
Sept. 29, 2015 RFC THG 2015-06-15.v0

RFC: Metadata Cache Image

John Mainzer

HDF5 metadata is typically small, and sca�ered throughout the HDF5 file. While small, widely
sca�ered I/Os are not a significant issue on small machines with local file systems, they are a
major performance concern on large HPC systems. The metadata cache does a reasonably
good job of minimizing such I/Os during normal opera�on. However, the cache must s�ll be
populated at file open, and flushed at file close. Thus the metadata I/O overhead of simply
opening and closing HDF5 files on such systems is a concern.

This RFC proposes wri�ng the contents of the metadata cache to file in a single block on file
close, and then popula�ng the cache with the contents of this block on file open – thus
avoiding the many small I/Os that would otherwise be required on file open and close.

For historical reasons, elements of metadata in HDF5 are of no fixed size, and may be arbitrarily large. ost
entries are small, and thus HDF5 generates numerous small metadata reads and writes. The metadata cache
minimizes this number, but enough are s�ll issued to cause problems on large HPC systems. In par�cular, these
reads and writes are currently unavoidable at file open and close, as the metadata cache must be populated on
file open, and (if the file has been modified) flushed on file close.

This RFC explores the no�on of avoiding small metadata writes on file close by wri�ng the contents of the
metadata cache to file in a single block. On file open, this block would be read immediately, and used to
populate the metadata cache before any metadata access requests are received from the library. If the access
pa�ern a�er the file open is similar to that just before the file close, this approach could avoid the majority of
metadata I/O on file open as well.

The immediate impetus for this RFC is a use case in which many processes in an HPC environment access a
single HDF5 file in a round robin. Specifically, each process opens the file, writes to it, closes it, and then passes
control of the file to the next process. As the HDF5 file is opened and closed many �mes during processing,
reduc�on of file open/close overhead is a major concern.

To clarify the proposed enhancement, consider the following cycle of opera�on.

If a metadata cache image is desired, the HDF5 file is opened (or created) with a new FAPL (File Access Property
List) property indica�ng that the contents of the metadata cache should be wri�en to an image on file close,
instead of the usual processing in which dirty entries are wri�en back to their assigned loca�ons in the file and
clean entries are simply discarded.

Introduc�on 1.

Cycle of Opera�on2.

This new FAPL property has no effect un�l file close. On file close, processing proceeds as follows:

At a minimum, the superblock and the metadata suppor�ng superblock extension messages must be
excluded from the cache image, as the HDF5 file cannot be opened if these pieces of metadata are not
in the expected loca�ons. At present, the file free space managers are also excluded, although with
modifica�ons to improve their behavior on file close, they could and should be included in the
metadata cache image. All other metadata is included in the cache image.

Note that the above cycle of opera�on is somewhat simplified. In par�cular, due to the peculiar behavior of
some cache clients, it may be necessary to repeat steps 1 through 6 several �mes.

File open proceeds as usual up to the point at which the superblock extensions are read.

If the version of the library that is used to open the file does not understand the metadata cache image
superblock extension, it must refuse to open the file.

If the library does understand the metadata cache image superblock extension, it must advise the metadata
cache of the existence, base address, and size of the cache image, and then delete the metadata cache image
superblock extension message.

Once so advised, the metadata cache must proceed as follows prior to the first entry protect (or just prior to file
close, if the file is closed without any further ac�vity):

The metadata cache serializes all entries in the cache so as to fix their on disk loca�ons and sizes.1.

The metadata cache scans each entry in the cache, and determines which entries will be included in
the metadata cache image. For each such entry, it makes note of the following informa�on:

2.

