parse that tuple and extract
its elements. The value elements extracted from a tuple (represented by the
H5FD config tuple t type) would be allocated and would therefore need to
be freed with the related H5FDconfig free routine.

The H5FD config tuple t would be a structure defined as follows:

typedef struct H5FD_config_tuple_t {
int32_t magic; /* for sanity checking */
size_t nvalues; /* number of substrings */
char **values; /* list of allocated, null-terminated

Page 11 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

substring copies */
} H5FD_config_tuple_t;

Therefore, the unwrapped pointer used by the above functions contains a count
of the values in the tuple, and a list of those substrings, with each substring being
null-terminated.

This approach does not carry the library dependency that a standard configuration
format would, but it also means that THG must implement and maintain the format
going forward. Further, external VFD developers will have to adapt to this format
and will need to write any compatibility layer that they may need to translate
between this format and any existing one that may be used by middle-ware that
their VFD uses; the assumption here being that an existing standard configuration
library may have provisions for this.

3.2. File Access Property List (H5P) Changes

The current H5Pset/get fapl <driver>() routines for each driver class
will be retained. To be compatible with dynamic loading of VFD plugins, they may
eventually need to be modified to internally configure the underlying VFD using
configuration strings rather than binary runtime data. In that case, existing FAPL
driver-set routines would take the received values, format them in a configuration
string, and call (the private version of) the generic driver-set routines proposed
below. On file open, the Virtual File Layer would identify the driver and dispatch
the file open call, at which point the driver would then be responsible for unpacking
the string to complete its operations.

Existing stackable drivers (family, multi, e.g.) would do the same, but with the
added twist of pulling the configuration string out of the received child VFD
FAPL and closing that FAPL (though the user might have to do so as well). The
parent would then have the child’s configuration substring embedded in its own,
which would be stored as the driver’s configuration info property in the FAPL. On
file open, the child substring extraction and temporary VFD creation is done as
normal, outlined earlier.

Page 12 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

For supporting dynamically-loaded VFD plugins, three new routines will be added
to the H5P interface:

herr_t H5Pset_driver_by_name(hid_t fapl_id,
const char *driver_name,
const char *driver_config);

herr_t H5Pset_driver_by_value(hid_t fapl_id,
H5FD_class_value_t driver_id,
const char *driver_config);

ssize_t H5Pget_driver_config_str(hid_t fapl_id,
char *config_buf,
size_t buf_size);

The first two routines will initially check if the driver specified by driver name
or driver id 4 is already loaded. If it is not, they will attempt to load
that driver as a plugin, using HDF5’s current plugin path (as modified by the
HDF5 PLUGIN PATH environment variable or by HDF5’s H5PL routines) to
locate the plugin. Once the driver has been loaded successfully, the routines will
set the driver and its (optional) configuration string in the FAPL, using the entire
configuration string as the driver’s configuration information. The driver will
be responsible for checking for, retrieving and parsing any configuration string,
self-configuring and then handling any VFD stacking on file open. A call to
either routine will replace any existing driver configuration string property on
the FAPL. To store the VFD configuration string inside a FAPL, the existing
H5FD driver prop t structure will be modified as follows:

typedef struct {
hid_t driver_id; /* Driver's ID */
const void *driver_info; /* Driver info, for open callbacks */
const char *driver_config_str; /* ADDED */

} H5FD_driver_prop_t;

The last routine retrieves a string representation of the VFD configuration, such
that calling H5Pset driver by name or H5Pset driver by valuewith

4Refer to 3.3.1 for more on driver IDs

Page 13 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

the returned string would setup an equivalent VFD structure. The caller is respon-
sible for passing in a buffer and the correct buffer size. The routine will determine
the required size of the string and return that as the routine’s return value. If
the required size is greater than the specified buffer size, the routine will leave
the buffer unaltered; the caller will be responsible for allocating a buffer of the
appropriate size and calling the routine again. Otherwise, the routine will copy
the configuration string into the output buffer from one of the following sources:

� If the driver stack was configured with a configuration string (by call-
ing H5Pset driver by name or H5Pset driver by value), then
that string will simply be copied from the FAPL’s driver configuration string
property

� If the driver stack was configured via binary data (by calling existing VFD
calls like H5Pset fapl family()), the configuration string will need
to be constructed by the driver stack before being returned.

The returned string will be NUL-terminated.

