
February 12, 2013 	 	
RFC THG 2012-01-04.v4.1

RFC: Actual I/O Mode

Jacob Gruber

Christian Chilan

Jonathan Kim

Allow a user to determine which type of I/O was performed after the completion of a
requested parallel I/O call. This is not necessarily the same as what was requested.

Collective I/O, which is requested by the user via a data transfer property list (DXPL), can perform I/O
according to several optimization schemes. The HDF5 library either chooses one based on a user-
adjustable parameter, or a user can request an optimization directly.

These optimization schemes may not perform pure collective I/O. Some schemes analyze each chunk
in a dataset individually, and may access some chunks collectively and others individually. Thus some
independent I/O may still occur even when a collective operation is requested.

Currently, there is no way to check whether collective or independent I/O was actually performed
during a dataset access operation. This RFC proposes extensions to the HDF5 library that allow the
user to determine the optimization and I/O mode(s) used by each process in an I/O operation,
although not at the level of individual chunks. The extensions will also allow the user to determine
what caused the HDF5 library to break collective I/O for the local process and among all processes, if
that was the case.

Description

Description of Optimizations

As this section of HDF5 is being reworked, some of this discussion may be obsolete. However, while
details may change, the general thrust should remain intact.

Introduction 1.

General Parallel I/O Concerns1)

 Page 1 of 14

February 12, 2013 	 	
RFC THG 2012-01-04.v4.1

Before we discuss specific optimizations, we should note that in certain circumstances, collective I/O
will not be attempted at all, even if requested, and HDF5 will perform independent I/O collectively
instead. The following conditions bring about this switch:

If all of these checks pass, HDF5 chooses a collective I/O optimization scheme. If the dataset’s storage
is contiguous, collective I/O proceeds without further consideration and will never switch to
independent I/O. However if the dataset’s storage is chunked, a user can set an optimization scheme
for choosing collective or independent access on the chunks via the
H5Pset_dxpl_mpio_chunk_opt API call. Refer to the flowchart “Optimizations for Chunk
Collective I/O” at the end of this document for the details of this decision process. Also refer to
H5Pset_dxpl_mpio_chunk_opt entry in HDF5 reference manual.

Design of Properties

To track the type of I/O performed, two properties are proposed: actual_chunk_opt_mode, to
track the optimization scheme chosen for chunked datasets and actual_io_mode, to track
whether independent I/O, collective I/O or some mix of both took place during the operation.

Two properties are proposed instead of one composite property because, even though most
optimization schemes are limited in what type of I/O they can perform, almost all optimizations have
multiple values for the actual I/O mode and most of these modes are shared among several
optimizations.

The two properties are described in more detail in the following Reference Manual entries.

New API Functions RM Entries

H5Pget_mpio_actual_chunk_opt_mode

Signature:
herr_t H5Pget_mpio_actual_chunk_opt_mode(hid_t dxpl_id,

H5D_mpio_actual_chunk_opt_mode_t * actual_chunk_opt_mode)

Purpose:
Retrieves the type of chunk optimization that HDF5 actually performed on the last parallel I/O call.

Description:

H5Pget_mpio_actual_chunk_opt_mode retrieves the type of chunk optimization

Datatype conversions need to be performed●
Data transforms need to be performed●
The file is begin accessed with the MPI-POSIX driver●
One of the dataspaces is neither simple nor scalar●
There are point selections in one of the dataspaces●
The dataset’s storage is neither contiguous nor chunked●
Any filters need to be applied (in the case of chunked dataset storage)●

 Page 2 of 14

February 12, 2013 	 	
RFC THG 2012-01-04.v4.1

performed when collective I/O was requested. This property is set by
H5Pset_dxpl_mpio_chunk_opt before I/O takes place, and will be set even if I/O fails.
Valid values returned in actual_chunk_opt_mode:

H5D_MPIO_NO_CHUNK_OPTIMIZATION
No chunk optimization was performed. Either no collective I/O was attempted or the dataset
wasn't chunked. (Default)

H5D_MPIO_LINK_CHUNK

Collective I/O is performed on all chunks together.
Corresponds to the H5FD_MPIO_CHUNK_ONE_IO mode for

H5Pset_dxpl_mpio_chunk_opt.