Its posi�on in the LRU list if it is on that list. ●

Whether it is dirty. ●

If the entry is a child in a flush dependency rela�onship, the address of the parent. ●

If the entry is a parent in a flush dependency rela�onship, how many children it has.●

The metadata cache allocates a buffer large enough for serialized representa�ons of all entries in the
cache that have been selected for inclusion in the metadata cache image, along with addi�onal
informa�on indica�ng the address, length, assigned ring, and type of each entry, and also the
informa�on collected in item 2 above. This buffer must also be large enough to contain the current
adap�ve cache resizing configura�on and status.

3.

The metadata cache creates a superblock extension message indica�ng that the contents of the
metadata cache has been wri�en to a cache image. Note that at this point, the message will not
contain the correct base address and length of the metadata cache image.

4.

The metadata cache allocates space for the metadata cache image at the end of the HDF5 file. This
space is the same size as the buffer allocated in 2 above.

5.

The metadata cache updates the superblock extension message created in 3 above to contain the base
address and length of the metadata cache image.

6.

The metadata cache is then flushed as usual, with the proviso that all entries selected for inclusion in
the metadata cache image are wri�en to the buffer (annotated with base address, length, type, etc.).
Superblock related entries (and all other entries excluded from the cache image) must be wri�en to file
in their usual places, as they will needed for file open. At present, file free space managers are also
omi�ed from the image, and are thus wri�en to file as per the superblock and its associated metadata.

7.

A�er the flush, the metadata cache writes the current adap�ve cache resizing status to the buffer (this
is not implemented at present).

8.

Finally, the metadata cache writes the cache image buffer to its allocated space in the HDF5 file, and
frees the buffer.

9.

File close then proceeds as normal. 10.

Note that the existence in the metadata cache of prefetched entries modifies the behavior of the cache as
described below:

Note that we have not discussed any provision for controlling the size of the metadata cache image. Arguably,
such a facility is superfluous, as the size of the metadata cache image is implied by the metadata cache size, and
there are already facili�es to control the size of the metadata cache. That said, we have included such a in the
metadata cache image control API – although that facility is not yet implemented.

In the parallel case, the cache image is created by process 0, and contains the contents and adap�ve cache
resizing status of that cache. This image is read by process 0 only on file open, and then broadcast to all other
processes. With these excep�ons, changes to processing are the same as outlined above.

Allocate a buffer for the cache image, and load the cache image from file.1.

Scan the metadata cache image, and create a “prefetched” cache entry for each entry in the image.
Note that these entries are different from metadata cache entries in the exis�ng cache, in that they
contain only the ondisk image of the entry, not the incore representa�on that is created when an entry
is loaded from disk at the request of a cache client. Call these entries prefetched entries. Mark each
new entry with the address, length, ring, type, dirty flag, order in the LRU (if defined), flush
dependency parent (if any), and number of flush dependency children (if any) recorded in the
metadata cache image block. Place all the serialized entries in a linked list for ease of scanning. Call
this list the prefetched entries list.

2.

Scan the prefetched entries list, insert all entries in the index, and insert all dirty entries in the slist.
Recall that the metadata cache uses a skip list to maintain a list of all dirty entries in increasing address
order On cache flush, it uses this list to write entries in increasing address order to the extent
permi�ed by flush dependencies.

3.

Scan the prefetched entries list to set up the flush dependencies specified. Pin all entries that are
parents in flush dependency rela�onships. Note that when this opera�on is complete, all entries
remaining in the prefetched entries list that were not manually pinned should be annotated with their
order in the LRU. Note also that the flush dependencies created will be slightly different that the usual
flush dependencies, in that the metadata cache must decide when to create and destroy them, instead
of delega�ng this issue to the clients. For clarity, call these flush dependencies “reloaded flush
dependencies”, to dis�nguish them from the flush dependencies created and managed by cache
clients.

4.

Scan the remaining entries in the prefetched entries list, and insert them in the LRU in the indicated
order. At this point the prefetched entries list should be empty.

5.

Read the adap�ve cache resizing data from the cache image buffer, and configure the metadata cache
to recreate the configura�on and status recorded. This is not implemented at present

6.

