
August	19,	2021	 	 RFC	THG	2021-05-28.v4	

Page	1	of	10	

RFC:	Multi-Thread	HDF5	

John	Mainzer	
Gerd	Heber,	Chris	Hogan,	Elena	Pourmal,	Dana	Robinson	

	

At	 present,	 the	 HDF5	 library	 is	 not	 thread	 safe.	 	 To	 allow	 its	 use	 by	multi-threaded	
applications,	in	the	“thread	safe”	build,	the	library	is	equipped	with	a	global	lock	that	
allows	only	one	thread	into	the	library	at	a	time	–	effectively	making	the	entire	HDF5	
library	a	giant	critical	region.			

This	 lack	of	thread	safety	has	been	a	known	issue	for	 longer	than	the	HDF	group	has	
existed	 as	 an	 independent	 entity.	 	 To	 date,	 we	 have	 made	 no	 significant	 effort	 to	
address	the	problem,	due	both	to	the	perceived	difficulty	of	the	problem,	and	to	the	
lack	of	resources.	

Recently,	it	has	become	evident	that	well-chosen	partial	solutions	may	have	significant	
immediate	utility.	 	 Further,	 there	has	been	 interest	 in	 the	 implementation	of	 thread	
safety	for	a	small	subset	of	the	HDF5	API	–	most	particularly	data	set	reads.	

This	RFC	is	an	attempt	to	define	a	strategy	for	retrofitting	thread	safety1	on	the	HDF5	
library,	that	provides	immediately	useful	partial	solutions,	provides	support	for	limited,	
multi-threaded	 dataset	 reads,	 and	 does	 not	 impose	 significant	 extra	 costs	 on	 other	
HDF5	development	projects	or	maintenance	while	in	progress.	

	

1 Introduction					
Multi-thread	programming,	like	MPI	programming,	is	difficult.		The	developer	must	reason	about	the	
multiple	 threads	 of	 execution,	 and	 ensure	 that	 interactions	 between	 them	 do	 not	 corrupt	 data	
structures	or	generate	undesired	results.	

This	is	hard	enough	with	new	code.		Retrofitting	thread	safety	on	existing	programs	is	more	difficult,	
as	 it	 requires	 near	 perfect	 knowledge	 of	 the	 architecture	 and	 code	 base.	 	 Lack	 of	 developer	 level	
documentation	makes	this	even	more	difficult.	

The	HDF5	library	is	an	example	of	this	last	category	–	it	is	a	large,	complex	library	with	little	developer	
level	 documentation.	 	 The	 one	 saving	 grace	 is	 that	 it	 is	 broken	 into	 numerous	 packages,	 some	 of	
which	are	“leaf”	packages	–	by	which	we	mean	that	they	make	no	calls	into	other	packages.		This	in	
turn	means	that	they	can	viewed	as	independent	entities	for	purposes	of	retrofitting	thread	safety.	

																																																								
1	 In	 this	 document,	we	 interchangeably	 use	 “thread	 safe”,	 ‘thread	 safety”,	 “multi-threaded”	 terms	
with	the	meaning	of	“concurrent	threads	are	allowed	in	the	HDF5	library	without	corrupting	data	in	
memory	and	in	storage”.		



August	19,	2021	 	 RFC	THG	2021-05-28.v4	

Page	2	of	10	

This	observation	suggests	a	 strategy	of	 retrofitting	 thread	safety	package	by	package,	 starting	with	
“leaf”	packages	and	then	working	upwards.		While	this	is	not	as	easy	as	it	seems	–	for	example,	cycles	
exist	between	internal	packages	–	it	is	a	plausible	approach	which	should	minimize	both	overall	cost	
and	interference	with	other	HDF5	development	projects.		However,	it	has	the	twin	major	deficits	of	
being	expensive,	and	not	providing	any	tangible	benefit	until	thread	safety	can	be	pushed	up	to	the	
API	level.		For	these	reasons,	it	has	not	been	attempted.	

1.1 Recent	Developments	

Recently,	there	have	been	two	developments	that	may	permit	a	project	to	retrofit	thread	safety	on	
the	HDF5	library	to	return	tangible	benefits	sooner	rather	than	later.	