3.3. Virtual File Layer Changes

3.3.1. VFD class structure changes

Handling VFD plugins according to a specified name should be straightforward,
as a driver’s name is already part of its VFD ”class” structure. For handling VFD
plugins by ID, the H5FD class value t type is a new type that will need to
be introduced into the library. This type would mirror the functionality of the
H5VL class value t type for VOL connectors in that it would serve as a
unique integer identifier for a VFD. This would allow third-party VFD plugin
developers to register their VFD plugin with The HDF Group in the same way
that third-party data filters and VOL connectors can be registered. This ID field
would need to be added to the VFD class structure:

typedef struct H5FD_class_t {
H5FD_class_value_t value;

Page 14 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

...
} H5FD_class_t;

3.3.2. Addition of VFD class structure versioning

At the time of this RFC, the VFD “class” structure has no self-descriptive infor-
mation beyond its name. This is a serious problem, as it forces all VFD classes to
share identical components, even as those components are changed or added to
to meet the needs of a small number of VFDs; any change in the class structure
requires that all other VFD implementations accommodate this change. By ver-
sioning drivers, developers can safely implement extensions to drivers without
requiring preexisting drivers to conform to the additions which may not be rel-
evant; similarly, preexisting features can be safely deprecated, modified and/or
removed. A case is being made for the addition of a VFD ”value” field in this
RFC, with several other in-development features, such as Selection I/O and VFD
SWMR, possibly necessitating similar changes.

A solution to this problem is to create a “clone” of the class type and introduce
three self-descriptive components at the start of the structure:

typedef struct H5FD_class_v0_t {
int32_t magic; /* unique to H5FD_class_v*_t

(any versioned VFD class) */
int16_t version_major; /* informs expected membership

of base class */
int16_t version_minor; /* informs which extension of

base class */
[. . .] /* membership like the current

H5FD_class_t */
} H5FD_class_v0_t;

The magic number will be shared by (and approximately unique to) all H5FD
(Virtual File Layer driver, or VFD) classes. The major version will be used
to identify the base membership of the class – in this case, the membership of

Page 15 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

the current H5FD class t. The minor version will be used to inform which
subsequent revision of class the pointer should be cast to.

As a result, subsequent minor versions of a class may be created, so long as
they only add to the implementation of the previous class minor version and
each implementation is uniquely identified by a single major/minor version
pair. Augmentations that require a re-implementation or deletion of extant
members will require a new major version, which is appropriate for an HDF5
major release/modification anyway. A void pointer (for example, as returned
by H5PLget plugin info()) will be cast to the base class – in this case,
H5FD class v0 t. The magic number will be checked to guard against an in-
appropriate casting (e.g., if the pointer is for some reason not actually a VFD class).
The major version will be checked to guard against an outdated implementation
and/or re-cast as appropriate (previous VFD classes may be maintained/retained
for legacy applications). Then, the minor version will be checked, and, if nec-
essary, the pointer is re-cast as appropriate to a derived class prior to use (e.g.,
H5FD class v0 t→ H5FD class v2 t). The details of transitioning to the
new driver class are largely to-be-determined. Supporting both versioned and
not-versioned classes simultaneously is not attractive, but should be possible if
ugly.

3.4. VFD Plugin Support Changes (H5PL)

A new enumerated value, H5PL TYPE VFD, will be added to the H5PL type t
structure in H5PLpublic.h, which must be returned by a VFD plugin’s H5PLget plugin type()
function.

typedef enum H5PL_type_t {
H5PL_TYPE_ERROR = -1, /**< Error */
H5PL_TYPE_FILTER = 0, /**< Filter */
H5PL_TYPE_VOL = 1, /**< VOL connector */
H5PL_TYPE_VFD = 2, /**< VFD */ /* ADDED */
H5PL_TYPE_NONE = 3 /**< Sentinel: This must be last! */

} H5PL_type_t;

Page 16 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

Also in H5PLpublic.h, a new value will be defined for internal purposes, used
by H5PLget/set loading state() – these functions are responsible for
automatic loading (or not) of plugins by type upon library startup.

/* Common dynamic plugin type flags used by the
set/get_loading_state functions */

#define H5PL_FILTER_PLUGIN 0x0001
#define H5PL_VOL_PLUGIN 0x0002
#define H5PL_VFD_PLUGIN 0x0004 /* ADDED */
#define H5PL_ALL_PLUGIN 0xFFFF

Page 17 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

In H5PLprivate.h, the H5PL key t structure will need to be modified to include
provisions for for a VFD name or ”value”.

