
March 06, 2012 THG 2012-02-20.v1

Page 1 of 11

h5repack: Improved Hyperslab selections for
Large Chunked Datasets

Jonathan Kim

This document describes the cause of h5repack’s low I/O performance issues
with large chunked datasets and the update to improve performance. It
compares performance measures with various test cases before and after the
update.

1 Background

Prior to the update discussed in this paper (undertaken to resolve JIRA task HDFFV-7862), when
any compression or layout option is used on the h5repack command line and a dataset is larger
than 128MB in size, h5repack uses hyperslab to access a dataset instead of reading or writing
the entire dataset at once.

h5repack’s performance could be slow when certain chunking layouts were used. Sometimes
reading a dataset was unnecessarily slow, sometimes writing a dataset. The worst case was
when both reading and writing were unnecessarily slow.

With this update, h5repack has been modified to take better advantage of chunking in reading
and writing operations with hyperslab.

Related JIRA report

 HDFFV-7862 - Select data by chunk direction to improve performance in h5repack

2 Problem analysis

Slow performance occurred when the hyperslab selections used by h5repack involved small
portions of multiple chunks in the dataset, as illustrated below.

 . . .
7000

5000

dataset dims: 7000x5000
chunk dims: 7000 x2

The red dotted box represents the
hyperslab selection, which is used for both
read and write operations. The black
dividers indicate the first three chunks in
the dataset.

March 06, 2012 THG 2012-02-20.v1

Page 2 of 11

Even though only a portion from the each chunk is selected, the HDF5 library needs to read in
the entire chunk. Therefore, in the above case, the entire dataset would be accessed
repeatedly, once for each hyperslab selection as the hyperslab moves toward the bottom of the
dataset.

Prior to the update, performance suffered in situations like the above because the hyperslab
was always calculated by data element as the base unit instead of considering the dataset’s
chunk layout.

2.1 Test cases, ranged from worst to best

This section describes the h5repack’s performance in four cases before the improvement.

These cases were compiled to provide a baseline against which to measure h5repack’s
improved performance after the update. These tests also demonstrated that if the source and
destination dataset chunk layouts are different, there is more improvement if h5repack’s
hyperslabs are aligned with the destination dataset chunk layout.

2.1.1 Case: Neither read nor write hyperslab aligned with dataset chunking

Test result: 2m 5sec

Reading h5repack’s hyperslab is slow. Writing the hyperslab is slow.

This case yields the worst performance.

 . . .
7000

5000

Reading dataset
dset dims:7000x5000
chunk dims: 7000 x2

Writing dataset
dset dims:7000x5000
chunk dims: 7000 x 2

 . . .
7000

5000

March 06, 2012 THG 2012-02-20.v1

Page 3 of 11

2.1.2 Case: Read hyperslab aligned with dataset chunking, write hyperslab not aligned

Test result: 1m 30sec

Reading h5repack’s hyperslab is fast. Writing the hyperslab is slow.

This case yields better performance than the worst case, but can still be quite slow.

2.1.3 Case: Write hyperslab aligned with dataset chunking, read hyperslab not aligned

Test result: 47 sec

Reading h5repack’s hyperslab is slow. Writing the hyperslab is fast.

This case provides performance much closer to the best case, but can still be slow.

 . . .

7000

5000

Reading dataset
dset dims:7000x5000
chunk dims: 2x5000

Writing dataset
dset dims:7000x5000
chunk dims: 7000x2

 . . .
7000

5000

Reading dataset
dset dims:7000x5000
chunk dims: 7000x2

 . . .
7000

5000

 . . .
7000

5000

Writing dataset
dset dims:7000x5000
Chunk dims: 2x5000

March 06, 2012 THG 2012-02-20.v1

Page 4 of 11

2.1.4 Case: Read and write hyperslabs both aligned with dataset chunking

Test result: 21sec

Reading h5repack’s hyperslab is fast. Writing the hyperslab is fast.

This case provides the best performance.

3 Update to improve performance with hyperslab

Once these performance issues were analyzed, it was determined that h5repack must be
updated to make hyperslab selections more appropriately when working with large chunked
datasets.