1.1.1 VOL	Layer	

The	 first	 of	 these	 is	 the	Virtual	Object	 Layer	 (VOL)	 layer.	 	 Conceptually,	 it	 can	be	 thought	of	 as	 an	
abstraction	 layer	driven	across	 the	HDF5	 library	 just	below	 the	API	 calls.	 	 It	allows	development	of	
“VOL	 Connectors”,	 that	 use	 the	HDF5	API	 and	 some	utilities	 provided	 by	 the	 library	 to	 implement	
data	storage	in	an	arbitrary	format	and	on	arbitrary	device(s)	while	supporting	the	HDF5	API	and	data	
model.	 	 This	 gives	 HDF5	 applications	 access	 to	 these	 storage	 systems	 without	 code	 changes.		
Examples	include	the	DAOS	VOL	connector	(supporting	HDF5	on	DAOS)	and	the	REST	VOL	connector	
(supporting	HDF5	on	HSDS).		Such	VOL	connectors	are	said	to	be	terminal,	as	they	handle	the	actual	
data	I/O.	

The	VOL	layer	also	makes	possible	“Pass-through”	VOL	connectors,	which	act	on	API	call	streams	on	
the	way	to	the	terminal	VOL	connectors	(or	VOLs).		Such	VOLs	already	exist	for	purposes	of	logging,	
caching,	and	adding	support	for	asynchronous	operations	on	the	API	call	level.	

As	 a	 point	 of	 terminology,	 that	 portion	 of	 the	 HDF5	 library	 that	 manages	 standard	 HDF5	 files	 is	
frequently	referred	to	as	the	native	VOL.		At	present,	it	is	coupled	with	the	VOL	layer	and	the	utilities	
provided	both	to	it	and	other	VOLs.			

Finally,	hybrid	VOLs	that	are	both	terminal	and	pass	though	also	exist	–	although	to	date	they	have	
only	been	used	as	scaffolding	for	development	/	proof	of	concept	work.	

Unfortunately,	the	VOL	layer	is	below	the	global	lock,	and	thus	calls	to	VOL	connectors	are	serialized,	
even	if	the	VOL	connector	proper	is	thread	safe.		However,	the	global	lock	could	be	moved	down	to	
the	 native	 VOL	 connector	 if	 a	 relatively	 small	 number	 of	 packages	 were	 made	 thread	 safe	 –	
specifically:	

• H5VL	–	VOL	Layer		

• H5E	–	Error	handling	

• H5CX	–	Context	

• H5I	–	Index	

• H5P	–	Property	Lists	

With	the	exception	of	H5VL,	all	of	these	packages	are	high	on	the	list	for	retrofitting	thread	safety	in	
the	 bottom	 up	 approach	 that	 we	 have	 considered	 and	 rejected.	 	 By	 adding	 H5VL	 to	 the	 list,	 and	



August	19,	2021	 	 RFC	THG	2021-05-28.v4	

Page	3	of	10	

retrofitting	thread	safety	on	all	of	them,	we	could	enable	multi-thread	operation	for	all	thread	safe	
VOL	connectors.	

1.1.2 Sub-Filing	

For	 the	 past	 year,	 we	 have	 been	 actively	 engaged	 in	 developing	 sub-filing	 facilities	 for	 the	 HDF5	
library.		After	reviewing	the	last	attempt,	we	elected	to	implement	sub-filing	at	the	Virtual	File	Driver	
(VFD)	layer	to	make	sub-filing	as	configurable	and	flexible	as	possible,	and	thus	avoid	the	rigidity	that	
limited	the	value	of	the	first	attempt.	

During	the	design	work,	it	became	apparent	that	to	attain	the	desired	performance	and	flexibility,	we	
would	 have	 to	make	 the	 VFD	 layer	 and	 selected	 VFDs	 thread	 safe.	 	 Fortunately,	 we	were	 able	 to	
bypass	this	in	the	initial	implementation.		However,	it	will	be	necessary	to	provide	the	configurability	
required	for	acceptable	performance	on	a	wide	variety	of	machines	and	applications.	

