
 Conversion Between Text and Datatype
 Quincey Koziol & Raymond Lu
 koziol@ncsa.uiuc.edu, slu@ncsa.uiuc.edu
 Aug 11, 2004
 Revised on Sep 21, 2004

I. Document’s Audience

Current HDF5 library designers and knowledgeable external developers.

II. Requirements and Use Cases

1. There have been some user requests to create HDF5 data type in a single step. Although it does not save much for atomic data
data type creation into one step for some more complex data types, like compound and array types. The ASCI people have been tr
a data type text description in order to define a data type during run time in a single place.

2. On the other side, some user requests the text description of a HDF5 data type for debugging purpose. This description can be
is quite similar to what the h5dump does.

3. Another request is to make a HDF5 private function H5T_cmp public. What it does is to compare data types in the library’s pred
table of data types.

III. Functionality

There are two new major functions we are going to add to the library to satisfy the requirements, one is H5Ttext_to_type, anothe
on the format of text description for a data type, H5Ttext_to_type converts a text description into an HDF5 datatype object and re
H5Ttype_to_text, it returns a text description of an HDF5 datatype given by its ID. The format of the text should comply with th
have predefined. More details of these two functions can be found in Section VIII of this document.

There will be another function called H5Tcmp. It compares two data types in the arbitrary way of the library’s predefinition.

IV. Library Design

1. Conversion from text to data type.

For the internal library design, there are several steps involved to convert from text description of a data type to an HDF5 data type
illustrated in the following diagram,

 Figure 1. Conversion from text to data type.

From the diagram, we can see there are three major steps, text input, text analysis, and parsing. Input text has to match the format w

mailto:koziol@ncsa.uiuc.edu

The parser will take the tokens and symbols generated by the text analyzer and check if they are valid based on the language gramm
parser sees valid expression, it will take actions. A token for “unsigned” followed by the token for “int” is considered as good C
HDF5(H5Tcreate) occurs then. A data type object ID is created and returned. It will be illegal to have a token for “float” follow t

2. Conversion from HDF5 data type to text

This part is relatively simple. Function H5Ttype_to_text prints out the text description of an HDF5 data type according to the lan
what the h5dump does. h5dump only prints out the text in DDL format. H5Ttype_to_text supports C, DDL, and Fortran.

V. Design Issues to be Considered

1. Modules for languages

The library currently supports C, DLL, and Fortran formats. In the future, we may want to support other languages, like C++. Th
to make future addition simple.

It is possible to provide a tool built with Lex and Yacc. Library designers and users can simply provide a text file consisted of synt
language. By running this tool, rules for Lex and grammar for Yacc can be generated automatically. Then they can be easily plugg
could be the second stage of this project if there are enough needs and requirements.

2. Availability of Lex library on systems

There is no need for the Yacc library. The Lex library is optional in order to compile this part of HDF5 library. As long as we defi
overwrite the default Lex function, we do not need to link to any Lex library. The way we use Lex and Yacc tools is similar to the
and Yacc to generate the desired .c and .h files, the code is supposed be portable.

3. Different kinds of Lex and Yacc

For Lex, there are versions of AT&T Lex, GNU Flex, POSIX Lex, etc. For Yacc, there are versions of AT&T Yacc, Berkeley Yacc
of them may be somehow different from the others. We do not have to address the differences of syntax based on what Lex and Y
GNU Flex and Bison.

4. Error report

A good error report is needed if there are errors in the input text. Both Lex and Yacc have some mechanisms to report errors. We n
library error report.

5. Supported data types

For C and DDL, we will support all atomic data types, compound, enumerate, and array types, including their nested cases. We do
opaque data types because C language does not have equivalent data types for them. It will be difficult for the text analyzer and pa
data types.

For Fortran, we will only support four atomic types. But Fortran user can still use DDL description to create data types.

VI. Language Formats

1. C

For text description for C should be the same as C language itself with some minor differences. A text “unsigned long long” will c
H5T_NATIVE_ULLONG.

