
November 22, 2010RFC THG 2010-11-22.v2

RFC: SWMR Timeouts

Mike McGreevy

This RFC proposes a method that can be used to control the growth of an HDF5 file
under single-writer/mul�ple-reader access.

Introduc�on
When performing single-writer/mul�ple-reader (SWMR) access to an HDF5 file, several condi�ons
must be maintained so that the writer process never prematurely overwrites or removes data that a
reader has loaded or is currently loading into its cache. Currently, the method employed simply never
recycles space in the HDF5 file, thus a reader accessing an old loca�on will s�ll find a valid (though
stale) HDF5 data structure and will be able to con�nue without error.

This poses the problem of the HDF5 file’s size enlarging without bound. Without the ability to recycle
the space used by stale data structures in the HDF5 file, there is no telling how large the file might get
under extreme circumstances.

This RFC proposes adding a �meout value to the HDF5 file, accessible to any reader or writer process,
which enforces a refresh policy (for any readers) and a recycle policy (for the writer) to allow the
writer to safely recycle space in the file while in a single-writer/mul�ple-reader access environment.

Approach
To allow the writer to recycle space in the file under SWMR access without causing problems for any
reader process, a real-world clock dura�on, , is shared between the writer and all readers. This clock
dura�on imposes a �me limit on how long the readers can maintain access to a loaded cache entry
and how long un�l the writer can safely recycle space in the file.

On the reader side, the cache will be modified to �mestamp any entry loaded into the cache. Every
�me a piece of metadata is accessed, its �mestamp is compared to the �meout value, , to determine
if the entry is s�ll valid. If has elapsed since the entry was loaded into the cache, then the entry is
considered to have �med out and is poten�ally stale. The entry will then need to be re-loaded from
the file before being returned from the cache.

On the writer side, any data structure releasing space in the file whose space is sent into the free-
space manager will have that space �me-stamped and queued. The space will not actually be freed
un�l 2 + has passed since it was added into the free-space queue. As long as readers are ensured not
to have any data structure in their cache that is older than , the writer can safely free space in the file
that is older than 2 + without worrying about causing problems for any readers. Note that in this case,

 Page 1 of 4

November 22, 2010RFC THG 2010-11-22.v2

 represents an extra bit of margin to avoid any poten�al corner case problems when data is read or
recycled just before or a�er .

Use Cases
Any instance in which the single-writer/mul�ple-reader scenario is employed will benefit from this
addi�on so as to keep the HDF5 file size from growing uncontrollably.

Implementa�on Details
Some design decisions are being proposed based off of certain access situa�ons, so those situa�ons
and proposed solu�ons are outlined here.

Superblock Extension to store Timeout value

The �meout value, , will be stored in the file in a superblock extension. The writer process will store
the value when it opens the file and any reader can read the value and synchronize with the writer
process by using the same value as its �meout. The �meout value can be modified by an applica�on
by se�ng a file access property when accessing the file from the writer process. The default value will
be zero, to indicate that SWMR access is not being performed and the library will behave normally
(i.e., not SWMR-safely), for backward compa�bility with previous releases of the library.

Re�rement of SWMR_READ And SWMR_WRITE files access flags

Because the �meout value is stored in the file, it can act as an indicator as to the intent of the access,
and whether or not SWMR-safe mechanics should be employed. If a writer accesses the file and sets
up a �meout value, then any subsequent reader accessing the file will see the �meout in the file and
know that it is in a single-writer/mul�ple-reader scenario, and behave accordingly. Addi�onally, if
another writer a�empts to access the file, it will see that a �meout value has already been set, and
disallow access to the file. When a writer completes its process, it will remove the �meout value from
the superblock, indica�ng that future readers need not worry about being SWMR safe and that
another process can write to the file.

We can thus re�re the SWMR-specific access flags (SWMR_READ and SWMR_WRITE), as HDF5
readers will automa�cally detect when a file access should be accessed SWMR-safely and a writer will
need to specify a �meout value in order to enable SWMR access or fail if it already finds one in the
file.

