
June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	1	of	24	

RFC:	Selection	I/O			

Neil	Fortner	
Jordan	Henderson	

John	Mainzer	

The	VFD	(Virtual	File	Driver)	abstraction	layer	supported	by	the	HDF5	library	provides	
read	 and	write	 operations	 that	 are	 similar	 to	 the	 POSIX	 I/O	 operations	 of	 the	 same	
name.		While	this	has	been	adequate	for	the	serial	version	of	HDF5,	 it	has	presented	
problems	for	parallel	HDF5	as	 it	prevents	the	VFD	from	seeing	the	entire	I/O	request	
generated	by	an	API	call	all	at	once,	and	thus	prevents	the	use	of	MPI	I/O	optimizations	
on	the	entire	I/O	request.		To	date,	this	has	been	finessed	by	generating	the	required	
MPI	derived	types	at	higher	levels	in	the	HDF5	library,	and	then	passing	them	down	to	
the	VFD	layer	via	un-documented	channels.	

As	long	as	MPI	I/O	was	the	only	place	that	such	optimizations	were	needed,	the	above	
situation,	while	not	desirable,	was	workable.	 	However,	 there	are	now	at	 least	 three	
more	 cases	 where	 allowing	 the	 VFD	 to	 view	 and	 optimize	 the	 entire	 I/O	 request	
generated	by	an	HDF5	API	call	is	essential	for	high	performance.			

This	 RFC	 proposes	 extensions	 to	 the	 VFD	 interface	 necessary	 to	 expose	 entire	 I/O	
requests	to	the	VFD	where	desired,	and	describes	the	associated	architectural	changes	
required	in	the	HDF5	library.		As	shall	be	seen,	these	changes	are	not	trivial.		However,	
in	addition	to	allowing	efficient	I/O	in	cases	where	that	is	not	currently	possible,	they	
should	also	allow	significant	simplification	of	raw	data	I/O	pathways	in	the	upper	levels	
of	the	HDF5	library.	

	

1 Introduction					
Conceptually,	 the	 VFD	 (Virtual	 File	 Driver)	 layer	 presents	 the	 underlying	 storage	 system	 as	 an	
extensible	array	of	bytes,	and	hides	most	of	the	implementation	details	from	the	upper	levels	of	the	
HDF5	 library.	 	Historically,	 this	abstraction	 layer	has	been	used	to	allow	the	HDF5	 library	 to	 run	on	
different	operating	systems	with	different	file	I/O	APIs,	to	simulate	large	files	on	file	systems	with	a	2	
GB	max	file	size,	or	to	segregate	metadata	and	raw	data	into	separate	files.		More	recent	applications	
include	supporting	object	stores,	remote	mirroring	of	HDF5	files	as	they	are	written,	and	an	alternate	
implementation	of	SWMR	(Single	Writer	Multiple	Readers).			

While	the	value	of	this	abstraction	layer	has	been	well	demonstrated,	the	supported	read	and	write	
calls	(signatures	shown	below)	are	essentially	the	UNIX	system	calls	of	the	same	the	name	with	the	
addition	of	parameters	specifying	memory	type,	and	an	arbitrary	property	list.	

	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	2	of	24	

	
herr_t H5FDread(H5FD_t *file, H5FD_mem_t type, hid_t dxpl_id,
 haddr_t addr, size_t size, void *buf/*out*/);

herr_t H5FDwrite(H5FD_t *file, H5FD_mem_t type, hid_t dxpl_id,
 haddr_t addr, size_t size, const void buf /*in*/);

As	can	be	seen	from	the	above	signatures,	the	I/O	calls	supported	by	the	VFD	interface	require	the	
upper	levels	of	the	HDF5	library	to	break	the	I/O	requests	generated	by	any	given	HDF5	API	call	into	a	
sequence	of	type,	offset,	length,	buffer	quadruples,	and	pass	them	to	the	VFD	layer	in	individual	calls.		
This	is	a	good	match	for	most	local	file	systems,	but	it	is	inadequate	in	the	following	contexts:	

	

1. In	MPI	I/O,	significant	performance	gains	can	be	realized	by	bundling	the	entire	set	of	I/O	
requests	generated	by	an	HDF5	API	call	into	a	MPI	derived	type,	and	passing	it	to	MPI	I/O	in	a	
single	function	call.	

2. In	the	S3	VFD,	network	latency	is	a	major	concern.		When	circumstances	permit,	running	
multiple	I/O	requests	concurrently	instead	of	sequentially	would	allow	the	S3	VFD	to	provide	
significantly	higher	effective	bandwidth.	

3. Implementing	a	flexible	version	of	sub-filing	that	is	largely	hidden	from	the	upper	levels	of	the	
HDF5	library	requires	access	to	the	entire	I/O	request	so	that	it	can	be	broken	up	by	sub-file	
and	relayed	to	the	appropriate	I/O	concentrator.		See	the	VFD	Sub-Filing	RFC	for	details.	

4. In	recent	work	on	topology	aware	I/O	at	ANL,	the	VFD	requires	access	to	the	entire	I/O	
request	so	that	it	can	aggregate	and	re-locate	I/O	operations	as	needed	to	optimize	the	I/O	
across	the	members	of	the	computation	

	

The	MPI	 I/O	case	has	already	been	addressed	via	 the	expedient	of	 constructing	 the	necessary	MPI	
derived	 types	 at	 higher	 levels	 of	 the	HDF5	 library	 and	 passing	 them	down	 to	 the	MPI	 I/O	VFD	 via	
undocumented	 channels.	 	However,	 this	 approach	has	 the	dual	 disadvantages	of	 complicating	 raw	
data	 I/O	 pathways	 at	 higher	 levels	 of	 the	 library,	 and	 requiring	 code	 modifications	 that	 are	 not	
applicable	to	the	similar	cases	described	above.	

An	obvious	way	of	addressing	this	limitation	is	to	augment	the	existing	read	and	write	VFD	calls	with	
versions	 that	 accept	 vectors	 of	 types,	 addresses,	 sizes,	 and	 buffers.	 	 This	 is	 shown	 below	 in	 the	
signatures	 of	 the	 proposed	 H5FDread_vector()	 and	 H5FDwrite_vector()	 calls.	 	 Here	 the	 count	
parameter	contains	the	length	of	the	types, addrs,		sizes,	and	bufs	parameters.	

	
herr_t H5FDread_vector(H5FD_t *file, hid_t dxpl_id, size_t count,
 H5FD_mem_t types[], haddr_t addrs[], size_t sizes[],
 void * bufs[] /*out*/);

herr_t H5FDwrite_vector(H5FD_t *file, hid_t dxpl_id, size_t count,
 H5FD_mem_t types[], haddr_t addrs[], size_t sizes[],
 const void *bufs[] /* in */);

	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	3	of	24	

To	allow	more	efficient	description	of	I/O	requests	in	which	all	elements	are	of	the	same	size	and/or	
type,	we	allow	the	types	and	sizes	arrays	to	be	of	 length	 less	than	count.	 	 If	 they	are,	the	arrays	
must	 be	 of	 length	 two,	 and	 the	 second	 element	 must	 be	 invalid	 –	 zero	 for	 sizes,	 and	
H5FD_MEM_NOLIST for types.		If	the	invalid	value	exists	at	index	1	in	one	of	these	arrays,	that	entry	
and	all	subsequent	entries	are	presumed	to	equal	sizes[0]	or	types[0]	as	appropriate.1		

Vector	 I/O	 is	a	conceptually	simple	solution,	and	 is	well	suited	both	to	the	 I/O	requirements	of	the	
HDF5	metadata	 cache,	 the	 page	 buffer,	 the	 chunk	 cache,	 and	 also	 to	 the	 needs	 of	 VFDs	 targeting	
object	stores.			

However,	it	has	a	couple	of	major	problems	for	some	I/O	requests	on	datasets	–	in	particular	when	
hyper-slab	selections	are	used.			

The	most	obvious	of	these	is	memory	requirements	–	for	example	consider	the	footprint	of	a	vector	
I/O	representation	of	a	read	of	every	tenth	element	of	a	million-member	vector	vs.	a	regular	hyper-
slab	selection	describing	the	same	I/O	request.	

The	 second	 issue	 is	 more	 subtle,	 yet	 quite	 important	 in	 the	 parallel	 case.	 Unlike	 vector	
representation,	regular	or	near	regular	hyper-slab	selections	retain	much	of	the	structure	of	the	I/O	
request.	 	This	 in	turn	allows	MPI	derived	types	constructed	for	one	part	of	a	selection	to	be	reused	
when	 the	 same	 pattern	 appears	 elsewhere	 –	 with	 obvious	 memory	 footprint	 and	 potential	
performance	advantages.	

To	address	these	issues	at	minimal	cost,	it	is	expedient	to	introduce	the	selection	I/O	VFD	calls	which	
use	 the	existing	 selection	mechanism	 to	describe	 the	 complete	 set	of	 I/O	 requests	 generated	by	a	
given	HDF5	API	call.			Proposed	signatures	are	shown	below:	

	
herr_t H5FDread_selection(H5FD_t *file, H5FD_mem_t type, hid_t dxpl_id,
 size_t count, hid_t mem_spaces[],
 hid_t file_spaces[], haddr_t offsets[],
 size_t element_sizes[],void * bufs[] /*out*/);

herr_t H5FDwrite_selection(H5FD_t *file, H5FD_mem_t type, hid_t dxpl_id,
 size_t count, hid_t mem_spaces[],
 hid_t file_spaces[], haddr_t offsets[],
 size_t element_sizes[],
 const void * bufs[] /*in*/);

	

Note	 that	 these	 calls	 take	 vectors	 of	 selections	 (or	more	 correctly,	 vectors	 of	hid_t’s	 that	map	 to	
selections2)	of	length	count.		While	multiple	selections	can	be	combined	into	single	selections,	doing	
so	would	degrade	performance	and	increase	memory	footprint	in	some	cases.			