For A complete list of data type definition in C language, please refer to the Appendix B, Syntax of the C language in the book C -
differences we have here is array type. We added array as a data type.

The data types we support are defined in BNF as follows,

type-specifier:
 enumeration-type-specifier

floating-type-specifier

enumeration-type-definition:
 enum enumeration-tagopt { enumeration-definition-list }

enumeration-type-reference:
 enum enumeration-tag

enumeration-tag:
 identifier

enumeration-definition-list:
 enumeration-constant-definition
 enumeration-definition-list,enumeration-constant-definition

enumeration-constant-definition:
 enumeration-constant
 enumeration-constant = integer-constant

enumeration-constant:
 identifier

The floating-point data types are defined as,

 floating-type-specifier:
 float
 double
 long double

The integer data types are defined as,

integer-type-specifier:
 signed-type-specifier
 unsigned-type-specifier
 character-type-specifier

signed-type-specifier:
 short or short int or signed short or signed short int
 int or signed int or signed
 long or long int or signed long or signed long int

long long or long long int or signed long long or signed long long int

unsigned-type-specifier:
 unsigned short intopt
 unsigned intopt
 unsigned long intopt
 unsigned long long intopt

character-type-specifier:
 char
 signed char
 unsigned char

The structure data types are defined as,

structure-type-specifier:
 structure-type-definition
 structure-type-reference

structure-type-definition:
 struct structure-tagopt { field-list }

structure-type-reference:
 struct structure-tag

structure-tag:
 identifier

field-list:
 component-declaration
 field-list component-declaration

component-declaration:
 type-specifier component-declaration-list ;

component-declaration-list:

bit-field:
 declaratoropt : width

width:
 expression

The typedef is defined as,

 typedef-name:
 identifier

We also support array as a data type in HDF5, which is different from C. Below is the definition of array,

 array-declarator:
 type-specifier simple-declaratoropt [constant-expression]

 simple-declarator:
 identifier

Below is a list of examples of C data types,

Integer types
 “char” “unsigned char”
 “short” “unsigned short”
 “int ” “unsigned”
 “long;” “unsigned long”
 “long long” “unsigned long long”

Floating-point types
 “float” “double” “long double”

Structures
 “struct s {int a; float b;};” “typedef struct s {int a; float b;} s_t;”

Arrays
 “int [16];”

“typedef struct s {int a; float b;} s_t; s_t [16][32];”

Enumerates
 “enum {Bob=0, Elena, Quincey, Frank};”

2. DDL

This format is basically the DDL definition for HDF5. Please look at the last chapter of the User’s Guide for HDF5, DDL for HD
for this project’s concern is as follows,

<datatype> ::= <atomic_type> | <compound_type> | <array_type> |
 <variable_length_type>

<atomic_type> ::= <integer> | <float> | <time> | <string> |
 <bitfield> | <opaque> | <reference> | <enum>

<integer> ::= H5T_STD_I8BE | H5T_STD_I8LE |
 H5T_STD_I16BE | H5T_STD_I16LE |
 H5T_STD_I32BE | H5T_STD_I32LE |
 H5T_STD_I64BE | H5T_STD_I64LE |
 H5T_STD_U8BE | H5T_STD_U8LE |
 H5T_STD_U16BE | H5T_STD_U16LE |
 H5T_STD_U32BE | H5T_STD_U32LE |
 H5T_STD_U64BE | H5T_STD_U64LE |
 H5T_NATIVE_CHAR | H5T_NATIVE_UCHAR |
 H5T_NATIVE_SHORT | H5T_NATIVE_USHORT |
 H5T_NATIVE_INT | H5T_NATIVE_UINT |
 H5T_NATIVE_LONG | H5T_NATIVE_ULONG |
 H5T_NATIVE_LLONG | H5T_NATIVE_ULLONG