Note	that	the	VFD	layer’s	(H5FD	package)	only	significant	dependencies	on	other	packages	are	H5E,	
H5CX,	and	H5P.	(The	in-progress	work	on	selection	I/O2	will	add	a	dependency	on	H5S	(selections)).	

1.2 Adding	Calls	for	Thread	Safe	Data	Set	Reads	to	the	Mix	

In	recent	years,	we	have	received	expressions	of	interest	in	adding	multi-threaded	support	for	limited	
sections	of	the	HDF5	API	–	say	multi-thread	support	for	reading	contiguous	data	sets	of	scalar	type	
without	support	for	variable	length	data,	object	and	region	references,	and	type	conversion.			

As	shall	be	seen,	if	we	have	a	multi-threaded	VOL	layer	and	VFD	layer,	this	should	be	possible	with:		

• No	API	changes,	

• Pathway	for	a	least	limited	expansion	beyond	the	initial	multi-thread	support,	and	

• Threads	not	employing	the	multi-thread	enabled	API	calls	interact	with	the	HDF5	library	as	
usual.	

1.3 Outline	of	the	Remainder	of	this	RFC	

So	far	in	this	RFC,	we	have	outlined	the	current	state	of	play	with	regards	to	retrofitting	thread	safety	
onto	 the	 HDF5	 library,	 along	 with	 some	 recent	 developments	 that	 may	 allow	 us	 to	 make	 some	
progress	on	the	issue.			

In	the	next	section	of	this	RFC,	we	outline	a	strategy	that	adapts	to	recent	developments	to:	

• make	lasting	progress	on	retrofitting	multithread	support,		

• provides	thread	safety	in	targeted	areas	that	will	offer	an	immediate	return,		

• avoid	new	technical	debt	and/or	significant	drag	on	other,	unrelated	development	efforts,	and	

• allow	graceful	management	of	breaks	in	development.	

To	the	extent	that	we	can	tell	without	more	extensive	study	of	the	code	in	question,	we	think	that	the	
proposed	 strategy	 is	workable	 –	 at	 least	 to	 the	 point	 of	 addressing	 the	 use	 cases	 outlined	 above.		
However,	 we	 must	 not	 forget	 that	 retrofitting	 thread	 safety	 on	 existing	 complex	 and	 poorly	
																																																								
2	“Selection	I/O”	feature	allows	HDF5	VFD	layer	to	see	full	I/O	request	issued	by	application.	



August	19,	2021	 	 RFC	THG	2021-05-28.v4	

Page	4	of	10	

documented	code	is	challenging.		Thus,	allowing	for	breaks	in	development	(or	even	abandonment	of	
the	project)	is	a	major	requirement.		As	shall	be	seen,	the	package	by	package	approach	should	allow	
this.	

The	 next	 section	 provides	 a	 high-level	 overview	 of	 the	 strategy	 and	 the	 work	 to	 be	 done.	 	More	
detailed	analysis	of	the	work	to	be	done	is	on	hold	pending	strong	interest	in	this	approach.	

2 Conceptual	Overview	
In	 a	 nutshell,	 the	 strategy	 we	 propose	 is	 the	 package	 by	 package	 approach	 discussed	 in	 the	
introduction,	but	with	initial	packages	chosen	to	enable	multi-thread	VOL	connectors.		This	allows	us	
to	 implement	 multi-threading	 for	 limited	 API	 calls	 (for	 example,	 reads	 of	 contiguous	 data	 sets	 of	
scalar	type,	without	type	conversion,	variable	length	data,	or	references,	etc.	TBD)	via	a	hybrid	VOL	
that	routes	around	non-thread	safe	sections	of	the	HDF5	library.		For	flexibility,	the	hybrid	VOL	would	
use	the	VFD	 layer	for	 I/O	–	which	must	be	retrofitted	for	thread	safety	as	well.	 	API	calls	 for	which	
multi-threading	has	not	been	implemented	are	routed	to	the	native	VOL	as	usual.	

Below	we	list	the	minimum	set	of	modules	that	will	need	modification:	

1. Make	H5VL	(VOL	Layer),	H5CX	(context),	H5P	(property	lists),	H5E	(error	reporting),	and	H5I	
(identifier)	packages	thread	safe.		This	will	allow	us	to	move	the	global	lock	down	to	the	native	
VOL3.			