																																																								
1	 This	optimization	exists	 to	 allow	efficient	 representation	of	point	 selections	 in	 vector	 I/O	 format.		
Note	change	from	earlier	version	where	the	invalid	value	could	appear	at	any	index	greater	than	zero.	
2	Quincey	suggests	extending	this	to	allow	the	H5S_ALL	and	H5S_BLOCK	special	values	for	the	memory	
dataspace	 ID	 values.	 	 He	 also	 suggests	 that	 it	 may	 be	 useful	 to	 add	 optimizations	 for	 efficient	
representation	of	cases	in	which	all	memory	space	IDs	or	the	buffer	pointers	are	all	identical.			

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	4	of	24	

The	type	parameter	is	a	scalar,	as	for	now	at	least,	we	don’t	have	a	use	case	in	which	a	selection	I/O	
call	could	refer	to	multiple	memory	types3.	

Each	element	of	the	offsets	array	contains	an	offset	to	be	applied	to	each	element	in	the	associated	
file	space	to	compute	its	actual	base	address	in	the	file.		While	not	strictly	necessary,	this	field	should	
allow	us	to	reduce	overhead	for	some	internal	calls.		If	it	is	NULL,	all	offsets	are	presumed	to	be	zero.	

One	can	argue	that	the	element_sizes	should	all	be	one,	allowing	us	to	omit	this	parameter.		While	
we	 may	 revisit	 this	 question,	 for	 now	 at	 least,	 the	 feeling	 is	 that	 this	 would	 increase	 processing	
overhead	to	no	purpose.			

Since	cases	in	which	all	the	elements	of	the	bufs[]	array	are	identical	are	reasonably	common,	we	
allow	 the	 same	 optimization	 as	 for	 the	 types[]	 and	 sizes[]	 arrays	 in	 the	 vector	 I/O	 calls.		
Specifically,	we	allow	the	bufs[]	array	to	be	of	length	less	than	count.	 	 If	 it	 is,	 it	must	be	of	length	
two,	and	the	second	element	must	be	invalid	–	NULL	in	this	case.	

Unlike	the	vector	read/write	calls,	the	selection	read/write	calls	introduce	a	great	deal	of	complexity	
into	 the	matter	of	writing	a	HDF5	VFD.	 	 For	example,	 in	 the	MPI	 I/O	case,	 the	VFD	will	 require	an	
intimate	knowledge	of	the	HDF5	selection	mechanism	to	function	efficiently.		As	this	RFC	is	intended	
in	part	to	serve	as	a	manual	for	writing	such	VFDs,	much	of	it	must	be	devoted	to	documenting	the	
selection	facility	to	the	extent	necessary.	 	Further,	where	the	necessary	operations	are	not	possible	
with	the	current	public	selection	interface,	this	RFC	must	propose	the	necessary	extensions.	

In	 cases	where	 there	 is	 no	 great	 benefit	 in	 presenting	 the	VFD	with	 the	 entire	 set	 of	 I/O	 requests	
generated	by	an	HDF5	API	call	in	a	single	VFD	call,	we	can	(and	must)	hide	this	added	complexity	from	
such	VFDs	by	augmenting	the	top	level	VFD	code	to	translate	the	vector	and	/	or	selection	I/O	calls	
into	sequences	of	simple	read	or	write	calls	when	the	target	VFD	doesn’t	support	them.4		

Considering	 the	 proposed	 selection	 I/O	 API	 more	 generally,	 we	 should	 note	 that	 at	 least	 for	 our	
immediate	 needs,	 we	 only	 really	 need	 to	 support	 hyper	 slab	 selections,	 as	 both	 point	 and	 all	
selections	can	be	translated	into	vector	I/O	format	at	minimal	cost.	

The	primary	advantage	of	 this	approach	 is	 reduced	complexity	 for	VFDs	 that	support	 selection	 I/O,	
and	 an	 increased	 fraction	 of	 I/O	 requests	 that	 can	 be	 handled	 without	 translation	 for	 VFDs	 that	
support	vector	I/O	only.	

On	 the	 down	 side,	 in	 addition	 to	 the	 aesthetic	 argument	 that	we	 should	 implement	 selection	 I/O	
proper	 for	 all	 types	 of	 selections,	 there	 is	 also	 the	 point	 that	 doing	 so	 will	 be	 convenient	 for	 a	
selection	I/O	based	implementation	of	multi-dataset	I/O5.		Note,	however,	that	a	full	implementation	

																																																								
3	Indeed,	we	don’t	have	a	use	case	in	which	the	memory	type	is	anything	other	than	H5FD_MEM_DRAW	
–	which	is	an	argument	for	omitting	this	parameter	entirely.	
4	There	is	also	the	possibility	that	a	VFD	may	support	vector	I/O,	but	not	selection	I/O	–	in	this	case,	
the	top	level	VFD	code	must	translate	selection	I/O	calls	into	a	sequence	of	vector	I/O	calls.		This	case	
will	 likely	be	common,	as	 to	date	we	are	only	aware	of	 three	cases	 that	 require	 the	 finely	detailed	
view	of	the	I/O	operation	that	the	selection	I/O	calls	provide,	and	thus	can	be	more	easily	managed	
with	the	vector	I/O	calls.		
5	Recall	 that	multi-dataset	 I/O	aims	 to	 improve	bandwidth	by	combining	read	or	write	 requests	 for	
multiple	data	sets,	and	executing	them	in	a	single	I/O	request.		

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	5	of	24	

of	selection	I/O	doesn’t	solve	this	problem	completely,	as	we	would	also	have	to	require	the	chunk	
cache	and	parallel	compression	use	selection	I/O	as	well.			

While	 we	 lean	 towards	 implementing	 only	 hyper-slab	 selections	 for	 at	 least	 the	 initial	
implementation,	 the	matter	 is	 not	 settled.	 	 Given	 time	 and	 resource	 constraints,	 the	 decision	will	
likely	be	driven	by	ease	of	 initial	 implementation.	 	 If	we	do	 choose	 to	 implement	 selection	 I/O	 for	
hyper-slab	 selections	 only,	 perhaps	 better	 names	 for	 these	 functions	 would	 be	
H5FDread_hs_selection()	and		H5FDwrite_hs_selection().		

1.1 Data	Type	Conversions	

Data	type	conversions	raise	some	interesting	issues	with	regards	to	selection	I/O	proper,	as	to	obtain	
the	desired	efficiencies,	the	conversions	must	be	done	on	the	entire	write	before	it	is	passed	to	the	
VFD	 layer,	and	to	 the	entire	 read	after	 it	has	been	returned	by	 the	VFD	 layer.	 	 In	cases	where	 it	 is	
either	impossible	(or	impolite)	to	perform	the	type	conversions	in	place,	the	heap	space	requirements	
may	be	so	large	as	to	be	un-acceptable6.	

In	such	cases,	the	vectors	of	selections	must	be	divided	into	pieces	of	manageable	size,	with	data	type	
conversion	and	I/O	performed	on	each	piece	sequentially.	

This,	of	course,	reduces	the	effectiveness	which	which	VFDs	can	exploit	knowledge	of	the	entire	I/O	
request	for	purposes	of	optimization.		As	the	choice	to	perform	data	type	conversions	and	to	limit	the	
size	of	the	conversion	buffer	is	the	user’s,	it	should	be	sufficient	to	handle	this	case	correctly,	and	to	
document	the	performance	implications.	

To	complicate	matters	further,	 in	the	parallel	case,	the	number	of	pieces	the	vector	of	selections	 is	
divided	into	need	not	be	the	same	for	all	ranks	–	which	presents	a	problem	for	collective	I/O.		Aside	
from	simply	breaking	collective,	one	way	 to	handle	 this	 is	 to	 inform	the	VFD	when	a	selection	 in	a	
collective	operation	must	be	handled	in	pieces,	and	the	 local	number	of	pieces	required.	 	With	this	
information,	 the	 VFD	 could	 coordinate	 with	 its	 peers	 on	 other	 ranks	 to	 determine	 the	 maximum	
number	 of	 I/O	 requests	 the	 collective	 operation	 has	 been	 divided	 into,	 and	 generate	 NULL	 I/O	
requests	as	necessary	to	avoid	a	hang.		

A	final	 issue	has	been	raised	by	the	recent	prototype	NVIDIA	GPU	Direct	Storage	(GDS)	VFD.	 	Given	
the	cost	of	moving	data	between	GPU	and	CPU	RAM,	there	is	considerable	incentive	to	allocate	GPU	
memory	for	the	conversion	buffer	for	data	that	resides	in	GPU	memory.		Thus	in	such	cases,	it	may	be	
useful	to	allow	the	VFD	to	allocate	the	conversion	buffer.	

Observe	that	all	of	these	issues	can	be	addressed	by	moving	data	type	conversion	to	the	top	of	the	
VFD	layer	–	that	is	the	portion	of	the	VFD	code	just	above	all	calls	into	the	VFD	proper.			

This	approach	has	the	following	major	advantages:	

																																																								
6	 Data	 transformations	 are	 conceptually	 different	 from	 data	 type	 conversions,	 and	 at	 first	 glance	
deserve	 a	 separate	 discussion.	 	 However,	 since	 data	 transformations	 occur	 just	 before	 type	
conversions	on	write,	and	just	after	on	reads,	for	purposes	of	this	discussion,	they	can	be	thought	of	
as	a	variation	on	a	theme.	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	6	of	24	

1. Code	managing	large	collective	I/O	calls	that	have	to	be	broken	up	due	to	data	type	
conversion	buffer	size	limitations	is	centralized7,	and	hidden	from	the	upper	regions	of	the	
library.			

2. It	allows	us	to	permit	a	VFD	(such	as	the	GDS	VFD	mentioned	above)	to	allocate	the	data	type	
conversion	buffer	if	desired.	