/* The key that will be used to find the plugin */
typedef union H5PL_key_t {

int id; /* I/O filters */
struct {

H5VL_get_connector_kind_t kind; /* Kind of VOL lookup to do */
union {

H5VL_class_value_t value; /* VOL connector value */
const char * name; /* VOL connector name */

} u;
} vol;
/* ADDED */
struct {

H5FD_get_driver_kind_t kind; /* Kind of VFD lookup to do */
union {

H5FD_class_value_t value; /* VFD value */
const char * name; /* VFD name */

} u;
} vfd;

} H5PL_key_t;

H5PL load(), H5PL open() and H5PL iterate() in H5PLint.c will be
modified to handle the case of VFD plugins.

3.5. Third Party Driver Maintainer Responsibility

File Drivers not maintained by The HDF Group will need to be updated by their
maintainers in order to support string properties in the FAPL. Each driver might
need to modify or remove their FAPL ”driver set” and ”driver get” routines. Such
updates will also likely involve accommodating VFD class structure changes as
discussed in 3.3.

Page 18 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

3.6. Integration with HDF5’s Tools

Each of HDF5’s tools will need to be updated to handle passing in of a VFD
plugin name or ID, as well as the configuration strings for the VFD structure.
These options will likely be a mirror of the existing options for VOL connectors.

4. Testing

For testing purposes, clones of an existing terminal (sec2 or stdio) and passthrough
VFD (perhaps splitter) will be created. The development process will be used to
clarify user documentation, possibly leading to an “SDK” for VFD plugins. At
least cursory testing will be performed for all built-in VFDs with the proposed
new H5P routines from 2.2.1, to provide some assurance that they can be used
by passthrough VFDs. The existing VFD test framework should be suitable for
testing built-in drivers as they are updated for string-based configuration.

5. Recommendation

This RFC concludes with a recommendation that The HDF Group should settle on
a format, whether an in-house or external standardized convention (JSON, YAML,
etc.), for strings that will be used to configure VFD plugins. Following that, the
HDF5 library should be updated to support dynamic loading and configuring of
VFD plugins using strings which are supplied to HDF5 applications and which
are formatted in the settled-upon manner.

Acknowledgments

This work was funded by the DOE Exascale Computing Project (ECP).

Page 19 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

Revision History

Version Number Date Comments

v1 Apr. 10, 2019 Version 1 drafted.

v2 Apr. 24, 2019 Version 2 updated to prose; restructured; adds
notes on configuration and VFD class version-
ing.

v3 Jun. 19, 2019 Version 3 expands scope of changes to include
configuring built-ins via strings, and discusses
runtime caching of MPI Communicators.

v4 Jul. 01, 2019 Version 4 details intended change to VFL/VFD
interface (open with string vs FAPL) and tran-
sitional steps for support with both approaches.

v5 Jul. 11, 2019 Version 5 addresses more precisely defines the
configuration syntax and addresses some is-
sues with strings vs binary compatibility for
transition.

v6 Aug. 01, 2019 Version 6 simplifies the string configuration
syntax, adds MPIO configuration description
and example, and addresses a few minor con-
sistency issues.

v7 Jul. 8, 2021 Version 7 restructures the document for read-
ability and introduces new environment vari-
ables related to VFD plugin loading and con-
figuration.

Page 20 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

A. Appendix: Configuration Grammar

Below is the proposed syntax for VFD configuration strings: a very simple, stack-
able, tuple-based sequence with provisions for quoting and escaping. All VFD
configuration strings would need to follow the format of: open parenthesis, driver
identifier, optional additional configuration information, and close parenthesis
(and terminated with the NULL character). The construction of configuration
information is largely VFD-dependent, but must allow for correct parsing of
the entire string. VFD plugins will be responsible for parsing their complete
configuration string, including provisions for any child VFD. This configuration
string syntax need not be exclusive to VFDs either; if applicable, the same syntax
might be extended and re-purposed for VOL (Virtual Object Layer) connector
configuration as well.

The formal description of the configuration string syntax is below in alphabetical
order.

CONFIGURATION ::= '(' VFD_NAME [VFD_OPTIONS] ')'
| '(' INTEGER_CONSTANT ')'

A NULL-terminated string.
Whitespace must separate VFD_NAME from any subsequent
VFD_OPTIONS. In the case of an INTEGER_CONSTANT, this
is handled by the library only when dealing with
non-stringy VFD configuration, during the transition
period only (HDF5 v1.12?), in which case the number
must be a valid FAPL ID.