2. Make	the	VFD	layer	(H5FD)	thread	safe,	along	with	a	minimal	set	of	VFDs.		Note	that	the	VFD	
layer’s	thread	safe	dependencies	(H5E,	H5P,	and	H5CX)	will	have	already	been	made	thread	
safe	at	this	point.		(Note	that	selection	I/O	will	add	H5S	to	this	list.)	

3. Construct	a	Hybrid	VOL	(known	as	the	Bypass	VOL),	that	routes	around	the	non-thread	safe	
portions	of	the	HDF5	library	to	provide	multi-thread	capability	for	limited	cases	of	the	
targeted	API	call(s),	and	routes	all	other	API	calls	to	the	native	VOL.	

On	completion	of	this	list,	we	will	have	retrofitted	thread	safety	on	the	listed	modules,	enabled	multi-
threaded	 VOL	 connectors,	 provided	 the	 thread	 safe	 VFD	 layer	 needed	 by	 sub-filing,	 and	 added	
support	for	multi-threaded	execution	for	limited	cases	of	the	targeted	API	call(s)4.		

From	this	point,	there	are	at	least	two	paths	towards	a	fully	thread	safe	version	of	the	HDF5	library.		
Both	will	be	long	hard	slogs,	but	even	if	we	make	no	further	progress,	this	initial	step	is	of	significant	
value.	

All	the	above	beg	the	questions	of	

• How	will	we	manage	package	conversions	to	thread	safety	to	as	to	minimize	overhead	
imposed	on	other	packages,	avoid	back	sliding,	and	provide	a	path	forward	towards	thread	
safety	for	the	entire	HDF5	library?	

																																																								
3	This	is	a	bit	of	an	over	simplification.		Depending	on	complexity	of	I/O	calls,	we	may	need	to	make	
some	other	packages,	for	example,	the	H5S	(selections)	thread	safe.	However,	these	package(s)	can	
be	guarded	by	the	global	lock	until	they	are	made	thread	safe.	
4	I.e.	reads	of	contiguous	data	sets	of	scalar	type,	and	without	type	conversions,	variable	length	data	
or	references.	



August	19,	2021	 	 RFC	THG	2021-05-28.v4	

Page	5	of	10	

• How	does	the	Bypass	VOL	work?	

• How	can	we	proceed	toward	thread	safety	for	the	entire	HDF5	library?	

We	address	these	questions	at	a	high	level	in	the	following	sections.	

2.1 Package	by	Package	Conversion	to	Thread	Safety	

Recall	that	the	package	by	package	strategy	for	retrofitting	thread	safety	starts	by	retrofitting	“leaf”	
packages	for	thread	safety,	and	then	works	its	way	in.		Ideally	this	would	allow	us	to	address	thread	
safety	for	one	package	at	a	time,	as	either	the	package	would	call	no	other	packages,	or	all	packages	
that	it	calls	would	already	be	thread	safe.	 	Further,	once	a	package	was	converted	to	thread	safety,	
neglecting	maintenance,	it	would	be	finished	business.				

The	hidden	assumption	here	 is	 that	package	dependencies	are	 tree	structured	–	which	sadly	 is	not	
the	case.		For	example,	cache	client	calls	into	the	metadata	cache	can	trigger	actions	in	other	cache	
clients,	which	can	trigger	re-entrant	calls	into	the	metadata	cache,	and	so	on.		Taming	this	hairball	will	
likely	 require	 significant	 re-architecting	 of	 metadata	 management	 to	 break	 the	 multi-thread	
conversion	problem	into	manageable	chunks.		Indeed,	if	the	effort	to	retrofit	thread	safety	onto	the	
HDF5	library	founders,	it	may	well	be	on	this	rock.	

Fortunately,	all	of	the	packages	to	be	addressed	in	the	initial	effort	(H5VL,	H5E,	H5CX,	H5P,	H5I,	and	
H5FD)	are	either	“leaf”	packages,	or	are	well	mannered	internal	packages	that	don’t	display	the	sort	
of	pathological	behavior	discussed	above.	 	Thus,	 for	 this	portion	of	 the	project	at	 least,	 retrofitting	
thread	safety	can	proceed	as	follows:	

1. Pick	a	package5	that	is	either	a	leaf	package,	or	that	only	makes	calls	into	packages	that	have	
already	been	retrofitted	for	thread	safety.	