Whether	 the	 proposed	 re-factoring	 is	worth	 doing	 is	 another	 question.	 	 I	 expect	 that	 it	will	 come	
down	to	the	perceived	value	of	the	above	listed	advantages.		In	any	case,	we	are	unlikely	to	address	
this	in	the	initial	implementation.	

2 Architectural	Changes	in	HDF5	
At	a	conceptual	level,	the	architectural	changes	necessary	to	implement	and	use	selection	and	vector	
I/O	in	the	HDF5	library	are	simply	a	matter	of	refactoring	and	re-organizing	existing	code.		While	this	
is	certainly	true,	it	glosses	over	the	magnitude	to	the	effort	required,	as	the	current	management	of	
MPI	 I/O	 has	 been	 in	 place	 for	more	 than	 a	 decade,	 and	 is	 thus	 heavily	 embedded	 in	 the	 current	
architecture	of	HDF5.	

While	 in	 principle,	 it	 would	 be	 possible	 to	 construct	 a	 detailed	 list	 of	 all	 changes	 necessary,	 the	
author’s	experience	with	such	modifications	suggests	 that	 this	would	be	costly,	and	error	prone	as	
significant	 experimentation	 is	 frequently	 necessary	 when	 modifying	 complex	 and	 largely	 un-
documented	code	bases.		Instead,	the	remainder	of	this	section	attempts	to	list	the	effected	sections	
of	the	HDF5	library,	and	outline	the	required	changes	with	as	much	specificity	as	can	be	attained	with	
reasonable	effort.	

As	currently	understood,	the	effected	areas	are:	

• Data	set	code		

• Metadata	Cache	

• Page	Buffer	

• VFD	layer	–	which	can	be	divided	into:	

o Upper	level	prior	to	VFD	calls	proper	

o API	extensions	needed	for	efficient	traversal	of	selections	by	VFDs	

o Support	for	intersections	of	selections	with	sub-files	

o Support	for	efficient	serialization	/	deserialization	of	selections	(needed	for	sub-filing,	
and	for	a	more	efficient	implementation	of	mirror	VFD).	

o Modification	of	the	MPIO	VFD	to	support	vector	and	selection	I/O	

• Miscellaneous	changes	--	needed	to	adjust	to	movement	of	most	MPI	I/O	specific	code	to	the	
MPIO	VFD	

																																																								
7	Filtered	chunks	are	an	exception	to	this,	as	any	type	conversions	will	have	to	be	performed	before	a	
chunk	is	run	through	the	filter	pipeline	on	write,	and	after	the	pipeline	on	read.			

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	7	of	24	

Before	addressing	these	areas	individually,	a	few	generic	comments	are	in	order.	

First,	at	least	for	the	initial	implementation,	we	need	to	minimize	the	cost	of	the	development	effort.		
Thus,	for	example,	we	should	only	move	the	data	type	conversion	code	to	the	top	of	the	VFD	layer	it	
it	makes	things	easier	in	the	first	cut.	

Second,	 we	 should	 only	 be	 using	 selection	 I/O	 where	 it	 has	 the	 potential	 to	 buy	 us	 something	 –	
specifically	either	ease	of	implementation,	or	a	more	space	and/or	time	efficient	representation	of	an	
I/O	request.			

Third,	where	practical,	we	should	leave	existing	I/O	pathways	in	place	until	we	can	demonstrate	that	
selection	I/O	imposes	no	significant	performance	degradation.	

2.1 Data	Set	Code	

Selection	I/O	at	least	has	the	potential	to	greatly	reduce	the	memory	footprint	of	the	data	structure	
required	to	describe	a	regular	selection	–	recall	the	example	of	a	vector	I/O	representation	of	a	read	
of	every	 tenth	element	of	 a	million-member	vector	 vs.	 a	 regular	 selection	describing	 the	 same	 I/O	
request.		

Since	 point	 selections	 are	 quite	 similar	 to	 vector	 I/O	 and	 don’t	 offer	 any	 of	 the	 heap	 space	
optimizations	 of	 regular	 hyper-slab	 selections,	 converting	 them	 to	 vector	 I/O	 for	 I/O	 purposes	 is	
arguably	the	easiest	solution.		If	we	ever	extend	point	selections	to	support	regular	point	selections,	
we	will	have	to	re-visit	this.	

Similarly,	“All”	selections	are	also	a	good	fit	for	vector	I/O.	

Parallel	 compression,	and	 the	chunk	cache	 (at	 least	 for	 filtered	chunks)	deal	with	a	 relatively	 small	
number	of	relatively	large,	contiguous	regions	of	the	HDF5	file.		Thus	vector	I/O	is	a	good	match	here	
as	well.	

Thus	 in	a	nut	 shell,	 for	 the	data	 set	code,	 the	plan	 is	 to	 implement	 selection	 I/O	proper	where	we	
support	hyper-slab	selections	and	don’t	use	 filters,	and	use	vector	 I/O	everywhere	else.	 	Note	 that	
this	decision	is	driven	by	presumed	ease	of	implementation,	and	will	be	revisited	if	this	presumption	
turns	out	 to	be	 incorrect.	 	 Even	 it	 it	 is	 correct,	we	may	have	 to	 re-visit	 the	 issue	 to	 simplify	multi-
dataset	I/O	implementation.			

For	now,	 the	plan	 is	 to	 leave	data	 type	conversion	more	or	 less	where	 it	 is	–	although	we	hope	 to	
retain	the	option	of	moving	it	at	later	date	if	we	have	strong	enough	reason	to	do	so.	

For	PHDF5,	construction	of	MPI	derived	types	will	be	moved	to	the	MPIO	VFD,	and	thus	most	MPIO	
specific	code	will	be	moved	out	of	the	data	set	code.		Note,	however,	the	the	MPIO	VFD	will	still	have	
to	be	told	whether	the	I/O	request	is	independent	or	collective,	and	where	necessary,	will	still	have	to	
be	 told	 to	 join	 collective	 I/O	 operations	 with	 empty	 requests.	 	 As	 discussed	 earlier,	 selection	 I/O	
offers	the	possibility	of	moving	this	latter	function	to	the	MPIO	VFD	–	but	it	will	probably	not	prove	
practical	to	implement	this	in	the	first	cut.	

To-Do	list:	

• Add "readsel" and "writesel" selection I/O analogs for readvv/writevv

• Implement version of H5Dmpio.c for selection I/O

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	8	of	24	

- Link chunk
- Multi chunk – may be able to move to VFD

- Filtered link chunk
- Filtered multi chunk

• Implement selection I/O version of chunk cache, only calls single_read/write analog with all
chunk selections

- Modify chunk cache to evict (and load?) multiple chunks at a time using vector I/O
- Modify chunk cache to perform direct disk I/O on multiple chunks with a single VFD

call
- Modify H5D__select/scatgath_read/write to support new interface (receiving multiple

selections)
- Implement selection I/O versions of H5D__select_read/write

• Modify	parallel	compression	to	use	vector	I/O	

Note	that	we	don’t	have	to	do	anything	to	compact	datasets	–	they	will	be	converted	to	vector	I/O	in	
passing	when	the	metadata	cache	is	converted.	

2.2 Metadata	Cache	

On	 flush,	 the	metadata	 cache	 constructs	 a	 list	 of	buffers	 to	 flush,	 and	 then	walks	 that	 list	 to	 flush	
them.	 	 Converting	 this	 to	 vector	 I/O	 is	 trivial.	 	 Note,	 however	 that	 for	 basic	 functionality,	 it	 isn’t	
necessary	as	the	existing	I/O	calls	will	still	work,	albeit	more	slowly	than	we	would	like.	

The	metadata	cache	doesn’t	need	vector	I/O	for	reads,	as	it	reads	one	contiguous	section	of	the	file	
at	a	time	(but	note	that	this	may	change	in	the	future).	

In	the	parallel	case,	when	collective	metadata	writes	are	enabled,	the	metadata	cache	distributes	the	
metadata	 writes	 across	 the	 available	 ranks,	 constructs	 the	 necessary	MPI	 derived	 type,	 and	 then	
writes	them	in	a	collective	operation.		This	should	be	easy	enough	to	implement	with	vector	I/O	once	
we	have	the	MPI	I/O	VFD	modified	to	support	selection	and	vector	I/O.	

2.3 Page	Buffer	

When	caching	pages	of	metadata,	the	behavior	of	the	page	buffer	is	essentially	the	same	as	that	of	
the	metadata	cache,	and	thus	conversion	to	use	vector	I/O	is	trivial	in	this	case.	

However,	the	page	buffer	can	also	be	configured	to	buffer	cache	raw	data,	which	raises	the	following	
issues:	

In	addition	to	regular	and	vector	I/O	requests,	raw	data	I/O	requests	can	also	be	in	selection	I/O	form.		
From	the	perspective	of	the	page	buffer,	four	strategies	for	handling	selection	I/O	requests	present	
themselves.	

1. Allow	the	page	buffer	to	temporarily	increase	in	size	as	necessary	to	contain	all	pages	touched	
by	the	selection	I/O	request,	and	use	a	vector	I/O	read	request	to	load	pages	as	necessary.		
Once	all	pages	are	in	the	buffer,	the	selection	I/O	request	could	be	applied	to	the	page	buffer,	
and	the	page	buffer	allowed	to	shrink	to	its	maximum	allowed	size	after	the	selection	I/O	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	9	of	24	

request	has	been	serviced.		While	this	option	is	conceptually	clean,	the	lack	of	any	upper	
bound	on	the	size	of	selection	I/O	requests	probably	makes	this	solution	unacceptable	from	a	
memory	footprint	perspective.	

2. Flush	all	dirty	pages	touched	by	the	selection	I/O	request,	and	then	pass	the	request	down	to	
the	VFD	layer.		This	solution	also	has	the	virtue	of	conceptual	cleanliness,	but	it	causes	
additional	I/O,	and	essentially	bypasses	the	page	buffer	for	selection	I/O	requests.	