New Tool to remove SWMR Timeout Value from HDF5 file

A problem arises when a wri�ng process is killed prematurely in that a �meout value will be le� in the
file’s superblock extension, so subsequent writers trying to access the file will always fail ci�ng that
another writer has the file open. To fix this, a tool will be provided to remove the �meout value from
any HDF5 file, disregarding its current state. This will either be a new tool designed specifically for this
task (h5fix?), or lumped in as part of ‘h5recover’, which currently only recovers files a�er a crash
when journaling was enabled, in an a�empt to make h5recover responsible for fixing all poten�al file

 Page 2 of 4

November 22, 2010RFC THG 2010-11-22.v2

problems that might arise when using hdf5. This has yet to be determined.

Object-wide timestamps

For file objects composed of mul�ple metadata cache entries, it’s desirable to keep all the metadata
related to the object in sync, thus timestamps will be applied on an object-by-object basis. All
metadata related to a single object header (or hid_t value) will receive the same �mestamp. When
the object is determined to have �med out, all metadata related to the object will be evicted, to
ensure the en�re object is reflec�ve of its state on disk, and not just the most recently accessed
metadata. The evic�on of an en�re object can be achieved by taking advantage of the metadata
tagging and single object flush and refresh code, as described in the following similarly named RFC:

h�p://www.hdfgroup.uiuc.edu/RFC/HDF5/flush_refresh_objects/RFC_flushevict_objects_v1.docx

API rea�empts

In the case where an API call that loads metadata into the cache takes longer than and thus
poten�ally reads in already-�med-out metadata (and may fail if the space has been recycled by the
writer and contains garbage), a mechanism will be put in place to allow an API call to rea�empt a
read. In the SWMR read scenario, all API calls will be evaluated a�er their execu�on (resul�ng in
either a success or failure) to determine if it took too long to be considered a valid read.

If the API call has taken too long, it will re-a�empt the call number of �mes, where is a predefined
maximum number of rea�empts. If a�er a�empts the API has not completed within the �me limit, it
will fail ci�ng that the opera�on took too long.

If the API returns in a period of �me within the bounds of the �meout value, , either a�er the first
a�empt or a�er a rea�empt, then it will report success or failure and provide its return value as usual.

Object removal queue in writer

There is one case that a reader would not currently be able to handle without failure in any capacity,
and that is when an object is simply deleted by the writer. Refreshing a piece of metadata when the
metadata is gone (rather than simply moved elsewhere) will fail. To avoid this situa�on, the writer
process will queue objects deleted from the file and disallow the recycling of that space un�l file
close. Note that when a writer accesses a file without the intent to behave SWMR-safely, it will recycle
all space (including that of deleted objects) normally.

Unresolved Issues

One issue remains unresolved, and that’s the case when a reader accesses a file before a writer. In the
case where a writer accesses the file first, it will set the �meout value so subsequent readers will
behave correctly, but if there’s already a reader accessing a file when a writer starts up, it will have
already read a �meout value of zero, and will not be behaving in a SWMR-safe manner.

A poten�al solu�on to this problem is to have all reader processes periodically refresh a file’s
superblock and check to see if the SWMR �meout has been modified, but we wouldn’t want this to be
frequent enough to cause any poten�al performance hit, while it couldn’t be so infrequent so as to be

 Page 3 of 4

http://www.hdfgroup.uiuc.edu/RFC/HDF5/flush_refresh_objects/RFC_flushevict_objects_v1.docx

November 22, 2010RFC THG 2010-11-22.v2

rendered useless, so the effec�veness of this solu�on is ques�onable.

Aside from telling users not to do this, no really great solu�on has been iden�fied.

Recommenda�on
The recommenda�on is to implement SMWR �meouts in HDF5 to prevent uncapped file size growth
by writer processes within single-writer/mul�ple-reader access environments.

 Revision History
November 16, 2010 Version 1 passed to Quincey for comment and copyedi�ng.

November 22, 2010 Version 2 circulated for comment within The HDF Group.

 Page 4 of 4