2. Analyze	the	package,	and	modify	as	necessary	to	ensure	thread	safety6	while	not	making	any	
functional	changes7.		Further,	these	modifications	must	be	performed	with	an	eye	to	avoiding	
lock	ordering	issues	as	more	packages	are	retrofitted	for	thread	safety8.		Document	the	
changes	required	to	support	thread	safety.		The	modified	package	must	pass	existing	
regression	tests.	

3. Write	the	necessary	regression	tests	to	verify	thread	safety	(to	the	extent	that	this	is	possible).		
At	least	initially,	these	tests	will	likely	be	directed	at	verifying	thread	safety	of	code	accessing	
internal	data	structures,	and	of	calls	into	the	package.		Where	thread	safety	touches	the	HDF5	
API,	we	will	require	regression	tests	at	that	level	as	well.		These	tests	will	be	compute	
intensive,	and	thus	may	only	exist	in	token	form	in	the	daily	regression	tests.		The	full	versions	
will	have	to	be	run	whenever	the	package	is	modified.	

																																																								
5	Observe	that	the	VOL	Layer	calls	arbitrary	VOL	connectors,	that	may	or	may	not	be	thread	safe.		VOL	
Connectors	 that	 are	 not	 thread	 safe	must	 be	 protected	with	 a	 global	 lock	 –	 effectively	 converting	
them	into	giant	critical	regions.	
6	The	details	of	this	modification	are	TBD,	and	will	be	package	dependent.			
7	While	this	should	be	possible	in	the	initial	effort,	it	will	not	be	possible	in	general.		In	this	case,	we	
will	re-architect	as	necessary.	
8	Which	may	require	re-architecting.	



August	19,	2021	 	 RFC	THG	2021-05-28.v4	

Page	6	of	10	

4. Repeat	until	done.	

Once	a	package	is	retrofitted	for	thread	safety,	in	can	be	merged	into	the	HDF5	develop	branch.		Un-
related	projects	that	touch	the	package	must	ensure	that	they	do	not	break	thread	safety.		However,	
with	appropriate	documentation	and	regression	tests,	this	burden	should	be	minor	in	most	cases.			

Since	 the	 thread	safe	version	of	 the	package	can	be	used	with	either	 single	 thread	or	multi-thread	
builds	of	the	HDF5	library	(possibly	with	some	conditional	compilation	to	avoid	unnecessary	overhead	
in	 the	single	 thread	case),	 there	 is	no	code	duplication.	 	Further,	 the	thread	safety	 regression	tests	
should	prevent	(or	at	least	minimize)	back	sliding.	

Unless	 re-architecting	 is	 required	 to	 support	 thread	 safety	 in	 packages	 that	 are	 addressed	 at	 later	
date,	retrofitting	thread	safety	on	the	target	package	should	be	finished	business	at	this	point.	

While	 the	 package	 by	 package	 approach	 has	 the	 advantage	 of	 allowing	 us	 to	 address	 the	 thread	
safety	question	 in	systematic,	piece	by	piece	 fashion	without	 increasing	 technical	debt	or	 imposing	
significant	 extra	 burdens	 on	 un-related	 concurrent	 HDF5	 development	 projects,	 in	 its	 most	 basic	
form,	 it	doesn’t	bear	fruit	until	we	push	thread	safety	up	to	the	API	 level.	 	However,	 the	VOL	 layer	
exists,	 and	 thus	 we	 can	 make	 it	 thread	 safe	 early	 in	 the	 project	 –	 thus	 enabling	 multi-thread	
processing	in	VOL	connectors.			

One	possible	application	of	this	facility	is	the	proposed	Bypass	VOL	connector	–	whose	architecture	is	
discussed	below.			

2.2 	The	Bypass	VOL	Connector	

The	Bypass	VOL	Connector	must	examine	each	API	call	as	it	is	received.			