Free the buffer containing the metadata cache image, and release the file space it resided in.7.

If a cache client requests a prefetched entry, the cache skips the usual read of the serialized version of
the entry from file, and instead passes the prefetched entry image to the client deserialize callback, and
replaces the prefetched entry with the regular entry returned by that callback. If the prefetched entry
is a child in a reloaded flush dependency, that dependency is destroyed before the call to the
deserialize callback. If the prefetched entry is a parent in one or more reloaded flush dependencies,
those rela�onships are transferred to the regular entry returned by the deserialize callback.

1.

If a prefetched entry is flushed prior to any request by a cache client, the image of the entry is simply
wri�en to file and marked clean without any call to any client callback.

2.

If a prefetched entry is evicted prior to any request for it by a cache client, the evic�on is performed
without any call to any client callback. If the entry is a child in a reloaded flush dependency, this
dependency is destroyed just prior to the evic�on. Note that the prefetched entry cannot be a parent
in a reloaded flush dependency, as parents in flush dependencies cannot be evicted un�l all of their
children have been evicted – at which point the entry is no longer a parent in a flush dependency.

3.

As the metadata cache image enhancement observes flush dependencies, it should be transparent to SWMR.

Finally, note the store and restore of metadata cache adap�ve resize status. This has the effect of allowing the
metadata cache to adapt to the stream of cache accesses across the sequence of processes that open and close
the file. Assuming that the pa�ern of cache accesses is rela�vely homogeneous across processes, this should
allow the metadata cache (and the metadata cache image) to adapt in size to hold the current working set –
with the implied reduc�on in metadata I/O.

If a metadata cache image is desired, it must be requested at file open or file create in the FAPL (File Access
Property List).

The signatures for the calls for ge�ng and se�ng this property are:

herr_t H5Pset_mdc_image_config(hid_t plist_id,
 H5AC_cache_image_config_t * config_ptr);

herr_t H5Pget_mdc_image_config(hid_t plist_id,
 H5AC_cache_image_config_t * config_ptr);

Where H5AC_cache_image_config_t is defined as follows:

typedef struct H5AC_cache_image_config_t {
 int32_t version;
 hbool_t generate_image;
 size_t max_image_size;
} H5AC_cache_image_config_t;

The version field should be set to H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION, and the
generate_image field should be set to either TRUE or FALSE depending on whether a cache image is desired.
The max_image_size field is ignored at present.

While it is an obvious error to request a cache image when opening the file read only, it is not in general
possible to test for this error in the H5Pset_mdc_image_config() call. Rather than fail the subsequent file
open, we have elected to resolve the issue by silently ignoring the file image request in this case.

As discussed in the “Cycle of Opera�on” sec�on above, the cache image is read automa�cally if present.

While the above “Cycle of Opera�on” provides a good conceptual outline of the proposed Metadata Cache
Image enhancement, some implementa�on details are glossed over in that sec�on. These details are
addressed in this sec�on. Note that as implementa�on is not fully as of this wri�ng, some details not fully
developed.

The metadata cache image superblock extension message indicates the presence of a cache image by its

Addi�ons to the API3.

Implementa�on Details4.

Metadata Cache Image Superlock Extension Message4.1

existence – thus it need only contain the base address and length of the image. The file format is as follows:

Name: Metadata Cache Image Message

Header Message Type: 0x0017

Length: Fixed

Status: Op�onal, may not be repeated.

Descrip�on: This message indicates the existence, loca�on, and size of a metadata cache image. It is only
found in the superblock extension. Versions of the library that do not understand this message must refuse to
open files in which it appears. Thus bits 3 (fail if unknown and opened for write) and 7 (fail if unknown always)
in the Header Message Flags for this message must be set.

Format of Data:

Metadata Cache Image Message:

byte byte byte byte

Version No space allocated – table alignment only

OffsetO

LengthL

Field Name: Descrip�on:

Version Version of the Metadata Cache Image Message. At present, only version 0 is
defined.

