
February 12, 2013
RFC THG 2012-01-04.v4.1

RFC: Actual I/O Mode

Jacob Gruber

Chris�an Chilan

Jonathan Kim

Allow a user to determine which type of I/O was performed a�er the comple�on of a
requested parallel I/O call. This is not necessarily the same as what was requested.

Collec�ve I/O, which is requested by the user via a data transfer property list (DXPL), can perform I/O
according to several op�miza�on schemes. The HDF5 library either chooses one based on a user-
adjustable parameter, or a user can request an op�miza�on directly.

These op�miza�on schemes may not perform pure collec�ve I/O. Some schemes analyze each chunk
in a dataset individually, and may access some chunks collec�vely and others individually. Thus some
independent I/O may s�ll occur even when a collec�ve opera�on is requested.

Currently, there is no way to check whether collec�ve or independent I/O was actually performed
during a dataset access opera�on. This RFC proposes extensions to the HDF5 library that allow the
user to determine the op�miza�on and I/O mode(s) used by each process in an I/O opera�on,
although not at the level of individual chunks. The extensions will also allow the user to determine
what caused the HDF5 library to break collec�ve I/O for the local process and among all processes, if
that was the case.

Descrip�on

Descrip�on of Op�miza�ons

As this sec�on of HDF5 is being reworked, some of this discussion may be obsolete. However, while
details may change, the general thrust should remain intact.

Introduc�on 1.

General Parallel I/O Concerns1)

 Page 1 of 14

February 12, 2013
RFC THG 2012-01-04.v4.1

Before we discuss specific op�miza�ons, we should note that in certain circumstances, collec�ve I/O
will not be a�empted at all, even if requested, and HDF5 will perform independent I/O collec�vely
instead. The following condi�ons bring about this switch:

If all of these checks pass, HDF5 chooses a collec�ve I/O op�miza�on scheme. If the dataset’s storage
is con�guous, collec�ve I/O proceeds without further considera�on and will never switch to
independent I/O. However if the dataset’s storage is chunked, a user can set an op�miza�on scheme
for choosing collec�ve or independent access on the chunks via the
H5Pset_dxpl_mpio_chunk_opt API call. Refer to the flowchart “Op�miza�ons for Chunk
Collec�ve I/O” at the end of this document for the details of this decision process. Also refer to
H5Pset_dxpl_mpio_chunk_opt entry in HDF5 reference manual.

Design of Proper�es

To track the type of I/O performed, two proper�es are proposed: actual_chunk_opt_mode, to
track the op�miza�on scheme chosen for chunked datasets and actual_io_mode, to track
whether independent I/O, collec�ve I/O or some mix of both took place during the opera�on.

Two proper�es are proposed instead of one composite property because, even though most
op�miza�on schemes are limited in what type of I/O they can perform, almost all op�miza�ons have
mul�ple values for the actual I/O mode and most of these modes are shared among several
op�miza�ons.

The two proper�es are described in more detail in the following Reference Manual entries.

New API Func�ons RM Entries

H5Pget_mpio_actual_chunk_opt_mode

Signature:
herr_t H5Pget_mpio_actual_chunk_opt_mode(hid_t dxpl_id,

H5D_mpio_actual_chunk_opt_mode_t * actual_chunk_opt_mode)

Purpose:
Retrieves the type of chunk op�miza�on that HDF5 actually performed on the last parallel I/O call.

Descrip�on:

H5Pget_mpio_actual_chunk_opt_mode retrieves the type of chunk op�miza�on

Datatype conversions need to be performed●
Data transforms need to be performed●
The file is begin accessed with the MPI-POSIX driver●
One of the dataspaces is neither simple nor scalar●
There are point selec�ons in one of the dataspaces●
The dataset’s storage is neither con�guous nor chunked●
Any filters need to be applied (in the case of chunked dataset storage)●

 Page 2 of 14

February 12, 2013
RFC THG 2012-01-04.v4.1

performed when collec�ve I/O was requested. This property is set by
H5Pset_dxpl_mpio_chunk_opt before I/O takes place, and will be set even if I/O fails.
Valid values returned in actual_chunk_opt_mode:

H5D_MPIO_NO_CHUNK_OPTIMIZATION
No chunk op�miza�on was performed. Either no collec�ve I/O was a�empted or the dataset
wasn't chunked. (Default)

H5D_MPIO_LINK_CHUNK

Collec�ve I/O is performed on all chunks together.
Corresponds to the H5FD_MPIO_CHUNK_ONE_IO mode for

H5Pset_dxpl_mpio_chunk_opt.