DECIMAL_CONSTANT ::= s[0-9] [DECIMAL_CONSTANT]

DOTTED_DIGITS ::= DECIMAL_CONSTANT '.'
| DECIMAL_CONSTANT '.' DECIMAL_CONSTANT
| '.' DECIMAL_CONSTANT

ESCAPE_CHAR ::= '\' ESCAPE_LITERAL

Page 21 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

ESCAPE_LITERAL ::= '\' | '"'

EXPONENT ::= 'e' [NUMERIC_SIGN] DECIMAL_CONSTANT
| 'E' [NUMERIC_SIGN] DECIMAL_CONSTANT

FLOAT_CONSTANT ::= DECIMAL_CONSTANT EXPONENT [FLOATING_SUFFIX]
| DOTTED_DIGITS [EXPONENT] [FLOATING_SUFFIX]

FLOATING_SUFFIX ::= 'f' | 'F' | 'l' | 'L'

HEX_CONSTANT ::= '0x' HEX_DIGIT_SEQUENCE
| '0X' HEX_DIGIT_SEQUENCE

HEX_DIGIT_SEQUENCE ::= s[0-9A-Fa-f] [HEX_DIGIT_SEQUENCE]

INTEGER_CONSTANT ::= HEX_CONSTANT
| DECIMAL_CONSTANT

KEY_BODY_SEQUENCE ::= s[_0-9A-Za-z] [KEY_BODY_SEQUENCE]

KEY_NAME ::= s[_A-Za-z] [KEY_BODY_SEQUENCE]
Sequence of alphanumeric characters and/or underscores,
which must not begin with a numeric character.

KEY_VALUE_PAIR ::= '(' KEY_NAME VALUE ')'
Any whitespace before KEY_NAME or after VALUE will
be ignored (i.e., trimmed). Whitespace must separate
KEY_NAME and VALUE.

LIST ::= '(' VALUE_SEQUENCE ')'
| KEY_VALUE_PAIR
Whitespace may appear between a parenthesis and
VALUE_SEQUENCE { any such whitespace will be

Page 22 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

ignored (i.e., trimmed).

NUMERIC_SIGN::= '-' | '+'

NUMBER_CONSTANT ::= [NUMERIC_SIGN] INTEGER_CONSTANT
| [NUMERIC_SIGN] FLOAT_CONSTANT

A numeric value suitable for conversion via
strtol() or strtod(), e.g.

QUOTED_LITERAL ::= '"' SCHAR_SEQUENCE '"'
The delimiting double-quote characters are
removed during string parsing.

SCHAR ::= ESCAPE_CHAR
| any character except backslash '\',
double-quote '"', or NULL character '\0'

SCHAR_SEQUENCE ::= SCHAR [SCHAR_SEQUENCE]

VALUE ::= LIST
| NUMBER_CONSTANT
| QUOTED_LITERAL

VALUE_SEQUENCE ::= VALUE [VALUE_SEQUENCE]
Whitespace must separate VALUE from any
following VALUE_SEQUENCE.

VFD_NAME ::= KEY_NAME
A human-readable, unique name of the driver.
Should be identical to the name of the plugin
file, and the name given in the driver
implementation "class".

VFD_OPTIONS ::= KEY_VALUE_PAIR [VFD_OPTIONS]

Page 23 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

Whitespace must separate a KEY_VALUE_PAIR
from any subsequent VFD_OPTIONS.

Metasyntax of Configuration Tuple Strings (EBNF-like)

::= :: association
| :: "OR"
s[...] :: enclosed is a regex-like inclusion set;

'a-f' is range a|b|c|d|e|f
[...] :: enclosed is optional (0 or 1)
' ... ' :: enclosed is literal

Page 24 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

B. Appendix: Configuration Grammar Examples

The example configuration strings below begin with an investigation of the built-
in VFDs, which could be used with H5Pset driver by name(). Examples
with “missing” parameters – as seen below with core, family, and mirror sock (a
socket-based mirror VFD) – would use an internally-defined default value where
a parameter is absent. These strings represent the configuration as they might
appear in the FAPL’s driver configuration string property.

Each VFD will require a formal definition of its configuration elements, specifying
optional/required elements, the expected ”type” of each value (such as number,
generic string, another n-tuple list, or keyword [TRUE vs FALSE, e.g.]), and
default values if any. The definitions given below are provisional.