H5D_MPIO_COLL_CHUNK_ATONCE
Each chunk is individually marked with collective or individual based on how many processes
are assigned to that chunk. If the fraction is greater than the chunk-ratio threshold, the chunk
is marked as collective and collective I/O is performed all at once for all the collective marked
chunks. The chunk-ratio threshold can be set
using H5Pset_dxpl_mpio_chunk_opt_ratio. The default value is 60%.
Corresponds to the H5FD_MPIO_COLL_CHUNK_ATONCE_IO mode for

H5Pset_dxpl_mpio_chunk_opt.

H5D_MPIO_MULTI_CHUNK
Same as the H5D_MPIO_COLL_CHUNK_ATONCE case, except that collective I/O is
performed per chunk which is marked as collective instead of all at once for all the collective
chunks.
Corresponds to the H5FD_MPIO_CHUNK_MULTI_IO mode for

H5Pset_dxpl_mpio_chunk_opt.
H5D_MPIO_ALL_CHUNK_IND

Independent I/O is performed on all chunks.
Corresponds to the H5FD_MPIO_ALL_CHUNK_IND_IO mode for

H5Pset_dxpl_mpio_chunk_opt.

Parameters:
hid_t dxpl_id

IN: Dataset transfer property list identifier

H5D_mpio_actual_chunk_opt_mode_t *actual_chunk_opt_mode
OUT: The type of chunk optimization performed by HDF5.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

 Page 3 of 14

February 12, 2013 	 	
RFC THG 2012-01-04.v4.1

H5Pget_mpio_actual_io_mode

Signature:
herr_t H5Pget_mpio_actual_io_mode(hid_t dxpl_id,

H5D_mpio_actual_io_mode_t * actual_io_mode)

Purpose:

Retrieves the type of I/O that HDF5 actually performed on the last parallel I/O call. This is not

necessarily the type of I/O requested.

Motivation:

A user can request collective I/O via a data transfer property list (DXPL) that has been suitably

modified with H5Pset_dxpl_mpio. However, HDF5 may bypass this request and perform
independent I/O instead, if certain conditions are encountered. This property allows the user to see
what kind of parallel I/O HDF5 actually performed. Used in conjunction with
H5Pget_mpio_actual_chunk_opt_mode, this property allows the user to determine exactly
HDF5 did when attempting collective I/O.

Description:

H5Pget_mpio_actual_io_mode retrieves the type of I/O performed on the selection of the
current process. This property is set after all I/O is completed; if I/O fails, it will not be set.

Valid values returned in actual_io_mode:
H5D_MPIO_NO_COLLECTIVE_IO

No collective I/O was performed. Collective I/O was not requested or collective I/O isn't
possible on this dataset. (Default)

H5D_MPIO_CHUNK_INDEPENDENT
HDF5 performed one of the collective chunk optimization schemes and each chunk was
accessed independently.

H5D_MPIO_CHUNK_COLLECTIVE
HDF5 performed one of the collective chunk optimization schemes and all chunks were
accessed collectively.

H5D_MPIO_CHUNK_MIXED
HDF5 performed one of the collective chunk optimization schemes and some chunks were
accessed independently, some collectively.

H5D_MPIO_CONTIGUOUS_COLLECTIVE

Collective I/O was performed on a contiguous dataset.

Note:
All processes need not return the same value. For example, if I/O is being performed using the multi
chunk optimization scheme, one process's selection may include only chunks accessed collectively,

 Page 4 of 14

February 12, 2013 	 	
RFC THG 2012-01-04.v4.1

while another may include only chunks accessed independently and a third may involve both types. In
this case, the first process will report H5D_MPIO_CHUNK_COLLECTIVE while the second will
report H5D_MPIO_CHUNK_INDEPENDENT and the third H5D_MPIO_CHUNK_MIXED.