With this update, h5repack determines the dataset’s chunk layout and aligns its hyperslab with
the chunk layout instead of ignoring it.

Updated method to figure out a hyperslab :

 Calculates a hyperslab for big dataset in one of the following ways:

Chunked?

A chunk fit in
buffer?

YES

YES

NO

following procedure 3
NO

following procedure 2

following procedure 1

 . . .
7000

5000

Reading dataset
dset dims:7000x5000
chunk dims: 2x5000

 . . .
 7000

5000

Writing dataset
dset dims:7000x5000
chunk dims: 2x5000

March 06, 2012 THG 2012-02-20.v1

Page 5 of 11

1. If the dataset is not chunked, build the largest rectangular hyperslab of elements
that will fit into the buffer.

The hyperslab calculation will start from the last dimension of the dataset. If the
calculation hits the boundary of the dataset’s dimension, the calculation continues
processing with the next dimension of the dataset until the hyperslab buffer is full.

2. If the dataset is chunked and a chunk fits in the hyperslab buffer, build the largest
rectangular hyperslab of whole chunks that will fit into the buffer.

The hyperslab calculation will start from the last dimension (see h5dump dimensions
output) of the dataset. If the calculation hits the boundary of the dataset’s
dimension, the calculation continues processing with the next dimension of the
dataset until the hyperslab buffer is full.

3. If the dataset is chunked but a chunk does not fit in the hyperslab buffer, build the
largest rectangular hyperslab of elements that will fit into the buffer.

The hyperslab calculation will start from the last dimension of the chunk. If the
calculation hits the boundary of the chunk’s dimension, the calculation continues
processing with the next dimension of the chunk until the buffer is full.

This update provides some improvement for all cases and the most improvement for the
slowest cases described in Section 2.

3.1 Test results comparison before and after improvement

The four test cases from section 2 are reused here to compare performance before and after
the update.

See the comparison table for the improvements. See the following subsections for case details.

h5repack performance before and after the update

 Before After

Case1 (2.1.1 vs. 3.1.1) 2m 5sec 36 sec

Case2 (2.1.2 vs. 3.1.2) 1m 30sec 44 sec

Case3 (2.1.3 vs. 3.1.3) 47 sec 41 sec

Case4 (2.1.4 vs. 3.1.4) 21sec 20sec

March 06, 2012 THG 2012-02-20.v1

Page 6 of 11

3.1.1 Case 1

h5repack’s hyperslab selection is aligned with both the reading and writing dataset chunk
layouts.

Test result: 36 sec

Reading h5repack’s hyperslab is fast. Writing the hyperslab is fast.

This was the worst case before update.

3.1.2 Case: Write hyperslab aligned with dataset chunking, read hyperslab not aligned

Test result: 44 sec

Reading h5repack’s hyperslab is slow. Writing the hyperslab is fast.

 . . .
7000

5000

Reading dataset
dset:7000x5000
chunk: 7000 x2

Writing dataset
dset:7000x5000
chunk: 7000 x 2

 . . .
7000

5000

 . . .
7000

5000

Reading dataset
dset:7000x5000
chunk: 2x5000

Writing dataset
dset:7000x5000
chunk: 7000x2

 . . .
7000

5000

March 06, 2012 THG 2012-02-20.v1

Page 7 of 11

3.1.3 Case: Write hyperslab aligned with dataset chunking, read hyperslab not aligned

Test result: 41sec

Reading h5repack’s hyperslab is slow. Writing the hyperslab is fast.

3.1.4 Case: Read and write hyperslabs both aligned with dataset chunking

Test results: 20sec

Reading h5repack’s hyperslab is fast. Writing the hyperslab is fast.

4 Testing with user’s data

This section presents two test cases with user data.

Reading dataset
dset:7000x5000
chunk: 7000x2

 . . .
7000

5000

 . . .
7000

Writing dataset
dset:7000x5000
chunk: 2x5000

 . . .
7000

5000

 . . .
7000

5000

Writing dataset
dset:7000x5000
chunk: 2x5000

Reading dataset
dset:7000x5000
chunk: 2x5000

5000

March 06, 2012 THG 2012-02-20.v1

Page 8 of 11

4.1 Test cases from the user reported in JIRA

This test dataset is based on the user dataset in JIRA report HDFFV-7862. The original data size
was too large, so a smaller dataset was created in a similar manner.