CORE
backing :: 'TRUE' | 'FALSE' (default 'FALSE')
increment :: INTEGER_CONSTANT (default TBD)
page_size :: INTEGER_CONSTANT (default TBD)

ignored if write_tracking is not TRUE
write_tracking :: 'TRUE' | 'FALSE' (default 'FALSE')

(core (backing TRUE) (increment 1048))

No page backing (default):
(core (increment 1048))

Combined with write tracking:
(core (increment 1048) (write_tracking TRUE) (page_size 4096))

DIRECT
block_size :: INTEGER_CONSTANT (default TBD)
bounary :: INTEGER_CONSTANT (default TBD)
cbuf_size :: INTEGER_CONSTANT (default TBD)

Page 25 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

(direct (cbuf_size 8192) (boundary 512) (block_size 4096))

FAMILY
member_size :: INTEGER_CONSTANT (default TBD)
member_driver :: CONFIGURATION (default '(sec2)')

(family (member_size 1024))
(family (member_driver (sec2)) (member_size 1024))
(family
(member_size 1024)
(member_driver

(direct (cbuf_size 8192) (boundary 512) (block_size 4096))
)
)

LOG
buffer_size :: INTEGER_CONSTANT (default TBD)
flags :: INTEGER_CONSTANT (default TBD)
logfile :: QUOTED_LITERAL (default: none)

(log (logfile log_vfd_out.log) (flags 1048575) (buffer_size 4096))

MPIO
comm :: QUOTED_LITERAL (required)

Hexadecimal key of the cached communicator
instance OR "MPI_COMM_WORLD" | "MPI_COMM_SELF"

info :: LIST
KEY_VALUE_PAIR* '(' INFO_KEY QUOTED_LITERAL ')'
Zero or more key-value pairs mapping each
value (in QUOTED_LITERAL) to its key;
INFO_KEY is either a KEY_NAME or
QUOTED_LITERAL, both are valid.

(mpio

Page 26 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

(comm "MPI_COMM_WORLD")
(info (

("hdf_info_name" "XYZ")
))

)

MULTI
KEY_VALUE_PAIR*

KEY_NAME 'btree' | 'draw' | 'gheap' | 'lheap' | 'ohdr' | 'super'
LIST

driver :: CONFIGURATION (default '(sec2)')
name :: QUOTED_LITERAL (required)

Filename for storage of contents
relevant to key name category.

maxaddr :: EVAL (default TBD)
See definition below.

memory :: KEY_NAME (default TBD)
'BTREE' | 'DRAW' | 'GHEAP' |
'LHEAP' | 'OHDR' | 'SUPER'

The memory keynames map to the enum index in the source file:
1: SUPER, 2: BTREE, 3: DRAW, 4: GHEAP, 5: LHEAP, 6: OHDR.

The MAXADDR value is system-dependent. The driver supports
an embedded LISP-like arithmetic evaluation syntax for the option
keyname 'maxaddr' and the MAXADDR keyword, enabling a static
string to intelligently operate on this value.

EVAL ::= INTEGER_CONSTANT
| KEYWORD
| '(' OP ')'

EVAL-OP is an S-expression with contents separated by whitespace.
IN_EVAL ::= INTEGER_CONSTANT

| KEYWORD
| OP

Page 27 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

KEYWORD ::= 'MAXADDR'
OP ::= '*' IN_EVAL IN_EVAL

| '/' IN_EVAL IN_EVAL
| '+' IN_EVAL IN_EVAL
| '-' IN_EVAL IN_EVAL

Whitespace must separate elements in OP.
Example EVAL, MAXADDR*3/4: (/ * MAXADDR 3 4) or (* 3 / MAXADDR 4).

No specified terminal VFDs for any constituent file -- uses default:
(multi

(super
((name multi_file-s.h5) (maxaddr 0))

)
(btree

((name multi_file-b.h5) (maxaddr (/ MAXADDR 4)) (memory BTREE))
)
(gheap

((name multi_file-g.h5) (maxaddr (/ * MAXADDR 3 4)) (memory GHEAP))
)
(draw

((name multi_file-r.h5) (maxaddr (/ MAXADDR 2)) (memory DRAW))
)

)

(sec2)

(stdio)

(windows)

Page 28 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

Examples with in-progress VFD plugins
=====================================

ROS3 (Read-Only AWS S3 VFD)
access_key_id :: QUOTED_LITERAL (default none)

Verbatim AWS-given of access key ID.
aws_profile :: QUOTED_LITERAL (default none)

Use credentials from profile on local machine.
Ignored any other option is present.

aws_region :: QUOTED_LITERAL (default none)
AWS-given name of region.

secret_access_key :: QUOTED_LITERAL (default none)
Verbatim AWS-given secret access key.