Parameters:
hid_t dxpl_id
IN: Dataset transfer property list identifier

H5D_mpio_actual_io_mode_t * actual_io_mode
OUT: The type of I/O performed by this process.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

H5Pget_mpio_no_collective_cause

Signature:
herr_t H5Pget_mpio_no_collective_cause(hid_t dxpl_id,

uint32_t * local_no_collective_cause,

uint32_t * global_no_collective_cause)

Purpose:

Retrieves local and global causes that broke collective I/O on the last parallel I/O call.

Motivation:

A user can request collective I/O via a data transfer property list (DXPL) that has been suitably

modified with H5Pset_dxpl_mpio. However, there are conditions that can cause HDF5 to forgo
collective I/O and perform independent I/O. Such causes can be different across the processes of a
parallel application. This function allows the user to determine what caused the HDF5 library to skip
collective I/O locally, in the local process, and globally, across all processes.

Description:

H5Pget_mpio_no_collective_cause serves two purposes. It can be used to determine
whether collective I/O was used for the last preceding parallel I/O call. If collective I/O was not used,
it retrieves the causes that broke collective I/O on that parallel I/O call. The properties retrieved by
this function are set before I/O takes place and are retained even when I/O fails.

Valid values returned on the property are as follows; the numbers on the right are bitmask values:
H5D_MPIO_COLLECTIVE = 00000000

Collective I/O was performed successfully. (Default)

H5D_MPIO_SET_INDEPENDENT = 00000001
Collective I/O was not performed because independent I/O was requested.

H5D_MPIO_DATATYPE_CONVERSION = 00000010

 Page 5 of 14

February 12, 2013 	 	
RFC THG 2012-01-04.v4.1

Collective I/O was not performed because datatype conversions were required.

H5D_MPIO_DATA_TRANSFORMS = 00000100
Collective I/O was not performed because data transforms needed to be applied.

H5D_MPIO_SET_MPIPOSIX = 00001000
Collective I/O was not performed because the selected file driver was MPI-POSIX.

H5D_MPIO_NOT_SIMPLE_OR_SCALAR_DATASPACES = 00010000
Collective I/O was not performed because one of the dataspaces was neither simple nor scalar.

H5D_MPIO_POINT_SELECTIONS = 00100000
Collective I/O was not performed because there were point selections in one of the
dataspaces.

H5D_MPIO_NOT_CONTIGUOUS_OR_CHUNKED_DATASET = 01000000
Collective I/O was not performed because the dataset was neither contiguous nor chunked.

H5D_MPIO_FILTERS = 10000000
Collective I/O was not performed because filters needed to be applied.

The above name/value pairs are members of the H5D_mpio_no_collective_cause_t
enumeration.

Each process determines whether it can perform collective I/O and broadcasts the result. Those
results are combined to make a collective decision; collective I/O will be performed only if all
processes can perform collective I/O.

If collective I/O was not used, the causes that prevented it are reported by individual process by
means of an enumerated set. The causes may differ among processes, so
H5Pget_mpio_no_collective_cause returns two property values. The first value is the one
produced by the local process to report local causes. This local information is encoded in an
enumeration, the H5D_mpio_no_collective_cause_t described above, with all individual
causes combined into a single value by means of a bitwise OR operation. The second value reports
global causes; this global value is the result of a bitwise-OR operation across the values from all the
processes.

Parameters:
hid_t dxpl_id
IN: Dataset transfer property list identifier

uint32_t * local_no_collective_cause
OUT: A enumerated set value indicating the causes that prevented collective I/O in the local process.

uint32_t * global_no_collective_cause

 Page 6 of 14

February 12, 2013 	 	
RFC THG 2012-01-04.v4.1

OUT: An enumerated set value indicating the causes across all processes that prevented collective I/O.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Notes
In a collective operation, the values available to actual_io_mode are dependent on the value of
actual_chunk_opt_mode.
The actual_chunk_opt_mode and actual_io_mode properties are not strictly paired nor
all combinations of the properties are possible.