<float> ::= H5T_IEEE_F32BE | H5T_IEEE_F32LE |

H5T IEEE F64BE | H5T IEEE F64LE |

<strsize> ::= <int_value>
<strpad> ::= H5T_STR_NULLTERM | H5T_STR_NULLPAD | H5T_STR_SPACEPAD
<cset> ::= H5T_CSET_ASCII
<ctype> ::= H5T_C_S1 | H5T_FORTRAN_S1

<bitfield> ::= TBD

<opaque> ::= H5T_OPAQUE { <identifier> }

<reference> ::= H5T_REFERENCE { <ref_type> }
<ref_type> ::= H5T_STD_REF_OBJECT | H5T_STD_REF_DSETREG

<compound_type> ::= H5T_COMPOUND { <member_type_def>+ }
<member_type_def> ::= <datatype> <field_name> <offset>opt ;
<field_name> ::= <identifier>
<offset> ::= : <int_value>

<variable_length_type> ::= H5T_VLEN { <datatype> }

<array_type> ::= H5T_ARRAY { <dim_sizes> <datatype> }
<dim_sizes> ::= `['<dimsize>`]' | `['<dimsize>`]'<dim_sizes>
<dimsize> ::= <int_value>

<enum> ::= H5T_ENUM { <enum_base_type> <enum_def>+ }
<enum_base_type> ::= <integer>
// Currently enums can only hold integer type data, but they may be //expanded in the future to hold an
<enum_def> ::= <enum_symbol> <enum_val>;
<enum_symbol> ::= <identifier>
<enum_val> ::= <int_value>

A few examples of datatypes in DDL are as follows,

“H5T_ENUM { H5T_NATIVE_INT;

“Bob” 0;
“Elena” 1;
“Quincey” 2;
“Frank” 3; }”

“H5T_COMPOUND {
 H5T_ARRAY { [4] H5T_STD_I32BE } “int_array”;
 H5T_ARRAY { [5][6] H5T_IEEE_F32BE } “float_array”; }”

“H5T_COMPOUND {
 H5T_STD_I16LE “16_bit” : 0;
 H5T_IEEE_U32BE “32_bit” : 16; }”

3. Fortran

To be decided.

VII. Examples

A simple example below shows how to create an array datatype of compound type in C format. This compound data type has two
float. The program then converts the HDF5 data type just created into a text description.

hid_t dtype;
size_t tsize;
unsigned char* text_buf;
 :

/* Create the data type by C text */
if((dtype = H5Ttext_to_type(“typedef struct foo{
 int a;
 float b;
 } foo_t;
 foo_t [12];”))<0)

goto error;

 /* Convert the data type back to text */
 If(H5Ttype_to_text(dtype, NULL, H5T_C, &tsize)<0)
 goto error;

If(tsize>0)

Name: H5Ttext_to_type
Signature:

hid_t H5Ttext_to_type(const char* str)
Purpose:

Create a HDF5 datatype given a description of data type.
Description:
 Given a text description of data type, this function creates an HDF5 datatype. The
 text description of the data type has to comply with certain language formats. The

currently supported languages are C, DDL, and Fortran. An example of C text description is like,

 “typedef struct foo {
 int a;
 float b;
 } foo_t;
 foo_t [12];”

When this C definition of data type is passed in as the str, this function will create an HDF5 datatype of 12-element array
compound datatype has a field of integer

 and a field of float.
Parameters:
const char* str

IN: a character string describing the data type to be created.
Returns:

Returns the datatype ID(non-negative) if successful; otherwise returns a negative value.

Name: H5Ttype_to_text
Signature:

herr_t H5Ttype_to_text(hid_t datatype, char* str, H5T_lang_t lang_type, size_t* len)
Purpose:

Creates a text description of a datatype.
Description:

Given a datatype ID, this functions creates a text description of this datatype in different format according to the language ty
text description will be in C format. If it is H5T_DDL, the description will be in
HDF5 DDL format. An example in C format will be like,

 “typedef struct foo {
 int a;
 float b;
 } foo_t;
 foo_t [12];”

which is a datatype of 12-element array of a compound datatype. This compound datatype has a field of integer and a field

A preliminary H5Ttype_to_text call can be made to find out the size of the buffer needed. This value is returned as len.
len for a second H5Ttype_to_text call, which will retrieve the actual text description for the data type.