3. Determine	the	set	of	pages	touched	by	the	selection	I/O	request,	and	intersect	this	set	with	
the	set	of	pages	currently	in	the	page	buffer	–	call	this	the	resident	page	set.	

Intersect	the	resident	page	set	with	the	selection	I/O	request	to	find	the	resident	selection	I/O	
request.		Subtract	the	resident	selection	I/O	request	from	the	original	selection	I/O	request	to	
obtain	the	non-resident	selection	I/O	request.	8		

Satisfy	the	resident	selection	I/O	request	from	the	page	buffer,	and	pass	the	non-resident	
selection	I/O	request	to	the	VFD	layer.		Note	that	if	we	construct	the	resident	and	non-
resident	selection	I/O	requests	correctly,	we	can	setup	pointers	into	the	buffer	used	by	the	
original	selection	I/O	request,	and	thus	avoid	the	need	for	any	touch	up.	

In	addition	to	being	complicated,	this	solution	forces	us	to	flatten	the	selection	earlier	than	we	
would	otherwise	do	so.	

4. Determine	how	many	pages	the	selection	I/O	request	touches.		If	this	number	is	no	larger	
than	the	maximum	number	of	pages	in	the	page	buffer,	apply	solution	1.		If	it	is	greater,	apply	
solution	2.	

In	addition	to	being	conceptually	simple,	this	solution	conforms	to	the	original	goal	of	the	
page	buffer,	which	was	to	optimize	small	data	I/O	requests.	

Fortunately,	it	is	neither	necessary	nor	prudent	to	pick	a	solution	now.	

It	 is	not	necessary,	as	the	 initial	goal	 is	to	support	sub-filing	which	 implies	parallel	HDF5.	 	Since	the	
page	buffer	is	disabled	in	this	case,	the	point	is	moot.	

It	is	not	prudent	for	the	following	reasons:	

• Implementation	of	VFD	SWMR	required	a	complete	re-implementation	of	the	page	buffer.		As	
this	new	implementation	of	the	page	buffer	is	likely	to	be	moved	into	develop	within	a	year,	
any	work	on	the	existing	page	buffer	will	only	have	to	be	repeated	at	that	time.	

• The	problem	of	intersecting	pages	in	the	page	buffer	with	selection	I/O	requests	is	quite	
similar	to	the	problem	of	intersecting	selection	I/O	requests	with	sub-files.		Since	we	have	to	
solve	the	latter	problem	more	or	less	immediately,	best	to	wait	on	the	former	until	we	can	
apply	the	lessons	learned.	

• If	we	can	restrict	the	page	buffer	to	only	regular	and	vector	I/O	requests,	the	problem	become	
much	easier.		Since	cache	coherency	concerns	make	it	likely	that	we	will	never	enable	the	

																																																								
8	We	can	complicate	this	solution	further	by	loading	pages	into	the	page	buffer	so	as	to	maximize	the	
size	of	 the	 resident	 I/O	 request.	 	While	 this	would	be	 truer	 to	 the	concept	of	 the	page	buffer,	 the	
current	outline	should	be	sufficient	for	now.	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	10	of	24	

page	buffer	for	raw	data	in	parallel	HDF5,	and	since	no	serial	VFD	under	consideration	will	
have	need	for	selection	I/O,	we	could	achieve	this	restriction	by	moving	the	page	buffer	to	the	
VFD	layer	either	as	part	of	the	H5FD	code	proper,	or	as	a	pass	through	VFD.		Whether	this	is	a	
good	idea	or	not,	we	will	not	be	in	a	position	to	attempt	it	until	the	question	of	VFD	SWMR	is	
settled.	

For	 these	 reasons,	 we	 will	 bypass	 the	 page	 buffer	 for	 now	 by	 simply	 disabling	 the	 page	 buffer	
whenever	selection	I/O	is	in	use.	

2.4 VFD	Layer	

The	work	 needed	 in	 the	 VFD	 layer	 is	 a	mix	 of	 items	 needed	 to	 support	 vector	 &	 selection	 I/O	 in	
general,	and	also	to	support	sub-filing	–	the	first	major	user	of	selection	I/O.	

2.4.1 Upper	level	prior	to	VFD	calls	proper	

The	 top	of	 the	VFD	 layer	 is	 that	 portion	of	 the	VFD	 code	 that	 supports	 the	public	H5FD	 interface,	
defines	the	interface	that	must	be	supported	by	VFDs,	and	does	any	necessary	translation	for	VFDs	
that	do	not	support	selection	and/or	vector	I/O.		This	breaks	into	the	following	tasks:	

• Specify	the	internal	vector	and	selection	I/O	interfaces	called	by	the	upper	levels	of	the	HDF5	
library	

• Specify	the	necessary	VFD	interface	extensions	

• Implement	the	necessary	translation	facilities	needed	to	support	VFDs	that	do	not	support	
selection	and/or	vector	I/O.	

2.4.1.1 Internal	vector	and	selection	I/O	interfaces	

2.4.1.1.1 Vector	I/O	

The	signatures	of	the	private	H5FD	vector	I/O	calls	(shown	below)	are	essentially	identical	to	those	of	
the	public	versions.	

	
herr_t H5FD_read_vector(H5FD_t *file, size_t count, H5FD_mem_t types[],
 haddr_t addrs[], size_t sizes[],
 void *bufs[] /*out*/);

herr_t H5FD_write_vector(H5FD_t *file, size_t count, H5FD_mem_t types[],
 haddr_t addrs[], size_t sizes[],
 const void *bufs[] /* in */);

	

2.4.1.1.2 Selection	I/O	Proper	

Internally,	the	HDF5	library	represents	selections	as	instances	of	H5S_t,	which	on	the	surface	suggests	
that	the	internal	versions	of	the	selection	I/O	routines	should	use	vectors	of	pointers	to	H5S_t	for	the	
mem_spaces	and	file_spaces	parameters.	

However,	this	is	complicated	by	the	following	considerations:	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	11	of	24	

In	cases	where	the	underlying	VFD	supports	selection	I/O,	the	vectors	of	pointers	to	H5S_t	must	be	
converted	to	vectors	of	hid_t9.		Normally,	this	is	not	a	problem,	as	the	instances	of	H5S_t	will	have	
been	 internally	 generated,	 and	 we	 can	 simply	 assign	 hid_t’s.	 	 However,	 for	 I/O	 on	 contiguous	
datasets,	the	selections	provided	by	the	user	may	be	used	directly,	and	thus	already	have	associated	
hid_t’s,	which	will	not	be	readily	available.	

In	 contrast,	when	 the	 underlying	 VFD	 does	 not	 support	 selection	 I/O,	 the	H5FD	 selection	 I/O	 calls	
must	 walk	 the	 supplied	 selection	 and	 translate	 them	 into	 vector	 and/or	 regular	 I/O	 calls.	 	 For	
efficiency	in	this	case,	receiving	vectors	of	H5S_t	will	be	more	convenient.	

While	 several	 solutions	 are	 possible,	 having	 two	 sets	 of	 internal	 H5FD	 selection	 I/O	 calls,	 one	
accepting	 vectors	 of	hid_t,	 and	 the	 other	 vectors	 of	 pointers	 to	H5S_t	 seems	 plausible.	 	 This	will	
allow	us	 to	pass	 the	hid_t	 associated	with	 a	 selection	down	 to	be	H5FD	 code	when	available,	 and	
delay	assigning	hid_t’s	to	instances	of	H5S_t	until	necessary.			

That	said,	this	approach	may	not	be	flexible	enough	for	multi-dataset	I/O.			

With	 the	 proviso	 that	 we	 may	 revisit	 this	 issue,	 the	 proposed	 H5FD	 selection	 I/O	 internal	 API	
signatures	are	shown	below:	

	

hid_t	based	versions:	

	
herr_t H5FD_read_selection_id(H5FD_t *file, H5FD_mem_t type,
 size_t count, hid_t mem_spaces[],
 hid_t file_spaces[], haddr_t offsets[],
 size_t element_sizes[], void * bufs[] /*out*/);

herr_t H5FD_write_selection_id(H5FD_t *file, H5FD_mem_t type,
 size_t count, hid_t mem_spaces[],
 hid_t file_spaces[],haddr_t offsets[],
 size_t element_sizes[],
 const void * bufs[] /*in*/);

*H5S_t	based	versions:	

	
herr_t H5FD_read_selection(H5FD_t *file, H5FD_mem_t type,
 size_t count, H5S_t *mem_spaces[],
 H5S_t *file_spaces[], haddr_t offsets[],
 size_t element_sizes[], void * bufs[] /*out*/);

herr_t H5FD_write_selection(H5FD_t *file, H5FD_mem_t type,
 size_t count, h5S_t *mem_spaces[],
 H5S_t *file_spaces[], haddr_t offsets[],
 size_t element_sizes[],
 const void * bufs[] /*in*/);

																																																								
9	At	least	for	external	VFD’s.		See	discussion	in	“Extensions	to	the	VFD	Interface”.	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	12	of	24	

2.4.1.2 Extensions	to	the	VFD	interface	

The	proposed	vector	and	selection	I/O	additions	to	H5FD_class_t	are	shown	below.		Parameters	and	
semantics	are	identical	to	the	public	versions.	

	
herr_t (*read_vector)(H5FD_t *file, hid_t dxpl_id, size_t count,
 H5FD_mem_t types[], haddr_t addrs[], size_t sizes[],
 void *bufs[] /*out*/);

herr_t (*write_vector)(H5FD_t *file, hid_t dxpl_id, size_t count,
 H5FD_mem_t types[], haddr_t addrs[], size_t sizes[],
 const void *bufs[] /* in */);

herr_t (*read_selection)(H5FD_t *file, H5FD_mem_t type, hid_t dxpl_id,
 size_t count, hid_t mem_spaces[],
 hid_t file_spaces[], haddr_t offsets[],
 size_t element_sizes[], void * bufs[] /*out*/);

herr_t (*write_selection)(H5FD_t *file, H5FD_mem_t type, hid_t dxpl_id,
 size_t count, hid_t mem_spaces[],
 hid_t file_spaces[],haddr_t offsets[],
 size_t element_sizes[], const void * bufs[] /*in*/);

	

For	efficiency,	internal	VFDs	will	likely	examine	selections	directly,	and	thus	assigning	hid_t’s	for	the	
call,	 and	 then	 dereferencing	 them	 again	 to	 obtain	 pointers	 to	 the	 H5S_t’s	 seems	 an	 unnecessary	
epicycle.	 	Unfortunately,	the	alternatives	to	this	are	either	a	private	VFD	interface	that	allows	us	to	
pass	the	mem_spaces	and	file_spaces	parameters	as	vectors	of	pointer	to	H5S_t,	or	fun	and	games	
with	C	type	coercion	–	neither	of	which	is	attractive.		Thus	we	will	do	neither	unless	the	cost	of	the	
epicycle	proves	significant.	