The possible combinations between the two APIs are:

 actual_chunk_opt_mode actual_io_mode

H5D_MPIO_NO_CHUNK_OPTIMIZATION
H5D_MPIO_NO_COLLECTIVE

H5D_MPIO_CONTIGUOUS_COLLECTIVE

H5D_MPIO_LINK_CHUNK H5D_MPIO_CHUNK_COLLECTIVE

H5D_MPIO_COLL_CHUNK_ATONCE H5D_MPIO_NO_COLLECTIVE

H5D_MPIO_CHUNK_INDEPENDENT

H5D_MPIO_CHUNK_COLLECTIVE

H5D_MPIO_CHUNK_MIXED

H5D_MPIO_MULTI_CHUNK H5D_MPIO_NO_COLLECTIVE

H5D_MPIO_CHUNK_INDEPENDENT

H5D_MPIO_CHUNK_COLLECTIVE

H5D_MPIO_CHUNK_MIXED

H5D_MPIO_ALL_CHUNK_IND H5D_MPIO_CHUNK_INDEPENDENT

Also, at the present time, there is no way of telling whether a specific chunk was read collectively or
independently.

Usage
If a user is experiencing difficulties with parallel I/O, support personnel could use these properties to

 Page 7 of 14

February 12, 2013 	 	
RFC THG 2012-01-04.v4.1

get extra diagnostic information. Additionally, a user could use these functions to ensure that a
specific optimization is chosen to prevent unexpected slowdown of parallel applications.

Example
The following pseudo code illustrates the use of the actual I/O mode properties in determining
whether a process performed collective I/O, independent I/O or both in an application with three
processes. In this example Process 0 will report collective I/O, Process 1 will report both collective and
independent I/O and Process 2 will report independent I/O. This example is contrived, but it isn’t too
hard to imagine that if the processes’ selections were determined by a computation or user input, a
similar scenario might arise.

H5D_mpio_actual_chunk_opt_mode_t 	actual_chunk_opt_mode;
H5D_mpio_actual_io_mode_t 	 	 actual_io_mode;

<set up mpi_rank and mpi_size>

<open file collectively>

<create space>

<create dataset with three chunks>

<create file and memory spaces>

if (mpi_rank == 0) {
	 <select hyperslab in Chunk 0>
} else if (mpi_rank == 1) {
	 <select hyperlab in Chunk 0 and Chunk 1>
} else if (mpi_rank == 2) {
	 <select hyperslab in Chunk 2>
}

dxpl = H5Pcreate(H5P_DATASET_XFER);
H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE);

/* Set chunk optimization mode that can utilize ratio threshold */
H5Pset_dxpl_mpio_chunk_opt(dxpl,H5FD_MPIO_COLL_CHUNK_ATONCE_IO);

/* Set the threshold fraction of processes per chunk for
 * collective I/O. Here, collective I/O will only occur
 * if a process is selected by at least 40% of processes.
 */
H5Pset_dxpl_mpio_chunk_opt_ratio(dxpl, 40);

 Page 8 of 14

February 12, 2013 	 	
RFC THG 2012-01-04.v4.1

H5Dwrite(dataset, data_type, mem_space, file_space, dxpl, buffer);

H5Pget_mpio_actual_io_mode(dxpl, &actual_io_mode);
H5Pget_mpio_actual_chunk_opt_mode(dxpl, &actual_chunk_opt_mode);

/* Check properties against expected values */
assert(actual_chunk_opt_mode == H5D_MPIO_MULTI_CHUNK);
if (mpi_rank == 0) {
	 assert(actual_io_mode == H5D_MPIO_CHUNK_COLLECTIVE);
} else if (mpi_rank == 1) {
	 assert(actual_io_mode == H5D_MPIO_CHUNK_MIXED);
} else if (mpi_rank == 2) {
	 assert(actual_io_mode == H5D_MPIO_CHUNK_INDEPENDENT);
}

The next example illustrates the use of the no-collective-cause property in determining why collective
I/O was interrupted. In this case, a file is opened using the MPI-POSIX driver and a collective write
operation is requested. The returned property value indicates that collective I/O could not be
performed because of the MPI-POSIX driver is in use.