H5D_MPIO_COLL_CHUNK_ATONCE
Each chunk is individually marked with collec�ve or individual based on how many processes
are assigned to that chunk. If the frac�on is greater than the chunk-ra�o threshold, the chunk
is marked as collec�ve and collec�ve I/O is performed all at once for all the collec�ve marked
chunks. The chunk-ra�o threshold can be set
using H5Pset_dxpl_mpio_chunk_opt_ratio. The default value is 60%.
Corresponds to the H5FD_MPIO_COLL_CHUNK_ATONCE_IO mode for

H5Pset_dxpl_mpio_chunk_opt.

H5D_MPIO_MULTI_CHUNK
Same as the H5D_MPIO_COLL_CHUNK_ATONCE case, except that collec�ve I/O is
performed per chunk which is marked as collec�ve instead of all at once for all the collec�ve
chunks.
Corresponds to the H5FD_MPIO_CHUNK_MULTI_IO mode for

H5Pset_dxpl_mpio_chunk_opt.
H5D_MPIO_ALL_CHUNK_IND

 Independent I/O is performed on all chunks.
Corresponds to the H5FD_MPIO_ALL_CHUNK_IND_IO mode for

H5Pset_dxpl_mpio_chunk_opt.

Parameters:
hid_t dxpl_id

 IN: Dataset transfer property list iden�fier

H5D_mpio_actual_chunk_opt_mode_t *actual_chunk_opt_mode
OUT: The type of chunk op�miza�on performed by HDF5.

Returns:
Returns a non-nega�ve value if successful; otherwise returns a nega�ve value.

 Page 3 of 14

February 12, 2013
RFC THG 2012-01-04.v4.1

H5Pget_mpio_actual_io_mode

Signature:
herr_t H5Pget_mpio_actual_io_mode(hid_t dxpl_id,

H5D_mpio_actual_io_mode_t * actual_io_mode)

Purpose:
 Retrieves the type of I/O that HDF5 actually performed on the last parallel I/O call. This is not

necessarily the type of I/O requested.

Mo�va�on:
 A user can request collec�ve I/O via a data transfer property list (DXPL) that has been suitably

modified with H5Pset_dxpl_mpio. However, HDF5 may bypass this request and perform
independent I/O instead, if certain condi�ons are encountered. This property allows the user to see
what kind of parallel I/O HDF5 actually performed. Used in conjunc�on with
H5Pget_mpio_actual_chunk_opt_mode, this property allows the user to determine exactly
HDF5 did when a�emp�ng collec�ve I/O.

Descrip�on:

H5Pget_mpio_actual_io_mode retrieves the type of I/O performed on the selec�on of the
current process. This property is set a�er all I/O is completed; if I/O fails, it will not be set.

Valid values returned in actual_io_mode:
H5D_MPIO_NO_COLLECTIVE_IO

No collec�ve I/O was performed. Collec�ve I/O was not requested or collec�ve I/O isn't
possible on this dataset. (Default)

H5D_MPIO_CHUNK_INDEPENDENT
HDF5 performed one of the collec�ve chunk op�miza�on schemes and each chunk was
accessed independently.

H5D_MPIO_CHUNK_COLLECTIVE
HDF5 performed one of the collec�ve chunk op�miza�on schemes and all chunks were
accessed collec�vely.

H5D_MPIO_CHUNK_MIXED
HDF5 performed one of the collec�ve chunk op�miza�on schemes and some chunks were
accessed independently, some collec�vely.

H5D_MPIO_CONTIGUOUS_COLLECTIVE
 Collec�ve I/O was performed on a con�guous dataset.