2.4.1.3 Translation	Facilities	

Since	VFDs	will	not	support	vector	I/O	and/or	selection	I/O	unless	there	is	a	performance	advantage	
in	doing	so,	the	internal	versions	of	the	vector	and	selection	I/O	calls	first	test	to	see	if	the	underlying	
VFD	supports	vector	or	selection	I/O	as	appropriate.			

If	it	does,	the	vector	or	selection	I/O	call	is	simply	passed	down	to	the	underlying	VFD.			

If	it	doesn’t,	the	vector	I/O	call	walks	the	vector	of	<type>,	<addr>,	<size>,	and	<buffer>	quadruples,	
and	generates	the	sequence	read	or	write	calls	necessary	to	execute	the	vector	I/O	call.		Observe	that	
there	is	no	plan	to	support	conversion	of	vector	I/O	calls	to	selection	I/O	proper.		This	is	driven	by	the	
observations	that:	

1. It	is	not	in	general	possible10,	and		

2. Given	the	relative	ease	of	implementation,	it	seems	unlikely	that	a	VFD	would	support	
selection	I/O	but	not	vector	I/O.			

																																																								
10	Vector	I/O	can	have	a	different	value	of	H5FD_mem_t	for	each	offset,	address,	buffer	triplet	in	the	
vector,	where	as	selection	I/O	requires	the	same	H5FD_mem_t	for	the	entire	I/O	request	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	13	of	24	

Similarly,	 if	 the	underlying	VFD	doesn’t	 support	 selection	 I/O,	 the	 selection	 I/O	calls	must	walk	 the	
selection,	and	convert	it	into	one	or	more	vector	I/O	calls	if	the	underlying	VFD	supports	vector	I/O,	
or	a	sequence	of	regular	read	/	write	calls	 if	 it	doesn’t.	 	 In	the	event	of	conversion	to	one	or	more	
vector	 I/O	calls,	 the	decision	between	 single	and	multiple	 vector	 I/O	calls	will	 be	driven	by	a	 (user	
configurable?)	limit	on	vector	lengths	in	selection	to	vector	I/O	translations11.			

While	the	algorithm	for	walking	vector	I/O	requests	and	turning	them	into	sequences	of	regular	I/O	
calls	is	obvious,	that	for	walking	selections	and	converting	them	into	vector	or	regular	I/O	calls	isn’t.	

Fortunately,	this	is	largely	a	matter	of	re-locating	and	re-working	code	that	already	exists	in	the	HDF5	
library	 (see	 H5S_mpio_space_type()).	 	 For	 efficiency,	 the	 existing	 code	 walks	 the	 selection	 data	
structures	directly.	 	While	we	should	do	the	same	for	efficiency,	 if	we	want	to	use	this	code	 in	the	
pass	through	VOL	that	we	have	been	using	to	develop	the	sub-filing	VFD,	we	will	have	to	use	the	API	
extensions	for	efficient	traversal	of	selections	discussed	below	instead.	

2.4.2 API	extensions	needed	for	efficient	traversal	of	selections	by	VFDs	

While	HDF5	currently	provides	routines	to	examine	hyperslab	selections,	none	of	them	run	efficiently	
for	 non-regular	 hyperslabs.	 Here	 we	 propose	 extensions	 to	 the	 HDF5	 API	 to	 allow	 traversal	 of	
hyperslab	selections	with	performance	similar	to	that	of	HDF5’s	internal	“span	tree”	implementation.	

Since	this	API	is	intended	for	use	by	VFD/VOL	developers	we	want	to	translate	the	multi-dimensional	
dataspace	 selection	 information	 into	 linear	 offset/length	 information,	while	 retaining	 the	 ability	 to	
efficiently	describe	patterns.	 	 Instead	of	describing	runs	 in	a	single	dimension	with	a	 link	to	runs	 in	
faster	changing	dimensions	(as	 in	span	trees),	we	do	this	by	describing	patterns	 in	a	 linear	space	of	
regular	 “sub	 patterns”,	 which	 are	 regularly	 repeated	 patterns	 of	 selected	 bytes.	 	 The	 pattern	 is	
defined	 using	 the	 familiar	 start/stride/count/block	 parameters,	 though	 again	 flattened	 to	 1-
dimension.	 This	 start/stride/count/block	 set	 defines	 a	 pattern	 of	 sub-patterns,	 instead	 of	 dataset	
elements.	 The	 size	 (in	 bytes)	 of	 the	 sub-pattern	 is	 given,	 as	 is	 an	 iterator	 that	 may	 be	 used	 to	
recursively	 traverse	 the	sub-pattern	using	 the	same	method.	 If	no	 iterator	 is	given,	 then	the	entire	
sub-pattern	 is	 selected.	 Offsets	 calculated	 using	 this	 information	 should	 be	 added	 to	 the	
corresponding	element	of	the	offsets	array	passed	through	the	read/write_selection	callback	to	
obtain	file	addresses.	

The	proposed	API	extensions	are:	
typedef struct {
 hsize_t start;
 hsize_t stride;
 hsize_t count;
 hsize_t block;
 hsize_t sub_pattern_size;
 hid_t sub_pattern_iter;

																																																								
11	If	a	selection	I/O	request	must	be	broken	into	multiple	vector	I/O	calls,	and	the	request	is	marked	
as	collective,	the	underlying	VFD	must	be	informed	of	this	so	it	can	coordinate	with	its	counterparts,	
and	issue	empty	collective	I/O	requests	as	necessary	to	avoid	deadlocks.		This	will	be	a	moot	point	to	
begin	with,	as	all	VFDs	that	support	MPIO	(the	modified	MPIO	VFD,	and	the	Argonne	topology	aware	
VFD)	will	have	 to	 support	 selection	 I/O	 for	performance	 reasons.	 	However,	we	don’t	want	 to	 lose	
track	of	this	point	as	it	may	become	relevant	in	the	future.	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	14	of	24	

 void *udata;
} H5S_sel_pattern_segment_t;

herr_t
H5Ssel_iter_get_pattern_segment(hid_t sel_iter_id, hbool_t *complete,
 H5S_sel_pattern_segment_t *pattern_segment);

herr_t
H5Ssel_iter_pattern_cache_udata(hid_t sel_iter_id, void *udata);

H5Ssel_iter_get_pattern_segment	is	the	primary	routine	used	to	traverse	the	selection.	It	returns	
a	pattern	segment	defined	by	the	H5S_sel_pattern_segment_t struct pattern_segment.		

sel_iter_id	is	a	selection	iterator	that	was	either	created	with	H5Ssel_iter_create	or	returned	as	
sub_pattern_iter	by	this	routine.	When	using	H5Ssel_iter_create	to	create	an	iterator	for	this,	
you	 should	 pass	 the	 corresponding	 element	 of	 the	 element_sizes	 array	 passed	 through	 the	
read/write_selection	callback	as	the	elmt_size	parameter	for	H5Ssel_iter_create. It	is	illegal	
to	mix	calls	to	H5Ssel_iter_get_pattern_segment	and	H5Ssel_iter_pattern_cache_udata	with	
other	 calls	 using	 the	 same	 iterator.	 If	 the	 output	 parameter	 complete	 is	 set	 to	 FALSE,	 then	 this	
indicates	there	are	more	pattern	segments	to	process	with	this	iterator.	

sub_pattern_iter	 is	 a	 selection	 iterator	 created	 by	 H5Ssel_iter_get_pattern_segment	 which	
may	 be	 used	 to	 recursively	 examine	 the	 sub	 pattern	 of	 selected	 bytes,	 by	 passing	 it	 as	 the	
sel_iter_id	 parameter	 to	 a	 recursive	 call	 to	 H5Ssel_iter_get_pattern_segment.	 All	 iterators	
returned	as	sub_pattern_iter	must	eventually	be	closed	using	H5Ssel_iter_close.	

H5Ssel_iter_pattern_cache_udata	 can	 be	 used	 by	 the	 caller	 to	 store	 any	 data	 with	 the	 most	
recently	 returned	 pattern	 segment.	 If	 the	 same	 pattern	 segment	 is	 returned	 by	 a	 later	 call	 to	
H5Ssel_iter_get_pattern_segment,	 the	 udata	 field	 will	 be	 the	 same	 as	 that	 passed	 to	
H5Ssel_iter_pattern_cache_udata.	 By	 default	 the	 udata	 field	 will	 be	 set	 to	 NULL.	 Passing	 the	
dataspace	 ID	 to	 intervening	 HDF5	 calls	 during	 traversal	may	 interrupt	 this	 and	 cause	 udata	 to	 be	
reset	to	NULL.	