H5D_mpi_no_collective_cause_t	 	 local_no_collective_cause;
H5D_mpi_no_collective_cause_t	 	 global_no_collective_cause;

<set up mpi_rank and mpi_size>

fapl = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpiposix(fapl, MPI_COMM_WORLD, 0);

<open file collectively>

<create space>

<create contiguous dataset>

<create file and memory spaces>

<hyperslab selection divides dataset equally among processes>

dxpl = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE);

H5Dwrite(dataset, data_type, mem_space, file_space, dxpl, buffer);

H5Pget_mpi_no_collective_cause(dxpl, &local_no_collective_cause,
&global_no_collective_cause);

 Page 9 of 14

February 12, 2013 	 	
RFC THG 2012-01-04.v4.1

/* check property against expected value */
assert(local_no_collective_cause == H5D_MPIO_SET_MPIPOSIX);
assert(global_no_collective_cause == H5D_MPIO_SET_MPIPOSIX);

Recommendation
The HDF5 API extensions proposed in this RFC have been implemented, but the parallel I/O code is
changing. Thus the details of this RFC and the associated code will probably need to be revisited.

Optimizations and I/O operations Flowchart

 Page 10 of 14

February 12, 2013 	 	
RFC THG 2012-01-04.v4.1

 Page 11 of 14

February 12, 2013 	 	
RFC THG 2012-01-04.v4.1

Brief descriptions of the optimization modes for H5Pset_dxpl_mpio_chunk_opt follow:

Optimization modes Description
H5FD_MPIO_CHUNK_ONE_IO

Do collective I/O all at once for all the selected chunks.
This mode will not switch to independent I/O.

H5FD_MPIO_COLL_CHUNK_ATONCE_IO

Do collective I/O all at once for all the selected chunks that marked as
collective. Do individual I/O for the rest chunks.
Thus, this mode will switch between collective and independent I/O.

H5FD_MPIO_CHUNK_MULTI_IO

Do collective I/O per chunk for the selected chunks that marked as
collective. Do individual I/O for the rest chunks.
Thus, this mode will switch between collective and independent I/O.

H5FD_MPIO_ALL_CHUNK_IND_IO

Do independent I/O for all the selected chunks.
This mode will not switch to collective I/O.

Flowchart to determine whether collective I/O can be performed or not

 Page 12 of 14

February 12, 2013 	 	
RFC THG 2012-01-04.v4.1

 Page 13 of 14

February 12, 2013 	 	
RFC THG 2012-01-04.v4.1

RFC Revision History
August 04, 2011 Version 1 posted for public comment. Comments should be sent to

gruber1@hdfgroup.org

August 22, 2011 Minor tweaks after comments from Quincey.

September 6, 2012 Minor update for H5Pget_mpio_no_collective_cause section. (Property name
changes, local cause change.)

November 6, 2012 Update according to the removing of the broken ‘multi-chunk IO without opt’
feature.

January 9, 2013 Update for refracting framework and add an improved optimization mode
‘H5FD_MPIO_COLL_CHUNK_ATONCE_IO’ based on the
‘H5FD_MPIO_CHUNK_MULTI_IO’ mode.

Also added ‘H5FD_MPIO_ALL_CHUNK_IND_IO’ mode as opposite of
‘H5FD_MPIO_CHUNK_ONE_IO’.

The update is from HDFFV-8244 task.

February 12,2013 Some updates after comments from Quincey. (HDFFV-8244)

 Page 14 of 14