Offset Address in the file of the metadata cache image.

Length Length in bytes of the metadata cache image.

As currently implemented, the metadata cache image is a single block of memory typically allocated at the end
of the file.

As the metadata cache image must contain a representa�on not only of the contents of the metadata cache,
but also its current adap�ve resizing configura�on and status, the proposed format of the image is somewhat
complex.

In an a�empt to make this format more readable, it is presented in hierarchical format, with the top level
showing the overall format of the image, and with two sub-formats showing the formats of cache entries and
the adap�ve cache resizing configura�on and status respec�vely.

The toplevel format follows:

Metadata Cache Image:

byte byte byte byte

Signature

Version No space allocated – table alignment only

num_entries

Metadata Cache Image File Format4.1

Entry image 0

.

.

.

Entry image n

Resize status

checksum

The fields of the top level format described in the following table. Recall that the “Entry image” and “Resize
status” fields are sub-formats embedded in the Metadata Cache Image format.

Field Name: Descrip�on:

Signature Magic number indica�ng that this is a metadata cache image. Must be set to
'MDCI'.

Version Version of the Metadata Cache Image. At present, only version 0 is defined.

num_entries The number of metadata cache entries whose images are stored in the metadata
cache image.

Entry image n Image of the n'th entry image stored in the metadata cache image.

See “Metadata Cache Entry Image” below for the details of these fields.

Resize status Configura�on and status of the adap�ve metadata cache resize algorithms on the
imaged metadata cache.

See “Metadata Cache Adap�ve Resize Status Image” below for the details of this
field.

checksum Checksum of the contents of the Metadata Cache Image.

The Metadata Cache Entry Image is a variable length format, each instance of which contains the serialized
image of an entry, along with other data required to reconstruct the entry when the cache image is reloaded.
Note that the variable length part is the serialized entry image, and that the length of this image is stored in the
Length field.

Metadata Cache Entry Image:

byte byte byte byte

Signature

Type Flags Ring No space allocated

Dependency Child Count No space allocated

Index in LRU

Dependency Parent OffsetO

OffsetO

LengthL

Entry

Image

Field Name: Descrip�on:

Signature Magic number indica�ng that this is a metadata cache entry image. Must be set to
'MCEI'.

Type Value of the id field of the instance of H5C_class_t associated with the entry. This
field is stored primarily for sanity checking.

Flags Flags indica�ng various proper�es of the entry:

 bit 0 If set, entry is dirty.

 bit 1 if set, entry is in LRU

 bit 2 If set, entry is a flush dependency parent.

 bit 3 If set, entry is a flush dependency child.

Ring Integer indica�ng the flush ordering ring to which this entry is assigned.

Dependency child count If bit 2 above is set, the number of flush dependency children of the entry.
Otherwise 0.

Index in LRU If bit 1 above is set, the index of the entry in the LRU. Otherwise 0

Dependency Parent Offset If bit 3 above is set, the address of the flush dependency parent in the HDF5 file.
Otherwise 0.

Offset Address of the metadata cache entry in the HDF5 file.

Length Length of the metadata cache entry image in bytes. Also the length of the space
allocated for the entry in the HDF5 file.

Entry Image Serialized image of the metadata cache entry.

Conceptually, the Metadata Cache Adap�ve Resize Status Image contains the configura�on and current status
of the adap�ve metadata cache resizing algorithms that a�empt to es�mate the current size of the metadata
working set, and adjust the metadata cache size accordingly. This data is used to reconstruct this configura�on
and status when the metadata cache image is reloaded on file open.

As this feature is not yet implemented, and as the code in ques�on is fairly involved, this format will almost
certainly change as over sites and unnecessary fields become apparent. There may also be changes in general
organiza�on.