If	the	Bypass	VOL	connector	doesn’t	support	multi-threaded	execution	of	the	API	call	 in	question,	it	
grabs	a	write	lock	on	the	Bypass	VOL	Connector,	and	routes	the	API	call	to	the	native	VOL.		The	write	
lock	is	dropped	when	the	API	call	returns.			

If	multi-threaded	operation	 is	supported	for	this	API	call,	 it	grabs	a	read	 lock	on	the	Bypass	VOL	to	
prevent	any	non-multi-thread	enabled	API	calls	from	executing	during	multi-thread	operations.			

If	 there	 have	 been	 any	 writes	 since	 the	 last	 multi-thread	 operation	 completed,	 it	 sends	 a	 flush	
command	to	the	native	VOL	–	note	that	this	command	will	hit	the	Native	VOL’s	global	lock,	and	may	
take	a	while.	

The	 exact	 processing	 from	 this	 point	 depends	 on	 the	 nature	 of	 the	multi-thread	 support,	 but	 for	
purposes	 of	 this	 discussion	 let	 us	 presume	 that	 we	 wish	 to	 support	 multi-threaded	 reads	 of	
contiguous	data	 sets	of	a	 scalar	 type,	without	 type	conversion,	variable	 length	data,	or	 references.		
Given	this	presumption,	processing	proceeds	as	follows:	

1. Query	the	Native	VOL	Connector	to	obtain	the	base	address	of	the	contiguous	data	set,	its	
dimensions,	and	data	type.		This	query	will	hit	the	Native	VOL	Connector’s	global	lock,	but	
since	the	necessary	data	should	be	cached,	it	should	return	quickly.		It	may	also	be	necessary	
to	obtain	a	pointer	to	the	instance	of	H5FD_t	used	by	the	top	level	VFD.	

2. Given	the	above	data,	construct	VFD	read	call(s)	to	obtain	the	required	data	from	file,	and	
load	it	into	the	buffer	supplied	by	the	caller.		Until	H5S	(selections)	is	made	thread	safe,	these	
calls	must	be	either	the	regular	POSIX	like	calls,	or	vector	I/O	calls.		Otherwise	the	VFD	layer	



August	19,	2021	 	 RFC	THG	2021-05-28.v4	

Page	7	of	10	

would	have	to	call	the	non-thread	safe	H5S	package	to	walk	the	selection,	and	thus	hit	the	
Native	VOL’s	global	lock	repeatedly.	

Note	that	this	operation	duplicates	a	small	subset	of	the	functionality	of	the	H5D	(dataset)	
package	–	and	thus	it	can	be	viewed	as	duplicate	code	if	you	squint	just	right.	

3. Make	the	required	H5FD	read	call(s).		Since	the	VFD	layer	and	the	relevant	VFDs	should	be	
thread	safe	at	this	point,	these	calls	can	bypass	the	Native	VOL’s	global	lock	–	allowing	an	
arbitrary	number	of	reads	to	proceed	concurrently.	

Alternatively,	if	H5FD	has	not	been	retrofitted	for	thread	safety,	the	Bypass	VOL	can	simply	
open	the	HDF5	file	and	read	it	directly	with	the	usual	POSIX	calls.	

4. On	return,	drop	the	read	lock	and	exit.	

Figure	1	below	gives	a	simplified	block	diagram	of	the	Bypass	VOL.	

	



August	19,	2021	 	 RFC	THG	2021-05-28.v4	

Page	8	of	10	

Figure	1:		Bypass	VOL	Block	Diagram

	

With	the	exception	of	the	flush	call	and	the	use	of	the	R/W	lock,	the	above	functionality	has	already	
been	implemented	in	a	hybrid	VOL	used	for	the	initial	development	and	performance	testing	of	the	
sub-filing	VFD.	

Observe	that	this	approach	segregates	all	code	specific	to	the	multi-thread	enabled	HDF5	API	calls	in	
the	 Bypass	 VOL	 Connector	 –	 away	 from	 any	 possible	 interaction	 with	 HDF5	 library	 development	
proper.	