Anonymous access:
(ros3)

Credentials stored locally in a "profile":
(ros3 (aws_profile "test-hdf5-aws"))

Explicit credentials:
(ros3
(aws_region "us-east-1") (access_key_id "TBD") (secret_access_key "TBD")
)

MIRROR_SOCK (Socket-based mirror VFD)
port :: INTEGER_CONSTANT (default TBD)
ip :: QUOTED_LITERAL (default localhost)

(mirror_sock (port 8080) (ip "127.0.0.10"))

Default port:
(mirror_sock (ip "127.0.0.12"))

Page 29 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

SPLITTER (Passthrough VFD with read-write and read-only channels)
logfile_path :: QUOTED_LITERAL (default none)

Path/name of log file. If given,
keeps log of operations in the
filename path.

read_write_driver :: CONFIGURATION (default none - a default driver)
write_only_channel :: LIST

base_filename :: QUOTED_LITERAL (default name received by
Splitter)

driver :: CONFIGURATION (default none -
a default driver)

ignore_errors :: KEY_NAME (default 'FALSE')
'TRUE' | 'FALSE'
If not ignored, errors on
write-only channel will
raise an error.

(splitter
(write_only_channel (

(driver (mirror_sock (ip localhost) (port 3000)))
(ignore_errors TRUE)

))
(read_write_driver (sec2))
(logfile "splitter.log")

)

Default r/w channel, no logging (default),
acknowledge errors (default):
(splitter
(write_only_channel

((driver (mirror_sock (ip "localhost") (port 3000))))
)
)

Page 30 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

C. Appendix: Configuration Examples

The following are examples demonstrating how the dynamic loading of VFD
plugins might be accomplished in practice. While these examples use the new
grammar proposed in Appendix A, note that this is a minor detail and that the
examples would be just as serviceable if the configuration strings were in some
other format (JSON, YAML, etc.).

C.1. Accessing a File: Local vs AWS S3 (Amazon Simple
Storage Service)

Accessing a file locally is very straightforward. In the most common case where
a driver is built into the library, the programmer can use the dedicated FAPL
driver-set routine associated with that driver – a fictional driver ”mydriver”, below
– which can receive arguments for configuration information in binary form. This
is the current approach for all VFDs as of HDF5 version 1.10.

hid_t file;
hid_t fapl;
const char filename[] = "/path/to/myfile.h5";

fapl = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mydriver(fapl, ...);
file = H5Fopen(filename, H5F_ACC_RDONLY, fapl);
H5Pclose(fapl); /* done with FAPL */

/* do stuff using file */

H5Fclose(file); /* done with file */

Often, users will have no need for configuring a driver, and will bypass the
FAPL creation, passing in H5P DEFAULT for a default driver as determined by
the library. If instead we want to access a file hosted on S3, we can make the
modification to the application nearly trivial. Note that the read-only S3 VFD,

Page 31 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

”ros3”, is a plugin, so it can be selected with the proposed generic, string-based
FAPL driver-set routine.

hid_t fapl;
hid_t file;
const char filename[] = "url://to.aws.s3/myfile.h5";
const char config[] = "(ros3 (aws_profile my-profile))";

/* use profile credentials */

fapl = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_driver_by_name(fapl, "ros3", config);
file = H5Fopen(filename, H5F_ACC_RDONLY, fapl);
H5Pclose(fapl); /* done with FAPL */

/* do stuff using file */

H5Fclose(file); /* done with file */

C.2. VFD Stacking: A Case Study with Family and Direct

At present, the user/program must be responsible for all property lists, and building
the hierarchy of drivers:

hid_t file;
hid_t fapl_fam;
hid_t fapl_dir;
size_t family_size = 1024;
size_t block_size = 4096;
size_t boundary = 512;
size_t cbuf_size = 8192;
const char filename[] = "/path/to/myfile.h5";

fapl_dir = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_direct(fapl_dir, boundary, block_size, cbuf_size);

Page 32 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

fapl_fam = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_family(fapl_fam, (hsize_t)family_size, fapl_dir);

file = H5Fopen(filename, H5F_ACC_RDWR, fapl_fam);
H5Pclose(fapl_fam);
H5Pclose(fapl_dir);

