
, 201RFC THG 2013-09-19.v

RFC: Core VFD Backing Store Paged Writes

Dana Robinson

The core virtual file driver (VFD) allows manipula�ng HDF5 files in memory instead of in
physical storage. Files can either be created in memory or exis�ng files in physical
storage can be copied into memory. Op�onally, the in-memory changes can be
propagated back to physical storage when the file is closed. When this is done, the
en�re file is wri�en out to disk, even if only a few bytes were changed.

This document describes updates to the core VFD that track modifica�ons and only
write the changed bytes on file close. As an op�miza�on that reduces small I/O
opera�ons, the modifica�ons can op�onally be aggregated into pages.

This feature will be introduced in HDF5 1.8.13, to be released in May 2014.

Introduc�on
The core virtual file driver (VFD) allows HDF5 files to be created or opened in memory instead of in
physical storage (files are copied into memory on open). All subsequent file manipula�ons occur in
memory, allowing very fast HDF5 file opera�ons but with the disadvantage of poten�ally requiring
significant memory resources when working with large files. On close, the changes can op�onally be
propagated to physical storage. Thconfigur via the following API call:

herr_t H5Pset_fapl_core(hid_t fapl_id, size_t increment, hbool_t backing_sto
re)

The backing_store parameter sets whether changes are propagated to physical storage on close. If
this is set to 0 (FALSE) then all changes will be lost when the file is closed. If this is set to 1 (TRUE),
then the changes are wri�en to storage on file close or flush.

The current implementa�on of the library writes the en�re file out on close if even a single byte has
changed. Naturally, this can be inefficient, especially when very large files are wri�en out a�er
minimal changes have been made.

Tracking Writes for Improved Performance
The changes to the core VFD fairly straigh�orward. As write calls pass through the core VFD, a list of
(start address, end address) pairs represen�ng the writes updated, serving as a map of
modified regions in the file. This data structure merge overlapping or abu�ng regions as they inserted
into the list. When the file is closed, the list traversed and the modified regions of memory

 Page 1 of 6

, 201RFC THG 2013-09-19.v

 propagated to physical storage

Note that these marked regions at the granularity of the write calls that the library makes. i.e., an
en�re metadata object or dataset chunk be marked dirty if even a single byte is changed, since the
library a single write call when these are evicted from their respec�ve caches. The core VFD make no
effort to determine the par�cular bytes that were modified with respect to the original data.

Figure : Effect of the paging feature. When the paging feature has been enabled, the in-memory "file" is conceptually divided into
mul�ple pages (dashed lines). Dirtying any part of a page marks the en�re page as dirty.

Using the New Feature
The write tracking feature will be off by default, even when the backing_store flag is set to
TRUE. The feature will be controlled via the new H5Pget/set_core_write_tracking()
HDF5 API calls (tenta�ve RM calls appear in the appendices of this document).

herr_t H5Pset_core_write_tracking(hid_t fapl_id, hbool_t
is_enabled, size_t page_size)

herr_t H5Pget_core_write_tracking(hid_t fapl_id, hbool_t
*is_enabled, size_t *page_size)

Se�ng the page size to any nonzero value turns write tracking on at that page size. Se�ng a page size
of 1 byte disables paging.

Performance
The performance benefits of the feature will depend heavily on the data access pa�erns of the

 Page 2 of 6

, 201RFC THG 2013-09-19.v

applica�on and will have to be evaluated on a case-by-case basis. In cases where the majority of the
data would be written out (e.g., crea�ng and wri�ng data to a new file), the new feature will likely not
impart a significant performance benefit. In cases where a small amount of data will be added or
changed (e.g., opening an exis�ng file and modifying a small amount of exis�ng data), the
performance benefits could be significant.

When performance tuning, the following parameters are likely to have significant effects on I/O
throughput:

In general, anything that promotes aggrega�on of changes made to the file will enhance the
performance of this feature. Unfortunately, empirical tes�ng will typically be required to determine
the "sweet spot" between reducing the number of seeks and minimizing the amount of data wri�en
out.

Tes�ng
The feature will be tested via

Acknowledgements
This work is being supported by a customer of The HDF Group.

Revision History
September 18, 2013: Version 1 circulated for comment within The HDF Group.

November 7, 2013 Version 2 includes updates concerning recent work on the feature. Circulated
for comment within The HDF Group.

March 28, 2014 Version 3 updated to reflect how the feature will be integrated into HDF5
1.8.13 (and the 1.10 trunk). Circulated within The HDF Group.

March 31, 2014 Version 4 updated to reflect Elena's changes. Circulated on the forum.