Initially,	 in	 order	 to	 closely	 match	 the	 internal	 span	 tree	 data	 structure,	 when	 operating	 on	 non-
regular	 hyperslabs,	H5Ssel_iter_get_pattern_segment	will	 only	 return	 single	 blocks	 of	 patterns,	
that	 is,	 stride	 and	 count	 will	 be	 set	 to	 1.	 For	 regular	 hyperslabs	 it	 will	 return	 the	 full	
start/stride/count/block,	 with	 one	 pattern	 block	 at	 each	 level	 of	 recursion.	
H5Ssel_iter_get_pattern_segment	will	be	 implemented	for	all	selection	types,	 though	 it	will	not	
offer	any	performance	advantage	for	selection	types	other	than	hyperslab.	

2.4.2.1 Example	

This	example	walks	through	the	use	of	the	above	facilities	to	traverse	an	irregular	hyperslab	selection	
on	a	2	dimensional	dataspace.	The	illustrations	will	show	the	portions	of	the	selection	described	by	
calls	 to	 H5Ssel_iter_get_pattern_segment,	 but	 keep	 in	 mind	 that	 data	 from	
H5Ssel_iter_get_pattern_segment	 contains	 no	 dimensionality	 information,	 only	 repeating	
patterns	in	a	1-dimensional	byte	array.	Consider	the	following	selection	within	a	6x10	dataspace,	with	
4	byte	elements:	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	15	of	24	

	
The	first	call	to	H5Ssel_iter_get_pattern_segment	will	return	the	following	for	pattern_segment,	
corresponding	 to	 the	 first	 selected	 row:	 {1, 1, 1, 1, 40, H5I_INVALID_HID, NULL}.	 This	
denotes	a	contiguous	block	of	selected	bytes	at	offset	1	(start)	x	40	(sub	pattern	size)	and	with	length	
1	(block)	x	40	(sub	pattern	size):	

	
There	is	no	sub-pattern,	so	the	app	will	simply	call	H5Ssel_iter_get_pattern_segment	again	with	
the	 same	 iterator,	 and	 the	 second	 call	will	 return	{2, 1, 1, 1, 40, <valid ID>, NULL}.	 This	
indicates	a	non-contiguous	sub	pattern	starting	at	offset	80	and	occurring	only	once:	

	
The	app	will	then	call	H5Ssel_iter_get_pattern_segment	with	the	returned	sub	pattern	iterator	ID,	
which	 will	 return	 the	 following	 sub	 pattern:	 {0, 1, 1, 6, 4, H5I_INVALID_HID, NULL}.	 This	
indicates	 that	 the	selected	sub	pattern	 is	a	contiguous	block	of	6	4-byte	elements	beginning	at	 the	
start	(0	offset)	of	the	sub	pattern.	This	information	can	be	combined	with	that	returned	at	the	higher	
level	of	recursion	to	indicate	a	block	that	begins	at	offset	80	with	a	length	24:	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	16	of	24	

	
The	function	will	return	TRUE	for	the	complete	parameter,	so	the	app	will	then	close	the	sub	pattern	
iterator.	

Next,	the	app	will	again	call	H5Ssel_iter_get_pattern_segment	with	the	top	level	 iterator,	which	
will	 return	{4, 1, 1, 2, 40, <valid ID>, NULL}.	 This	 indicates	a	non-contiguous	 sub	pattern	
starting	 at	 offset	 160	 and	 occurring	 twice	 (encompassing	 two	 rows	 in	 the	 2-dimensional	
representation):			

	
A	call	with	the	sub	pattern	iterator	ID	will	then	return	{0, 1, 1, 3, 4, H5I_INVALID_HID, NULL}.	
This	indicates	a	contiguous	block	of	3	4-byte	elements	beginning	at	offset	0	of	the	sub	pattern.	Here	
we	show	only	the	sub-pattern:	

The	complete	 parameter	will	 be	FALSE,	 so	 the	next	
call	with	the	sub	pattern	 iterator	will	 return	{5, 1, 1, 3, 4, H5I_INVALID_HID, <possibly a
valid pointer>}.	This	 indicates	a	contiguous	block	of	3	4-byte	elements	beginning	at	offset	20	of	
the	sub	pattern:	

	
If	 a	 call	 to	 H5Ssel_iter_pattern_cache_udata	 was	 made	 after	 the	 previous	 call	 to	
H5Ssel_iter_get_pattern_segment	 the	 udata	 field	 will	 be	 the	 same	 as	 that	 passed	 to
H5Ssel_iter_pattern_cache_udata.	The	app	then	has	all	 information	about	the	sub	pattern,	and	
from	the	higher	level	of	recursion	it	knows	that	it	repeats	twice	starting	at	offset	160:	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	17	of	24	

	
It	would	be	possible	for	the	second	recursive	call	to	H5Ssel_iter_get_pattern_segment	to	instead	
return	{0, 5, 2, 3, 4, H5I_INVALID_HID, NULL}	and	then	be	complete.	Initially,	however,	this	
will	not	happen	as	the	implementation	will	closely	follow	the	internal	span	tree	data	structure,	which	
does	not	have	this	information.	

2.4.3 Support	for	intersections	of	selections	with	sub-files	

While	it	is	intended	to	facilitate	a	variety	of	improvements	to	the	HDF5	library,	the	initial	reason	for	
implementing	 selection	 I/O	 is	 to	permit	 the	 implementation	of	 sub-filing.	 	Thus	 some	discussion	of	
features	needed	specifically	for	sub-filing	is	appropriate.	

When	 the	 sub-filing	 VFD	 receives	 either	 a	 vector	 or	 a	 selection	 I/O	 request,	 it	 must	 parcel	 that	
request	 out	 across	 the	 applicable	 sub-files.	 	 This	 may	 be	 thought	 of	 as	 involving	 the	 following	
operations:	

• Determining	which	sub-files	are	touched	by	the	I/O	request.	

• For	each	sub-file	that	is	touched,	construct	a	vector	or	selection	(as	appropriate)	describing	
the	portion	of	the	I/O	request	that	effects	that	sub-file	(and	for	selection	I/O,	construct	a	
selection	describing	the	matching	portion	of	the	memory	buffer).	

As	each	 sub-file	 can	be	described	as	a	 selection	on	 the	HDF5	 file,	 and	as	we	have	existing	code	 to	
perform	 intersections	 on	 selections	 and	 project	 those	 intersections	 onto	 the	 matching	 memory	
selections,	we	 already	 have	 code	 to	 perform	 the	 above	 functions	 –	with	 the	 caveat	 the	 selections	
describing	 the	 sub-files	will	be	 selections	on	a	vector	of	bytes,	 and	 thus	 selections	 received	by	 the	
sub-filing	VFD	may	have	to	be	 flattened	before	these	 intersections	can	be	performed.	The	 features	
described	 in	 the	 previous	 section	 should	 allow	 efficient	 construction	 of	 this	 flattened	 selection,	
though	we	may	implement	an	additional	HDF5	routine	to	accomplish	this.	

While	it	seems	that	we	already	have	much	of	the	necessary	functionality,	efficiency	is	a	concern,	as	
there	may	be	hundreds	of	 sub-files	 in	 large	 computations.	 	 Thus,	we	need	 to	at	 least	 consider	 the	
following	items:	

1. Efficient	method	of	determining	which	sub-files	are	touched	by	a	selection	I/O	request	

2. Were	a	sub-file	is	touched	by	a	selection	I/O	request,	efficient	construction	of	a	selection	I/O	
request	describing	I/O	on	the	target	sub-file	

Of	 the	above,	only	1)	 is	of	 immediate	 interest,	as	 the	selections	used	 in	 sub-filing	 I/O	 requests	are	
expected	 to	 be	 relatively	 simple	 in	 all	 use	 cases	 of	 immediate	 interest.	 	 This	 can	 be	 efficiently	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	18	of	24	

accomplished	in	most	cases	by	calculating	the	bounds	of	each	selection,	converting	those	bounds	to	
file	offsets,	and	checking	these	blocks	for	intersection	with	the	sub-files.	

For	 2)	 the	 proposed	 improvements	 to	 the	 existing	 H5Sselect_project_intersection()	 function	
should	improve	sub-file	selection	construction	efficiency.		Alternatively,	we	should	observe	that	it	 is	
not	strictly	necessary	to	describe	the	potion	of	a	selection	I/O	request	directed	at	a	given	sub-file	in	
selection	I/O	format	–	vector	I/O	will	work,	and	may	be	preferable	in	some	cases.	

A	further	point	is	whether	we	will	assume	that	the	sub-filing	VFD	is	built	into	the	HDF5	library,	and	is	
thus	eligible	to	use	HDF5	internal	API’s	for	the	above	purposes,	or	if	we	will	need	to	extend	the	public	
API	for	this	purpose.		Current	thinking	is	the	former,	but	we	should	keep	in	mind	the	costs	of	changing	
our	minds	on	this	point.		

2.4.4 Support	 for	efficient	serialization	/	deserialization	of	selections	 (needed	for	sub-filing,	and	
for	a	more	efficient	implementation	of	mirror	VFD).	

Once	the	sub-filing	VFD	divides	a	selection	I/O	request	into	sub-requests	for	each	sub-file	touched	by	
the	overall	selection	I/O	request,	it	must	somehow	transmit	these	requests	to	the	I/O	concentrators	
responsible	for	the	sub-files	involved.	

Again,	we	have	existing	mechanisms	 to	serialize	and	de-serialize	selections	 that	 should	provide	 the	
necessary	functionality,	and	again	there	are	performance	concerns	about	this	code.	 	As	before,	the	
expected	relative	simplicity	of	selection	I/O	in	the	sub-filing	use	cases	of	immediate	interest	suggests	
that	this	may	not	be	an	issue	for	now.		That	said,	it	is	something	we	should	think	on.	