Note:
All processes need not return the same value. For example, if I/O is being performed using the mul�
chunk op�miza�on scheme, one process's selec�on may include only chunks accessed collec�vely,

 Page 4 of 14

February 12, 2013
RFC THG 2012-01-04.v4.1

while another may include only chunks accessed independently and a third may involve both types. In
this case, the first process will report H5D_MPIO_CHUNK_COLLECTIVE while the second will
report H5D_MPIO_CHUNK_INDEPENDENT and the third H5D_MPIO_CHUNK_MIXED.

Parameters:
hid_t dxpl_id
IN: Dataset transfer property list iden�fier

H5D_mpio_actual_io_mode_t * actual_io_mode
OUT: The type of I/O performed by this process.

Returns:
 Returns a non-nega�ve value if successful; otherwise returns a nega�ve value.

H5Pget_mpio_no_collec�ve_cause

Signature:
herr_t H5Pget_mpio_no_collective_cause(hid_t dxpl_id,

uint32_t * local_no_collective_cause,
 uint32_t * global_no_collective_cause)

Purpose:
 Retrieves local and global causes that broke collec�ve I/O on the last parallel I/O call.

Mo�va�on:
 A user can request collec�ve I/O via a data transfer property list (DXPL) that has been suitably

modified with H5Pset_dxpl_mpio. However, there are condi�ons that can cause HDF5 to forgo
collec�ve I/O and perform independent I/O. Such causes can be different across the processes of a
parallel applica�on. This func�on allows the user to determine what caused the HDF5 library to skip
collec�ve I/O locally, in the local process, and globally, across all processes.

Descrip�on:

H5Pget_mpio_no_collective_cause serves two purposes. It can be used to determine
whether collec�ve I/O was used for the last preceding parallel I/O call. If collec�ve I/O was not used,
it retrieves the causes that broke collec�ve I/O on that parallel I/O call. The proper�es retrieved by
this func�on are set before I/O takes place and are retained even when I/O fails.

Valid values returned on the property are as follows; the numbers on the right are bitmask values:
H5D_MPIO_COLLECTIVE = 00000000

Collec�ve I/O was performed successfully. (Default)

H5D_MPIO_SET_INDEPENDENT = 00000001
Collec�ve I/O was not performed because independent I/O was requested.

H5D_MPIO_DATATYPE_CONVERSION = 00000010

 Page 5 of 14

February 12, 2013
RFC THG 2012-01-04.v4.1

Collec�ve I/O was not performed because datatype conversions were required.

H5D_MPIO_DATA_TRANSFORMS = 00000100
Collec�ve I/O was not performed because data transforms needed to be applied.

H5D_MPIO_SET_MPIPOSIX = 00001000
Collec�ve I/O was not performed because the selected file driver was MPI-POSIX.

H5D_MPIO_NOT_SIMPLE_OR_SCALAR_DATASPACES = 00010000
Collec�ve I/O was not performed because one of the dataspaces was neither simple nor scalar.

H5D_MPIO_POINT_SELECTIONS = 00100000
Collec�ve I/O was not performed because there were point selec�ons in one of the
dataspaces.

H5D_MPIO_NOT_CONTIGUOUS_OR_CHUNKED_DATASET = 01000000
Collec�ve I/O was not performed because the dataset was neither con�guous nor chunked.

H5D_MPIO_FILTERS = 10000000
Collec�ve I/O was not performed because filters needed to be applied.

The above name/value pairs are members of the H5D_mpio_no_collective_cause_t
enumera�on.

Each process determines whether it can perform collec�ve I/O and broadcasts the result. Those
results are combined to make a collec�ve decision; collec�ve I/O will be performed only if all
processes can perform collec�ve I/O.

If collec�ve I/O was not used, the causes that prevented it are reported by individual process by
means of an enumerated set. The causes may differ among processes, so
H5Pget_mpio_no_collective_cause returns two property values. The first value is the one
produced by the local process to report local causes. This local informa�on is encoded in an
enumera�on, the H5D_mpio_no_collective_cause_t described above, with all individual
causes combined into a single value by means of a bitwise OR opera�on. The second value reports
global causes; this global value is the result of a bitwise-OR opera�on across the values from all the
processes.