/* do stuff with file */

H5Fclose(file);

This API for THG-supported drivers will be retained for the foreseeable future.
The internals will be modified to deal with strings internally by HDF5 version
1.14. If we apply the string configuration approach, only the top level VFD is
relevant to the user – this represents a paradigm shift in how the user constructs
the ”stack” of VFDs.

hid_t file;
hid_t fapl;
const char filename[] = "/path/to/myfile.h5";

#if STATIC
const char conf[] = "(family (member_size 1024) (member_driver " \

"(direct (cbuf_size 8192) (boundary 512) (block_size 4096))))";
#else

#define CONF_SIZE 1024 /* arbitrary space */
size_t family_size = 1024;
size_t block_size = 4096;
size_t boundary = 512;
size_t cbuf_size = 8192;
const char conf[CONF_SIZE];
snprintf(conf, CONF_SIZE,

"(family (member_size %llu)" \
" (member_driver" \

Page 33 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

" (direct (cbuf_size %llu) (boundary %llu) (block_size %llu))" \
"))",
family_size, cbuf_size, boundary, block_size);

#undef CONF_SIZE
#endif /* dynamic or static configuration setting */

fapl = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_driver_by_name(fapl, "family", conf);
file = H5Fopen(filename, H5F_ACC_RDWR, fapl);
H5Pclose(fapl);

/* do stuff with file */

H5Fclose(file);

It should be clear that, while the user is responsible for knowing the details of the
VFD stack, the user is no longer necessarily responsible for managing that stack –
the Virtual File Layer manages the stack instead.

C.3. Deeper Nesting with Splitter and Mirror

Here we look at a rather insane use case, where a user wants to mirror a file in a
cycle across four machines, A to B to C to D back to A (A will have two copies
of the file: the original and the fourth mirrored copy), using variants of splitter
and mirror VFDs. The configuration properties for those VFDs is described in
Appendix B. Assuming each machine has a mirror server listening on the de-
fault port, and the machines have IP addresses as 127.0.0.10, 127.0.0.11,
127.0.0.12, 127.0.0.13 (A through D, respectfully), the resulting config-
uration string could look something like the following, formatted with indentation
for clarity:

(splitter
(write_only_channel (

(base_filename "mirror_1")

Page 34 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

(driver
(mirror
(ip "127.0.0.11")
(remote_vfd
(splitter
(write_only_channel (

(base_filename "mirror_2")
(driver
(mirror
(ip "127.0.0.12")
(remote_vfd
(splitter
(write_only_channel (

(base_filename "mirror_3")
(driver

(mirror
(ip "127.0.0.13")
(remote_vfd
(splitter
(write_only_channel (

(base_filename "mirror_4")
(driver
(mirror
(ip "127.0.0.10")
)

)
))
)

)
)

)
))

)
)

Page 35 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

)
)

))
)
)
)

)
))
)

Note that default values are being automatically used for the read-write driver,
write channel errors (any write-channel error will result in failure), and log file
path (none given, no logging). The string could be generated and used as follows:

Required python 3.6+ for "new string format" features.
A small python script to generate the string in the shell, e.g.
The output would be copied into the application requiring the
configuration string.
Application code using the string is not shown.
Included for clarity versus the C implementation below.

def recursive_create(info):
s = ""
if len(info) > 0 :

remote = recursive_create(info[1:])
if remote != "" :

remote = f'(remote_vfd {remote})'
fname = info[0]["filename"]
ip = info[0]["ip"]
wo_driver = f'(driver (mirror (ip "{ip}") {remote}))'
s = f'(splitter (write_only_channel ((base_filename "{fname}") \

{wo_driver})))'
return s

Page 36 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

machine_info = [
{"ip": "127.0.0.11", "filename": "mirror_1"},
{"ip": "127.0.0.12", "filename": "mirror_2"},
{"ip": "127.0.0.13", "filename": "mirror_3"},
{"ip": "127.0.0.10", "filename": "mirror_4"},

]

print(recursive_create(machine_info))

The same, but in C:

/* Application code contains the routine to create the

* configuration string and use it via

* H5Pset_driver_by_name(). The string generation in

* the python example above would be superfluous.