Metadata Cache Adap�ve Resize Status Image:

byte byte byte byte

Signature

Version incr_mode flash_incr_mode decr_mode

flags epoch_mkrs_ac�ve

epoch_length

(8 bytes)

cache_hits

(8 bytes)

cache_accesses

(8 bytes)

min_sizeL

max_sizeL

max_cache_sizeL

min_clean_sizeL

index_len

index_sizeL

clean_index_sizeL

dirty_index_sizeL

lower_hr_threshold

(double)

Increment

(double)

max_incrementL

flash_mul�ple

(double)

flash_threshold

(double)

flash_size_increase_thresholdL

upper_hr_threshold

(double)

decrement

(double)

max_decrementL

epochs_before_evic�on

empty_reserve

(double)

The following descrip�on of the fields in the “Metadata Cache Adap�ve Resize Status Image” consists mostly of
references to fields in the metadata cache data structures from which the fields are copied and restored. These
fields are well documented in the source code, and (in many cases) in the user level documenta�on as well.
While this is certainly good enough for the current version of this document, we need to decide if it is sufficient
for the final version.

Field Name: Descrip�on:

Signature Magic number indica�ng that this is a metadata cache adap�ve resize status
image. Must be set to 'ARSI'.

Version Version of the Metadata Cache Adap�ve Resize Status Image. At present, only
version 0 is defined.

incr_mode Value of the incr_mode field of the metadata cache's instance of
H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->incr_mode)

flash_incr_mode Value of the flash_incr_mode field of the metadata cache's instance of
H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->flash_incr_mode)

decr_mode Value of the decr_mode field of the metadata cache's instance of
H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->decr_mode)

Flags Flags indica�ng the values of boolean fields in H5C_t (the main structure for
the metadata cache), and in the instance of H5C_auto_size_ctl_t that appears
in H5C_t:

 bit 0 cache_ptr->size_increase_possible

 bit 1 cache_ptr->flash_size_increase_possible

 bit 2 cache_ptr->size_decrease_possible

 bit 3 cache_ptr->resize_enabled

 bit 4 cache_ptr->cache_full

 bit 5 cache_ptr->size_decreased

 bit 6 cache_ptr->resize_ctl->apply_max_incr

 bit 7 cache_ptr->resize_ctl->apply_max_decr

 bit 8 cache_ptr->resize_ctl->apply_empty_reserve

epoch_mkrs_ac�ve Value of the epoch_markers_ac�ve field in H5C_t.

(cache_ptr->epoch_markers_ac�ve)

epoch_length Value of the epoch_length field of the metadata cache's instance of

H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->epoch_length)

cache_hits Value of the cache_hits field in H5C_t.

(cache_ptr->cache_hits)

cache_accesses Value of the cache_accesses field in H5C_t.

(cache_ptr->cache_accesses)

min_size Value of the min_size field of the metadata cache's instance of
H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->min_size)

max_size Value of the max_size field of the metadata cache's instance of
H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->max_size)

max_cache_size Value of the max_cache_size field in H5C_t.

(cache_ptr->max_cache_size)

min_clean_size Value of the min_clean_size field in H5C_t.

(cache_ptr->min_clean_size)

index_len Value of the index_len field in H5C_t.

(cache_ptr->index_len)

index_size Value of the index_size field in H5C_t.

(cache_ptr->index_size)

clean_index_size Value of the clean_index_size field in H5C_t.

(cache_ptr->clean_index_size)

dirty_index_size Value of the dirty_index_size field in H5C_t.

(cache_ptr->dirty_index_size)

lower_hr_threshold Value of the lower_hr_threshold field of the metadata cache's instance of
H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->lower_hr_threshold)

increment Value of the increment field of the metadata cache's instance of
H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->increment)

max_increment Value of the max_increment field of the metadata cache's instance of
H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->max_increment)

flash_mul�ple Value of the flash_mul�ple field of the metadata cache's instance of
H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->flash_mul�ple)

flash_threshold Value of the flash_thresholdfield of the metadata cache's instance of

H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->flash_threshold)

flash_size_increase_threshold Value of the flash_size_increase_threshold field H5C_t.