Parameters:
hid_t dxpl_id
IN: Dataset transfer property list iden�fier

uint32_t * local_no_collective_cause
OUT: A enumerated set value indica�ng the causes that prevented collec�ve I/O in the local process.

uint32_t * global_no_collective_cause

 Page 6 of 14

February 12, 2013
RFC THG 2012-01-04.v4.1

OUT: An enumerated set value indica�ng the causes across all processes that prevented collec�ve I/O.

Returns:
 Returns a non-nega�ve value if successful; otherwise returns a nega�ve value.

Notes
In a collec�ve opera�on, the values available to actual_io_mode are dependent on the value of
actual_chunk_opt_mode.
The actual_chunk_opt_mode and actual_io_mode proper�es are not strictly paired nor
all combina�ons of the proper�es are possible.

The possible combina�ons between the two APIs are:

 actual_chunk_opt_mode actual_io_mode

H5D_MPIO_NO_CHUNK_OPTIMIZATION H5D_MPIO_NO_COLLECTIVE
 H5D_MPIO_CONTIGUOUS_COLLECTIVE

H5D_MPIO_LINK_CHUNK H5D_MPIO_CHUNK_COLLECTIVE

H5D_MPIO_COLL_CHUNK_ATONCE H5D_MPIO_NO_COLLECTIVE
 H5D_MPIO_CHUNK_INDEPENDENT

 H5D_MPIO_CHUNK_COLLECTIVE
 H5D_MPIO_CHUNK_MIXED

H5D_MPIO_MULTI_CHUNK H5D_MPIO_NO_COLLECTIVE
 H5D_MPIO_CHUNK_INDEPENDENT

 H5D_MPIO_CHUNK_COLLECTIVE
 H5D_MPIO_CHUNK_MIXED

H5D_MPIO_ALL_CHUNK_IND H5D_MPIO_CHUNK_INDEPENDENT

Also, at the present �me, there is no way of telling whether a specific chunk was read collec�vely or
independently.

Usage
If a user is experiencing difficul�es with parallel I/O, support personnel could use these proper�es to

 Page 7 of 14

February 12, 2013
RFC THG 2012-01-04.v4.1

get extra diagnos�c informa�on. Addi�onally, a user could use these func�ons to ensure that a
specific op�miza�on is chosen to prevent unexpected slowdown of parallel applica�ons.

Example
The following pseudo code illustrates the use of the actual I/O mode proper�es in determining
whether a process performed collec�ve I/O, independent I/O or both in an applica�on with three
processes. In this example Process 0 will report collec�ve I/O, Process 1 will report both collec�ve and
independent I/O and Process 2 will report independent I/O. This example is contrived, but it isn’t too
hard to imagine that if the processes’ selec�ons were determined by a computa�on or user input, a
similar scenario might arise.

H5D_mpio_actual_chunk_opt_mode_t actual_chunk_opt_mode;
H5D_mpio_actual_io_mode_t actual_io_mode;

<set up mpi_rank and mpi_size>

<open file collectively>

<create space>

<create dataset with three chunks>

<create file and memory spaces>

if (mpi_rank == 0) {
 <select hyperslab in Chunk 0>
} else if (mpi_rank == 1) {
 <select hyperlab in Chunk 0 and Chunk 1>
} else if (mpi_rank == 2) {
 <select hyperslab in Chunk 2>
}

dxpl = H5Pcreate(H5P_DATASET_XFER);
H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE);

/* Set chunk optimization mode that can utilize ratio threshold */
H5Pset_dxpl_mpio_chunk_opt(dxpl,H5FD_MPIO_COLL_CHUNK_ATONCE_IO);

/* Set the threshold fraction of processes per chunk for
 * collective I/O. Here, collective I/O will only occur
 * if a process is selected by at least 40% of processes.
 */
H5Pset_dxpl_mpio_chunk_opt_ratio(dxpl, 40);

 Page 8 of 14

February 12, 2013
RFC THG 2012-01-04.v4.1

H5Dwrite(dataset, data_type, mem_space, file_space, dxpl, buffer);

H5Pget_mpio_actual_io_mode(dxpl, &actual_io_mode);
H5Pget_mpio_actual_chunk_opt_mode(dxpl, &actual_chunk_opt_mode);