August	19,	2021	 	 RFC	THG	2021-05-28.v4	

Page	9	of	10	

2.3 Paths	Forward	

While	there	are	numberof	 logical	possibilities,	for	purposes	of	this	RFC,	we	will	restrict	ourselves	to	
considering	only	two:	

• Proceed	with	the	package	by	package	retrofit	of	thread	safety	on	the	Native	VOL	until	it	is	fully	
thread	safe.	

• Expand	the	Bypass	VOL	to	a	thread	safe	re-implementation	of	the	Native	VOL	

Both	 options	 have	 their	 plusses	 and	minuses.	 	 In	 a	 nut	 shell,	 it	 comes	 down	 to	what	we	want	 to	
optimize	 for	–	minimum	 total	 effort	or	early	delivery	of	multi-thread	execution	of	 a	 sub-set	of	 the	
HDF5	API.		Obviously,	hybrid	approaches	are	also	possible.	

2.3.1 Proceed	with	Package	by	Package	Conversion	to	Thread	Safety	

The	primary	advantage	of	this	approach	is	minimization	of	total	effort.		While	there	will	doubtless	be	
some	re-working	as	we	untangle	hair	balls	such	at	the	metadata	cache	/	cache	client	reentrancy	issue	
discussed	 above,	 in	 the	main	 this	 approach	 should	 allow	 us	 to	 approach	 conversion	 of	 the	 HDF5	
library	 to	 thread	 safety	 in	 a	 systematic	 fashion	 with	 little	 wasted	 effort.	 	 Given	 the	 perceived	
magnitude	of	the	task,	this	is	no	small	thing.	

Perhaps	equally	 important,	the	package	by	package	approach	allows	us	to	put	down	the	process	of	
retrofitting	thread	safety	on	the	HDF5	library	at	any	package	boundary	at	minimal	cost.	

On	the	other	hand,	we	have	used	up	most	of	our	bag	of	 tricks	 for	delivering	early	results.	 	Beyond	
targeting	desired	API	calls	and	pushing	thread	safety	towards	them	first,	there	is	little	we	can	do	to	
offer	additional	multi-thread	support	until	we	push	up	to	the	entry	points	of	the	Native	VOL.		

2.3.2 Expand	the	Bypass	VOL	to	a	Thread	Safe	Re-Implementation	of	the	Native	VOL	

Unless	we	are	prepared	to	commit	significant	resources	up	front,	the	situation	with	the	Bypass	VOL	is	
just	the	opposite.		We	can	expand	multi-thread	support	to	additional	API	calls,	or	relax	restrictions	on	
API	calls	already	supported.		But	in	general,	each	time	we	do	so,	we	will	have	to	revisit	existing	code	
and	duplicate	more	functionality	from	the	Native	VOL.		Doing	this	piecemeal	is	unlikely	to	be	cheap.	

On	the	other	hand,	if	we	are	prepared	to	commit	the	necessary	resources,	we	should	be	able	to	do	a	
thread	safe	re-write	of	the	Native	VOL	more	cheaply	than	the	above	package	by	package	approach.		
However,	this	requires	a	large,	up	front	commitment	of	resources,	will	not	bear	fruit	for	some	time,	
and	is	probably	best	done	in	the	context	of	a	complete	redesign	and	re-implementation	effort.		In	any	
case,	we	are	no	longer	talking	about	retrofitting	thread	safety	on	the	HDF5	library.	

3 Recommendation	
Decide	whether	there	is	sufficient	interest	in	the	proposed	approach	to	retrofitting	thread	safety	on	
the	HDF5	library.		If	so,	start	working	out	the	details,	and	start	thinking	on	which	if	any	of	the	paths	
forward	is	acceptable.	

Acknowledgements	
The	initial	versions	of	this	RFC	were	paid	for	with	THG	sustaining	engineering	funds.	



August	19,	2021	 	 RFC	THG	2021-05-28.v4	

Page	10	of	10	

Revision	History		
May	28,	2021:	 Version	1	circulated	for	comment	within	The	HDF	Group.		

May	31,	2021	 Addressed	comments	from	the	HDF	Group.			

Version	2	circulated	for	comment.	

June	6,	2021	 Version	3:	Reworked	for	general	distribution.	

August	19,	2021	 Version	4:	Minor	edits	before	publication.	

	