Glossary, Terminology

 backing store H5Pset_core_, described in this document).●

Dataset layout and chunk size (H5Pset_layout and H5Pset_chunk).●

Metadata aggrega�on size (H5Pset_meta_block_size).●

Using the latest file format (H5Pset_libver_bounds).●

Data layout considera�ons (arrangement of groups, datasets, types, etc.).●

 Page 3 of 6

, 201RFC THG 2013-09-19.v

virtual file layer
(VFD)

The virtual file layer is an abstrac�on layer in the HDF5 library that maps I/O
opera�ons such as "read" to concrete I/O calls like the POSIX read() call or the Win32
ReadFile() call.

virtual file driver
(VFD)

Implements a par�cular mapping of abstract to concrete I/O calls.

References

Appendix: Virtual File Drivers
The HDF5 library uses a layered architecture, the lowest of which is the Virtual File Layer (VFL). The
VFL handles low-level file I/O via Virtual File Drivers (VFDs). Each VFD implements a different I/O
scheme: e.g., MPI-I/O, POSIX I/O, in-memory I/O, etc. This VFL/VFD scheme allows abstract HDF5 file
manipula�ons to be separated from storage I/O opera�ons. A fairly in-depth, though slightly out-of-
date, descrip�on of how a VFD is implemented can be found in the references.

The HDF Group. “Reference Manual: H5Pset_fapl_core,”
h�p://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetFaplCore (retrieved
September 18, 2013 - refers to HDF5 v1.8.11).

1.

The HDF Group. “HDF5 Virtual File Layer,”
h�p://www.hdfgroup.org/HDF5/doc/TechNotes/VFL.html (November 18, 1999 - This
document is slightly out of date).

2.

1)

 Page 4 of 6

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html
http://www.hdfgroup.org/HDF5/doc/TechNotes/VFL.html

, 201RFC THG 2013-09-19.v

Name: H5Pset_core_write_tracking

Signature:

herr_t H5Pset_core_write_tracking(hid_t fapl_id, hbool_t
is_enabled, size_t page_size)

Purpose:

Sets informa�on about the write tracking feature used by the core VFD.

Descrip�on:

When a file is created or opened for wri�ng using the core VFD with the backing store op�on
turned on, the VFD can be configured to track changes to the file and only write out the
modified bytes. To avoid a large number of small writes, the changes can be aggregated into
pages of a user-specified size.

Se�ng the page_size parameter to zero will turn off tracking and cause the en�re file to be
wri�en out to storage when closed.

Se�ng the page_size parameter to 1 will enable tracking but with no paging.

Note:

Write tracking is turned off by default.

This func�on is only for use with the core VFD and must be used a�er the call to
H5Pset_fapl_core. It is an error to use this func�on with any other VFD.

This func�on only applies to the backing store write opera�on, which typically occurs when
the file is flushed or closed. It has no rela�onship to the increment parameter passed to
H5Pset_fapl_core.

For op�mum performance, the page_size parameter should be a power of two.

Parameters:

 hid_t fapl_id IN: File access property list iden�fier

hbool_t is_enabled IN: Whether the feature is enabled

 size_t page_size IN: Size, in bytes, of write aggrega�on pages

Returns:

 Returns a non-nega�ve value if successful. Otherwise returns a nega�ve value.

Appendix: H5Pset_core_write_tracking RM entry2)

 Page 5 of 6

, 201RFC THG 2013-09-19.v

Name: H5Pget_core_write_tracking

Signature:

herr_t H5Pget_core_write_tracking(hid_t fapl_id, hbool_t
*is_enabled, size_t *page_size)

Purpose:

Gets informa�on about the write tracking feature used by the core VFD.

Descrip�on:

When a file is created or opened for wri�ng using the core VFD with the backing store op�on
turned on, the VFD can be configured to track changes to the file and only write out the
modified bytes. To avoid a large number of small writes, the changes can be aggregated into
pages of a user-specified size.

Note:

This func�on is only for use with the core VFD and must be used a�er the call to
H5Pset_fapl_core. It is an error to use this func�on with any other VFD.

This func�on only applies to the backing store write opera�on, which typically occurs when
the file is flushed or closed. It has no rela�onship to the increment parameter passed to
H5Pset_fapl_core.

For op�mum performance, the page_size parameter should be a power of two.

Parameters:

 hid_t fapl_id IN: File access property list iden�fier

hbool_t *is_enabled OUT: Whether the feature is enabled

 size_t *page_size OUT: Size, in bytes, of write aggrega�on pages

Returns:

 Returns a non-nega�ve value if successful. Otherwise returns a nega�ve value.

Appendix: H5Pget_core_write_tracking Reference Manual Entry3)

4)

 Page 6 of 6