(cache_ptr->flash_size_increase_threshold).

upper_hr_threshold Value of the upper_hr_threshold field of the metadata cache's instance of
H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->upper_hr_threshold).

decrement Value of the decrement field of the metadata cache's instance of
H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->decrement)

max_decrement Value of the max_decrement field of the metadata cache's instance of
H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->max_decrement)

epochs_before_evic�on Value of the epochs_before_evic�on field of the metadata cache's instance of
H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->epochs_before_evic�on)

empty_reserve Value of the empty_reserve field of the metadata cache's instance of
H5C_auto_size_ctl_t.

(cache_ptr->resize_ctl->empty_reserve)

For current purposes, a prefetched metadata cache entry is simply an entry that appeared in a metadata cache
image, that was loaded into the cache, but has not yet been used (i.e. protected) by the library, and which
therefore contains only the on disk serialized image of the entry. Earlier version of this document referred to
these entries as “serialized metadata cache entries”, however, on implementa�on it was observed that these
entries had to be treated exactly as prefetched entries would be. As there were already tenta�ve plans to
support prefetched entries, it seemed appropriate to change the name so as to facilitate reuse of the code with
minimal confusion.

The ideal way of implemen�ng prefetched metadata cache entries would be to alter our entry load processing
so that every entry would be a prefetched entry when it is first loaded into the cache. While this would simplify
the management of prefetched entries greatly, sadly it is not prac�cal as the correct size of the serialized image
of an entry may be unknown un�l a�er the entry has been par�ally deserialized.

As it is imprac�cal to make the prefetched entry part of the normal cycle of entry load, the metadata cache has
been modified to support prefetched entries as a new type of entry, that is converted into a normal entry the
first �me it is protected (or locked, to use the more standard nota�on).

Fortunately, this has been rela�vely straightforward, requiring li�le more than the addi�on of a boolean flag to
H5C_cache_entry_t to indicate whether the entry is prefetched, the crea�on of a class of prefetched entries
with the associated callbacks, and the crea�on of a rou�ne to handle the details of conver�ng a prefetched
entry into a regular one. This rou�ne is a simplified version of the current load entry rou�ne, with the following
deltas:

Prefetched Metadata Cache Entries4.2

No file I/O●

Destruc�on of any (reloaded) flush dependency rela�onship in which the target entry is a child prior to ●

As discussed in the Cycle of Opera�on sec�on above, the code to write entries to disk also had to be modified
to handle prefetched entries. This has been handled through a combina�on of modifica�ons to
H5C_flush_single_entry(), and the above men�oned crea�on of a client class for prefetched entries.

Finally, there was the ma�er of evic�ng a serialized entry. Again, H5C_flush_single_entry() has been modified
to support this, and again, the deltas from regular processing are small – specifically:

The basic outline of the construc�on of the metadata cache image is given in the Cycle of Opera�on sec�on
above, and modulo some minor deltas, the actual implementa�on is quite close to this outline.

A�er consulta�on with Mark Miller, I went ahead with the op�miza�on of retaining the on disk images of clean
entries so that they need not be serialized again on file close.

As expected, it proved most convenient to delay construc�on of the actual image un�l just before the final
shutdown of the metadata cache. This allowed me to avoid making copies of the on disk images of entries, and
to minimize changes to the flush rou�nes. I was able to order the entries in the image so as to ensure that flush
dependency parents appeared prior to flush dependency children much earlier at file close warning �me.

Also as expected, it proved necessary to serialize all entries in the cache prior to flushing any entries on file
close, and prior to any computa�on of the size of the metadata cache image. Note that in some cases it is
necessary to serialize the cache repeatedly to allow for odd behavior of some of the cache clients.