One	possible	alternate	solution	is	to	use	vector	I/O	for	communications	with	the	I/O	concentrators.		
This	 has	 the	 twin	 advantages	 of	 simplicity,	 and	 relieving	 the	 I/O	 concentrator	 of	 the	 overhead	 of	
walking	the	selection.		On	the	down	side,	it	has	the	potential	of	increasing	message	size	by	more	than	
an	order	of	magnitude	in	the	worst	possible	case.12	

2.4.5 Modification	of	the	MPIO	VFD	to	support	vector	and	selection	I/O	

While	 sub-filing	 is	 the	 initial	 use	 case	 for	 selection	 I/O,	 we	 need	 a	 version	 of	 the	MPIO	 VFD	 that	
supports	vector	and	selection	 I/O	before	we	can	demonstrate	equivalent	performance	and	remove	
the	old	code	that	constructs	MPI	derived	types	in	the	data	set	code.	

As	with	modifying	the	VFD	layer	to	perform	translations	of	selection	I/O	requests	to	regular	or	vector	
I/O	as	needed,	this	is	largely	a	matter	of	re-factoring	existing	code	and	relocating	it	to	the	new	MPIO	
VFD.	 	 Since	 this	 VFD	will	 be	 built	 in	 to	 the	HDF5	 library,	 there	 is	 no	 reason	 for	 it	 not	 to	walk	 the	
selection	data	structures	directly.			

That	said,	as	time	permits,	it	would	be	useful	to	have	a	reference	version	of	this	VFD	that	uses	the	API	
extensions	 to	 support	 efficient	 traversal	 of	 selections	 discussed	 above.	 	 In	 particular,	 the	 topology	
aware	VFD	folks	at	Argonne	will	need	something	like	this	as	an	example	when	they	upgrade	their	VFD	
to	support	selection	I/O.	

																																																								
12	The	worst	case	is	single	byte	read	or	write	requests,	yielding	an	extra	16	bytes	of	offset	and	length	
per	 request,	 and	 perhaps	 an	 additional	 byte	 of	 memory	 type.	 	 While	 possible,	 this	 seems	 an	
improbable	workload	on	HPC	machines.	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	19	of	24	

	

	

2.5 Miscellaneous	Changes	

This	section	is	a	catchall	for	changes	required	to	adjust	to	the	movement	of	most	MPIO	specific	code	
to	 the	 VFD	 layer	 in	 general,	 and	 the	MPIO	 VFD	 in	 particular.	 	 Ideally,	we	will	 note	 all	 such	 issues	
before	 we	 encounter	 them	 –	 however,	 it	 is	 more	 likely	 that	 this	 section	 will	 be	 a	 list	 of	 issues	
encountered	along	with	a	description	of	how	we	addressed	them.	

2.5.1 Exposure	of	MPI	Communicator,	Rank,	and	Size	to	the	Upper	Levels	of	the	HDF5	Library	

While	this	section	addresses	changes	in	the	VFD	layer,	these	changes	are	orthogonal	to	selection	I/O,	
and	thus	we	classify	them	as	miscellaneous	changes.	

At	present,	 any	VFD	 that	 supports	MPI	must	 support	 three	additional	private	 callbacks	 (defined	as	
fields	of	H5FD_mpi_class_t	in	H5FDmpi.h):		

int (*get_rank)(const H5FD_t *file),		

int (*get_size)(const H5FD_t *file),	and		

MPI_Comm (*get_comm)(const H5FD_t *file).	

VFDs	that	support	MPIO	are	required	to	obtain	the	communicator	from	the	FAPL,	obtain	the	MPI	rank	
and	size,	and	make	all	this	information	available	to	the	upper	levels	of	the	HDF5	library	via	the		

H5FD_mpi_get_rank(),		

H5FD_mpi_get_size(),	and		
H5FD_mpi_get_comm()			

routines	(also	declared	in	H5FDmpi.c),	which	simply	call	the	associate	callbacks	supported	by	the	VFD.	

While	we	could	retain	this	architecture,	it	has	the	following	deficits:	

1) VFDs	that	support	MPI	must	support	an	extended	set	of	callbacks.	

2) The	get_rank(),	get_size(),	and	get_comm()	callbacks	must	be	added	to	the	public	
interface	for	VFDs.			

Further,	since	get_comm	returns	MPI_Comm,	it	can’t	appear	in	the	serial	build	–	which	implies	
different	VFD	interfaces	for	serial	vs.	parallel.	

3) It	requires	duplicate	code	in	each	VFD	that	supports	MPI	to	obtain	the	communicator	from	the	
FAPL,	obtain	the	rank	and	size,	and	report	this	information	on	request.	

While	it	would	be	nice	to	delete	the	MPI	specific	VFD	callbacks,	and	move	management	of	exposure	
of	the	MPI	communicator,	rank,	and	size	to	the	H5FD	code,	doing	so	would	create	problems	down	the	
road.	

To	see	this,	consider	that	we	would	have	to	store	the	communicator,	rank,	and	size	somewhere.		The	
H5FD_t	structure	is	the	obvious	location,	but	this	will	cause	problems	with	dynamically	loaded	VFDs,	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	20	of	24	

as	it	makes	the	size	of	the	H5FD_t	structure	variable	between	serial	and	parallel	builds.13		While	we	
could	 code	 around	 the	 problem	 with	 unions	 and	 reserved	 space,	 that	 is	 asking	 for	 portability	
problems.	

Alternatively,	we	could	store	the	communicator,	rank,	and	size	in	another	data	structure.		While	that	
works	if	all	VFDs	in	the	stack	either	don’t	use	this	data,	or	all	use	the	same	communicator,	rank,	and	
size,	it	is	easy	to	construct	sub-filing	VFD	use	cases	where	this	is	not	the	case.	

Thus	 we	 are	 pushed	 back	 to	 querying	 the	 VFD	 whenever	 the	MPI	 communicator,	 rank,	 or	 size	 is	
needed.		However,	we	still	need	to	get	rid	of	the	MPI	specific	VFD	callbacks	so	that	the	H5FD_class_t	
does	not	change	depending	on	serial	vs.	parallel	build.	

We	propose	to	square	this	circle	by	the	addition	of	a	generic	callback	that	allow	VFDs	to	support	VFD	
specific	 operations.	 	 This	 notion	was	 proposed	 in	 the	 onion	 VFD	 RFC.	 	 The	 version	 here	 has	 been	
modified	slightly	to	offer	more	graceful	stacking	of	VFDs.		It	will	probably	be	refined	further	as	part	of	
the	 ongoing	 efforts	 to	 support	 pluggable	 VFDs,	 and	 to	 redesign	 the	H5FD_class_t	 structure.	 	 The	
proposed	signatures	for	the	external,	internal,	and	VFD	callback	versions	are	as	follows:	

herr_t H5FDctl(H5FD_t *file, uint64_t op_code, uint64_t flags,
 const void * input, void ** result);

herr_t H5FD_ctl(H5FD_t *file, uint64_t op_code, uint64_t flags,
 const void * input, void ** result);

herr_t (*ctl)(H5FD_t *file, uint64_t op_code, uint64_t flags,
 const void * input, void ** result);

where:	

• file	is	a	pointer	to	the	H5FD_t	for	the	target	VFD	instance.	

• op_code	is	an	integer	code	specifying	the	desired	operation.		For	our	immediate	purposes	we	
need	3:	

o H5FD_CTL__GET_MPI_COMMUNICATOR

o H5FD_CTL__GET_MPI_RANK

o H5FD_CTL__GET_MPI_SIZE

• flags	specify	handling	of	the	H5FDctl	call	if	it	is	not	handled	by	the	target	VFD.		The	list	of	
defined	flags	will	likely	expand,	but	the	obvious	ones	are:	

o H5FD_CTL__FAIL_IF_UNKNOWN_FLAG –	Absent	modifying	flag,	fail	if	the	opcode	is	
unknown	/	unsupported.

o H5FD_CTL__IGNORE_IF_UNKNOWN_FLAG –	Absent	modifying	flag,	ignore	the	call	and	
return	success	if	the	opcode	is	unknown	/	unsupported.

o H5FD_CTL__ROUTE_TO_TERMINAL_VFD_FLAG –	pass	through	VFDs	for	which	the	
op_code	is	unknown	/	unsupported	should	relay	the	H5FD_ctl()	call	towards	the	
terminal	VFD.	

																																																								
13	Hat	tip	to	Quincey	for	pointing	this	out.	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	21	of	24	

For	our	immediate	purposes,	we	only	need	the	first	and	third	flags.		The	second	one	will	be	
needed	for	the	limited	asynchronous	I/O	support	discussed	below.	

• input	points	to	any	data	supplied	by	the	caller	(typically,	an	op_code	specific	structure).	

• result	points	to	a	buffer	supplied	by	in	caller	in	which	any	required	data	is	returned.		This	
buffer	must	be	both	allocated	and	freed	by	the	caller,	and	must	be	the	expected	size.	

The	general	semantics	of	the	H5FDctl()	call	is	as	follows:	

• If	the	op_code	is	known,	process	it	as	appropriate.	

• If	the	op_code	is	unknown,	proceed	as	indicated	by	the	flags	–	specifically:	

o If	the	VFD	is	terminal14,	and	H5FD_CTL__FAIL_IF_UNKNOWN_FLAG	is	set,	return	FAIL.	

o If	the	VFD	is	terminal,	and	H5FD_CTL__IGNORE_IF_UNKNOWN_FLAG	is	set,	return	
SUCCEED.	

o If	the	VFD	is	pass	through,	and	H5FD_CTL__ROUTE_TO_TERMINAL_VFD_FLAG	is	set,	pass	
the	call	to	either	the	terminal	VFD,	or	to	the	next	pass	through	VFD	on	the	path	to	the	
terminal	VFD.	

o If	the	VFD	is	pass	through,	and	no	routing	flags	are	set,	proceed	as	for	terminal	VFDs.	

The	semantics	for	the	three	op_codes	we	have	defined	are	what	one	would	expect	–	return	the	MPI	
communicator,	rank,	or	size	in	**result.		The	caller	must	allocate	the	appropriate	buffer.		Note	that	
the	communicator	is	not	duplicated	–	the	caller	must	do	so	if	desired.	