If the library finds out len is not big enough for the description, it simply returns the size of the buffer needed through len w
buffer.

Parameters:
hid_t datatype
 IN: ID of the datatype to be converted.
char* str

OUT: Buffer for the text description of the data type.
H5T_lang_t lang_type

IN: the language used to describe the data type. Currently supported languages are H5T_C, H5T_DDL, H5T_FORTRAN. Oth
size_t* len
 OUT: the size of buffer needed to store the text description.
Returns:

Returns non-negative if successful; otherwise returns a negative value.

Name: H5Tcmp
Signature:

int H5Tcmp(hid_t dtype1, hid_t dtype2)
Purpose:

H5T_COMPOUND > H5T_OPAQUE > H5T_BITFIELD >
H5T_STRING > H5T_TIME > H5T_FLOAT > H5T_INTEGER

Integers Big endian > little endian, higher precision > lower precision, greater
offset > lesser offset(bit position of the least significant bit), greater
least significant padding > lesser least significant padding, greater
most significant padding > lesser most significant padding, unsigned
> signed.

Floats Big endian > little endian, higher precision > lower precision, greater
offset > lesser offset(bit position of the least significant bit), greater
least significant padding > lesser least significant padding, greater
most significant padding > lesser most significant padding, greater
bit position of sign bit > lesser bit position of sign bit, greater
position of least significant bit of exponent > lesser position of least
significant bit of exponent, greater exponent size > lesser exponent
size, greater exponent bias > less exponent bias, greater mantissa size
> lesser mantissa size, most significant bit of mantissa is 1 always >
most significant bit of mantissa is implied(normalization), padding
set to background value > padding set to 1 > padding set to 0.

Times Big endian > little endian, higher precision > lower precision, greater
offset > lesser offset(bit position of the least significant bit), greater
least significant padding > lesser least significant padding, greater
most significant padding > lesser most significant padding.

Strings Big endian > little endian, higher precision > lower precision, greater
offset > lesser offset(bit position of the least significant bit), greater
least significant padding > lesser least significant padding, greater
most significant padding > lesser most significant padding, padding
with space for extra bytes > padding with nulls > null-terminated.

Bit fields Big endian > little endian, higher precision > lower precision, greater
offset > lesser offset(bit position of the least significant bit), greater
least significant padding > lesser least significant padding, greater
most significant padding > lesser most significant padding.

Compounds More members > less members, greater member name > lesser
member name(similar to string comparison), greater member offset >
lesser member offset, greater member size > lesser member size.

References Big endian > little endian, higher precision > lower precision, greater
offset > lesser offset(bit position of the least significant bit), greater
least significant padding > lesser least significant padding, greater
most significant padding > lesser most significant padding, internal
reference > dataset region reference > object reference, data located
on disk > data located in memory(for object reference),

Enumerates Greater parent > lesser parent, more members > less members, greater
member name > lesser member name.

Variable-lengths String > sequence, data located on disk > data located in memory,
greater file object address > lesser file object address(if they are in
different files).

Opaques H5T_ARRAY > H5T_VLEN > H5T_ENUM > H5T_REFERENCE >
H5T_COMPOUND > H5T_OPAQUE > H5T_BITFIELD >
H5T_STRING > H5T_TIME > H5T_FLOAT > H5T_INTEGER,
greater tag > lesser tag(similar to string comparison).

Arrays More dimensions > less dimensions, bigger dimensions > smaller
dimensions, greater parent > lesser parent.

This function provides the convenience of sorting data types although some of the comparisons are arbitrary.

Parameters:
hid_t dtype1
 IN: ID of the first datatype to be compared.
hid_t dtype2

IN: ID of the second data type to be compared.
Returns:

Returns positive value if first data type is greater; negative value if second data type is greater; 0(zero) if they are equal.