Note: the H5C_image_entry_t was created to facilitate the construc�on of the cache image, and is also used in
reloading the image. There is some ques�on as to whether this type should be retained. If it is, this sec�on
should be updated to discuss this type and its use. More detailed discussion of the metadata cache image
construc�on process is delayed pending this decision.

As discussed in the “Cycle of Opera�on” sec�on, the metadata cache image is loaded into the cache
on either the first protect call a�er it is informed of the existence of the image, or just before file close
if there is no ac�vity on the file a�er file open.

While in princip it should be possible to load the cache image as part of the file open process, in
prac�ce, a number of data structures are not fully setup at the point at which the file image is
discovered. Hence the delayed open was selected to avoid technical risk.

The significant deltas from the “Cycle of Opera�on” sec�on are:

calling the deserialize callback.

No deserialize retries allowed regardless of entry type (since the size of serialized entry is well know).●

Replacement of the prefetched entry with the regular entry returned by the deserialize callback.●

Transfer of any (reloaded) flush dependency rela�onships in which the target entry is the parent from
the prefetched entry to the new regular entry.

●

Discard of the old prefetched entry, with the serialized image of the entry being transferred to the new
regular entry.

●

Destruc�on of any (reloaded) flush dependency rela�ons in which the target entry is a child prior to
evic�on. This is handled via the no�fy callback in the prefetched entry class.

●

Omission of any callbacks to the underlying class of the prefetched entry.●

●

Construc�ng the Metadata Cache Image4.3

Loading the Metadata Cache Image4.4

The use of an array of instance of H5C_image_entry_t to store the entry data un�l it can be ●

As discussed in the Cycle of Opera�on sec�on, crea�on of a metadata cache image on file close is requested via
a FAPL property on file open. Similarly, decoding of a metadata cache image is automa�c on file open if the
version of the library used understands metadata cache images, and must prevent file open if the library
doesn't understand them.

Much of this control uses exis�ng facili�es, albeit with extensions as follows:

As discussed in the Cycle of Opera�on sec�on above, we proposed to handle the parallel case with the
following deltas from the serial case:

As of this wri�ng, the modifica�ons required for the parallel case are par�ally implemented at present, and
completely untested.

TODO: Update this sec�on with developer level details a�er full implementa�on.

The purpose of the metadata cache image removal tool is to open a HDF5 file with a metadata cache image,
read that image into the metadata cache, discard the image, flush all dirty entries in the cache into the file
proper, and then close the file.

From a code perspec�ve, this will be trivial, as all that will be needed is to open the target file R/W and without
the metadata cache image FAPL entry, and then close it.

used to construct prefetched entries, which are then inserted into the cache.

The omission of the “prefetched entries list” discussed in the “Cycle of Opera�on” sec�on. As
entries in the metadata cache image are sorted so that flush dependency parents always
appear before their associated flush dependency children, it was possible to insert prefetched
entries into the cache as they are reconstructed.

●

Overall Control of the Metadata Cache Image Feature4.5

Defini�on of the new FAPL property.●

Code to create and manage the Metadata Cache Image superblock extension message.●

Code to manage the high level details of the crea�on of the metadata cache image. This was
implemented through a “prepare for file close” call to the metadata cache that is issued shortly before
the first metadata cache flush in the file close process.

●

Addi�ons to the cache crea�on rou�ne that checks the FAPL for a metadata cache image request, and
makes note of it if it exists.

●

Modifica�ons to the superblock load code to detect the presence of a metadata cache image
superblock extension message, and to pass the contents of the message onto the metadata cache if
such a message exists.

●

Modifica�ons to the metadata cache to read the metadata cache image block prior to the first protect,
or on close if no protect call occurs first.

●

Metadata Cache Image in the Parallel Case4.6

On file close, the metadata cache image will be created by the process 0 metadata cache. All other
caches will be informed that their dirty entries are now clean as per the current op�on of metadata
writes from process 0 only, and thus be able to discard their contents on close.

1.