/* Check properties against expected values */
assert(actual_chunk_opt_mode == H5D_MPIO_MULTI_CHUNK);
if (mpi_rank == 0) {
 assert(actual_io_mode == H5D_MPIO_CHUNK_COLLECTIVE);
} else if (mpi_rank == 1) {
 assert(actual_io_mode == H5D_MPIO_CHUNK_MIXED);
} else if (mpi_rank == 2) {
 assert(actual_io_mode == H5D_MPIO_CHUNK_INDEPENDENT);
}

The next example illustrates the use of the no-collec�ve-cause property in determining why collec�ve
I/O was interrupted. In this case, a file is opened using the MPI-POSIX driver and a collec�ve write
opera�on is requested. The returned property value indicates that collec�ve I/O could not be
performed because of the MPI-POSIX driver is in use.

H5D_mpi_no_collective_cause_t local_no_collective_cause;
H5D_mpi_no_collective_cause_t global_no_collective_cause;

<set up mpi_rank and mpi_size>

fapl = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpiposix(fapl, MPI_COMM_WORLD, 0);

<open file collectively>

<create space>

<create contiguous dataset>

<create file and memory spaces>

<hyperslab selection divides dataset equally among processes>

dxpl = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE);

H5Dwrite(dataset, data_type, mem_space, file_space, dxpl, buffer);

H5Pget_mpi_no_collective_cause(dxpl, &local_no_collective_cause,
&global_no_collective_cause);

 Page 9 of 14

February 12, 2013
RFC THG 2012-01-04.v4.1

/* check property against expected value */
assert(local_no_collective_cause == H5D_MPIO_SET_MPIPOSIX);
assert(global_no_collective_cause == H5D_MPIO_SET_MPIPOSIX);

Recommenda�on
The HDF5 API extensions proposed in this RFC have been implemented, but the parallel I/O code is
changing. Thus the details of this RFC and the associated code will probably need to be revisited.

Op�miza�ons and I/O opera�ons Flowchart

 Page 10 of 14

February 12, 2013
RFC THG 2012-01-04.v4.1

 Page 11 of 14

February 12, 2013
RFC THG 2012-01-04.v4.1

Brief descrip�ons of the op�miza�on modes for H5Pset_dxpl_mpio_chunk_opt follow:

Optimization modes Description
H5FD_MPIO_CHUNK_ONE_IO

Do collec�ve I/O all at once for all the selected chunks.
This mode will not switch to independent I/O.

H5FD_MPIO_COLL_CHUNK_ATONCE_IO

Do collec�ve I/O all at once for all the selected chunks that marked as
collec�ve. Do individual I/O for the rest chunks.
Thus, this mode will switch between collec�ve and independent I/O.

H5FD_MPIO_CHUNK_MULTI_IO

Do collec�ve I/O per chunk for the selected chunks that marked as
collec�ve. Do individual I/O for the rest chunks.
Thus, this mode will switch between collec�ve and independent I/O.

H5FD_MPIO_ALL_CHUNK_IND_IO

Do independent I/O for all the selected chunks.
This mode will not switch to collec�ve I/O.

Flowchart to determine whether collec�ve I/O can be performed or not

 Page 12 of 14

February 12, 2013
RFC THG 2012-01-04.v4.1

 Page 13 of 14

February 12, 2013
RFC THG 2012-01-04.v4.1

RFC Revision History
August 04, 2011 Version 1 posted for public comment. Comments should be sent to

gruber1@hdfgroup.org

August 22, 2011 Minor tweaks a�er comments from Quincey.

September 6, 2012 Minor update for H5Pget_mpio_no_collec�ve_cause sec�on. (Property name
changes, local cause change.)

November 6, 2012 Update according to the removing of the broken ‘mul�-chunk IO without opt’
feature.

January 9, 2013 Update for refrac�ng framework and add an improved op�miza�on mode
‘H5FD_MPIO_COLL_CHUNK_ATONCE_IO’ based on the
‘H5FD_MPIO_CHUNK_MULTI_IO’ mode.

Also added ‘H5FD_MPIO_ALL_CHUNK_IND_IO’ mode as opposite of
‘H5FD_MPIO_CHUNK_ONE_IO’.

The update is from HDFFV-8244 task.

February 12,2013 Some updates a�er comments from Quincey. (HDFFV-8244)

 Page 14 of 14