Performance comparison table before and after improvement

 Test1 (4.1.1) Test2 (4.1.2) Test3 (4.1.3)

Before 22 hours 92 m 4sec 30 m 26sec

After 15m 18 sec 13m 23 sec 13m 9 sec

4.1.1 Test 1

Command line: $ h5repack -f GZIP=6 srcfile1.h5 destfile1.h5

This use case is similar to case 1 in sections 2 and 3.

4.1.2 Test 2

Command line: $ h5repack -f GZIP=6 srcfile2.h5 destfile2.h5

Reading dataset

dset:1024x1024x1024
chunk: 64x64x64
gzip level=5

Writing dataset

dset:1024x1024x1024
chunk: 64x64x64
gzip level=6

Reading dataset

dset:1024x1024x1024
chunk: 1024x16x16
gzip level=5

Writing dataset

dset:1024x1024x1024
chunk: 1024x16x16
gzip level=6

March 06, 2012 THG 2012-02-20.v1

Page 9 of 11

4.1.3 Test 3

Command line: $ h5repack -f GZIP=6 srcfile3.h5 destfile3.h5

This use case is similar to case 4 in sections 2 and 3.

4.2 Test cases from a Help Desk user

This user was asking why changing the chunk layout took so long. The test file was provided by
the user.

Performance comparison table before and after update

 Before After

Test (4.2.1) 15 hours 38m

4.2.1 Test

Command line:

$ h5repack -f GZIP=5 -l <dataset>:CHUNK=1x1x4978 userfile.h5 userfile_repack.h5

The “userfile.h5” contains 24 datasets, 4 of which are large and chunked.

The chunk layout changing dataset is the biggest one.

This use case would be similar to case 2 from section 2.

Reading dataset

dset:1024x1024x1024
chunk: 16x16x1024
gzip level=5

Writing dataset

dset:1024x1024x1024
chunk: 16x16x1024
gzip level=6

Reading the dataset

dset: 18600 x 5 x 4978
chunk: 1000 x 5 x 1
gzip level=6

Writing the dataset

dset: 18600 x 5 x 4978
new chunk: 1 x 1 x 4978
gzip level=5

March 06, 2012 THG 2012-02-20.v1

Page 10 of 11

5 Performance affecting factors considered and conclusions

This section highlights the factors that contributed to improved performance and provides brief
conclusions.

 Improved hyperslab selection method

o This was the major factor improving h5repack’s performance in this update.

o Calculated a hyperslab aligned with chunk layout.

o If the source and destination dataset’s chunk layouts are different, there is more
improvement if h5repack’s hyperslabs are aligned with the destination dataset’s
chunk layout.

 Increased hyperslab buffer size

o The previous buffer size is 1MB and has been increased to 32MB to take
advantage of modern hard disk caching capabilities.

o This improved performance most when chunk size is smaller, so that more
chunks exist in a dataset. This also improved performance when repacking non-
chunked datasets.

 Increased threshold for declaring that a dataset is a large dataset

o The previous threshold was 128MB and has been increased to 256MB. The
hyperslab method is used for datasets larger than this threshold.

 About chunk cache size

o Chunk cache size does not affect h5repack’s performance much since data is not
accessed repeatedly.

6 Future direction

 The updated method for getting a hyperslab will be extracted from the h5repack code
as a separated common function for tools. This function can then be used to improve
other tools. Consider h5diff, h5dump, and h5ls, for example, where the new function
would improve the reading operation.

Revision History

February22, 2012: Version 1 draft 1 reviewed in tool team.

February27, 2012: Version 1 draft 2 updated to review in tool team.

March 06, 2012 THG 2012-02-20.v1

Page 11 of 11

February28, 2012: Version 1 draft 3 updated to improve with doc team (Frank).

March 2, 2012: Version 1 draft 4 updated to improve with doc team (Frank).

March 6, 2012: Version1 to be preserved for future reference