On file open, process 0 will read the metadata cache image and broadcast it to all processes, where it
will be decoded and used to populate each cache in the computa�on as per the serial case.

2.

5. Metadata Cache Image Removal Tool

TODO: Update this sec�on a�er implementa�on.

The metadata cache is central to the func�oning of the HDF5 file, and thus any bugs in the metadata cache
image facility will likely make themselves apparent quickly upon use of the facility.

As of this wri�ng, regression test code for the metadata cache image facility consists of a sequence of smoke
checks, reasonably rigorous control flow tests, and tests to verify correct handling of a cache image request on
a file that is opened read only.

While these tests have likely exposed the vast majority of errors in the code, more focused tes�ng is advisable.
The exact extent of this tes�ng remains to be determined, so for now this sec�on contents itself with a check
list of points to be examined and verified.

The basic issue to be tested is whether the new feature saves and restores the contents and configura�on of
the metadata cache accurately. This can be broken down as follows:

6. Tes�ng

Does control work correctly – specifically:●

Is the new FAPL property recognized on file open, and does it result in a nota�on that a
metadata cache image should be created on file close?
●

Is the metadata cache no�fied on file open that a metadata cache image will be created on
file close? (may not be needed)
●

Is the call to generate a metadata cache image issued on file close? ●

Do versions of the library that don't understand metadata cache images refuse to open files
that contain one?
●

Does the version of the library that does understand metadata cache images recognize the
presence of same? Does it issue the necessary call to trigger load of the image into the
metadata cache?

●

Is the metadata cache image created correctly?●

Are individual entries correctly serialized?●

Are all entries in the cache serialize with the appropriate annota�ons (flush dependencies,
dirty, LRU index, etc)?
●

Is the adap�ve cache resizing configura�on and status recorded correctly?●

Is the calcula�on of image size correct?●

Does the image have the expected structure?●

Is the image wri�en to file correctly?●

Is the image read from file correctly?●

Is the image interpreted correctly?●

Are individual entries correctly read and represented as serialized entries?●

Is the adap�ve cache resizing configura�on and status restored correctly?●

Are flush dependencies restored correctly?●

Are serialized entries handled correctly?●

On protect?●

On flush?●

Aside from addressing the above ques�ons, the test code should fit into the exis�ng regression test framework,
and should piggyback on exis�ng test code to the extent reasonably prac�cal.

TODO: Update this sec�on with developer level details as implementa�on con�nues.

A number of comments and observa�ons have come up in discussion of this work that should be recorded.

This is certainly possible, but it would require se�ng an overlarge cache image so that it would usually
not be necessary to move or resize it.

More to the point, at least in the use case under immediate considera�on, there will be writes to the
superblock regardless. Thus I don't see much room for gain here.

Acknowledgements
TBD

Revision History

June 15, 2015: First dra� sent to Quincey for comment.

June 18, 2015: Second dra� sent to Quincey for comment.

June 23, 2015: Minor cleanups, dra� sent to Mark for comment.

Sept. 29, 2015: Updated document to reflect design changes during implementa�on (which were
minimal), and current state of implementa�on.

On evic�on?●

Are reloaded flush dependencies on serialized entries managed correctly?●

On protect?●

On flush?●

On evic�on?●

Is parallel handled correctly?●

Does SWMR work correctly with metadata cache images?●

7. Closing Comments and Observa�ons

The no�on has been raised of avoiding metadata cache image related writes to the superblock in the
case in which a file with a metadata cache image is opened, and a metadata cache image is requested
on file close.

1.

Given that the immediate used case is a write only one, implementa�on of the alternate “Strict LRU”
replacement policy in the metadata cache may be of value.

2.

Implementa�on of serialized (AKA prefetched) entries facilitates broadcasts of metadata entries, thus
allowing us to avoid the scenario in which each process reads the same piece of metadata from file
simultaneously in collec�ve opera�ons.

3.