We	will	 likely	want	to	reserve	ranges	of	op_codes	and	flags	both	for	THG	use,	and	for	experimental	
use.	 	 A	 registry	 external	 op_codes	 and	 flags	may	 also	 be	 useful.	 	 However,	 these	 are	 topics	 best	
addressed	 in	 the	 context	 of	 pluggable	 VFDs,	 and	 are	 left	 until	 after	we	 have	made	 any	 necessary	
adjustments	both	for	it,	and	the	other	VFDs	currently	in	progress.	

Observe	that	the	above	solution	makes	MPI	support	transparent	to	pass	through	VFDs,	and	resolves	
the	current	problem	of	an	MPI	specific	version	of	H5FD_class_t.	It	does	require	duplicate	code	in	all	
VFDs	that	support	MPI	to	make	the	MPI	communicator,	rank,	and	size	available,	but	on	balance,	this	
seems	an	acceptable	trade	off	relative	to	the	cost	of	moving	this	functionality	to	the	H5FD	code	in	the	
parallel	build.	

	

																																																								
14	In	essence,	a	terminal	VFD	is	a	VFD	that	manages	I/O	for	an	entire	HDF5	file.		Thus,	the	sec2	VFD	is	
terminal,	unless	it	is	being	used	by	the	family	or	multi	file	driver	to	manage	I/O	for	some	portion	of	
the	logical	HDF5	file.		Similarly,	the	multi	file	driver,	the	family	file	driver,	the	VFD	SWMR	reader	VFD,	
and	the	sub-filing	VFD	are	all	terminal	as	they	are	all	the	lowest	point	in	the	VFD	stack	through	which	
all	I/O	requests	pass.		In	contrast,	VFDs	that	simply	pass	I/O	requests	down	the	VFD	stack	(i.e.	logging	
and	splitter	VFDs)	are	pass	through	VFDs	and	not	terminal	since	while	while	all	I/O	requests	may	pass	
through	them,	at	least	one	underlying	VFD	receives	the	same	stream	of	I/O	requests.	
While	this	definition	works	at	present,	it	is	easy	to	come	up	with	scenarios	where	it	might	have	to	be	
twisted	a	bit	–	for	example,	consider	the	implications	of	a	parallel	version	of	a	true	network	VFD.	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	22	of	24	

2.5.2 Sub-Filing	VFD	Needs	Minimal	AIO	Support	

Review	of	Richard’s	sub-filing	VFD	code	has	made	it	clear	that	if	we	want	a	performant	sub-filing	VFD	
that	uses	 stacked	VFDs	 to	handle	 sub-file	 I/O,	we	must	add	some	minimal	AIO	support	 to	 the	VFD	
interface.	

To	see	this,	consider	a	case	in	which	the	I/O	generated	by	a	single	API	call	touches	ten	sub-files,	and	is	
delivered	 to	 the	 sub-filing	 VFD	 in	 a	 single	 selection	 I/O	 call.	 	 The	 sub-filing	 VFD	 must	 break	 this	
selection	I/O	call	 into	ten	sub	calls	(one	per	affected	sub-file),	and	then	relay	the	sub-calls	down	to	
the	VFDs	responsible	for	the	target	sub-files.			

In	 the	 absence	 of	 AIO	 support,	 these	 ten	 sub-requests	must	 be	 serialized.	 	While	 this	 is	 probably	
acceptable	on	a	local	file	system,	it	defeats	the	purpose	of	sub-filing	on	large	HPC	machines.	

The	 current	 sub-filing	 VFD	 gets	 around	 this	 problem	 by	 merging	 the	 sub-filing	 VFD	 and	 the	 I/O	
concentrator	VFDs.		While	this	works,	and	we	will	use	this	solution	for	the	initial	merge	of	sub-filing	
into	the	selection	I/O	branch,	we	must	break	the	two	apart	 into	stackable	VFDs	to	gain	the	desired	
flexibility.			

For	purposes	of	sub-filing	proper,	the	AIO	extension	needed	are	very	rudimentary	–	the	equivalent	of	
the	Concurrent	Pascal	cobegin	/	coend	construct	would	do	the	 job	nicely,	and	avoid	separate	code	
paths	for	underlying	VFDs	that	support	AIO	vs.	those	that	don’t.			

Observe	 that	 the	H5FD_ctl()	 call	 discussed	 above	 is	 a	 good	 fit	 for	 this	 –	 if	we	define	 the	 following	
op_codes:	

• H5FD_CTL__COBEGIN –	All	I/O	calls	issued	on	the	current	thread	after	the	COBEGIN	and	
before	the	COEND	may	run	asynchronously	and	concurrently.

• H5FD_CTL__COEND	–	All	I/O	calls	issued	on	the	current	thread	before	the	COEND	must	
complete	before	the	COEND	call	returns.		The	call	returns	SUCCEED	if	no	errors	are	detected,	
and	FAIL	otherwise.	

If	we	bracket	per	sub-file	I/O	requests	with	the	COBEGIN	and	COEND	H5FD_ctl()	calls	to	each	of	the	
relevant	VFDs,	and	combine	these	calls	with:	

H5FD_CTL__IGNORE_IF_UNKNOWN_FLAG	and		
H5FD_CTL__ROUTE_TO_TERMINAL_VFD_FLAG		

we	can	get	the	desired	asynchrony	when	supported,	and	still	use	VFDs	that	don’t	support	asynchrony	
without	code	changes.	

Whether	we	 implement	something	this	 rudimentary,	or	opt	 for	more	general	AIO	support	depends	
on	 what	 other	 plausible	 use	 cases	 we	 can	 think	 of,	 and	 available	 resources.	 	 However,	 since	 the	
selection	 I/O	extension	 to	 the	sub-filing	VFD	will	be	easier	 to	debug	 in	serial,	 it	would	be	useful	 to	
have	this	extension	in	place	when	we	get	to	that	point.		

2.5.3 Miscellaneous	Notes	

Issues	to	be	investigated	and	dealt	with	as	appropriate:	

From Jordan: Here are my findings on HDF5's usage of MPI derived types, based on a quick search for
MPI_Type_free. Note that in some of these cases, the derived types are composed of other derived

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	23	of	24	

types. I don't know if this would affect the selection I/O work or not, but some of the types can get
fairly complicated.

• H5C__collective_write

o Derived types created for mem and file type
o Single I/O seems to be sent down via H5F_block_write

• H5D__chunk_collective_fill
o Derived types created for mem and file type for all chunks at once
o Single I/O sent down via H5F_shared_block_write

• H5D__link_chunk_collective_io
o Derived types created for mem and file type for each chunk, then coalesced into single

struct derived type

o Single I/O sent down via H5D__final_collective_io

• H5D__link_chunk_filtered_collective_io
o Derived types created for mem and file type for all chunks at once

o Single I/O sent down via H5D__final_collective_io

• H5D__multi_chunk_filtered_collective_io
o Derived types created for mem and file type for a "round" of chunks (at most 1 chunk

per rank)
o Multiple I/Os sent down via H5D__final_collective_io, 1 per "round" of chunks

• H5D__inter_collective_io
o Might use a derived type for mem and file types, depending if file_space/mem_space

are passed in

o May be called multiple times during H5D__multi_chunk_collective_io to write out
several "rounds" of chunks, as in the filter case above

• H5FD__mpio_write
o Might use a derived type if a large (> 2GB) I/O is needed for MPI I/O call
o Single I/O sent down via MPI_File_write_at/MPI_File_write_at_all

• H5_mpio_create_large_type
o Used in multiple places to create a derived type for >2GB I/Os

o Most or all of these places appear to be covered by the previous bullets

	

June	10,	2021	 	 RFC	THG	2021-02-19.v6	

Page	24	of	24	

3 Recommendation	
Review	this	RFC	to	verify	that	no	significant	issues	have	been	missed,	and	that	there	are	no	obvious	
show	stoppers.			

Assuming	no	red	flags,	proceed	to	implementation,	with	updates	to	this	RFC	as	technical	details	are	
worked	out	and	tested.	

Acknowledgements	
TBD	

Revision	History		
February	19,	2021:	 Version	1	circulated	for	comment.		

March	4,	2021:	 Version	2	circulated	for	comment.		Major	edits	to	introduction	and	section	
2.3.2	to	address	comments,	lesser	edits	elsewhere.	

March	23,	2021:	 Version	3	circulated	for	comment.		Moved	discussion	of	page	buffer	
modifications	into	its	own	section,	and	rewrote	to	address	incoming	
selection	I/O	calls.	

May	11,	2021:	 Version	4	circulated	for	comment.		Modified	types[]	and	sizes[]	
optimization	in	vector	I/O	calls	to	require	invalid	value	at	index	1	only.		
Added	similar	optimization	for	the	bufs[]	parameter	in	selection	I/O	calls.	
Added	discussion	of	management	of	VFDs	that	support	MPI,	and	exposure	of	
communicator,	rank,	and	size	to	upper	levels	of	the	library	(section	2.5.1).	

May	22,	2021:	 Version	5	circulated	for	comment.		Added	discussion	of	need	for	some	sort	
of	AIO	support	in	the	VFD	interface	for	sub-filing	(section	2.5.2	–	move	this	
discussion	to	the	sub-filing	RFC?).		Removed	the	dxpl_id	parameter	from	
the	internal	versions	of	the	vector	and	selection	I/O	calls.	

June	10,	2021:	 Version	6	circulated	for	comment.		Re-worked	discussion	of	management	of	
VFDs	that	support	MPI,	and	exposure	of	communicator,	rank,	and	size	to	
upper	levels	of	the	library	(section	2.5.1)	to	address	interaction	with	
pluggable	VFDs.		Reworked	discussion	of	limited	AIO	support	required	for	
sub-filing	(section	2.5.2)	to	use	the	proposed	H5FDctl()	call.	

	