*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

struct machine_info {
const char mirror_ip[32];
const char wo_basename[32];

};

static size_t
recursive_create(

struct machine_info machine_list[],
int machine_i,
char *buffer,
size_t buffer_len)

{
struct machine_info info = machine_list[machine_i];

Page 37 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

size_t config_len = 0;

/* If machine info is NULL, return 0 and write nothing to buffer

*/
if (info.mirror_ip[0] != 0) {

char own_buf[256];

/* Assemble the config for this machine.

* Space after remote_vfd is important.

*/
snprintf(own_buf, 256,

"(splitter (write_only_channel ((base_filename \"%s\")" \
"(driver (mirror (ip \"%s\") (remote_vfd))))))",
info.wo_basename, info.mirror_ip);

config_len = strlen(own_buf);

/* Only continue if there is enough space for

* at least this config string

*/
if (config_len <= buffer_len) {

char *child_buf = NULL;
size_t ret;
size_t max_child_len;

/* Get config for the next machine

* Write child config to a temporary buffer

*/
max_child_len = buffer_len - config_len;
child_buf = (char *)calloc(1, max_child_len * sizeof(char));
ret = recursive_create(

machine_list,
machine_i+1,
child_buf,
max_child_len);

Page 38 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

if (ret == 0) { /* There is no child config to insert;
nix remote_vfd */

char *ptr = own_buf;

/* find end of string */
while (*(ptr++)) ;

/* delete "))))))" */
while (*(--ptr) != ' ') *ptr = '\0';

/* delete "(remote_vfd " */
while (*(--ptr) != ' ') *ptr = '\0';

/* append parens */
snprintf(buffer, buffer_len, "%s)))))", own_buf);

}
else
if (ret <= max_child_len) {

/* Have valid child config
and enough space */

char *ptr = own_buf;

/* find end of string */
while (*(ptr++)) ;

/* delete parentheses */
while(*(--ptr) != ' ') *ptr = '\0';
ptr++;

/* "insert" child configs, write to received buffer */
snprintf(buffer, buffer_len, "%s%s))))))",

own_buf, child_buf);

Page 39 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

}
config_len += ret; /* can be greater than buffer_len,

in error */
free(child_buf);

} /* end if enough space for this config */
} /* end if info exists (recursion stops) */

return config_len; /* 0 :: stop, >buffer_len :: error,
else OK size written */

} /* end recursive_create() */

/* On machine with the given IP, the file with the given

* basename will be mirrored on it.

* Machine A (127.0.0.10) will have two files: mirror_4

* and the original.

*/
struct machine_info info[5] = {

{"127.0.0.11", "mirror_1"},
{"127.0.0.12", "mirror_2"},
{"127.0.0.13", "mirror_3"},
{"127.0.0.10", "mirror_4"},
{"", ""}, /* sentinel */

};

int
main(void)
{

hid_t file;
hid_t fapl = H5Pcreate(H5P_FILE_ACCESS);
/* 2048 + 1 for null-term, should be large enough */
char config_buf[2049];
/* info above */
size_t ret = recursive_create(info, 0, config_buf, (size_t)2048);

Page 40 of 41

July 8, 2021 RFC-THG-2019-04-10.v7

if (ret < 2049) { /* continue iff entire config fit in buffer */
H5Pset_driver_by_name(fapl, "splitter", config_buf);

/* or H5Fopen() */
file = H5Fcreate("original.h5", ..., fapl, ...);

/* close fapl, use file, close file */

return 0;
}
else {

printf("ERROR: string is too long for static buffer\n");
return 1;

}
} /* end main() */

Page 41 of 41

	Introduction
	Approach
	Implementing a VFD plugin
	Loading VFD plugins
	By FAPL
	By Environment Variable

	Configuring VFD plugins
	By Generic H5P API Routine
	By Configuration File
	By Environment Variable
	Storing and Accessing Runtime Configuration Data
	Remote Configuration

	Implementation Details
	Configuration String Format
	File Access Property List (H5P) Changes
	Virtual File Layer Changes
	VFD class structure changes
	Addition of VFD class structure versioning

	VFD Plugin Support Changes (H5PL)
	Third Party Driver Maintainer Responsibility
	Integration with HDF5's Tools

	Testing
	Recommendation
	Acknowledgements
	Appendix: Configuration Grammar
	Appendix: Configuration Grammar Examples
	Appendix: Configuration Examples
	Accessing a File: Local vs AWS S3 (Amazon Simple Storage Service)
	VFD Stacking: A Case Study with Family and Direct
	Deeper Nesting with Splitter and Mirror

